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PREFACE

In this book authors for the first time introduce a special
type of fixed points using MOD square matrix operators. These
special type of fixed points are different from the usual classical
fixed points.

A study of this is carried out in this book. Several
interesting properties are developed in this regard. The notion
of these fixed points find many applications in the mathematical
models which are dealt systematically by the authors in the forth
coming books.

These special type of fixed points or special realized limit
cycles are always guaranteed as we use only MOD matrices as
operators with its entries from modulo integers. However this
sort of results are NP hard problems if we use reals or complex

numbers.



These new notions are systemically developed in this book.
We wish to acknowledge Dr. K Kandasamy for his
sustained support and encouragement in the writing of this

book.

W.B.VASANTHA KANDASAMY
ILANTHENRAL K
FLORENTIN SMARANDACHE



Chapter One

INTRODUCTION

In this book authors for the first time define a special type
of fixed point different from the classical fixed points using
MOD matrix operators. When the MOD matrices are square
matrices they yield a fixed point which is defined as the realized
fixed point. The MOD matrices themselves serve as the operators
from a collection of row vectors of same order to itself.

Such study is new and innovative leading to several
openings both in fixed point theory and in mathematical
modeling. Here authors mainly use the modulo integer. Z, or
(Z, U 1), the neutrosophic integer or C(Z,) or (Z, U g) and so
on.

For MOD functions and their properties refer [21].

Clearly the map 1, : R — [0, n) has finite number of
classical fixed points [21].

Likewise n : Z — Z, also has finite number of classical
fixed points [1]. However the study of realized fixed points
arising from MOD matrix operators are entirely different from
the usual or classical fixed points.

We call a square matrix with entries from Z, as the MOD
real matrix operator. This study is carried out in chapter two.
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Similarly (Z, U I) can be used in the place of Z,. Likewise
(Z, v gy or C(Z,) or {(Z, U h) or (Z, U k) can be used in the
place Z, and realized fixed point and realized limit cycle are
found using the MOD matrix as a operator from row matrix
collection to itself.

Let M be a n X n matrix with entries from Z, (or (Z, U I) or
(Z, v g) or (Z, U h) or (Z, U k) or C(Z,)). M is called MOD
matrix operator and it acts from B = {(a;, ..., a,) la;€ Z;; 1 <i
<n} to itself.

M can fix elements of B leading to classical fixed points.

If xM after several iterations takes value y and yM =y then
y € B will be defined as the realized fixed point. It may so
happen xM gives y; and then y;,; and so on once again the y;
after acting on M at each stage.

Then this y; will be defined as the realized limit cycle. The
applications of the operators to mathematical modeling will be
given in the forthcoming books.

For the notions of neutrosophic modulo integer (Z, U I);
I* = 1 refer [3, 4]. For the dual numbers and modulo dual
numbers (Z, U g) = {a + bg | g2 =0, a, b e Z,} refer [12]. For

finite complex modulo integers and their properties refer [11].

For special dual like modulo numbers (Z, U h) = {a, bh | a,
b € Z,; h? =h} refer [13].

Finally for the concept of special quasi dual modulo
integers (Z, uk)={a+bk/a,be Z, K=m-1) k} refer [14].

For MOD structures and their properties refer [21-7].

For thresholding and updating of state vector refer [5].



Chapter Two

MOD-FIXED POINT THEORY

In this chapter we for the first time introduce the notion of
MOD-fixed points of MOD-functions [21]. There are several such
MOD-functions and the fixed points in those cases are
periodically fixed.

This situation will be first represented by examples first and
then will be defined.

Example 2.1: Let Z be the integers (both positive and negative)
and Zs modulo integers.

Define a MOD-function f : Z — Zs is as follows:

f(0)= 0, f(1)=1=1(-4)

f(2) =2 =1(-3),f(3) =3 =1(-2)
f(4) =4 =1(-1),f(x5) =0
f(n5)=0; n=x1, ..., 00
fon+l)=1;n==%1, ...,
fon-1)=4,f5n+2)=2
fGbn-2)=3, f{n+3)=3
fbn-3)=2;n==1, ..., .

f is MOD-fixed point function for f fixes 0, 1, 2, 3 and 4.
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Example 2.2: Let f: Z — Z,o, f is a MOD-function the MOD-
fixed points of fare 0, 1, 2, ..., 191.

In view of all these we give the formal definition.

DEFINITION 2.1: Let Z be the set of positive and negative
integers with zero.

Z, the integers modulo n.

Definef:Z — Z,byfix)=x;, 0=<x<n-1;
fint+x)=x; 1 <t< oo
fint—x)=n—x; 1 <x<n -1

Then fis the MOD-function and all elements
{0, 1, 2, ..., n— 1} of Z are fixed points of f.

This MOD-function behaves is the classical way and the
fixed points are also defined in the same way as that of classical
one.

Thus we have MOD-functions contributing to finite number
of fixed points.

Example 2.3: Let Z;3 be the modulo integers mod 18 and
f:Z — Z5 be the MOD-function defined by
fx)=x;0<x<17.

f(18) =0
f(I8n+x)=x; 0<x<17
f(I8n—x)=18-xfor 0<x<17;ne Z.

Clearly this mod function f fixes the elements O, 1, 2, ...,
17.

Thus the elements of Zs are fixed points of the MOD-
function f.
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In view of this we prove the following theorem.

THEOREM 2.1: Let Z be the integers. Z, be the modulo
integers. f : Z — Z, be the MOD-function from Z to Z,. f has
{0, 1, 2, .., n— 1} to be the fixed points.

Proof: Follows from the fact f(x) = x for all x € {0, 1, 2, ...,
n — 1}. Hence the theorem.

In view of this we can say the MOD function f : Z — Z, has
n and only n fixed points including 0.

Next our natural questions would be can we have MOD-
functions which can have finite number of fixed points or more
than n fixed points. The answer is yes.

To this effect some examples are provided.

Example 2.4: Let
a b c
M=4|d e f| wherea,b,c,d,e, f, g hie Z}
g h

i

be the collection of 3 X 3 matrices.

a1 a2 a}
N=1<la, a, a,|lajeZy1<i<9}
a, a, a

be the collection of 3 X 3 matrices with entries from Z,5.

Define a function
f:M—>N

f(A = (ay)) = (ay) ifay € Z),
f((a;)) = 12 — a; if a; is negative and —12 < a; <0
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f((ay) =f(12n+1t) =t
f((ag) =f(12n-t)) = 12 —t.

Then f is defined as the MOD-matrix function

f(A) = A if entries of A takes values from
{0,1,2,...,11}.

Thus all elements of N € M are fixed points are fixed
matrices of this MOD-matrix function.

We will illustrate this by some more examples.

Example 2.5: Let

M=4|a,|laeZ;1<i<5}

N = s IaleZm,IS1S5}

be the column matrices with entries from Z.

Define f : M — N the MOD-matrix function
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9 9 -3 7
12 2 2 2
fl|19]|=|9| €N, f{| 4 ||=|4|e N.
—7 3 -5 5
=N |5 ] | 0] 10|
1)y (1] ([3]) [3]
2 2 3 3
fl|3|] =3, f||3]||=]|3| and so on.
4 4 3 3
16 ] 1 6] 3] 3]

Thus there are several matrices which are kept fixed by the
MOD-matrix function.

This is the way MOD-matrix functions are defined and they
have certainly a finite number of fixed points but the number of

such matrices are greater than 10 in this case.

Example 2.6: Let

M:{al %2 ﬂmie 7:1<i<6)

a, a; ag

be the collection of all 2 X 3 matrices with entries from Z,;.

Define f : M — N the MOD-matrix function f has several
fixed points (matrices).
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For instance take

5 6 8
A= e M
9 10 12
f(A) = A € N is a fixed point matrix of M.

7 8 0
Take B = eM
1 2 22

f(B) =B € N is again a fixed point (matrix) of M.
Thus M has several fixed points.

Infact all matrices of N which is a subset of M happens to
be fixed under the MOD-matrix function f.

27 -3 4 4 20 4
fl|-8 40 12 || =15 17 12]|e N.
0 -7 -10 0 16 13

Thus there are matrix in M which are not fixed by N.
In view of all these we prove the follow theorem.

THEOREM 2.2: Let M = {m X n matrices with entries from Z}
and N = {m xXm matrices with entries from Z}.

Letf: M — N be the MOD function defined from M to N.

The fixed points (matrices) of the MOD-function f are
A= I/(azj)mxn | 0_<a[j_<s—]}.
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Proof: Follows from the fact all elements in x € A are such that
f(x) = x. Hence the claim, the MOD matrix function has fixed
points.

Next we consider the polynomials in Z[x] and Z,[x];
2<n< oo,

Z[x] = {2 ax la e Z)
i=0

be the collection of all polynomials in the variable x with
coefficients from Z.

Z.[x] = {Z aixi la,e Z,}
i=0

be the collection of all polynomials in x with coefficients from
Z,.

Define f : Z[X] = Z,[X];

f(x) = x, f(p(x) = p(x);
if p(x) € Z, [x], that is all coefficients of p(x) lie in Z,.

f(p(x) = Yax') = If(a) x'; f(a;) is defined as in case of MOD
functions.

f: Z[x] — Z,[x] is defined as the MOD-polynomial function.
This MOD-polynomial function has infinite number of fixed
points.

Let n = 15, Z;5s[x] be the polynomials with coefficients from
Z15.

Let p(x)= 45x'% + 25 x®+ 8x” + 62x” + 75x + 20 € Z[x]
f(p(x)) =10x* + 8x’ + 2x*> + 5 € Z,[x].
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Let q(x) = 3+ 73+ 14x + 12 € Z15[x]
fq(x)) =3+ 7x> + 14 x + 12;
Thus q(x) is a fixed point.

We have infinitely many fixed points for this MOD-
polynomial functions.

f is called the MOD-polynomial function these functions has
infinitely many fixed points.

Example 2.7: Let f : Z[x] — Zo[x] be the MOD-polynomial
function.

Let p(x) = 9x*' + 21x"7 + 14x" + 29x” + 40 x* + 10x> + 16x
+21 e Z[x].

f(p(x)) =0+ 3x"7 + 5" + 2x” + 4x° + xX* + Tx + 0 € Zo[x].

Thus this MOD-polynomial function f has infinitely many
fixed points (polynomials).

Thus examples of these are given.

Let f : Z[x] — Z;[x] be the MOD-polynomial function.

For p(x) = 7x° + 10x” — 15x* + 5x — 10 € Z[x].

f(p(x)) = x* + x* + 2x + 2 € Z3[x].

Let pi(x) = 2+ x> +2x+2¢€ Z[x];

f(p1(x)) = 2x° + X* + 2X + 2.

This is the way MOD-polynomial functions. This pi(x) is a

fixed polynomial of Z[x] so Z[x] has infinitely many fixed
(polynomials) points.
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Next we proceed onto study MOD interval function from
reals R to [0, m); 2 <m < oo,

We will give first examples of them.

Example 2.8: Let f : R — [0,12) be a function defined as
follows.

f(x) =xif 0 <x < 11.999;

f(£12) = 0.

f(12n+x)=x;n=%x1,%2, ... 0<x <11.9999
£(7.3201) = 7.3201

f(18.30125) = 6.30125 + (—7.512) = 4.488 and so on.
£(—40.003) = 7.997.

Thus f has infinitely many fixed points. All x such that
0<x<11.999...9 are such that f(x) = x.

These are known as MOD function fixed points of intervals.

Example 2.9: Let f : R — [0,11) be a function defined as
follows f(x) = xif 0 < x £10.999... f(12.0013) = 1.0013.

f(~12.0013) = 9.9987
£(-2.092) = £(8.908) and so on.

This is the way the MOD interval function is defined and this
has infinitely many fixed points.

Let us give one more example before we proceed onto
derive some properties associated with A.

Example 2.10: Let f: R — [0,118) be the MOD-interval function
defined by f(x) = x if 0 < x < 117.9999.

f(-106.007) = 11.993 and so on.

Infact there are infinitely many fixed points.



18 | Special Type of Fixed Points of MOD Matrix Operators

In view of this we have the following theorem the proof of
which is left as an exercise to the reader.

THEOREM 2.3: Let f: R — [0,m) be the MOD-interval function
f has infinitely many fixed points. Infact the interval [O,m) <
(—os, o) = R are fixed points of f.

Next we proceed onto define the notion of infinite number
of MOD-interval matrix fixed points.

DEFINITION 2.2: Let M = {p x q matrices with entries from R}
and N = {p x g matrices with entries from [O,m)}; 2 <m < oo
Define f: M — N by f((a;)) = (a;) if a; € [0,m) otherwise define
function f for each entries in the matrix as that of MOD interval
functions.

Then f : M — N is defined as the MOD-matrix interval
functions.

First we will illustrate this situation by some examples.

Example 2.11: Let

al a2
a, a, .
M= ; la;e R; 1<1<8}
aS a6
a, ag
and
al a2
a, a, .
N= ; la; € [0,17); 1<i< 8}
aS a6
a, a

=
0

be the collection of real and interval 4 X 2 matrices with entries
from R and [0,17) respectively.
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Define f: M — N be the MOD-interval matrix.

3.1 27 3.1 27
L5 06[| | L5 06
017 12| 017 12/’
1.7 5.1 1.7 5.1
-7 =831 10 8.69
(3 —a2s|| s n2as|
0.33 —0.67 0.33 1633
132 63 132 63

f has fixed points which are infinite in number.
Infact N < N and f(N) = N.

Example 2.12: Let

a4, a, .
M= la;e R; 1 <1<4}

a, a,

and
a, a, )
N = la; e [0,44) 1<i<L4}
a
be the 2 X 2 matrices.

Define f : M — N the MOD-interval matrix function. Clearly
f(N) =N.

N considered as a subset of M is an infinite collection of
MOD-interval matrix function fixed points.
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Next the study of MOD-interval polynomial functions will
be described by examples.

Example 2.13: Let

M= {z ax la e R}
i=0

and

N = {i ax'la € [0, 24))

i=0

be two real polynomial and MOD-interval polynomials
respectively.

Amapf: M - N defined by f(Zaixi) = Zaixi if we have a; €
[0,24) and f(Xax") = Xf(a)x' where f(a;) is defined as that of
MOD interval functions from R — [0,24).

Let p(x) = 3.8 x® + 24x° + 2.42 x* + 0.762 x> + 27.31 € R[x];
f(p(x)) = 3.8 x* + 2.42 x* + 0.762 x> + 3.31.

Let g(x)= 64 x'""+48x" +24.007x* +3.74 x* - 6.31x’ +
10.31 x> + 4x — 27.3 € R[x].

fg(x)) = 16x"°+0.007x° + 3.74x* + 17.69x” + 10.31x> +
4x +21.7€ N.

Thus f the MOD interval polynomial function has infinite
number of fixed points (polynomials).

Further it is to be noted as a set N € M; N is a proper subset
of M and N is of infinite cardinality and f(N) = N; so f is a
MOD-interval polynomial function which has infinitely many
polynomials which are fixed points.
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In view of this we have the following theorem.

THEOREM 2.4: Let

M = {z ax'la; € R}
i=0

be the collection of all polynomials with real coefficients.

N = {Z ax'la; € [0Om); 2 <m < oo}
i=0
be the MOD-interval polynomials with coefficients from [0,m).

The MoD-interval polynomial function f: M — N fixes
infinitely many points.

The fixed points of f are N that is filN) = Nas N c M.

Proof is direct and hence left as an exercise to the reader.

Next fixed point MOD function on ZXZX...XZ to
%/—/

n times

Z X7 x---xZ_ will be discussed by examples.

m-—times

Example 2.14: Let
V={Zx ZxZ={(a,b,c)la,b,ce Z}}
be the triple product of integers.

Let W={Z,x7Z;xZ;={(a,b,c)la,b,c, e Z;}} be the
triple product of modulo integers.

f: V — W be the MOD-function defined by
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f(a, b, ¢) = (X1, X3, X3) where x; = a, X, = b and X3 = ¢ if
0<a,b,c<6.
f(a, b, ¢) = (x4, Xo, X3) where if a > 7 then
a=7t+x, where 0<x,<6;
ifa<7thena =7t+y
=7 — y
= Xj.
Similar working for b and c.
We see if x =(8.3,-7.5,5.31) € V then
f(x) =1((8.3,-7.5,5.31)) =(1.3,6.5,531) e W.
Lety=(3.331,4.44,6.302) € V;
we see f(y) =1((3.331, 4.44, 6.302))
=(3.331, 4.44,6.302)
=ye W.
Clearly as W & V are see f(W) = W is the collection of all
fixed points of V, by the MOD function f which is only a finite
collection.

Example 2.15: Let

V={ZXZXZXZxZ)={(a, ay, a3, a4, a5) | 8, € Z;
1<i<5}}

be the 5-tuple product of integers.

W = {(Zo X Zg X Zy X Zo X ZLo) = {(X1, X2, X3, X4, X5) | X; € Zo;
1 <1 <9}} be the 5-tuples of Z, the modulo integers.

Define f: V — W to the MOD function.
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Then associated with x are only 8’ fixed points and nothing
more.

Letx=(9,8.3,10.3)bein V.

f(x)  =1((09,8.3,10.3)
=(0,83,13)e W.

So x is not fixed by f.
Letx; =(23,0,52)e V

f(x;) =1((2.3,0,5.2))
=(23,0,52)=x,€ W.

Thus this x; is fixed by f.

Letx, =(-3.7,-22.5,-17.2) e V.

f(x,) = f((-3.7, -22.5,-17.2)) =(5.3,4.5,0.8) € W.

Thus X, is not a fixed point of f.

In view of all these we have the following theorem.
THEOREM 2.5: Let V= (Z XZ x... XZ) = {(a;, a5, ..., a,) |
a;,€Z;, 1 <i<n}and W=(Z,XZ, X... XZ,) = {(x}, X2, ..., X)
where x; € Z,; 1 <i <n} be the n tuples of real and modulo
integers respectively.

Letf: V — W be a MOD function defined from Vto W.

[ fixes only m" points in 'V and no more.

Proof is direct and hence left as an exercise to the reader.

Now we give some more examples to this effect.
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Example 2.16: Let V=7 XZ X ZXZ X Z = {(aj, ay, a3, a4, as) |
g€ Z;1<i<5}and W =75 X Zg X Zs X Z1, X Zg = {(d;, ds, d3,
d4, d5) | d1 € Z3, d2 € Zg, d3 € ZS, d4 € 212 and d5 € Zg} be the 5
tuple reals and 5-tuple mixed modulo integers.

Letf: V — W be the MOD function.
Consider x = (5.3, 47.2,9.89, 12.83, 14.67) e V
f(x) =1((5.3,47.2,9.89, 12.83, 14.67)
= (2.3 (mod 3), 1.2 (mod 8),
4.89 (mod 5), 0.83 (mod 12), 5.67 (mod 9))
=(2.3,1.2,4.89,0.83,5.67) € W.

This is the very special way by which the MOD function is
defined.

Lety=(-7.3,-10.52,-4.8,-15.72,-10.8) € V;
now f(y) =1((-7.3,-10.52, -4.8, -15.72, -10.8))
= (~1.7 (mod 3) 5.48 (mod 8), 0.2 (mod 5),

8.38 (mod 12), 7.2 (mod 9))
=(1.7,5.48,0.2,8.38,7.2) e V.

Thus if entries are negative the MOD function f : V — W is
defined.

Next consider the element s = (1.2, 7.2, 4.5, 10.35, 6.331) €
V.

f(s) = £((1.2, 7.2, 4.5, 10.35, 6.331)) = (1.2, 7.2, 4.5, 10.35,
6.331)=se W.

Thus s is a fixed point of V fixed by the MOD function f.

Infact f fixes exactly 3.8.5.12.9 = 12, 960 number of
elements in V.
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This is the way MOD functions on mixed modulo product is
defined.
We will illustrate this situation by one more example.

Example 2.17: LetV=72ZXZXZXZXZXZXxXZ={(ay a,, as,
ay, as, a5, A7) | a; € Z; 1 <1< 7} be the 7-tuple of integers.

W = (Zig X Ze X Ziz X 2y X Lig X Zs X 1) = {dy, dy, d3, ds,
ds,ds, d7) | dy € Zyg, d7, dr € Zg, d3 € Zi3, du, dy € Zs, ds € Z6}
be the 7-tuple of mod integers.

f: V —> W; be the MOD function defined on V.

Let (12.3,9.6, 16.1, 6.332, 19.31, 8.312,5.1102) € V.

£((12.3, 9.6, 16.1, 6.332, 19.31, 8.312, 5.1102))
= (2.3 (mod 10), 3.6 (mod 6), 3.1 (mod 13),
0.332 (mod 2), 3.31 (mod 16), 2.312 (mod 6),

1.1102 (mod 2) € W.
=(2.3,36,3.1,0.332,3.31,2.312, 1.1102) € W

Consider x=(-10.3,-4.2,-7.5,-5.3,-0.3,-6.3,-7.6)e V
f(x) = f((-10.3, 4.2, -7.5,-5.3, 0.3, -6.3, -7.6))

= (9.7 (mod 10), 1.8 (mod 6), 5.5 (mod 13), 0.7 (mod 2),
15.7 (mod 16), 5 (mod 6), 0.4 (mod 2))

=(9.7,1.8,5.5,0.7,15.7,5.7,04) € W.
This is the way MOD function f is defined.

Clearly the MOD function of fixes
10X 6 X 13X2x%x16x%x6X%x2=299520 as fixed points of W.

This type of MOD function fixes only finite number of point
or fixed points associated with f are 299520.
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In view of all these we have the following theorem.

THEOREM 2.6: Let V=ZXxZXx... xXZ={(a;, a, ..., a,) | a; €
Z}) 1 <i <n}and

W=Z,XZ, x.XZ, ={(x;...x,); x;€ Z, 1 Si<n

and m;’s are finite positive integers} be n-tuple of integers and
modulo integers respectively.

f:V—> W be the MOD function from V to W.
ffixes exactly m; xmy X ... X m, number of points in V.

The proof is direct and hence left as an exercise to the
reader.

Next we study MOD-functions from p X q matrix collection
from reals to p X q matrices with entries from modulo integers.

We will first describe this by an example or two.

Example 2.18: Let
a b
M:{ d}Ia, b,c,de Z}

and

N:{X y} Ix€ Zis,y € Ze, 7€ Zoy W E Zs)
Z w

be the collection of 2 X 2 matrices with entries from Z and MOD
integers respectively.

Let f : M — N this new type of MOD function is defined as
follows, which is only described by the example.
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¢ 173 0.7 || _|2.3(mod15) 5.3(mod6)
45 -103|) 1.5(mod3) 4.7(mod7)

23 53
= e N
1.5 4.7
This is the way the MOD function acts on M.

Now we give some fixed points of M.
¢ 0.38 0.46|) (038 046
1.12 1.07|) |1.12 1.07
is a fixed point of f; the MOD function.

Clearly there are 15 X 6 X 3 x 7 = 1890 number of fixed
elements in M.

So we have different types of MOD functions from integer
matrices to different MOD integer matrices.

Example 2.19: Let

M=<la, a; a,|aeZ 1<i<15}
alO all a12
a, a, a

and
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N=4la, ay a,|a€”Zspacly,aze Zpy,

a4 € Zyg, 85,86 € Zy, a7 € Z3, a9, a3 € Zs, Ay, A11 € 2y,
a2, a3 € Zyy, A, 415 € Zys5}

be the collection of integer matrices and mod integer matrices.

Let f: M — N is defined as follows

[—3.7 103 -3.4]
43 65 13
fl| 42 97 -13
43 3.1 137
-0.3 163 183

[ 3.3(mod7) 1.3(mod9) 8.6(mod12)]
5.7(mod10) 2.5(mod4) 3.3(mod4)

=| 1.2(mod3) 4.7(mod5) 3.7(mod5)
0.3(mod2) 1.1(mod2) 2.7(modl11)

110.7(mod11) 1.3(mod15) 3.3(mod15) |

This is the way mod function is performed.
Clearly this has several fixed points.

However the number of fixed points are only finite given by
7.9.12.10.4.4.35.52.2 11.11. 15.15 = 987940800000.

Thus there are many fixed points, but are only finite in
number.
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This is expressed by the following theorem.

THEOREM 2.7: Let M = {(collection of all p x q matrices with
entries from Z} and N = {(collection of all p x q matrices with
entries from {Z,, .2, .Z, ....Z, }be the collection of all p xq

m >y

matrices with entries from integer Z and from mod integers
from Z,.....Z

Letf: M — N defined by f{((a;)) = (b;)

f(a,;,-) = (b,j (mod me )) .

ffixes m; xmy X... Xmy,, number of elements.
Proof is direct and hence, left as an exercise to the reader.

Now we give examples of function with infinite MOD
function.

Example 2.20: Let M = {R X R X R) =(a, b,c); a,bc e R}
and N = {[0, 9) X [0, 9) x [0, 90) = {(xy, X», X3) / X; € [0,19), X,
€ [0,9) x5 € [0,90); 1 <1 < 3} be the real 3-tuple and 3-tuple
MOD intervals.

Let f: M — N be defined
f((23.001, 7.02, 110.314)) = (4.001, 7.02, 20.314) € N
where (23.001, 7.02, 110.314) € M.
Let x = (-0.72, -14.004, 16.003) € M;
f(x) = f((-0.72, -14.004, 16.003))
=(18.28, 3.996, 16.003) € N.

Lety = (2.003, 4.556, 7.006) € M;
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f(y) = £((2.003, 4.556, 7.006)) = (2.003, 4.556, 7.006) =y is
a fixed point.

Since N € M we see every element of N is a fixed point and
the MOD function f has infinitely many fixed points.

However as algebraic structure both N and M are very
distinct, one can see N becomes a proper subset of M.

Example 2.21: Let M=R X RXR XR X R XR = {(ay, a,, a3, as,
as, a6) / a;€ R; 1 <1<6} be the 6-tuple of reals.

N = {([0,15) x [0,51) x [0, 25) x [0,15) x [0,5) x [0,50)) =
{(x1, X2, X3, X4, X5, Xg) / X1, X4 € [0,15), x5 € [0,51), x5 € [0,25)
x4 € [0, 15), x5 € [0,5), X6 € [0,50)}; be the 6-tuple of MOD
interval.

Clearly N is a subset of M.

Letf:M >N
£((7.02, 0.52, -3.26, 9.87, —4.27, 10.34))
=(7.02,0.52,21.74,9.87,0.73, 10.34) € N.
This is the way MOD function f is defined
f(3.111, 2.555, 0.748, 1.041, 4.033, 0.142)
=(3.111, 2.555, 0.748, 1.041, 4.033, 0.142) € N.
Thus this point is a fixed point.
Thus the MOD function f has infinitely many fixed points.

In view of all this we have proved the following theorem.

THEOREM 2.8: Let M = {R xR x... XR = {(a;, a5, ..., a,)/ a;
€ R; 1 <i <nj}} be the n-tuple of reals N = {[0,m;) x [0,m;) X



MoD Fixed Point Theory | 31
. X [0m,) = {(x1, X2, ..., x,) / x; € [Omy); 1 <i <n} be the
n-tuple of mod intervals.

Let f: M — N is the MOD function. Mod f has infinite
number of fixed elements (or fixed n-tuples).

Proof follows from the very definition of MOD functions.

Thus infinite number of points are fixed by the MOD
function.

Next the infinite number of fixed points given by the MOD
function using matrices is given by some example.

Example 2.22: Let

o]
a2
M=4la,|lae R;1<i<5}
a4
L3 |
and
a ]
a2
N=4|a, |la, e [0,3), a4 € [0,2), a5 € [0,10);
a4
L35 ]

as,a; € [0,12); 1 <i<5}

are 5 X 1 matrices with reals and the MOD interval [0,3) [0,2)
[0,10) and [0,12) respectively.

Define f : M — N the MOD function as follows.
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[ 3711]) [8.29]
13.05 1.05
fl| 425 || =[425].
-0.75 1.25
|-14.08]) |5.92]

Infact we have infinite collection of matrices which are kept
fixed by the MOD function f.

[0.3] [0.3]) [0.3]

0.2 0.2 0.2
Letx=|12|e M;f(x)=f||1.2||=|12|e N.

0.9 0.9 0.9

5.7 157]) 5.7

This x is a fixed point. Infact N € M, and N a subset of M
and every element in N are fixed by f.

That is f(N) = N.
Hence the MOD function f fixed infinitely many points of M.

Example 2.23: Let

al a2 a3
M=<la, a, a |laeR;1<i<9}
a, a, a

and
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X2, X3, X5 € [0,17) X6, X7, X3, X9 € [0,13); 1 <1 <9}
be 3 X 3 real matrices and MOD interval matrices.

We have a MOD function

f:M—N
193 33 1.7 53 33 1.7
fl| 1.2 -1.1 92||=|12 159 92
10.8 10.7 6.9 10.8 109 6.9

03 63 1.1 03 63 1.1
|69 39 48 69 39 48
72 89 9.1 72 89 9.1

is a fixed point of M.

Infact MOD function f has infinite number of fixed points.

Example 2.24: Let

where a;€ R; 1 <1< 12}
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al a2
aS

N=<| . la;, ay, a4, a3 € [0,3), as € [0,6);
a a

agto apg € [0,9), a;1, app € [0,8); 1<i1< 12}

be 6 X 2 matrices with entries from reals R and MOD-interval [0,
6).

We see N € M is a proper subset of M.

Clearly if f : M — N is defined as that of a MOD function
then every A € N c M is such that f(A) = A.

Thus f has infinite number of fixed points.
In view of all these we have the following theorem.

THEOREM 2.9: Let M = {(collection of all p x q matrices with
entries from the reals} and N = {collection of all p x q matrices
with entries from [0, m;), [0, my), ..., [0, m,x,)}; f: M = N is a
MOD interval matrix function which fixes infinitely many points.
That is f has infinitely many fixed points.

Proof is direct and hence left as an exercise to the reader.

Next we proceed define a special type of function which
does not follow the laws of function.

According to the definition if f is a map from a non empty
set X to another nonempty set Y then we have any x € X has
only one y associated with it in Y many x in X may be mapped
onto the same y in Y.

However x in X cannot be mapped on to y; and y, in Y
where y| # ya.
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However we have infinitely many functions f from X to Y
such that one element x in X is mapped onto infinitely many
elementsin Y.

Such function we call as multivalued MOD function.

Clearly this is also misnomer. But as multivalued function
is a misnomer so is multivalued MOD function.

We first illustrate the multivalued MOD-integer function.

Example 2.25: Let Z,, be the set of modulo integers. Z be the
collection of integers.

Define a map f,, : Z»y — Z as follows
f,(0)= 20n (n=0, £1,12, ...)

f.(1)=20n+1)

f.(2)=20n+2)

fn(3)= (20 n + 3) and so on

fn(19)=(20n + 19),n =0, 1, £2, 43, ...,.

This f,, is defined as the multivalued MOD-function from a
finite set is mapped onto an infinite collection.

This MOD-multivalued function f,, fixed every element of
ZZO.

Example 2.26: Let f, : Zs3; — Z be the MOD-multivalued
function. f, fixes all the elements of Zss.

For if x € Zs; then f(x) = x is not possible as
f.(x)=53n+xn=0=l, £2, ...

Thus this element x is mapped to infinite number of points.

For take x = 2 then
f.(x) =2, 55,-51, 108, —-104, 161, —157 and so on.
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If x =5 then f(5) =5, 58, 48,101, 111 and so on.
f.(50) =50, 103, -3, and so on.

Thus all elements of Z are exhausted by the multivalued
MOD function f,,.

Infact we have sequence of points for every single point in
Zt.

The definition of this situation is as follows:

DEFINITION 2.3: Let Z, be the modulo integers. Z be the set of
integers. fn: Z, — Z be the multivalued MOD function defined is
as fu(0) =nt; t =0, %1, 42, ...

fu(l)=nt+1, t=0, %1, ...
fu(2)=nt+2,t =0, #1, 12, ...
fun=1)=nt+(n-1); t=0, 1, 2.

Thus f(0) = 0, f{(1) = 1,
f(2) = 2 and so on
f(n) = n all this happens for t = 0.

Now interested author can find what is f o f, and f, o f.
where f: Z — Z, and f,, : Z, — Z defined as earlier.

Next we find the multivalued MOD function from the

t-tuple Z X..xZ_ to the t-tuple of ZXZX...XZ .
%/—/ %/—J

t—times t—times

First we will illustrate this situation by some examples.

Example 2.27: Let
S=(ZinXZin X Zin X Z13) = {(X1, X2, X3, X4) | Xi € Zy2;
1<i<4}
and
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T=ZXZXxXZXZ)={(a,a,a3,a;) laje Z;1<1<4}
be the 4-tuples of MOD integers Z;, and Z respectively.
Define f,;: S — T as the MOD multivalued function.
Ifx=(3,8,4,9) € S then
fux)={(12n+3,12n +8, 12n+ 4, 12n + 9)} = {(3, 8, 4, 9),
(15, 20, 16, 21), (9, 4, 8, 3), (27, 32, 28, 33), (21, 16, 20, 15)

and so on} = P has infinite number of elements associated with
it.

Similarly for any x in S. Thus given any y € T we have a
unique element associated with itin S.

Forify = (-78,105,-3,-7) € T
then f_'(y)=(6,9,9,5) € S,

£.(6,9,9,5) =(12ny + 6, 12n; + 9, 12n, + 9, 12n3 + 5) for
we see we can take no=0,n; =1, n, = -3 and n; = -10.

So we see the set P has other different elements for the n
can take mixed values and so on.

Thus when we put same n still it is to be kept in mind we
permute it for varying values of n.

So P has lot more elements for one n can be m; another n is
m,, another n is ms and the forth n is my.

This sort of values alone can cater for all the elements of
ZXZXZXZ.

Of course the all elements of Zj, X Zj» X Z1, X Z;5 is fixed
for n = 0 when n # 0 they generate the totality of ZX Z X Zx Z.
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We will work another example for a better understanding of
this concept.

Example 2.28: Let
S= {Z3X23XZ3: {(Xl, X2, X3)_| xi€ 731 3133}} and
T={ZXZXxZ={(a,a, a3)la;e Z;1 <i<3}}

be two 3-tuples.

+1, 3n; + 2, 3n3)
,2,0),(1,2,3),(1,2,6), (1,2,9),
(1,2,-3),(1,2,-6),(1,2,-9), (1, 2, -12),
(1,2,12)

(O8]
—- B

and so on.

(47 27 0)7 (77 27 0)7 (_27 27 O) (_27 27 3)7 (_27 27 6) (_27 27 _3)
and so on and so forth (1, -1, 3), (1, -4, 3), (1, -7, 3), (1, -10, 3)
..., (1,5,3),(1,8,3),(1, 11, 3) and so on}.

In actuality one has to work like this so f,, is a very special
type of multivalued MOD function.

Example 2.29: Let S = {Z,3 x Zs = {(a, b) | a, b € Z;g}} and
T={ZxZ={(x,y)Ix,ye Z}.
f.: S — T is the multivalued MOD function.

This fixes the set S for f(S) = S but more for every x € S is
mapped onto a infinite periodically placed pairs.

Just we represent this situation by some illustrations.
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Lety=(3,9)
fm(y) = (3, 9) and
fo(y)=(ml8+3,n18+9 m,ne Z\{0}.
£.(y) = {(3, 9) (when both m = 0 = n); (21, 27), (-15, -9),
(3,27), (21, -9), (=15, 9) (=15, +27) and so on}.

Thus infinitely periodic pairs are being mapped by (3, 9) of
ZigX713=S.

f:7Zx7Z — Z, X Z, the MOD function has only a finite
number of fixed points.

Infact infinite many points in Z X Z is mapped onto a finite
set.

Likewise we can extend the study of multivalued MOD
function to intervals.

f: [0, n) — R this map is as follows.
f.x)=xforall x € [0O,n)and f,(X)=nt+x te Z\{0}.

By this method this MOD multivalued interval function does
not leave even a single element in R left without being mapped.

We can say the interval [0, n) which has infinite number of
points is being fixed by f,..

We will illustrate this situation by an example or two.
Example 2.30: Let f,;: [0,6) — R defined by
£(3.001) = 3.001
=6t+3.001 (te Z\{0})

= {9.001, -2.999, 3.001 (when t = 0),
15.001, -9.999, 21.001, —14.999 and so on}.

This is mapped onto an infinite collection.
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Consider 0.1 € [0,6)
£(0.1)={0.1,7.1,-5.9, 12.1,-11.9, and so on}

Thus f,, the multivalued MOD interval function behave in an
odd way by mapping a single element of [0,6) on an infinite
collection which is made periodically using both positive and
negative integers.

The authors leave it as an open conjecture to study about the
properties the MOD interval function f and the MOD multivalued
function f,,.

We supply one more example to this effect.

Example 2.31: Let £, : [0, 13) — R defined by
fo(x) = {x, 13t + x, t € Z\ {0}; x € [0, 13)}; this is an infinite
collection which periodically fills the real line R.

Next we give some examples of the MOD multivalued
function

fr: [0, n) X [0, n) X [0,n) > RXRXR.

This is also defined in a similar way as that of
f: [0,n) > R.

Here we see if x = (X1, X2, X3) € [0, n) X[0,n) X [0, n) then
fo(X) = {nt; + X, nty + Xy, 0tz + X3); t1, th, tz3 € Z.

So this f,(x) a single point x is mapped by the multivalued

MOD interval function into infinitely many triple points or dense
triple intervals covering the entire region.
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This sort of study is very different as MOD multivalued
interval functions are not functions as they do not obey the
classical properties of functions.

Next we can have MOD multivalued matrix (transformation)
function.

Example 2.32: Let

a a a a a
s:{[l S S}aiezm;lgsm}
and

a a a a a
T:{1 S 5}|aiez;131310}
a

a9 alO

be two sets of 2 X 5 matrices built using Z,o and Z respectively.

. . a, ... a;
f.: S > T is defined by f;,
a, ... A
10n, +a, 10n,+a, ... 10n,+a;
- 10ng+a, 10n,+a, ... 10n,+a,,
where ny, n,, ..., njo takes all values from Z.

. ) 31 7 0 5
For instance if A =
2 01 8 9

10n,+3 10n,+1 10n,+7  10n, 10n5+5}

fm(A) =
(&) {10n6+2 10n, 10ng+1 10ny,+8 10n,,+9
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31 705][-7 -9 -3 0 -5
12 01 8 9/'l12 10 -9 42 —11|
[1321272025

and so on}.
22 20 21 28 29

Thus f,(A) is an infinite collection which contains A.

This sort of study using multivalued MOD matrix functions
is an interesting problem.

Example 2.33: Let

al a2 .
W= IaieZ29,131S4}

a; a,

and

a, a, .
V= la;e Z;1<1<4}

4

o

be the square matrix collection with entries from Z,y and Z
respectively.

The map f,,; W — V defined by for

10 12
A= e W;
18 0
29t, +10 29t1+12}

f(A) =
) {29t3+18 20t,

t1, th, t3 and t4 takes values from Z.

fm(A)=Aift1=t2=t3=t4=0.
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39 41129 41| |39 41|10 41
fu(A) = {A, ; ;
47 29| |-11 O | |-11 O |]|18 29
and so on}.

This is an infinite collection.

This the study of multivalued MOD matrix function is an
interesting one.

We can also have mixed multivalued matrix MOD functions
which will be described by examples.

Example 2.34: Let

la; € Zy, 2y € Zy,a3€ Zsand a, € Zy»} and

o o <] o
w

N

llaeZ;1<i <4)

o o <] o
w

be the collection of 4 X 1 column matrices with entries from
different modulo integers and the ring of integers respectively.

f: M — N the MOD multivalued matrix function is defined
as follows.
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28

Let A = e M,

28 40n, +28 281 |12

3 4n, +3 3 -1

fn(A) =1 = = , ,and soon}.
4 5n, +4 4 -1
8 12n, +8 8 —4

Thus MOD multivalued matrix function f, fixes matrix
collection M.

This is the way MOD-multivalued matrix function is defined
and developed.

Next we proceed onto describe MOD multivalued interval
matrix function f;,, by these following examples.

Example 2.35: Let

al a2 a3
M=<la, a, ag|laie Zy, a,a3€ Zss, a4, 85 € Zs,
a, a; a,
ag, A7 € Zy, a3, a9 € Zg}
al a2 a}
N=4qla, a5 a,|laeZ;1<i<9}
a7 a8 a9

be the collection of 3 X 3 matrices with entries from M the set of
mod integers and N be the collection of 3 X 3 matrices with
entries from Z.



MoD Fixed Point Theory | 45

Let f,,: M — N defined by the following way.

9 10 12 10n,+9 15n,+10 15n,+12
ful [T 2 3 ||=4]|3n,+1 3n,+2 4n,+3
05 2 4n,  6n,+5  6n,+2

where n; € Z; 1 <1 <9; it is to be noted each n; can take any
value from Z and so all possible combinations are exhausted as
all possible values from Z are taken by all the n;’s :

i=1,2,...,9}.
9 10 12
We find f,(A) where A=|1 2 3
0 5 2

Thus this set is an infinite collection but still not the totality
of N.

Hence

19 25 27\ (-1 -5 -3
f.(A)={A,|4 5 7 ]|,|-2 -1 -1/|andsoon}
4 11 8 -4 -1 4

1s an infinite collection.

Consider B =

W O =
A = o
W D WD
m
<
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10n, +7 15n,+6 15n,+12
fu(B) = 3n, 3n, +1 4n,+2 | nie Z;
4n,+3 6ng+4  6n,+5

i=1,2,...,9}

is again an infinite collection.

However f,,(A) N f,(B) = 0.

Consider 0 =

S O O
S O O

10n, 15n, 15n,
fn(0®)=4|3n, 3n; 4n, |Inme Z;1<1 <9}
4n, 6ng; 6n,

is again an infinite collection.

0 0 0| |10 15 15
fu(® =310 0 0,3 3 4|,
0 00||4 6 6

~10 15 -15|[-10 -15 -I5
3 3 4|3 3 -4
4 6 6|4 6 -6

and so on}.

We see £,,(0) N f,(A) = ¢ £,(0) N £,(B) = ¢ and the fact is
for each A € M is such that f,(A) is a special collection of
elements such that f,,(A) is disjoint with every element of N and

> fu(A)=N.
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Infact one can realize the MOD-multivalued matrix function
fi, as a partition on N.

The notion of equivalence classes and equivalence relation
can be defined in a routine way.

Thus these MOD multivalued function behaves in a unique
way.

However in case of MOD functions f: Z — Z, reverse way of
work is carried out as f([a]) = f(a); ac Z,.

That is an infinite collection of elements is mapped onto a
single element.

Such study is new and innovative for we are not in a
position to fully analyse the behavior of these MOD functions

and MOD-multivalued functions.

Study of the special properties associated with these
functions happens to be a open problem.

Next we proceed onto describe MOD multivalued interval
functions f;;: [0, n) = R by the following examples.

Example 2.36: Let f, : [0, 10) > R be the MOD multivalued
interval function defined by

f.x)={xor10n+x;ne Z}.

Several interesting properties can be derived using the MOD
multivalued interval function f,,,.

£,(0.3) = {0.3, 10.3, 9.7, 20.3, 29.7 and so on}; this is an
infinite collection.

Let 3 e [0, 10); fu(3)={3,13,7,23,17, ...}.

It is easily verified £,(0.3) N f,,(3) = ¢.
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Infact this is true for every element of [0, 10).

Thus each x € [0, 10) has f,(x) and U fn(x) =R and

xe[0,10)
fu(x) N fu(y) =¢if x 2y and x, y € [0,10).
Example 2.37: Let f, : [0,41) — R be the MOD-multivalued
interval function f,(x) = {4ln+x/ne Z} = {x,41 +n, 41 +x
and so on}.

Let4.3 € [0, 41), then

f.(4.3) = {4.3, 45.3, -36.7, —77.7, —118.7, 85.3, 127.3 and
so on}.

For 10.3 € [0,41);

fn (10.3)={4In+ 103 Ine Z} ={10.3,51.3, +92.3, 133.3,
-30.7,-71.7 and so on}

Clearly f,,(4.3) N £,,(10.3) = ¢.

Infact the elements of R are partitioned by the MOD
multivalued interval function f,,, and the interval [0, n).

In view of this the following theorems are left as an
exercise.

THEOREM 2.9: Let f,: Z, — Z be the MOD multivalued
function.

i) fnpartitions Z into equivalence classes

i) fulx) Nfuly) = ¢ | fulx) = Z

xeZ,
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THEOREM 2.10: Let f,, : {p X q matrices with entries from Z,}
=M — N = {collections of all p x q matrices with entries from
Z} be the MOD-multivalued matrix function.

i) Every matrix A in M is divided by the f,, into
equivalence classes.

ii) fu(A) Nfu(B) = @ifA #B.

i) |J fuA)=N.

AeM

Next we proceed onto develop the properties associated
with MOD multivalued interval functions f,;: [0, n) — R.

THEOREM 2.11: Let f,, : [0, n) — R be the MOD multivalued
interval function. Then the following are true.

i) fupartitions R into equivalence classes for every
x € [0, n).

i) fulx) Nfu(y) = Qifx #y; x, y € [0, n).

i) |J f,(0=R

xe[0,n)
Proof is left as an exercise to the reader.
THEOREM 2.12: Let f,,; M — N where
M = {p xq matrices collection with entries from [0,n)} and

N = {collection of p x q matrices with entries from R} be a MOD
interval multivalued matrix function. Then the following
conditions are satisfied by f,,.

i) Every A € M has a class of matrices associated with
fin(A); such that N is partitioned into matrices classes.
”) ﬁn(A) nfm(B) = ¢lfA #B,’ A, BeM.

i) |J fu(A)=N.

AeM
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Proof is left as an exercise to the reader.
We suggest the following problems some of which are at
research level.
Problems
1. Develop the special properties enjoyed by the MOD function
f:Z—>7Z,(n<o0;2<n<o0),
2. Letf: Z — Z,, be the MOD function from Z to Z,,;
{{f{x}))=nlxe Z} =ne Z,} = {collection of all x € Z

such that f(x) = n}; n a fixed number.

1) Proveif n; = f({x;}) and n, = f({x,}) then n; # n,.
i) f({x;}) Nnf({x2}) = ¢.

3. Enumerate the special and distinct features enjoyed by

f:Z—>7;2<n<oo,

4. Letf:(ZXZXx7Z)— ZsXZs X Zs be the MOD function.
Study all properties associated with f.

5. Let f: M = {all p X q matrices with entries from Z} —
N = {all p x q matrices with entries from Z,} be the MOD
matrix function.

Study all the special features enjoyed by f.
6. Letf:Z — Z;5be the MOD function.
i) Find all special features of this MOD function f.
ii) Can we say there are only 15 disjoint sets of Z as the

pull back of f or t = f(x) = {those element x in Z
mapped onto t of Z;5}?
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7. Let M = {5 X 3 matrices with entries from Z} and

N = {5 X 3 matrices with entries from Z,,}

Let f: M — N be the MOD function.

i) Study all special features enjoyed by f.

11) Prove if A € N then all those X € M such that
{f(X)} = A is an infinite collection and if {f(X)} = A
and {f(Y)} = B where {f(X)} = {all those elements in Z
mapped onto A}
{f(Y)} = {All those elements in Z mapped onto B}
then {f{(X)} N {f(Y)} =¢if A=B;A,Be N.

ii1) Can we say the association of every A € N makes M
into disjoint sets such that it is a partition of M?

8. Let M = {All 3 x 3 matrices with entries from Z} and
N = {collection of all 3 X 3 matrices with entries from Zys}.

f : N — M be the MOD matrix function.

Study questions (i) to (iii) of problem (7) for this
f:M—N.

9. Letf: R — [0,20) be MOD interval function.
Study questions (i) to (iii) of problem (7) for this function.
10. Specify all special features associated with MOD interval

function f : R = [0,m); 2 <m < oo,

11. Let f: R — [0,9) be the MOD interval function.
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Let {f(x)} = {x € RI1f(x) =3.77} and {f(y) = {y € R
f(y) =4.8}

i) Prove {f(x)} N {f(y)} = 0.

i) Prove |J {f(x)} =R

£()e[0.9)
12. Let f: R — [0,25) be a MOD interval function.
Study questions (i) to (iii) of problem (7) for this f.
13. Letf: RX R — [0,7) x [0,7) be the MOD interval function.
Study questions (i) to (iii) of problem (7) for this f.

14. Let f: R X R Xx R Xx R x R — [0,23) x [0,23) x [0,23) X
[0,23) x [0,23) x [0,23) be the MOD interval function.

Study questions (i) to (iii) of problem (7) for this f.

al a2 aS a4 .
15. Let f: la;e R;1<i<8} =M —
a

5 a6 a7 a8

N = {Xl X % X“} x € [043); 1<i <8)

Xs Xo X, X
be the MOD interval matrix function.
Study questions (i) to (iii) of problem (7) for this f.

16. When f : M — N is a MOD-interval matrix function, find all
the special features enjoyed by such f.
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17. Let f : {Z aixi /ae Z} - {Z aixi | a; € Zyo} be the
i=0 i=0
MOD polynomial function.
Can questions (i) to (iii) of problem (7) be true.

Justify your claim.

18. Find all the special and distinct features associated with
MOD-polynomial functions.

1) Are these different from f: Z — Z, the MOD function?

ii) Are they similar or different from the MOD matrix
functions?

19. Can we say MOD matrix function to satisfy (i) to (iii) of
problem 7?

Justify your claim.
20. Let f,: Z;5 — Z, MOD-multivalued function.
i) Study all the special features associated with f,,.

i1) Can f,, partition the range space into a finite number of
sets but each of them are of infinite cardinality?

iii) Can we say f,, is a sort of equivalence relation on Z?
21. Let f,: Z, — Z be the MOD-multivalued function.
Study questions (i) to (iii) of problem (20) for this f,,..

22. Study questions (i) to (iii) of problem (21) for the function
fm 13— 7.

23. Compare f: Z — Z, with f: Z, —> Z.
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24.

25.

26.

27.

28.

Can we say f,: Z,— Z the MOD multivalued functions are
not functions in the classical sense?

Let f: Zs X Zs X Zs — 7 X Z X Z be the MOD multivalued
function.

Can we prove the questions (i) to (iii) of problem (20) are
true for this f,,?

Let f,: N = {collection of all 5 X 5 matrices with entries
from Z;, - M = {collection of all 5 X 5 matrices with

entries from Z} be the MOD-multivalued multifunction.

Can questions (i) to (iii) of problem (20) be true for this f,?

a, a, a, a,
Letf: M=<la; a, a, a,|la,a e ”Zy asae Zs,
a, a, a, a

N=<la; a; a, ag|laeZ 1<i<12}

a a

10 11 12

be the MOD-multivalued matrix function.
Can questions (i) to (iii) of problem (20) be true for this f,,.
Study questions (i) to (iii) of problem (20) for the

f,: Zig X Zig X Zyg = Z X Z X Z the MOD-multivalued
function.



29.

30.

31.

32.

33.
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Let f.: [0,23) — R be the MOD-multivalued interval
function.

Study questions (i) to (iii) of problem (20) for this f,,.

Let f,: [0, n) > R, (2 £ n < =) be the MOD-multivalued
interval function.

i) Describe and develop all important features enjoyed by
fin-

ii) Distinguish this f,, from g,,;: Z, — Z.

Let f,: [0,43) — R be the MOD-multivalued interval
function.

Study all questions (i) to (iii) of problem (20) for this f,,.

Let f,: M = {collection of all 2 X 7 matrices with entries
from [0,24)} — N = {collection of all 2 X 7 matrices with
entries from R} be the MOD-multivalued interval matrix
function.

Can questions (i) to (iii) of problem (20) be true for this f,?

Let f,: M = {collection of all 4 X 4 matrices with entries
from [0,23)} — N = {collection of all 4 X 4 matrices with
entries from R} be the MOD interval multivalued matrix
function.

i) Study questions (i) to (iii) of problem (20) for this f,,.

ii) Compare f! [0,23) — R with the above f,, where f! is
the MOD-multivalued interval function.
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34.

35.

36.

Let fjl : [0,24) x [0,43) = R X R be the MOD-multivalued
interval function.

1) Compare fjl with frln in problem (33).

ii) Compare f_ with f,, of problem (33).

Let fj]:{[al az} a; € [0,5); a, € [0,42), a3 € [0,427) and
a a

3 4

Ase [0,12)} =M >N = {al a2

}IaieR 1<i<4)
a, a,

be MOD-multivalued interval matrix function

i) Study questions (i) to (iii) of problem (20) for this fjl .
ii) Compare f,, of problem (32) with this f,i .

iii) Compare f of problem 33 with this f .

iv) Compare f_ of problem (34) with this f_ .

Letf?: M = {Xax' | a; € [0,43)} — N = {Zax' | a; € R} be
the MOD multivalued interval polynomial function.

i) Study questions (i) to (iii) of problem (20) for this f” .
ii) Compare f? with f of problem (34).

iii) Compare fwith f’ of problem (35).
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37. Let f, : [0,144) — R be the MOD-multivalued interval
function.

1) Into how many disjoint set R is partition by f,, and the
interval [0,144)?

ii) Can we say if f: R — [0,144) then
f ° f, = f, ° f = identity map?

iii) Find f ° £,
iv) Find f, ° f.

38. Can we say the study of MOD-multivalued interval functions
f,, gives infinitely many fixed points?

39. Find all the fixed points of f : Z — Zs.

40. Find all fixed points of the MOD interval function
f:R —[0,23).

41. Find all the fixed points of f : Z X Z X Z — Z; X Z1; X Zs3;
where f is the MOD function.

42. Find all fixed points of the MOD interval function
f:RxRxRxXxR —[0,3)x[0,20) x [0,143) x [0,7).

43. What are the special features associated with the fixed
points of the MOD function and that of any -classical
function?

44. What are fixed points of the MOD-multivalued function
fm: Zig — 7?

45. Find all the fixed points of the MOD-multivalued interval
function f,,: [0,43) —» R.
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46. What are fixed points of MOD-multivalued functions
i) f![0,20) x [0,48) - R x R?

i) f2:([0,19) x [0,22) X [0,19)) = R x R x R?

- {[0, 40) [0,3) [&7)}} .
iii) f N — all 2 X 3 matrices
[0,12) [0,72) [0,5)

with entries from R?



Chapter Three

FIXED ELEMENTS OF MOD-MATRIX
OPERATORS

Here for the first time the notion of MOD-matrix operators
using MOD-integers is defined, described and developed.
Further fixed elements which are row vectors or column vectors
are obtained in the case of MOD-modulo integer matrix
operators.

Throughout this chapter only square matrices will be used
and they take entries only from the MOD-integers. So the
number of n X n square matrices with entries from Z,, the ring of
modulo integers is finite.

Further the collection of all row or column matrices with
entries from Z,, is also finite.

This property is mainly exploited to get a fixed row vector
or a fixed column vector depending on the way the operations
are performed.
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First this situation is represented by an example or two.

2 1
Example 3.1: Let M = L 2} be a matrix with entries from Z;.

Consider the row vectors

{(0,0), (1,0), (0, 1), (2,0), (0, 2), (1, 2), (2, 1), (1,1), (2,2)}= A.

Let x = (1, 0) we find when will x become a fixed point.

Here if we take x = (1, 0) while updating we continue to
keep the second coordinate to be always one.

2 1
1

xM:(l,O)[ )

} =(2,1) > (1, 1) =y ‘=’ show the
vector is updated.

1, 1) 2 1—(0 0)— (1,0)=x
o2 B

Thus x = (1, 0) is a fixed point.

Lety=(2,1)e A
M=cn |2 Yoo n=
YMERD T ey

So the matrix operator yields y to be a fixed point.

We call these fixed point as classical MOD matrix fixed
points.
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The fixed point may occur at the first stage or at second
stage and so on.

Let(2,2)=z€ A,

1
M =(2,2) [ }: (0, 0) = (2, 2) after updating is a fixed

2
1 2
point.

However if the notion of fixed point does not exist we call it
as zero divisors or zero vectors.

Example 3.2: Let

— N AW
S = O N
A o= W =
N O =

be the matrix with entries from Zs.

We find the fixed row vectors by the MOD operator matrix
M.

Let A = {(xy, Xy, X3, X4) Where X; € Zg;, 1 <1<4}.

Take x =(3,0,2,0) € A;

3215

4 0 3 1
M =(@3,0,2,0 =(1,2,2,3
( ) 511 0 ( )

1 0 4 2

—(3,2,2,3) =y, (say)
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(— denote the vector has been updated)

yiM = (3,2,2,5) =y, (say).

y-M — (3, 2, 2, 3) = y3 (say)

ysM — (3,2,2,5) =y,.

Thus it is a limit cycle and not a fixed point.
Suppose we do not use the technique of updating we find

xM=(3,0,2,0) =(1,2,5,3) =y

— N AW
S = O N
A o= W =
N O = W

Y1M=(1’ 2’ 5’ 3) =(0’ 1709 1)=y2

'S I NN
S = O N
A o= W =
N O = W

=(5,0,1,3)=y;

— N W
S = O N
A o= W =
N O =

ysM =(5,0,1,3) =(2,50, D=y,

yM=(0,1,0,1) {

— N AW
S = O N
A o= W =
N O =
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3 215
M—(2501)403 1—(3435)—
}’4 - s s Uy 2 1 1 0 - 5 Ty Iy —}’5
10 4 2]
3 2 1 5]
M—(3435)40 3 1—(0325)—
}’5 - s Ty 2 1 1 0 - 9 My Ly —}’6
10 4 2]
3215
4 0 3 1
M=(0,3,2,5 =(0,2,1,1)=
yeM = ( ) 511 0 ( )=Y7
1 0 4 2
Y7M= (5’ 1’ 5’ 4) =Y8, YSM= (3’ 3’ 2’ 1) :}I%
Y9M=(2’ 2’ 0’ 2)=YI0, YI0M=(494,4,4)=}’11;

yuM=(4,0,0,4) =y
YISM = (19 Ov Ov 1) = YI4;
YISM = (29 Ov Ov 4) = YI6;

yuM=(4,0,0, 1) =y3;
YI4M = (49 Ov Ov 2) = YIS;
YI6M = (49 Ov Ov 2) = YIS.

Thus this point is a limit cycle getting

4,0,0,2)t0(20,0,4),(4,0,0,2) > (2,0,0,4) - (4,0,0,2)
—(2,0,0,4) and so on.

Thus we have three types of fixed points or limit cycles.

This will be defined systematically in the following.
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DEFINITION 3.1: Let S = (s;;) be a n X n matrix with entries
from Z,.

P={(ay, ..., a,)/a € Z,; 1 £i <n} collection of all row
vectors. S is called the MOD operator on elements of P.

For any X € P we have X xS € P. Now if for X € P;
X xS = X then X is defined as the classical fixed point of the
MOD matrix operator S.

If for any X € P;
XP =y, =2y, 2... =2y, =>Y, — Vs ... then X is defined
as a limit cycle.

If X € P after some p number of iterations;

XS =Y, ,., Y, ,and Y, ;S =Y, then X is defined as the
realized fixed point of the MOD matrix operator S or MOD
realized fixed point of S.

If X € P; XS — Y; and if the coordinates of Y; are updated
that is if in X; a;, a; ..., ax points exists then in Y, also we
replace a; aj, ..., a; and only zero entries of X not updated then
we find Y;S — Y.

Y, is also updated, by this method after a finite number of
steps we may arrive at a Y, where Y,S = Y, then we call Y, the

updated fixed point of X of the MOD-matrix operator S.

If we do not get a fixed point but a limit cycle say Z, we call
Z, the updated limit cycle of X of the MOD matrix operator S.

Thus we have several types of fixed points (row vectors)
associated with the MOD matrix operator.

We will first illustrate this situation by some examples.
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Example 3.3: Let

—_— = O =
—_— = = O
O = =
— O =

be the 4 X 4 matrix with entries from Z, = {0, 1}.

S is the MOD matrix operator acts on the set of state row
vectors P = {(09 0’ 09 O)’ (19 Ov 0’ O)v (09 19 0’ 0)7 LR (1’ 1’ 19 1)},
o(P) = 16.

Letx=(1,1,0,1)e P; xS=(0,0,0, 1) =y, (say)
YIS = (19 19 Ov 1) =y2=X'

So we see X — y; — X — y is a limit cycle.

Thus the MOD operator matrix S makes x only a limit cycle
of length one.

Letx;=(0,1,1,1) e P;
x1S=(0, 1,0, 0) =y, (say)
YIS = (0’ 19 19 1) = Xa.

Thus x; = (0, 1, 1, 1) is again the limit cycle on the MOD
operator matrix S.

Letx,=(1,0,1, 1) € P,
XZS = (1’ 07 Ov O) = YI,
yiS=(1,0,1, 1) e P.

X, is also a limit cycle of the MOD-matrix operator.

x;=(1,1,1,0) € P.
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The resultant or effect of x; on the MOD matrix operator S is
as follows.

X3S = (0’ 07 19 O) = YI, YIS = (1’ 1’ 19 O) =X3
is again a limit cycle using the MOD matrix operator S.
Considera; =(1,1,0,0) € P.

The effect of a; on the MOD-matrix operator S is as follows:
a;S=(1,1,0,0).

So a, is a classical fixed point of the MOD matrix operator S.
Leta,=(1,0,1,0) € P.

The effect of a, on S; a,S=(0,1,0,1) =by;
b;S=(1,0,1,0) € P.

a, is a limit cycle for
(1,0,1,0) > (0,1,0,1) » (1,0, 1,0) > (0, 1, 0, 1).

Leta;=(1,0,0,1) € P.

The resultant of a; on the MOD matrix operator S.
asS=(0,1,1,0)=b,.

b;S=(1,0,0,1) = a;.

Thus az is only a limit cycle for the MOD matrix operator
S as

(1,0,0,1)—>(0,1,1,0) = (1,0,0,1) = (0, 1, 1, 0)...
Next consider a, = (0, 1, 1,0) € P.
The effect of a, on S is given in the following.

aS=(1,0,0,1)=b;;b;S=(0,1,1,0) = a,.
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Thus a; — by — a4 — b, is a limit cycle.
Letas=(0,1,0,1) € P.

The resultant of a5 on S is as follows asS = (1, 0, 1, 0) = b,.
b;S=(0, 1,0, 1) =as.

Thus a5 is a limit cycle of the MOD matrix operator S as
0,1,0,1) > (1,0,1,0) > (0, 1,0,1) > (1,0, 1, 0).
Letag=(0,0,1,1) € P.

The resultant of ag on the MOD matrix operator S is as
follows.

aeS = (0, 0, 1, 1) is again a classical fixed point of S.
Considerd; =(1,0,0,0) € S.

The resultant of d; on S is as follows.
dS=(,0,1,1)=by;,b;S=(1,0,0,0) =d,.

Thus (1,0,0,0) =» (1,0,1,1) - (1,0,0,0) = (1,0, 1, 1)
is only a limit cycle of the MOD matrix operator S.

Letd,=(0,1,0,0)€ P;d,S=(0,1,1,1)=by;
b;S=(0, 1,0, 0).

Thus
0,1,0,0) - (0,1,1,1) - (0,1,0,0) = (0, 1, 1, 1) is
again limit cycle of the MOD matrix operator S.

Let d; = (0, 0, 1, 0) € P; the resultant of d; on the MOD-
matrix operator Sis d;S=(1, 1, 1, 0) =by, b;S = (0,0, 1, 0) = d;.
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d; is a limit cycle of the MOD-matrix operator S as
0,0,1,00>(1,1,1,0) > (0,0, 1,0) = (1, 1, 1, 0).

Now let d; = (0, 0, 0, 1) € P; the effect of d; on the MOD-
matrix operator S is as follows.

dsS=(1,1,0,1)=b;; 5,S=(0,0,0, 1) =d,.

Thus

0,0,0,1)>(1,1,0,1) > (0,0,0,1) > (1,1,0,1)is a
limit cycle of the MOD matrix operator S.

Letc=(1,1,1,1) e P.

The effect of con Sis ¢S =(1, 1, 1, 1) = c is a fixed point.

Thus all the elements of P are either a fixed point of the
MOD matrix operator or a limit cycle of length one.

Now we change the MOD-matrix operator from S to

_— 0 O =
- o = O
S = = O

S O ==

Now to find the effect of the elements of P on M.
Letx;=(1,0,0,0) e P.
The effect of x; on M.

xM=(1,1,0,0)=y;; yM=(0,1,1,1)=y, ;
yM=(1,1,0,0)=y; ysM=(0,1,1,1) and so.

So x; is a limit cycle of the MOD matrix operator M

1,0,0,0)—>(1,1,0,00 = (0, 1,1, 1) = (1, 1,0,0) =
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0,1,1,1) > (1,1,0,0)
Let x, =(0100) € P; the effect of x, on M.
xM=(1011)=y;; yM=(0011)=y,=y,

X, of P is only a realized fixed point of M as x,M * x, but
xM=(1011)=y;; yM=y,.

Letx;=(0010)e P.
The effect of x3 on M.
xM=000D)=y;; yM=@0110)=y,;
yvM=(1010)=y;; ysM=(1101)=yy;
yM=(0001)=y;.

Thus

0010)—>(@©001)—>0110)—>(1010)—>(1101)—>
©0001)>@0110)—>(1010)—>(1101)—>(@0001).

So x; is a realized limit cycle on the MOD matrix operator

Consider x4 = (0 0 0 1); to find the effect of x4 on M;

xM=0110)=y;; yM=(1010)=y,;
yM=(1101)=ys; ysM=(0001)=x,.

So x4 is a realized classical fixed point as after four

iterations x4M = X4.

Thus is a very special type of fixed point x5;=(1100) € P.
The effect of x5 on the MOD matrix operator M.

xsM=0111)=y;; yM=(1100)=y,;
yM=0111).
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Thus x5 is a realized fixed point of M after one iteration.
Let x¢ =(1 01 0) € P, the effect of X on M is given below

xM=(1101)=y;; yiM=(0001)=y,;
yM=(0110)=y;; ysM=(1010)=xs;

Thus x¢ is a realized fixed point of M after three iterations.
Consider x,=(1001) € P.

xM=(1010)=y;; yM=(1101)=y,;
yM=(0001)=ys; ysM=(0110)=ys;
yM=(1010)=y,.

Thus the resultant of x; on M is a limit cycle given by
1001)—»1010)—»1101)=>@©001)—=>@O110)—
(1010).

Next let xg = (0 1 1 0) € P; to find effect of xg5 on M.

xsM=(1010)=y;; yiM=(1101)=y,;
yM=(0001)=ys; ysM=(0110)=y,;=xs.

Thus the row vector Xs is a realized fixed point after three
iterations.

Let xg=(010 1) € P; to find the effect of xo on M.
xeM=(1101)=yi; yM=(0001)=y;
yM=(0110)=ys; yM=(1010)=ys;
yM=(1101)=ys.

Thus it is a realized fixed pointas (0101) - (1 101) —»
0001)>0110)>(1010)>(1101).

Let x;,0=(001 1) e P. To find the effect of x;, on M.

X M=0111)=y,; yM=(1100)=y,;
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yM=0111)=y;=y;.
Thus(0011)—>©0111)—>(1100)—>@O111).
Hence X, is a realized fixed point of M.
x1=(1110)e P.

xyM=0110)=y;; yiM=(1010)=y,;
y2M=(1101)=y3, Y3M:(0001):}74,
yiM=(0110)=ys(=y)).

Thus the state vector is a realized fixed point of M.

X2 =(1101) e P. To find the effect of x;, on M.

X12M=(0001)=yl; y1M=(0110)=y2’
yM=(1010)=y;; ysM=(1101)=y,=xy.

The state vector x;, = (1 1 0 1) is a realized fixed point after
three iterations x;3=(1011) € P.

The effect of x;3 on M is as follows.
xsM=(1011)=xy;is a fixed classical point of M.
Letx;yu=(0111)e P.

The effect of x;4 on M is as follows.
xyM=(1100)=y;; yM=0111)=y,=x.

The point x4 is a realized fixed point after one iteration.
x5=(1111)e P.

The effect of x;5 on M is as follows.

xsM=(0000)=y,; yiM=(0000).
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Thus the effect of x5 is a fixed point or is zero.

So if S and M are two 4 X 4 matrices with entries from
Z, = {0, 1} the effect of each element varies as is clearly seen.

Let us consider the 4 X 4 matrix

1 0 0O
01 10 . .
N = with entries from Z,.
01 11
1 1 11
To find the effect of

P={(aj, a5, a3, a4) where a; € Z,={0,1}; 1 <i<4} on N.

Letx;=(1000)e P

x; N =(1000)=x, is a classical fixed point of N.

Letx,=(0100) € P, to find effect of x, on N.
XN=0110)=y;; yIN=(0O001)=y,;
yW=(1111)=y;; ysN=(0110)=y,;
vWN=(0001)=ys=(y2).

We see

%=0100)>0110)=@000)—=((1111)—
(0110)=(©001).

Thus x, is not the classical fixed point but x, is a realized
fixed point.

Let x;=(0010) € P, to find effect of on z; on N.

xsN=0111)=y;; yWN=(1110)=y,;
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yaN=(1001)=ys; yN=0111)=ys(=y).
Thus x3; is the realized fixed point of N.
Letx4=(0001) e P, to find effect of x4 on N.

xN=(1111D=y; yN=(0110)=y,
yvo.N=(000 1) =x4is a fixed point after two iterations.

xs=(1100)e P.
The effect of x5 on N is as follows.

xsN=(1110)=y,; yN=(1001)=y,;
yN=0111)=y;; y:N=(1110)=ys=y:.

Thus effect of x5 is a realized fixed point
(1100)0>(1110)>(1001)>@O111)—>(1110).

To find the effect of x4, =(1 01 0) € PonN.

XeN=(1111)=y; yiN=0110)=y,;
y2N=(0001D)=ys; yaN=(1111) =y, =y

Thus x¢ is a realized fixed point using N.

x;=(1001)€e P.

To find the effect of x;on N.

xN=0111)=y,; yN=(1110)=y,;

yvoN = (100 1) = x5; thus x5 is a realized fixed point of N.
Consider xg = (0 1 1 0) € P, to find the effect of xg on N.

xsN=(0001)=y;; yN=(1111)=y,;
Y2N=(0110)=y; (= xy).
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Thus xg is a realized fixed point after two iterations.
Let xo=(010 1) € P; to find the effect of x9 on N.

xN=(1001=y; yWN=0111)=y,;
Y2N=(1110)=Y3; Y3N:(1001)=Y4(=Y1)-

Hence the effect is a realized fixed point given in the
following.

O010H)—>100H)—>@OI1I1)—>(1110)—>(1001).
Consider x;0=(0011) e P.

To find the effect of x;0 on N.

xoN=(1000)=y,;; yWN=(1000)=y,=Yy;.

Thus x;o give the MOD realized fixed point after one
iteration.

Letx;;=(1110)¢e P.
To find the effect of x;; on N.

X11N=(1001)=yl; le:(0111)=y29
yvN=(1110)=ys.

11100-0001)—>@O111)—>1110).
Thus x,; is a MOD realized fixed point of N.
x2=(1101)e P.

To find the effect of x;, on N.

X12N=(0001)=yl; le:(1111)=y29
yN=(0110)=ys; ysN=(0001)=ys(=y).
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Hence

(1101)>@©0001)>1111)>0110)—>(O001)i1s
a realized fixed point of x,.

x13=(101 1) € P. To find the effect of x;5 on N.

x13N = (0 00 0) is a realized fixed point.

Letxy=(0111)e P.

To find the effect of x;4 on N.

X14N=(1110)=yl; le:(1001)=y29
Y2N=(0111)=y;(=xX)

Clearly x4 after some iteration is a fixed point of N.
O0O11H)—>11100—>(1001)—>@O111).
Letx;s=(1111)e P.

To find the effect of x;5 on N.

xsN=(0110)=y;;  yN=000D=y,;
yN=(1111)=y,

Thus x,5 is a MOD realized fixed point as x5 only.

Hence use of three different MOD matrix operators give
different effect on the elements of P.

Let us consider yet another MOD matrix operator with
entries from Z, = {0, 1}.

1 000
1 100 )

Let W= L1 1o be the MOD matrix operator.
I 111
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To find effect of
P={(a;,ay a3,as) laje {0,1} =751 <i<4}.

Let x; =(1 000) € P. To find effect of x; on W.
xW=(1000)=x,.

Thus x; is a fixed point of the MOD matrix operator.
x,=(0100)eP.

To find the effect of x, on W.

xW=(1100=y;; yW=(0100)=y,=x,.

Thus x; is a realized fixed point.

Letx;=(0010)e P.

To find the effect of x; on W.

xW=>1110)=y; yiW=(1010)=y,;
y2W=(0110)=y3, Y3W=(0010)=X3.

Thus X3 is a realized fixed point of W.
x3=(0001)€ P.
To find the effect of x, on W.

W=>0111D=yy yiW=0101=ys;
Y 2W=(0011)=ys; ysW=(0001) =y, =x,

Thus x4 is a realized fixed point on W and leads to a same
fixed point after four iterations.

Letxs=(1100) e P.
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To find the effect of x5 on W.

xsW=0100)=y;; yyW=(1100)=y,(=xs).
y>W=(0100)=ys,

Thus the realized fixed point of xs.

Hence (1100)—=(0100)—=(1100).
Letx¢=(1010)€ P.
To find the effect of x5 on W.

xsW=(0110)=y; yiW=(0010)=y,;
vZwW=(1110)=y;; ysW=(1010)=xe.

(1010)—-@0110)—=0010)—=(1010).

Thus after iteration this is a fixed point by the MOD operator

x7=(1001) € P.
To find the effect of x; on W.

xW=0111)=y; yW=(1101)=y,;
yW=(1011)=yjs; y;W=(100 1) = xs.

Thus we have

(1001H)>@0111)»>(1101)>(1011)>1001)
which gives a realized fixed point.

Letxg=(0110)€ P.

To find the effect of xg on W.

xW=(0010)=y; yiW=(1110)=y,;
vwW=(1010)=y;; ysW=(0110)=xs.
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Hence
©01100—>@©0010)—>(1110—->(1010—>(0O110).
Thus xg is a realized fixed point fixing the same point.
Letxo=(0101)e P.
To find the effect of xg on W.

xoW=(0011)=y; yiW=(0001) =y
y2W=(1111)=y;s; ysW=(0101) = xo.

©010H)—>@O011H)—>@OO00H)—>1111H)—>(@O101).

Hence after three iterations we get the same point so Xo is
the realized fixed point of W.

x10=(0011)e P.

To find the effect of x;o on W.

x oW =(0001)=y;; yiW=(1111)=y,;
y2W=(@0101)=ys; ysW=(001 1) =x,.
Hence

0011)—>(@©O001)>(1111)—>@O101)—>(@O011).

Thus x4 is a realized fixed point fixing x;, after three to
four iterations.

xn=(1110)e P.
To find the effect of x;; on W.

xyW=(1010)=y,; yiW=(0110)=y,;
v 2W=(0010)=ys; ysW=(1110)=xy.

11100-1010)0—>@0110)—>@0010)—>(1110).
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Thus x,; is a realized fixed point as x,; after three iterations.
Letx,=(1101)e P.
To find the effect of x;, on W is as follows.

XxpW=(1011)= y;; yiW=(1001)=y,;
y2W=(0111)=ys; ysW=(1101)=xy.

1101)->1011)—-1001)=>O111)—=(1101).

Thus x; is a realized fixed point after three iterations x;, is
gotx;3=(0111)e P.

To find the effect of x;3 0on W.

xsgW=(1101)=y,; yW=(1011)=ys;
y2W=(1001)=ys; ysW=(0111)=x.

©0111)>A101)>A011)>(1001)—>(@O111).
Thus x5 is a realized fixed point after three iterations.
xu=(1011)e P.

To find the effect of x4, on W.

X14W=(1001):y1; y1W=(0111):yz,
y2W=(1101)=ys; ysW=(1011)=xy.

1011)->1001)—>@0O111)—>(1101)—>(1011).

Thus x4 is a realized fixed point by the MOD matrix W and
is a fixed point X 4.

Letx;s=(1111)e P.

To find effect of x;5 on W.
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X15W=(0101)=yl; ylw=(0011):y2,
yW=(0001)=ys; yW=(1111)=Xs.
(1111)>@O101)>@O011)>@O001)>1111).
Thus x5 is a realized fixed point after 3 iterations.

We will give one example using MOD matrix operation with
elements from Z,.

Example 3.4: Let

w»n

1l
[ N T
W O = N
o = W O
S W N =

be a 4 X 4 MOD matrix operator with entries from Z,.

P ={(ay, a5, a3, a4) | a; € Z4; 1 <1 <4} be the collection of 4*
number of state vectors.

Letx;=(1000) € P.

To find the effect of x on S.

xS=(1201) =y, ; viS=2301) =y, ;
y25=3230)=ys ; y3S=(1030)=y, ;
vaS=3232)=ys ; ysS=3210)=ys ;
¥ =(1032)=y7 ; y1S=(1032)=y;(=y).

Thus x, gives a realized fixed point after 8 iterations.
X, =(0100) e P. To find the effect of x, on S.
x5=(0132)=y; ; yiS=(0323)=y, ;

y:5=(3010)=y; ; y:S=(1212)=y, ;
S =(0230)=ys ; ys$=(2211)=ys
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yve3=(1311)=y;; y3=(0002)=ys ;
y8S=(2200)=yy ; YoS=(2222)=vyj;
YyioS=(0000)=yy; yiS=(0000).

Thus the resultant is a realized fixed point given by
(0000).

x3=(0010)e P.

To find the effect of x; on S.

x33=(2013)=y, ; yiS=G131)=yy;
yZS:(ZZOZ):}I3, Y3S:(0022):}I4,
yasS=(2222)=ys ; ysS=(0000)=ys ;

Y6 =(0000) =y

Thus this is also a fixed point only; a realized fixed point
and is (000 0).

Letx,=(0001) e P.

X,5=(1320)=y;; yiS=0131D)=y,;
y25=(0003)=y; ; y33=(3B120)=ys ;
ysS=(GB311)=ys ; y6S=(1000)=y7 ;
yI$S=(1201)=ys ; yeS=2301)=yy ;
¥oS =(3230)=yi0; YyioS=(1010)=yy;
yuS=3210)=yp; yS=(1033)=yy;
yiS=02312)=yu; yiuS=(2323)=ys;
yisS=(1012)=ys; yieS =(1010)=y7;

yi7S=3210)=yis=yi2
This is a realized limit cycle.
xs=(2001)eP.

To find the resultant of x5 on S.

xsS=(3322)=y, ; yiS=(1333)=y,;
v2S=12120)=y; ; yiS=2112)=y, ;
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yaS=(2303)=ys ; ys9=(1230)=ys ;
YeS=03012)=y; ; yS=03B012)=ys(=yy).

Thus the resultant of x5 = (2 0 0 1) is a realized fixed point
3012).

For after seven iteration the effect of x5 on the MOD operator
matrix S results in the realized fixed point (3 0 1 2).

Letx¢=(2020) € P.
To find the effect of x¢ on the MOD operator matrix S.

X6S = (2 0 2 0). Thus x¢S = X¢ is the classical fixed point by
the MOD matrix operator S.

Consider x,=(0202) € P.

The effect of x; on the MOD matrix operator S.
X8=(2020)=y; ; yi$=(2020) =y
Thus x7 is a realized fixed point after first iteration.
We get the fixed point (2 0 2 0).

Letxg=(2222) € P.

To find the effect of xg on the MOD matrix operator S.
xS=(0000)=y, ; yiS=(0000)=y;,.

Thus this is a not a classical fixed point of S only, but
realized fixed point of S.

Now the following observation is very important.
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We see x¢ = (2 0 2 0) is a classical fixed point so XS = Xg,
x; =(0 2 0 2) is a realized fixed point after one iteration given
by (202 0).

We see xg = (2 2 2 2) = X¢ + X7 sum of these two state
vectors.

xgS = (0 0 0 0) is the realized fixed point.

Soxg=(2222)=2020)+(0202)=Xg+ x71s such that
X3S =XS+x,8S=(2020)+(2020)=0000)

(As x5S = xg and X¢S = Xg).
But will this property be true for all state vectors in P.

We see more illustrations about the behavior of the effect of
these state vector before we arrive at any conclusion.

Letxg=(1212)€e P.
The effect of xg on S is given in the following.

XQSz(la 27 37 0)=Y19 Y1S=(3, 07 37 2)=y29
y28=(3,030)=y;3; ysS=(1230)=ys(=y.

Thus Xy is a realized fixed cycle given by (1, 2, 3, 0).
Letxp=(2121)€e P.
The effect of X,y on S is given in the following.

x105=(3032)=g1; g15=(3030)=g22
©S=(1230)=g; ; 23S =(3032) =g (=g)).

Thus the resultant of X, is a realized limit cycle.

Consider x;; = X9 + X9
=(1212)+@2121)
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=3333)eP.

To find the effect of x;; on S

XuS=(0222)=y,; yi$=2022) =y, ;
y25=(0220)=y; ; y3$=(0202) =y, ;
yo35=(2020)=ys ; y5s3 =(2020) =yg (=ys)

is a realized fixed point.
X9 = (1, 2, 1, 2) the resultant associated with itis (1 2 3 0).

For x10 = (2, 1, 2, 1) the resultant associated with it is
(303 2). x11 =Xg + X0 but resultant of x;; is (0 2 2 2).

Thus there is no relation with this sum on S.
Letx,=(1030)andx;3=(3010) € P.
We will find the effect of x;, and x5 on S.

x29=(0232)=y;; yiS=@B210)=y,;
v25=(1032)=y;5; y33 =(1032)=ysu=y3).

Thus the resultant of X, is a realized fixed point (1032) --1

The resultant of x;3 on S.

X13S=(1212)=y1; yls=(0230)=YQ,
v2wS=2211)=y;5; viS=(1111)=y,;
vaS=(0222)=ys ; ysS=(2002)=1ys ;
ve3=(0202)=y; ; v S=(2020)=ys ;

ysS=(2020)=y;(=ys).
Thus the resultant of x5 is a realized fixed point given by

2020 - 1I
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Now x5+ x13=(1030) +(3010)=(0000) and effect
of (0000)on Sis (000 O0)itis a trivial classical fixed point.
But X13S + Xlgs - I+1I
=(10,3,2)+(2020)
=3012).

Thus the resultant behaves in a chaotic way.

Hence in view of this example the following theorem is
evident.

THEOREM 3.1: Let S = (a;) be a n X n matrix with entries from
Z,, be the MOD matrix operator on P = {(a,, ..., a,) / a; € Z,;
1 <i <nj the set of state vectors. If x and y € P and if resultant
of x on the MOD matrix operator is t and that of y is s then the
resultant of x + y on S need not in general be t + s.

Proof. Follows from the above example.

In view of all these the following conjecture is left open.
Conjecture 3.1. If S and P be as in theorem 3.1. Characterize
all those x and y € P such that the sum of the resultants of x and
y is the resultant sum of x and y.

Conjecture 3.2. Let S and P be given as theorem 3.1.

(i) Characterize all those classical fixed points of S.
(i1) Can we say the fixed points are related to entries of S?

Conjecture 3.3. Let S and P be as in theorem 3.1.
Characterize all those realized fixed points of S.

Conjecture 3.4. Can we say for some MOD matrix operator S
all elements of P are classical fixed points?
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Conjecture 3.5. Does for some MOD operator say a n X n matrix
S there is an element

xe {(ay, ..., ay laje Zy; 1 £1<n} =P which is fixed point
after n" — 2 iterations?

Conjecture 3.6. Can there be a MOD operator matrix S for
which every element is a realized fixed point after 5 iterations

each?

Example 3.5: Let

1 2 3
S=(3 3 0
213

be a 3 X 3 MOD matrix operator with elements from Zg.

P ={(a}, ay, a3) | a; € Zg; 1 <1 < 3} be the collection of all
state vectors.

Letx;=(111)e P.
To find the effect of x on S.
xS =(000).
Thus x, is a realized fixed point not a classical fixed point.
Letx,=(222)€e P.
To find the effect of x, on S is as follows.

x,S = (0 0 0) is a MOD realized fixed point and a classical
fixed point of S.

Letx3;=(333)e P.
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To find the effect of x30n S.

x3S = (0 0 0) is a realized fixed not and is not a classical
fixed point.

Let x4, = (4, 4,4) € P. The effect of x, on S is as follows.

x4S = (0, 0, 0) is a realized fixed point not a classical fixed
point.

Let x5 = (5, 5, 5) € P; the effect of x5 on S is as follows.

x5S = (0, 0, 0) is a realized fixed point and not a classical
fixed point.

Let x6=(2,0,2) € P.

xeS = (0, 0, 0) is a realized fixed point.

x7= (0, 2, 0) € P, the effect of S on x5 is as follows:
x7S = (0, 0, 0), is a realized fixed point

xg = (2,0, 0) € P; the effect on xgon S is as follows.
XsS =(2,4,0)=y1; 1S =(2,4,0) =y (=y0).

The resultant is only a realized fixed point of S.

Let X9 = (0 0 2) € P, to find the effect of xo on S

XS =(420)=y1; yiS=(420) =y, (=yp.
This is the realized fixed point.

xg=(200) and xg = (00 2); Xg+X9=(202)=x¢

xS = (2,4,0); XoS = (4,2,0)
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(Xs + X9)S = X¢S as realized fixed point of P.

Let x;0 = (1 2 3) € P; to find the effect of x;0 on S is as

follows.
XpS=(150) =y, ; yiS=@453)=y, ;
vwS=(153)=y; viS=420)=y,

yaS =(420) =ys (= ya).
Thus x,0 = (1, 2, 3) is only a realized fixed point.
x;=(100)e P.

The effect of x; on S.

xiS=(123)=y; yiS=(150=y, ;
y25=@453)=y; ; viS=Q223)=ys ;
vaS=Q213)=ys ; ysS=(0543)=ys
yeS=(510)=y; yS=(213)=ys (=ys).

We see x is a limit cycle with (2, 1, 3) as the limit cycle.
x, = (0 2 0). To find the effect of x, on S.

x,S = (0, 0, 0) is a realized fixed point.

Letx;=(0,0, 3) € P.

To find the effect of x3 on S.

X3S = (Oa 37 3) = yl 5 ylS = (37 07 3) = yZ 5
y25=3,3,0)=ys ; y3S = (0, 3, 3) = y4 (=y0).

Thus x; gives a realized limit cycle.
X0 =(1,2,3)=x1 + X2 + X3

=(100)+(020)+(003)
=(1,2,3)(123)S—> (4,2,0)
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is the realized fixed point (1 0 0) S — (2 1 3) is a MOD limit
cycle.

(020)S=(000) is arealized fixed point.
(003)S=(033)is alimit cycle.

Sum of
(100)S+(020)S+003)S=R213)+000)+(033)
=(240).

Thus we see effect of sum of three elements in P is not the
resultant sum.

This is clearly shown by x,0=(1, 2, 3) € P.
Consider x4 = (2 1 2) € P; to find the effect of x, on S.

x,S=330=y, viS=(033)=y,
y2S=3B03)=y; ; y3S =33 0) =y4 (=y).

The resultant is a realized limit cycle.

Letx;=(200) e P.

To find the effect of x; on S.

xS=240) =y, yiS=240)=y,
is realized fixed point.

Let x, =(0 1 0) € P; to find the effect of x, on S.

xx5=330=y, ; yiS=033)=y, ;
y25=303)=y; ; y3S =33 0) =y, (=y).

The resultant is a limit cycle.

Let x;=(00 2) € P, to find the effect of x; on S.
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x33=420=y ; y1S =(420) =y, (=y0).
The resultant is a realized fixed point.
x4S gives the limit cycle as (3, 3, 0)
x;S is a fixed point (2, 4, 0)
X,S is a limit cycle (3, 3 0)
x5S is a fixed point (4, 2 0).
Sum of X;S + X,S + X3S
=(2,4,0+G,3,00+(4,2,0)
=(3,3,0).
Here the resultant sum is the sum of the resultant.
Next we make the fixed point of MOD matrix operators
using the state vectors as O or 1 tuples with operators of

updating and threshold the state vectors.

This will be illustrated by the following example.

Example 3.6: Let

321 40
5021 4
S=[{1 30 21
04305
21 45 2]

be the MOD matrix operator with entries from Z.

Let P = {(x1, Xo, X3, X5) | x; € {0, 1}; 1 <1< 5} (where x; =1
it implies the state vector is on state if x; = O then it is off state.

In this working the state vector at each stage will be updated
and thresholded.
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Letx=(10100)€e P.
To find the effect of x on S.
xS =(4510 1) after updating and thresholding
xS=M@4510D)—>1110D =y
yiS =(5 015 1) after updating and threshold.
yS—= (1011 1)=y,
y25=(04252)>(11111)=y; ;
y33=(54400)—=>(11100)=y,;
yaS=03,53,1,5—>01111)=ys;
ysS— (11100).
Thus the resultant is a limit cycle.
Letx;=(01100)€e P.
To find the effect of x; on S.
x5=(0,3,2,3,5—=>0,1,1,1 )=y, ;
yi$=(2,2,3,2,00 > (1, L, 1,1,0)=y>;
y25=(3,3,0,1,4) - (1, L L1, D)=ys;
y33=(54400)—>(11100)=y, ;
ya8=B5315=0,11L11D=ys;
ysS = (11100)=ys (=ya).
Once again the resultant of (0 1 1 0 0) is only a limit cycle.

Letx;=(00011)€e P.

To find the effect of x; on S.

x8=(2,51,5D)>11111)=y,;

yiS=(54400)—> 11111 =y, (=y).
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Thus the resultant of x; is fixed point.
Letz;=(10000)andz,=(00010) e P.

We will find the effect of z,, z, and z;, + z, on the MOD
matrix operator S.

728=3,2,1,4,00—>({1,1,1,1,0) =y,
yviS=B33014)—->11011)=y,
vpS=@41445 >, 1,1,1,1)=y;
v3:3=(544000—->(11100)=y,

v S=35315->(,1,1,1,1)=ys
ysS =(1,1,1,0,0) =ys (=ya).

Thus the resultant is a limit cycle.
a111H->111000—>11111 -1

Consider the resultant of z, on S (z,=(0 00 1 0))
2,8S=04305—>@,1,1,1,1) =y,
yiS=22320)—>(1,1,1,1,0) =y,
v25=3,3,0,1,4) > (1,1,0,1, 1) =y;

v 35=@41441) >, 11,1, )=y,
viS3=(5,4,4,0,0) > (1,1,1,0,0) =ys
ysS=35315) >, 1,1, 1, 1) =y (=ys).

Thus the limit point of z, = (0 0 0 1 0) is also the limit cycle
given by
1,1,1,1,1)—>1,1,1,0,00) > (1,1, 1,1,1) --1I

From I and II it is clear the resultant is the limit cycle.

Letz, +2z,=(10,0, 1, 0), to find the effect of z, + z, on S.
(z1+2)S=30445) - (1011 1) =yy;
yiS5=04252)—>(1,1,1,1, )=y,

y2S5=(5,4,4,000—>(1,1,1,0,0)=y;
v33=35315 >, 1,1, 1, 1) =ys(=y2).
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Thus the resultant of z; + 7, is also a limit cycle
(1,1,1,1,1)—>(1,1,1,0,0) »(1,1,1,1,1) ---1II

Thus I, IT and III are the same.

Hence the result of z,, z, and their sum z;, + z, is a limit
cycle, which is the same limit cycle evident from I, IT and III.

Letx;=(00100)and x,=(001 0 1) to find the resultant
of x4, X, and X; + X, on the MOD matrix operator S.

xS=(13021)—>(1,1,1,1, )=y,

yi5=05,4,4,00—(1,1,1,0,0) =y,

¥:8=(35315 (1,1, 1,1, 1) =y, (=y)
is a realized limit cycle.

(L1L,1L,1L,H)—->{1,1,1,0,00 >, 1,1, 1, 1)
Consider the effect of X, =(0010 1) on S.
xS=34413)>(1,1,1,1, 1) =y,
yi$5=(5,4,4,0,0) > (1,1, 1,0,0) =y,
y25=03,53, 15>, 1L1L1,1)=y;
y3$=(5,4,4,0,0) > (1, 1, 1,0, 0) = y4 (=y2).

Thus we see the resultant of X, is a limit cycle given by
(LLL,1L,1)—>(1,1,1,0,00 > (1, 1,1, 1, 1).

Consider x=x;+x,=(00100)+(00101)=(0010 ).
So is again a limit cycle with same cycle.
Consider x; =(00001)and x,=(00010) € P.

To find the effect of x;, X, and x; + X, on S.

xS=21452)=>(1,1,1,1, )=y,
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y1$5=(5.4,4,000—>(1,1,1,0,0)=y,
y25=35315 - (L L 11 1)=ys(=y).

Thus the resultant is a limit cycle.

Consider x,=(00010) € P.

To find the effect of x,S.
X25=(04305—->01110) =y,
yS=01534)—->01111)=y,
v25=0213200—>(1,1,1,1,0)=y;

Y3S=(3,3,0, 174)_>(1 101 1)=Y4
yaS=(41445)—-,1,1,1,1)=ys
ys5=(5,4400)—>(1,1,1,0,0) =y
¥Ve3=(35315) —(1,1,1,1, 1) =y; (=ys).

Thus is again a limitcycle x; + x,=(0001, 1) =x.
To find the effect of x on S.
xS=3B515DH—->{,1,1,1, )=y,

YIS = (59 47 47 07 O) - (17 17 17 07 0) = y2

y2$=(3,53, 1,5 >, 1L 1L1=ys(=y).

Thus this is also a limit cycle; infact the same limit cycle.
Next we proceed onto study effect of this same S using
B= {(a17 A, 43, A4, aS) | a; € 269 I<i< 6}

We do not update or threshold the vectors in B.
Takex;=(10100) € B.

To find the resultant of x; S.

x5=4,5,1,0, 1) =y, (say)
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y1S=(4,0,2,0,5) =y, (say)
v25=(0,1,0,3,0)=y;
v3S=(5,0,1,1,3) =y,
Y4S = (4, 2, 2, 1, O) =Ys
ys3=1(0,0,5,4,3)=ys
¥63=(5,0,0,1,5) =y
vy S=(1,1,4,3,3)=ys
ysS=(0,5,0,4,5 =y,
¥oS =(5,3,0,0,2) =y
yl()S = (4, 0, 1, 3, 4) =Y
yHS = (3, 3, 5, 2, 0) =¥Yi2
yuS = (5, 5, 3, 1, 3) =¥Yi3
yid=(1,2,0,4,4) =y
y14S = (3, 4, 3, 2, 0) =Y¥Yis
y15S = (2, 5, 5, 4, 3) =Yie
y16S = (0, 2, 0, 2, 3) =¥Yi7
yUS = (4, 5, 4, 5, 0) =VYis
ylgS = (5, 4, 5, 3, 1) = Y19
ylgs = (0, 2, 2, 3, 2) =Y¥Y2
YZOS = (4, 2, 3, 4, 3) =Y
YZIS = (1, 0, 2, 3, 1) =Y
Y2zs = (1, 3, 2, 1, 1) =¥
y23S = (4, 1, 2, 4, 3) = YQ4
Y24S = (1, 3, 0, 0, 2) =Y
y25S = (4, 4, 3, 5, 4) =Y
y26S = (1, 5, 1, 4, 4) =Yo7
y27S = (1, 1, 3, 7, 1) =Y2s
Y2gs = (1, 4, 4, 4, 2) = Y29
vaoS =(1,2,5,2,2)=y30
Y3()S = (2, 3, 1, 2, 3) =Y¥Y31
YSIS = (4, 5, 2, 4, 1) =¥
Y3zs = (5, 1, 0, 0, 2) = ¥33.

We have not reached realized a fixed point or a realized
limit even after 32 iterations.

However we are sure by (65 — 1) iterations we will reach a
realized fixed point or a limit cycle. For B is only a finite set
hence the claim.
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Next we find the effect of x,=(00001) € BonS.

xS=02,1,4,5,2) =y,
viS=(1,2,53,1) =y
v25=(2,0,0,3,0)=y;
y3$=1(0,4,5,2,3)=y,
yaS=(1,2,2,5,1)=ys
ysS=(5,5,0,3, 1) = ys
v63 =(5,5,5,0, 1) =y
y:S=(5,3,1,4,3) =yg and so on.

However we will get the resultant as realized fixed point or
a realized limit cycle with in 6° — 1 iterations.

Next we proceed onto study the effect of a lower triangular
MOD matrix operator.

Example 3.7: Let

N W N =
N W O
N OO
N O O O

be the lower triangular MOD matrix operator with entries from
Zy.

P=1{(aja,a3ay) la; € Zy; 1 <1< 4} be the 4* number of
state vectors.

Consider x;=(1000) € P.
x1S = (1 000) =x is a classical fixed point.

Let x, =(2 00 0) € P x,S = x, is again a classical fixed
point.
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Letx;=(3000) € P.
X3S = X3 is the classical fixed point.

Thus this MOD tower triangular matrix operator has classical
fixed points.

Letx,=(1,1,1,1) € P.
x3=(0302)=y,
yi$=(2200)=y,
y25=(2000)=y3

y3S =(2 00 0) = y4 (=y3) is only a realized fixed point.
Letxs=(2002) € P.

To find the effect of x5 on S.
xs3=(2000)=xs;

Xs is also a classical fixed point.
Let x¢ = (0, 1, 0, 0).

To find the effect of x5 on S.

XS =(2,2,0,0) =y,
YIS = (29 07 07 O) = YS (=y2)

Thus (0 1 O 0) is only a realized fixed point and not a
classical fixed point.

Letx;,=(0010) € P.
To find the effect of x; on S.

X7S=(3320)=yl
yiI$=@2300)=y;
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Y2S=(0200)=}I3
y33 =(00, 0, 0) =y4 (=y3) is a realized fixed point.

Consider xs=(0001) € P.
The effect of x5 1s on S is as follows.
xgS=(2222)=y,;

yiS=(0200)=y,
y2S =(00 0 0) is a realized fixed point

Nowxs=(1,1,1,1)=X; + X+ X7 + Xg =
(1,0,0,0)+(0,1,00)+(0,0,1,0)+ (0, 0,0, 1).

x4S gives (2, 0, 0, 0) as a realized fixed point.
X, is a classical fixed point (1 0, 0, 0)

X¢ 18 a realized fixed point (2, 0, 0, 0)
X7 and xg are realized fixed point (0 0 0 0).

However x4S # x1S + X6S + x5S + x5S
(2000) # (1000) +(2,0,0,0)+(0000) + (000 0).

Hence the concept of sum of the resultant is a resultant sum

is not true in general.
Letx=(1231)e P.
To find the effect of x on S.
xS=(0,3,02)=y,

y1S=(2200)=y,

¥:$=(2000) =y
y3S =(2000) =y, (=y3) is a realized fixed point.

Next we study MOD symmetric matrix operators.
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Example 3.8: Let

N
—_ NN O =
S = N O
W O = W

be the symmetric MOD matrix operator with entries from Z,.

P={(a;, a», a3, ay) | a; € Z4 1 <1<4} be collection of state
vectors.

Letx;=(1000) € P.
To find the effect of x on S.

x;S=Q2103)=y,
yiS=2120)=y,
yaS=(1223)=y;
y3S=(1022)=y,
ysS=(0321)=ys
ysS=(2102)=ys
¥e3S=(3022)=y,
yiS=(0123)=ys
y8S=(2302)=1yo
YQS=(1023)=}’10
YioS=(2020)=yy,
Y1ls:(0222):}’12
Y1zs=(0222)=}’13 (=y12).

Thus x, is a realized fixed point given by (0 2 2 2).
Consider x,=(0100) € P.
The effect of x, on S is as follows.

xS=(1021)=y,
yS=(1222)=vy,
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y25=(2323)=y;
y33=(1102)=y,
yasS=(1322)=ys
ysS=(3300)=ys
¥eS=(1320)=y;
yrS=(1102)=y;g
yeS=(1322)=Yyo
¥9S =(3300) =y (=ye)-

Thus the resultant is a realized limit cycle.
Letx;=(0,0,1,0) e P.

To find the effect of x; on S.
x35=(0210)=y,
yiS=2212)=y,
y25=(0212)=y;
y3S=(0010)=y4(=x3).

Thus x3 is only a realized fixed point of S.
Letx,=(0001)e P.
To find the effect of x4 on S.

x,S=3103)=y,
yiS=(0223)=y,
yS=(3323) =y,
y:$=(2201) =y,
ysS=(1303)=ys
ysS=(2023) =y
y6S=(1123)=y,
y7S=(0001)=ys (=x4).

Thus it is a realized fixed point as only after seven iterations
we get Xq.



Fixed Elements of MOD Matrix Operators | 101

Letx=X;+ X, + X3+ X4

(1,1,1,1)=(1,0,0,0) + (0, 1,0,0) + (0,0, 1, 0) + (0, 0, 0, 1)
=(,1,1,1) e P.

To find the effect of x on S.

x35=(2033)=y,
yiS=(1333)=y,
y25=(2,2,1,3)=y;
y33=@B31 D)=y,
yasS=(2233)=ys
ysS=(3331)=ys
yeS=(0213)=y;
yiS=@B113)=ys
y8S=(0033)=1yo
yoS=(1131)=yio
yioS=(2013)=yy
Y1ls:(1 31 3):}’12
y12S = (22 3 3) =yi3 (=ys).

The resultant is only a realized limit cycle.
Considerx =(1313) e P.
To find the effect of x on S.

xS=(2233)=y,
yiIS=3B333)=y,
y25=2011)=y;
y3$=@B311D)=y,
ysS=(0233)=ys
ysS=3133)=ys
¥eS=(0013)=y;
yIS=(1121)=1ys
ysS=(2203)=yy
YQS=(3101)=}’10
Y1OS:(2021):}’11
yuS=@3321)=yp
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Y1zs =(0,0,03)= Yi3
yiS=(1301)=yy
yiuS=(0221)=ys

Y1ss =(1121)= Yie

Y16S =(2203)= Y17
yirS=G101) =y (=yi0)-

Thus the resultant is a realized limit cycle of S.
Considerx =(3,1,3,1) e P.
To find the effect of x on S

x3=0211)=y,
yiS=(1311D)=y,
y25=(0031)=y;
y33=3333)=y,
yaS=2011)=ys
ysS=(B311)=ys
¥6S=(023 3)=y;
y1S=(B133)=y;g
yeS=(0013)=1yo
yoS=(1111)=yyg
yioS=2033)=yn
yuS=(1333)=yn
Y1zs=(2213)=}’13
yisS=0B311)=yu(=ye.

Thus the resultant of x is a realized limit point of S.

Now we have worked with symmetric MOD matrix
operators and lower triangle MOD matrix operator of S.

Now we proceed onto study the resultant of column vectors
on MOD matrix operators.
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Example 3.9: Let

OEORE0E

be the set of state column vectors given in example 3.1.

vl

be the same MOD operator matrix as in example 3.1.

xe[[]
e e
oy Y

Thus y, is a realized fixed point of M.

Let

2 1
LetZ = eA~.
2
To find the resultant of Z on M.
0]. . .
MZ = 0 is the fixed point.

However if x = (1, 0), then xM is a realized fixed point
2, )=y.
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Now for x = (2, 2), x is a realized fixed point (0, 0).

We give another example.

Example 3.10: Let

3215
4 0 3 1
M =
2 1 1 0
1 0 4 2
be the MOD matrix operator.
a,
Let At = e la; € Zg; 1 <1 <4} be the state vectors.
a3
a,
3]
0
Letx = e AL
2
0_
321 53] [5
4 0 3 11((0 0
Mx = = =y
2 1 1 0(2 2
1 04 20 5
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4 0 31

1 1 0[O0

2

1 0 4 2(|5

4 0 31

2

10

1

MY2

v — O A

N O — O

N <t AN —

My,

4 0 31

2

1 0|3

1

4 0 31

1 1 0}(0

2

MY5 =
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1

5

321 5|3

4 0 31

4 0 31

0 4 2|3

1

MY7

0

0

32 1 5|2

4 0 31

4 0 3 1

321 5|0

4 0 3 1

MYIO

My,
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(3 2 1 5][4] [0]
My13=403 1 0:2=y14
2 1 1 0ll4] |0
1 0 4 24| |4]

3 2 1 5][0o] [o]
My14=4031 2:4=y15
2 1 1 oflo| |2
1 0 4 2|/4] |2]

3 2 1 5][0] [2]
My15=403 1 4:2=y16
2 1 1 0/|2] |0
1 0 4 2|[2] |0]

3 21 5)[2] [4

MY16= 052 = 2 =Y14(=Y10)-
2 1 1 0f|o| |0
1 0 4 2[|0] |2

Thus the resultant of x is a realized limit cycle. However
from example 3.2 for x' = (3 0 2 0).

We get the resultant of the row vector x' on the MOD matrix
operator M is a realized limit cycle just after second iteration.

But x as a column state vector on the same MOD matrix
operator M attain a realized limit cycle after 16 iterations and
the values are transpose of each other.

So the following problems are thrown open.

Conjecture 3.7: Let M be the MOD, n X n matrix operator with
entries from Z,,,.
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P={(ay, ...,a, la;e Z, 1 <i<n} be the collection of row
state vectors.

Zllaje Zm 1<i<n)}

be the collection of column state vectors.

i)

ii)

iii)

If x € P and x' € P* be the row state vector and column
state vector which has same entries then will XM and
Mx' result in same resultant that is y, is the resultant of

XM. Then y; is the resultant of Mx' with same number

of iterations.

Will classical fixed points of row vectors x on M also
be the classical fixed points of the column vectors x' of
M?

Does there exist a MOD matrix operator M in which (i)
and (ii) are true?

From the example 3.2 the questions proposed in the
conjecture need not in general be true.

One has to however characterize those MOD matrix
operators in which such results are true.

Example 3.11: Now consider the MOD matrix operator S given
in example 3.3 of the chapter.
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1 011

01 11
S=

1110

1 1 01

is the MOD matrix operator operating on column state vectors.

w

a
a2 .
B= laje {0, 1} =27, 1 <i<4).
a
a

Takey = € B.

—_ O =

To find the resultant of y on S

—_— = O =
—_ = = O
O = =
—_— O = =
—_— O = =

Syl =

p—t e OO
—_— = = O
O = = =
—_— O = =
- o O O

Hence y on S as a column state vector behaves in the same
way as X = y' as the row state vector.
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0
1
Letons= ] e B.
1
To find the effect of son S
1 01 1/|0 0
01 1 1]|1 1
SS = = = Sl,
1 1 1 0f|1 0
1 1 0 1|1 0
Ssy = =s,(=5).

—_— = = O

s and s' of B and P behave in the same way on S for s, = x,
(refer example 3.3).

1
0
Lett,= ) € B.
1
To find the effect of t, on S.
1 01 1]|1 1
01 1 1|0 0
St2: = =t3
1 1 1 0|1 0
1 1 0 1]]|1 0
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=t (= t).

—_— = O

Thus t, = x‘2 behaves in the same manner.

Since S happens to be a symmetric MOD operator the result
is obtained in this manner.

Hence we now consider a non symmetric MOD matrix
operator with entries from Z, in the following example.

Example 3.12: Let

w2

1
S O = O =
—_— O = = =
S = = O O
—_— = O = O
S O = O =

be the MOD matrix operator with entries from Z,.

LetP={(a;, a,a3,a4,a5) laj€ Z, 1<1<5} and

pt= a; | laje Zy; 1 <1< 5}

be the row state vectors and column state vectors respectively.
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Let x=(10000)and x' =y = be two initial state

S O o O =

vectors from P and P* respectively.
To find the effect of x on S.

xS=(11001)=x,
xiS=(11001)=x(=x)).

Thus x is a realized fixed point of the MOD matrix operator

S.
o 1
0 0
Sy=11|=ysi Syi=10| =y
0 1
_0_ _0_
- o8
1 0
Sy, =|1]y3; Sy;= 10| =y4(=y).
1 0
_1_ _0_

Thus the resultant of y the column vector on S is a realized
fixed point given as three iteration as y itself.

However for y' = x the resultant of the row vector is a
realized fixed point different from x.
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Letx=(01000)andy=x'= be the row state vector

o O o = O

and column state vectors of P and P* respectively.
xS=01010)=x,;
xS5=(01100)=x,
S=(10111)=x;
x35=(01000)=x4(=x).

Thus the resultant is a realized fixed point same as that of x.

0
1
Consider y = | 0| to find the effect of y on the MOD matrix
0
0

operator S.

=Y

—_ m, O ko

1
1
Sy=11]=ys Syi1=
0
1
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= Y4

—_ O O =

1
0
Sy,=1|1|=ys Sy; =
1
0

1

1
Sys=|1[ys(=yn.

0

1

Thus the resultant is not a realized fixed point but a realized
limit cycle given by

—_— O = = =
\2

—_— = O = =
\2

O = =D =
\2

—_ 0 O = =
\2

—_— O = = =

Thus in this case of x=(01000)andy =x'=

o O o = O

we see x results in a realized fixed point which is x itself where
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as y is the realized limit cycle given by which is not y.

—_ O = =

Thus we see if x is a realized fixed point x' = y can be a
realized limit cycle and so on.

Letx=(00100)andx'=y= to find the effect of x

S O = O O

and y on the MOD matrix operator S.
xS=(11101)=x,
x5=(00100)=x,(=x3)
is the realized fixed point after one iteration yielding x itself.
Sy =(00110)=yy; Syi=(01101) =y
Sy =(01111)=ys; Sy;=(00100)=y4(=Yy).
Thus in this case the resultant of y is a realized fixed point

after three iterations yielding y = x".

Hence in this case only the number of iteration vary for x
and x' =y.
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0

0
Letx=(00010)e Pandy=x'=|0| € P".

1

_0_
To find the effect of x and y on S.
The effect x on S is as follows.
xS=(00110)=xy; X S=(11011)=xy
x25=(11111)=x3; x33=(00010) =x4 (=x).

Thus the resultant is a realized fixed point after three
iterations the resultant is Xx.

Let us now find the resultant of y on S.

=y =y (=y).

9p]
«
I
—_— = O = O
[9p]
=<
1l
o = O O O

The resultant of y is also a realized fixed point giving the
same y after one iteration.

Letx=(00001)andx'=y= be the row and column

- o O O O

state vector respectively from P and P*.
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To find the effect of x and S.

xS=(01010)=x,
xS=01100)=x,
%S=(10111)=x;
x:8=(01000)=x,
%S =(01010)=xs(=x)).

Thus the resultant of x on the MOD matrix operator S is a
limit cycle given by

©010100—-@01100)—>(10111)—
(01000)—=(01010).

0
0
Now we find the effect of y = | 0 | on S.
0
_1_
1 1
0 0
Sy=11]=y5 Syir=10] =yx
0 1
_0_ _0_

SY2 =

S VU N 'y

1
0
=ys; Sy; =10 =ys
0
0
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Sy, = =ys (=y1).

S O = O =

Thus the resultant of y on the MOD matrix operator S is a
realized limit cycle given after 3 iteration.

- o O O O
\2

S O = O =
\2

S = O O =
\2

—_— = = e
\2

o O O o =
\2

S O = O =

However the vectors are not the transpose of each other.

Now we find the sum of the state vectors x = (1, 1, 1, 1, 1)
and

of P and P* respectively.

<«
1l
Ne—»
1l
[ S =N ST

x5=(10000)=x,
xS=(11001)=x,
xS =(1100 1) =x; (=x3) is a realized fixed point.
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1
1
Now the effect of y = | 1 | on the MOD matrix operator S is
1
_1_
given in the following.
1 1
0 0
Sy={0| =y Syi=|1|=y2
0 0
_0_ _0_
1 "
0 1
Sy,=10| =ys; Sy;=|1| =ya(=y).
1 1
_0_ _1_
"
1
Thus the resultant of y = | 1| is a realized fixed point
1
_1_

leading to same y after three iterations.
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Now having seen examples the following result is
mandatory.

THEOREM 3.2: Let S be a n X n symmetric matrix with entries
from Z,, be the MOD matrix operator,

P={(a, ay ..., a,)/a,€ Z, 1<i<n}and

a

Pl=y| | /a; ez, 1<i<n

be the row state vectors and column state vectors respectively.

The resultant of the row vector x on S be a, then resultant of
x'on S is a' and vice versa.

Proof follows from the simple fact that the MOD matrix
operator is a symmetric operator.

If the MOD matrix operator s is not symmetric the
predictions are different.

It is an open conjecture to find the classical fixed points of S
for both P and P".

We provide one more example to this effect.

Example 3.13: Let

w2

1l
AN O N = W
S = = O =
| e R N )
o~ © ~ O
N © W © &
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Letx=(21000)e Pandy=

x35=02515)=xy;
%S =(21524)=xs;
X5=25651)=xs;
XS =(60224)=xy
xgS =(64053)=x
X]os=(23563)=X11;
X2S=44110)=x3;
X14S=(06441)=X15;
X]ﬁs=(50344)=X17;
X183 =(30325)=x9;
XzoS:(46234):X21;
ngs=(06343)=X23;
X24S=(23332)=X25;

MOD symmetric matrix with entries from Z,.

e P-.

S O O = N

The effect of x on S is as follows.

x1S=(06530)=xy;
X3S =(62333)=2xy;
XS =(16332)=xg
X:S=(@435 25)=xg;
XgS=(54320)=x10;
X1S=26021)=xXq3;
X13$=(4625 1):X14;
X159 =(13514)=xX;
X17S=(35044)=X18;
X109 =31121) ==Xy
X21S:(42020):X22;
X23S=(20530)=X24;
X253 =(61163)and so on.

We see we are not in a position to arrive at the resultant,

however before or at the end of 6° — 2 iterations we will
certainly get the resultant.

Now we try to find the effect of y = x' on this symmetric.

MOD-matrix operator S.
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e P

>
Il
<
I
S O O = N

To find the effect of y on S.

= Y1'

w2
«
1l
W = N O

Clearly y; = x; so the first iteration is the transpose of the
first iteration of x.

o =
6 1
Syi=|5|=y2(alsoy,=x); Sy»=|5]|=y;s(alsoy;= x})
3 2
_O_ _4_
6T 5T
2 5
Sy;=|3|=ys(ya=%,); Sys=|6|=ys(ys= X5);
3 5
_3_ _1_
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1 6

6 0
Sys=|3|=Ye (o= Xg); Sys=| 2| =y7 (X;=y2);

3 2

2 4

4 6
3 5
Sy7=|5| =ys (Xg=y2); Sys=|0| =yo (Xg=yo);
2 5
5 3

5 2
4 3
Syo=|3| =y (X;,=Y10); Syw=|5|=yu (X}, =y
2 6
0 3

SY11 =

el \° B e> RN o) N )

4
4

=y (Xp,=Y2); Syn=|1|=yi3(X;=Yy13);
1
0
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SY13 =

Syis =

Syi7=

Syi9=

A A O WL W

—_— N = =

= Y14 (X}, = Y1a);

=Yie (Xiﬁ =Yi6)s

=yis (Yis = Xjg);

=y (Yo = Xig );

Syis=

Syis =

SY18 =

Sya =

[ B \S R VS B @ ROV )

A~ LW o N B

=Yis (X{5 = Y15)

=Yi7 (X;7 =Yy17)

= Y19 (Y10 = Xjy);

= Ya1 (Y20 =X5 );
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4 0
2 6
Syn=10|=yn (yu= X[ﬂ ); Syn=|3|=yn (2= Xlzz)
2 4
_0_ _3_
= o
0 3
Sy =1|5|=y2 (y23=%X5); Syau=|3|=yas (X} =X04)
3 3
_0_ _2_
6
1
Syss=|1| =y (ths =Y2s)-
0
_3_

We see at each stage the value of Sy, = (x,S)".

This effect is from the fact the MOD symmetric matrix
operator.

Next we give an example of a MOD-matrix operator S for
which we use only row state vector and column state vectors
taking entries from {0, 1} and we at each stage update and
threshold the state vector.
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Example 3.14: Let

321 40
10212
S=|0 10 2 1
1 430 2
2 3 41 3

be the MOD matrix operator with elements from Zs.

LetP={(a;, a5, a3, a4,a5) la;€ {0,1}; 1 <i<5}and

P ={|a, [lae {0,1},1<i<5)

be the collection of state vectors which state on or off state.
For the first time we work with vectors from P and P*.
Considerx=(10000)e P

xS=(32140)—>(1,1,1,1,0) =x,;
xS=(02120)—(1,1,1,1,0)=x,.

Thus the resultant is a realized fixed point of S.
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Consider x' =y = we find the effect of y on S.

S O o O =

=y, Sy1= =y, (=y1).

wn

<«

1l
N = O = W
—_— = O =
N = O AN
—_— = O =

The resultant is a MOD realized fixed point and x; #y, and

SO on.

Lety= andx=(010000)

o O o = O

be the column state vector and row state vector respectively.

xS=(10212)=>(11111)=x,
xS=(20033)=(11011)=x,
%S=(24012) = (1101 1)=x; (=xy).

Thus it is a realized fixed point.
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2 1 0 0

0 1 1 1
Sy=|1|=|1|=y:; Syi=14|—> (1| =y

4 1 0 0

3 1 3 1

3 1 0 0

4 1 4 1
Sy,=(2|—>|1| =y;3 Sy;=(3|—=|1| =y

4 1 3 1

0 1 0 0

2 1

3 1
Sya=[3|= (1| =ys(=y1).

2 1

3 1

Thus the resultant is a realized limit point so x is a realized
fixed point but x'is a realized limit cycle.

Letx=(00100)andx'=y= be two state vectors.

S O = O O

We now study the effect of them on S.

xS=(01021)—=@O1121)=x,
xiS=(@43443)>(11111)=x
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%S=(20033)=(10111)=x;
x:8=(10331)—=(10111)=x4(=x3).

Thus the resultant of (0 0 1 0 0) is a realized fixed point.

Lety=

oS O = O O

Consider

0 0

1 1
=y Syi=14]|>|1|=y2

0 0

3 1

w2

«

I
B~ W O o =
[ N T = TS

— = e

3 0 0

4 4 1
Sy,=(2|— =ys; Sy;=(3|—=|1| =y

4 3 1

0 0 0

SY4 = =ys=(yn).

W N W W N
[ N = TS
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Thus the resultant is a realized limit cycle.

Here we see (0 0 1 0 0) is a realized fixed points where as

S O = O O

is a realized limit cycle.

Let
x=(00010)€e P.

To find the effect of x; on S.

xS=(14302)=>(11111)=x,
xS=(20033)=(10011)=x,
%S=(14300)—(11100)=x,
x:8=(43323) (1 1111)=x4(=x).

Thus the resultant of (0 0 0 1 0) is the realized limit cycle
givenby (1,1, 1, 1, 1).

Consider y = e P

S = O O O

To find the effect of y on S.
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4 1 0 0

1 1 1 1
Sy=1|2| = |1|=y; Syi=(4|=>|1|=yx

0 1 0 1

1 1 3 1

2 1 3 1

0 0 1 1
Sy,=(4|— | 1] =y3; Sy;=(3|—=|1| =y

4 1 1 1

1 1 0 0

=Ye6 (=y1).

S VU U G G G Gy

0 0 2

4 1 3
Sys=(3|—= | 1] =ys; Sys=|3| =

3 1 2

0 0 3

Thus the resultant is a realized limit cycle.

Letx=(0000 1) € P; to find the effect of x on S.

xS = =Xi; xS = = Xy}

W — B~ W N
e e e
w o A~ o
—_— O = = O
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X5S = =Xz (=Xx9).

S B~ N B~ W
[ = T = TS

Thus we have the resultant of is a realized limit cycle

- o O O O

given by

O VI N 'y

Letx=(10001) € P.
To find the effect of x on S.
xS=(00003)—>((10001).

Thus x is a classical fixed point on x.

Lety= e P

- o O O =

To find the effect of y on S.
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=y1

wn

<«

1l
S W = W W
—_— e = =

0 1 1 1
1 1 0 0
Syi=[4|=1|1| =y Sy,=(2|= (1| =ys5
0 0 0 0
3] 1] 2] 1]
4] [1] (3] [1]
0 0 1 1
Sys=|2|—>|1]|=ys Sya= |3 |=>|1| =ys5 (=y)).
1 1 1 1
4] |1 10 |1]
Thus the resultant is a realized limit cycle.
1]
0
Hence (1 000 1) is a classical fixed point but | O | is not a
0
_1_

classical fixed point only a realized limit cycle.
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Thus we see the state row vectors behave many a times
differently for in the case of state column vector evident from
this example.

Example 3.15: Let

— L O N
N O N -
w N = O
S = O ®

be the MOD matrix operator with entries from Zs.
We consider
P={(x1, X5, X3, X4) | Xj€ Zg 1 £1<4} and
X
L X, .
P={ |X16291S1S4}

X3

Xy

to be the row state vectors and P+ is the column state vectors.
To find the effect of x =(1 000) € P on H is as follows.
xH=6108)—>(,1,0,1)=x;
xH=(7145—>1,1,1,1)=x,
XxXH=3166)—(1,1,11)=x35(=Xx»).

Thus the resultant x is a realized fixed point (1, 1, 1, 1).
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1
0 n i
Lety = 0 € P, to find the effect of y on H.
0
6 1 5 1
q 0 0 q 7 1
= — = ) = —> =
s e g |7
1 1 4 1
6 1
. 5 1 ( )
= —> = = .
Y3 3 1 Y3 (=¥
6 1

Thus this is again not a classical fixed point but only a
realized fixed point.

Letx=(1100)e P
xH=(6815 > ((111)=x,
xH=3166)—>(1111)=x(=x)).

Thus it is a realized fixed point of H.

Now we proceed onto propose a few problems for the
reader.

Problems

1. Study the special features enjoyed by MOD-matrix
operators.



136 | Special Type of Fixed Points of MOD Matrix Operators

2. Characterize those MOD-matrix operators which has every
row vector to be a classical fixed point.

3. Does such MOD-matrix operator exist?

4. LetS= be the MOD-matrix operator

—_— W O = W
N O =
W = W O N
A~ DO O o O
S NN W=

with entries from Z,.

Let P = {(aj, ay, a3, a4, as5) | a; €Z;o; 1 <1 <5} be the state
row vectors and

pt= {|a; |laie Zjp; 1 £1<5} be state column vectors.

i) Find all classical fixed points of S in P and P".

ii) Can we say if x is the classical fixed point of S then x
€ P* be the classical fixed point of S?

ii1) Find all limit points of S in P.

iv) Compare these limits points of S in P*.

v) Show in general if x and y in P have x, and y, as the
resultants in P. Then the resultant of x + y # x, + y,; that
X+ y)#E# X+ Ve

vi) Characterize all those points in P in which (v) is true;
that is (X + y); = X + Y.

vii) Obtain any other special feature enjoyed by M.

t
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LetS = be the MOD-matrix operator

S O O o o =
S O O O N
S O O = o0 W
S O = W O b
S N = B~ = W
hn O NN =

with entries in Z;,.

Study questions (i) to (vii) of problem (4) for this S.

1 00 0O
21 000
LetT=|3 2 1 0 0] beMOD matrix operator with
4 3210
15 4 3 2 1]

entries from Zg.

Study questions (i) to (vii) of problem (4) for this T.

LetN = be the MOD-symmetric

N kWO NN = W
_—= O N = O =
AN O NN W =N
S B~ = = O NN O
~N DO =D O W
S = N O = B
LN O I O O ~= W

matrix operator with entries in Zs.
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i)  Study questions (1) to (vii) of problem (4) for this N.

ii) Obtain any other special feature associated with N.

8. LetM= be the MOD skew symmetric

N = W kA W
S B~ W O =
W o= NN
A0 = =
W = N O W

matrix operator with entries from Zs.

i) Study questions (i) to (vii) of problem 4 for this M.
ii) Compare N of problem 7 with this M.
ii1) Obtain all the distinct features associated with M.

05015
2 0 6 4 2
9. LetS=|1 1 0 3 8| bethe MOD-matrix operator.
7 0 7 0 6
105 2 3 0

1)  Study questions (i) to (vii) of problem 4 for this S.
ii) Does the diagonal elements being zero contribute to any
other special feature?
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01 2 3 4 05 4 3 2
501 2 3 1 05 43
10. LetW={4 5 0 1 2|andW"=[2 1 0 5 4|be
345 01 321 05
12 3 450 4 3 2 1 0]
the MOD-matrix operators.
i) Study questions (i) to (vii) of problem 4 for this S.
ii) Compare the resultants of state vectors of W and W™.
[0 1 2 0 1] [0 1 2 0 1]
1 50 2 3 1 59 2 3
11. LetP={2 0 1 5 O|andP;={2 0 1 5 0]be
025 0 3 025 6 3
1 3 0 3 2] 113 9 3 2]
two MOD matrix operators with entries from Z,,.
1) Characterize all those state vectors which has same
resultants in both P and P;.
ii) Will classical fixed points of P be classical fixed points

of qu

ii1) Can a classical fixed point of P yield a different
resultant by P, and vice versa?
Justify your claim by examples.

iv) Study questions (i) to (vii) of problem (4) for this P and
P,.

v) Characterize those state vectors in P and P, which yield
same resultants.
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37 21 0 5 1]
1 20 3 51 2
05312 3 4
12. LetW=|5 0 6 7 1 2 6| betheMOD matrix
1 26 0 3 41
3456 6 70
4 23 11 0 7]

operator with entries from Z.

Let B={(X,Xs, ..., X7) Ix;€ {0,1}; 1 <i<7} and

B! ={ X; | Ixie€ {0, 1}; 1 £1<7} be the state vectors

which signifies only the on or off state.

1) Study questions (i) to (vii) of problem 4 for this W and
W'

ii) Characterize all classical fixed points of w and W*. Do
they coincide or are different?

iii) Can a classical fixed point of W* be a realized fixed
point or a limit cycle of W? Justify?
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1v) What is the resultant of x =(1 0001 0 0) and

on W and W*?

>
Il
<
S O = O O O =

v) Ifx;=(1010010)andx,=(0100001)e B.
Find the resultant of x;,X, and X; + X,.

Are these resultants related or no relation exists.

vi) Let

Yi and y, e B

S O O O O = =
S O = = O O O

Find the resultant of y,, y, and y; + y, on W.

Are they related or not related with each other?
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301 257 6 2]
1 23 04 216
6 1 2 3 05 3 1
13. Let M = 2345067 be the MOD matrix
09 2 3 4561
72 0 45 213
1 231 2 360
12 356 7 2 0 5]

operator with entries from Z.
LetP= {(Xh X2y ooy Xg) | X; € Z]O 1<i< 8},

B={(a;, ay,...,ag)la;e€ {0,1};1<1<8},

P ={|x,|Ixi€ Zj;1<i<8}and

Bl={ a, | laie {0, 1}; 1 <i<8} be the state row vectors

and column vectors.

i) Study questions (i) to (vii) of problem (4) for this M
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ii) Study questions (ii) and (iii) of problem (12) for this M.

1) f x=(11000001) € P find the resultant of x on M.

iv) If x;=(1100000 1) € B find the resultant of x on M
as a on and off state vector

v) Compare the resultants in (iii) and (iv).

31 0 21
0 412 3
LetM;={1 1 2 0 1| betheMOD-matrix operator
21 010
100 1 0 2

with entries from Zs.

01230
21 0 0 4
LetM,=|1 0 2 1 0| bethe MOD matrix operator
0210 2
|1 1.0 0 0]

with entries in Zs,

Let P = {(xy, X, X3, X4, X5) | X; € Zs; 1 <1< 5} and

pt= {] x5 | Ixi€ zs, 1 £1<5} be the state vectors.
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15.

i)

ii)

If x; € P and a, is its resultant with respect to M and a,
its resultant with respect to M,.

Will a; + a, be the resultant on the MOD operator matrix
sum M, + M,? Justify your claim.

Characterize all those x € P and x' € P* such that (i) is
true

iii) Will they be related or no relation exists?

LetS =

31100 2 3
01 0 210 3
1 01 02 00
01 01 0 1 OfbetheMOD matrix
2 02 0202
1 1.0 0 2 01
001 1 0 2 0]

operator with entries from Z,.

i)

Letx = e P be the state vector.

— e e e e e

Find the resultant of x on S.
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n) Ifx;= € P* find its resultant on S.

NI SO R \S I NS R \S R NS )

Are the resultants of x and x; related?

31 1 2
16. Let M = and M, = be two MOD matrix
2 5 0 4

operators with entries from Z.
Let x; = (0, 2) and x, = (1, 3) be two initial state vector.

1) Find the resultants of x; and x, on M.
11) Find the resultants of x; and x, on M,
ii1) Find the resultant of (1, 5) on M; and M,.

. . 4 3
1v) Find the resultant of x; and x, on M = [2 3} .

v) Compare all the above results. Does these exist any
relation between them?

31 2 30 6
17. LetP;=]0 4 5|andP,=|1 4 0] betwoMOD
6 0 3 2 5 3

matrix operators with entries from Z;.
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18.

19.

20.

21.

22.

1 4
Letx;=|2|andx,|2]| e P-.
3 1

1) Find the resultants of x; on P, and P;.
i) Find the resultant of x, on P; and P».

=P;

AN W =

6 1
1ii) Find the resultant of x; on |1 1
15

Compare the results in (i) with this resultant on Ps.

1v) Find the resultant of x; and x, on Ps.

v) Can we say the resultants of x, on Py, P, and P; are in
any way related?

Find all special features enjoyed by MOD matrix operators.

Can one characterize all those MOD matrix operators which
give only limit cycle as the resultant?

Characterize those MOD matrix operators whose resultants
are only classical fixed points.

Characterize all those MOD matrix operators whose
resultants are only realized fixed points.

LetB = be the MOD matrix operator

S O O N =
S O W W N
S W Nk~ O
wn A~ W O O
N o= O O O

with entries from Zs.
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i) Mention all the special features enjoyed by B.

i) fx=31206)andy= find the resultant of x

A O N = W

and y on B.

i) f x;,=(12345)andx,=(54321).
Find the resultant of x;, X, and x; + X, on B.
Are these resultants related in any way?

iv) Find the resultants of x;,x; and x; +x, on B.

Are these resultants related in any way?

Letx = be the MOD matrix operator

S O N O O O
S o O O O O
AN O O O O O

S O O O O W
S O O O w o
S O O NN O O

with entries from Z,.

Let P and P* be the state tow vectors and state column
vectors.

i) Study the special features associated with X.
ii) Are all the resultant fixed points?
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24.

111) Find the resultant of a = and b=(432103)

A WY = O W

iv) Characterized all classical fixed points of X.

v) Characterize all realized fixed points of X.

vi) Can there by state row vectors and state column vectors
whose resultants are realized limit cycles?

vii) Obtain all special features associated with diagonal
matrix operators.

LetM = be the MOD matrix

S O O O O O
S v O O O O

S O O O O =
S O O O N
S O O w o O
S o ~ O O O
A O O O O O

operator with entries from Z;.

i) Study all the special features associated with this MOD
matrix operators?

ii) If M' be the MOD matrix operator, characterize all those
state vectors of P and P*?
a) Which are classical fixed points?
b) Which are realized fixed points.
¢) Which are realized limit cycles.



Chapter Four

FIXED POINTS OF MOD-MATRIX
OPERATORS DEFINED ON (Z,, U ),
C(Zn), (Zn L ), (Zn U h) AND (Z,, U K)

In this chapter for the first time we study the MOD matrix
operators using modulo neutrosophic numbers (Z, U I) finite

complex modulo integers C(Z,), dual modulo integers (Z, U g);
g*=0, and so on.

We find the fixed points associated with them. FEach of
them behave in a very different way.

All these will be illustrated by examples.

Example 4.1: Let

1+1 0 2+31
S=| 2 I 2+1
I 2+21 3
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be a neutrosophic MOD matrix operator with entries from
(ZsulD={a+blla,be Z, P=1}.

Let P = {(xq, X, X3) | Xj € (Zy U I); 1 <1< 3} be the
collection of MOD neutrosophic state vectors.

To find the effectof x =(1,0, 1) € P.
xS=(1+2L2+2L1+3D) =y

yiS=(0+1L 2+2I, 1+2) =y

vaS=(1+2I, 2+2I, 1)=ys;

vy S=(1+L 2+2[, 1+D)=yy

yvoS=0+L 2+2I, 3+3D)=ys;

ysS=(1+1L 2+2L1+1) =ys(=ya).

Thus the resultant of x = (1, 0, 1) is a realized limit cycle.

Consider y = (0, 1, 0) € P.

To find the effect of y on S.

yvWS=2,L2+D=yy; viS=Q2+3L 1, 2)=yy;
y2S=(2,1,2)=ys; y3S=Q2+2L L 2) =y
yvoS=2+2L L3[+2)=ys5; ysS=(1+2L 1, 0) =ys
yeS =(2,L 30) =y y7S =2 +3L L 2D =yg;
ysS = (2, 1, 2I) = yo; yoS = (2421, L, 2I) = yi0;

yioS =2 +2L L, 2I) =y (=y10).

Thus the resultant of y = (0, 1, 0) is a realized fixed point
given by (2 + 21, 1, 2I).

Considerx+y=(1,0, )+ (0,1,0)=(1, 1, 1) =t.

To find the resultant of t on S.

tS=CB+2L2+3L3) =t tS=3,2+3L3+2I) =ty
tS=0B+2I, 2+3L3+2]) =t

t5=(3+2I, 2+3I, 3+1) =ty
t,S=0CB+2L 2+3L 3+1) =t5(=ty).
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Thus the resultant of x + y = (1, 1, 1) is a realized fixed
point given by (3 + 21, 2 + 31, 3 + I).

However the sum of the resultant of x and y is
T+L24+2L1+D+@2+21 T 2D =B +3[,2+31 1+3D.

They are not related for in the first place x = (1, 0, 1) gives a

resultant which is a limit cycle what as that of x + y = (1, 1, 1) is
a realized fixed point.

Letx=(1+1,0,0) e P to find the effect of x on S.

xS=(1+3L0,2)=y;; yS=(1+L0,2D)=yyy
v2S=(0+L0,2)=ys; yv3S=(1+1L0,0)=y4

ysS=(1+3L0,2)=ys(=y).

The resultant is a realized limit cycle.

Letx=(1+21+1,2+30) e P.

To find the effect of x on S.

Consider

xS=3,2I, 2+3D)=yy; viS=(3,2L0) =y,
v2S=0B+3L2L2+3D)=y;; y3S=0C3+2L2L30) =y,
v4S = (3L 2L, 2 + 2I) = ys; ysS = (2L, 21, 2 + 3I) = yg;
yeS = (2L, 2L, 31) = y7; y7S = (3L 2L I) = ys;

ysS = (3L 2L 0) = yo; yoS = (2,21, 0) = y11 (=y10).

The resultant is a fixed point given by (21, 21, 0).

Next we give examples of neutrosophic MOD matrix
operator.
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3[+2 0 0 0
0 441 0 0
0 0 S5I+2 0
0 0 0 4431

Example 4.2: 1LetM =

be the neutrosophic MOD matrix operator with entries from

Let x =3+ 21,0, 0, 2+5) € P = {(a}, a5, a3, a4) | a; €
ZsuDy; 1<i<4}).

xM=(310,0,2+50) =yy;

yiM = (3L, 0,0, 2 + 5I) =y, (=y)) is a realized fixed point
of M.

Let x = (0, 1+I, 3+, 0) € P.
To find the effect of x on M.

M =(0,4,41,0) =yy; yiM=(0,4+41,41,0) =y,
y2M=(0, 4,41,0) = y3 (=y1).

Thus the resultant is a realized limit cycle.
Considerx=3+2[,1+41,2+3,4+1) e P.
To find the effect of x on M.
M=(,31+4,4+L4+D =y
yiM=0GBL4+L31+2,4+1) =y
yM=(L4+3L4+1L4+D)=y;;
ysM=GL4+1L31+2,4+]) =y, (=Y.

Thus we see the resultant is a limit cycle.
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Example 4.3: Let

3+21 4431
1+21 4+2I

be the neutrosophic MOD matrix operator.
LetP={(x,y)Ix,ye Zsul)={a+blla,be Zs}}.
Letx=3+2L1+4l) e P.

To find the effect of x on S.

xS=00,1+4)=yy; yiS=@+1 1+3D) =y,

v.S=(B+3L 4D =ys; y3S = (2 + 3L 2+4]) =y

vu.S=(3,1)=ys; ysS=CGL 1 +1) =yg;

veS=(1,4+4D) =y y7S =2+ 2L, 0) = yg;

ysS = (1 + 41, 3) =yq; yoS = (1431 1+2) =y
and so on.

However we will have a realized fixed point or a limit cycle
as the set P is finite.

Let us consider x = (I, I) € P.
To find the effect of x on S.

xS=GL3D)=y;; yiS = (4L 4]) = y,;
y2S = (2L 2]) = ys; yaS = (L I) = y4 (=x).

Thus the resultant is a realized fixed point which is x itself
after 3 iterations.

Now we will see the MOD matrix neutrosophic operator
when the matrix is symmetric, skew symmetric upper triangular
and super diagonal by an example each.
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0 3+2I O 0
21 0 1+3I1 0
Example 4.4: Let S =
0 0 2+2I

0 0 2+6l 0

be the neutrosophic MOD matrix operator with entries in

P={(@a, ap, a3, ay) l 3 € (Z; U I); 1 £1i <4} be the
collection of neutrosophic state vectors.

Letx=(3+4I,4I,31I,2) e P.
The effect of x on S is
xS=(,6L4,5)=y,.

0 3+2I 0 0
0 1+3I 0
0 0 2421

0 0 2+6l 0

y1S = (L, 6L, 4, 5T)

=0GLSLL1+D=y,

y:S=(GBLL2+3L4D) =y;;  y:S=QLLL4) =y,
.S = (21, 3L, 1, 41) = ys;
ysS = (21, 3L, 21, 2 + 21) = ye;

YGS = (617 317 47 I) = Y7; Y7S = (617 217 I9 I) = Y8;
ysS = (41, 21, 21, 41) = yo; yoS = (41, 6L, 51, D =y
and so on.

However we will reach a realized fixed point or a limit
cycle as P is a finite set.
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[3+21 0 0 0 0
0 0 0 31 0
Example 4.5: LetS=| 0 1441 0 0 0] bethe
0 0 0 0 2
|0 0 2+1 0 0]

neutrosophic MOD matrix operator with entries from (Zg U I).

Let P = {(a;, a, a3, a4, as) | a; € (Zg U I); 1 <i <5} be the
collection of state vectors.

To find the effect of

x=0GB+2LL4,2,34) € P.
xS=03+4L,4+41,0,3L,4)=yy;
yiS=3+21,0,2+41,0,0) =y
v25S=3+41,2+41,0,0,0) =ys;
y35=3+21,0,0,0,0) =y
yaS=(3+41,0,0,0,0) =ys;
ysS=(3+21,0,0,0,0) =ys (=ys).

Thus the resultant is a realized limit cycle.

3+1 21 O 1

21 0 1+I O
1+1 2 1

1 0 I 1431

Example 4.6: Let S =

be the neutrosophic MOD symmetric matrix operator with entries
from (Z, U I).

Letx=2+1,3,0,1) e P={(a}, a5, a3, a4) | a; € (Z4, U I);
1<i<4}.

The effect of x on S is as follows.
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xS=(3,2L3,3)=y;;

v1S = (3L, 3+1 2421, 2) = yy;
voS = (21, 2, 3431, 2+]) = y3;
vaS =2+, 3+ 1, 3L, 2) =y
vo.S=Q2LO0, 3+1 2D =ys;
ysS = (2L, 21, 2, 2I) = yg;

veS = (2L, 2 + 21, 21, 0) = y7;
y7S =(0,0,2,0) =ys;

yeS =(0,2 + 2L, 0, 21) =yy;
¥oS = (21, 0,2, 0) = yi0;

y10S = (0 2+2L 0, 0) = yy33
yiuS=(0,2+2L,0,0) =y (=yn).

Thus the resultant is a realized fixed point after 10
iterations.

Let x = (3, 1, 0, 0) € P to find the effect of x on the MOD
operator

3+1 21 0 1

21 0 1+ O
x35=(3,1,0,0)
0 1+I 2 I

1 0 I 1431

=(1+L2L1+13)=yy;

yiS=2+L1+3L1+2L0) =y
v 5=2+2L1+L3+3L2)=y;;
y3S=QL3+1,3+3L2D =y4
yaS =L 3+L 1+ 0) =ys;
ysS=(0,1+3L 1+3L0)=ys
v6e3 =(0,1+31,3+31,0) =y
yS =(0,3+L, 3+ L, 2I) = ys;

ysS and so on.

This certainly we will arrive at a realized fixed point or a
realized limit cycle.
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0 1+I O 0
2 0 142 O
0 2+I 0 1421
0 0 2+I 0

Example 4.7: LetB =

be the neutrosophic MOD matrix with entries from (Z; U I).

Letx=(21,0,0,2) e P={(a;, a, a3, a4) la; € {(Zz LU I);
1<i<4}.

The effect of x on B.

0 141 0 0
2 0 1+21 O
0 2+I 0 1+ 21
0 0 2+I 0

xB = (21,0, 0, 2)

=(0,1 1+21,0) =yy;

yiB = (2L, 2+1, 1+21, 0) = y»;
yB=(12+2L2+1,1+2I) =ys;
y;B=QL1+2L 1 +2L2+1) =yy
ysB=(0,2+ 2L, 1+2I, 1+ 2I) and so on.

However certainly at one stage that is after only finite

number of iterations we may be arrive at a realized fixed point
of a realized limit cycle.

Letx=(1,0,0,0) € P.
To find the effect of x on B.
xB=(0,1+10,0)=yy; yiB = , 1421 0) =y

(L, O
yZB = (07 21, Oa 0) = Y3, Y3B = (17 07 07 0) = Y4>
y4B = (0, 21, 0, 0) = ys5 (= ya).
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Thus the resultant is a realized limit cycle.
Letx=(0,0,0,1) € P.

To find the effect of x on B.

xB=(0,0,2+L0)=y;; yiB=01+2L0,2+1)=yy;
v.B=(0,0,2+10)=ys3;
ysB=(01+2L0,2+ )=y, (=y)).

Thus the resultant of (0, 0, 0, 1) is a realized limit cycle.

Characterizing all classical fixed points of B, realized fixed
points of B and realized limit cycle of B happens to be a

difficult problem.
2 0 O
Example 4.8: LetA=|0 1 O
0 0 1+I

be the MOD-neutrosophic diagonal matrix of A with entries from

Letx=(1,0,0)e P={(x1, X2, X3) IX;€ (Z3 U D), 1 <1< 3}
To effect of x on A is;

xA=2L0,0)=y;; yiA=(L0,0) =y
y2A =21, 0,0) = y3 (= y)).

Thus the resultant is a realized limit cycle.
Let x=(0, 1, 0) € P. The effect of x ona A is;
xA=(0,1,0)=yi; yiA=(0,10) =y, (= y).

The resultant is a realized limit cycle of A.
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Letx=(1,0,1) e P.
The effect of x on A is;

xA=(2L0,2D) =y yiA=({L0,1) =y
y2A =(2L 0, 2D) = y; (=y1).

Thus the resultant is a realized limit cycle of A.

1 1+21]
0 31 0 0 1+3I
0 0 I1+I 0 0
I 0 0 21 O
|1+21 1+31 0 O 1

()
(e)
i

Example 4.9: LetS =

be a MOD-neutrosophic matrix with entries from (Z, U I).

Letx = (17 Oa Oa Oa 0) e P= {(Xh X2, X3, X4, XS) IXiE
(Z,UT: 1<i<5)

To find the effect of x on S.

xS=(1,0,0,1, 1+2D) =y,
yiS=(2+I 1+3L0, 31,2) =yx

v>S = (0,2 +2L 0,1, 3 +21) = y3;

y3S = (2 + 3L, 3+ 3L, 0, 21, 3 + 2I) = ya;
v.S=(1+L3+3L0,L0)=ys;

ysS = (1 + 21, 21, 0, 0, 21) = ye;

v6S = (1,21, 0,3L 1 +2) = y,.

However after a finite number of iterations we will arrive at
a realized fixed point or a realized limit cycle.

The main observation from this study is the following
theorem.
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THEOREM 4.1: Let M be any n x n neutrosophic matrix with
entries from (Z,, U1)

i) Pr={(ay, ay ..., a,)/ a; € Z,] = {al / a € Z,};
1 <i <nj} be the pure neutrosophic state vectors. If x €
P, then the resultant is always in P;.

iit) P ={(a; ay ..., a,)/ a; € Z,; 1 <i <n} be the
collection of real state vectors. If x € P the resultant in
general need not be in Pg.

The proof follows from simple arguments.

Next we proceed onto study the MOD complex modulo
integer matrix.

This we will represent by some examples.

2+i, 0 i
Example 4.10: LetS=| 0 I+i, 1
2 1+2i;. O

be the MOD

complex modulo integer matrix with entries from C(Z3).

Let P={(a;, a5, a3) la;=a + bire C(Z3);a,b e Zs; ié =2}
be the state vectors.

Letx=(1,2,0) e P.
To find the effect of x on S;
XS=(2+iF,2+2iF,2+iF)=yl;

2+ig 0 ip
yiS=@2+ip 2+ 2ig 2+ip) | 0 I+i, 1
2 1+2i; 0
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=(L,0,1+ip) =y,

y25=(1,0,1+1p) = y3 (= y2).
Thus the resultant is a realized fixed point.
Letx=(1,0,ig) € P.
To find the effect of x on S.
xS=2 1+if ip =yi; viS={0+ig 1, 1) =y
y2S =(0, 2, ip) = y3; y3S = (2if, 0, 2) = y4;
yaS =2 +ip 2 +1ip, 1) =ys;
ysS = (ip+ 2, 2 + 2ip, 1) = ys.

We will however arrive at a realized fixed point or a
realized limit cycle after finite number of iterations.

Let x = (ig, 2ip, 0) € P.
To find the effect of x on S.
xS =(1, 1 +2ig, 2 + 2ip) = yy; viS =i, 2, 1) =y,

2+i, 0 i
0 I+i, 1
2 142 O

y2S = (2ig, 2, 1) = (ip, ip, 0) = y3;

YSS =QRip+2,ig+ 2, ig+2) = Va;
y4S = (07 17 0) =Ys;

YSS = (O, 1 + i]:, 1) = Y6,

Y6S = (2, 1+ i]:, 1+ lF) =Yy7

}77S = (i]:, 2+ 2ip, 1) =Ys,

Ygs = (2i]:+ 1,1, 1+ 21]:) = Yo,

voS = (2, 1 + 2iF, 2 + i) = Y10;

yl()S = (2 + iF, 2+ 211:, 1+ IF) =VYii.
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Certainly after a finite number of iterations we will arrive at
a realized limit cycle or a realized fixed point.

So even in case of symmetric complex MOD operators we
don’t see any symmetry or symmetric behavior of the state
vector.

Further as in case of pure neutrosophic state vectors whose
resultant is also pure neutrosophic we see in case of only
complex state vectors that is (aip, big, cip) the resultant in
general is a mixed one.

This is the marked difference between the MOD
neutrosophic matrix operators and MOD complex matrix
operators.

In view of all these observations on MOD complex matrix
operators we give the following theorem.

THEOREM 4.2: Let S = (a;;) be a MOD complex modulo integer
p X p matrix MOD operator with entries from C(Z,);

ip =(n=1)

If x = (ajip, ..., ayip); a; € Z,; 1 <i <p be any initial only
complex number state vector. The resultant of x on S in general
is not a only complex number state vector.

Proof follows from several illustrated examples.

It is left as a open conjecture to characterize both the
matrices S as well as x so that

i) the resultant is pure complex number.

11) Characterize those state vectors whose resultant is
real.

ii1) Characterize those state vector so that the resultant is a
mixed one.

However this will impose conditions also on S.
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We finalize MOD complex modulo integer matrix operators
with these examples.

Example 4.11: LetS=|2i, 0 3i, 0 4i.| bethe

MOD complex modulo integer matrix operator with entries from

We call S of this from as pure complex MOD matrix
operators.

We study the effect of x =(1,2,3,0,4)on S.

0 i 2, 0 i ]
i, 4, 0 i O
xS=(1,2,3,0,4) |2, 0 3i, 0 4i
0 i, 0 i 0

2. 0 i, 3ip i,

= (iFa 4iF7 07 2iF’ 21F) = Yb

yiS=(2,3,1,3,2) =yy

¥2S = (4ig, 2ig, 4ig, 2if, 3ip) = y3;
yiS=(4,1,2,2,2)=ys;

y3S = (4ip, 0, i, 4if, 4iF) = y4;
yaS=1(0,2,0,4,3) =ys;

ysS = (3ip, 2if, 3ig, 0, 3ip) = ¥s;
yeS=(1,4,1,4,2) =yy;
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Y7S = (31F, iF, iF, 4iF, 211:) =Ys,
ysS=(3,4,4,4, 1) =yo;
yoS = (3ig, 3ig, 4iF, i, 0) = yjpand so on.

However the resultant will be only a realized limit cycle as
we see if the first iteration is a pure complex number when the
state vector is a real number and the real and complex occur
alternatively so the resultant can only be a realized limit cycle.

Consider x = (ig, 3ip, i, 2ip, 0) be a initial state vector which
is pure complex.

To find the effect of x on S.
XS = (09 0’ 0’ 0’ O) = YI, YIS = (09 Ov Ov Ov O) = y2'

Thus the resultant is realized fixed point yielding
0,0,0,0,0).

Next we find the resultant of x = (ig, 0, i, 0, ip) on the
complex MOD-matrix operator S.

XS = (2, 1, 1, 2, 2) =V Y1S = (21]:, 3iF7 4iF7 31F) =Yy
y2S=(3,2,1,4,4)=y, and so on.

For this pure complex modulo integer state vector we see
the first iteration is real the second iteration is complex,
complex and real occur alternatively so the final resultant is
only a realized limit cycle.

Finally we see if x is a mixed complex number then
certainly the resultant can be complex.

However there is little chance to be pure complex or pure
real but depending on the MOD complex number matrix
operator.
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Example 4.12: LetM = be the MOD complex

S = O N

1
0
3
0

N O W=
w o = O

number matrix operator with entries from C(Z,).

To find the effect of x = (1, 2, 1, 3) € P = {(Xy, X2, X3, X4) | X;
€ C(Zy) ={a+bip/a,be Z; ii =3}1<i<4}onM.

xM=(1,3,3,0)=y; yM=(2,1,3,2) =y
yM=(1,3,3,3)=ys; ysM=(0,1,0,2) =ys
yaM=(3,0,3,0) =ys; ysM=(3,1,0,0) =ys;
yeM =(2,2,1,3) =y yM=(2,1,3,1)=yg;
ysM =(3,3,0,3)=ys; yoM = (2, 2, 3, 3) = yi0;
yioM=(2,3,0,3) =y1; yuM=(3,0,0,2) =y

yi2M = (3, 2, 2, 3) = y;3 and so on.

Thus the resultant will be realized fixed point which will
only be a real or it may be a realized limit cycle but it will also
be real.

Letx = (211:, iF, 0, 311:) e P.

To find the effect of x on M.

XM = (3ig, 0, 2ig, 2ip) = y1; yiM = 3ig, 0, 2ig, ip) = y2;

yoM = (ig, 0, 3ig, i) and so on.

Thus if the initial state vector is pure complex the resultant
will be a realized fixed point which is pure complex or a

realized limit cycle which will be only pure complex.

Next we study the dual number MOD-matrix operator with
entries from (Z, U g) = {a+ bg | a; € Z,, g =0}.

We will illustrate this situation by some examples.
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[2+g g 0o 0 2
0 0 I+g ¢ 0
Example 4.13: LetS=| 1+g 3 0 0 3g
0 0 2+3g 1 0
|12+3g 1+2g 0 0 1+2g]

be the dual number MOD-matrix operator with entries from
(Zyu g ={a+bglabe Z, g =0}.

Letx =(g,2¢g,0,3g,g) e P={(a), &, a3, a4, as) l a; €
(Zyug), 1<i<5).

To find the effect of x on S.

xS=(0,g,0,3g32) =y;

yi1S = (3g, 3g, 3g,3g, 3g) = y»;
y2S=(3g 0,2 3g¢2) =y3

y3S =(g, 0, 2g, 3g, 32) = y4

vaS = (3g, g, 2g, 3g, g) = ys and so on.

However it can be easily verified that the resultant of x will
be realized fixed point or realized limit cycle which will only be
a pure dual number.

We call x a pure dual number if x = (a,g, a,g, ..., asg) where
a; € Z4.

Thus the resultants of all pure dual number will only be
pure dual number if the MOD dual number matrix operator has
its entries from (Z, U g).
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g 2 3g 0 4g Sg]
0 g 2¢ 42 0 ¢
2¢ 0 0 22 g O
0 3¢ 42 0 0 5g
g 0 2¢ 4g 5g¢ O
13g ¢ 0 g 0 2g]

Example 4.14: Let M =

be the MOD-dual number matrix operator with entries from
(Zsw gy={a+bgla,be Zg g,=0}.

P={(a, ay, ..., ag) l a € (Zs U g); 1 < i < 6} be the
collection of all dual number state vectors.

Letx=(1,2,3,0,1,0) e P.
To find the effect of x on M.

xM = (2g, 4g,3g,0,02g) =yy;
Y1M =(0,0,0,0,0,0) = ya.

Thus after one iteration a pure real state vector is zero.

Infactletx=(1+g,2g+3,2+g,0,3+2g,1+2g)e Pbe
the initial state vector.

To find the effect of x on M.

xM = (3g, 3g, 3g, 5g, 3g,42) =yi;
yiM=(0,0,0,0,0, 0).

Thus the resultant is a realized fixed point.
Ifx=(a, g ag, ..., ag) € P be a pure dual number.

The effect of x on M is (0, 0, 0, 0, 0, 0) is a realized fixed
point.
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Let us give another example of the MOD-dual number
matrix operator by an example.

Example 4.15: Let A =

N O NN O W
W O = O N
- W o ~ O
- O NN W O
S N = O =

be the MOD-dual number matrix operator with entries from
(Zsuly={a+bglabe Zs, g =0).

Let x = (19 27 37 17 O) € P= {(ab A, a3, A4, aS) | a €
(Zs U g), 1 <1< 5} be the initial state vector.

To find the effect of x on A,

xXA=(4,0,1,2,)=y;;  yiA=(1,2,2,3,4) =y,
2A=G,1,1,4,4) =y5;  y;A=(4,4,0,4,2) =y,
yaA=(1,4,0,4,2)=ys;  ysA=(0,2,0,4,4) =ye
YeA=(3,2,4,0,3)=y;;  yA=(3,4,1,2,2)=ys

ysA=(0,3,4,1,3) =y,
and so on.

If we start with a real state vector the resultant is again a
real vector.

However if x = (g, 2g, 3g, 0, 4g) be a state vector to find the
effect of x on A.

XA =(2g,2g,2g,0,4g) =y;

YiA =(3g, 3g, 2g,4g, 4g) = ya;

y2A =(g, 0,3g, 2¢g, 3g) =y3;

y3A = (0, 4g, 4g, 42, 3g) = y4;

v4A = (4g, 3g, g,3g,2g) =ys and so on.
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After a finite number of iterations we arrive at a realized
fixed point or a realized limit cycle which is a pure dual
number.

Thus by this MOD-matrix real operator real state vectors’
resultant is real, similarly pure dual number state vector
resultant is a pure dual number.

Now we work with the mixed dual number initial state
vectorx=(2+g,1+2¢g,g,4,3g+3)e P.

32001
00430
XA=(2+g 1+22, 2 4,3+32) (2 1 0 2 1
0030 2
231 1 0]

=2+g3+2g,4+g 1+g29)=y;;

ViA=@+4g,3+4g,3g,2,3+4g) =y
V2A=(B+g 2+3g,1,2+2g,3+2g)=y;;

v A=(2,1+3g,2,1+g,3)=y4
yaA=(1,0,1,4g,2g+ 1) =ys;

ysA=@g+ 1,1 +g,4g+1,2g+3,2+3g) =yg
Ve A=(4+g 4+g 3g,2+4g, 2g+3) =y
y;A=3+3g,2+g,32,42,3+¢g)=Yys.

Thus the resultant is realized limit cycle or a realized fixed
point which is a mixed dual number.

We first give some related results of the MOD-dual number
operators.
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THEOREM 4.3: Let S = {n X n matrix with entries from Z,}
where P = {(a;, ay, ..., a)l a; € Z, U g)={a+bgla beZ,
g = 0}; 1 <i <nj be the initial state vector.

i) Ifx=(ay ..., a,); a € Z, 1 <i <n be the real state
vector then the resultant of x on S is only real.

ii) Ifx=(a;g, axg, ..., a,g) a; € Z,,; 1 <i <n be the
pure dual number state vector. Resultant of x on S
is only a pure dual number vector.

iii) If x=(ay, az, ..., a,); bi+cig=a;, € (Z, Ug)be a
mixed dual number;

The resultant of x on S can be a pure real state vector or a
pure dual state vector or mixed dual number state vector.

Proof is direct and hence left as an exercise to the reader.

THEOREM 4.4: Let M = (a;) a p X p matrix with entries from
Z, g2 = 0.

i) Ifx=(a; ay ..., ay); a;e Z,8 be the pure dual number
state vector, then the resultant of x on M is realized
fixed point always a zero vector (0, 0, ..., 0) after the
first iteration.

ii) If x = (ay, ..., ay), a; € Z,; 1 <i <p be the real state
vector the resultant is always a realized fixed point after
two iterations given by (0, 0, 0, ..., 0).

iii) If x = (x5, X5, ..., x,); x; € (Z, U gl 1 <i <p be the
initial state vector the resultant is a realized fixed point
or a realized limit cycle.

Proof is direct and hence left as an exercise to the reader.

Next we study using MOD special dual like number matrix
operators by examples.
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3+h h 2 2h+1
0 1+3h O h
Example 4.16: Let M =
h+1 2h 2h 0
2 143h O 1

be the MOD special dual like matrix operator with entries from
(Znohy={a+bhla, be Z, h*>=h}.

Let x = (h, 0, 2h, 3h) be the state vector whose entries are
pure special dual like numbers.

To find the effect of x on M.
XM = (2h, h, 2h, 0) = y; yiM = (0, 2h, 0, 3h) = y»;
y2M = (2h, 0,0, 3h) = y3; yaM = (2h, 2h, 0, h) = y,;
ysM = (2h, 2h, 0, h) = ys (= y,).
Thus the resultant of x is a realized fixed point of M.
Let x =(1, 2, 3, 0) € P be the initial state vector.
To find the effect of x on M.
xM=3,2+h,2+2h, 1)=yy;
Y1M = (1 + h7 37 27 h) = y2;
yvM=(1+h,3+3h,2+2h,1+h)=y;;
ysM = (3 +h, 2h, 2 + 2h, 2) = y,.

We would after a finite number of iterations will arrive at a
realized fixed point or a realized limit cycle.

Consider x = (1 + h, 2h + 1, 0, 0) a state vector.
To find the effect of x on M.

xM=@B+h, 1+h,2+2h )=y
yiM=(1+h,2,2+2h,3+3h)=y..
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We will arrive after a finite number of iterations the realized
fixed point or a realized limit cycle.

h 0 2h 3h O]
O 4h O 2h h

Example 4.17: 1etS=|2h 0 4h 0 2h
0 5h 0 4h O

[3h 'h 2h O 2h]

be the MOD special dual like number matrix operator with
entries from (Zg U h) = {a + bh, ab € Zg, h* =h}.

Letx =(2, 1, 3, 4, 0) be a state vector in
P = {(a, ay, a3, a4, as) l a; € (Zg U h); 1 <i <5},

To find the effect of x on S.

xS =(2h, 0, 4h, 0, h) = y;;

yiS = (h, h, 4h, 0, 4h) = y,;
y2S = (3h, 2h, 2h, 5h, 3h) =y3;
y3S = (4h, 0, 2h, 3h, 4h) =y,;
y4S =(2h, h, 0,0,0) =ys;

ysS = (2h, 4h, 4h, 2h, h) = yg;
y6S = (h, 3h, 4h, h, 2h) = y;;
y7S = (3h, h, 4h, 3h, 3h) = yg;
ysS = (2h, 4h, 4h, 5h, 3h) = y,.

Thus the resultant will be a realized limit cycle or a realized
fixed point but it will be a pure special dual like number vector.

So even all real state vectors has the resultant to be only a
pure special dual like number vector.

Let x = (h, 2h, 3h, 0, 0) be the initial state vector.
To find the effect of x on M.

xS = (h, 2h, 2h, h, 2h) = y;;
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y1S = (5h, 3h, 2h, 5h, 2h) = y»;
y2S = (3h, 3h, 2h, Sh, 5h) = y3;

y3S = (4h, 0, 0, 5h, 5h) =y,;

ysS = (h, 0, 0, 2h, 4h) = y5;

ysS = (h, 2h, 4h, 5h, 2h) = y;

y(,S = (3h, 5h, 4h, h, h) =Yy and so on.

Thus the pure special dual like number state vector.
Letx=(1+h,2+3h, 1+ 3h, 4 +h, 0) be the state vector.
To find the effect of x on S is given by the following way;

xS = (4h, 3h, 2h, 0, h) =y;;
y1S = (5h, h, 0, 0, 3h) = y,;
y2S = (2h, h, 4h, 5h, h) = y3;
y3S = (h, 0, 4h, 4h, 0) = y,.

However we see after a finite number of iterations we will
get the resultant which is only a pure special dual like number
vector what ever be the state vector be real or pure special dual
like number or a mixed one all of them have the resultant to be
only a pure special dual like number.

In view of this we have the following theorem.

THEOREM 4.5: Let A = (a;),, where a; € Z,h, i’ = h be the
MoOD-special dual like number matrix operator.

i) All real state vectors x € {(a,, a, ..., a,)/ a; € Z,;
1 <i <p} yields the resultant to be always a pure
special dual like number vector.

ii) All state vectors x = {(x}, X2, ..., x,) / a; € Z,h;

1 <i <p} yields the resultant to be always a pure
special dual like number state vector.

iii) All initial state vectors mixed numbers also yield
the resultant to be only a pure special dual like
number vector.
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Proof is direct and hence left as an exercise to the reader.

Now we give examples of real MOD matrix operator on
special dual like number vectors.

Example 4.18: Let M =

S DO = W
—_ O = O N
S W o v O
~ O B~ O =
[ S R U

be the MOD special dual like number matrix operator with
entries from (Zs W h)={a+bhla,be Zs, h’= h}.

P= {(Xl, X2y vuny XS)/XiE <Z5 U g), 1 SISS}
To find the effect of x € P on M.
Letx=(3,1,2,0,4) e P.

To find the effect of x on M.

M= (0,2,2,2,0)=y;; yM=(0,2,0,3,0)=y,;
yM=(@3,0,3,0,2)=y;; ysM=(4,1,4,3,2)=y, ;
yiM=(4,4,1,3,0)=ys; yM=(2,4,2,3,4)=ys;
yeM=(1,2,2,1,1)=y; and so.

Certainly the resultant is also only a real state vector.
Let x = (h, 2h, 0, h, 0) be the state vector.
To find the effect of x on M.
xM = (2h, 2h, 2h, h, 2h) =y;

yiM = (4h, 3h, 2h, 3h, h) = y,;
sz = (ha ha Oa h7 h) = Y3,
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ysM = (h, 3h, 0,0, 4h) =y, ;
ysM = (h, 0, h, 2h, 3h) = ys and so on.

We see certainly the resultant is only a pure special dual
like number.

Letx=(1+h,2h+1,2h+ 3,0, h + 1) be the state vector.
The resultant of x on M is as follows.

xM=(4,1,4h+2,2+3h,2)=yy;
yiM=(2+h,2+4h,3+4h,2h,3+h);
y.M =3 +h,2h,4+4h,1+h,4) and so on.

The resultant is a state vector from P.

Thus in view of all these the following results can be
proved.

THEOREM 4.6: Let M = (myj),., matrix whose entries are from
Zw & (Zw Uh)={a + bh/a, b e Z, h’ = h} the MOD special
dual like number operator and P = {(a;, ay, .., a,) / a; € (Z,, U
h); 1 <i <nj} be the collection of special dual like number state
vectors.

i) Every x = (xj, ..., x,) (Where x; € Z,, the real state
vector has its resultant on M to be only a real state
vector.

iit) Everyx = (yy, Va2 ..., Vo) (Vi € Z,h) the pure special
dual like number state vector has its resultant on M
to be only a pure special dual like number state
vector.

iii) If x = (a;, ay, ..., a,) a; € (Z, Uj); 1 <i <nthen the
resultant of x on M can be in P.

Next we give a few more illustration of MOD special dual
like number matrix operators M.
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3+h 0 0 0
0 4+2h 0 0
0 0 6h+1 O
0 0 0 7h

Example 4.19: Let M =

be the MOD special dual like number matrix operator with
entries from (Zgwh)={a+bh/a,be Zg, h*= h}.

Let x =(3, 1, 2, 0) be a state vector.
To find the effect of x on M.

xM =(1+3h,4+2h,2+4h,0)=y;;

yiM = (5h+3,4h,2,0) =y,

yZS = (Sh + 3a Oa 27 0) = Y3,

y3S= (5h+3,0,2,0) =y

y:M = (7Th + 1,0, 4h+2, 0) = y5s (= y3).
Thus the resultant of x is a realized limit cycle.
Let x = (3, 2, 4, 1) be the initial state vector.
To find the effect of x on M.

xM = (1 + 3h, 4h, 4, 7h) = y;

yiM = (3+5h, 0,4, h) = y»;

yoM = (1+7h, 0, 4, 7h) = y3;

ysM = (3+5h, 0,4, h) =y, (=y).
Thus this resultant is also a realized limit cycle.
Let x = (h, 2h, 4h, 5h) be the initial state vector.
To find the effect of x on M.

XM = (4h, 4h, 4h, 3h) = yy;

Y1M = (07 07 4h7 5h) = y2;
y2S = (0,0 4h, 3h) =y;;
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ysS = (0,0, 4h, 5h) = Y4 =Yo.

Thus this resultant is also a realized limit cycle which is
only a pure special dual like number state vector.

So even if the MOD-special dual like number operator
matrix is a diagonal matrix we see if x the initial state vector is a
pure special dual like number then so is the resultant.

0 0 6 2h+1

0 0 1+h 6h
2+3h 4h O 0
3h+1 5 0 0

Example 4.20: Let M =

be the MOD special dual like number matrix operator with
entries from (Zg W h)={a+bhla,be Z,, h’= h}.

Let x = (1, 2, 3, 4) be the initial state vector.
To find the effect of x on M.
xM=@3,6+5h,1+h, 1)=yy;
viM = (4h+3, 5h + 5, 3 + 2h, 3) = yy;
yoM = (2, 1 + 6h, 4h + 3, 2h+2) =y3;
y3S = (1+h, 3h +3, 6 + 6h, 4h+2) =y, and so on.

Thus after a finite number of iterations we will arrive at a
realized fixed point or a realized limit cycle.

However if x is a real number vector with entries in Z; still
the resultant can be a mixed row vector.

Consider x = (h, 2h, h, 0) be the state vector which is a pure
special dual like number state row vector.

To find the effect of x on M.
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XM = (5h, 3h, 3h, h) = y;;

yiM = (5h, 3h, 3h, h) =y, is a realized fixed point which is
a pure special dual like number state row vector.

Low x = (1 +h, 2+ 2h, 0, 3h + 1) be the initial state vector.
To find the effect of x on M.
xM=(h+1,h+5,1+5h,h+1)=y, and so on.

After a finite number of iterations one may get a realized
limit cycle or a realized fixed point.

Next we study by illustrative examples the MOD-special
quasi dual number matrix operator with entries from
(Zouky={a+bkla,be Z,; kK*=(n- 1)k}

3+k k O
Example 4.21: 1etP=| 2k 0 1+2k
I+k 1 4k

be the MOD-special quasi dual number matrix operator with
entries from (Zs U k) ={a+bkla,b e Zs, K= 4k}.

Let x = (1, 0, 2) be the initial state vector.
To find the effect of x on P.

xP= 3k, k+2,3k)=y;;

yiP= (3k 4k, 2) =y,;

voP = (2, 2+2k, 4k) = y; and so on.

Thus the resultant of pure real row vector can be a mixed
special quasi dual number state vector.

Consider x = (k, 2k, k) be the initial state vector.
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To find the effect of x on P.

XP = (4k7 07 k) = YI; YIP = (09 2k7 k) = y2 5
voP = (k, k, 4k) = y; and so on.

Thus the resultant of a pure special quasi dual number
vector is always a pure special quasi dual number vector only.

3k 0 0 k
0 2k k O
Example 4.22: LetS =
0 0 3k
0 k 2k O

be the special quasi dual number MOD-matrix operator with
entries from(Z, U k)={a+bkla,be Z,, K= 3k}.

Let x =(1, 0, 2, 1) be the pure real state vector.
Effect of x on S is as follows.

xS = (k, k, 2k, 3k) = y;; viS =03k, 3k, k, k) =y, ;
voS = (2k, k, 3k, 2k) = y; and so on.

It is clear that after a finite number of iterations we will
arrive at a realized limit cycle or a realized fixed point but the
resultant will always be a pure special quasi dual number row
vector.

Let x = (3 + k, k + 2, 2k, 3k + 1) be the initial state vector.
Certainly the resultant of this state vector will also be only a

pure special quasi dual number row vector.

In view of this we prove the following theorem.
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THEOREM 4.7: Let S = (m;j),x, Special quasi dual number MOD
matrix operator with entries from Z,k = {ak / k> = (m - 1) k; a
€ Z,).

P={a, a, ..., a,)/a € Z, Jk)={a+bk/a beZ,
K= (m— 1) k}; 1 <i <n} be the collection of all state vectors.
For every x € P the resultant on S is always a pure special
quasi dual number row vector in P; = {(b,, by, ..., b,)| b, € Z,k;
1 <i<n} CP.

Proof is direct and hence left as an exercise to the reader.

Example 4.23: LetM = be the MOD-special

S = O W =
- O A~ O N
S N O = W
—_ O W O
S W O NN O

quasi dual number matrix operator.

P={(a;, a5, a3, a4, a5) la; € (Zgu k)y={a+bkla,be Z,
k? = 5k}; 1 <1< 5} be the collection of all state vector.

Letx =(1, 0, 2, 0, 3) be the initial state vector.
To find the effect of x on M.
17 17 3,5,O)=Y1; Y1M= (59 27 27 17 3)=y2;
yM=(4,3,1,3,3)=y3; ysM=(2,3,3,0,3)=ya;
5,1,3,2
We see if x is a real row vector so is the resultant.

Next we find the resultant of a pure special quasi dual
number row vector.
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x = (k, 0, 2k, 0, 3k) be the initial row vector effect of x on
M.

xM = (k, 3k, 3k, 5k, 0) and so on.

It can be easily verified that the resultant of a pure special
quasi dual number row vector is always a pure special quasi
dual number row vector though the MOD matrix operator used is
real.

Next we consider the effect of x = (0, 1 + k, 0, 3k + 2, 0) on
M, the special quasi dual number row vector.

xM=02k+2,0,5+k,0, 5+ 5k) and so on.

Thus we see we will arrive at a resultant, after a finite
number of iterations.

However the resultant of x on M may be a realized fixed
point or a realized limit cycle.

In view of this we have the following theorem.

THEOREM 4.8: Let M = (mjj),e matrix with my; € Z, < (Z, Uk)
={a+bk/a beZ, k= (n-1)k} be the pure real MOD
matrix operator of the special quasi dual numbers.

P={(a,ay .., a,)/a € Z, k) I <i<mj

i) Forevery x a real state vector of P the resultant of
x on M always a real state vector.

For every pure special quasi dual number state row vector
the resultant on M is always a pure special quasi dual number

state vector.

Proof is direct and hence left as an exercise to the reader.
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Now we proceed onto propose problems based on our study

in this chapter. Some of the problems can be treated as open
conjecture and some are simple.

Problems

1.

What are the special and distinct features enjoyed by MOD -
neutrosophic matrix operators?

3+1  4+21 7441 31

2I+5 31+5I1 0 21
LetM= be the MOD -
TI+31 4+61 71 0

12+51 0 31 1+1

neutrosophic matrix operator with entries from
<Z13 U I> :{a+ bI/ a, b S Z13, 12 = I}

i) Enumerate all special features enjoyed by M.

ii) Characterize all classical fixed points of M.

iii) Characterize all the realized fixed points of M.

iv) Characterize all realized limit cycles of M.

v) If x and y are state vectors x # y will the sum of the
resultant of x y the same as resultant of x +y.

vi) Characterize all those state vectors which satisfy (v).

31 21 O 41 51 6l
0 8 41 0 3I I
71 0 31 41 0 41
Let S = be the MOD

2. T 0 0 I O
6 0 I 21 0 3I

0 2 0 O 31 O

neutrosophic matrix operator with entries from (Z,y U I) =
{a+blla,be Z,, P=1}.
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P ={(a;, ay, a3, a4, a5, ag) l a; € (Zjp U I); 1 <i< 6} be the
collection of all state vectors.

i) Study questions (i) to (vi) of problem 2 using the
operator S.

ii) Can we say resultant of every x in P on S is only a pure
neutrosophic row vector?

LetM = be a MOD neutrosophic

N O = O N O W
S LB O = O NN
— O N O O N
S B~ O N O = O
N O O v O =
S W O AN O N W
0 O W O N = W

matrix operator with entries from Z,;; c (Z;; U I) = {a + bl |
a,be Z,,, P=1J.

P={(a, a, ..., a7) l 3 € (Z;; ) 1 <i<7} be the
collection of all state row vectors.

i) Study questions (i) to (vi) of problem (2) for this M.

ii) If x is a real number state vector prove the resultant of x
is also a real number state vector.

iii) Prove all pure neutrosophic row state vectors have their
resultant to be pure neutrosophic resultant to be pure
neutrosophic.
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5. LetP=

[3+2I
0

S O O O O

0
21+7
0

oS O o O

0
0
41 +1

0
0
0
0

TI+2
0
0
0

S O O O O o O

o f o c o oo

be

S O O ©oO o O

the MOD neutrosophic diagonal matrix operator with entries
from (Zy U I).

i) Study questions (i) to (vi) of problem (2) using this
operator P.

11) Find conditions on the state row vectors such that their
resultant is a zero row vector.

6. LetT=

[3g+2
0
4g
0

12+7g

0
S5g+2
0
Tg+7
0

4g+1
0
4
0
5+6g

0
Tg+1
0
5g+6
0

2g
0

5+2g
0

9+2g

be the

MOD-dual number matrix operator with entries from
(Zpug)={a+bgla,be Z, g =0}.

1)  Study questions (i) to (vi) of problem 2 using this T.

11) Find all row vectors which will have their resultant to
be the zero vector.
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g 2g 3g 0 4g 5g]
0 g 2¢g 3g 0 A4g
LetS = ¢ Jg 2g g 4g 0 be the MOD dual
2¢ 0 4g 0 5g g
3g 4¢ 0 5¢ 0 O
10 0 g 0 2 6g]

number matrix operator with entries from
(Zsug)={(a+bglabe Z, g*=0}.

i) Prove all pure dual number row initial state vectors
resultant are zero vectors after first iteration.

11) Prove all real row initial state vectors have the resultant
on S to be a zero row vector after two iterations.

iii) Obtain all special features associated with this S.

2¢+4 0 0 0 0 0
0 6g+38 0 0 0 0
0 0 2+6¢g 0 0 0
LetM= be
0 0 0 4g+6 0 0
0 0 0 0 8g+4 0
| 0 0 0 0 0 0]

the MOD dual number diagonal matrix operator with entries.
1) Study questions (i) to (vi) of problem 2 for this M.

ii) Find all state vectors x which gives the resultant as a
realized fixed point which is the zero row vector.
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9.

10.

11.

Let

2¢g 0 0 0
3g 1+2g 0 0
4g 3+2g 1+2g 0
S=|5g 4g 342g 1+2¢g
6g g g+l 3+2g 1+2g
6 2g 3g 4g  342g 1+2g
| 4g g 2g g+1 4g  3+2g 1+2g]|

0 0 0
0 0 0
0 0 0
0 0 0
0 0
0

be the MOD dual number matrix operator with entries from
(Ziyug)={a+bg/abe Zj g =0)}.

i) State all the special features enjoyed by S.
ii) Study questions (i) to (vi) of problem (2) for this S.

Can these dual number MOD matrix operator find any
special type of applications to real world problems?

3+h h 0 4h+2

h+1 0 4+2h 0
Let W= be the MOD-
0 3h+1 0 2h

4h 0 2+3h 0

special dual like number matrix operator.

i) Obtain all the special features associated with W.

ii) Study questions (i) to (vi) of problem (2) for this W.

ii1) Characterize all those row vectors which result in a zero
row vector as a realized fixed point.

iv) Characterize all classical fixed points of W.

v) Find the maximum number iterations that is needed to
make one to arrive at a realized limit cycle or a fixed
point.
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3h 0 0 0 0 0 0
0 4h+1 0 O 0 0 0
0 0 8 0 0 0 0
12.LetM=|{0 0 0 4h+1 0 0 0
0 0 0 0 3h+2 0 0
0o 0 0 0 0 4h+7 0
0 0 0 O 0 0 hj

be the MOD-special dual like number matrix operator with
entries from (Z;pUh)={a+bh/a, be Z;, h®=h}.

i) Study questions (i) to (vi) of problem (2) for this m.
ii) Enumerate all special features enjoyed by the MOD
special dual like number diagonal matrices.

13. Let

9+4h 0 0 O 0 0 0 0]

243 0 0 O 0 0 00

0 0 4h O 0 0 00

B 0 0 7h+1 O 0 0 00

0 0 O O 10n 0 00

0 0O O O 4+5h 0 0 O

0 0O 0 O 0 h+2 0 0

| 0 0O 0 O 0 6h 0 0]

be the MOD special dual like number matrix operator
with entries from

(Z,yuh)y={a+bh/a,be Z;, h>=h}.
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14.

15.

i) Study questions (i) to (vi) of problem (2) for this B.
ii) What are special features associated with this operator?

Show if
3+1 2 4+1
X=| 0 3I+2 0
41 0 2+31
and

0 3+1 41
Y=| 2 0 31+2
2I1+4 21 0

be any two MOD neutrosophic matrix operator with entries
from
(ZsuD={a+bl/a,be Zs, P=1}.

Let x = (31 + 2, 41, 2 + I) be the initial state vector.

1) Find xX and xY
i) Findx(X+Y)
i) Will xX + xY =x(X + Y)?
iv) Find all those state vector
xe P= {(al, ds, 33)/316 <Z§UI>, 1 S1S3}
which satisfy (iv).

Let
3+4h 0 2+5h 0

0 2h+4 0 6h+2
6h +5 0 5+2h 0
0 6h 0 4
and
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3 h+4 h 0
N = 0 2h 0 3h+2

1 0 4h+1 0

0 4h 0 5h+3

be two MOD special dual like number matrix operator will
entries from (Z; U h).

Study questions (i) to (v) of problem 14 for this M and N
with appropriate changes.

16. Let
4g+2 0 g 0
| 0 8g+5 0 4g
Cl2g+4 0 Tg+2 0
0 4¢4+8 g+7 2g+9
and

2g  4g+2 0 Tg+1
S5g+4 0 9+¢g 0

0 9g +3 0 4g+3

9¢g 0 2g+1 0

be any two MOD dual number matrix operators.

Study questions (i) to (v) of problem 14 for this S and T
with appropriate changes.

17. Let
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3420, 4, 2 0
0 243, 0 i
T 1+, 0 3+2, 0
0 4 0 3+4i,
and
0 0 3+2i, 4i,
vl © 0 2, 4+i,
i+i,  2i, 0 0
443, 2+4i; 0 0

be two MOD complex modulo integer matrix operators.

Study questions (i) to (v) of problem (14) for this V and W
with appropriate changes.

18. Let
3 0 445, 2 0
0 2+ip, 0 0 5+i,
A=|4+i, 0 2y Ty 0
0 3+4i, 0 0 3+i,
5+2i, 0 647, 6 0 |
and
3+4i, 0 0 0
a_| O 0 0 4+2i
S0 947, 0 0
0 0 0  8+6i,

be any two MOD complex modulo integer matrix operators.
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20.

21.
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Study questions (i) to (v) of problem (14) for this A and B
with appropriate changes.

Let A = (a;) and B = (b;j) be any two n X n real MOD
matrices operators with entries from Z,,.

Study questions (i) to (v) of problem (14) for this A and B
with appropriate changes.

Let
[5k+2 0]
A=
| 3k+3 6k |
and
[7k 0 ]
B=
| 0 4k+1]

be any two special quasi dual number MOD matrix
operators.

Study questions (i) to (v) of problem (14) for this A and B
with appropriate changes.

Let
41 21 0 T+1

0 31+1 41 0
6I+3 0 I+2 4431
0 2I+1 O 41

be the MOD neutrosophic matrix operator with entries from

Let
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B={| *|laje (ZyuD={a+bl/abe Zo, " =1};

1<i<4).

i) Find all y € B for which Xy gives classified points.

ii) Find all y € B which gives the resultant as realized
fixed points

iii) Find all y € B which gives the resultant as realized limit

cycle.
iv) Let
3 4
i = 2+1 and y, = 0
I 3+2
71 0

v) Find Xy, and Xy,, that is resultant of y, and ys.

vi) Find X

vii) Is the resultant of X(y; + y,) sum of the resultants Xy, +
Xqu

22. Let
3g+4 O 2g
M=| O 4g+1 0
5¢+4 O 2¢g+3

be the MOD dual number matrix operator with entries from
(Zs v g).

B= a, | laae (Zsug)

={a+bg/abe Z;, g=0} 1<i< 3}
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24.
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i) Find all y € B such that the resultant of y on M is a
classical fixed point.
ii) Find all y € B such that the resultant of y on M is the
0

realized fixed point | O |.

0

iii) If yy, y» € B can the resultant of y; and y, on M be
equal to the sum of the resultant of y; + y,?

Let
0 4 0 0
26 0 5¢ 0
10 7¢ 0 8¢
9 0 4g ¢

be the MOD dual number matrix operator with entries from

<Z1() (W] g>
al
a
B = : Iaie(Zloug>={a+bg/a,bezlo,
a,
a4

g2 =0}, 1 £1<4} be the collection of state vector.

Study questions (i) to (iii) of problem (22) for this N with
appropriate changes.

Let M = (ajj)nx, matrix with entries from (Z,, U k) = {(a + bk
la,bbe Z,, k= (m — 1) k} be the MOD special quasi dual
number matrix operator.

Let
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a
B=4| ’|lae (Z,uk),1<i<n)

be the collection of column state vector. B* = {(a;, ay,
.o,ay) laje (Zy Uk); 1 <i<n} be the collection of
row state vectors.

i) Find columns vectors y in B such that the resultant is z
than for the y'in B the resultant is .
ii) Find those MOD matrix operators for which (1) is true.
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In this book authors for the first
time introduce a special type of
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matrix operators. These special
type of fixed points are different
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These special type of fixed points
or special realized limit cycles are
always guaranteed as we use only
MOD matrices as operators with
its entries from modulo integers.
However this sort of results are
NP hard problems if we use

reals or complex numbers.
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