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PREFACE 
 

 
 
 

In this book authors for the first time introduce a special 

type of fixed points using MOD square matrix operators. These 

special type of fixed points are different from the usual classical 

fixed points.  

A study of this is carried out in this book. Several 

interesting properties are developed in this regard. The  notion 

of these fixed points find many applications in the mathematical 

models which are dealt systematically by the authors in the forth 

coming books.  

These special type of fixed points or special realized limit 

cycles are always guaranteed as we use only MOD matrices as 

operators with its entries from modulo integers. However this 

sort of results are NP hard problems if we use reals or complex 

numbers.  
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These new notions are systemically developed in this book.  

We wish to acknowledge Dr. K Kandasamy for his 

sustained support and encouragement in the writing of this 

book.  
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Chapter One 
 
 

 
 
INTRODUCTION  
 

In this book authors for the first time define a special type 

of fixed point different from the classical fixed points using 

MOD matrix operators. When the MOD matrices are square 

matrices they yield a fixed point which is defined as the realized 

fixed point. The MOD matrices themselves serve as the operators 

from a collection of row vectors of same order to itself. 

 

Such study is new and innovative leading to several 

openings both in fixed point theory and in mathematical 

modeling. Here authors mainly use the modulo integer. Zn or  

〈Zn ∪ I〉, the neutrosophic integer or C(Zn) or 〈Zn ∪ g〉 and so 

on. 

 

For MOD functions and their properties refer [21]. 

 

Clearly the map  ηr : R → [0, n) has finite number of 

classical fixed points [21]. 

 

Likewise η : Z → Zn also has finite number of classical 

fixed points [1].  However the study of realized fixed points 

arising from MOD matrix operators are entirely different from 

the usual or classical fixed points. 

 

We call a square matrix with entries from Zn as the MOD 

real matrix operator. This study is carried out in chapter two. 
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Similarly 〈Zn ∪ I〉 can be used in the place of Zn. Likewise 

〈Zn ∪ g〉 or C(Zn) or 〈Zn ∪ h〉 or 〈Zn ∪ k〉 can be used in the 

place Zn and realized fixed point and realized limit cycle are 

found using the MOD matrix as a operator from row matrix 

collection to itself. 

 

Let M be a n × n matrix with entries from Zn (or 〈Zn ∪ I〉 or 

〈Zn ∪ g〉 or 〈Zn ∪ h〉 or 〈Zn ∪ k〉 or C(Zn)). M is called MOD 

matrix operator and it acts from B = {(a1, …,  an) | ai ∈ Zn; 1 ≤ i 

≤ n} to itself. 

 

M can fix elements of B leading to classical fixed points. 

 

If xM after several iterations takes value y and yM = y then 

y ∈ B will be defined as the realized fixed point. It may so 

happen xM gives yi and then yi+1 and so on once again the yi 

after acting on M at each stage. 

 

Then this yi will be defined as the realized limit cycle. The 

applications of the operators to mathematical modeling will be 

given in the forthcoming books. 

 

For the notions of neutrosophic modulo integer 〈Zn ∪ I〉;  

I
2 

= I refer [3, 4]. For the dual  numbers and modulo dual 

numbers 〈Zn ∪ g〉 = {a + bg | g
2
 = 0, a, b ∈ Zn} refer [12]. For 

finite complex modulo integers and their properties refer [11].  

 

For special dual like modulo numbers 〈Zn ∪ h〉 = {a, bh | a, 

b ∈ Zn; h
2
 = h} refer [13]. 

 

Finally for the concept of special quasi dual modulo 

integers 〈Zn ∪ k〉 = {a + bk / a, b ∈ Zn, k
2 
= (n – 1) k} refer [14]. 

 

For MOD structures and their properties refer [21-7]. 

 

For thresholding and updating of state vector refer [5]. 



 
 
 
  
Chapter Two 
 
 

 
 
MOD-FIXED POINT THEORY  
 
 

 

 In this chapter we for the first time introduce the notion of 

MOD-fixed points of MOD-functions [21]. There are several such 

MOD-functions and the fixed points in those cases are 

periodically fixed.  

 

This situation will be first represented by examples first and 

then will be defined. 

 

Example 2.1:  Let Z be the integers (both positive and negative) 

and Z5 modulo integers.  

 

Define a MOD-function f : Z → Z5 is as follows: 

 

  f(0) =  0,   f(1) = 1= f(–4) 

  f(2) = 2 = f(–3), f(3) = 3 = f(–2) 

  f(4) = 4 = f(–1), f(±5) = 0 

  f(n5) = 0;  n = ± 1, …, ∞ 

  f(5n+1) = 1; n = ± 1, …, ∞ 

  f(5n – 1) = 4, f(5n + 2) = 2 

  f(5 n – 2) = 3,  f(5n + 3) = 3 

  f(5n – 3) = 2; n = ±1, …, ∞. 

 

 f is MOD-fixed point function for f fixes 0, 1, 2, 3 and 4. 
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Example 2.2: Let f: Z → Z192, f is a MOD-function the MOD-

fixed points of f are 0, 1, 2, …, 191. 

 

In view of all these we give the formal definition. 

 

DEFINITION 2.1: Let Z be the set of positive and negative 

integers with zero. 

 

Zn the integers modulo n. 

 

Define f : Z →  Zn by f(x) = x; 0 ≤ x ≤ n – 1; 

 f(nt + x) = x; 1 ≤ t < ∞ 

 f(nt – x) = n – x; 1 ≤ x ≤ n  – 1. 

 

Then f is the MOD-function and all elements  

{0, 1, 2, …, n – 1} of Z are fixed points of f. 

 

This MOD-function behaves is the classical way and the 

fixed points are also defined in the  same way as that of classical 

one. 

 

Thus we have MOD-functions contributing to finite number 

of fixed points.  

 

Example 2.3: Let Z18 be the modulo integers mod 18 and  

f : Z → Z18 be the MOD-function defined by  

f(x) = x; 0 ≤ x ≤ 17. 

 

   f(18) = 0 

   f(18n + x) = x;   0 ≤ x ≤ 17    

   f(18n – x) = 18 – x for   0 ≤ x ≤ 17; n ∈ Z. 

  

Clearly this mod function f fixes the elements 0, 1, 2, …, 

17. 

 

Thus the elements of Z18 are fixed points of the MOD-

function f. 
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 In view of this we prove the following theorem. 

 

THEOREM 2.1:  Let Z be the integers. Zn be the modulo 

integers. f : Z → Zn be the MOD-function from Z to Zn.  f has  

{0, 1, 2, .., n – 1} to be the fixed points. 

 

Proof: Follows from the fact f(x) = x for all x ∈ {0, 1, 2, …,  

n – 1}. Hence the theorem. 

 

In view of this we can say the MOD function f : Z → Zn has 

n and only n fixed points including 0. 

 

Next our natural questions would be can we have MOD-

functions which can have finite number of fixed points or more 

than n fixed points.  The answer is yes. 

 

To this effect some examples are provided. 

 

Example 2.4: Let  

 

M = 

a b c

d e f

g h i

 
 
 
 
 

 where a, b, c, d, e, f, g, h, i ∈ Z} 

 

be the collection of 3 × 3 matrices. 

 

N = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
 
 

 | ai ∈ Z12; 1 ≤ i ≤ 9} 

 

be the collection of 3 × 3 matrices with entries from Z12. 

 

Define a function 

   f : M → N 

 

   f(A = (aij)) = (aij)  if aij ∈ Z12 

   f((aij)) = 12 – aij if  aij is negative and –12 ≤ aij ≤ 0 
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   f((aij)) = f(12 n + t)  = t 

   f((aij)) = f((12n – t)) = 12 – t. 

 

 Then f is defined as the MOD-matrix function 

 

 f(A) =  A if entries of A takes values from 

 {0, 1, 2, …, 11}. 

 

 Thus all elements of N ⊆ M are fixed points are fixed 

matrices of this MOD-matrix function.  

 

We will illustrate this by some more examples. 

 

Example 2.5: Let  

 

M = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

 | ai ∈ Z; 1 ≤ i ≤ 5} 

 

be a column matrix with entries from Z. 

 

 

N = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

| ai ∈ Z10; 1 ≤ i ≤ 5} 

 

be the column matrices with entries from Z10. 

 

 Define f : M → N the MOD-matrix function 
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f

9 9

12 2

19 9

7 3

5 5

    
    
    
    =

    
−    

        

 ∈ N,  f

3 7

2 2

4 4

5 5

0 0

 −   
    
    
    =

    
−    

        

∈ N. 

 

 

f

1 1

2 2

,3 3

4 4

6 6

    
    
    
    =

    
    
        

 f

3 3

3 3

3 3

3 3

3 3

    
    
    
    =

    
    
        

 and so on. 

 

Thus there are several matrices which are kept fixed by the 

MOD-matrix function.  

 

This is the way  MOD-matrix functions are defined and they 

have certainly a finite number of fixed points but the number of 

such matrices are greater than 10 in this case. 

 

Example 2.6: Let  

 

M = 
1 2 3

4 5 6

a a a

a a a

 
 
 

| ai ∈ Z; 1 ≤ i ≤ 6} 

 

be the collection of 2 × 3 matrices with entries from Z. 

 

N = 
1 2 3

4 5 6

a a a

a a a

 
 
 

 | ai ∈ Z23; 1 ≤ i ≤ 6} 

 

be the collection of all 2 × 3 matrices with entries from Z23. 

 

Define f : M → N the MOD-matrix function f has several 

fixed points (matrices). 
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For instance take 

 

A = 
5 6 8

9 10 12

 
 
 

 ∈ M 

 

f(A) = A ∈ N is a fixed point matrix of M. 

 

Take B = 
7 8 0

1 2 22

 
 
 

∈ M 

 

f(B) = B ∈ N is again a fixed point (matrix) of M. 

 

Thus M has several fixed points. 

 

Infact all matrices of N which is a subset of M happens to 

be fixed under the MOD-matrix function f. 

 

 

f

27 3 4 4 20 4

8 40 12 15 17 12

0 7 10 0 16 13

 −   
    

− =    
    − −    

∈ N. 

 

 

Thus there are matrix in M which are not fixed  by N. 

 

In view of all these we prove the follow theorem. 

 

THEOREM 2.2: Let M = {m × n matrices with entries from Z} 

and N = {m × m matrices with entries from Zs}. 

 

Let f : M → N be the MOD function defined from M to N. 

 

The fixed points (matrices) of the MOD-function f are  

A = {(aij)m×n | 0 ≤ aij ≤ s – 1}. 
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 Proof: Follows from the fact all elements in x ∈ A are such that 

f(x) = x.  Hence the claim, the MOD matrix function has fixed 

points. 

 

Next we consider the polynomials in Z[x] and Zn[x];  

2 ≤ n < ∞. 

 

Z[x] = 



∑
∞

=0i

aox
i
 | ai ∈ Z} 

 

be the collection of all polynomials in the variable x with 

coefficients from Z. 

 

Zn[x] = 



∑
∞

=0i

aix
i
 | ai ∈ Zn} 

 

be the collection of all polynomials in x with coefficients from 

Zn. 

 

Define f : Z[x] → Zn[x]; 

 

  f(x) = x, f(p(x) = p(x); 

if p(x) ∈ Zn [x], that is all coefficients of p(x) lie in Zn. 

 

 f(p(x) = Σaix
i
) = Σf(ai) x

i
; f(ai) is defined as in case of MOD 

functions. 

 

 f : Z[x] → Zn[x] is defined as the MOD-polynomial function. 

This MOD-polynomial function has infinite number of fixed 

points. 

 

Let n = 15, Z15[x] be the polynomials with coefficients from 

Z15.  

 

Let p(x) = 45x
10  

+ 25 x
8 
+ 8x

3
 + 62x

2
 + 75x + 20 ∈ Z[x] 

 f(p(x))  = 10x
8
 + 8x

3
 + 2x

2
 + 5 ∈ Zn[x]. 
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Let  q(x) = 3x
3
 + 7x

2
 + 14x + 12 ∈ Z15[x] 

 f(q(x)) = 3x
3
 + 7x

2
 + 14 x + 12; 

 

Thus q(x) is a fixed point.  

 

We have infinitely many fixed points for this MOD-

polynomial functions. 

 

f is called the MOD-polynomial function these functions has 

infinitely many fixed points. 

 

Example 2.7: Let f : Z[x] → Z9[x] be the MOD-polynomial 

function.  

 

Let p(x) = 9x
21

 + 21x
17

 + 14x
15

 + 29x
7
 + 40 x

5
 + 10x

3
 + 16x 

+ 21 ∈ Z[x]. 

 

f(p(x)) = 0 + 3x
17

 + 5x
15

 + 2x
7
 + 4x

5
 + x

3
 + 7x + 0 ∈ Z9[x].   

 

Thus this MOD-polynomial function f has infinitely many 

fixed points (polynomials).  

 

Thus examples of these are given. 

 

Let f : Z[x] → Z3[x] be the MOD-polynomial function.  

 

For p(x) = 7x
5
 + 10x

3
 – 15x

2
 + 5x – 10 ∈ Z[x]. 

 

f(p(x)) = x
5
 + x

3
 + 2x + 2 ∈ Z3[x]. 

 

Let p1(x) = 2x
3
 + x

2
 + 2x + 2 ∈ Z[x];  

 

f(p1(x)) = 2x
3
 + x

2
 + 2x + 2.   

 

This is the way MOD-polynomial functions. This p1(x) is a 

fixed polynomial of Z[x] so Z[x] has infinitely many fixed 

(polynomials) points. 
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 Next we proceed onto study MOD interval function from 

reals R to [0, m); 2 ≤ m < ∞.   

 

We will give first examples of them. 

 

Example 2.8:  Let f : R → [0,12) be a function defined as 

follows. 

 

f(x) = x if 0 ≤ x < 11.999; 

f(±12) = 0. 

f(12n + x) = x; n = ±1, ±2, … 0 ≤ x ≤ 11.9999 

f(7.3201) = 7.3201 

f(18.30125) = 6.30125 + (–7.512) = 4.488 and so on. 

f(–40.003) = 7.997. 

 

 Thus f has infinitely many fixed points. All x such that  

0 ≤ x < 11.999…9 are such that f(x) = x. 

 

These are known as MOD function fixed points of intervals. 

 

Example 2.9: Let f : R → [0,11) be a function defined as 

follows f(x) = x if 0 ≤ x ≤ 10.999… f(12.0013) = 1.0013. 

 

f(–12.0013) = 9.9987 

f(–2.092) = f(8.908) and so on.   

 

This is the way the MOD interval function is defined and this 

has infinitely many fixed points. 

 

Let us give one more example before we proceed onto 

derive some properties associated with A. 

 

Example 2.10: Let f : R → [0,118) be the MOD-interval function 

defined by f(x) = x if 0 ≤ x < 117.9999. 

 

f(–106.007) = 11.993 and so on.   

 

Infact there are infinitely many fixed points.  
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In view of this we have the following theorem the proof of 

which is left as an exercise to the reader. 

 

THEOREM 2.3:  Let f : R → [0,m) be the MOD-interval function 

f has infinitely many fixed points. Infact the interval [0,m) ⊆  

(–∞, ∞) = R are fixed points of f. 

 

Next we proceed onto define the notion of infinite number 

of MOD-interval matrix fixed points. 

 

DEFINITION 2.2:  Let M = {p × q matrices with entries from R} 

and N = {p × q matrices with entries from [0,m)}; 2 ≤ m < ∞.  

Define f : M → N by f((aij)) = (aij) if aij ∈ [0,m) otherwise define 

function f for each entries in the matrix as that of MOD interval 

functions.  

 

Then f : M → N is defined as the MOD-matrix interval 

functions.  

 

First we will illustrate this situation by some examples. 

 

Example 2.11: Let  

 

M = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 | ai ∈ R; 1 ≤ i ≤ 8} 

and  

 

N = 

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
    

 | ai ∈ [0,17); 1 ≤ i ≤ 8} 

 

be the collection of real and interval 4 × 2 matrices with entries 

from R and [0,17) respectively. 
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Define f: M → N be the MOD-interval matrix. 

 

f

3.1 2.7 3.1 2.7

1.5 0.6 1.5 0.6

0.17 1.2 0.17 1.2

1.7 5.1 1.7 5.1

    
    
    

=
    
     
    

, 

 

                  f 

7 8.31 10 8.69

3.11 4.25 3.11 12.75

0.33 0.67 0.33 16.33

1.32 6.3 1.32 6.3

 − −   
    

−    
=

    −

     
    

and so on. 

 

f has fixed points which are infinite in number. 

 

Infact N ⊆ N and f(N) = N. 

 

Example 2.12: Let  

 

M = 
1 2

3 4

a a

a a

 
 
 

| ai ∈ R; 1 ≤ i ≤ 4} 

and  

 

N = 
1 2

3 4

a a

a a

 
 
 

 | ai ∈ [0,44) 1 ≤ i ≤ 4} 

 

be the 2 × 2 matrices.  

 

 

 Define f : M → N the MOD-interval matrix function. Clearly 

f(N) = N. 

 

N considered as a subset of M is an infinite collection of 

MOD-interval matrix function fixed points. 
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Next the study of MOD-interval polynomial functions will 

be described by examples. 

 

Example 2.13:  Let  

 

M = 
i 0

∞

=




∑ aix

i
 | ai ∈ R}  

 

and  

 

N = 
i 0

∞

=




∑ aix

i
 | ai ∈ [0, 24)} 

 

be two real polynomial and MOD-interval polynomials 

respectively. 

 

A map f : M → N defined by f(Σaix
i
) = Σaix

i
 if we have ai ∈ 

[0,24) and f(Σaix
i
) = Σf(ai)x

i
 where f(ai) is defined as that of 

MOD interval functions from R → [0,24). 

 

Let  p(x) = 3.8 x
8
 + 24x

6
 + 2.42 x

4
 + 0.762 x

2
 + 27.31 ∈ R[x]; 

 

 f(p(x)) = 3.8 x
8
 + 2.42 x

4
 + 0.762 x

2
 + 3.31. 

 

Let g(x) =  64 x
10

 + 48x
9
 + 24.007 x

5
 + 3.74 x

4
 –  6.31 x

3
 +  

   10.31 x
2
 + 4x – 27.3 ∈ R[x]. 

 

f(g(x))  =  16x
10

 + 0.007x
5
 + 3.74x

4
 + 17.69x

3
 + 10.31x

2
  +  

   4x + 21.7 ∈ N. 

 

 Thus f the MOD interval polynomial function has infinite 

number of fixed points (polynomials). 

 

Further it is to be noted as a set N ⊆ M; N is a proper subset 

of M and N is of infinite cardinality and f(N) = N; so f is a 

MOD-interval polynomial function which has infinitely many 

polynomials which are fixed points. 
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  In view of this we have the following theorem. 

 

THEOREM 2.4: Let  

 

M = 
0

∞

=




∑
i

aix
i
 | ai ∈ R} 

 

be the collection of all polynomials with real coefficients.  

 

N = 
0

∞

=




∑
i

aix
i 
| ai ∈ [0,m); 2 ≤ m < ∞} 

 

be the MOD-interval polynomials with coefficients from [0,m).  

 

 The MOD-interval polynomial function f: M → N fixes 

infinitely many points. 

 

The fixed points of f are N that is f(N) = N as N ⊆ M. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next fixed point MOD function on 
n times

Z Z Z× × ×…�������  to 

m m m

m times

Z Z Z

−

× × ×�
���������

 will be discussed by examples. 

 

Example 2.14:  Let  

 

V = {Z ×  Z × Z = {(a, b, c) | a, b, c ∈ Z}} 

 

be the triple product of integers.  

 

Let W = {Z7 × Z7 × Z7 = {(a, b, c) | a, b, c, ∈ Z7}} be the 

triple product of modulo integers. 

 

f : V → W be the MOD-function defined by  

 



22 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

f(a, b, c) = (x1, x2, x3) where x1 = a, x2 = b and x3 = c if  

0 ≤ a, b, c ≤ 6.  

 

f(a, b, c) = (x1, x2, x3) where if a ≥ 7 then  

 

a = 7t + x1 where 0 ≤ x1 ≤ 6; 

if a ≤ 7 then a = 7t + y 

       = 7 – y 

     = x1. 

 

Similar working for b and c.   

 

We see if x = (8.3, –7.5, 5.31) ∈ V then  

 

f(x) = f((8.3, –7.5, 5.31)) = (1.3, 6.5, 5.31) ∈ W. 

 

Let y = (3.331, 4.44, 6.302) ∈ V;  

 

we see f(y) = f((3.331, 4.44, 6.302)) 

      = (3.331,  4.44, 6.302) 

      = y ∈ W. 

 

Clearly as W ⊄ V are see f(W) = W is the collection of all 

fixed points of V, by the MOD function f which is only a finite 

collection. 

 

Example 2.15:  Let  

 

V = {Z × Z × Z × Z × Z) = {(a1, a2, a3, a4, a5) | ai ∈ Z; 

1 ≤ i ≤ 5}}  

 

be the 5-tuple product of integers.  

 

W = {(Z9 × Z9 × Z9 × Z9 × Z9) = {(x1, x2, x3, x4, x5) | xi ∈ Z9; 

1 ≤ i ≤ 9}} be the 5-tuples of Z9 the modulo integers. 

 

Define f : V → W to the MOD function.  
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 Then associated with x are only 8
3
 fixed points and nothing 

more.  

 

Let x = (9, 8.3, 10.3) be in V. 

 

  f(x)  = f((9, 8.3, 10.3) 

    = (0, 8.3, 1.3) ∈ W. 

 

So x is not fixed by f. 

 

Let x1 = (2.3, 0, 5.2) ∈ V 

 

f(x1)  = f((2.3, 0, 5.2)) 

    = (2.3, 0, 5.2) = x1 ∈ W. 

 

Thus this x1 is fixed by f. 

 

Let x2 = (–3.7, –22.5, –17.2) ∈ V.  

 

f(x2) = f((–3.7, –22.5, –17.2)) = (5.3, 4.5, 0.8) ∈ W. 

 

Thus x2 is not a fixed point of f. 

 

In view of all these we have the following theorem. 

 

THEOREM 2.5: Let V = (Z × Z × … × Z) = {(a1, a2, …, an) |  

ai ∈ Z; 1 ≤ i ≤ n} and W = (Zm × Zm × … × Zm) = {(x1, x2, …, xn) 

where xi ∈ Zm; 1 ≤ i ≤ n} be the n tuples of real and modulo 

integers respectively. 

 

Let f : V → W be a MOD function defined from V to W. 

 

f fixes only m
n
 points in V and no more. 

  

Proof is direct and hence left as an exercise to the reader. 

 

Now we give some more examples to this effect. 
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Example 2.16: Let V = Z × Z × Ζ × Ζ × Ζ = {(a1, a2, a3, a4, a5) | 

ai ∈  Z; 1 ≤ i ≤ 5} and W = Z3 × Z8 × Z5 × Z12 × Z9 = {(d1, d2, d3, 

d4, d5) | d1 ∈ Z3, d2 ∈ Z8, d3 ∈ Z5, d4 ∈ Z12 and d5 ∈ Z9} be the 5 

tuple reals and 5-tuple mixed modulo integers. 

 

Let f : V → W be the MOD function. 

 

Consider x = (5.3, 47.2, 9.89, 12.83, 14.67) ∈ V 

 

f(x)  = f((5.3, 47.2, 9.89, 12.83, 14.67) 

   = (2.3 (mod 3), 1.2 (mod 8), 

   4.89 (mod 5), 0.83 (mod 12), 5.67 (mod 9)) 

   = (2.3, 1.2, 4.89, 0.83, 5.67) ∈ W. 

 

This is the very special way by which the MOD function is 

defined. 

 

Let y = (–7.3, –10.52, –4.8, –15.72, –10.8) ∈ V;  

 

now f(y)  = f((–7.3, –10.52, –4.8, –15.72, –10.8)) 

= (–1.7 (mod 3) 5.48 (mod 8), 0.2 (mod 5), 

   8.38 (mod 12), 7.2 (mod 9)) 

= (1.7, 5.48, 0.2, 8.38, 7.2) ∈ V. 

 

Thus if entries are negative the MOD function f : V → W is 

defined. 

 

Next consider the element s = (1.2, 7.2, 4.5, 10.35, 6.331) ∈ 

V.  

 

f(s) = f((1.2, 7.2, 4.5, 10.35, 6.331)) = (1.2, 7.2, 4.5, 10.35, 

6.331) = s ∈ W. 

 

 Thus s is a fixed point of V fixed by the MOD function f. 

 

Infact f fixes exactly 3.8.5.12.9 = 12, 960 number of 

elements in V. 
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 This is the way MOD functions on mixed modulo product is 

defined.   

 

We will illustrate this situation by one more example. 

 

Example 2.17:  Let V = Z × Z × Z × Z × Z × Z × Z = {(a1, a2, a3, 

a4, a5, a6, a7) | ai ∈ Z; 1 ≤ i ≤ 7} be the 7-tuple of integers.  

 

W = (Z10 × Z6 × Z13 × Z2 × Z16 × Z6 × Z2) = {d1, d2, d3, d4, 

d5, d6, d7) | d1 ∈ Z10, d7, d2 ∈ Z6, d3 ∈ Z13, d4, d7 ∈ Z2, d5 ∈ Z16} 

be the 7-tuple of mod integers. 

 

f : V → W;  be the MOD function defined on V. 

 

Let  (12.3, 9.6, 16.1, 6.332, 19.31, 8.312, 5.1102) ∈ V. 

 

  f((12.3, 9.6, 16.1, 6.332, 19.31, 8.312, 5.1102)) 

  = (2.3 (mod 10), 3.6 (mod 6), 3.1 (mod 13),  

  0.332 (mod 2), 3.31 (mod 16), 2.312 (mod 6),  

  1.1102 (mod 2) ∈ W. 

  = (2.3, 36, 3.1, 0.332, 3.31, 2.312, 1.1102) ∈ W 

 

Consider  x = (–10.3, –4.2, –7.5, –5.3, –0.3, –6.3, –7.6) ∈ V 

 

  f(x) = f((–10.3, –4.2, –7.5, –5.3, –0.3, –6.3, –7.6)) 

 

= (9.7 (mod 10), 1.8 (mod 6), 5.5 (mod 13), 0.7 (mod 2),  

   15.7 (mod 16), 5 (mod 6), 0.4 (mod 2)) 

 

= (9.7, 1.8, 5.5, 0.7, 15.7, 5.7, 0.4) ∈ W. 

 

This is the way MOD function f is defined. 

 

Clearly the MOD function of fixes  

10 × 6 × 13 × 2 × 16 × 6 × 2 = 299520 as fixed points of W. 

 

This type of MOD function fixes only finite number of point 

or fixed points associated with f are 299520. 
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In view of all these we have the following theorem. 

 

THEOREM 2.6:  Let V = Z × Z × … × Z = {(a1, a2, …, an) | ai ∈ 

Z} 1 ≤ i ≤ n} and  

  

W = 
1 2

...
nm m mZ Z Z× × ×  = {(x1 … xn) ; xi ∈ 

imZ 1 ≤ i ≤ n  

and mi’s are finite positive integers} be n-tuple of integers and 

modulo integers respectively. 

 

f : V → W be the MOD function from V to W. 

 

f fixes exactly m1 × m2 × … × mn number of points in V. 

 

The proof is direct and hence left as an exercise to the 

reader. 

 

Next we study MOD-functions from p × q matrix collection 

from reals to p × q matrices with entries from modulo integers. 

 

We will first describe this by an example or two. 

 

Example 2.18: Let  

 

M = 
a b

c d

 
 
 

| a,  b, c, d ∈ Z} 

 

and  

N = 
x y

z w

 
 
 

 | x ∈ Z15, y ∈ Z6, z ∈ Z3, w ∈ Z7} 

 

be the collection of 2 × 2 matrices with entries from Z and MOD 

integers respectively. 

 

Let f : M → N this new type of MOD function is defined as 

follows, which is only described by the example. 
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f

17.3 0.7

4.5 10.3

 − 
   

−  
 = 

2.3(mod15) 5.3(mod 6)

1.5(mod3) 4.7(mod 7)

 
 
 

 

 

                           = 
2.3 5.3

1.5 4.7

 
 
 

 ∈ N 

 

 This is the way the MOD function acts on M. 

 

Now we give some fixed points of M. 

 

f
0.38 0.46 0.38 0.46

1.12 1.07 1.12 1.07

    
=     

    
 

 

is a fixed point of f; the MOD function. 

 

Clearly there are 15 × 6 × 3 × 7 = 1890 number of fixed 

elements in M. 

 

So we have different types of MOD functions from integer 

matrices to different MOD integer matrices. 

 

Example 2.19: Let  

 

M = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

ai ∈ Z; 1 ≤ i ≤ 15} 

and  
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 N = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a

a a a

a a a

a a a

a a a

 
 
  
 
 
  

 

a1 ∈ Z7, a2 ∈ Z9, a3 ∈ Z12, 

 

a4 ∈ Z10, a5, a6 ∈ Z4, a7 ∈ Z3, a9, a8 ∈ Z5, a10, a11 ∈ Z2,  

a12, a13 ∈ Z11, a14, a15 ∈ Z15}  

 

be the collection of integer matrices and mod integer matrices.  

 

 Let f : M → N is defined as follows 

 

f

3.7 10.3 3.4

4.3 6.5 7.3

4.2 9.7 1.3

4.3 3.1 13.7

0.3 16.3 18.3

 − − 
  

−  
  −

  
  
  −  

  

 

=

3.3(mod7) 1.3(mod9) 8.6(mod12)

5.7(mod10) 2.5(mod 4) 3.3(mod 4)

1.2(mod3) 4.7(mod5) 3.7(mod5)

0.3(mod 2) 1.1(mod 2) 2.7(mod11)

10.7(mod11) 1.3(mod15) 3.3(mod15)

 
 
 
 
 
 
  

.

  

This is the way mod function is performed. 

 

Clearly this has several fixed points.  

 

However the number of fixed points are only finite given by 

7.9.12.10.4.4.3 5.5 2.2 11.11. 15.15 = 987940800000. 

 

Thus there are many fixed points,  but are only finite in 

number. 
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This is expressed by the following theorem. 

 

THEOREM 2.7:  Let M = {(collection of all p × q matrices with 

entries from Z} and N = {(collection of all p × q matrices with 

entries from 
1 2 3

{ , , ,..., }
×p qm m m mZ Z Z Z be the collection of all p × q 

matrices with entries from integer Z and from mod integers 

from 
1
,...,

×p qm mZ Z . 

 

Let f : M → N defined by f((aij)) = (bij) 

 

f(aij) = (bij (mod ))
i jmZ
×

. 

 

f fixes m1 × m2 × … × mp×q number of elements. 

 

Proof is direct and hence, left as an exercise to the reader. 

 

Now we give examples of function with infinite MOD 

function. 

 

Example 2.20: Let M = {(R × R × R) = (a, b, c); a, b c ∈ R} 

and N = {[0, 9) × [0, 9) × [0, 90) = {(x1, x2, x3) / x1 ∈ [0,19), x2 

∈ [0,9) x3 ∈ [0,90); 1 ≤ i ≤ 3} be the real 3-tuple and 3-tuple 

MOD intervals. 

 

Let f : M → N be defined  

f((23.001, 7.02, 110.314)) = (4.001, 7.02, 20.314) ∈ N 

where (23.001, 7.02, 110.314) ∈ M. 

 

  Let x = (–0.72, –14.004, 16.003) ∈ M;  

 

f(x) = f((–0.72, –14.004, 16.003))  

   

= (18.28, 3.996, 16.003) ∈ N. 

 

Let y = (2.003, 4.556, 7.006) ∈ M;  
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f(y) = f((2.003, 4.556, 7.006)) = (2.003, 4.556, 7.006) = y  is 

a fixed point. 

 

Since N ⊆ M we see every element of N is a fixed point and 

the MOD function f has infinitely many fixed points.   

 

However as algebraic structure both N and M are very 

distinct, one can see N becomes a proper subset of M. 

 

Example 2.21: Let M = R × R × R × R × R × R = {(a1, a2, a3, a4, 

a5, a6) /  ai ∈ R; 1 ≤ i ≤ 6} be the 6-tuple of reals. 

 

N = {([0,15) × [0,51) × [0, 25) × [0,15) × [0,5) × [0,50)) = 

{(x1, x2, x3, x4, x5, x6) / x1,  x4 ∈ [0,15), x2 ∈ [0,51), x3 ∈ [0,25) 

x4 ∈ [0, 15), x5 ∈ [0,5),  x6 ∈ [0,50)}; be the 6-tuple of MOD 

interval. 

 

Clearly N is a subset of M. 

 

Let f : M → N 

 

f((7.02, 0.52, –3.26, 9.87, –4.27, 10.34))  

 

= (7.02, 0.52, 21.74, 9.87, 0.73, 10.34) ∈ N. 

 

 This is the way MOD function f is defined  

 

f(3.111, 2.555, 0.748, 1.041, 4.033, 0.142)  

 

= (3.111, 2.555, 0.748, 1.041, 4.033, 0.142) ∈ N. 

 

Thus this point is a fixed point. 

 

Thus the MOD function f has infinitely many fixed points. 

 

In view of all this we have proved the following theorem. 

 

THEOREM 2.8:  Let M = {R × R × … × R = {(a1, a2, …, an) / ai 

∈ R; 1 ≤ i ≤ n}} be the n-tuple of reals N = {[0,m1) × [0,m2) × 
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 … × [0,mn) = {(x1, x2, …, xn) / xi ∈ [0,mi); 1 ≤ i ≤ n} be the  

n-tuple of mod intervals. 

 

Let f : M → N is the MOD function. Mod f has infinite 

number of fixed elements (or fixed n-tuples). 

 

Proof follows from the very definition of MOD functions. 

 

Thus infinite number of points are fixed by the MOD 

function. 

 

Next the infinite number of fixed points given by the MOD 

function using matrices is given by some example. 

 

Example 2.22:  Let  

 

M = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

 | ai ∈ R; 1 ≤ i ≤ 5} 

 

and  

 

N = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

| a2 ∈ [0,3), a4 ∈ [0,2), a5 ∈ [0,10); 

a3, a1 ∈ [0,12); 1 ≤ i ≤ 5}  

 

are 5 × 1 matrices with reals and the MOD interval [0,3) [0,2) 

[0,10) and [0,12) respectively. 

 

 Define f : M → N the MOD function as follows. 



32 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

 

f

3.71

13.05

4.25

0.75

14.08

 − 
  
  
  
  

−  
  −  

 = 

8.29

1.05

4.25

1.25

5.92

 
 
 
 
 
 
  

. 

 

Infact we have infinite collection of matrices which are kept 

fixed by the MOD function f. 

 

 

Let x = 

0.3

0.2

1.2

0.9

5.7

 
 
 
 
 
 
  

∈ M; f(x) = f 

0.3

0.2

1.2

0.9

5.7

  
  
  
  
  
  
    

= 

0.3

0.2

1.2

0.9

5.7

 
 
 
 
 
 
  

∈ N. 

 

 

This x is a fixed point. Infact N ⊆ M, and N a subset of M 

and every element in N are fixed  by f. 

 

That is f(N) = N.   

 

Hence the MOD function f fixed infinitely many points of M. 

 

Example 2.23:  Let  

 

 

M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

| ai ∈ R; 1 ≤ i ≤ 9} 

 

and  
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N =

1 2 3

4 5 6

7 8 9

x x x

x x x

x x x

 
 
 
  

| x1, x4 ∈ [0,7) 

 

 x2, x3, x5 ∈ [0,17) x6, x7, x8, x9 ∈ [0,13); 1 ≤ i ≤ 9}  

 

be 3 × 3 real matrices and MOD interval matrices. 

 

We have a MOD function  

 

f : M → N  

 

 

f

19.3 3.3 1.7

1.2 1.1 9.2

10.8 10.7 6.9

  
  

−  
    

 = 

5.3 3.3 1.7

1.2 15.9 9.2

10.8 10.9 6.9

 
 
 
  

 
 

 

0.3 6.3 1.1 0.3 6.3 1.1

f 6.9 3.9 4.8 6.9 3.9 4.8

7.2 8.9 9.1 7.2 8.9 9.1

    
    

=    
        

 

 

is a fixed point of M. 

 

Infact MOD function f has infinite number of fixed points. 

 

Example 2.24:  Let 

 

M = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

� �
where ai ∈ R; 1 ≤ i ≤ 12} 
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 N = 

1 2

3 4

11 12

a a

a a

a a

 
 
    

� �
 | a1, a2, a4, a3 ∈ [0,3), a5 ∈ [0,6); 

 

a6 to a10 ∈ [0,9), a11, a12 ∈ [0,8); 1≤ i ≤ 12}  

 

be 6 × 2 matrices with entries from reals R and MOD-interval [0, 

6). 

 

We see N ⊆ M is a proper subset of M. 

  

Clearly if f : M → N is defined as that of a MOD function 

then every A ∈ N ⊆ M is such that f(A) = A.   

 

Thus f has infinite number of fixed points.  

 

In view of all these we have the following theorem. 

 

THEOREM 2.9:  Let M = {(collection of all p × q matrices with 

entries from the reals} and N = {collection of all p × q matrices 

with entries from [0, m1), [0, m2), …, [0, mp×q)}; f: M → N is a 

MOD interval matrix function which fixes infinitely many points. 

That is f has infinitely many fixed points. 

 

Proof is direct and hence left as an exercise to the reader. 

 

 Next we proceed define a special type of function which 

does not follow the laws of function. 

 

According to the definition if f is a map from a non empty 

set X to another nonempty set Y then we have any x ∈ X has 

only one y associated with it in Y many x in X may be mapped 

onto the same y in Y.   

 

However x in X cannot be mapped on to y1 and y2 in Y 

where  y1 ≠ y2. 
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 However we have infinitely many functions f from X to Y 

such that one element x in X is mapped onto infinitely many 

elements in Y.  

 

Such function we call as multivalued MOD function. 

 

Clearly this is also misnomer. But as multivalued function 

is a misnomer so is multivalued MOD function. 

  

We first illustrate the multivalued MOD-integer function. 

 

Example 2.25: Let Z20 be the set of modulo integers. Z be the 

collection of integers. 

 

 

Define a map fm : Z20 → Z as follows  

fm(0) =  20n (n = 0, ±1, ±2, …) 

 

  fm(1) = (20 n + 1) 

  fm(2) = (20 n + 2) 

  fm(3)= (20 n + 3) and so on 

  fm(19)= (20n + 19), n = 0, ±1, ±2, ±3, …,. 

 

This fm is defined as the multivalued MOD-function from a 

finite set is mapped onto an infinite collection. 

 

This MOD-multivalued function fm fixed every element of 

Z20. 

 

Example 2.26: Let fn : Z53 → Z be the MOD-multivalued 

function. fn fixes all the elements of Z53.  

 

For if x ∈ Z53 then f(x) = x is not possible as  

fm(x) = 53n + x n = 0 ±1, ±2, … 

 

Thus this element x is mapped to infinite number of points. 

 

 For take x = 2 then  

fm(x) = 2, 55, –51, 108, –104, 161, –157 and so on.   
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If x = 5 then fm(5) = 5, 58, 48,101, 111 and so on.  

 

fm(50) = 50, 103, –3, and so on.   

 

Thus all elements of Z are exhausted by the multivalued 

MOD function fm.   

 

Infact we have sequence of points for every single point in 

Zt. 

 

The definition of this situation is as follows: 

 

DEFINITION 2.3:  Let Zn be the modulo integers. Z be the set of 

integers.  fm: Zn → Z be the multivalued MOD function defined is 

as fm(0) = nt; t = 0, ±1, ±2, … 

 

fm(1) =  nt + 1,  t = 0, ±1, … 

   
fm(2) = nt + 2, t  = 0, ±1, ±2, … 

fn(n–1) = nt + (n – 1);  t = 0, ±1, ±2. 

 

Thus f(0) = 0, f(1) = 1, 

   f(2) = 2 and so on  

   f(n) = n all this happens for t = 0. 

 

Now interested author can find what is f o fm and fm o f. 

 

where f : Z → Zn and fm : Zn → Z defined as earlier. 

 

Next we find the multivalued MOD function from the  

t-tuple n n

t times

Z ... Z

−

× ×
�����

 to the t-tuple of
t times

Z Z ... Z
−

× × ×������� . 

 

First we will illustrate this situation by some examples. 

 

Example 2.27: Let  

S = (Z12 × Z12 × Z12 × Z12) = {(x1, x2, x3, x4) | xi ∈ Z12; 

        1 ≤ i ≤ 4}  

and  
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 T = (Z × Z × Z × Z) = {(a1, a2, a3, a4) | ai ∈ Z; 1 ≤ i ≤ 4}  

 

be the 4-tuples of MOD integers Z12 and Z respectively. 

 

 Define fm: S → T as the MOD multivalued function. 

 

If x = (3, 8, 4, 9) ∈ S then  

 

fm(x) = {(12n + 3, 12n +8, 12n + 4, 12n + 9)} = {(3, 8, 4, 9), 

(15, 20, 16, 21), (9, 4, 8, 3), (27, 32, 28, 33), (21, 16, 20, 15) 

and so on} = P has infinite number of elements associated with 

it.  

 

Similarly for any x in  S. Thus given any y ∈ T we have a 

unique element associated with it in  S.  

 

For if y = (–78, 105, –3, –7) ∈ T  

then 
1

mf −

(y) = (6, 9, 9, 5) ∈ S,  

 

fm(6, 9, 9, 5) = (12n0 + 6, 12n1 + 9, 12n2 + 9, 12n3 + 5) for 

we see we can take n0 = 0, n1 = 1, n2 = –3 and n3 = –10.   

 

So we see the set P has other different elements for the n 

can take mixed values and so on. 

 

Thus when we put same n still it is to be kept in mind we 

permute it for varying values of n. 

 

So P has lot more elements for one n can be m1 another n is 

m2, another n is m3 and the forth n is m4. 

 

This sort of values alone can cater for all the elements of  

Z × Z × Z × Z.  

 

Of course the all elements of Z12 × Z12 × Z12 × Z12 is fixed 

for n = 0 when n ≠ 0 they generate the totality of Z× Z × Z× Z.   
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We will work another example for a better understanding of 

this concept. 

 

Example 2.28: Let  

 

S = {Z3 × Z3 × Z3 = {(x1, x2, x3)_| xi ∈ Z3; 1 ≤ i ≤ 3}} and 

 

T = {Z × Z × Z = {(a1, a2, a3) | ai ∈ Z; 1 ≤ i ≤ 3}}  

 

be two 3-tuples. 

 

fm : S → T 

 

fm (0, 0, 0)  = (0, 0, 0) 

fm (1, 2, 0)  = (1, 2, 0) 

    = (3n+1, 3n1 + 2, 3n3) 

    = {(1, 2, 0), (1, 2, 3), (1, 2, 6),  (1, 2, 9),  

    (1, 2, –3), (1, 2, –6), (1, 2, –9), (1, 2, –12),  

    (1, 2, 12) 

and so on. 

 

(4, 2, 0), (7, 2, 0), (–2, 2, 0) (–2, 2, 3), (–2, 2, 6) (–2, 2, –3) 

and so on and so forth (1, –1, 3), (1, –4, 3), (1, –7, 3), (1, –10, 3) 

…, (1, 5, 3), (1, 8, 3), (1, 11, 3) and so on}. 

 

 In actuality one has to work like this so fm is a very special 

type of multivalued MOD function. 

 

Example 2.29: Let S = {Z18 × Z8 = {(a, b) | a, b ∈ Z18}} and  

 

T = {Z × Z = {(x, y) | x, y ∈ Z}. 

 

fm: S → T is the multivalued MOD function.  

 

This fixes the set S for f(S) = S but more for every x ∈ S is 

mapped onto a infinite periodically placed pairs. 

 

Just we represent this situation by some illustrations.  
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 Let  y = (3, 9)  

 fm(y) = (3, 9) and  

 fm(y) = (m18 + 3, n18 + 9) m, n ∈ Z \ {0}. 

fm(y) = {(3, 9) (when both m = 0 = n); (21, 27), (–15, –9), 

(3, 27), (21, –9), (–15, 9) (–15, +27) and so on}. 

 

Thus infinitely periodic pairs are being mapped by (3, 9) of 

Z18 × z18 = S. 

 

f : Z × Z → Zn × Zn the MOD function has only a finite 

number of fixed points.  

 

Infact infinite many points in Z × Z is mapped onto a finite 

set.  

 

Likewise we can extend the study of multivalued MOD 

function to intervals. 

 

  fm: [0, n) → R this map is as follows. 

 

fn(x) = x for all x ∈ [0, n) and fn(x) = nt + x  t ∈ Z \ {0}. 

 

By this method this MOD multivalued interval function does 

not leave even a single element in R left without being mapped. 

 

We can say the interval [0, n) which has infinite number of 

points is being fixed by fm. 

 

We will illustrate this situation by an example or two. 

 

Example 2.30: Let fm: [0,6) → R defined by 

 

   f(3.001) = 3.001 

     = 6t + 3.001 (t ∈ Z \ {0}) 

 = {9.001, –2.999, 3.001 (when t = 0),  

     15.001, –9.999, 21.001, –14.999 and so on}. 

 

 

This is mapped onto an infinite collection. 
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Consider  0.1 ∈ [0,6) 

 

   f(0.1) = {0.1, 7.1, –5.9, 12.1, –11.9, and so on} 

 

Thus fm the multivalued MOD interval function behave in an 

odd way by mapping a single element of [0,6) on an infinite 

collection which is made periodically using both positive and 

negative integers. 

 

The authors leave it as an open conjecture to study about the 

properties the MOD interval function f and the MOD multivalued 

function fm. 

 

We supply one more example to this effect. 

 

Example 2.31:  Let fm : [0, 13) → R defined by  

fm(x) = {x, 13t + x, t ∈ Z \ {0}; x ∈ [0, 13)}; this is an infinite 

collection which periodically fills the real line R. 

 

Next we give some examples of the MOD multivalued 

function  

 

fm: [0, n) × [0, n) × [0, n) → R × R × R. 

 

This is also defined in a similar way as that of  

 

fm: [0,n) → R.   

 

Here we see if x = (x1, x2, x3) ∈ [0, n) ×[0,n) × [0, n) then 

 

fm(x) = {nt1 + x1, nt2 + x2, nt3 + x3); t1, t2, t3 ∈ Z. 

 

So this fm(x) a single point x is mapped by the multivalued 

MOD interval function into infinitely many triple points or dense 

triple intervals covering the entire region.  
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 This sort of study is very different as MOD multivalued 

interval functions are not functions as they do not obey the 

classical properties of functions.  

 

 Next we can have MOD multivalued matrix (transformation) 

function. 

 

Example 2.32: Let  

 

S = 
1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

 | ai ∈ Z10; 1 ≤ i ≤ 10} 

 

and  

 

T = 
1 2 3 4 5

6 7 8 9 10

a a a a a

a a a a a

 
 
 

 | ai ∈ Z; 1 ≤ i ≤ 10} 

 

be two sets of 2 × 5 matrices built using Z10 and Z respectively.  

 

fn: S → T is defined by fn 
1 5

6 10

a a

a a

  
   
  

…

…
  

 

= 
1 1 2 2 5 5

6 6 7 7 10 10

10n a 10n a 10n a

10n a 10n a 10n a

+ + + 
 

+ + + 

…

…
  

 

where n1, n2, …, n10 takes all values from Z.  

 

For instance if A = 
3 1 7 0 5

2 0 1 8 9

 
 
   

 

 

fm(A) = 
1 2 3 4 5

6 7 8 9 10

10n 3 10n 1 10n 7 10n 10n 5

10n 2 10n 10n 1 10n 8 10n 9

+ + + + 
 

+ + + + 
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=
3 1 7 0 5 7 9 3 0 5

,
2 0 1 8 9 12 10 9 42 11

 − − − −   
   

− −   
,  

 

13 21 27 20 25

22 20 21 28 29

 
 
 

 and so on}. 

 

Thus fm(A) is an infinite collection which contains A.  

 

This sort of study using multivalued MOD matrix functions 

is an interesting problem. 

 

Example 2.33:  Let  

 

W = 
1 2

3 4

a a

a a

 
 
 

| ai ∈ Z29, 1 ≤ i ≤ 4} 

 

and  

 

V = 
1 2

3 4

a a

a a

 
 
 

 | ai ∈ Z; 1 ≤ i ≤ 4} 

 

be the square matrix collection with entries from Z29 and Z 

respectively.  

 

The map fm: W → V defined by for  

 

A = 
10 12

18 0

 
 
 

 ∈ W; 

 

fm(A) = 
2 1

3 4

29t 10 29t 12

29t 18 29t

+ + 
 

+ 
 

 

t1, t2, t3 and t4 takes values from Z.   

 

fm(A) = A if t1 = t2 = t3 = t4 = 0. 



MOD Fixed Point Theory 43 

 

 

 
fm(A) = {A, 

39 41

47 29

 
 
 

 
29 41 39 41 10 41

, ,
11 0 11 0 18 29

     
     
− −     

 

 

and so on}.    

 

This is an infinite collection.  

 

This the study of multivalued MOD matrix function is an 

interesting one. 

 

We can also have mixed multivalued matrix MOD functions 

which will be described by examples. 

 

 

Example 2.34: Let  

 

M = 

1

2

3

4

a

a

a

a

 
 
    

| ai ∈ Z40, a2 ∈ Z4, a3 ∈ Z5 and a4 ∈ Z12} and 

 

 

N = 

1

2

3

4

a

a

a

a

 
 
    

|  ai ∈ Z; 1 ≤ i  ≤ 4} 

 

be the collection of 4 × 1 column matrices with entries from 

different modulo integers and the ring of integers respectively. 

 

fm: M → N the MOD multivalued matrix function is defined 

as follows. 
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Let A = 

28

3

4

8

 
 
 
 
 
 

∈ M, 

 

fm(A) = f 

1

2

3

4

40n 2828 28 12

4n 33 3 1
,

5n 44 4 1

12n 88 8 4

  +      
        

+ −        
= =         + −          + −        

, and so on}. 

 

 Thus MOD multivalued matrix function fm fixes matrix 

collection M. 

 

 This is the way MOD-multivalued matrix function is defined 

and developed. 

 

Next we proceed onto describe MOD multivalued interval 

matrix function fm by these following examples. 

 

Example 2.35: Let  

 

M = 

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

| a1 ∈ Z10, a2, a3 ∈ Z15, a4, a5 ∈ Z3, 

a6, a7 ∈ Z4, a8, a9 ∈ Z6} 

 

N =

1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

| ai ∈ Z; 1 ≤ i ≤ 9} 

 

be the collection of 3 × 3 matrices with entries from M the set of 

mod integers and N be the collection of 3 × 3 matrices with 

entries from Z. 
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 Let fm: M → N defined by the following way. 

 

fm

1 2 3

4 5 6

7 8 9

9 10 12 10n 9 15n 10 15n 12

1 2 3 3n 1 3n 2 4n 3

0 5 2 4n 6n 5 6n 2

   + + +   
     

= + + +    
    + +     

 

 

where ni ∈ Z; 1 ≤ i ≤ 9; it is to be noted each ni can take any 

value from Z and so all possible combinations  are exhausted as 

all possible values from Z are taken by all the ni’s :  

i = 1, 2, …, 9}.   

 

 

We find fm(A) where A = 

9 10 12

1 2 3

0 5 2

 
 
 
  

. 

 

 

Thus this set is an infinite collection but still not the totality 

of N. 

 

Hence  

 

fm(A) = {A, 

19 25 27 1 5 3

4 5 7 , 2 1 1

4 11 8 4 1 4

− − −   
   

− − −   
   

− − −   

 and so on} 

 

is an infinite collection. 

 

 

Consider B = 

7 6 5

0 1 2

3 4 5

 
 
 
  

∈ M 
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fm(B) = 

1 2 3

4 5 6

7 8 9

10n 7 15n 6 15n 12

3n 3n 1 4n 2

4n 3 6n 4 6n 5

 + + + 
 

+ + 
 + + + 

 ni ∈ Z; 

i = 1, 2, …, 9}  

 

is again an infinite collection.  

 

However fm(A) ∩ fm(B) = φ. 

 

Consider θ = 

0 0 0

0 0 0

0 0 0

 
 
 
  

∈ M; 

 

fm(θ) = 

1 2 3

4 5 6

7 8 9

10n 15n 15n

3n 3n 4n

4n 6n 6n

 
 
 
  

 | ni ∈ Z; 1 ≤ i  ≤ 9} 

 

is again an infinite collection. 

 

fm(θ) = 

0 0 0 10 15 15

0 0 0 , 3 3 4 ,

0 0 0 4 6 6

   
   
   
      

  

 

10 15 15 10 15 15

3 3 4 , 3 3 4

4 6 6 4 6 6

− − − − −   
   

− − − −   
   − − − −   

 

and so on}. 

 

We see fm(θ) ∩ fm(A) = φ fm(θ) ∩ fm(B) = φ and the fact is 

for each A ∈ M is such that fm(A) is a special collection of 

elements such that fm(A) is disjoint with every element of N and 

i

∑  fm(Ai) = N. 
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 Infact one can realize the MOD-multivalued matrix function 

fm as a partition on N. 

 

The notion of equivalence classes and equivalence relation 

can be defined in a routine way.  

 

Thus these MOD multivalued function behaves in a unique 

way. 

 

However in case of MOD functions f: Z → Zn reverse way of 

work is carried out as f([a]) = f(a); a∈Zn.   

 

That is an infinite collection of elements is mapped onto a 

single element.  

 

Such study is new and innovative for we are not in a 

position to fully analyse the behavior of these MOD functions 

and MOD-multivalued functions. 

 

Study of the special properties associated with these 

functions happens to be a open problem.  

 

Next we proceed onto describe MOD multivalued interval 

functions fm: [0, n) → R by the following examples. 

 

Example 2.36: Let fm : [0, 10) → R be the MOD multivalued 

interval function defined by 

 

fn(x) = {x or 10n + x; n ∈ Z}. 

 

Several interesting properties can be derived using the MOD 

multivalued interval function fm. 

 

fm(0.3) = {0.3, 10.3, 9.7, 20.3, 29.7 and so on}; this is an 

infinite collection. 

 

 Let 3 ∈ [0, 10);  fm(3) = {3, 13, 7, 23, 17, …}. 

 

It is easily verified fm(0.3) ∩ fm(3) = φ. 
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Infact this is true for every element of [0, 10). 

 

Thus each x ∈ [0, 10) has fm(x) and 
x [0,10)∈

∪ fm(x) = R and  

 

fm(x) ∩ fm(y) = φ if x ≠ y and x, y ∈ [0,10). 

 

Example 2.37: Let fm : [0,41) → R be the MOD-multivalued 

interval function fm(x) = {41n + x/ n ∈ Z} = {x, 41 + n, –41 + x 

and so on}. 

 

Let 4.3 ∈ [0, 41), then  

 

fm(4.3) = {4.3, 45.3, –36.7, –77.7, –118.7, 85.3, 127.3 and 

so on}.  

 

For 10.3 ∈ [0,41);  

 

fm (10.3) = {41n + 10.3 | n ∈ Z} = {10.3, 51.3, +92.3, 133.3, 

–30.7, –71.7 and so on} 

 

Clearly fm(4.3) ∩ fm(10.3) = φ. 

 

Infact the elements of R are partitioned by the MOD 

multivalued interval function fm and the interval [0, n). 

 

In view of this the following theorems are left as an 

exercise. 

 

THEOREM 2.9:  Let fm: Zn → Z be the MOD multivalued 

function. 

 

i) fm partitions Z into equivalence classes 

ii) fm(x) ∩ fm(y) = φ; 

nx Z∈

∪ fm(x) = Z. 
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 THEOREM 2.10:  Let fm : {p × q matrices with entries from Zn} 

= M → N = {collections of all p × q matrices with entries from 

Z} be the MOD-multivalued matrix function. 

 

i) Every matrix A in M is divided by the fm into  

 equivalence classes. 

ii) fm(A) ∩ fm(B) = φ if A ≠ B. 

iii) 
∈

∪
A M

fm(A) = N. 

 

Next we proceed onto develop the properties associated 

with MOD multivalued interval functions fm: [0, n) → R. 

 

THEOREM 2.11: Let fm : [0, n) → R be the MOD multivalued 

interval function. Then the following are true. 

 

i) fm partitions R into equivalence classes for every  

x ∈ [0, n). 

ii) fm(x) ∩ fm(y) = φ if x ≠ y; x, y ∈ [0, n). 

iii) 
[0, )

( )
∈

∪ m

x n

f x = R. 

 

Proof is left as an exercise to the reader. 

 

THEOREM 2.12:  Let fm: M → N where  

 

M = {p × q matrices collection with entries from [0,n)} and  

 

N = {collection of p × q matrices with entries from R} be a MOD 

interval multivalued matrix function. Then the following 

conditions are satisfied by fm. 

 

i) Every A ∈ M has a class of matrices associated with 

fm(A); such that N is partitioned into matrices classes. 

ii) fm(A) ∩ fm(B) = φ if A ≠ B; A, B ∈ M. 

iii) 
∈

∪
A M

fm(A) = N. 
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Proof is left as an exercise to the reader.   

 

We suggest the following problems some of which are at 

research level. 

 

 

Problems 

 

1. Develop the special properties enjoyed by the MOD function 

 

    f : Z → Zn (n < ∞; 2 ≤ n < ∞). 

 

2.  Let f: Z → Zm be the MOD function from Z to Zm;  

{{f({x}) = n | x ∈ Z} = n ∈ Zm} = {collection of all x ∈ Z 

such that f(x) = n}; n a fixed number. 

 

i) Prove if n1 = f({x1}) and n2 = f({x2}) then n1 ≠ n2. 

ii) f({x1}) ∩ f({x2}) = φ. 

 

3. Enumerate the special and distinct features enjoyed by  

 

f : Z → Zn; 2 ≤ n < ∞. 

 

4. Let f : (Z × Z × Z) → Z5 × Z5 × Z5 be the MOD function.  

 

Study all properties associated with f. 

 

5. Let f : M = {all p × q matrices with entries from Z} →   

N = {all p × q matrices with entries from Zn} be the MOD 

matrix function.   

 

Study all the special features enjoyed by f. 

 

6. Let f : Z → Z15 be the MOD function. 

 

 i) Find all special features of this MOD function f. 

 ii) Can we say there are only 15 disjoint sets of Z as the 

pull back of f or t = f(x) = {those element x in Z 

mapped onto t of Z15}? 
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7. Let M = {5 × 3 matrices with entries from Z} and  

 

N = {5 × 3 matrices with entries from Z20} 

 

 Let f : M → N be the MOD function. 

 

 i) Study all special  features enjoyed by f. 

 

 ii) Prove if A ∈ N then all those X ∈ M such that  

  {f(X)} = A is an infinite collection and if {f(X)} = A 

and {f(Y)} = B where {f(X)} = {all those elements in Z 

mapped onto A} 

  {f(Y)} = {All those elements in Z mapped onto B} 

  then {f(X)} ∩ {f(Y)} = φ if A ≠ B; A, B ∈ N. 

 

iii) Can we say the association of every A ∈ N makes M 

into disjoint sets such that it is a partition of M? 

 

8. Let M = {All 3 × 3 matrices with entries from Z} and  

N = {collection of all 3 × 3 matrices with entries from Z45}.  

 

f : N → M be the MOD matrix function.  

 

Study questions (i) to (iii) of problem (7) for this  

f : M → N. 

 

9. Let f: R → [0,20) be MOD interval function.  

 

Study questions (i) to (iii) of problem (7) for this function. 

 

10. Specify all special features associated with MOD interval 

function f : R → [0,m);  2 ≤ m < ∞. 

 

 

11. Let f : R → [0,9) be the MOD interval function. 
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 Let {f(x)} = {x ∈ R | f(x) = 3.77} and {f(y) = {y ∈ R | 

f(y) = 4.8} 

 

i) Prove {f(x)} ∩ {f(y)} = φ. 
 

ii) Prove
f (x) [0,9)

{f (x)}
∈

∪  = R. 

 

12. Let f : R → [0,25) be a MOD interval function.  

 

Study questions (i) to (iii) of problem (7) for this f. 

 

13. Let f : R × R → [0,7) × [0,7) be the MOD interval function.  

 

Study questions (i) to (iii) of problem (7) for this f. 

 

14. Let f: R × R × R × R × R → [0,23) × [0,23) × [0,23) × 

[0,23) × [0,23) × [0,23) be the MOD interval function.  

 

 Study questions (i) to (iii) of problem (7) for this f. 

 

15. Let f : 
1 2 3 4

5 6 7 8

a a a a

a a a a

 
 
 

| ai ∈ R; 1 ≤ i ≤ 8} = M →  

 

N = 
1 2 3 4

5 6 7 8

x x x x

x x x x

 
 
 

|  xi ∈ [0,43); 1 ≤ i  ≤ 8}  

 

be the MOD interval matrix function.  

 

Study questions (i) to (iii) of problem (7) for this f. 

 

16. When f : M → N is a MOD-interval matrix function, find all 

the special features enjoyed by such f. 
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17. Let f : 

i 0

∞

=




∑ aix

i
 / ai ∈ Z} → 

i 0

∞

=




∑  aix

i
 | ai ∈ Z40} be the 

MOD polynomial function.  

 

Can questions (i) to (iii) of problem (7) be true.  

 

Justify your claim. 

 

18. Find all the special and distinct features associated with 

MOD-polynomial functions. 

 

 i) Are these different from f: Z → Zn the MOD function? 

 

 ii) Are they similar or different from the MOD matrix  

  functions? 

 

19. Can we say MOD matrix function to satisfy (i) to (iii) of 

problem 7? 

 

Justify your claim. 

 

20. Let fm: Z15 → Z,  MOD-multivalued function. 

 

 i) Study all the special features associated with fm. 

 

 ii) Can fm partition the range space into a finite number of  

sets but each of them are of infinite cardinality? 

 

iii) Can we say fm is a sort of equivalence relation on Z? 

 

21. Let fm: Zn → Z  be the MOD-multivalued function.  

 

Study questions (i) to (iii) of problem (20) for this fm. 

 

22. Study questions (i) to (iii) of problem (21) for the function  

fm : Z53 → Z. 

 

23. Compare f: Z → Zn with fm: Zn → Z. 
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24. Can we say fm: Zn→ Z the MOD multivalued functions are 

not functions in the classical sense? 

 

 

25. Let fm: Z5 × Z5 × Z5 → Z × Z × Z be the MOD multivalued 

function.  

 

Can we prove the questions (i) to (iii) of problem (20) are 

true for this fm? 

 

26. Let fm: N = {collection of all 5 × 5 matrices with entries 

from Z12 → M = {collection of all 5 × 5 matrices with 

entries from Z} be the MOD-multivalued multifunction.  

 

 Can questions (i) to (iii) of problem (20) be true for this fm? 

 

27. Let fm: M = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

 | a1, a2 ∈ Z10, a3, a4 ∈ Z5,  

 

 a5, a6 ∈ Z7, a7, a8 ∈ Z19, a10, a9 ∈ Z12, a11, a12 ∈ Z23} →  

 

N = 

1 2 3 4

5 6 7 8

9 10 11 12

a a a a

a a a a

a a a a

 
 
 
  

| ai ∈ Z; 1 ≤ i ≤ 12}   

 

be the MOD-multivalued matrix function.  

 

Can questions (i) to (iii) of problem (20) be true for this fm. 

 

28. Study questions (i) to (iii) of problem (20) for the  

fn : Z10 × Z19 × Z48 → Z × Z × Z the MOD-multivalued 

function. 
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29. Let fm: [0,23) → R be the MOD-multivalued interval 

function.  

 

Study questions (i) to (iii) of problem (20) for this fm. 

 

30. Let fm : [0, n) → R, (2 ≤ n < ∞) be the MOD-multivalued 

interval function. 

  

 i)  Describe and develop all important features enjoyed by  

  fm. 
 

 ii) Distinguish this fm from gm: Zn → Z. 

 

31. Let fm: [0,43) → R be the MOD-multivalued interval 

function.  

 

Study all questions (i) to (iii) of problem (20) for this fm. 

 

32. Let fm: M = {collection of all 2 × 7 matrices with entries 

from [0,24)} → N = {collection of all 2 × 7 matrices with 

entries from R} be the MOD-multivalued interval matrix 

function.  

 

Can questions (i) to (iii) of problem (20) be true for this fm? 

 

33. Let fm: M = {collection of all 4 × 4 matrices with entries 

from [0,23)} → N = {collection of all 4 × 4 matrices with 

entries from R} be the MOD interval multivalued matrix 

function. 

 

 i) Study questions (i) to (iii) of problem (20) for this fm. 

 

 ii) Compare 1

mf [0,23) → R with the above fm where 1

mf is  

  the MOD-multivalued interval function. 
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34. Let 2

mf  : [0,24) × [0,43) → R × R be the MOD-multivalued 

interval function. 

 

 i) Compare 2

mf  with 1

mf  in problem (33). 

 

 ii) Compare 2

mf  with fm of problem (33). 

 

35. Let 
1 23

m

3 4

a a
f :

a a

 
 
 

 ai ∈ [0,5); a2 ∈ [0,42), a3 ∈ [0,427) and  

 

A4 ∈ [0,12)} = M → N = 
1 2

3 4

a a

a a

 
 
 

 | ai ∈ R  1 ≤ i ≤ 4}  

 

be MOD-multivalued interval matrix function 

 

 i) Study questions (i) to (iii) of problem (20) for this 3

mf . 

  

ii) Compare fm of problem (32) with this 3

mf . 

  

iii) Compare 1

mf of problem 33 with this 3

mf . 

  

iv) Compare 2

mf  of problem (34) with this 3

mf . 

 

36. Let p

mf : M = {Σaix
i
 | ai ∈ [0,43)} → N = {Σaix

i
 | ai ∈ R} be 

the MOD multivalued interval polynomial function. 

 

 i) Study questions (i) to (iii) of problem (20) for this p

mf . 

 

 ii) Compare p

mf  with 2

mf of problem (34). 

 

iii) Compare  p

mf with  3

mf  of problem (35). 
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 37. Let fm : [0,144) → R be the MOD-multivalued interval 

function. 

 

i) Into how many disjoint set R is partition by fm and the 

interval [0,144)? 

 

ii) Can we say if f : R → [0,144) then  

f ° fm = fm ° f = identity map? 

 

iii) Find f ° fm 

 

iv) Find fm ° f. 

 

 

38. Can we say the study of MOD-multivalued interval functions 

fm gives infinitely many fixed points? 

 

39. Find all the fixed points of f : Z → Z5. 

 

40. Find all fixed points of the MOD interval function  

f : R → [0,23). 

 

41. Find all the fixed points of f : Z × Z × Z → Z7 × Z12 × Z31 

where f is the MOD function. 

 

42. Find all fixed points of the MOD interval function  

f : R × R × R × R → [0,3) × [0,20) × [0,143) × [0,7). 

 

43. What are the special features associated with the fixed 

points of the MOD function and that of any classical 

function? 

 

44. What are fixed points of the MOD-multivalued function  

fm : Z48 → Z? 

 

45. Find all the fixed points of the MOD-multivalued interval 

function fm : [0,43) → R. 
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46. What are fixed points of MOD-multivalued functions  

 

 i) 1

mf [0,20) × [0,48) → R ×  R? 

 

 ii) 2

mf : ([0,19) × [0,22) × [0,19)) → R × R × R? 

 

iii) 
3

m

[0,40) [0,3) [0,7)
f : N

[0,12) [0,72) [0,5)

  
  
  

 → all 2 × 3 matrices  

 

 with entries from R? 

  



 
 
 
 
 

 

 

 
Chapter Three 
 
 

 
 
FIXED ELEMENTS OF MOD-MATRIX 

OPERATORS  
 
 
 

 Here for the first time the notion of MOD-matrix operators 

using MOD-integers is defined, described and developed.  

Further fixed elements which are row vectors or column vectors 

are obtained in the case of MOD-modulo integer matrix 

operators. 

 

 Throughout this chapter only square matrices will be used 

and they take entries only from the MOD-integers. So the 

number of n × n square matrices with entries from Zm the ring of 

modulo integers is finite.  

 

Further the collection of all row or column matrices with 

entries from Zm is also finite.  

 

This property is mainly exploited to get a fixed row vector 

or a fixed column vector depending on the way the operations 

are performed.  
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First this situation is represented by an example or two. 

 

Example 3.1: Let M = 
2 1

1 2

 
 
 

 be a matrix with entries from Z3.  

 

Consider the row vectors  

 

{(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1), (1,1), (2,2)}= A.  

 

 

Let x = (1, 0) we find when will x become a fixed point.   

 

Here if we take x = (1, 0) while updating we continue to 

keep the second coordinate to be always one. 

 

xM = (1, 0) 
2 1

1 2

 
 
 

 = (2, 1) → (1, 1) = y ‘→’ show the  

 

vector is updated. 

 

(1, 1) 
2 1

1 2

 
 
 

= (0, 0) → (1, 0) = x.  

 

 

Thus x = (1, 0) is a fixed point. 

 

Let y = (2, 1) ∈ A  

 

yM = (2,1) 
2 1

1 2

 
 
 

= (2, 1) = y. 

 

So the matrix operator yields y to be a fixed point.  

 

We call these fixed point as classical MOD matrix fixed 

points.  
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 The fixed point may occur at the first stage or at second 

stage and so on. 

 

Let (2, 2) = z ∈ A;  

 

zM = (2, 2) 
2 1

1 2

 
 
 

= (0, 0) = (2, 2) after updating is a fixed 

point.  

 

However if the notion of fixed point does not exist we call it 

as zero divisors or zero vectors. 

 

 

Example 3.2: Let  

 

M = 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

 

 

be the matrix with entries from Z6. 

 

We find the fixed row vectors by the MOD operator matrix 

M. 

 

Let A = {(x1, x2, x3, x4) where xi ∈ Z6; 1 ≤ i ≤ 4}. 

 

Take x = (3, 0, 2, 0) ∈ A; 

 

xM  = (3, 0, 2, 0) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (1, 2, 2, 3) 

 

→ (3, 2, 2, 3) = y1 (say)  
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(→ denote the vector has been updated)  

 

y1M → (3, 2, 2, 5) = y2 (say). 

 

y2M → (3, 2, 2, 3) = y3 (say) 

 

y3M → (3, 2, 2, 5) = y2.   

 

Thus it is a limit cycle and not a fixed point. 

 

Suppose we do not use the technique of updating we find  

 

xM = (3, 0, 2, 0) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (1, 2, 5, 3) = y1. 

 

 

y1M = (1, 2, 5, 3) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (0, 1, 0, 1) = y2 

 

 

y2M = (0, 1, 0, 1) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (5, 0, 1, 3) = y3 

 

 

y3M = (5, 0, 1, 3) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (2, 5, 0, 1) = y4 
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y4M = (2, 5, 0, 1) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (3, 4, 3, 5) = y5 

 

 

y5M = (3, 4, 3, 5) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (0, 3, 2, 5) = y6 

 

 

y6M = (0, 3, 2, 5) 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

= (0, 2, 1, 1) = y7 

 

 

y7M = (5, 1, 5, 4) = y8;  y8M = (3, 3, 2, 1) = y9;   

y9M = (2, 2, 0, 2) = y10;   y10M = (4, 4, 4, 4) = y11;  

y11M = (4, 0, 0, 4) = y12;  y12M = (4, 0, 0, 1) = y13;  

y13M = (1, 0, 0, 1) = y14;  y14M = (4, 0, 0, 2) = y15;  

y15M = (2, 0, 0, 4) = y16;  y16M = (4, 0, 0, 2) = y15. 

 

 

Thus this point is a limit cycle getting  

(4, 0, 0, 2) to (2 0, 0, 4), (4, 0, 0, 2) → (2, 0, 0, 4) → (4, 0, 0, 2) 

→ (2, 0, 0, 4) and so on. 

 

Thus we have three types of fixed points or limit cycles.  

 

This will be defined systematically in the following. 
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DEFINITION 3.1: Let S = (sij) be a n × n matrix with entries 

from Zm.  

 

P = {(a1, …, an) / ai ∈ Zm; 1 ≤ i ≤ n} collection of all row 

vectors. S is called the MOD operator on elements of P. 

 

For any X ∈ P we have  X × S ∈ P. Now if for X ∈ P;  

X × S  = X then X is defined as the classical fixed point of the 

MOD matrix operator S. 

 

If for any X ∈ P; 

XP → y1 → y2 → . . . → yt → yt → yt+1 … then X is defined 

as a limit cycle. 

 

If X ∈ P after some p number of iterations;  

 

XS → Y1 ,…, Yp–1 and Yp–1S = Yp–1 then X is defined as the 

realized fixed point of the MOD matrix operator S or MOD 

realized fixed point of S.   

 

If X ∈ P; XS → Y1 and if the coordinates of Y1 are updated 

that is if in X; ai, aj, …, ak points exists then in Y1 also we 

replace ai, aj, …, ak and only zero entries of X not updated then 

we find Y1S → Y2. 

 

Y2 is also updated, by this method after a finite number of 

steps we may arrive at a Yn where YnS = Yn then we call Yn the 

updated fixed point of X of the MOD-matrix operator S.   

 

If we do not get a fixed point but a limit cycle say Zn we call 

Zn the updated limit cycle of X of the MOD matrix operator S.  

 

Thus we have several types of fixed points (row vectors) 

associated with the MOD matrix operator. 

 

We will first illustrate this situation by some examples. 
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 Example 3.3: Let  

 

S = 

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

 
 
 
 
 
 

 

 

be the 4 × 4 matrix with entries from Z2 = {0, 1}.  

 

S is the MOD matrix operator acts on the set of state row 

vectors P = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), …, (1, 1, 1, 1)}; 

o(P) = 16. 

 

Let x = (1, 1, 0, 1) ∈ P; xS = (0, 0, 0, 1) = y1 (say) 

 

y1S = (1, 1, 0, 1) = y2 = x. 

 

So we see x → y1 → x → y is a limit cycle. 

 

Thus the MOD operator matrix S makes x only a limit cycle 

of length one. 

 

Let x1 = (0, 1, 1, 1) ∈ P;  

x1S = (0, 1, 0, 0) = y1 (say) 

y1S = (0, 1, 1, 1) = x2. 

 

Thus x1 = (0, 1, 1, 1) is again the limit cycle on the MOD 

operator matrix S. 

 

Let  x2 = (1, 0, 1, 1) ∈ P.    

x2S = (1, 0, 0, 0) = y1, 

   y1S = (1, 0, 1, 1) ∈ P. 

 

x2 is also a limit cycle  of the MOD-matrix operator. 

 

x3 = (1, 1, 1, 0) ∈ P.  
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The resultant or effect of x3 on the MOD matrix operator S is 

as follows. 

 

x3S = (0, 0, 1, 0) = y1; y1S = (1, 1, 1, 0) = x3  

 

is again a limit cycle using the MOD  matrix operator S. 

 

Consider a1 = (1, 1, 0, 0) ∈ P. 

 

The effect of a1 on the MOD-matrix operator S is as follows: 

a1S = (1, 1, 0, 0). 

 

So a1 is a classical fixed point of the MOD matrix operator S. 

 

Let a2 = (1, 0, 1, 0) ∈ P.  

 

The effect of a2 on S; a2S = (0, 1, 0, 1) = b1;  

b1S = (1, 0, 1, 0) ∈ P. 

 

a2 is a limit cycle for  

(1, 0, 1, 0) → (0, 1, 0, 1) → (1, 0, 1, 0) → (0, 1, 0, 1). 

 

Let a3 = (1, 0, 0, 1) ∈ P.  

 

The resultant of a3 on the MOD matrix operator S.  

  a3S = (0, 1, 1, 0) = b1. 

 

b1S = (1, 0, 0, 1) = a3.  

 

Thus a3 is only a limit cycle for the MOD matrix operator  

S as  

 

(1, 0, 0, 1) → (0, 1, 1, 0) → (1, 0, 0, 1) → (0, 1, 1, 0)… 

 

Next consider a4 = (0, 1, 1, 0) ∈ P. 

 

The effect of a4 on S is given in the following. 

 

a4S = (1, 0, 0, 1) = b1; b1S = (0, 1, 1, 0) = a4. 
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Thus a4 → b1 → a4 → b1 is a limit cycle. 

 

Let a5 = (0, 1, 0, 1) ∈ P.  

 

The resultant of a5 on S is as follows a5S = (1, 0, 1, 0) = b1. 

 

b1S = (0, 1, 0, 1) = a5. 

 

Thus a5 is a limit cycle of the MOD matrix operator S as  

 

(0, 1, 0, 1) → (1, 0, 1, 0) → (0, 1, 0, 1) → (1, 0, 1, 0).   

 

Let a6 = (0, 0, 1, 1) ∈ P.  

 

The resultant of a6 on the MOD matrix operator S is as 

follows. 

 

a6S = (0, 0, 1, 1) is again a classical fixed point of S. 

 

Consider d1 = (1, 0, 0, 0) ∈ S. 

 

The resultant of d1 on S is as follows.  

 

d1S = (1, 0, 1, 1) = b1, b1S = (1, 0, 0, 0) = d1. 

 

Thus (1, 0, 0, 0) → (1, 0, 1, 1) → (1, 0, 0, 0) → (1, 0, 1, 1) 

is only a limit cycle of the MOD matrix operator S. 

 

Let d2 = (0, 1, 0, 0) ∈ P; d2S = (0, 1, 1, 1) = b1;  

b1S = (0, 1, 0, 0).  

 

Thus  

(0, 1, 0, 0) → (0, 1, 1, 1) → (0, 1, 0, 0) → (0, 1, 1, 1) is 

again limit cycle of the MOD matrix operator S. 

 

Let d3 = (0, 0, 1, 0) ∈ P; the resultant of d3 on the MOD-

matrix operator S is d3S = (1, 1, 1, 0) =b1, b1S = (0, 0, 1, 0) = d3. 
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d3 is a limit cycle of the MOD-matrix operator S as  

(0, 0, 1, 0) → (1, 1, 1, 0) → (0, 0, 1, 0) → (1, 1, 1, 0). 

 

Now let d4 = (0, 0, 0, 1) ∈ P; the effect of d4 on the MOD-

matrix operator S is as follows. 

 

d4S = (1, 1, 0, 1) = b1; b1S = (0, 0, 0, 1) = d4. 

 

Thus  

(0, 0, 0, 1) → (1, 1, 0, 1) → (0, 0, 0, 1) → (1, 1, 0, 1) is a 

limit cycle of the MOD matrix operator S. 

 

Let c = (1, 1, 1, 1) ∈ P.  

 

The effect of c on S is cS = (1, 1, 1, 1) = c is a fixed point. 

 

Thus all the elements of P are either a fixed point of the 

MOD matrix operator or a limit cycle of length one.  

 

Now we change the MOD-matrix operator from S to  

 

M = 

1 1 0 0

1 0 1 1

0 0 0 1

0 1 1 0

 
 
 
 
 
 

. 

 

Now to find the effect of the elements of P on M. 

 

Let x1 = (1, 0, 0, 0) ∈ P.  

 

The effect of x1 on M.  

 

x1M = (1, 1, 0, 0) = y1; y1M = (0, 1, 1, 1) = y2 ;   

y2M = (1, 1, 0, 0) = y3; y3M = (0, 1, 1, 1) and so. 

 

So x1 is a limit cycle of the MOD matrix operator M 

 

(1, 0, 0, 0) → (1, 1, 0, 0) → (0, 1, 1, 1) → (1, 1, 0, 0) →  
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 (0, 1, 1, 1) → (1, 1, 0, 0) 

 

Let x2 = (0 1 0 0) ∈ P; the effect of x2 on M. 

 

x2M = (1 0 1 1) = y1 ;  y1M = (1 0 1 1) = y2 = y1 

 

x2 of P is only a realized fixed point of M as x2M ± x2 but  

x2M = (1 0 1 1) = y1 ; y1M = y1. 

 

Let x3 = (0 0 1 0) ∈ P.  

 

The effect of x3 on M. 

 

x3M = (0 0 0 1) = y1 ; y1M = (0 1 1 0) = y2 ; 

y2M = (1 0 1 0) = y3 ; y3M = (1 1 0 1) = y4 ; 

y4M = (0 0 0 1) = y1 . 

 

Thus  

(0 0 1 0) → (0 0 0 1) → (0 1 1 0) → (1 0 1 0) → (1 1 0 1) →  

(0 0 0 1) → (0 1 1 0) → (1 0 1 0) → (1 1 0 1) → (0 0 0 1). 

 

So x3 is a realized limit cycle on the MOD matrix operator 

M. 

 

Consider x4 = (0 0 0 1); to find the effect of x4 on M; 

 

x4M = (0 1 1 0) = y1 ;  y1M = (1 0 1 0) = y2 ; 

y2M = (1 1 0 1) = y3 ;  y3M = (0 0 0 1) = x4. 

 

So x4 is a realized classical fixed point as after four 

iterations x4M = x4. 

 

Thus is a very special type of fixed point  x5 = (1 1 0 0) ∈ P.  

 

The effect of x5 on the MOD matrix operator M. 

 

x5M = (0 1 1 1) = y1 ;  y1M = (1 1 0 0) = y2 ; 

y2M = (0 1 1 1). 
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Thus x5 is a realized fixed point of M after one iteration. 

 

Let x6 = (1 0 1 0) ∈ P, the effect of x6 on M is given below 

 

x6M = (1 1 0 1) = y1 ;  y1M = (0 0 0 1) = y2 ; 

y2M = (0 1 1 0) = y3 ;  y3M = (1 0 1 0) = x6 ; 

  

Thus x6 is a  realized fixed point of M after three iterations. 

 

Consider x7 = (1 0 0 1) ∈ P. 

 

x7M = (1 0 1 0) = y1 ;  y1M = (1 1 0 1) = y2 ; 

y2M = (0 0 0 1) = y3 ;  y3M = (0 1 1 0) = y4 ; 

y4M = (1 0 1 0) = y1. 

 

Thus the resultant of x7 on M is a limit cycle given by  

(1 0 0 1) → (1 0 1 0) → (1 1 01) → (0 0 0 1) → (0 1 1 0) →  

(1 0 1 0). 

 

Next let x8 = (0 1 1 0) ∈ P; to find effect of x8 on M.  

 

x8M = (1 0 1 0) = y1 ;  y1M = (1 1 0 1) = y2 ; 

y2M = (0 0 0 1) = y3 ;  y3M = (0 1 1 0) = y4 = x8. 

 

Thus the row vector x8 is a realized fixed point after three 

iterations. 

 

Let x9 = (0 1 0 1) ∈ P; to find the effect of x9 on M. 

 

x9M = (1 1 0 1) = y1 ;  y1M = (0 0 0 1) = y2 ; 

y2M = (0 1 1 0) = y3 ;  y3M = (1 0 1 0) = y4 ; 

y4M = (1 1 0 1) = y5. 

 

Thus it is a realized fixed point as (0 1 0 1) → (1 1 0 1) → 

(0 0 0 1) → (0 1 1 0) → (1 0 1 0) → (1 1 0 1). 

 

Let x10 = (0 0 1 1) ∈ P. To find the effect of x10 on M. 

 

x10M = (0 1 1 1) = y1 ;  y1M = (1 1 0 0) = y2 ; 
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 y2M = (0 1 1 1) = y3 = y1. 

 

Thus (0 0 1 1) → (0 1 1 1) → (1 1 0 0) → (0 1 1 1).  

 

Hence x10 is a realized fixed point of M. 

 

x11 = (1 1 1 0) ∈ P. 

 

x11M = (0 1 1 0) = y1 ;  y1M = (1 0 1 0) = y2 ; 

y2M = (1 1 0 1) = y3 ;  y3M = (0 0 0 1) = y4 ; 

y4M = (0 1 1 0) = y5 ( = y1). 

 

Thus the state vector is a realized fixed point of M. 

 

x12 = (1 1 0 1) ∈ P. To find the effect of x12 on M. 

 

x12M = (0 0 0 1) = y1 ;  y1M = (0 1 1 0) = y2 ; 

y2M = (1 0 1 0) = y3 ;  y3M = (1 1 0 1) = y4 = x12. 

 

The state vector x12 = (1 1 0 1) is a realized fixed point after 

three iterations x13 = (1 0 1 1) ∈ P. 

 

The effect of x13 on M is as follows.  

 

x13M = (1 0 1 1) = x13 is a fixed classical point of M. 

 

Let x14 = (0 1 1 1) ∈ P. 

 

The effect of x14 on M is as follows. 

 

x14M = (1 1 0 0) = y1 ; y1M = (0 1 1 1) = y2 = x14. 

 

The point x14 is a realized fixed point after one iteration. 

 

x15 = (1 1 1 1) ∈ P. 

 

The effect of x15 on M is as follows. 

 

x15M = (0 0 0 0) = y1 ;  y1M = (0 0 0 0). 
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Thus the effect of x15 is a fixed point or is zero. 

 

So if S and M are two 4 × 4 matrices with entries from  

Z2 = {0, 1} the effect of each element varies as is clearly seen. 

 

 

Let us consider the 4 × 4 matrix  

 

N = 

1 0 0 0

0 1 1 0

0 1 1 1

1 1 1 1

 
 
 
 
 
 

 with entries from Z2.   

 

To find the effect of  

P = {(a1, a2, a3, a4) where ai ∈ Z2 = {0, 1}; 1 ≤ i ≤ 4} on N. 

 

Let x1 = (1 0 0 0) ∈ P 

 

x1N = (1 0 0 0) = x1 is a classical fixed point of N. 

 

Let x2 = (0 1 0 0) ∈ P, to find effect of x2 on N. 

 

x2N = (0 1 1 0) = y1 ;   y1N = (0 0 0 1) = y2 ; 

y1N = (1 1 1 1) = y3 ; y3N = (0 1 1 0) = y4 ; 

y4N = (0 0 0 1) = y5 = (y2). 

 

We see 

 

x2 = (0 1 0 0) → (0 1 1 0) → (0 0 0 1) → (1 1 1 1) →  

 (0 1 1 0) → (0 0 0 1). 

 

Thus x2 is not the classical fixed point but x2 is a realized 

fixed point. 

 

Let x3 = (0 0 1 0) ∈ P, to find effect of on z3 on N. 

 

x3N = (0 1 1 1) = y1 ;  y1N = (1 1 1 0) = y2 ; 
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 y2N = (1 0 0 1) = y3 ;  y3N = (0 1 1 1) = y4 (= y1). 

 

Thus x3 is the realized fixed point of N. 

 

Let x4 = (0 0 0 1) ∈ P, to find effect of x4 on N. 

 

x4N = (1 1 1 1) = y1 ;  y1N = (0 1 1 0) = y2 

y2N = (0 0 0 1) = x4 is a fixed point after two iterations. 

 

x5 = (1 1 0 0) ∈ P.  

 

The effect of x5 on N is as follows. 

 

x5N = (1 1 1 0) = y1 ;  y1N = (1 0 0 1) = y2 ; 

y2N = (0 1 1 1) = y3 ;  y3N = (1 1 1 0) = y4 = y1. 

 

Thus effect of x5 is a realized fixed point  

(1 1 0 0) → (1 1 1 0) → (1 0 0 1) → (0 1 1 1) → (1 1 1 0). 

 

To find the effect of x6 = (1 0 1 0) ∈ P on N. 

 

x6N = (1 1 1 1) = y1 ;  y1N = (0 1 1 0) = y2 ; 

y2N = (0 0 0 1) = y3 ;  y3N = (1 1 1 1) = y4 (= y1). 

 

Thus x6 is a realized fixed point using N. 

 

x7 = (1 0 0 1) ∈ P.  

 

To find the effect of x7 on N. 

 

x7N = (0 1 1 1) = y1 ;  y1N = (1 1 1 0) = y2  ; 

 

y2N = (1 0 0 1) = x7; thus x7 is a realized fixed point of N. 

 

Consider x8 = (0 1 1 0) ∈ P, to find the effect of x8 on N. 

 

x8N = (0 0 0 1) = y1 ;  y1N = (1 1 1 1) = y2 ; 

y2N = (0 1 1 0) = y3 (= x8). 
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Thus x8 is a realized fixed point after two iterations. 

 

Let x9 = (0 1 0 1) ∈ P; to find the effect of x9 on N. 

 

x9N = (1 0 0 1) = y1 ;  y1N = (0 1 1 1) = y2 ; 

y2N = (1 1 1 0) = y3 ;  y3N = (1 0 0 1) = y4 (=y1). 

 

Hence the effect is a realized fixed point given in the 

following. 

 

(0 1 0 1) → (1 0 0 1) → (0 1 1 1) → (1 1 1 0) → (1 0 0 1). 

 

Consider x10 = (0 0 1 1) ∈ P. 

 

To find the effect of x10 on N. 

 

x10N = (1 0 0 0) = y1 ; y1N  = (1 0 0 0) = y2 = y1. 
 

Thus x10 give the MOD realized fixed point after one 

iteration. 

 

Let x11 = (1 1 1 0) ∈ P.  

 

To find the effect of x11 on N. 

 

x11N = (1 0 0 1) = y1 ;  y1N = (0 1 1 1) = y2 ; 

y2N = (1 1 1 0) = y3. 
 

(1 1 1 0) → (1 0 0 1) → (0 1 1 1) → (1 1 1 0). 

 

Thus x11 is a MOD realized fixed point of N. 

 

x12 = (1 1 0 1) ∈ P.  

 

To find the effect of x12 on N. 

 

x12N = (0 0 0 1) = y1 ;  y1N = (1 1 1 1) = y2; 

y2N = (0 1 1 0) = y3 ;  y3N = (0 0 0 1) = y4 (= y1). 
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 Hence  

(1 1 0 1) → (0 0 0 1) → (1 1 1 1) → (0 1 1 0) → (0 0 0 1) is 

a realized fixed point of x12. 

 

x13 = (1 0 1 1) ∈ P. To find the effect of x13 on N. 

 

x13N = (0 0 0 0) is a realized fixed point. 

 

Let x14 =  (0 1 1 1) ∈ P.  

 

To find the effect of x14 on N. 

 

x14N = (1 1 1 0) = y1 ;  y1N = (1 0 0 1) = y2 ; 

y2N = (0 1 1 1) = y3 (= x14). 

 

Clearly x14 after some iteration is a fixed point of N. 

 

(0 1 1 1) → (1 1 1 0) → (1 0 0 1) → (0 1 1 1). 

 

Let x15 = (1 1 1 1) ∈ P.  

 

To find the effect of x15 on N. 

 

x15N = (0 1 1 0) = y1 ;  y1N = (0 0 0 1) = y2 ; 

   y2N = (1 1 1 1) = y3. 

 

Thus x15 is a MOD realized fixed point as x15 only. 

  

Hence use of three different MOD matrix operators give 

different effect on the elements of P. 

 

Let us consider yet another MOD matrix operator with 

entries from Z2 = {0, 1}. 

 

Let W = 

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 
 
 
 
 
 

 be the MOD matrix operator. 
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To find effect of  

P = {(a1, a2, a3, a4) | ai ∈ {0, 1} = Z2; 1 ≤ i ≤ 4}. 

 

Let x1 = (1 0 0 0) ∈ P. To find effect of x1 on W. 

 

x1W = (1 0 0 0) = x1. 

 

Thus x1 is a fixed point of the MOD matrix operator. 

 

x2 = (0 1 0 0) ∈ P. 

 

To find the effect of x2 on W. 

 

x2W = (1 1 0 0) = y1 ; y1W = (0 1 0 0) = y2 = x2. 

 

Thus x2 is a realized fixed point. 

 

Let x3 = (0 0 1 0) ∈ P.  

 

To find the effect of x3 on W. 

 

x3W = (1 1 1 0) = y1 ;  y1W = (1 0 1 0) = y2 ; 

y2W = (0 1 1 0) = y3 ;  y3W = (0 0 1 0) = x3. 

 

Thus x3 is a realized fixed point of W. 

 

x4 = (0 0 0 1) ∈ P.  

 

To find the effect of x4 on W. 

 

x4W = (1 1 1 1) = y1 ;  y1W = (0 1 0 1) = y2 ; 

y2W = (0 0 1 1) = y3 ;  y3W = (0 0 0 1) = y4 = x4. 

 

Thus x4 is a realized fixed point on W and leads to a same 

fixed point after four iterations. 

 

Let x5 =  (1 1 0 0) ∈ P.  
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 To find the effect of x5 on W. 

 

x5W = (0 1 0  0) = y1 ; y1W = (1 1 0 0 ) = y2 (= x5). 

y2W = (0 1 0 0) = y3. 

 

Thus the realized fixed point of x5. 

 

Hence (1 1 0 0) → (0 1 0 0) → (1 1 0 0). 

 

Let x6 = (1 0 1 0) ∈ P.  

 

To find the effect of x6 on W. 

 

x6W = (0 1 1 0) = y1 ;  y1W = (0 0 1 0) = y2 ; 

y2W = (1 1 1 0) = y3 ;  y3W = (1 0 1 0) = x6. 

 

(1 0 1 0) → (0 1 1 0) → (0 0 1 0) → (1 0 1 0). 

 

Thus after iteration this is a fixed point by the MOD operator 

W. 

 

x7 = (1 0 0 1) ∈ P.  

 

To find the effect of x7 on W. 

 

x7W = (0 1 1 1) = y1 ;  y1W = (1 1 0 1) = y2 ; 

y2W = (1 0 1 1) = y3 ;  y3W = (1 0 0 1) = x7. 

 

Thus we have 

(1 0 0 1) → (0 1 1 1) → (1 1 0 1) → (1 0 1 1) → (1 0 0 1) 

which gives a realized fixed point. 

 

Let x8 = (0 1 1 0) ∈ P.  

 

To find the effect of x8 on W. 

 

x8W = (0 0 1 0) = y1 ;  y1W = (1 1 1 0) = y2 ; 

y2W = (1 0 1 0) = y3 ;  y3W = (0 1 1 0) = x8. 
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Hence  

(0 1 1 0) → (0 0 1 0) → (1 1 1 0) → (1 0 1 0) → (0 1 1 0). 

 

Thus x8 is a realized fixed point fixing the same point. 

 

Let x9 = (0 1 0 1) ∈ P.  

 

To find the effect of x9 on W. 

 

x9W = (0 0 1 1) = y1 ;  y1W = (0 0 0 1) = y2 ; 

y2W = (1 1 1 1) = y3 ;  y3W = (0 1 0 1) = x9. 

 

(0 1 0 1) → (0 0 1 1) → (0 0 01) → (1 1 1 1) → (0 1 0 1). 

 

Hence after three iterations we get the same point so x9 is 

the realized fixed point of W. 

 

x10 = (0 0 1 1) ∈ P. 

 

To find the effect of x10 on W. 

 

x10W = (0 0 0 1) = y1 ;  y1W = (1 1 1 1) = y2 ; 

y2W = (0 1 0 1) = y3 ;  y3W = (0 0 1 1) = x10. 

 

Hence  

(0 0 1 1) → (0 0 01) → (1 1 1 1) → (0 1 0 1) → (0 0 1 1). 

 

Thus x10 is a realized fixed point fixing x10 after three to 

four iterations. 

 

x11 = (1 1 1 0) ∈ P. 

 

To find the effect of x11 on W. 

 

x11W = (1 0 1 0) = y1 ;  y1W = (0 1 1 0) = y2 ; 

y2W = (0 0 1 0) = y3  ;  y3W = (1 1 1 0) = x11. 

 

(1 1 1 0) → (1 0 1 0) → (0 1 1 0) → (0 0 1 0) → (1 1 1 0). 
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 Thus x11 is a realized fixed point as x11 after three iterations. 

 

Let x12 = (1 1 0 1) ∈ P. 

 

To find the effect of x12 on W is as follows. 

 

x12W = (1 0 1 1) =  y1 ;  y1W = (1 0 0 1) = y2 ; 

y2W = (0 1 1 1) = y3 ;  y3W = (1 1 0 1) = x12. 

 

(1 1 0 1) → (1 0 1 1) → (1 0 0 1) → (0 1 1 1) → (1 1 0 1). 

 

Thus x12 is a realized fixed point after three iterations x12 is 

got x13 = (0 1 1 1) ∈ P.  

 

To find the effect of x13 on W. 

 

x13W = (1 1 0 1) = y1 ;  y1W = (1 0 1 1) = y2 ; 

y2W = (1 0 0 1) = y3 ;  y3W = (0 1 1 1) = x13. 

 

(0 1 1 1) → (1 1 0 1) → (1 0 1 1) → (1 0 0 1) → (0 1 1 1). 

 

Thus x13 is a realized fixed point after three iterations. 

 

x14 = (1 0 1 1) ∈ P.  

 

To find the effect of x14 on W. 

 

x14W = (1 0 0 1) = y1 ;  y1W = (0 1 1 1) = y2 ; 

y2W = (1 1 0 1) = y3 ;  y3W = (1 0 1 1) = x14. 

 

(1 0 1 1) → (1 0 0 1) → (0 1 1 1) → (1 1 0 1) → (1 0 1 1). 

 

Thus x14 is a realized fixed point by the MOD matrix W and 

is a fixed point x14. 

 

Let x15 = (1 1 1 1) ∈ P. 

 

To find effect of x15 on W. 
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x15W = (0 1 0 1) = y1 ;  y1W = (0 0 1 1) = y2 ; 

y2W = (0 0 0 1) = y3 ;  y3W = (1 1 1 1) = x15. 

 

(1 1 1 1) → (0 1 0 1) → (0 0 1 1) → (0 0 0 1) → (1 1 1 1). 

 

Thus x15 is a realized fixed point after 3 iterations. 

 

We will give one example using MOD matrix operation with 

elements from Z4. 

 

Example 3.4:  Let  

 

S = 

1 2 0 1

0 1 3 2

2 0 1 3

1 3 2 0

 
 
 
 
 
 

 

 

be a 4 × 4 MOD matrix operator with entries from Z4.  

 

P = {(a1, a2, a3, a4) | ai ∈ Z4; 1 ≤ i ≤ 4} be the collection of 4
4
 

number of state vectors. 

 

Let x1 = (1 0 0 0) ∈ P.  

 

To find the effect of x on S. 

 

x1S = (1 2 0 1) = y1 ;  y1S = (2 3 0 1) = y2 ; 

y2S = (3 2 3 0) = y3 ;  y3S = (1 0 3 0) = y4 ; 

y4S = (3 2 3 2) = y5 ;  y5S = (3 2 1 0) = y6 ; 

y6S = (1 0 3 2) = y7 ;  y7S = ( 1 0 3 2) = y8 (= y7). 

 

Thus x1 gives a realized fixed point after 8 iterations.  

 

x2 = (0 1 0 0) ∈ P. To find the effect of x2 on S. 

 

x2S = (0 1 3 2) = y1 ;  y1S = (0 3 2 3) = y2 ; 

y2S = (3 0 1 0) = y3 ;  y3S = (1 2 1 2) = y4 ; 

y4S = (0 2 3 0) = y5 ;  y5S = (2 2 1 1) = y6 ; 
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 y6S = (1 3 1 1) = y7 ;  y7S = (0 0 0 2) = y8 ; 

y8S = (2 2 0 0) = y9 ;  y9S = (2 2 2 2) = y10  ; 

y10S = (0 0 0 0) = y11 ;  y1S = (0 0 0 0). 

 

Thus the resultant is a realized fixed point given by  

(0 0 0 0). 

 

x3 = (0 0 1 0) ∈ P.  

 

To find the effect of x3 on S. 

 

x3S = (2 0 1 3) = y1 ;  y1S  = (3 1 3 1) = y2 ; 

y2S = (2 2 0 2) = y3 ;  y3S = (0 0 2 2) = y4 ; 

y4S = (2 2 2 2) = y5 ;  y5S = (0 0 0 0) = y6 ; 

y6S = (0 0 0 0) = y7. 

 

Thus this is also a fixed point only; a realized fixed point 

and is (0 0 0 0). 

 

Let x4 = (0 0 0 1) ∈ P. 

 

x4S = (1 3 2 0) = y1 ;  y1S = (0 1 3 1) = y2 ; 

y2S = (0 0 0 3) = y3 ;  y3S = (3 1 2 0) = y5 ; 

y5S = (3 3 1 1) = y6 ;  y6S = (1 0 0 0) = y7 ; 

y7S = (1 2 0 1) = y8 ;  y8S = (2 3 0 1) = y9 ; 

y9S = (3 2 3 0) = y10 ;  y10S = (1 0 1 0) = y11 ; 

y11S = (3 2 1 0) = y12 ;  y12S = (1 0 3 3) = y13 ; 

y13S = (2 3 1 2) = y14 ;  y14S = (2 3 2 3) = y15 ; 

y15S = (1 0 1 2) = y16 ;  y16S = (1 0 1 0) = y17 ; 

y17S = (3 2 1 0) = y18 = y12. 

 

This is a realized limit cycle. 

 

x5 = (2 0 0 1) ∈ P.  

 

To find the resultant of x5 on S. 

 

x5S = (3 3 2 2) = y1 ;  y1S = (1 3 3 3) = y2 ; 

y2S = (2 1 2 0) = y3 ;  y3S = (2 1 1 2) = y4 ; 
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y4S = (2 3 0 3) = y5 ;  y5S = (1 2 3 0) = y6 ; 

y6S = (3 0 1 2) = y7 ;  y7S = (3 0 1 2) = y8 (= y7). 

 

Thus the resultant of x5 = (2 0 0 1) is a realized fixed point 

(3 0 1 2). 

 

For after seven iteration the effect of x5 on the MOD operator 

matrix S results in the realized fixed point (3 0 1 2). 

 

Let x6 = (2 0 2 0) ∈ P.  

 

To find the effect of x6 on the MOD operator matrix S. 

 

x6S = (2 0 2 0). Thus x6S = x6 is the classical fixed point by 

the MOD matrix operator S. 

 

Consider x7 = (0 2 0 2) ∈ P.   

 

The effect of x7 on the MOD matrix operator S. 

 

x7S = (2 0 2 0) = y1 ;   y1S = (2 0 2 0) = y1. 

 

Thus x7 is a realized fixed point after first iteration.  

 

We get the fixed point (2 0 2 0). 

 

Let x8 = (2 2 2 2)  ∈ P.  

 

To find the effect of x8 on the MOD matrix operator S. 

 

x8S = (0 0 0 0) = y1 ;   y1S = (0 0 0 0) = y1. 

 

Thus this is a not a classical fixed point of S only, but 

realized fixed point of S.  

 

Now the following observation is very important. 
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 We see x6 = (2 0 2 0) is a classical fixed point so x6S = x6, 

x7 = (0 2 0 2) is a realized fixed point after one iteration given 

by (2 0 2 0).   

 

We see x8 = (2 2 2 2) = x6 + x7 sum of these two state 

vectors. 

 

x8S = (0 0 0 0) is the realized fixed point. 

 

So x8 = (2 2 2 2) = (2 0 2 0) + (0 2 0 2) = x6 + x7 is such that 

x8S = x6S + x7S = (2 0 2 0) + (2 0 2 0) = (0 0 0 0)  

 

(As x7S = x6 and x6S = x6). 
 

But will this property be true for all state vectors in P. 

 

We see more illustrations about the behavior of the effect of 

these state vector before we arrive at any conclusion. 

 

Let x9 = (1 2 1 2) ∈ P. 

 

The effect of x9 on S is given in the following. 

 

x9S = (1, 2, 3, 0) = y1 ;  y1S = (3, 0, 3, 2) = y2 ; 

y2S = (3, 0 3 0) = y3 ;  y3S = (1 2 3 0) = y4 (= y1). 

 

Thus x9 is a realized fixed cycle given by (1, 2, 3, 0).  

 

Let x10 = (2 1 2 1) ∈ P. 

 

The effect of x10 on S is given in the following. 

 

x10S = (3 0 3 2) = g1 ;   g1S = (3 0 3 0) = g2 ; 

g2S = (1 2 3 0) = g3 ;   g3S = (3 0 3 2) = g4 (=g1). 

 

Thus the resultant of x10 is a realized limit cycle. 

 

Consider x11 = x9 + x10 

     = (1 2 1 2) + (2 1 2 1) 
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     = (3 3 3 3) ∈ P. 

 

To find the effect of x11 on S 

 

x11S = (0 2 2 2) = y1 ;   y1S = (2 0 2 2) = y2 ; 

y2S = (0 2 2 0) = y3 ;   y3S = (0 2 0 2) = y4 ; 

y4S = (2 0 2 0) = y5 ;   y5S = (2 0 2 0) = y6 (=y5)  

 

is a realized fixed point. 

 

x9 = (1, 2, 1, 2) the resultant associated with it is (1 2 3 0).  

 

For x10 = (2, 1, 2, 1) the resultant associated with it is  

(3 0 3 2). x11 = x9 + x10 but resultant of x11 is (0 2 2 2). 

 

Thus there is no relation with this sum on S. 

 

Let x12 = (1 0 3 0) and x13 = (3 0 1 0) ∈ P. 

 

We will find the effect of x12 and x13 on S. 

 

x12S = (0 2 3 2) = y1 ;   y1S = (3 2 1 0) = y2 ; 

y2S = (1 0 3 2) = y3 ;   y3S = (1 0 3 2) = y4(= y3). 

 

Thus the resultant of x12 is a realized fixed point (1 0 3 2)    -- I 

 

The resultant of x13 on S. 

 

x13S = (1 2 1 2) = y1 ;   y1S = (0 2 3 0) = y2 ; 

y2S = (2 2 1 1) = y3 ;   y3S = (1 1 1 1) = y4 ; 

y4S = (0 2 2 2) = y5 ;   y5S = (2 0 0 2) = y6 ; 

y6S = (0 2 0 2) = y7 ;   y7S = (2 0 2 0) = y8 ; 

y8S = (2 0 2 0) = y7 (= y8). 

 

Thus the resultant of x13 is a realized fixed point given by  

 

(2 0 2 0)     –  II 
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 Now x12 + x13 = (1 0 3 0)  + (3 0 1 0) = (0 0 0 0) and effect 

of (0 0 0 0) on S is (0 0 0 0) it is a trivial classical fixed point. 

 

But x13S + x12S →  I + II 

       = (10, 3, 2) + (2 0 2 0) 

       = (3 0 1 2). 

 

Thus the resultant behaves in a chaotic way.  

 

Hence in view of this example the following theorem is 

evident. 

 

THEOREM 3.1: Let S = (aij) be a n × n matrix with entries from 

Zm be the MOD matrix operator on P = {(a1, …, an) / ai ∈ Zm;  

1 ≤ i ≤ n} the set of state vectors. If x and y ∈ P and if resultant 

of x on the MOD matrix operator is t and that of y is s then the 

resultant of x + y on S need not in general be t + s. 

 

Proof. Follows from the above example.  

 

In view of all these the following conjecture is left open. 

 

Conjecture 3.1.  If S and P be as in theorem 3.1. Characterize 

all those x and y ∈ P such that the sum of the resultants of x and 

y is the resultant sum of x and y. 

 

Conjecture 3.2. Let S and P be given as theorem 3.1.  

 

(i) Characterize all those classical fixed points of S.  

(ii) Can we say the fixed points are related to entries of S? 

 

Conjecture 3.3. Let S and P be as in theorem 3.1. 

 

Characterize all those realized fixed points of S. 

 

Conjecture 3.4.  Can we say for some MOD matrix operator S 

all elements of P are classical fixed points? 
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Conjecture 3.5. Does for some MOD operator say a n × n matrix 

S there is an element 

 

x ∈ {(a1, …, an) | ai ∈ Zm; 1 ≤ i ≤ n} = P which is fixed point 

after n
n
 – 2 iterations? 

 

Conjecture 3.6. Can there be a MOD operator matrix S for 

which every element is a realized fixed point after 5 iterations 

each? 

 

Example 3.5: Let   

 

S = 

1 2 3

3 3 0

2 1 3

 
 
 
  

 

 

be a 3 × 3 MOD matrix operator with elements from Z6.  

 

P = {(a1, a2, a3) | ai ∈ Z6; 1 ≤ i ≤ 3} be the collection of all 

state vectors. 

 

Let x1 = (1 1 1) ∈ P.  

 

To find the effect of x on S. 

 

x1S = (0 0 0).  

 

Thus x1 is a realized fixed point not a classical fixed point. 

 

Let x2 = (2 2 2) ∈ P.  

  

To find the effect of x2 on S is as follows. 

 

x2S = (0 0 0) is a MOD realized fixed point and a classical 

fixed point of S. 

 

Let x3 = (3 3 3) ∈ P. 
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 To find the effect of x3 on S. 

 

x3S = (0 0 0) is a realized fixed not and is not a classical 

fixed point. 

 

Let x4 = (4, 4, 4) ∈ P. The effect of x4 on S is as follows. 

 

x4S = (0, 0, 0) is a realized fixed point not a classical fixed 

point. 

 

Let x5 = (5, 5, 5) ∈ P; the effect of x5 on S is as follows. 

 

x5S = (0, 0, 0) is a realized fixed point and not a classical 

fixed point. 

 

Let  x6 = (2, 0, 2) ∈ P. 

 

 x6S = (0, 0, 0) is a realized fixed point.  

 

x7 = (0, 2, 0) ∈ P, the effect of S on x7 is as follows: 

 

x7S = (0, 0, 0), is a realized fixed point  

 

x8 = (2, 0, 0) ∈ P; the effect on x8 on S is as follows. 

 

x8S = (2, 4, 0) = y1 ; y1S = (2, 4, 0) = y2 (=y1). 

 

The resultant is only a realized fixed point of S. 

 

Let x9 = (0 0 2) ∈ P1 to find the effect of x9 on S 

 

x9S = (4 2 0) = y1 ;   y1S = (4 2 0) = y2 (= y1). 

 

This is the realized fixed point. 

 

x8 = (2 0 0) and x9 = (0 0 2);  x8 + x9 = (2 0 2) = x6 

 

x8S →  (2, 4, 0)  ;   x9S → (4, 2, 0) 
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(x8 + x9)S = x6S as realized fixed point of P. 

 

Let x10 = (1 2 3) ∈ P; to find the effect of x10 on S is as 

follows. 

 

x10S = (1 5 0) = y1 ;  y1S = (4 5 3) = y2 ; 

y2S = (1 5 3) = y3 ;  y3S = (4 2 0) = y4 ; 

y4S = (4 2 0) = y5 (= y4). 

 

Thus x10 = (1, 2, 3) is only a realized fixed point. 

 

x1 = (1 0 0) ∈ P.  

 

The effect of x1 on S. 

 

x1S = (1 2 3) = y1 ;  y1S = (1 5 0) = y2 ; 

y2S = (4 5 3) = y3 ;  y3S = (2 2 3) = y4 ; 

y4S = (2 1 3) = y5 ;  y5S = (5 4 3) = y6 ; 

y6S = (5 1 0) = y7 ;  y7S = (2 1 3) = y8 (= y5). 

 

We see x1 is a limit cycle with (2, 1, 3) as the limit cycle. 

 

x2 = (0 2 0). To find the effect of x2 on S. 

 

x2S = (0, 0, 0) is a realized fixed point. 

 

Let x3 = (0, 0, 3) ∈ P.  

 

To find the effect of x3 on S. 

 

x3S = (0, 3, 3) = y1 ;  y1S = (3, 0, 3) = y2 ; 

y2S = (3, 3, 0) = y3 ;  y3S = (0, 3, 3) = y4 (=y1). 

 

Thus x3 gives a realized limit cycle. 

 

x10  = (1, 2, 3) = x1 + x2 + x3  

 

    = (1 0 0) + (0 2 0) + (0 0 3) 

    = (1, 2, 3) (1 2 3) S → (4, 2, 0)  
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 is the realized fixed point (1 0 0) S → (2 1 3) is a MOD limit 

cycle. 

 

(0 2 0)S = (0 0 0) is a realized fixed point. 

(0 0 3)S = (0 3 3) is a limit cycle. 

 

Sum of  

(1 0 0) S + (0 2 0) S + (0 0 3) S = (2 1 3) + (0 0 0) + (0 3 3) 

= (2 4 0). 

 

Thus we see effect of sum of three elements in P is not the 

resultant sum. 

 

This is clearly shown by x10 = (1, 2, 3) ∈ P. 

 

Consider x4 = (2 1 2) ∈ P; to find the effect of x4 on S. 

 

x4S = (3 3 0) = y1 ;   y1S = (0 3 3) = y2 ; 

y2S = (3 0 3) = y3 ;   y3S = (3 3 0) = y4 (=y1). 

 

The resultant is a realized limit cycle. 

 

Let x1 = (2 0 0) ∈ P.  

 

To find the effect of x1 on S. 

 

x1S = (2 4 0) = y1 ;   y1S = (2 4 0) = y2  

 

is realized fixed point. 

 

Let x2 = (0 1 0) ∈ P; to find the effect of x2 on S. 

 

x2S = (3 3 0) = y1 ;   y1S = (0 3 3) = y2 ; 

y2S = (3 0 3) = y3 ;   y3S = (3 3 0) = y4 (=y1). 

 

The resultant is a limit cycle. 

 

Let x3 = (0 0 2) ∈ P, to find the effect of x3 on S. 
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x3S = (4 2 0) = y1 ;   y1S = (4 2 0) = y2 (=y1). 

 

The resultant is a realized fixed point. 

 

x4S gives the limit cycle as (3, 3, 0) 

x1S is a fixed point (2, 4, 0) 

x2S is a limit cycle (3, 3 0) 

x3S is a fixed point (4, 2 0). 

 

Sum of x1S + x2S + x3S  

= (2, 4, 0) + (3, 3, 0) + (4, 2, 0) 

= (3, 3, 0). 

 

Here the resultant sum is the sum of the resultant. 

 

Next we make the fixed point of MOD matrix operators 

using the state vectors as 0 or 1 tuples with operators of 

updating and threshold the state vectors.  

 

This will be illustrated by the following example. 

 

 

Example 3.6: Let  

 

S = 

3 2 1 4 0

5 0 2 1 4

1 3 0 2 1

0 4 3 0 5

2 1 4 5 2

 
 
 
 
 
 
  

 

 

be the MOD matrix operator with entries from Z6. 

 

Let P = {(x1, x2, x3, x5) | xi ∈ {0, 1}; 1 ≤ i ≤ 5} (where xi = 1 

it implies the state vector is on state if xi = 0 then it is off state.  

 

In this working the state vector at each stage will be updated 

and thresholded. 
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 Let x = (1 0 1 0 0) ∈ P.  

 

To find the effect of x on S. 

 

xS = (4 5 1 0 1) after updating and thresholding 

 

xS = (4 5 1 0 1) → (1 1 1 0 1) = y1; 

 

y1S = (5 0 1 5 1) after updating and threshold. 

 

y1S →  (1 0 1 1 1) = y2 

y2S = (0 4 2 5 2) → (1 1 1 1 1) = y3 ; 

y3S = (5 4 4 0 0) → (1 1 1 0 0) = y4 ; 

y4S = (3, 5, 3, 1, 5) → (1 1 1 1 1) = y5 ; 

y5 S →  (1 1 1 0 0). 

 

Thus the resultant is a limit cycle. 

 

Let x1 = (0 1 1 0 0 ) ∈ P.   

 

To find the effect of x1 on S. 

 

x1S = (0, 3, 2, 3, 5) → (0, 1, 1, 1 1) = y1 ; 

y1S = (2, 2, 3, 2, 0) → (1, 1, 1, 1, 0) = y2 ; 

y2S = (3, 3, 0, 1, 4) → (1, 1, 1, 1, 1) = y3 ; 

y3S = (5 4 4 0 0) → (1 1 1 0 0) = y4 ; 

y4S = (3 5 3 1 5) = (1, 1, 1, 1, 1) = y5 ; 

y5S →  (1 1 1 0 0) = y6 (=y4). 

 

Once again the resultant of (0 1 1 0 0) is only a limit cycle. 

 

Let x3 = (0 0 0 1 1) ∈ P. 

 

To find the effect of x3 on S. 

 

x3S = (2, 5, 1, 5, 1) → (1 1 1 1 1) = y1 ; 

 

y1S = (5 4 4 0 0) → (1 1 1 1 1) = y2 (=y1). 
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Thus the resultant of x3 is fixed point. 

 

Let z1 = (1 0 0 0 0) and z2 = (0 0 0 1 0) ∈ P. 

 

We will find the effect of z1, z2 and z1 + z2 on the MOD 

matrix operator S. 

 

z1S = (3, 2, 1, 4, 0) → (1, 1, 1, 1, 0) = y1 

y1S = (3 3 0 1 4) → (1 1 0 1 1) = y2 

y2S = (4 1 4 4 5) → (1, 1, 1, 1, 1) = y3 

y3S = (5 4 4 0 0) → (1 1 1 0 0) = y4 

y4S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y5 

y5S = (1, 1, 1, 0, 0) = y6 (=y4). 

 

Thus the resultant is a limit cycle. 

(1 1 1 1 1) → (1 1 1 0 0) → (1 1 1 1 1)    --I 

 

Consider the resultant of z2 on S (z2 = (0 0 0 1 0)) 

z2S = (0 4 3 0 5) → (0, 1, 1, 1, 1) = y1 

y1S = (2 2 3 2 0) → (1, 1, 1, 1, 0) = y2 

y2S = (3, 3, 0, 1, 4) → (1, 1, 0, 1, 1) = y3 

y3S = (4 1 4 4 1) → (1, 1, 1, 1, 1) = y4 

y4S = (5, 4, 4, 0, 0) → (1, 1, 1, 0, 0) = y5 

y5S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y6 (=y4). 

 

Thus the limit point of z2 = (0 0 0 1 0) is also the limit cycle 

given by  

(1, 1, 1, 1, 1) → (1, 1, 1, 0, 0) → (1, 1, 1, 1, 1)   -- II  

 

From I and II it is clear the resultant is the limit cycle. 

 

Let z1 + z2 = (1 0, 0, 1, 0), to find the effect of z1 + z2 on S. 

 

(z1 + z2) S = (3 0 4 4 5) → (1 0 1 1 1) = y1; 

y1S = (0 4 2 5 2) → (1, 1, 1, 1, 1) = y2 

y2S = (5, 4, 4, 0 0) → (1, 1, 1, 0, 0) = y3 

y3S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y4 (= y2). 
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Thus the resultant of z1 + z2 is also a limit cycle  

(1, 1, 1, 1, 1) → (1, 1, 1, 0, 0) → (1, 1, 1, 1, 1)  --- III 

 

Thus I, II and III are the same.  

 

Hence the result of z1, z2 and their sum z1 + z2 is a limit 

cycle, which is the same limit cycle evident from I, II and III. 

 

Let x1 = (0 0 1 0 0) and x2 = (0 0 1 0 1) to find the resultant 

of x1, x2 and x1 + x2 on the MOD matrix operator S. 

 

x1S = (1 3 0 2 1) → (1, 1, 1, 1, 1) = y1 

y1S = (5, 4, 4, 0 0) → (1, 1, 1, 0, 0) = y2 

y2S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y3 (=y1) 

is a realized limit cycle.  

 

(1, 1, 1, 1, 1) → (1, 1, 1, 0, 0) → (1, 1, 1, 1, 1)   

 

Consider the effect of x2 = (0 0 1 0 1) on S. 

 

x2S = (3 4 4 1 3) → (1, 1, 1, 1, 1) = y1 

y1S = (5, 4, 4, 0, 0) → (1, 1, 1, 0, 0) = y2 

y2S = (3, 5, 3, 1, 5) → (1, 1, 1, 1, 1) = y3 

y3S = (5, 4, 4, 0, 0) → (1, 1, 1, 0, 0) = y4 (=y2). 

 

Thus we see the resultant of x2 is a limit cycle given by  

(1, 1, 1, 1, 1) → (1, 1, 1, 0, 0) → (1, 1, 1, 1, 1). 

 

Consider x = x1 + x2 = (0 0 1 0 0) + (0 0 1 0 1) = (0 0 1 0 1). 

 

So is again a limit cycle with same cycle. 

 

Consider x1 = (0 0 0 0 1) and x2 = (0 0 0 1 0) ∈ P. 

 

To find the effect of x1, x2 and x1 + x2 on S. 

 

x1S = (2 1 4 5 2) → (1, 1, 1, 1, 1) = y1 



94 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

 

y1S = (5, 4, 4, 0 0) → (1, 1, 1, 0, 0) = y2 

y2S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y3 (=y1). 

 

Thus the resultant is a limit cycle. 

 

Consider x2 = (0 0 0 1 0) ∈ P.  

 

To find the effect of x2S. 

 

x2S =  (0 4 3 0 5) → (0 1 1 1 0) = y1 

y1S = (0 1 5 3 4) → (0 1 1  1 1) = y2 

y2S = (2 1 3 2 0) → (1, 1, 1, 1, 0) = y3 

y3S = (3, 3, 0, 1, 4) → (1 1 0 1 1) = y4 

y4S = (4 1 4 4 5) → (1, 1, 1, 1, 1) = y5 

y5S = (5, 4 4 0 0) → (1, 1, 1, 0, 0) = y6 

y6S = (3 5 3 1 5) → (1, 1, 1, 1, 1) = y7 (=y5). 

 

Thus is again a limit cycle x1 + x2 = (0 0 0 1, 1) = x. 

 

To find the effect of x on S. 

 

xS = (3 5 1 5 1) → (1, 1, 1, 1, 1) = y1 

y1S = (5, 4, 4, 0, 0) → (1, 1, 1, 0, 0) = y2 

y2S = (3, 5, 3, 1, 5) → (1, 1, 1, 1, 1) = y3 (=y1). 

 

Thus this is also a limit cycle; infact the same limit cycle. 

 

Next we proceed onto study effect of this same S using  

 

B = {(a1, a2, a3, a4, a5) | ai ∈ Z6; 1 ≤ i ≤ 6}. 

 

We do not update or threshold the vectors in B. 

 

Take x1 = (1 0 1 0 0) ∈ B. 

 

To find the resultant of x1 S. 

 

x1S = (4, 5, 1, 0, 1) = y1 (say) 
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 y1S = (4, 0, 2, 0, 5) = y2 (say) 

y2S = (0, 1, 0, 3, 0) = y3 

y3S = (5, 0, 1, 1, 3) = y4 

y4S = (4, 2, 2, 1, 0) = y5 

y5S = (0, 0, 5, 4, 3) = y6 

y6S = (5, 0, 0, 1, 5) = y7 

y7S = (1, 1, 4, 3, 3) = y8 

y8S = (0, 5, 0, 4, 5) = y9 

y9S = (5, 3, 0, 0, 2) = y10 

y10S = (4, 0, 1, 3, 4) = y11 

y11S = (3, 3, 5, 2, 0) = y12 

y12S = (5, 5, 3, 1, 3) = y13 

y13S = (1, 2, 0, 4, 4) = y14 

y14S = (3, 4, 3, 2, 0) = y15 

y15S = (2, 5, 5, 4, 3) = y16 

y16S = (0, 2, 0, 2, 3) = y17 

y17S = (4, 5, 4, 5, 0) = y18 

y18S = (5, 4, 5, 3, 1) = y19 

y19S = (0, 2, 2, 3, 2) = y20 

y20S = (4, 2, 3, 4, 3) = y21 

y21S = (1, 0, 2, 3, 1) = y22 

y22S = (1, 3, 2, 1, 1) = y23 

y23S = (4, 1, 2, 4, 3) = y24 

y24S = (1, 3, 0, 0, 2) = y25 

y25S = (4, 4, 3, 5, 4) = y26 

y26S = (1, 5, 1, 4, 4) = y27 

y27S = (1, 1, 3, 7, 1) = y28 

y28S = (1, 4, 4, 4, 2) = y29 

y29S = (1, 2, 5, 2, 2) = y30 

y30S = (2, 3, 1, 2, 3) = y31 

y31S = (4, 5, 2, 4, 1) = y32 

y32S = (5, 1, 0, 0, 2) = y33. 

 

We have not reached realized a fixed point or a realized 

limit even after 32 iterations.  

 

However we are sure by (6
5
 – 1) iterations we will reach a 

realized fixed point or a limit cycle. For B is only a finite set 

hence the claim. 
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Next we find the effect of x2 = (0 0 0 0 1) ∈ B on S. 

 

x2S = (2, 1, 4, 5, 2) = y1 

y1S = (1, 2, 5, 3, 1) = y2 

y2S = (2, 0, 0, 3, 0) = y3 

y3S = (0, 4, 5, 2, 3) = y4 

y4S = (1, 2, 2, 5, 1) = y5 

y5S = (5, 5, 0, 3, 1) = y6 

y6S = (5, 5, 5, 0, 1) = y7 

y7S = (5, 3, 1, 4, 3) = y8 and so on. 

 

However we will get the resultant as realized fixed point or 

a realized limit cycle with in 6
5
 – 1 iterations. 

 

Next we proceed onto study the effect of a lower triangular 

MOD matrix operator. 

 

Example 3.7: Let  

 

S = 

1 0 0 0

2 2 0 0

3 3 2 0

2 2 2 2

 
 
 
 
 
 

 

 

be the lower triangular MOD matrix operator with entries from 

Z4. 

 

P = {(a1 a2 a3 a4) | ai ∈ Z4; 1 ≤ i ≤ 4} be the 4
4
 number of 

state vectors. 

 

Consider x1 = (1 0 0 0) ∈ P. 

 

x1S = (1 0 0 0) = x1 is a classical fixed point. 

 

Let x2 = (2 0 0 0) ∈ P x2S = x2 is again a classical fixed 

point. 
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 Let x3 = (3 0 0 0) ∈ P. 

 

 x3S = x3 is the classical fixed point.   

 

Thus this MOD tower triangular matrix operator has classical 

fixed points.  

 

 Let x4 = (1,1,1,1) ∈ P. 

 

x4S = (0 3 0 2) =  y1 

 

y1S = (2 2 0 0) = y2 

y2S = (2 0 0 0) = y3 

y3S = (2 0 0 0) = y4 (=y3) is only a realized fixed point. 

 

Let x5 = (2 0 0 2) ∈ P.  

 

To find the effect of x5 on S. 

 

x5S = (2 0 0 0) = x5; 

 

x5 is also a classical fixed point. 

 

Let x6 = (0, 1, 0, 0).  

 

To find the effect of x6 on S. 

 

x6S = (2, 2, 0, 0) = y1 

y1S = (2, 0, 0, 0) = y3 (=y2). 

 

Thus (0 1 0 0) is only a realized fixed point and not a 

classical fixed point. 

 

Let x7 = (0 0 1 0) ∈ P.  

 

To find the effect of x7 on S. 

 

x7S = (3 3 2 0) = y1 

y1S = (2 3 0 0) = y2 
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y2S = (0 2 0 0) = y3 

y3S = (0 0, 0, 0) = y4 (= y3) is a realized fixed point. 

 

Consider x8 = (0 0 0 1) ∈ P.  

 

The effect of x8 is on S is as follows. 

 

x8S = (2 2 2 2) = y1 

y1S = (0 2 0 0) = y2 

y2S = (0 0 0 0) is a realized fixed point 

 

Now x4 = (1, 1, 1, 1) = x1 + x6 + x7 + x8 =  

(1, 0, 0, 0) + (0, 1, 0 0) + (0, 0, 1, 0) + (0, 0, 0, 1). 

 

x4S gives (2, 0, 0, 0) as a realized fixed point. 

 

x1 is a classical fixed point (1 0, 0, 0) 

x6 is a realized fixed point (2, 0, 0, 0) 

x7 and x8 are realized fixed point (0 0 0 0). 

 

However x4S ≠ x1S + x6S + x7S + x8S 

 

(2000) ≠ (1000) + (2, 0, 0, 0) + (0 0 0 0) + (0 0 0 0). 

 

Hence the concept of sum of the resultant is a resultant sum 

is not true in general. 

 

Let x = (1 2 3 1) ∈ P.  

 

To find the effect of x on S. 

 

xS = (0, 3, 0 2) = y1 

y1S = (2 2 0 0) = y2 

y2S = (2 0 0 0) = y3 

y3S = (2 0 0 0) = y4 (=y3) is a realized fixed point. 

 

Next we study MOD symmetric matrix operators. 
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 Example 3.8: Let  

 

S = 

2 1 0 3

1 0 2 1

0 2 1 0

3 1 0 3

 
 
 
 
 
 

 

 

be the symmetric MOD matrix operator with entries from Z4. 

 

P = {(a1, a2, a3, a4) | ai ∈ Z4  1 ≤ i ≤ 4} be collection of state 

vectors. 

 

Let x1 = (1 0 0 0) ∈ P.  

 

To find the effect of x on S. 

 

x1S = (2 1 0 3) = y1 

y1S = (2 1 2 0) = y2  

y2S = (1 2 2 3) = y3 

y3S = (1 0 2 2) = y4 

y4S = (0 3 2 1) = y5 

y5S = (2 1 0 2) = y6 

y6S = (3 0 2 2) = y7 

y7S = (0 1 2 3) = y8 

y8S = (2 3 0 2) = y9 

y9S = (1 0 2 3) = y10 

y10S = (2 0 2 0) = y11 

y11S = (0 2 2 2) = y12 

y12S = (0 2 2 2) = y13 (=y12). 

 

Thus x1 is a realized fixed point given by (0 2 2 2).   

 

Consider x2 = (0 1 0 0) ∈ P. 

 

The effect of x2 on S is as follows. 

 

x2S = (1 0 2 1) = y1 

y1S = (1 2 2 2) = y2 



100 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

 

y2S = (2 3 2 3) = y3 

y3S = (1 1 0 2) = y4 

y4S = (1 3 2 2) = y5 

y5S = (3 3 0 0) = y6 

y6S = (1 3 2 0) = y7 

y7S = (1 1 0 2) = y8 

y8S = (1 3 2 2) = y9 

y9S = (3 3 0 0) = y10 (=y6). 

 

Thus the resultant is a realized limit cycle. 

 

Let x3 = (0, 0, 1, 0) ∈ P. 

 

To find the effect of x3 on S. 

x3S = (0 2 1 0) = y1 

y1S = (2 2 1 2) = y2 

y2S = (0 2 1 2) = y3 

y3S = (0 0 1 0) = y4 (=x3). 

 

Thus x3 is only a realized fixed point of S. 

 

Let x4 = (0 0 0 1) ∈ P.  

 

To find the effect of x4 on S. 

 

x4S = (3 1 0 3) = y1 

y1S = (0 2 2 3) = y2 

y2S = (3 3 2 3) = y3 

y3S = (2 2 0 1) = y4 

y4S = (1 3 0 3) = y5 

y5S = (2 0 2 3) = y6 

y6S = (1 1 2 3) = y7 

y7S = (0 0 0 1) = y8 (= x4). 

 

Thus it is a realized fixed point as only after seven iterations 

we get x4. 
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 Let x = x1 + x2 + x3 + x4 

 

(1, 1, 1, 1) = (1, 0, 0, 0) + (0, 1, 0, 0) + (0, 0, 1, 0) + (0, 0, 0, 1)  

     = (1, 1, 1, 1) ∈ P. 

 

To find the effect of x on S. 

 

xS = (2 0 3 3) = y1 

y1S = (1 3 3 3) = y2 

y2S = (2, 2, 1, 3) = y3 

y3S = (3 3 1 1) = y4 

y4S = (2 2 3 3) = y5 

y5S = (3 3 3 1) = y6 

y6S = (0 2 1 3) = y7 

y7S = (3 1 1 3) = y8 

y8S = (0 0 3 3) = y9 

y9S = (1 1 3 1) = y10 

y10S = (2 0 1 3) = y11 

y11S = (1 3 1 3) = y12 

y12S = (2 2 3 3) = y13 (=y5). 

 

The resultant is only a realized limit cycle. 

 

Consider x = (1 3 1 3) ∈ P.  

 

To find the effect of x on S. 

 

xS = (2 2 3 3) = y1 

y1S = (3 3 3 3) = y2 

y2S = (2 0 1 1) = y3 

y3S = (3 3 1 1) = y4 

y4S = (0 2 3 3) = y5 

y5S = (3 1 3 3) = y6 

y6S = (0 0 1 3) = y7 

y7S = (1 1 2 1) = y8 

y8S = (2 2 0 3) = y9 

y9S = (3 1 0 1) = y10 

y10S = (2 0 2 1) = y11 

y11S = (3 3 2 1) = y12 
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y12S = (0, 0, 0 3) = y13 

y13S = (1 3 0 1) = y14 

y14S = (0 2 2 1) = y15 

y15S = (1 1 2 1) = y16 

y16S = (2 2 0 3) = y17 

y17S = (3 1 0 1) = y18 (=y10). 

 

Thus the resultant is  a realized limit cycle of S. 

 

Consider x = (3, 1, 3, 1) ∈ P.  

 

To find the effect of x on S 

 

xS = (0 2 1 1) = y1 

y1S = (1 3 1 1) = y2 

y2S = (0 0 3 1) = y3 

y3S = (3 3 3 3) = y4 

y4S = (2 0 1 1) = y5 

y5S = (3 3 1 1) = y6 

y6S = (0 2 3  3) = y7 

y7S = (3 1 3 3) = y8 

y8S = (0 0 1 3) = y9 

y9S = (1 1 1 1) = y10 

y10S = (2 0 3 3) = y11 

y11S = (1 3 3 3) = y12 

y12S = (2 2 1 3) = y13 

y13S = (3 3 1 1) = y14 ( = y6). 

 

Thus the resultant of x is a realized limit point of S. 

 

Now we have worked with symmetric MOD matrix 

operators and lower triangle MOD matrix operator of S. 

 

Now we proceed onto study the resultant of column vectors 

on MOD matrix operators. 
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 Example 3.9: Let  

 

A
⊥

 = 
0 1 0

, , ,
0 0 1

     
     
     

2 0 1 2 1 2
, , , , ,

0 2 2 1 1 2

           
           
           

 

 

be the set of state column vectors given in example 3.1. 

 

Let  

 

M = 
2 1

1 2

 
 
 

 

 

be the same MOD operator matrix as in example 3.1. 

 

Let x = 
1

0

 
 
 

; 

 

Mx = 
2 1 1 2

1 2 0 1

     
=     

     
= y1 

 

My1 = 
2 1 2 2

1 2 1 1

     
=     

     
= y2 (= y1). 

 

Thus y2 is a realized fixed point of M. 

 

Let Z = 
2

2

 
 
 

∈A
⊥

.  

 

To find the resultant of Z on M.  

 

MZ = 
0

0

 
 
 

 is the fixed point. 

 

However if x = (1, 0), then  xM is a realized fixed point  

(2, 1) = y. 
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Now for x = (2, 2), x is a realized fixed point (0, 0). 

 

We give another example. 

 

 

Example 3.10: Let  

 

M = 

3 2 1 5

4 0 3 1

2 1 1 0

1 0 4 2

 
 
 
 
 
 

 

 

be the MOD matrix operator. 

 

Let A
⊥

 = 

1

2

3

4

a

a

a

a

 
 
 
 
  

 | ai ∈ Z6; 1 ≤ i  ≤ 4} be the state vectors. 

 

 

Let x = 

3

0

2

0

 
 
 
 
 
 

 ∈ A
⊥

. 

 

 

Mx = 

3 2 1 5 3 5

4 0 3 1 0 0

2 1 1 0 2 2

1 0 4 2 0 5

     
     
     

=

     
     
     

 = y1 
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My1 = 

3 2 1 5 5 0

4 0 3 1 0 1

2 1 1 0 2 0

1 0 4 2 5 5

     
     
     

=

     
     
     

 = y2 

 

 

My2 = 

3 2 1 5 0 3

4 0 3 1 1 5

2 1 1 0 0 1

1 0 4 2 5 4

     
     
     

=

     
     
     

 = y3 

 

My3 = 

3 2 1 5 3 4

4 0 3 1 5 1

2 1 1 0 1 0

1 0 4 2 4 3

     
     
     

=

     
     
     

 = y4 

 

 

My4 = 

3 2 1 5 4 2

4 0 3 1 1 5

2 1 1 0 0 3

1 0 4 2 3 5

     
     
     

=

     
     
     

 = y5 

 

 

My5 = 

3 2 1 5 2 2

4 0 3 1 5 4

2 1 1 0 3 0

1 0 4 2 5 5

     
     
     

=

     
     
     

 = y6 

 

My6 = 

3 2 1 5 2 3

4 0 3 1 4 1

2 1 1 0 0 2

1 0 4 2 5 5

     
     
     

=

     
     
     

 = y7 
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My7 = 

3 2 1 5 3 2

4 0 3 1 1 5

2 1 1 0 2 3

1 0 4 2 5 3

     
     
     

=

     
     
     

 = y8 

 

My8 = 

3 2 1 5 2 4

4 0 3 1 5 2

2 1 1 0 3 0

1 0 4 2 3 2

     
     
     

=

     
     
     

 = y9 

 

My9 = 

3 2 1 5 4 2

4 0 3 1 2 0

2 1 1 0 0 4

1 0 4 2 2 2

     
     
     

=

     
     
     

 = y10 

 

My10 = 

3 2 1 5 2 2

4 0 3 1 0 4

2 1 1 0 4 2

1 0 4 2 2 4

     
     
     

=

     
     
     

 = y11 

 

My11 = 

3 2 1 5 2 0

4 0 3 1 4 0

2 1 1 0 2 4

1 0 4 2 4 0

     
     
     

=

     
     
     

 = y12 

 

My12 = 

3 2 1 5 0 4

4 0 3 1 0 0

2 1 1 0 4 4

1 0 4 2 0 4

     
     
     

=

     
     
     

 = y13 
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My13 = 

3 2 1 5 4 0

4 0 3 1 0 2

2 1 1 0 4 0

1 0 4 2 4 4

     
     
     

=

     
     
     

 = y14 

 

My14 = 

3 2 1 5 0 0

4 0 3 1 2 4

2 1 1 0 0 2

1 0 4 2 4 2

     
     
     

=

     
     
     

 = y15 

 

My15 = 

3 2 1 5 0 2

4 0 3 1 4 2

2 1 1 0 2 0

1 0 4 2 2 0

     
     
     

=

     
     
     

 = y16 

 

My16 = 

3 2 1 5 2 4

4 0 3 1 2 2

2 1 1 0 0 0

1 0 4 2 0 2

     
     
     

=

     
     
     

 = y14 (= y10). 

 

Thus the resultant of x is a realized limit cycle. However 

from example 3.2 for x
t
 = (3 0 2 0).   

 

We get the resultant of the row vector x
t
 on the MOD matrix 

operator M is a realized limit cycle just after second iteration.  

 

But x as a column state vector on the same MOD matrix 

operator M attain a realized limit cycle after 16 iterations and 

the values are transpose of each other. 

 

So the following problems are thrown open. 

 

Conjecture 3.7: Let M be the MOD, n × n matrix operator with 

entries from Zm. 
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P = {(a1, …, an) | ai ∈ Zm 1 ≤ i ≤ n} be the collection of row 

state vectors. 

 

P
⊥

 = 

1

2

n

a

a

a

 
 
 
 
  

�
 | ai ∈ Zm; 1 ≤ i ≤ n}  

 

be the collection of column state vectors. 

 

i) If x ∈ P and x
t
 ∈ P

⊥

 be the row state vector and column 

state vector which  has same entries then will xM and 

Mx
t
 result in same resultant that is y1 is the resultant of 

xM. Then 
t

1y   is the resultant of Mx
t
 with same number 

of iterations. 

 

ii) Will classical fixed points of row vectors x on M also 

be the classical fixed points of the column vectors x
t
 of 

M? 

 

iii) Does there exist a MOD matrix operator M in which (i) 

and (ii) are true? 

 

 From the example 3.2 the questions proposed in the 

conjecture need not in general be true.  

 

One has to however characterize those MOD matrix 

operators in which such results are true. 

 

Example 3.11: Now consider the MOD matrix operator S given 

in example 3.3 of the chapter. 
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S = 

1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1

 
 
 
 
 
 

 

 

is the MOD matrix operator operating on column state vectors. 

 

B = 

1

2

3

4

a

a

a

a

 
 
 
 
  

 | ai ∈ {0, 1} = Z2, 1 ≤ i ≤ 4}. 

 

Take y = 

1

1

0

1

 
 
 
 
 
 

∈ B.   

 

To find the resultant of y on S 

 

Sy = 

1 0 1 1 1 0

0 1 1 1 1 0

1 1 1 0 0 0

1 1 0 1 1 1

     
     
     

=

     
     
     

 = y1; 

 

Sy1 = 

1 0 1 1 0 1

0 1 1 1 0 1

1 1 1 0 0 0

1 1 0 1 1 1

     
     
     

=

     
     
     

 = y. 

 

Hence y on S as a column state vector behaves in the same 

way as x = y
t
 as the row state vector. 
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Let on s = 

0

1

1

1

 
 
 
 
 
 

∈ B. 

 

To find the effect of s on S 

 

Ss = 

1 0 1 1 0 0

0 1 1 1 1 1

1 1 1 0 1 0

1 1 0 1 1 0

     
     
     

=

     
     
     

 = s1, 

 

Ss1 = 

0

1

1

1

 
 
 
 
 
 

 = s2 ( = s). 

 

s and s
t
 of B and P behave in the same way on S for s2 = t

1x   

(refer example 3.3). 

 

Let t2 = 

1

0

1

1

 
 
 
 
 
 

∈ B. 

 

To find the effect of t2 on S. 

 

St2 = 

1 0 1 1 1 1

0 1 1 1 0 0

1 1 1 0 1 0

1 1 0 1 1 0

     
     
     

=

     
     
     

 = t3 
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St3 = 

1

0

1

1

 
 
 
 
 
 

= t4 (= t2). 

 

Thus t2 = t

2x  behaves in the same manner. 

 

Since S happens to be a symmetric MOD operator the result 

is obtained in this manner. 

 

Hence we now consider a non symmetric MOD matrix 

operator with entries from Z2 in the following example. 

 

Example 3.12: Let  

 

S = 

1 1 0 0 1

0 1 0 1 0

1 1 1 0 1

0 0 1 1 0

0 1 0 1 0

 
 
 
 
 
 
  

 

 

be the MOD matrix  operator with entries from Z2. 

 

Let P = {(a1, a2, a3, a4, a5) | ai ∈ Z2  1 ≤ i ≤ 5} and  

 

P
⊥

 = 

1

2

3

4

5

a

a

a

a

a

 
 
  
 
 
  

 | ai ∈ Z2; 1 ≤ i ≤ 5} 

 

be the row state vectors and column state vectors respectively. 
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Let x = (1 0 0 0 0) and x

t
 = y = 

1

0

0

0

0

 
 
 
 
 
 
  

 be two initial state 

vectors from P and P
⊥

 respectively.  

 

To find the effect of x on S. 

 

xS = (1 1 0 0 1) = x1 

x1S = (1 1 0 0 1) = x2 (= x1). 

 

Thus x is a realized fixed point of the MOD matrix operator 

S. 

 

Sy =  

1

0

1

0

0

 
 
 
 
 
 
  

 = y1;    Sy1 = 

1

0

0

1

0

 
 
 
 
 
 
  

 = y2; 

 

 

Sy2 = 

1

1

1

1

1

 
 
 
 
 
 
  

 y3;    Sy3 = 

1

0

0

0

0

 
 
 
 
 
 
  

 = y4 (=y). 

 

Thus the resultant of y the column vector on S is a realized 

fixed point given as three iteration as y itself. 

 

However for y
t
 = x the resultant of the row vector is a 

realized fixed point different from x. 
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Let x = (0 1 0 0 0) and y = x
t
 = 

0

1

0

0

0

 
 
 
 
 
 
  

 be the row state vector  

 

and column state vectors of P and P
⊥

 respectively. 

 

xS = (0 1 0 1 0) = x1 

x1S = (0 1 1 0 0) = x2 

x2S = (1 0 1 1 1) = x3 

x3S = (0 1 0 0 0) = x4 ( = x). 

 

Thus the resultant is a realized fixed point same as that of x. 

 

Consider y = 

0

1

0

0

0

 
 
 
 
 
 
  

 to find the effect of y on the MOD matrix  

 

operator S. 

 

Sy = 

1

1

1

0

1

 
 
 
 
 
 
  

 = y1;    Sy1 = 

1

1

0

1

1

 
 
 
 
 
 
  

 = y2;   
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Sy2 = 

1

0

1

1

0

 
 
 
 
 
 
  

 = y3;    Sy3 = 

1

1

0

0

1

 
 
 
 
 
 
  

 = y4; 

 

 

Sy4 = 

1

1

1

0

1

 
 
 
 
 
 
  

 y5 (= y1). 

 

Thus the resultant is not a realized fixed point but a realized 

limit cycle given by 

 

1

1

1

0

1

 
 
 
 
 
 
  

 → 

1

1

0

1

1

 
 
 
 
 
 
  

 → 

1

0

1

1

0

 
 
 
 
 
 
  

 → 

1

1

0

0

1

 
 
 
 
 
 
  

 → 

1

1

1

0

1

 
 
 
 
 
 
  

. 

 

Thus in this case of x = (0 1 0 0 0) and y = x
t
 = 

0

1

0

0

0

 
 
 
 
 
 
  

   

 

we see x results in a realized fixed point which is x itself where  
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as y is the realized limit cycle given by 

1

1

1

0

1

 
 
 
 
 
 
  

 which is not y. 

 

 

Thus we see if x is a realized fixed point x
t
 = y can be a 

realized limit cycle and so on. 

 

 

Let x = (0 0 1 0 0) and x
t
 = y = 

0

0

1

0

0

 
 
 
 
 
 
  

 to find the effect of x  

 

and y on the MOD matrix operator S. 

 

 

xS = (1 1 1 0 1) = x1 

x1S = (0 0 1 0 0) = x2 (= x3)  

 

is the realized fixed point after one iteration yielding x itself.  

 

Sy  =  (0 0 1 1 0) = y1;   Sy1 = (0 1 1 0 1) = y2; 

Sy2 = (0 1 1 1 1) = y3;   Sy3 = (0 0 1 0 0) = y4 (= y). 

 

 

Thus in this case the resultant of y is a realized fixed point 

after three iterations yielding y = x
t
.   

 

Hence in this case only the number of iteration vary for x 

and x
t
 = y. 
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Let x = (0 0 0 1 0) ∈ P and y = x

t
 = 

0

0

0

1

0

 
 
 
 
 
 
  

 ∈ P
⊥

.   

 

To find the effect of x and y on S. 

 

The effect x on S is as follows. 

 

xS = (0 0 1 1 0) = x1;   x1S = (1 1 0 1 1) = x2; 

x2S = (1 1 1 1 1) = x3;   x3S = (0 0 0 1 0) = x4 (=x). 

 

Thus the resultant is a realized fixed point after three 

iterations the resultant is x. 

 

Let us now find the resultant of y on S. 

 

Sy = 

0

1

0

1

1

 
 
 
 
 
 
  

 = y1;   Sy1 = 

0

0

0

1

0

 
 
 
 
 
 
  

 = y2 (= y). 

 

The resultant of y is also a realized fixed point giving the 

same y after one iteration. 

 

Let x = (0 0 0 0 1) and x
t
 = y = 

0

0

0

0

1

 
 
 
 
 
 
  

 be the row and  column  

 

state vector respectively from P and P
⊥

.  
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To find the effect of x and S. 

 

xS = (0 1 0 1 0) = x1 

x1S = (0 1 1 0 0) = x2 

x2S = (1 0 1 1 1) = x3 

x3S = (0 1 0 0 0) = x4 

x4S = (0 1 0 1 0) = x5 (=x1). 

 

Thus the resultant of x on the MOD matrix operator S is a 

limit cycle given by  

 

(0 1 0 1 0) → (0 1 1 0 0) → (1 0 1 1 1) →  

(0 1 0 0 0) → (0 1 0 1 0). 

 

Now we find the effect of y = 

0

0

0

0

1

 
 
 
 
 
 
  

 on S. 

 

 

Sy = 

1

0

1

0

0

 
 
 
 
 
 
  

 = y1;   Sy1 = 

1

0

0

1

0

 
 
 
 
 
 
  

 = y2; 

 

 

Sy2 = 

1

1

1

1

1

 
 
 
 
 
 
  

 = y3;   Sy3 = 

1

0

0

0

0

 
 
 
 
 
 
  

 = y4;  
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Sy4 = 

1

0

1

0

0

 
 
 
 
 
 
  

 = y5 (=y1). 

 

Thus the resultant of y on the MOD matrix operator S is a 

realized limit cycle given after 3 iteration. 

 

 

 

0

0

0

0

1

 
 
 
 
 
 
  

 → 

1

0

1

0

0

 
 
 
 
 
 
  

 → 

1

0

0

1

0

 
 
 
 
 
 
  

 → 

1

1

1

1

1

 
 
 
 
 
 
  

 → 

1

0

0

0

0

 
 
 
 
 
 
  

 → 

1

0

1

0

0

 
 
 
 
 
 
  

. 

 

 

However the vectors are not the transpose of each other.   

 

Now we find the sum of the state vectors x = (1, 1, 1, 1, 1) 

and  

 

 

y = x
t
 = 

1

1

1

1

1

 
 
 
 
 
 
  

 of P and P
⊥

 respectively. 

 

xS = (1 0 0 0 0) = x1 

x1S = (1 1 0 0 1) = x2 

x2S = (1 1 0 0 1) = x3 (= x3) is a realized fixed point. 
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Now the effect of y = 

1

1

1

1

1

 
 
 
 
 
 
  

 on the MOD matrix operator S is  

 

given in the following. 

 

 

Sy = 

1

0

0

0

0

 
 
 
 
 
 
  

 = y1;   Sy1 = 

1

0

1

0

0

 
 
 
 
 
 
  

 = y2; 

 

 

 

Sy2 = 

1

0

0

1

0

 
 
 
 
 
 
  

 = y3;   Sy3 = 

1

1

1

1

1

 
 
 
 
 
 
  

 = y4 (=y). 

 

 

Thus the resultant of y = 

1

1

1

1

1

 
 
 
 
 
 
  

 is a realized fixed point  

 

leading to same y after three iterations.  
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Now having seen examples the following result is 

mandatory. 

 

THEOREM 3.2: Let S be a n × n symmetric matrix with entries 

from Zm be the MOD matrix operator, 

 

P = {(a1, a2, …, an) / ai ∈ Ζµ, 1 ≤ i ≤ n} and 

 

P
⊥

 = {

1

2

 
 
 
 
 
 

�

n

a

a

a

 / ai ∈ Zm; 1 ≤ i ≤ n} 

 

be the row state vectors and column state vectors respectively. 

 

The resultant of the row vector x on S be a, then resultant of 

x
t
 on S is a

t
 and vice versa. 

 

Proof follows from the simple fact that the MOD matrix 

operator is a symmetric operator. 

 

If the MOD matrix operator s is not symmetric the 

predictions are different. 

 

It is an open conjecture to find the classical fixed points of S 

for both P and P
⊥

. 

 

We provide one more example to this effect. 

 

Example 3.13: Let  

S = 

3 1 2 0 6

1 0 1 1 0

2 1 4 0 5

0 1 0 1 0

6 0 5 0 2

 
 
 
 
 
 
  
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 MOD symmetric matrix with entries from Z7. 

 

 

Let x = (2 1 0 0 0) ∈ P and y = 

2

1

0

0

0

 
 
 
 
 
 
  

 ∈ P
⊥

. 

 

The effect of x on S is as follows. 

 

 

xS = (0 2 5 1 5) = x1;  x1S = (0 6 5 3 0) = x2; 

x2S = (2 1 5 2 4) = x3;  x3S = (6 2 3 3 3) = x4; 

x4S = (2 5 6 5 1) = x5;  x5S = (1 6 3 3 2) = x6; 

x6S = (6 0 2 2 4) = x7;  x7S = (4 3 5  2 5) = x8; 

x8S = (6 4 0 5 3) = x9;  x9S = (5 4 3 2 0) = x10; 

x10S = (2 3 5 6 3) = x11;  x11S = (2 6 0 2 1) = x12; 

x12S = (4 4 1 1 0) = x13;  x13S = (4 6 2 5 1) = x14; 

x14S = (0 6 4 4 1) = x15;  x15S = (1 3 5 1 4) = x16; 

x16S = (5 0 3 4 4) = x17;  x17S = (3 5 0 4 4) = x18; 

x18S = (3 0 3 2 5) = x19;  x19S = (3 1 1 2 1) = x20; 

x20S = (4 6 2 3 4) = x21;  x21S = (4 2 0 2 0) = x22; 

x22S = (0 6 3 4 3) = x23;  x23S = (2 0 5 3 0) = x24; 

x24S = (2 3 3 3 2) = x25;  x25S = (6 1 1 6 3) and so on. 

 

 

We see we are not in a position to arrive at the resultant, 

however before or at the end of 6
5
 – 2 iterations we will 

certainly get the resultant.  

 

Now we try to find the effect of y = x
t
 on this symmetric. 

 

MOD-matrix operator S. 
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x

t
 = y = 

2

1

0

0

0

 
 
 
 
 
 
  

 ∈ P
⊥

. 

 

 

To find the effect of y on S. 

 

 

Sy = 

0

2

5

1

5

 
 
 
 
 
 
  

 = y1
. 

 

Clearly y1 = t

1x  so the first iteration is the transpose of the 

first iteration of x. 

 

 

Sy1 = 

0

6

5

3

0

 
 
 
 
 
 
  

 = y2 (also y2 = t

2x ); Sy2 = 

2

1

5

2

4

 
 
 
 
 
 
  

 = y3 (also y3 = t

3x ) 

 

 

Sy3 = 

6

2

3

3

3

 
 
 
 
 
 
  

 = y4 (y4 =
t

4x );   Sy4 = 

2

5

6

5

1

 
 
 
 
 
 
  

 = y5 (y5 = t

5x ); 
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Sy5 = 

1

6

3

3

2

 
 
 
 
 
 
  

 = y6 (y6 = t

6x );  Sy6 = 

6

0

2

2

4

 
 
 
 
 
 
  

 = y7 (
t

7x = y7); 

 

 

 

Sy7 = 

4

3

5

2

5

 
 
 
 
 
 
  

 = y8 (
t

8x = y7);   Sy8 = 

6

5

0

5

3

 
 
 
 
 
 
  

 = y9 (
t

9x = y9); 

 

 

 

Sy9 = 

5

4

3

2

0

 
 
 
 
 
 
  

 = y10 (
t

10x = y10);     Sy10 = 

2

3

5

6

3

 
 
 
 
 
 
  

 = y11 (
t

11x = y11); 

 

 

 

Sy11 = 

2

6

0

2

1

 
 
 
 
 
 
  

 = y12 (
t

12x = y12);    Sy12 = 

4

4

1

1

0

 
 
 
 
 
 
  

 = y13 (
t

13x = y13); 
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Sy13 = 

4

6

2

5

1

 
 
 
 
 
 
  

 = y14 (
t

14x = y14);    Sy14 = 

0

4

6

4

1

 
 
 
 
 
 
  

 = y15 (
t

15x = y15) 

 

 

Sy15 = 

1

3

5

1

4

 
 
 
 
 
 
  

 = y16 (
t

16x = y16);     Sy16 = 

5

0

3

4

4

 
 
 
 
 
 
  

 = y17 (
t

17x = y17) 

 

 

 

 

Sy17 = 

3

5

0

4

4

 
 
 
 
 
 
  

 = y18 (y18 = t

18x );    Sy18 = 

3

0

3

2

5

 
 
 
 
 
 
  

 = y19 (y19 = t

19x ); 

 

 

 

 

Sy19 = 

3

1

1

2

1

 
 
 
 
 
 
  

 = y20 (y19 = t

18x );    Sy20 = 

4

6

2

3

4

 
 
 
 
 
 
  

 = y21 (y20 =
t

20x ); 
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Sy21 = 

4

2

0

2

0

 
 
 
 
 
 
  

 = y22 (y21 = t

21x );     Sy22 = 

0

6

3

4

3

 
 
 
 
 
 
  

 = y23 (y22 =
t

22x ) 

 

 

Sy23 = 

2

0

5

3

0

 
 
 
 
 
 
  

 = y24 (y23 =
t

23x );    Sy24 = 

2

3

3

3

2

 
 
 
 
 
 
  

 = y25 (
t

24x = x24) 

 

 

Sy25 = 

6

1

1

0

3

 
 
 
 
 
 
  

 = y26 (
t

25x = y25). 

 

 

We see at each stage the value of Syt = (x7S)
t
.  

 

 

This effect is from the fact the MOD symmetric matrix 

operator. 

 

Next we give an example of a MOD-matrix operator S for 

which we use only row state vector and column state vectors 

taking entries from {0, 1} and we at each stage update and 

threshold the state vector. 
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Example 3.14:  Let  

 

S = 

3 2 1 4 0

1 0 2 1 2

0 1 0 2 1

1 4 3 0 2

2 3 4 1 3

 
 
 
 
 
 
  

 

 

be the MOD matrix operator with elements from Z5. 

 

 

Let P = {(a1, a2, a3, a4, a5) | ai ∈ {0, 1}; 1 ≤ i ≤ 5} and  

 

 

P
⊥

 = {

1

2

3

4

5

a

a

a

a

a

 
 
 
 
 
 
  

| ai ∈ {0, 1}, 1 ≤ i ≤ 5}  

 

be the collection of state vectors which state on or off state.  

 

For the first time we work with vectors from P and P
⊥

.  

 

Consider x = (1 0 0 0 0) ∈ P 

 

xS = (3 2 1 4 0) → (1, 1, 1, 1, 0) = x1; 

x1S = (0 2 1 2 0) → (1, 1, 1, 1, 0) = x2. 

 

Thus the resultant is a realized fixed point of S. 
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Consider x
t
 = y = 

1

0

0

0

0

 
 
 
 
 
 
  

 we find the effect of y on S. 

 

 

Sy = 

3

1

0

1

2

 
 
 
 
 
 
  

 →  

1

1

0

1

1

 
 
 
 
 
 
  

 = y1;   Sy1 = 

2

4

0

1

2

 
 
 
 
 
 
  

 → 

1

1

0

1

1

 
 
 
 
 
 
  

 = y2 (=y1). 

 

 

The resultant is a MOD realized fixed point and t

2x  ≠ y2 and 

so on. 

 

Let y = 

0

1

0

0

0

 
 
 
 
 
 
  

 and x = (0 1 0 0 0 0)  

 

be the column state vector and row state vector respectively. 

 

 

xS = (1 0 2 1 2) → (1 1 1 1 1) = x1 

x1S = (2 0 0 3 3) → (1 1 0 1 1) = x2 

x2S = (2 4 0 1 2) → (1 1 0 1 1) = x3 (=x2). 

 

 

Thus it is a realized fixed point. 
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Sy = 

2

0

1

4

3

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

= y1 ;  Sy1 = 

0

1

4

0

3

 
 
 
 
 
 
  

→ 

0

1

1

0

1

 
 
 
 
 
 
  

 = y2; 

 

 

Sy2 = 

3

4

2

4

0

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y3;  Sy3 = 

0

4

3

3

0

 
 
 
 
 
 
  

→ 

0

1

1

1

0

 
 
 
 
 
 
  

 = y4; 

 

 

Sy4 = 

2

3

3

2

3

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y5 ( = y1). 

 

Thus the resultant is a realized limit point so x is a realized 

fixed point but x
t
 is a realized limit cycle. 

 

Let x = (0 0 1 0 0) and x
t
 = y = 

0

0

1

0

0

 
 
 
 
 
 
  

 be two state vectors.  

 

We now study the effect of them on S. 

 

xS = (0 1 0 2 1) → (0 1 1 2 1) = x1 

x1S = (4 3 4 4 3) → (1 1 1 1 1) = x2 
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 x2S = (2 0 0 3 3) → (1 0 1 1 1) = x3 

x3S = (1 0 3 3 1) → (1 0 1 1 1) = x4 (= x3). 

 

Thus the resultant of (0 0 1 0 0) is a realized fixed point.   

 

Let y =

0

0

1

0

0

 
 
 
 
 
 
  

. 

 

Consider  

 

 

Sy = 

1

2

0

3

4

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y1;  Sy1 = 

0

1

4

0

3

 
 
 
 
 
 
  

→ 

0

1

1

0

1

 
 
 
 
 
 
  

= y2; 

 

 

Sy2 = 

3

4

2

4

0

 
 
 
 
 
 
  

→  

1

1

1

1

1

 
 
 
 
 
 
  

 = y3;  Sy3 = 

0

4

3

3

0

 
 
 
 
 
 
  

→ 

0

1

1

1

0

 
 
 
 
 
 
  

 = y4; 

 

 

Sy4 = 

2

3

3

2

3

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y5 = (y1). 
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Thus the resultant is a realized limit cycle.  

 

Here we see (0 0 1 0 0) is a realized fixed points where as  

 

0

0

1

0

0

 
 
 
 
 
 
  

 

is a realized limit cycle. 

 

 Let  

x = (0 0 0 1 0) ∈ P. 

 

To find the effect of x1 on S. 

 

xS = (1 4 3 0 2) → (1 1 1 1 1) = x1 

x1S = (2 0 0 3 3) → (1 0 0 1 1) = x2 

x2S = (1 4 3 0 0) → (1 1 1 0 0) = x3 

x3S = (4 3 3 2 3) → (1 1 1 1 1) = x4 (= x1). 

 

Thus the resultant of (0 0 0 1 0) is the realized limit cycle 

given by (1, 1, 1, 1, 1). 

 

 

 

Consider y = 

0

0

0

1

0

 
 
 
 
 
 
  

∈ P
⊥

. 

 

To find the effect of y on S. 
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Sy = 

4

1

2

0

1

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y1;  Sy1 = 

0

1

4

0

3

 
 
 
 
 
 
  

→ 

0

1

1

1

1

 
 
 
 
 
 
  

 = y2; 

 

 

Sy2 = 

2

0

4

4

1

 
 
 
 
 
 
  

→  

1

0

1

1

1

 
 
 
 
 
 
  

 = y3;  Sy3 = 

3

1

3

1

0

 
 
 
 
 
 
  

→ 

1

1

1

1

0

 
 
 
 
 
 
  

 = y4; 

 

 

Sy4 = 

0

4

3

3

0

 
 
 
 
 
 
  

→  

0

1

1

1

0

 
 
 
 
 
 
  

 = y5;  Sy5 = 

2

3

3

2

3

 
 
 
 
 
 
  

 → 

1

1

1

1

1

 
 
 
 
 
 
  

 = y6 (=y1). 

 

 

Thus the resultant is a realized limit cycle.  

 

Let x = (0 0 0 0 1) ∈ P; to find the effect of x on S. 

 

 

xS = 

2

3

4

1

3

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = x1;  x1S = 

0

1

4

0

3

 
 
 
 
 
 
  

→ 

0

1

1

0

1

 
 
 
 
 
 
  

 = x2; 
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x2S = 

3

4

2

4

0

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = x3 (= x1). 

 

Thus we have the resultant of 

0

0

0

0

1

 
 
 
 
 
 
  

is a realized limit cycle  

 

given by 

1

1

1

1

1

 
 
 
 
 
 
  

. 

 

Let x = (1 0 0 0 1) ∈ P.   

   

To find the effect of x on S.  

 

xS = (0 0 0 0 3) → (1 0 0 0 1). 

  

Thus x is a classical fixed point on x. 

 

Let y = 

1

0

0

0

1

 
 
 
 
 
 
  

∈ P
⊥

.   

 

To find the effect of y on S. 
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Sy = 

3

3

1

3

0

 
 
 
 
 
 
  

→ 

1

1

1

1

1

 
 
 
 
 
 
  

 = y1 

 

 

Sy1 = 

0

1

4

0

3

 
 
 
 
 
 
  

→ 

1

1

1

0

1

 
 
 
 
 
 
  

 = y2;  Sy2 = 

1

0

2

0

2

 
 
 
 
 
 
  

→ 

1

0

1

0

1

 
 
 
 
 
 
  

 = y3; 

 

 

Sy3 = 

4

0

2

1

4

 
 
 
 
 
 
  

→ 

1

0

1

1

1

 
 
 
 
 
 
  

 = y4;   Sy4 = 

3

1

3

1

0

 
 
 
 
 
 
  

→

1

1

1

1

1

 
 
 
 
 
 
  

 = y5 (=y1). 

 

 

Thus the resultant is a realized limit cycle.  

 

Hence (1 0 0 0 1) is a classical fixed point but 

1

0

0

0

1

 
 
 
 
 
 
  

 is not a  

 

classical fixed point only a realized limit cycle. 
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Thus we see the state row vectors behave many a times 

differently for in the case of state column vector evident from 

this example. 

 

Example 3.15:  Let  

 

H = 

6 1 0 8

0 7 1 6

5 0 2 1

1 2 3 0

 
 
 
 
 
 

 

 

be the MOD matrix operator with entries from Z9.  

 

We consider 

 

P = {(x1, x2, x3, x4) | xi ∈ Z9 1 ≤ i ≤ 4} and  

 

P
⊥

 = {

1

2

3

4

x

x

x

x

 
 
 
 
 
 

| xi ∈ Z9 1 ≤ i ≤ 4} 

 

to be the row state vectors and P
⊥

 is the column state vectors.  

 

To find the effect of x = (1 0 0 0) ∈ P on  H is as follows. 

 

xH = (6 1 0 8) → (1, 1, 0, 1) = x1 

x1H = (7 1 4 5) → (1, 1, 1, 1) = x2 

x2H = (3 1 6 6) → (1, 1, 1 1) = x3 ( = x2). 

 

Thus the resultant x is a realized fixed point (1, 1, 1, 1). 
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Let y = 

1

0

0

0

 
 
 
 
 
 

 ∈ P
⊥

, to find the effect of y on H. 

 

 

Hy = 

6

0

5

1

 
 
 
 
 
 

 →  

1

0

1

1

 
 
 
 
 
 

 = y1;  Hy1 = 

5

7

8

4

 
 
 
 
 
 

 →  

1

1

1

1

 
 
 
 
 
 

 = y2 

 

 

 

Hy3 = 

6

5

8

6

 
 
 
 
 
 

 →  

1

1

1

1

 
 
 
 
 
 

 = y3 ( = y2). 

 

Thus this is again not a classical fixed point but only a 

realized fixed point. 

 

Let x = (1 1 0 0) ∈ P 

xH = (6 8 1 5) → (1 1 1 1) = x1 

x1H = (3 1 6 6) → (1 1 1 1) = x2 (= x1). 

 

Thus it is a realized fixed point of H. 

 

Now we proceed onto propose a few problems for the 

reader. 

 

Problems 
 

1. Study the special features enjoyed  by MOD-matrix 

operators. 
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2.  Characterize those MOD-matrix operators which has every 

row vector to be a classical fixed point. 

 

3. Does such MOD-matrix operator exist? 

 

 

4. Let S = 

3 7 2 0 1

1 5 0 8 3

0 1 3 9 2

5 0 1 2 7

1 2 3 4 0

 
 
 
 
 
 
  

 be the MOD-matrix operator  

 

 with entries from Z10. 

 

 Let P = {(a1, a2, a3, a4, a5) | ai ∈Z10; 1 ≤ i ≤ 5} be the state 

row vectors and  

 

P
⊥

 = {

1

2

3

4

5

a

a

a

a

a

 
 
 
 
 
 
  

| ai ∈ Z10; 1 ≤ i ≤5} be state column vectors. 

 

i) Find all classical fixed points of S in P and P
⊥

. 

ii) Can we say if x is the classical fixed point of S then x
t
 

∈ P
⊥

 be the classical fixed point of S? 

iii) Find all limit points of S in P. 

iv) Compare these limits points of S in P
⊥

. 

v) Show in general if x and y in P have xt and yt as the 

resultants in P. Then the resultant of x + y ≠ xt + yt; that 

(x + y)t ≠ xt + yt. 

vi) Characterize all those points in P in which (v) is true; 

that is (x + y)t = xt + yt. 

vii) Obtain any other special feature enjoyed by M. 
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5. Let S = 

1 2 3 4 5 6

0 7 8 9 1 1

0 0 1 3 4 2

0 0 0 1 1 2

0 0 0 0 6 0

0 0 0 0 0 5

 
 
 
 
 
 
 
 
  

 be the MOD-matrix operator  

 

 

 with entries in Z12.  

 

Study questions (i) to (vii) of problem (4) for this S. 

 

 

6. Let T = 

1 0 0 0 0

2 1 0 0 0

3 2 1 0 0

4 3 2 1 0

5 4 3 2 1

 
 
 
 
 
 
  

 be MOD matrix operator with  

 

 entries from Z6.  

 

Study questions (i) to (vii) of problem (4) for this T. 

 

 

 

7. Let N = 

3 1 2 0 3 4 5

1 0 1 2 0 1 1

2 1 3 6 2 0 6

0 2 6 1 1 4 0

3 0 2 1 0 2 7

4 1 0 4 2 1 0

5 1 6 0 7 0 5

 
 
 
 
 
 
 
 
 
 
 

 be the MOD-symmetric  

 

matrix operator with entries in Z8. 
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i) Study questions (1) to (vii) of problem (4) for this N. 

 ii) Obtain any other special feature associated with N. 

 

 

 

8. Let M = 

3 1 2 4 3

4 0 2 1 0

3 3 1 1 2

1 4 4 2 1

2 0 3 4 3

 
 
 
 
 
 
  

 be the MOD skew symmetric  

 

 matrix operator with entries from Z5. 

 

 i) Study questions (i) to (vii) of problem 4 for this M.  

 ii) Compare N of problem 7 with this M. 

 iii) Obtain all the distinct features associated with M. 

 

 

 

9. Let S = 

0 5 0 1 5

2 0 6 4 2

1 1 0 3 8

7 0 7 0 6

0 5 2 3 0

 
 
 
 
 
 
  

 be the MOD-matrix operator. 

 

 i) Study questions (i) to (vii) of problem 4 for this S. 

 ii) Does the diagonal elements being zero contribute to any  

  other special feature? 
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10. Let W = 

0 1 2 3 4

5 0 1 2 3

4 5 0 1 2

3 4 5 0 1

2 3 4 5 0

 
 
 
 
 
 
  

 and W
⊥

 = 

0 5 4 3 2

1 0 5 4 3

2 1 0 5 4

3 2 1 0 5

4 3 2 1 0

 
 
 
 
 
 
  

 be  

 

 

 the MOD-matrix operators. 

 

 i) Study questions (i) to (vii) of problem 4 for this S. 

 ii) Compare the resultants of state vectors of W and W
⊥

. 

 

 

11. Let P = 

0 1 2 0 1

1 5 0 2 3

2 0 1 5 0

0 2 5 0 3

1 3 0 3 2

 
 
 
 
 
 
  

 and P1 = 

0 1 2 0 1

1 5 9 2 3

2 0 1 5 0

0 2 5 6 3

1 3 9 3 2

 
 
 
 
 
 
  

 be  

 

 

 two MOD matrix operators with entries from Z12. 

 

i) Characterize all those state vectors which has same 

resultants in both P and P1. 

ii) Will classical fixed points of P be classical fixed points 

of P1? 

 iii) Can a classical fixed point of P yield a different  

  resultant by P1 and vice versa? 

  Justify your claim by examples. 

 iv) Study questions (i) to (vii) of problem (4) for this P and  

  P1. 

 v) Characterize those state vectors in P and P1 which yield  

  same resultants. 
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12. Let W = 

3 7 2 1 0 5 1

1 2 0 3 5 1 2

0 5 3 1 2 3 4

5 0 6 7 1 2 6

1 2 6 0 3 4 1

3 4 5 6 6 7 0

4 2 3 1 1 0 7

 
 
 
 
 
 
 
 
 
 
 

 be the MOD matrix  

 

operator with entries from Z8. 

 

 

 Let B = {(x1, x2, …, x7) | xi ∈ {0, 1}; 1 ≤ i ≤ 7} and  

 

 

B
⊥

 = {

1

2

3

7

x

x

x

x

 
 
 
 
 
 
  

�

 | xi ∈ {0, 1}; 1 ≤ i ≤ 7} be the state vectors  

 

which signifies only the on or off state. 

 

 

i) Study questions (i) to (vii) of problem 4 for this W and 

W
t
. 

 

ii) Characterize all classical fixed points of w and W
⊥

. Do 

they coincide or are different? 

 

iii) Can a classical fixed point of W
⊥ 

be a realized fixed 

point or a limit cycle of W? Justify? 
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 iv) What is the resultant of x = (1 0 0 0 1 0 0) and  

 

x
t
 = y 

1

0

0

0

1

0

0

 
 
 
 
 
 
 
 
 
 
 

 on W and W
⊥

? 

 

v) If x1 = (1 0 1 0 0 1 0) and x2 = (0 1 0 0 0 0 1) ∈ B. 

 

 Find the resultant of x1,x2 and x1 + x2.  

 

Are these resultants related or no relation exists. 

 

 

vi) Let  

y1 

1

1

0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 

 and y2 

0

0

0

1

1

0

0

 
 
 
 
 
 
 
 
 
 
 

 ∈ B
⊥

. 

 

 

Find the resultant of y1, y2 and y1 + y2 on W.  

 

Are they related or not related with each other? 
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13. Let M = 

3 0 1 2 5 7 6 2

1 2 3 0 4 2 1 6

6 1 2 3 0 5 3 1

1 2 3 4 5 0 6 7

0 9 2 3 4 5 6 1

7 2 0 4 5 2 1 3

1 2 3 1 2 3 6 0

2 3 5 6 7 2 0 5

 
 
 
 
 
 
 
 
 
 
 
  

 be the MOD matrix  

 

 

 operator with entries from Z10. 

 

 Let P = {(x1, x2, .., x8) | xi ∈ Z10 1 ≤ i ≤ 8},  

 

B = {(a1, a2, …, a8) | ai ∈ {0, 1}; 1 ≤ i ≤ 8},  

 

 

P
⊥

 = {

1

2

3

8

x

x

x

x

 
 
 
 
 
 
  

�

 | xi ∈ Z10; 1 ≤ i ≤ 8} and  

 

 

B
⊥

 = {

1

2

3

8

a

a

a

a

 
 
 
 
 
 
  

�

 | ai ∈ {0, 1}; 1 ≤ i ≤ 8} be the state row vectors  

 

and column vectors. 

 

i) Study questions (i) to (vii) of problem (4) for this M 
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 ii) Study questions (ii) and (iii) of problem (12) for this M. 

iii) If x = (1 1 0 0 0 0 0 1) ∈ P find the resultant of x on M. 

iv) If x1 = (1 1 0 0 0 0 0 1) ∈ B find the resultant of x on M 

as a on and off state vector 

v) Compare the resultants in (iii) and (iv). 

 

 

14. Let M1 = 

3 1 0 2 1

0 4 1 2 3

1 1 2 0 1

2 1 0 1 0

0 0 1 0 2

 
 
 
 
 
 
  

 be the MOD-matrix operator  

 

with entries from Z5. 

  

 

Let M2 = 

0 1 2 3 0

2 1 0 0 4

1 0 2 1 0

0 2 1 0 2

1 1 0 0 0

 
 
 
 
 
 
  

 be the MOD matrix operator  

 

with entries in Z5, 

 

 

 Let P = {(x1, x2, x3, x4, x5) | xi ∈ Z5; 1 ≤ i ≤ 5} and  

 

 

P
⊥

 = {

1

2

3

4

5

x

x

x

x

x

 
 
 
 
 
 
  

 | xi ∈ z5, 1 ≤ i ≤ 5} be the state vectors. 
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i) If x1 ∈ P and a1 is its resultant with respect to M1 and a2 

its resultant with respect to M2.  

Will a1 + a2  be the resultant on the MOD operator matrix 

sum M1 + M2? Justify your claim. 

ii) Characterize all those x ∈ P and x
t
 ∈ P

⊥

 such that (i) is 

true 

iii) Will they be related or no relation exists? 

 

 

 

15. Let S = 

3 1 1 0 0 2 3

0 1 0 2 1 0 3

1 0 1 0 2 0 0

0 1 0 1 0 1 0

2 0 2 0 2 0 2

1 1 0 0 2 0 1

0 0 1 1 0 2 0

 
 
 
 
 
 
 
 
 
 
 

 be the MOD matrix  

 

 operator with entries from Z4. 

 

 

 

i) Let x = 

1

1

1

1

1

1

1

 
 
 
 
 
 
 
 
 
 
 

∈ P
⊥

 be the state vector.  

 

Find the resultant of x on S. 
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 ii) If x1 = 

2

2

2

2

2

2

2

 
 
 
 
 
 
 
 
 
 
 

∈ P
⊥

 find its resultant on S.  

 

Are the resultants of x and x1 related? 

 

 

16. Let M = 
3 1

2 5

 
 
 

 and M1 = 
1 2

0 4

 
 
 

 be two MOD matrix  

 

operators with entries from Z6.  

 

Let x1 = (0, 2) and x2 = (1, 3) be two initial state vector. 

 

 i) Find the resultants of x1 and x2 on M1. 

 ii) Find the resultants of x1 and x2 on M2 

 iii) Find the resultant of (1, 5) on M1 and M2. 

iv) Find the resultant of x1 and x2 on M = 
4 3

2 3

 
 
 

. 

 

v) Compare all the above results. Does these exist any 

relation between them? 

 

17. Let P1 = 

3 1 2

0 4 5

6 0 3

 
 
 
  

 and P2 = 

3 0 6

1 4 0

2 5 3

 
 
 
  

 be two MOD  

 

 matrix operators with entries from Z7. 
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 Let x1 = 

1

2

3

 
 
 
  

 and x2 

4

2

1

 
 
 
  

 ∈ P
⊥

. 

 

i) Find the resultants of x1 on P1 and P2. 

ii) Find the resultant of x2 on P1 and P2. 

 

iii) Find the resultant of x1 on 

6 1 1

1 1 5

1 5 6

 
 
 
  

 = P3 

 

 Compare the results in (i)  with this resultant on P3. 

iv) Find the resultant of x1 and x2 on P3. 

v) Can we say the resultants of x2 on P1, P2 and P3 are in 

any way related? 

 

 

18. Find all special features enjoyed by MOD matrix operators. 

 

19. Can one characterize all those MOD matrix operators which 

give only limit cycle as the resultant? 

 

20. Characterize those MOD matrix operators whose resultants 

are only classical fixed points. 

 

21. Characterize all those MOD matrix operators whose 

resultants are only realized fixed points. 

 

22. Let B = 

1 2 0 0 0

6 3 4 0 0

0 5 2 3 0

0 0 3 4 1

0 0 0 5 2

 
 
 
 
 
 
  

 be the MOD matrix operator  

 

with entries from Z8. 
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  i) Mention all the special features enjoyed by B. 

 

 ii) If x = (3 1 2 0 6) and y = 

3

1

2

0

6

 
 
 
 
 
 
  

 find the resultant of x  

and y on B. 

 

 iii) If x1 = (1 2 3 4 5) and x2 = (5 4 3 2 1).  

 

Find the resultant of x1, x2 and x1 + x2 on B.  

 

Are these resultants related in any way? 

 

 iv) Find the resultants of 1 2x , x⊥ ⊥  and 1 2x x⊥ ⊥

+  on B. 

 

  Are these resultants related in any way? 

 

23. Let x = 

5 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 7 0 0

0 0 0 0 8 0

0 0 0 0 0 6

 
 
 
 
 
 
 
 
  

be the MOD matrix operator  

 

 with entries from Z9. 

 

 Let P and P
⊥

 be the state row vectors and state column 

vectors.  

 

i) Study the special features associated with ×. 

ii) Are all the resultant fixed points? 
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 iii) Find the resultant of a = 

3

0

1

2

3

4

 
 
 
 
 
 
 
 
  

 and  b = ( 4 3 2 1 0 3) 

 

 

iv) Characterized all classical fixed points of ×. 

v) Characterize all realized fixed points of ×. 

vi) Can there by state row vectors and state column vectors 

whose resultants are realized limit cycles? 

vii) Obtain all special features associated with diagonal 

matrix operators. 

 

 

24. Let M = 

0 1 2 0 0 0 0

0 0 2 0 0 0 0

0 0 0 3 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 5 0

0 0 0 0 0 0 6

 
 
 
 
 
 
 
 
  

be the MOD matrix  

 

operator with entries from Z7. 

 

i) Study all the special features associated with this MOD 

matrix operators? 

ii) If M
t
 be the MOD matrix operator, characterize all those 

state vectors of P and P
⊥

? 

a) Which are classical fixed points? 

b) Which are realized fixed points. 

c) Which are realized limit cycles. 

 

 



 
 
 
 
 
Chapter Four 
 
 

 
 
FIXED POINTS OF MOD-MATRIX 

OPERATORS DEFINED ON 〈〈〈〈Zn ∪∪∪∪ I〉〉〉〉, 
C(Zn), 〈〈〈〈Zn ∪∪∪∪ g〉〉〉〉, 〈〈〈〈Zn ∪∪∪∪ h〉〉〉〉 AND 〈〈〈〈Zn ∪∪∪∪ K〉〉〉〉 
 
 
 
 

In this chapter for the first time we study the MOD matrix 

operators using modulo neutrosophic numbers 〈Zn ∪ I〉 finite 

complex modulo integers C(Zn), dual modulo integers 〈Zn ∪ g〉; 
g

2
 = 0, and so on. 

 

We find the fixed points associated with them.  Each of 

them behave in a very different way.  

 

All these will be illustrated by examples. 

 

Example 4.1: Let  

 

S = 

1 I 0 2 3I

2 I 2 I

I 2 2I 3

+ + 
 

+ 
 + 
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be a neutrosophic MOD matrix operator with entries from  

〈Z4 ∪ I〉 = {a + bI | a, b ∈ Z4, I
2
 = I}.   

 

Let P = {(x1, x2, x3) | xi ∈  〈Z4 ∪ I〉; 1 ≤ i ≤ 3} be the 

collection of MOD neutrosophic state vectors. 

 

To find the effect of x = (1, 0, 1) ∈ P. 

 

xS = (1 + 2I, 2 + 2I, 1 + 3I) = y1;  

y1S = (1 + I,   2 + 2I,   1 + 2I) = y2; 

y2S = (1 + 2I,   2 + 2I,   1) = y3; 

y3S = (1 + I,   2 + 2I,   1 + I) = y4; 

y4S = (1 + I,   2 + 2I,   3 + 3I) = y5; 

y5S = (1 + I,   2 + 2I, 1 + I) = y6
 
(= y4). 

 

Thus the resultant of x = (1, 0, 1) is a realized limit cycle. 

 

Consider y = (0, 1, 0) ∈ P. 

 

To find the effect of y on S. 

 

yS = (2, I, 2 + I) = y1;   y1S = (2 + 3I,  I,  2) = y2; 

y2S = (2, I, 2) = y3;    y3S = (2 + 2I,  I,  2) = y4; 

y4S = (2 + 2I,  I, 3I + 2) = y5; y5S = (1 + 2I,  I,  0) = y6; 

y6S  = (2, I, 3I) = y7;   y7S = (2 + 3I, I, 2I) = y8; 

y8S = (2, I, 2I) = y9;    y9S = (2 + 2I,  I, 2I) = y10; 

y10S = (2 + 2I,  I,  2I) = y11 (=y10). 

 

Thus the resultant of y = (0, 1, 0) is a realized fixed point 

given by (2 + 2I, I, 2I).   

 

Consider x + y = (1, 0, 1) + (0, 1, 0) = (1, 1, 1) = t. 

 

To find the resultant of t on S. 

 

tS = (3 + 2I, 2 + 3I, 3) = t1;  t1S = (3, 2 + 3I, 3 + 2I) = t2; 

t2S = (3 + 2I,  2 + 3I, 3 + 2I) = t3;   

t3S = (3 + 2I,  2 + 3I,  3 + I) = t4; 

t4S = (3 + 2I,  2 + 3I,  3 + I) = t5 (= t4). 
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Thus the resultant of x + y = (1, 1, 1) is a realized fixed 

point given by (3 + 2I, 2 + 3I, 3 + I).   

 

However the sum of the resultant of x and y is  

(1 + I, 2 + 2I, 1 + I) + (2 + 2I  I  2I) = (3 + 3I, 2 + 3I  1 + 3I). 

 

They are not related for in the first place x = (1, 0, 1) gives a 

resultant which is a limit cycle what as that of x + y = (1, 1, 1) is 

a realized fixed point. 

 

Let x = (1 + I, 0, 0) ∈ P to find the effect of x on S. 

 

xS = (1 + 3I, 0, 2) = y1 ;  y1S = (1 + I, 0, 2I) = y2; 

y2S = (1 + I, 0, 2) = y3;  y3S = (1 + I, 0, 0) = y4; 

y4S = (1 + 3I, 0, 2) = y5 (= y1). 

 

The resultant is a realized limit cycle. 

 

Let x = (1 + 2I, 1 + I, 2 + 3I) ∈ P.   

 

To find the effect of x on S. 

 

Consider  

 

xS = (3, 2I,  2 + 3I) = y1;  y1S = (3, 2I, 0) = y2; 

y2S = (3 + 3I, 2I, 2 + 3I) = y3; y3S = (3 + 2I, 2I, 3I) = y4; 

y4S = (3I, 2I, 2 + 2I) = y5;  y5S = (2I,  2I,  2 + 3I) = y6; 

y6S = (2I, 2I, 3I) = y7;   y7S = (3I, 2I, I) = y8; 

y8S = (3I, 2I, 0) = y9;   y9S = (2I,2I, 0) = y11 (=y10). 

 

The resultant is a fixed point given by (2I, 2I, 0). 

 

Next we give examples of neutrosophic MOD matrix 

operator. 
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Example 4.2:  Let M = 

3I 2 0 0 0

0 4 I 0 0

0 0 5I 2 0

0 0 0 4 3I

+ 
 

+ 
 +

 
+ 

  

 

be the neutrosophic MOD matrix operator with entries from  

〈Z6 ∪ I〉. 
 

Let x = (3 + 2I, 0, 0, 2+5I) ∈ P = {(a1, a2, a3, a4) | ai ∈  

〈Z6 ∪ I〉; 1 ≤ i ≤ 4}. 

 

xM = (3I 0, 0, 2 + 5I) = y1; 

 

y1M = (3I, 0, 0, 2 + 5I) = y2 (= y1) is a realized fixed point 

of M. 

 

Let x = (0, 1+I, 3+I, 0) ∈ P. 

 

To find the effect of x on M. 

 

xM = (0, 4, 4I, 0) = y1;      y1M = (0, 4 + 4I, 4I, 0) = y2; 

y2M = (0, 4, 4I, 0) = y3 (=y1). 

 

Thus the resultant is a realized limit cycle. 

 

Consider x = (3 + 2I, 1 + 4I, 2 + 3I, 4 + I) ∈ P. 

 

To find the effect of x on M. 

 

xM = (I, 3I + 4, 4 + I, 4 + I) = y1; 

y1M = (5I, 4 + I, 3I + 2, 4 + I) = y2; 

y2M = (I, 4 + 3I, 4 + I, 4 + I) = y3; 

y3M = (5I, 4 + I, 3I + 2, 4 + I) = y4 ( = y2). 

 

Thus we see the resultant is a limit cycle. 
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Example 4.3:  Let  

 

S =
3 2I 4 3I

1 2I 4 2I

+ + 
 

+ + 
 

 

be the neutrosophic MOD matrix operator. 

 

Let P = {(x, y) | x, y ∈ 〈Z5 ∪ I〉 = {a + bI | a, b ∈ Z5}}. 

 

Let x = (3 + 2I, 1 + 4I) ∈ P. 

 

To find the effect of x on S. 

 

xS = (0, I + 4) = y1;   y1S = (4 + I, 1 + 3I) = y2; 

y2S = (3 + 3I, 4I) = y3;  y3S = (2 + 3I, 2+4I) = y4; 

y4S = (3, 1) = y5;   y5S = (3I, 1 + I) = y6; 

y6S = (1, 4 + 4I) = y7;  y7S = (2 + 2I, 0) = y8; 

y8S = (1 + 4I, 3) = y9;  y9S = (1 + 3I, 1 + 2I) = y10 

 

and so on. 

 

However we will have a realized fixed point or a limit cycle 

as the set P is finite. 

 

Let us consider x = (I, I) ∈ P.   

 

To find the effect of x on S. 

 

xS = (3I, 3I) = y1;  y1S = (4I, 4I) = y2; 

y2S = (2I, 2I) = y3;  y3S = (I, I) = y4 (= x). 

 

Thus the resultant is a realized fixed point which is x itself 

after 3 iterations. 

 

Now we will see the MOD matrix neutrosophic operator 

when the matrix is symmetric, skew symmetric upper triangular 

and super diagonal by an example each. 

 



154 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

 

 

 

Example 4.4:  Let S = 

0 3 2I 0 0

2I 0 1 3I 0

0 0 0 2 2I

0 0 2 6I 0

+ 
 

+ 
 +

 
+ 

  

 

be the neutrosophic MOD matrix operator with entries in  

〈Z7 ∪ I〉.  
 

P = {(a1, a2, a3, a4) | ai ∈ 〈Z7 ∪ I〉; 1 ≤ i ≤ 4} be the 

collection of neutrosophic state vectors. 

 

Let x = (3 + 4I, 4I, 3I, 2) ∈ P.   

 

The effect of x on S is  

 

xS = (I, 6I, 4, 5I) = y1. 

 

y1S = (I, 6I, 4, 5I) 

0 3 2I 0 0

2I 0 1 3I 0

0 0 0 2 2I

0 0 2 6I 0

+ 
 

+ 
 +

 
+ 

 

 

 

 = (5I, 5I, I, 1 + I) = y2 

 

 

y2S = (3I, I, 2 + 3I, 4I) = y3;  y3S = (2I, I, I, 4) = y4; 

y4S = (2I, 3I, 1, 4I) = y5;    

y5S = (2I, 3I, 2I, 2 + 2I) = y6; 

y6S = (6I, 3I, 4, I) = y7;   y7S = (6I, 2I, I, I) = y8; 

y8S = (4I, 2I, 2I, 4I) = y9;  y9S = (4I, 6I, 5I, I) = y10 

and so on. 

 

However we will reach a realized fixed point or a limit 

cycle as P is a finite set. 
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Example 4.5:  Let S = 

3 2I 0 0 0 0

0 0 0 3I 0

0 1 4I 0 0 0

0 0 0 0 2

0 0 2 I 0 0

+ 
 
 
 +

 
 
 + 

 be the   

 

neutrosophic MOD matrix operator with entries from 〈Z6 ∪ I〉. 
 

Let P = {(a1, a2, a3, a4, a5) | ai ∈ 〈Z6 ∪ I〉; 1 ≤ i ≤ 5} be the 

collection of state vectors.   

 

To find the effect of 

 

x = (3 + 2I, I, 4, 2, 3+I) ∈ P. 

xS = (3 + 4I, 4 + 4I, 0, 3I, 4) = y1; 

y1S = (3 + 2I, 0, 2 + 4I, 0, 0) = y2; 

y2S = (3 + 4I, 2 + 4I, 0, 0, 0) = y3; 

y3S = (3 + 2I, 0, 0, 0, 0) = y4; 

y4S = (3 + 4I, 0, 0, 0, 0) = y5; 

y5S = (3 + 2I, 0, 0, 0, 0) = y6 (= y4). 

 

Thus the resultant is a realized limit cycle. 

 

Example 4.6:  Let S = 

3 I 2I 0 1

2I 0 1 I 0

0 1 I 2 I

1 0 I 1 3I

+ 
 

+ 
 +

 
+ 

  

 

be the neutrosophic MOD symmetric matrix operator with entries 

from  〈Z4 ∪ I〉. 
 

Let x = (2 + I, 3, 0, 1) ∈ P = {(a1, a2, a3, a4) | ai ∈ 〈Z4 ∪ I〉;  
1 ≤ i ≤ 4}. 

 

The effect of x on S is as follows. 
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xS = (3, 2I, 3, 3) = y1;    

y1S = (3I, 3+I 2+2I, 2) = y2; 

y2S = (2I, 2, 3+3I, 2+I) = y3;  

y3S = (2+I, 3 + I, 3I, 2) = y4; 

y4S = (2I, 0,  3 + I,  2I) = y5; 

y5S = (2I, 2I, 2, 2I) = y6; 

y6S = (2I, 2 + 2I, 2I, 0) = y7;  

y7S = (0, 0, 2, 0) = y8; 

y8S = (0, 2 + 2I,  0,  2I) = y9;  

y9S = (2I, 0, 2, 0) = y10; 

y10S = (0 2+2I, 0, 0) = y11;  

y11S = (0, 2 + 2I, 0, 0) = y12 (= y11). 

 

Thus the resultant is a realized fixed point after 10 

iterations. 

 

Let x = (3, 1, 0, 0) ∈ P to find the effect of x on the MOD 

operator  

 

xS = (3, 1, 0, 0) 

3 I 2I 0 1

2I 0 1 I 0

0 1 I 2 I

1 0 I 1 3I

+ 
 

+ 
 +

 
+ 

.

 
 

= (1 + I, 2I, 1 + I, 3) = y1; 

 

y1S = (2 + I, 1 + 3I, 1 + 2I, 0) = y2; 

y2S = (2 + 2I, 1 + I, 3 + 3I, 2) = y3; 

y3S = (2I, 3 + I, 3 + 3I, 2I) = y4; 

y4S = (2I, 3+I, 1 + I, 0) = y5; 

y5S = (0, 1 + 3I, 1 + 3I, 0) = y6; 

y6S = (0, 1 + 3I, 3 + 3I, 0) = y7; 

y7S = (0, 3+I, 3 + I, 2I) = y8; 

y8S and so on.   

 

This certainly we will arrive at a realized fixed point or a 

realized limit cycle. 
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Example 4.7:  Let B = 

0 1 I 0 0

2I 0 1 2I 0

0 2 I 0 1 2I

0 0 2 I 0

+ 
 

+ 
 + +

 
+ 

  

 

be the neutrosophic MOD matrix with entries from 〈Z3 ∪ I〉. 
 

Let x = (2I, 0, 0, 2) ∈ P = {(a1, a2, a3, a4) | ai ∈ 〈Z3 ∪ I〉;  
1 ≤ i ≤ 4}. 

 

The effect of x on B. 

 

xB = (2I, 0, 0, 2) 

0 1 I 0 0

2I 0 1 2I 0

0 2 I 0 1 2I

0 0 2 I 0

+ 
 

+ 
 + +

 
+ 

  

 

= (0, I, 1+2I, 0) = y1; 

y1B = (2I, 2+I, 1+2I, 0) = y2; 

y2B = (I, 2 + 2I, 2 + I, 1 + 2I) = y3; 

y3B = (2I, 1 + 2I, 1 + 2I, 2 + I) = y4; 

y4B = (0, 2 + 2I, 1 + 2I, 1 + 2I) and so on. 

 

However certainly at one stage that is after only finite 

number of iterations we may be arrive at a realized fixed point 

of a realized limit cycle. 

 

Let x = (1, 0, 0, 0) ∈ P. 

 

To find the effect of x on B. 

 

xB = (0, 1 + I, 0, 0) = y1;  y1B = (I, 0, 1 + 2I, 0) = y2; 

y2B = (0, 2I, 0, 0) = y3;   y3B = (I, 0, 0, 0) = y4; 

y4B = (0, 2I, 0, 0) = y5 (= y4). 
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Thus the resultant is a realized limit cycle. 

 

Let x = (0, 0, 0, 1) ∈ P. 

 

To find the effect of x on B. 

 

xB = (0, 0, 2 + I, 0) = y1; y1B = (0 1 + 2I, 0, 2 + I) = y2; 

y2B = (0, 0, 2 + I, 0) = y3; 

y3B = (0 1 + 2I, 0, 2 + I) = y4 ( = y2). 

 

Thus the resultant of (0, 0, 0, 1) is a realized limit cycle.  

 

Characterizing all classical fixed points of B, realized fixed 

points of B and realized limit cycle of B happens to be a 

difficult problem. 

 

Example 4.8:  Let A = 

2I 0 0

0 I 0

0 0 1 I

 
 
 
 + 

  

 

be the MOD-neutrosophic diagonal matrix of A with entries from  

〈Z3 ∪ I〉. 
 

Let x = (1, 0, 0) ∈ P = {(x1, x2, x3) | xi ∈ 〈Z3 ∪ I〉, 1 ≤ i ≤ 3} 

 

 To effect of x on A is; 

 

xA = (2I, 0, 0) = y1;   y1A = (I, 0, 0) = y2; 

y2A = (2I, 0, 0) = y3 (= y1). 

 

Thus the resultant is a realized limit cycle. 

 

Let x = (0, 1, 0) ∈ P.  The effect of x on a A is; 

 

xA = (0, I, 0) = y1;  y1A = (0, I, 0) = y2 (= y1). 

 

The resultant is a realized limit cycle of A. 
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Let x = (1, 0, I) ∈ P.   

 

The effect of x on A is; 

 

xA = (2I, 0, 2I) = y1;   y1A = (I, 0, I) = y2; 

y2A = (2I, 0, 2I) = y3 (= y1). 

 

Thus the resultant is a realized limit cycle of A. 

 

 

Example 4.9:  Let S = 

1 0 0 I 1 2I

0 3I 0 0 1 3I

0 0 1 I 0 0

I 0 0 2I 0

1 2I 1 3I 0 0 1

+ 
 

+ 
 +

 
 
 + + 

  

 

be a MOD-neutrosophic matrix with entries from  〈Z4 ∪ I〉. 
 

Let x = (1, 0, 0, 0, 0) ∈ P = {(x1, x2, x3, x4, x5) | xi ∈  

〈Z4 ∪ I〉; 1 ≤ i ≤ 5} 

 

To find the effect of x on  S. 

 

xS = (1, 0, 0, I,  1 + 2I) = y1;   

y1S = (2+I  1 + 3I, 0,  3I, 2) = y2; 

y2S = (0, 2 + 2I, 0, I, 3 + 2I) = y3; 

y3S = (2 + 3I, 3 + 3I, 0, 2I, 3 + 2I) = y4; 

y4S = (1 + I, 3 + 3I, 0, I, 0) = y5; 

y5S = (1 + 2I, 2I, 0, 0, 2I) = y6; 

y6S = (1, 2I, 0, 3I, 1 + 2I) = y7. 

 

However after a finite number of iterations we will arrive at 

a realized fixed point or a realized limit cycle. 

 

The main observation from this study is the following 

theorem. 
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THEOREM 4.1:  Let M be any n × n neutrosophic matrix with 

entries from 〈Zm ∪ I〉. 
 

i) PI = {(a1, a2, …, an) / ai ∈ ZmI = {aI / a ∈ Zm};  

1 ≤ i ≤ n} be the pure neutrosophic state vectors. If x ∈ 

PI then the resultant is always in PI. 

ii) PR = {(a1, a2, …, an) / ai ∈ Zm; 1 ≤ i ≤ n} be the 

collection of real state vectors. If x ∈ PR the resultant in 

general need not be in PR. 

 

The proof follows from simple arguments. 

 

Next we proceed onto study the MOD complex modulo 

integer matrix.   

 

This we will represent by some examples. 

 

 

Example 4.10:  Let S = 

F F

F

F

2 i 0 i

0 1 i 1

2 1 2i 0

+ 
 

+ 
 + 

 be the MOD  

 

complex modulo integer matrix with entries from C(Z3). 

 

Let P = {(a1, a2, a3) | ai = a + biF ∈ C(Z3); a, b ∈ Z3; 
2

Fi  = 2}  

         be the state vectors. 

 

Let x = (1, 2, 0) ∈ P. 

 

To find the effect of x on S; 

 

xS = (2 + iF, 2 + 2iF, 2 + iF) = y1; 

 

y1S = (2 + iF, 2 + 2iF, 2 + iF) 

F F

F

F

2 i 0 i

0 1 i 1

2 1 2i 0

+ 
 

+ 
 + 
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= (1, 0, 1 + iF) = y2 

 

y2S = (1, 0, 1 + iF) = y3 (= y2). 

 

Thus the resultant is a realized fixed point. 

 

Let x = (1, 0, iF) ∈ P.  

 

To find the effect of x on S. 

 

xS = (2  1 + iF   iF) = y1;   y1S = (1 + iF, 1, 1) = y2; 

y2S = (0, 2, iF) = y3;    y3S = (2iF, 0, 2) = y4; 

y4S = (2 + iF, 2 + iF, 1) = y5; 

y5S = (iF + 2, 2 + 2iF, 1) = y6. 

 

We will however arrive at a realized fixed point or a 

realized limit cycle after finite number of iterations. 

 

Let x = (iF, 2iF, 0) ∈ P. 

 

To find the effect of x on S. 

 

xS = (1, 1 + 2iF, 2 + 2iF) = y1;  y1S = (2iF, 2, 1) = y2 

 

y2S = (2iF, 2, 1) 

F F

F

F

2 i 0 i

0 1 i 1

2 1 2i 0

+ 
 

+ 
 + 

 = (iF, iF, 0) = y3; 

 

 

y3S = (2iF + 2, iF + 2,  iF + 2) = y4; 

y4S = (0, 1, 0) = y5; 

y5S = (0, 1 + iF, 1) = y6; 

y6S = (2, 1 + iF, 1 + iF) = y7; 

 

y7S = (iF, 2 + 2iF, 1) = y8; 

y8S = (2iF + 1, 1, 1 + 2iF) = y9; 

y9S = (2, 1 + 2iF, 2 + iF) = y10; 

y10S = (2 + iF, 2 + 2iF, 1 + iF) = y11. 
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Certainly after a finite number of iterations we will arrive at 

a realized limit cycle or a realized fixed point. 

 

So even in case of symmetric complex MOD operators we 

don’t see any symmetry or symmetric behavior of the state 

vector. 

 

Further as in case of pure neutrosophic state vectors whose 

resultant is also pure neutrosophic we see in case of only 

complex state vectors that is (aiF, biF, ciF) the resultant in 

general is a mixed one. 

 

This is the marked difference between the MOD 

neutrosophic matrix operators and MOD complex matrix 

operators. 

 

In view of all these observations on MOD complex matrix 

operators we give the following theorem. 

 

THEOREM 4.2:  Let S = (aij) be a MOD complex modulo integer 

p × p matrix MOD operator with entries from C(Zn); 
2 ( 1)
F

i n= −  

 

If x = (a1iF, …, apiF); ai ∈ Zn; 1 ≤ i ≤ p be any initial only 

complex number state vector.  The resultant of x on S in general 

is not a only complex number state vector. 

 

Proof follows from several illustrated examples. 

  

It is left as a open conjecture to characterize both the 

matrices S as well as x so that  

 

i)  the resultant is pure complex number.  

ii) Characterize those state vectors whose resultant is   

real. 

iii) Characterize those state vector so that the resultant is a 

  mixed one. 

 

However this will impose conditions also on  S. 



Fixed Elements of MOD Matrix Operators 163 

 

 

 

 

 

We finalize MOD complex modulo integer matrix operators 

with these examples. 

 

Example 4.11:  Let S = 

F F F

F F F

F F F

F F

F F F F

0 i 2i 0 i

i 4i 0 i 0

2i 0 3i 0 4i

0 i 0 i 0

2i 0 i 3i i

 
 
 
 
 
 
  

 be the  

 

 

MOD complex modulo integer matrix operator with entries from  

〈Z5 ∪ I〉. 
 

We call S of this from as pure complex MOD matrix 

operators. 

  

We study the effect of  x = (1, 2, 3, 0, 4) on S. 

 

 

xS = (1, 2, 3, 0, 4) 

F F F

F F F

F F F

F F

F F F F

0 i 2i 0 i

i 4i 0 i 0

2i 0 3i 0 4i

0 i 0 i 0

2i 0 i 3i i

 
 
 
 
 
 
  

  

 

 

= (iF, 4iF, 0, 2iF, 2iF) = y1; 

 

y1S = (2, 3, 1, 3, 2) = y2; 

y2S = (4iF, 2iF, 4iF, 2iF, 3iF) = y3; 

y3S = (4, 1, 2, 2, 2) = y3; 

y3S = (4iF, 0, iF, 4iF, 4iF) = y4; 

y4S = (0, 2, 0, 4, 3) = y5; 

y5S = (3iF, 2iF, 3iF, 0, 3iF) = y6; 

y6S = (1, 4, 1, 4, 2) = y7; 
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y7S = (3iF, iF, iF, 4iF, 2iF) = y8; 

y8S = (3, 4, 4, 4, 1) = y9; 

y9S = (3iF, 3iF, 4iF, iF, 0) = y10 and so on. 

 

However the resultant will be only a realized limit cycle as 

we see if the first iteration is a pure complex number when the 

state vector is a real number and the real and complex occur 

alternatively so the resultant can only be a realized limit cycle. 

 

Consider x = (iF, 3iF, iF, 2iF, 0) be a initial state vector which 

is pure complex.  

 

To find the effect of x on S. 

 

xS = (0, 0, 0, 0, 0) = y1;  y1S = (0, 0, 0, 0, 0) = y2. 

 

    Thus the resultant is realized fixed point yielding  

(0, 0, 0, 0, 0). 

 

Next we find the resultant of x = (iF, 0, iF, 0, iF) on the 

complex MOD-matrix operator S. 

 

xS = (2, 1, 1, 2, 2) = y1;  y1S = (2iF, 3iF, 4iF, 3iF) = y2; 

 

y2S = (3, 2, 1, 4, 4) = y2  and so on.  

 

For this pure complex modulo integer state vector we see 

the first iteration is real the second iteration is complex, 

complex and real occur alternatively so the final resultant is 

only a realized limit cycle. 

 

Finally we see if x is a mixed complex number then 

certainly the resultant can be complex. 

 

However there is little chance to be pure complex or pure 

real but depending on the MOD complex number matrix 

operator.  
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Example 4.12:  Let M = 

1 2 0 1

3 0 1 0

0 1 0 3

2 0 3 0

 
 
 
 
 
 

be the MOD complex  

 

number matrix operator with entries from C(Z4). 

 

To find the effect of x = (1, 2, 1, 3) ∈ P = {(x1, x2, x3, x4) | xi 

∈ C(Z4) = {a + biF / a, b ∈ Z4; 
2

Fi  
= 3} 1 ≤ i ≤ 4} on M. 

 

xM = (1, 3, 3, 0) = y1;   y1M = (2, 1, 3, 2) = y2; 

y2M = (1, 3, 3, 3) = y3;   y3M = (0, 1, 0, 2) = y4; 

y4M = (3, 0, 3, 0) = y5;   y5M = (3, 1, 0, 0) = y6; 

y6M = (2, 2, 1, 3) = y7;   y7M = (2, 1, 3, 1) = y8; 

y8M = (3, 3, 0, 3) = y9;   y9M = (2, 2, 3, 3) = y10; 

y10M = (2, 3, 0, 3) = y11;   y11M = (3, 0, 0, 2) = y12; 

y12M = (3, 2, 2, 3) = y13 and so on. 

 

Thus the resultant will be realized fixed point which will 

only be a real or it may be a realized limit cycle but it will also 

be real. 

 

Let x = (2iF, iF, 0, 3iF) ∈ P. 

 

To find the effect of x on M. 

 

xM = (3iF, 0, 2iF, 2iF) = y1;  y1M = (3iF, 0, 2iF, iF) = y2; 

 

y2M = (iF, 0, 3iF, iF) and so on.  

 

Thus if the initial state vector is pure complex the resultant 

will be a realized fixed point which is pure complex or a 

realized limit cycle which will be only pure complex. 

 

Next we study the dual number MOD-matrix operator with 

entries from 〈Zn ∪ g〉 = {a + bg | ai ∈ Zn, g
2
 = 0}.  

 

We will illustrate this situation by some examples. 
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Example 4.13: Let S = 

2 g g 0 0 2

0 0 1 g g 0

1 g 3 0 0 3g

0 0 2 3g 1 0

2 3g 1 2g 0 0 1 2g

+ 
 

+ 
 +

 
+ 

 + + + 

  

 

 

be the dual number MOD-matrix operator with entries from   

〈Z4 ∪ g〉 = {a + bg | a, b ∈ Z4, g
2
 = 0}. 

 

 

Let x = (g, 2g, 0, 3g, g) ∈ P = {(a1, a2, a3, a4, a5) | ai ∈  

    〈Z4 ∪ g〉, 1 ≤ i ≤ 5}.   

 

 

To find the effect of x on S. 

 

xS = (0, g, 0, 3g 3g) = y1;   

y1S = (3g, 3g, 3g, 3g, 3g) = y2; 

y2S = (3g, 0, g, 3g g) = y3; 

y3S = (g, 0, 2g, 3g, 3g) = y4; 

y4S = (3g, g, 2g, 3g, g) = y5 and so on. 

 

However it can be easily verified that the resultant of x will 

be realized fixed point or realized limit cycle which will only be 

a pure dual number. 

 

We call x a pure dual number if x = (a1g, a2g, …, a5g) where 

ai ∈ Z4. 

 

Thus the resultants of all pure dual number will only be 

pure dual number if the MOD dual number matrix operator has 

its entries from 〈Z4 ∪ g〉. 
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Example 4.14:  Let M = 

g 2g 3g 0 4g 5g

0 g 2g 4g 0 g

2g 0 0 2g g 0

0 3g 4g 0 0 5g

g 0 2g 4g 5g 0

3g g 0 g 0 2g

 
 
 
 
 
 
 
 
  

  

 

be the MOD-dual number matrix operator with entries from  

〈Z6 ∪ g〉 = {a + bg | a, b ∈ Z6, g2
 
= 0}.

 

 

P = {(a1, a2, …, a6) | ai ∈ 〈Z6 ∪ g〉; 1 ≤ i ≤ 6} be the 

collection of all dual number state vectors. 

 

Let x = (1, 2, 3, 0, 1, 0) ∈ P.  

 

To find the effect of x on M. 

 

xM = (2g, 4g, 3g, 0, 0 2g) = y1;  

y1M = (0, 0, 0, 0, 0, 0) = y2. 

 

Thus after one iteration a pure real state vector is zero. 

 

In fact let x = (1 + g, 2g + 3, 2 + g, 0, 3 + 2g, 1 + 2g) ∈ P be 

the initial state vector. 

 

To find the effect of x on M. 

 

xM = (3g, 3g, 3g, 5g, 3g, 4g) = y1; 

y1M = (0, 0, 0, 0, 0, 0). 

 

Thus the resultant is a realized fixed point. 

 

If x = (a, g, a2g, ..., a6g) ∈ P be a pure dual number. 

 

The effect of x on M is (0, 0, 0, 0, 0, 0) is a realized fixed 

point. 
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Let us give another example of the MOD-dual number 

matrix operator by an example. 

 

 

Example 4.15: Let A = 

3 2 0 0 1

0 0 4 3 0

2 1 0 2 1

0 0 3 0 2

2 3 1 1 0

 
 
 
 
 
 
  

  

 

 

be the MOD-dual number matrix operator with entries from  

〈Z5 ∪ I〉 = {a + bg | a, b ∈ Z5, g
2
 = 0}.  

 

Let x = (1, 2, 3, 1, 0) ∈ P = {(a1, a2, a3, a4, a5) | ai ∈  

〈Z5 ∪ g〉, 1 ≤ i ≤ 5} be the initial state vector. 

 

To find the effect of x on A, 

 

xA = (4, 0, 1, 2, 1) = y1;  y1A = (1, 2, 2, 3, 4) = y2; 

y2A = (3, 1, 1, 4, 4) = y3; y3A = (4, 4, 0, 4, 2) = y4; 

y4A = (1, 4, 0, 4, 2) = y5; y5A = (0, 2, 0, 4, 4) = y6; 

y6A = (3, 2, 4, 0, 3) = y7; y7A = (3, 4, 1, 2, 2) = y8; 

y8A = (0, 3, 4, 1, 3) = y9. 

 

and so on.  

 

If we start with a real state vector the resultant is again a 

real vector. 

 

However if x = (g, 2g, 3g, 0, 4g) be a state vector to find the 

effect of x on A. 

 

xA = (2g, 2g, 2g, 0, 4g) = y1; 

y1A = (3g, 3g, 2g, 4g, 4g) = y2; 

y2A = (g, 0, 3g, 2g, 3g) = y3; 

y3A = (0, 4g, 4g, 4g, 3g) = y4; 

y4A = (4g, 3g, g, 3g, 2g) = y5 and so on.   
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After a finite number of iterations we arrive at a realized 

fixed point or a realized limit cycle which is a pure dual  

number. 

 

Thus by this MOD-matrix real operator real state vectors’ 

resultant is real, similarly pure dual number state vector 

resultant is a pure dual number. 

 

Now we work with the mixed dual number initial state 

vector x = (2 + g, 1 + 2g, g, 4, 3g + 3) ∈ P. 

 

 

xA = (2 + g, 1 + 2g, g, 4, 3 + 3g) 

3 2 0 0 1

0 0 4 3 0

2 1 0 2 1

0 0 3 0 2

2 3 1 1 0

 
 
 
 
 
 
  

 

 

 

  = (2 + g, 3 + 2g, 4 + g, 1 + g, 2g) = y1; 

 

 

y1A = (4 + 4g, 3 + 4g, 3g, 2, 3 + 4g) = y2; 

y2A = (3 + g, 2 + 3g, 1, 2 + 2g, 3 + 2g) = y3; 

y3A = (2, 1 + 3g, 2, 1 + g, 3) = y4; 

y4A = (1, 0, 1, 4g, 2g + 1) = y5; 

y5A = (4g + 1, 1 + g, 4g + 1, 2g + 3, 2 + 3g) = y6; 

y6A = (4 + g, 4 + g, 3g, 2 + 4g, 2g + 3) = y7; 

y7A = (3 + 3g, 2 + g, 3g, 4g, 3 + g) = y8. 

 

Thus the resultant is realized limit cycle or a realized fixed 

point which is a mixed dual number. 

 

We first give some related results of the MOD-dual number 

operators. 
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THEOREM 4.3:  Let S = {n × n matrix with entries from Zm} 

where P = {(a1, a2, …, an)| ai ∈ 〈Zm ∪ g〉 = {a + bg | a, b ∈ Zm, 

g
2
 = 0}; 1 ≤ i ≤ n} be the initial state vector. 

 

i) If x = (a1, …, an); ai ∈ Zm; 1 ≤ i ≤ n be the real state  

vector then the resultant of x on  S is only real. 

ii) If x = (a1g, a2g, …, ang) ai ∈ Zm; 1 ≤ i ≤ n be the  

pure dual number state vector. Resultant of x on S 

is only a pure dual number vector. 

iii) If x = (a1, a2, …, an); bi + cig = ai ∈ 〈Zn ∪ g〉 be a  

mixed dual number; 

 

The resultant of x on S can be a pure real state vector or a 

pure dual state vector or mixed dual number state vector. 

 

Proof is direct and hence left as an exercise to the reader. 

 

THEOREM 4.4:  Let M = (aij) a p × p matrix with entries from 

Zn, g
2
 = 0. 

 

i) If x = (a1, a2, …, ap); ai∈ Zng be the pure dual number 

state vector, then the resultant of x on M is realized 

fixed point always a zero vector (0, 0, …, 0) after the 

first iteration. 

ii) If x = (a1, …, ap), ai ∈ Zn; 1 ≤ i ≤ p be the real state 

vector the resultant is always a realized fixed point after 

two iterations given by (0, 0, 0, …, 0). 

iii) If x = (x1, x2, …, xp); xi ∈ 〈Zn ∪ g〉; 1 ≤ i ≤ p be the 

initial state vector the resultant is a realized fixed point 

or a realized limit cycle. 

 

Proof is direct and hence left as an exercise to the reader. 

 

Next we study using MOD special dual like number matrix 

operators by examples. 
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Example 4.16: Let M = 

3 h h 2 2h 1

0 1 3h 0 h

h 1 2h 2h 0

2 1 3h 0 1

+ + 
 

+ 
 +

 
+   

 

be the MOD special dual like matrix operator with entries from 

〈Zn ∪ h〉 = {a + bh | a,  b ∈ Z4, h
2
 = h}.   

 

Let x = (h, 0, 2h, 3h) be the state vector whose entries are 

pure special dual like numbers.  

 

To find the effect of x on M. 

 

xM = (2h, h, 2h, 0) = y1;   y1M = (0, 2h, 0, 3h) = y2; 

y2M  = (2h, 0, 0, 3h) = y3;  y3M = (2h, 2h, 0, h) = y4; 

y4M = (2h, 2h, 0, h) = y5 (= y4). 

 

Thus the resultant of x is a realized fixed point of M. 

 

Let x = (1, 2, 3, 0) ∈ P be the initial state vector.  

 

To find the effect of x on M. 

 

xM = (3, 2 + h, 2 + 2h, 1) = y1;   

y1M = (1 + h, 3, 2, h) = y2; 

y2M = (1 + h, 3 + 3h, 2 + 2h, 1 + h) = y3; 

y3M = (3 + h, 2h, 2 + 2h, 2) = y4. 

 

We would after a finite number of iterations will arrive at a 

realized fixed point or a realized limit cycle. 

 

Consider x = (1 + h, 2h + 1, 0, 0) a state vector. 

 

To find the effect of x on M. 

 

xM = (3 + h, 1 + h, 2 + 2h, 1) = y1; 

y1M = (1 + h, 2, 2 + 2h, 3 + 3h) = y2. 
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We will arrive after a finite number of iterations the realized 

fixed point or a realized limit cycle. 

 

Example 4.17:  Let S = 

h 0 2h 3h 0

0 4h 0 2h h

2h 0 4h 0 2h

0 5h 0 4h 0

3h h 2h 0 2h

 
 
 
 
 
 
  

  

 

be the MOD special dual like number matrix operator with 

entries from 〈Z6 ∪ h〉  = {a + bh, ab ∈ Z6, h
2
 = h}. 

 

Let x = (2, 1, 3, 4, 0) be a state vector in  

P = {(a1, a2, a3, a4, a5) | ai ∈ 〈Z6 ∪ h〉; 1 ≤ i ≤ 5}.   

 

To find the effect of x on S. 

 

xS = (2h, 0, 4h, 0, h) = y1; 

y1S = (h, h, 4h, 0, 4h) = y2; 

y2S = (3h, 2h, 2h, 5h, 3h) = y3; 

y3S = (4h, 0, 2h, 3h, 4h) = y4; 

y4S = (2h, h, 0, 0, 0) = y5; 

y5S = (2h, 4h, 4h, 2h, h) = y6; 

y6S = (h, 3h, 4h, h, 2h) = y7; 

y7S = (3h, h, 4h, 3h, 3h) = y8; 

y8S = (2h, 4h, 4h, 5h, 3h) = y9. 

 

Thus the resultant will be a realized limit cycle or a realized 

fixed point but it will be a pure special dual like number vector.   

 

So even all real state vectors has the resultant to  be only a 

pure special dual like number vector. 

 

Let x = (h, 2h, 3h, 0, 0) be the initial state vector.  

 

To find the effect of x on M. 

 

xS =  (h, 2h, 2h, h, 2h) = y1; 
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y1S = (5h, 3h, 2h, 5h, 2h) = y2; 

y2S = (3h, 3h, 2h, 5h, 5h) = y3; 

y3S = (4h, 0, 0, 5h, 5h) = y4; 

y4S = (h, 0, 0, 2h, 4h) = y5; 

y5S = (h, 2h, 4h, 5h, 2h) = y6; 

y6S =  (3h, 5h, 4h, h, h) = y7      and so on. 

 

Thus the pure special dual like number state vector. 

 

Let x = (1 + h, 2 + 3h, 1 + 3h, 4 + h, 0) be the state vector. 

 

To find the effect of x on S is given by the following way; 

 

xS =  (4h, 3h, 2h, 0, h) = y1;  

y1S = (5h, h, 0, 0, 3h) = y2; 

y2S = (2h, h, 4h, 5h, h) = y3; 

y3S = (h, 0, 4h, 4h, 0) = y4. 

 

  However we see after a finite number of iterations we will 

get the resultant which is only a pure special dual like number 

vector what ever be the state vector be real or pure special dual 

like number or a mixed one all of them have the resultant to be 

only a pure special dual like number.   

 

In view of this we have the following theorem. 

 

THEOREM 4.5: Let A = (aij)p×p where aij ∈ Znh, h
2
 = h be the 

MOD-special dual like number matrix operator. 

 

i) All real state vectors x ∈ {(a1, a2, …, ap) / ai ∈ Zn;  

1 ≤ i ≤ p} yields the resultant to be always a pure 

special dual like number vector. 

ii) All state vectors x = {(x1, x2, …, xp) / ai ∈ Znh;  

1 ≤ i ≤ p} yields the resultant to be always a pure 

special dual like number state vector. 

iii) All initial state vectors mixed numbers also yield 

the resultant to be only a pure special dual like 

number vector. 
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Proof is direct and hence left as an exercise to the reader. 

 

Now we give examples of real MOD matrix operator on 

special dual like number vectors. 

 

 

Example 4.18:  Let M = 

3 2 0 1 4

1 0 2 0 3

0 1 0 4 0

2 0 3 0 2

0 1 0 4 0

 
 
 
 
 
 
  

  

 

be the MOD special dual like number matrix operator with  

entries from 〈Z5 ∪ h〉 = {a + bh | a, b ∈ Z5, h
2 
= h}. 

 

P = {(x1, x2, …, x5) / xi ∈ 〈Z5 ∪ g〉; 1 ≤ i ≤ 5}.  

 

To find the effect of x ∈ P on M. 

 

Let x = (3, 1, 2, 0, 4) ∈ P.  

 

To find the effect of x on M. 

 

xM =  (0, 2, 2, 2, 0) = y1;  y1M =  (0, 2, 0, 3, 0) = y2; 

y2M = (3, 0, 3, 0, 2) = y3 ; y3M = (4, 1, 4, 3, 2) = y4  ; 

y4M = (4, 4, 1, 3, 0) = y5 ; y5M = (2, 4, 2, 3, 4) = y6 ; 

y6M = (1, 2, 2, 1, 1) = y7  and so.   

 

Certainly the resultant is also only a real state vector. 

 

Let x = (h, 2h, 0, h, 0) be the state vector. 

 

To find the effect of x on M. 

 

xM =  (2h, 2h, 2h, h, 2h) = y1;  

y1M = (4h, 3h, 2h, 3h, h) = y2; 

y2M = (h, h, 0, h, h) = y3; 
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y3M = (h, 3h, 0, 0, 4h) = y4 ; 

y4M = (h, 0, h, 2h, 3h) = y5  and so on.   

 

We see certainly the resultant is only a pure special dual 

like number. 

 

Let x = (1 + h, 2h + 1, 2h + 3, 0, h + 1) be the state vector. 

 

The resultant of x on M is as follows. 

 

xM = (4, 1, 4h + 2, 2 + 3h, 2) = y1; 

y1M = (2 + h, 2 + 4h, 3 + 4h, 2h, 3 + h) ; 

y2M = (3 + h, 2h, 4 + 4h, 1 + h, 4)  and so on.   

 

The resultant is a state vector from P. 

 

Thus in view of all these the following results can be 

proved. 

 

THEOREM 4.6:  Let M = (mij)n×n matrix whose entries are from 

Zm ⊆ 〈Zm ∪ h〉 = {a + bh / a, b ∈ Zm; h
2
 = h} the MOD special 

dual like number operator and P = {(a1, a2, .., an) / ai ∈ 〈Zm ∪ 

h〉; 1 ≤ i ≤ n} be the collection of special dual like number state 

vectors. 

 

i) Every x = (x1, …, xn) (where xi ∈ Zm the real state 

vector has its resultant on M to be only a real state 

vector. 

ii) Every x = (y1, y2, …, yn) (yi ∈ Zmh) the pure special 

dual like number state vector has its resultant on M 

to be only a pure special dual like number state 

vector. 

iii) If x = (a1, a2, …, an) ai ∈ 〈Zm ∪ j〉; 1 ≤ i ≤ n then the 

resultant of x on M can be in P. 

 

Next we give a few more illustration of MOD special dual 

like number matrix operators M. 
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Example 4.19: Let M = 

3 h 0 0 0

0 4 2h 0 0

0 0 6h 1 0

0 0 0 7h

+ 
 

+ 
 +

 
 

  

 

be the MOD special dual like number matrix operator with 

entries from  〈Z8 ∪ h〉 = {a + bh / a, b ∈ Z8, h
2
 = h}. 

 

Let x = (3, 1, 2, 0) be a state vector.   

 

To find the effect of x on M. 

 

xM = (1 + 3h, 4 + 2h, 2 + 4h, 0) = y1; 

y1M =  (5h + 3, 4h, 2, 0) = y2; 

y2S =  (5h + 3, 0, 2, 0) = y3; 

y3S =  (5h + 3, 0, 2, 0) = y4; 

y4M = (7h + 1, 0, 4h+2, 0) = y5 (= y3). 

 

Thus the resultant of x is a realized limit cycle. 

 

Let x = (3, 2, 4, 1) be the initial state vector. 

 

To find the effect of x on M. 

 

xM = (1 + 3h, 4h, 4, 7h) = y1; 

y1M =  (3+5h , 0, 4, h) = y2; 

y2M =  (1+7h, 0, 4, 7h) = y3; 

y3M =  (3+5h,  0, 4, h) = y4 (= y2). 

 

Thus this resultant is also a realized limit cycle. 

 

Let x = (h, 2h, 4h, 5h) be the initial state vector. 

 

To find the effect of x on M. 

 

xM = (4h, 4h, 4h, 3h) = y1; 

y1M = (0, 0, 4h, 5h) = y2; 

y2S =  (0, 0 4h, 3h) = y3; 
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y3S =  (0, 0, 4h, 5h) = y4 = y2. 

 

Thus this resultant is also a realized limit cycle which is 

only a pure special dual like number state vector. 

 

So even if the MOD-special dual like number operator 

matrix is a diagonal matrix we see if x the initial state vector is a 

pure special dual like number then so is the resultant. 

 

 

Example 4.20: Let M = 

0 0 6 2h 1

0 0 1 h 6h

2 3h 4h 0 0

3h 1 5 0 0

+ 
 

+ 
 +

 
+    

 

be the MOD special dual like number matrix operator with 

entries from 〈Z6 ∪ h〉 = {a + bh | a, b ∈ Z7, h
2
 = h}. 

 

Let x = (1, 2, 3, 4) be the initial state vector. 

 

To find the effect of x on M. 

 

xM = (3, 6 + 5h, 1 + h, 1) = y1; 

y1M = (4h+3, 5h + 5, 3 + 2h, 3) = y2; 

y2M = (2, 1 + 6h,  4h + 3, 2h+2) = y3; 

y3S = (1+h, 3h +3, 6 + 6h, 4h+2) = y4 and so on. 

 

Thus after a finite number of iterations we will arrive at a 

realized fixed point or a realized limit cycle. 

 

However if x is a real number vector with entries in Z7 still 

the resultant can be a mixed row vector. 

 

Consider x = (h, 2h, h, 0) be the state vector which is a pure 

special dual like number state row vector. 

 

To find the effect of x on M. 
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xM = (5h, 3h, 3h, h) = y1; 

 

y1M = (5h, 3h, 3h, h) = y2 is a realized fixed point which is 

a pure special dual like number state row vector. 

 

Low x = (1 + h, 2 + 2h, 0, 3h + 1) be the initial state vector. 

 

To find the effect of x on M. 

 

xM = (h + 1, h + 5, 1 + 5h, h + 1) = y1 and so on. 

 

After a finite number of iterations one may get a realized 

limit cycle or a realized fixed point. 

 

Next we study by illustrative examples the MOD-special 

quasi dual number matrix operator with entries from  

〈Zn ∪ k〉 = {a + bk | a, b ∈ Zn ; k
2
 = (n – 1) k} 

 

 

Example 4.21:  Let P = 

3 k k 0

2k 0 1 2k

1 k 1 4k

+ 
 

+ 
 + 

   

be the MOD-special quasi dual number matrix operator with 

entries from 〈Z5 ∪ k〉 = {a + bk | a, b ∈ Z5, k
2
 = 4k}. 

 

Let x = (1, 0, 2) be the initial state vector. 

 

To find the effect of x on P. 

 

xP =  (3k, k + 2, 3k) = y1 ; 

y1P =  (3k 4k, 2) = y2; 

y2P = (2, 2+2k, 4k) = y3 and so on. 

 

Thus the resultant of pure real row vector can be a mixed 

special quasi dual number state vector. 

 

Consider x = (k, 2k, k) be the initial state vector. 
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To find the effect of x on P. 

 

xP = (4k, 0, k) = y1;   y1P = (0, 2k, k) = y2  ; 

y2P = (k, k, 4k) = y3 and so on. 

 

Thus the resultant of a pure special quasi dual number 

vector is always a pure special quasi dual number vector only. 

 

 

Example 4.22:  Let S = 

3k 0 0 k

0 2k k 0

k 0 0 3k

0 k 2k 0

 
 
 
 
 
    

 

be the special quasi dual number MOD-matrix operator with 

entries from 〈Z4 ∪ k〉 = {a + bk | a, b ∈ Z4, k
2
 = 3k}. 

 

Let x = (1, 0, 2, 1) be the pure real state vector. 

 

Effect of x on S is as follows. 

 

xS = (k, k, 2k, 3k) = y1;  y1S = (3k, 3k, k, k) = y2 ; 

y2S = (2k, k, 3k, 2k) = y3  and so on.    

 

It is clear that after a finite number of iterations we will 

arrive at a realized limit cycle or a realized fixed point but the 

resultant will always be a pure special quasi dual number row 

vector. 

 

Let x = (3 + k, k + 2, 2k, 3k + 1) be the initial state vector.  

Certainly the resultant of this state vector will also be only a 

pure special quasi dual number row vector.   

 

In view of this we prove the following theorem. 

 



180 Special Type of Fixed Points of MOD Matrix Operators 

 

 

 

 

 

 

 

THEOREM 4.7:  Let S = (mij)n×n special quasi dual number MOD 

matrix operator with entries from Zmk = {ak / k
2
 = (m – 1) k; a 

∈ Zm}. 

 

P = {(a1, a2, …, an) / ai ∈ 〈Zm ∪ k〉 = {a + bk / a, b ∈ Zm;  

k
2
 = (m – 1) k}; 1 ≤ i ≤ n} be the collection of all state vectors. 

For every x ∈ P the resultant on S is always a pure special 

quasi dual number row vector in P1 = {(b1, b2, …, bn )|  bi ∈ Zmk; 

1 ≤ i ≤ n} ⊆ P. 

 

Proof is direct and hence left as an exercise to the reader. 

 

 

Example 4.23:  Let M = 

1 2 3 4 0

5 0 1 0 2

0 4 0 5 0

1 0 2 0 5

0 1 0 1 0

 
 
 
 
 
 
  

 be the MOD-special  

 

quasi dual number matrix operator. 

 

P = {(a1, a2, a3, a4, a5) | ai ∈ 〈Z6 ∪ k〉 = {a + bk | a, b ∈ Z6,  

k
2
 = 5k}; 1 ≤ i ≤ 5} be the collection of all state vector. 

 

Let x = (1, 0, 2, 0, 3) be the initial state vector. 

 

To find the effect of x on M. 

 

xM =  (1, 1, 3, 5, 0) = y1; y1M =  (5, 2, 2, 1, 3) = y2; 

y2M = (4, 3, 1, 3, 3) = y3 ; y3M = (2, 3, 3, 0, 3) = y4 ; 

y4M = (5, 1, 3, 2, 0) = y5 and so on. 

 

We see if x is a real row vector  so is the resultant. 

 

Next we find the resultant of a pure special quasi dual 

number row vector. 
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x = (k, 0, 2k, 0, 3k) be the initial row vector effect of x on 

M. 

 

xM = (k, 3k, 3k, 5k, 0) and so on. 

 

It can be easily verified that the resultant of a pure special 

quasi dual number row vector is always a pure special quasi 

dual number row vector though the MOD matrix operator used is 

real. 

 

Next we consider the effect of x = (0, 1 + k, 0, 3k + 2, 0) on 

M, the special quasi dual number row vector. 

 

xM = (2k + 2, 0, 5 + k, 0, 5 + 5k) and so on. 

 

Thus we see we will arrive at a resultant, after a finite 

number of iterations.  

 

However the resultant of x on M may be a realized fixed 

point or a realized limit cycle.  

 

In view of this we have the following theorem. 

 

THEOREM 4.8:  Let M = (mij)m×n matrix with mij ∈ Zn ⊆ 〈Zn ∪ k〉 
= {a + bk / a, b ∈ Zn, k

2
 = (n – 1) k} be the pure real MOD 

matrix operator of the special quasi dual numbers. 

P = {(a1, a2, …, am) / ai ∈ 〈Zn ∪ k〉, 1 ≤ i ≤ m} 

 

i) For every x a real state vector of P the resultant of  

x on M always a real state vector. 

 

For every pure special quasi dual number state row vector 

the resultant on M is always a pure special quasi dual number 

state vector. 

 

Proof is direct and hence left as an exercise to the reader. 
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Now we proceed onto propose problems based on our study 

in this chapter. Some of the problems can be treated as open 

conjecture and some are simple. 

 

Problems 
 

1. What are the special and distinct features enjoyed by MOD - 

neutrosophic matrix operators? 

 

 

2. Let M = 

3 I 4 2I 7 4I 3I

2I 5 3I 5I 0 2I

7I 3I 4 6I 7I 0

12 5I 0 3I 1 I

+ + + 
 

+ + 
 + +

 
+ + 

 be the MOD -  

 

neutrosophic matrix operator with entries from  

〈Z13 ∪ I〉 ={a + bI / a,  b ∈ Z13, I
2
 = I}. 

 

i) Enumerate all special features enjoyed by M. 

ii) Characterize all classical fixed points of M. 

iii) Characterize all the realized fixed points of M. 

iv) Characterize all realized limit cycles of M. 

v) If x and y are state vectors x ≠ y will the sum of the  

resultant of x y the same as resultant of x + y. 

      vi) Characterize all those state vectors which satisfy (v). 

 

 

3. Let S = 

3I 2I 0 4I 5I 6I

0 8I 4I 0 3I I

7I 0 3I 4I 0 4I

2I I 0 0 I 0

6I 0 I 2I 0 3I

0 2I 0 0 3I 0

 
 
 
 
 
 
 
 
  

 be the MOD  

 

neutrosophic matrix operator with entries from 〈Z10 ∪ I〉 = 

{a + bI | a, b ∈ Z10, I
2
 = I}.  
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P = {(a1, a2, a3, a4, a5, a6) | ai ∈ 〈Z10 ∪ I〉; 1 ≤ i ≤ 6} be the 

collection of all state vectors. 

 

i) Study questions (i) to (vi) of problem 2 using the  

operator S. 

 

ii) Can we say resultant of every x in P on S is only a pure 

neutrosophic row vector? 

 

 

4. Let M = 

3 7 2 0 1 5 3

0 2 0 1 0 2 1

7 0 5 0 8 0 2

0 1 0 7 0 6 0

1 0 2 0 5 0 3

0 5 0 4 0 3 0

2 0 1 0 7 0 8

 
 
 
 
 
 
 
 
 
 
 

 be a MOD neutrosophic  

 

 

matrix operator with entries from Z11 ⊆ 〈Z11 ∪ I〉 = {a + bI | 

a, b ∈ Z11, I
2
 = I}. 

 

P = {(a1, a2, …, a7) | ai ∈ 〈Z11 ∪ I〉 1 ≤ i ≤ 7} be the 

collection of all state row vectors. 

 

i) Study questions (i) to (vi) of problem (2) for this M. 

 

ii) If x is a real number state vector prove the resultant of x 

is also a real number state vector. 

 

iii) Prove all pure neutrosophic row state vectors have their 

resultant to be pure neutrosophic resultant to be pure 

neutrosophic. 
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5. Let P =  

3 2I 0 0 0 0 0 0

0 2I 7 0 0 0 0 0

0 0 4I 1 0 0 0 0

0 0 0 7I 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 4I 3 0

0 0 0 0 0 0 2I

+ 
 

+ 
 +

 
+ 

 
 

+ 
 
 

 be  

 

the MOD neutrosophic diagonal matrix operator with entries 

from 〈Z9 ∪ I〉. 
 

 i) Study questions (i) to (vi) of problem (2) using this  

operator P. 

 

 ii) Find conditions on the state row vectors such that their  

resultant is a zero row vector. 

 

 

6. Let T =  

3g 2 0 4g 1 0 2g

0 5g 2 0 7g 1 0

4g 0 4 0 5 2g

0 7g 7 0 5g 6 0

2 7g 0 5 6g 0 9 2g

+ + 
 

+ + 
 +

 
+ + 

 + + + 

 be the  

 

MOD-dual number matrix operator with entries from  

〈Z12∪ g〉 = {a + bg | a, b ∈ Z12, g
2
 = 0}. 

 

 

 i) Study questions (i) to (vi) of problem 2 using this T. 

 

ii) Find all row vectors which will have their resultant to 

be the zero vector. 
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7. Let S = 

g 2g 3g 0 4g 5g

0 g 2g 3g 0 4g

5g 3g 2g 3g 4g 0

2g 0 4g 0 5g g

3g 4g 0 5g 0 0

0 0 g 0 2g 6g

 
 
 
 
 
 
 
 
  

be the MOD dual  

 

number matrix operator with entries from   

〈Z8 ∪ g〉 = {(a + bg | a, b ∈ Z8,  g
2
 = 0}. 

 

i) Prove all pure dual number row initial state vectors 

resultant are zero vectors after first iteration. 

 

ii) Prove all real row initial state vectors have the resultant 

on S to  be a zero row vector after two iterations. 

 

iii) Obtain all special features associated with this S. 

 

 

8. Let M =

2g 4 0 0 0 0 0

0 6g 8 0 0 0 0

0 0 2 6g 0 0 0

0 0 0 4g 6 0 0

0 0 0 0 8g 4 0

0 0 0 0 0 0

+ 
 

+ 
 +

 
+ 

 +

 
  

 be  

 

 

the MOD dual number diagonal matrix operator with entries. 

 

i) Study questions (i) to (vi) of problem 2 for this M. 

 

ii) Find all state vectors x which gives the resultant as a 

realized fixed point which is the zero row vector. 
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9. Let  

 

S = 

2g 0 0 0 0 0 0

3g 1 2g 0 0 0 0 0

4g 3 2g 1 2g 0 0 0 0

5g 4g 3 2g 1 2g 0 0 0

6g g g 1 3 2g 1 2g 0 0

6 2g 3g 4g 3 2g 1 2g 0

4g g 2g g 1 4g 3 2g 1 2g

 
 

+ 
 + +

 
+ + 

 + + +

 
+ + 

 
+ + + 

  

 

be the MOD dual number matrix operator with entries from 

〈Z10 ∪ g〉 = {a + bg / a, b ∈ Z10, g
2
 = 0}. 

 

i) State all the special features enjoyed by S. 

ii) Study questions (i) to (vi) of problem (2) for this S. 

 

 

10. Can these dual number MOD  matrix operator find any 

special type of applications to real world problems? 

 

 

11. Let W = 

3 h h 0 4h 2

h 1 0 4 2h 0

0 3h 1 0 2h

4h 0 2 3h 0

+ + 
 

+ + 
 +

 
+ 

 be the MOD- 

 

 special dual like number matrix operator. 

 

i) Obtain all the special features associated with W. 

ii) Study questions (i) to (vi) of problem (2) for this W. 

iii) Characterize all those row vectors which result in a zero 

row vector as a realized fixed point. 

iv) Characterize all classical fixed points of W. 

v) Find the maximum number iterations that is needed to 

make one to arrive at a realized limit cycle or a fixed 

point. 
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12. Let M = 

3h 0 0 0 0 0 0

0 4h 1 0 0 0 0 0

0 0 8h 0 0 0 0

0 0 0 4h 1 0 0 0

0 0 0 0 3h 2 0 0

0 0 0 0 0 4h 7 0

0 0 0 0 0 0 h

 
 

+ 
 
 

+ 
 +

 
+ 

 
   

 

 

be the MOD-special dual like number matrix operator with 

entries from  〈Z10 ∪ h〉 = {a + bh / a, b ∈ Z10, h
2
 = h}. 

 

i) Study questions (i) to (vi) of problem (2) for this m. 

ii) Enumerate all special features enjoyed by the MOD 

special dual like number diagonal matrices. 

 

 

 

13. Let  

B = 

9 4h 0 0 0 0 0 0 0

2 3h 0 0 0 0 0 0 0

0 0 4h 0 0 0 0 0

0 0 7h 1 0 0 0 0 0

0 0 0 0 10h 0 0 0

0 0 0 0 4 5h 0 0 0

0 0 0 0 0 h 2 0 0

0 0 0 0 0 6h 0 0

+ 
 

+ 
 
 

+ 
 
 

+ 
 

+
 
  

 

 

be the MOD special dual like number matrix operator 

with entries from   

 

〈Z11 ∪ h〉 = {a + bh / a, b ∈ Z11, h
2
 = h}. 
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i) Study questions (i) to (vi) of problem (2) for this B. 

 ii) What are special features associated with this operator? 

 

14. Show if  

 

X = 

3 I 2 4 I

0 3I 2 0

4I 0 2 3I

+ + 
 

+ 
 + 

  

and 

 

Y = 

0 3 I 4I

2 0 3I 2

2I 4 2I 0

+ 
 

+ 
 + 

 

 

be any two MOD neutrosophic matrix operator with entries 

from  

〈Z5 ∪ I〉 = {a + bI / a, b ∈  Z5, I
2
 = I}. 

 

Let x = (3I + 2, 4I, 2 + I) be the initial state vector. 

 

i) Find xX and xY 

ii) Find x (X + Y) 

iii) Will xX + xY = x(X + Y)? 

iv) Find all those state vector  

x ∈ P = {(a1, a2, a3) / ai ∈ 〈Z5 ∪ I〉, 1 ≤ i ≤ 3} 

which satisfy (iv). 

 

 

15. Let  

M = 

3 4h 0 2 5h 0

0 2h 4 0 6h 2

6h 5 0 5 2h 0

0 6h 0 4

+ + 
 

+ + 
 + +

 
 

  

and 
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N = 

3 h 4 h 0

0 2h 0 3h 2

1 0 4h 1 0

0 4h 0 5h 3

+ 
 

+ 
 +

 
+ 

 

 

be two MOD special dual  like number matrix operator will 

entries from 〈Z7 ∪ h〉. 
 

 Study questions (i) to (v) of problem 14 for this M and N 

with appropriate changes. 

 

 

16. Let  

 

S = 

4g 2 0 g 0

0 8g 5 0 4g

2g 4 0 7g 2 0

0 4g 8 g 7 2g 9

+ 
 

+ 
 + +

 
+ + + 

  

 

and 

 

T = 

2g 4g 2 0 7g 1

5g 4 0 9 g 0

0 9g 3 0 4g 3

9g 0 2g 1 0

+ + 
 

+ + 
 + +

 
+ 

 

 

be any two MOD dual number matrix operators. 

 

Study questions (i) to (v) of problem 14 for this S and T 

with appropriate changes. 

 

 

17. Let  
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W = 

F F

F F

F F

F

3 2i 4i 2 0

0 2 3i 0 i

1 i 0 3 2i 0

0 4 0 3 4i

+ 
 

+ 
 + +

 
+ 

 

 

and  

 

V = 

F F

F F

F F

F F

0 0 3 2i 4i

0 0 2i 4 i

i i 2i 0 0

4 3i 2 4i 0 0

+ 
 

+ 
 +

 
+ +   

 

be two MOD complex modulo integer matrix operators. 

 

Study questions (i) to (v) of problem (14) for this V and W 

with appropriate changes. 

 

18.  Let   

 

A = 

F

F F

F F F

F F

F F

3 0 4 5i 2 0

0 2 i 0 0 5 i

4 i 0 2i 7i 0

0 3 4i 0 0 3 i

5 2i 0 6 7i 6 0

+ 
 

+ + 
 +

 
+ + 

 + + 

 

 

and  

 

B = 

F

F

F

F

3 4i 0 0 0

0 0 0 4 2i

0 9 7i 0 0

0 0 0 8 6i

+ 
 

+ 
 +

 
+ 

  

be any  two MOD complex modulo integer matrix operators.  
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Study questions (i) to (v) of problem (14) for this A and B 

with appropriate changes. 

 

19. Let A = (aij) and B = (bij) be any two n × n real MOD 

matrices operators with entries from Zm. 

 

Study questions (i) to (v) of problem (14) for this A and B 

with appropriate changes. 

 

20. Let  

A = 
5k 2 0

3k 3 6k

+ 
 

+ 
  

and  

B = 
7k 0

0 4k 1

 
 

+ 
  

 

be any two special quasi dual number MOD matrix 

operators.  

 

Study questions (i) to (v) of problem (14) for this A and B 

with appropriate changes. 

 

 

21. Let  

X = 

4I 2I 0 7 I

0 3I 1 4I 0

6I 3 0 I 2 4 3I

0 2I 1 0 4I

+ 
 

+ 
 + + +

 
+ 

  

 

be the MOD neutrosophic matrix operator with entries from 

〈Z9 ∪ I〉. 
 

Let  
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B = 

1

2

3

4

a

a

a

a

 
 
    

| ai ∈ 〈Z9 ∪ I〉 = {a + bI / a, b ∈ Z9,
 
I

2
 = I};  

1 ≤ i ≤ 4}. 

 

i) Find all y ∈ B for which Xy gives classified points. 

ii) Find all y ∈ B which gives the resultant as realized 

fixed points 

iii) Find all y ∈ B which gives the resultant as realized limit 

cycle. 

iv) Let  

y1 = 

3

2 I

I

7I

 
 

+ 
 
 
 

 and y2 = 

4

0

3I 2

0

 
 
 
 +

 
 

 ∈ B. 

 

v) Find Xy1 and Xy2, that is resultant of y1 and y2. 

vi) Find X 

vii) Is the resultant of X(y1 + y2) sum of the resultants Xy1 + 

Xy2? 

 

22. Let  

M = 

3g 4 0 2g

0 4g 1 0

5g 4 0 2g 3

+ 
 

+ 
 + + 

 

  

be the MOD dual number matrix operator with entries from  

〈Z5 ∪ g〉.  
 

B =  

1

2

3

a

a

a

 
 
 
  

 | ai ∈ 〈Z5 ∪ g〉 

= {a + bg / a, b ∈ Z5, g
2

 = 0} 1 ≤ i ≤  3} 
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i) Find all y ∈ B such that the resultant of y on M is a 

classical fixed point. 

ii) Find all y ∈ B such that the resultant of y on M is the 

realized fixed point 

0

0

0

 
 
 
  

. 

iii) If y1, y2 ∈ B can the resultant of y1 and y2 on M be  

equal to the sum of the resultant of y1 + y2? 

 

23. Let  

N =

0 4g 0 0

2g 0 5g 0

0 7g 0 8g

9 0 4g g

 
 
 
 
 
 

 

 

be the MOD dual number matrix operator with entries from   

 

〈Z10 ∪ g〉.  

B = 

1

2

3

4

a

a

a

a

 
 
    

 | ai ∈ 〈Z10 ∪ g〉 = {a + bg / a, b ∈ Z10, 

 

g
2
 = 0}, 1 ≤ i ≤ 4} be the collection of state vector.  

 

Study questions (i) to (iii) of problem (22) for this N with 

appropriate changes. 

 

24. Let M = (aij)n×n matrix with entries from 〈Zm ∪ k〉 = {(a + bk 

| a, bb ∈ Zm, k
2
 = (m – 1) k} be the MOD special quasi dual 

number matrix operator. 

  

Let  
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B = 

1

2

n

a

a

a

 
 
    

�
 | ai ∈ 〈Zm ∪ k〉, 1 ≤ i ≤ n} 

 

be the collection of column state vector. B
⊥

 = {(a1, a2, 

…, an) | ai ∈ 〈Zm ∪ k〉; 1 ≤ i ≤ n} be the collection of 

row state vectors. 

 

i) Find columns vectors y in B such that the resultant is z 

than for the y
t
 in B

⊥

 the resultant is z
t
. 

ii) Find those MOD matrix operators for which (1) is true.  
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