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Abstract.  Uncertainty in expert systems is essential re-

search point in artificial intelligence domain. Uncertain 

knowledge representation and analysis in expert systems 

is one of the challenges that takes researchers concern as 

different uncertainty types which are imprecision, vague-

ness, ambiguity, and inconsistence need different han-

dling models. This paper reviews some of the multi-

valued logic models which are fuzzy set, intuitionistic 

fuzzy set, and suggests a new approach which is neutro-

sophic set for handling uncertainty in expert systems to 

derive decisions. The paper highlights, compares and 

clarifies the differences of these models in terms of the 

application area of problem solving. The results shows 

that  neutrosophic expert system for learning manage-

ment systems evaluation as a better option to simulate 

human thinking than fuzzy and intuitionistic fuzzy logic 

because fuzzy logic can't express false membership and 

intuitionistic fuzzy logic is not able to handle indetermi-

nacy of information.  

Keywords: Uncertainty; Expert System; Fuzzy Set; Intuitionistic Fuzzy Set; Neutrosophic Set, Learning Management Systems. 

1 Introduction 

Uncertainty is the shortage of knowledge regardless of 

what is the reason of this deficient data [1]. Modeling un-

certainty for solving real life situations is one of the crucial 

problems of artificial intelligence [2]. Previous researches 

presented various models that handle uncertainty by simu-

lating the process of human thinking in expert systems, but 

these models are not enough to express uncertainty in 

problems [3][4]. Decision making includes ill-defined sit-

uations where it is not true or false; therefore it needs nov-

el models to increase understanding of the realization out-

come better than crisp [5]. 

Learning Management Systems (LMSs) are e-learning 
applications which help instructors in course administra-
tion. In higher education, the use of these applications has 
been rising as it supports universities in spreading educa-
tional resources to the learners [6][7]. System quality is an 

essential determinant of user satisfaction. It includes the 
usability, availability, stability, response time, and reliabil-
ity of the system [8][9]. Previous studies [10] in learning 
management system evaluation are implemented under 
complete information, while real environment has uncer-
tainty aspects. 

This leads to emerging new approaches such as fuzzy, 
intuitionistic fuzzy and neutrosophic models all of which 
give better attribute explications. The fuzzy theory which 

considers the degree of the membership of elements in a 
set was introduced by Professor Lotfi Zadeh in 1965 [11]. 
Intuitionistic fuzzy set theory presented as an extension of 
the fuzzy sets by Attanssov in 1983 [12]. A novel ap-

proach proposed by Smarandache to handle indeterminacy 
information in 1999 called neutrosopic logic [13]. 

Expert system simulates human expert reasoning to 
solve issues in particular domain such as diagnosis, repair, 
decision support, monitoring and control, and evaluation 

[14][15]. Expert system in uncertainty environment needs 
to draw conclusion as would a human expert do [14]. Un-
certainties types that can emerge include vagueness when 
information is gradually in natural, imprecision when in-
formation is not determined, ambiguity when available in-
formation leads to several feasible explications, and incon-

sistency when the conflicts and paradoxes in obtainable in-
formation is found [16][17]. This uncertainty types need 
models that handle different types of uncertainties [18].  

This paper discusses multivalued logic models includ-
ing fuzzy set, intuitionistic fuzzy set, and neutrosophic set 

for managing uncertainty in expert systems. The paper is 
organized as following: Section 1 provides an introduction 
to the paper; Section 2 presents multivalued logic models 
differences for managing uncertainty in expert systems; 
Then Section 3 presents the proposed neutrosophic  expert 
systems for evaluating learning management systems and 

finally Section 4 presents the conclusion and future work.  
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2 Multivalued Logic Models for Managing Uncer-
tainty in Expert System 

This section explores basic properties and differences of 

multivalued logic models for handling uncertainty in expert 

systems.  

2.1 Fuzzy Inference System 

Crisp set deals with objects belonging to a set or is ex-
cluded from it. The fuzzy set theory discusses an aspect in 
which each object has a related value in the interval be-
tween 0 and 1; This indicates the degree of its membership 
in the set .The basic types of fuzzy logic membership func-
tion are triangular, trapezoidal, Gaussian, and bell. In 

Fuzzy Set Theory, each element x ∈  U (Universe of dis-
course) is assigned a single membership value. A fuzzy set 
A = {< x, μA(x) > |x ∈  U} in a universe of discourse U is 
characterized by a membership function, μA, as follows 
[11]:  μA: U → [0, 1].                                                     (1) 

Fuzzy inference systems responsible for indicating the 

mapping from a given an input to an output as shown in 

Figure 1. It consists of fuzzification of input, knowledge 

based system, and defuzzification of output as shown in 

Figure 1 [19] [20]. Fuzzy knowledge base contains the 

membership functions of the fuzzy sets and set of fuzzy 

production rules.  In fuzzification, the crisp input is con-

verted to a fuzzy output using the membership functions 

stored in the fuzzy knowledge base. In defuzzification, the 

fuzzy output is converted to a crisp output using common 

techniques : centroid, bisector, and maximum methods.   

Figure 1: Block Diagram of Fuzzy Inference System 

2.2 Intuitionistic Fuzzy Inference System 

Atanassov said that the idea of intutuitionistic fuzzy set 

was a coincidence as he added to the fuzzy set definition a 
degree of non-membership. The intuitionistic idea incorpo-
rates the degree of hesitation [21].  An intuitionistic fuzzy 
set describes the membership of an element to a set, so that 
the sum of these degrees is always less or equal to 1. An 
intuitionistic fuzzy set A = {< u, μA(u), vA(u) > |u ∈  U} 

in a universe of discourse U is characterized by a member-
ship function μA, and a non-membership function vA, as 
follows [22] [23]:   
μA: U → [0, 1], vA : U → [0,1], 
and 0 ≤ μA(u) + vA(u) ≤ 1.      (2) 

The membership of an element to a fuzzy set is a sin-
gle value between zero and one. However, it is not true 

that the degree of non-membership of an element is equal 
to 1 minus the membership degree as there is a hesitation 
degree. Intuitionistic fuzzy set is suitable in simulating 
human imprecise decision making [24]. Figure 2 shows the 
intuitionistic fuzzy inference system. Fuzzy knowledge 
base contains the true and false membership functions of 

the intuitionistic fuzzy sets and set of intuitionistic fuzzy 
production rules.  

Figure 2: Block Diagram of Intuitionistic Fuzzy Inference System 

2.3 Neutrosophic Inference System 

Smarandache [13] proposed a novel approach called 

neutrosophic logic as an extension of fuzzy logic. Neutro-

sophic logic is an extension of the fuzzy logic, intuition-

istic logic, and the three-valued, all of which variable x is 

described by triple values x= (t, i, f) where t for the degree 

of truth, f for the degree of false and i for the degree of in-

determinacy [20]. Current expert systems are constrained 

with strict conditions while futuristic expert systems do not 

depend only on truth value, but also on falsity and inde-

terminacy membership. So in neutrosophic logic approach, 

experts are asked about certain statement to give a degree 

that the statement is true, degree the statement is false; and 

degree of indeterminate. In neutrosophic logic t, i, and f 

are independent from each other and there is not restriction 

on their sum where [25]: 

0 <= t + i + f <= 3                                                            (3)         

Neutrosophic inference system consists of neutrosoph-
ication unit that accepts the crisp input and assigns the ap-
propriate membership functions, neutrosophic knowledge 
base that maps input to output variable, and deneutrosoph-

ication unit that maps neutrosophic value  to crisp value as 
shown in Figure 3 [20]. 

Figure 3: Block Diagram of Neutrosophic Inference System 

2.4 Multivalued Logic Models for Handling Uncer-
tainty  
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A better understanding of the differences and use be-
tween the uncertainty models is presented in this section. 
The selection of the appropriate uncertainty model for a 
problem is essential to get the desirable results. As men-
tioned in introduction section, the primary uncertainties 
types are imprecision, vagueness, ambiguity, and incon-

sistence. An example of vague information: "the colour of 
the flower is nearly red", this type of uncertainty can be 
handled by Fuzzy set. An example of imprecise: "the tem-
perature of the machine is between 88-92 °C", this type of 
uncertainty can be handled by intuitionistic fuzzy set. An 
example of ambiguity information: "votes for this candi-

date is about 60%", and an example of inconsistence: "the 
chance of raining tomorrow is 70%, it does not mean that 
the chance of not raining is 30%, since there might be hid-
den weather factors that is not aware of", these types of 
uncertainties can be handled by neutrosophic set. Table 1 
is concluded from [26-28] that shows multivalued logic 

models and their ability to express various uncertainty data 
types. 

Table 1: Multivalued Logic Models and Uncertainty Data Types 

Uncertainty Models 

Uncertainty Data Types 

V
ag

u
e-

n
ess 

Im
p
re-

cisio
n
 

A
m

b
i-

g
u
ity

 

In
co

n
-

sisten
t 

Fuzzy 

Intuitionistic Fuzzy  

Neutrosophic    

3 Neutrosophic Expert System for Evaluation of 
Learning Management System 

3.1 Neutrosophic Expert System Algorithm 

Developing neutrosophic expert system is shown in Figure 

4: 

1- Determine the system requirements represented in in-

puts, rules and outputs. 

2- Experts define the neutrosophic memberships of in-

puts variables of the system, rules of neutrosophic 

knowledge base of the system and output membership 

of the system quality.  

3- Inputs are expressed in neutrosophic sets using truth, 

falsity and indeterminacy membership functions. This 

step is called as neutrosophication step.  

4- Creating neutrosophic set rules for three knowledge 

bases for true, false and indeterminacy. 

5- Neutrosophic sets are converted into a single crisp 

value which has triplet format truth, indeterminacy 

and false. This process is called as deneutrosophica-

tion. 

Figure 4: Steps for Developing Neutrosophic Expert System 

3.2 Membership Functions for Input Attributes 

LMS system quality is described by higher education 
organizations with uncertainty terms which are imprecise, 
vague, ambiguity and inconsistent. That is why conven-
tional evaluation methods may not be virtuous.  System 

can be defined as the stability, reliability, usability, availa-
bility, response time and adaptability attributes of the sys-
tem. It quality is an important determinant of user satisfac-
tion and system performance [29][30][31].  Previous stud-
ies in learning management system evaluation are imple-
mented under complete information, while real world has 

uncertainty aspects. This leads us to illustrate the multi-
valued logic approaches differences such as fuzzy, intui-
tionistic fuzzy, and suggest a new one which is neutro-
sophic model to evaluate LMSs.  In Table 2, a representa-
tion for each input attribute in usability using fuzzy, intui-
tionistic fuzzy and neutrosophic expert system for evaluat-

ing LMSs usability.  

Table 2: Multivalued Logic Models Input Memberships 

3.3 Knowledgebase and Evaluation Process 

The proposed neutrosophic model evaluates system 
LMSs system quality considering one main criterion: usa-
bility. A usability criterion is derived into several attributes 

Type1 Fuzzy Intuitionistic Fuzzy Neutrosophic 

µLow(x) in 

[0,1], 

µMedium(x) in 

[0,1], 

µHigh(x) in [0, 

1], 

Where μ(X) 

is member-

ship func-

tion. 

μLow (x) in [0,1],  

VLow in [0,1], 

μMedium(x) in [0,1],  

VMedium in [0,1],  

μHigh(x) in [0,1], 

VHigh(x) in [0,1], 

Where μ(X) is mem-

bership function, 

V(x) is a non-

membership function 

and 0 ≤ μ(x) + V(x) 

≤ 1. 

TLow(x),  

ILow(x), FLow(x),  

TMedium(x), IMedium(x), 

FMedium(x), 

THigh(x), IHigh(x), 

FHigh(x), 

Where T(x) is mem-

bership/truth value, 

I(x) is indeterminacy 

value, F(x) is a non-

membership/False 

value. 
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as following: usability can be evaluated by efficiency, 
learnability, memorability, error tolerance and user satis-
faction attributes. In the proposed neutrosophic model, five 
inputs for usability are considered; each consisting of three 
terms, then each true, indeterminacy, and false usability 
knowledge base consists of 35= 243 rules after considering 

all the possible combinations of inputs. In fuzzy expert 
system depend on true knowledge base; while in intuition-
istic fuzzy set expert rely on true and false knowledge base. 
Sample of the rules for true, false, indeterminacy are listed 
in Figure 5, 6, and 7.  

N
o

. o
f  R

u
les 

E
fficien

cy
 

E
rro

r 

T
o
leran

ce 

L
earn

ab
ility

 

M
em

o
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U
ser 

S
atisfactio

n
 

U
sab

ility
 

1 low low low low low v. low

2 med low low low low v.low

3 high low low low low low 

… 

243 high high high high high v.high

Figure 5: True Usability Knowledge Base 
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1 low low low low low low 

2 med low low low low low 

3 high low low low low low 

… 

243 high high high high high high 

Figure 6: False Usability Knowledge Base 
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S
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n
 

U
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1 low low low low low low 

2 med low low low low low 

3 high low low low low low 

… 

243 high high high high high med 

Figure 7: Indeterminacy Usability Knowledge Base 

4 Discussion 

The authors presented fuzzy, intuitionistic fuzzy, neu-
trosophic expert system for evaluating LMSs quality. The 
neutrosophic expert system represents three components of 

truth, indeterminacy, and falsity unlike in fuzzy expert sys-

tem which expresses the true membership value only and 
has no solution when experts have a hesitancy to define 
membership. Fuzzy system handles vagueness; while in-
tuitionistic fuzzy system deals with vagueness and impre-
cision.  

Neutrosophic system handles vagueness, imprecision, 
ambiguity, and inconsistent uncertainties types. For exam-
ple; a vote with two symbols which are: A and B is oc-
curred, in which some votes can’t be determined if it’s 
written A or B. 

Table 1 shows the comparison of fuzzy, intutuionistic 
fuzzy, and neutrosophic expert system and their ability to 
represent different uncertainty data types. In Table 2, a 
representation for input attributes for usability using fuzzy, 
intuitionistic fuzzy and neutrosophic expert system for 
evaluating LMSs usability. The results show that fuzzy 

and intuitionistic fuzzy system is limited as it cannot rep-
resent paradoxes which are a feature of human thinking.   

Conclusion and Future Work 

Artificial intelligence disciplines like decision support 
systems and experts systems depend on true and indeter-
minate information which is the unawareness value be-
tween true and false. For example, if an opinion of an ex-
pert is asked about certain statement, then he may say that 
that the statement is true, false and indeterminacy are 0.6, 

0.3 and 0.4 respectively. This can be appropriately handled 
by neutrosophic logic.  

In this paper, a proposal for neutrosophic expert sys-
tem for LMSs quality evaluation based on efficiency, 
learnability, memorability, error tolerance and user satis-

faction for usability.  Though, neutrosophic systems using 
varies according to the problem and available knowledge.  

Future work will deal with the implementation of neu-

trosophic expert system for LMSs system quality evalua-

tion. Neutrosophic Logic is a new approach for evaluating 

the system quality attributes of various systems that can 

adapt variations and changes. This is an assertion to use 

neutrosophic logic approach for assessing the system qual-

ity of LMSs. 

6
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Abstract Interval-valued neutrosophic set (INS) is a 

generalization of fuzzy set (FS) that is designed for some 

practical situations in which each element has different truth 

membership function, indeterminacy membership function and 

falsity membership function and permits the membership 

degrees to be expressed by interval values. In this paper, we first 

introduce the similarity measure between single valued 

neutrosophic sets, then propose a new method to construct 

entropy of interval-valued neutrosophic sets based on the 

similarity measure between the two single valued neutrosophic 

sets, finally we give an example to show that our method is 

effective and reasonable. 

Keywords: Interval-valued neutrosophic set (INS), Entropy, 

Similarity measure 

1.Introduction 

In 1965, Zadeh first introduced Fuzzy set, which has 
been widely used in decision making, artificial intelligence, 
pattern recognition, information fusion, etc [1,2]. Later, 
several high-order fuzzy sets have been proposed as an 

extension of fuzzy sets, including interval-valued fuzzy set, 
type-2 fuzzy set, type-n fuzzy set, soft set, rough set, 
intuitionistic fuzzy set, interval-valued intuitionistic fuzzy 
set, hesitant fuzzy set and neutrosophic set (NS) [2,3,4,5].     

As a generalization of fuzzy set, the NS was proposed 
by Smarandache [5] not only to deal with the decision 

information which is often incomplete, indeterminate and 
inconsistent but also include the truth membership degree, 
the falsity membership degree and the indeterminacy 
membership degree. Since NS contains both non-standard 
and standard intervals in its theory and related operations 
which restricts its application in many fields. For 

simplicity and practical application, Wang proposed the 
interval NS (INS) and the single valued NS (SVNS) which 
are the instances of NS and gave some operations on these 
sets [9,10]. Ye proposed the similarity measure of interval 
valued neutrosophic set and applied them to decision 
making [11], he also proposed the vector similarity 

measures of simplified neutrosophic sets [12]. Ali 
proposed the entropy and similarity measure of interval 
valued neutrosophic set [13]. Zhang proposed the cross-
entropy of interval neutrosophic set and applied it to multi-
criteria decision making [14]. All these papers have 
enriched the theory of neutrosophic set. 

  Consistently with axiomatic definition of entropy of 
INS, we introduce the similarity measure between single 
valued neutrosophic sets, and propose a new method to 
construct entropy of interval-valued neutrosophic sets 
based on the similarity measure between single valued 

neutrosophic sets, then we give an example to show that 
our method is effective and reasonable. 

The structure of this paper is organized as follows. 
Section 2 introduces some basic definitions of the interval-
valued neutrosophic sets and the single valued 
neutrosophic sets (SVNSs). Section 3 presents a new 

similarity measure of SVNSs. Section 4 gives entropy of 
INS. Section 5 concludes our work. 

2. Preliminaries

Definition1 [9] Let X  be a space of points (objects), and 
its element is denoted by x . A NS A  in X , if the 
functions  xTA ,  xI A ,  xFA  are singleton subsets in

the real standard [0,1]. Then, a single valued NS A  is 
denoted by  

      XxxFxIxTxA AAA  ,,;

which is called a single valued neutrosophic set (SVNS). 
Definition2 [9] For two SVNSs A  and B  , A  is 

contained in B ,  if and only if 

   xTxT BA  ,    xIxI BA  ,    xFxF BA 

for every x  in X . 

Definition3 [9]   The complement of  SVNS A is defined 
by   

      ; ,1 ,C

A A AA x F x I x T x x X  
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Interval-valued neutrosophic set (INS) improves the 
ability of NS expressing the uncertainty of information 
whose membership functions take the form of interval 
values. 
Definition 4 [10] Assume X be a universe of discourse, 
with a generic element in X denoted by x. An interval-

valued neutrosophic set A in X is

      , , ,A A AA x T x I x F x x X 

where  AT x ,  AI x and  AF x are the truth

membership function, indeterminacy membership function 

and falsity membership function, respectively. For each 

point x  in X, we have

     [inf ,sup ] [0,1]A A AT x T x T x  ,

     [inf ,sup ] [0,1]A A AI x I x I x  , 

     [inf ,sup ] [0,1]A A AF x F x F x 

and      0 Sup Sup Sup 3A A AT x I x F x    . 

Definition5 [10] For two INSs A  and B  , A  is 
contained in B ,  if and only if 

   inf infA BT x T x
, 

   sup supA BT x T x
, 

   inf infA BI x I x
,

   sup supA BI x I x
, 

   inf infA BF x F x
,

   sup supA BF x F x
, 

for every x  in X . 

Definition6 [10] The complement of  INS A is defined by 

      ; , ,C C C

C

A A A
A x T x I x F x x X 

where 

       [inf ,sup ]C A A AA
T x F x F x F x  , 

     [1 sup ,1 inf ]C A AA
I x I x I x  

, 

       [inf ,sup ]C A A AA
F x T x T x T x 

3. Similarity measure of single valued 
neutrosophic sets 

Definition7 [11] Let A  and B  be two SVNSs, a function 

S  is the similarity measure between A  and B , if 

S satisfies the following properties: 

(N1)  , 0CS A A   if A  is a crisp set; 

(N2)  , 1S A B A B   ;

(N3)    , ,S A B S B A ;

(N4) for all SVNSs , ,A B C , if A B C  , then 

   , ,S A C S A B ,    , ,S A C S B C .

   Let
 

      , ,A A AA T x I x F x ,

      , ,B B BB T x I x F x  be two SVNSs, we will

use the Hamming distance to define the similarity measure 

of single valued neutrosophic sets. 

 

   

   

   
1

1
, 1

3

A j B j

n

A j B j

j

A j B j

T x T x

S A B I x I x

F x F x


  
 
    
 
 
 
 


  

(1) 

 It is easy to prove the similarity measure satisfies the 

Definition 7.

4. Entropy of interval-valued neutrosophic set

Based on [15], we give the definition of entropy of INS 

as follows: 

Definition8 A real valued function E : INSs→ [0, 1] is 

called an entropy of INS, if E satisfies the following 

properties: 

(P1)   0E A   if A  is a crisp set;

(P2)   1E A   iff    inf supA AI x I x , 

   [inf ,sup ]A AT x T x    [inf ,sup ]A AF x F x ; 

(P3)
 

   CE A E A ; 

(P4)    E A E B

if A B  when

inf infB BT F and sup supB BT F

inf 1 supB BI I  ; 

or B A  when

inf infB BF T and sup supB BF T

inf 1 supB BI I  . 

Let

       

   

[inf ,sup ],[inf ,sup ]

,[inf ,sup ]

A A A A

A A

T x T x I x I x
A

F x F x

  
  
  

be an INS, we construct the new SVNSs based on A .

      1 inf ,inf ,infA A AA T x I x F x (2) 

      2 sup ,sup ,supA A AA T x I x F x (3)
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      
2

sup ,1 sup ,supC

A A AA F x I x T x  (4)

Theorem1 Suppose S is the similarity measure of SVNSs , 

E is the entropy of INS,  1 2, CS A A is the similarity 

measure of SVNSs 1A  and 
2

CA , then 

   1 2, CE A S A A . 

Proof. (P1) If A  is a crisp set, then for every x X , we 

have 

   inf sup 1A AT x T x  ,

   inf sup 0A AI x I x  ,

   inf sup 0A AF x F x 

or 

   inf sup 0A AT x T x  ,

   inf sup 0A AI x I x  ,

   inf sup 1A AF x F x 

which means that 

 1 1,0,0A  ,  2 1,0,0A  ,  
2

0,1,1CA  .It is 

obvious that    1 2, 0CE A S A A  . 

(P2) By the definition of similarity measure of fuzzy sets, 

we have 

   

   

   

   

 

 

1 2

1 2

, 1

inf sup ,

inf 1 sup ,

inf sup

[0.5,0.5],[inf ,

1 inf ],[0.5,0.5]

( ) 1

C

C

A A

A A

A A

A

A

E A S A A

A A

T x F x

I x I x

F x T x

I x
A

I x

E A

 

 

 

 



  
   

  

 

.

(P3) Because    2 12 1
,

C
C C CA A A A  , 

we have 

     

         
 

1 2 2 1

1 2 2 1

, ,

, ,

C C

C C
C C C C

C

E A S A A S A A

S A A S A A

E A

 

 



. 

(P4) Since A B  it means that 

   inf infA BT x T x ,    sup supA BT x T x

   inf infA BI x I x ,    sup supA BI x I x

   inf infA BF x F x ,    sup supA BF x F x . 

when 

   inf infB BT x F x ,    sup supB BT x F x
,

   inf 1 supB BI x I x 

then we get 

       inf inf inf infA B B AT x T x F x F x  

       sup sup sup supA B B AT x T x F x F x  

By computing, we can get 

1 1 2 2

C CA B B A   ,

and using the definition of similarity measure, we get 

         1 2 1 2 1 2, , ,C C CE A S A A S A B S B B E B   

With the same reason, if B A  when 

inf infB BF T and sup supB BF T , 

inf 1 supB BI I  ,  we conclude    E A E B .

Hence, we complete the proof of Theorem 1. 

We can define entropy of INS by similarity measure 

between two SVNSs, which constructed by A , it satisfied

the definition of entropy. 
Example . 

Let  1 2, , nX x x x  be a universe of discourse. 

Let     , 0.7,0.8 , 0.5,0.7 ,[0.1,0.2]i iA x x X  . 

      , 0.6,0.8 , 0.4,0.6 , 0.1,0.3i iB x x X   be 
two INSs. 

Now we will obtain the entropy  E A ,  E B  as follows.

For A , from (1), (2) , (3) , (4), we obtain

 1 0.7,0.5,0.1A  ,  2 0.8,0.7,0.2A   and

 
2

0.2,0.3,0.8CA  ;

     1 2

1
, 1 0.5 0.2 0.7 0.5333

3

CE A S A A     

For B ,  1 0.6,0.4,0.1B  ,  2 0.8,0.6,0.3B   and

 
2

0.3,0.4,0.8CB  ; 

     1 2

1
, 1 0.3 0.7 0.6667

3

CE B S B B     . 

   E A E B is consistent with our intuition.

5. Conclusion

  Neutrosophic set is a necessary tool to deal with the 
uncertain information. In this paper, we commented on the 
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axiomatic definitions of similarity measure of SVNSs and 
entropy of INSs, respectively. We first introduced the 
similarity measure between SVNSs, and proposed a new 
method to construct entropy of INS based on the similarity 
measure between SVNSs, then we gave an example to 
show that our method is effective and reasonable. In the 

future, we want to give the entropy of INSs based on 
similarity measure of INSs. 
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1 Introduction 

The classical methods are not always successful, be-

cause the uncertainties appearing in these domains may be 

of various types. While a wide range of theories, such as 

probability theory, fuzzy set theory, intuitionistic fuzzy set 

theory, rough set theory, vague set theory, and interval 

mathematics, are well-known mathematical approaches to 

modelling uncertainty, each of this theories has its inherent 

difficulties, as pointed out by Molodtsov [21]. The possible 

reason for their inconveniences is the inadequacy of the pa-

rameterization tool. Consequently, Molodtsov initiated the 

soft set theory as a completely new approach for modelling 

vagueness and uncertainty, free from the ponderosity af-

fecting existing methods [20]. This theory has been useful 

in many different fields, such as decision making [7, 8, 10, 

13, 15, 23] or data analysis [32]. 

Up to date, the research on soft sets has been very ac-

tive and many important results have been achieved in the-

ory. The concept and basic properties of soft set theory 

were presented in [14, 21]. Practically, Maji et al. intro-

duced several algebraic operations in soft set theory and 

published a detailed theoretical study. Firstly, Maji et al. 

[15] applied soft sets to solve the decision making problem 

with the help of rough approach. Arockiarani et al. [4] ex-

tended the (classical) soft sets to single valued neutrosoph-

ic (fuzzy neutrosophic) soft sets. Zadeh introduced the de-

gree of membership/truth (t), in 1965, and defined the 

fuzzy set. Atanassov introduced the degree of nonmember-

ship/falsehood (f), in 1986, and defined the intuitionistic 

fuzzy set. Smarandache introduced the degree of indeter-

minacy / neutrality (i) as an independent component, in 

1995 (published in 1998), and he defined the neutrosophic 

set on three independent components (t,i,f) = (truth, inde-

terminacy, falsehood). He coined/invented the words “neu-

trosophy”, and its derivative - “neutrosophic”, whose ety-

mology is: Neutrosophy (from Latin "neuter" - neutral, 
Greek "sophia" – skill / wisdom), as a branch of philoso-

phy, studying the origin, nature, and scope of neutralities, 

as well as their interactions with different ideational spec-

tra. Neutrosophy considers a proposition, theory, event, 

concept, or entity "A" in relation to its opposite, "Anti-A", 

and that which is not "A", "Non-A", and that which is nei-

ther "A", nor "Anti-A", denoted by "Neut-A". Neutrosophy 

is thus a generalization of dialectics. Neutrosophy is the 

basis of neutrosophic logic, neutrosophic set, neutrosophic 

set, neutrosophic probability and neutrosophic statistics. In 

2013, Smarandache refined the single valued neutrosophic 

set to n components: t1, t2, ...; i1, i2, ...; f1, f2, ... . 

In this paper, we present an adjustable approach and 

mean potentiality approach to single valued neutrosophic 

soft sets by using single valued neutrosophic level soft sets, 

and give some illustrative examples. The properties of lev-

el soft sets are as well discussed. Also, we introduce the 

weighted single valued neutrosophic soft sets and investi-

gate its application in decision making. 

2 Preliminaries 

Definition 2.1 [11] 

Let X be a space of points (objects), with a generic el-

ement in X denoted by x. A single valued neutrosophic set 

(SVNS) A in X is characterized by truth-membership func-

tion TA, indeterminacy-membership function IA and falsity-

membership function FA.  

For each point x in X, TA(x), IA(x), FA(x) ∈ [0,1]. When 

X is continuous, a SVNS A can be written as A, 

XxxxFxIxT
X

AAA  ,/)(),(),( . 
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When X is discrete, a SVNS A can be written as 

XxxxFxIxTA ii

n

i

iii 


,/)(),(),(
1

Definition 2.2 [20] 

Let U be the initial universe set and E be a set of pa-

rameters. Let P(U) denote the power set of U. Consider a 

non-empty set A, A  E. A pair (F, A) is called a soft set 

over U, where F is a mapping given by F: A   P(U). 

Definition 2.3 [4] 

Let U be the initial universe set and E be a set of pa-

rameters. Consider a non-empty set A, A  E. Let P(U) de-

note the set of all single valued neutrosophic (fuzzy neu-

trosophic) sets of U. The collection (F, A) is termed to be 

the (fuzzy neutrosophic) single valued neutrosophic soft 

set over U, where F is a mapping given by F: A   P(U). 

3 An adjustable approach to single valued neu-

trosophic soft sets based decision making   

Definition 3.1 

Let AF ,  be a single valued neutrosophic soft set 

over U, where  EA   and E is a set of parameters. For 

]1,0[,, tsr , the ),,( tsr - level soft set of    is a crisp soft 

set ),,;( tsrL  = F(r,s,t),A defined by F(r,s,t)(e) = 

L(F(e);r,s,t) )={xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, 

for all Ae  . 

Here ]1,0[r can be viewed as a given least threshold 

on membership values, ]1,0[s  can be viewed as a given 

least threshold on indeterministic values, and ]1,0[t  can 

be viewed as a given greatest threshold on non-

membership values. 

For real-life applications of single valued neutrosophic 

soft sets based decision making, usually the thresholds 

tsr ,,  are chosen in advance by decision makers and repre-

sent their requirements on “membership levels”, “indeter-

ministic levels” and “non-membership levels” respectively. 

To illustrate this idea, let us consider the following ex-

ample.  

Example 3.2 

Let us consider a single valued neutrosophic soft set 

AF ,  which describes the “features of the air condi-

tioners” that Mr. X is considering for purchase. Suppose 

that there are five air conditioners produced by different 

companies in the domain  5,4,3,2,1 XXXXXU   under con-

sideration, and that  4,3,2,1 eeeeA   is a set of decision

parameters. The )4,3,2,1( iie stands for the parameters

“branded”, “expensive”, “cooling speed” and “after sale 

product service”, respectively. 

Suppose that F(e1) = {<X1,0.7,0.3,0.1>, <X2,0.8,0.3, 

0.1>, <X3,0.9,0.4,0.05>, <X4,0.6,0.3,0.2>, <X5,0.5,0.4, 

0.2>}, F(e2) = {<X1,0.6,0.25,0.1>, <X2,0.9,0.3,0.05>, <X3, 

0.8,0.3,0.05>, <X4,0.6,0.2,0.4>, < X5, 0.7,0.2,0.3>}, F(e3) = 

{<X1,0.75,0.35,0.1>, <X2,0.7,0.4,0.15>, <X3,0.85,0.5, 0.1>, 

<X4,0.5,0.4,0.3>, <X5,0.6,0.45,0.2>}, F(e4) = {<X1,0.65,0.3, 

0.2>, <X2,0.85,0.5,0.15>, <X3,0.9,0.6,0.1>, <X4,0.7,0.4, 

0.2>, <X5,0.6,0.3,0.1>}. 

The single valued neutrosophic soft set AF ,  is a 

parameterized family {F(ei), i=1,2,3,4} of single valued 

neutrosophic sets on U and  F, A = {branded air condi-

tioners = F(e1), expensive air conditioners = F(e2), High 

cooling speed air conditioners = F(e3), Good after sale 

product service = F(e4)}. Table 1 gives the tabular repre-

sentation of the single valued neutrosophic soft set 

AF , . 

U e1 e2 e3 e4

X1 (0.7,0.3,0.1) (0.6,0.25,0.1) (0.75,0.35,0.1) (0.65,0.3,0.2) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4)   (0.5,0.4,0.3) (0.7,0.4,0.2) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) 

Table 1: Tabular representation of the single valued neutrosophic soft set 

AF , . 

Now we take r = 0.7, s = 0.3, t = 0.2, then we have the 

following: 

L(F(e1);0.7,0.3,0.2) = {X1, X2, X3}, 

L(F(e2);0.7,0.3,0.2) = {X2, X3},  

L(F(e3);0.7,0.3,0.2) = {X1, X2, X3}, 

L(F(e4);0.7,0.3,0.2) = {X2, X3, X4}. 

Hence, the (0.7,0.3,0.2)-level soft set of AF ,  is

)2.0,3.0,7.0;(L  = F(0.7,0.3,0.2),A, where  the set-valued 

mapping F(0.7,0.3,0.2): A→P(U) is defined by F(0.7,0.3,0.2)(ei) = 

L(F(ei);0.7,0.3,0.2), for  i=1,2,3,4. Table 2 gives the tabular 

representation of the (0.7,0.3, 0.2)-level soft set of  

)2.0,3.0,7.0;(L . 
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U e1 e2 e3 e4 

X1 1 0 1 0 

X2 1 1 1 1 

X3 1 1 1 1 

X4 0 0 0 1 

X5 0 0 0 0 

Table 2: Tabular representation of the (0.7,0.3,0.2)-level soft set of  

)2.0,3.0,7.0;(L  

Now, we show some properties of the ),,( tsr - level 

soft sets. 

Theorem 3.3 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let 

)
1

,
1

,
1

;( tsrL   and )
2

,
2

,
2

;( tsrL   be (r1, s1, t1)- level 

soft set, and (r2, s2 ,t2)- level soft set of  respectively, 

where r1,s1,t1 , r2,s2,t2  [0,1]. If r2≤ r1, s2≤ s1 and t2≥ t1, 

then we have )
1

,
1

,
1

;( tsrL  ~ )
2

,
2

,
2

;( tsrL  .      

Proof 

Let )
1

,
1

,
1

;( tsrL  =<F( r1,s1,t1), A>, where F( r1,s1,t1)(e) 

= )
1

,
1

,
1

);(( tsreFL = {xU /TF(e)(x)≥ r1, IF(e)(x)≥ s1, FF(e)(x) 

≤ t1} for all eA. 

Let )
2

,
2

,
2

;( tsrL  =<F(r2,s2,t2), A> where F(r2,s2,t2)(e) 

= )
2

,
2

,
2

);(( tsreFL ={xU /TF(e)(x)≥ r2, IF(e)(x)≥ s2, FF(e)(x)≤ 

t2} for all eA. Obviously, A A. 

In the following, we will prove that for all eA, 

F( r1,s1,t1)(e)  F(r2,s2,t2)(e). Since r2 ≤ r1 ,s2 ≤ s1 and t2 ≥ t1 , 

then, for all eA, we have the following {xU /TF(e)(x)≥ r1, 

IF(e)(x)≥ s1, FF(e)(x)≤ t1}  {xU /TF(e)(x)≥ r2, IF(e)(x)≥ s2, 

FF(e)(x)≤ t2}. Since F(r1,s1,t1)(e)={xU /TF(e)(x)≥ r1, IF(e)(x)≥ 

s1, FF(e)(x)≤ t1} and  F(r2,s2,t2)(e)={xU /TF(e)(x)≥ r2, 

IF(e)(x)≥ s2, FF(e)(x)≤ t2}, thus we have F( r1,s1,t1)(e)  

F(r2,s2,t2)(e). Therefore, )
1

,
1

,
1

;( tsrL  ~ )
2

,
2

,
2

;( tsrL  .

Theorem 3.4 

Let AF , and AG,  be a single valued neu-

trosophic soft sets over U, where EA   and E is a set of 

parameters. ),,;( tsrL   and ),,;( tsrL  are ),,( tsr - level 

soft sets of   and  , respectively, where r, s, t [0,1]. If 

 ~ then we have ~),,;( tsrL  ),,;( tsrL  . 

Proof 

),,;( tsrL  <F(r,s,t),A>, where F(r,s,t)(e) = L(F(e);r,s,t) 

={xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, for all eA. 

Let ),,;( tsrL  <G(r,s,t),A> where G(r,s,t)(e) = L(G(e);r,s,t) 

={xU / TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}, for all eA. 

Obviously, A A. 

In the following, we will prove that, for all eA, 

F(r,s,t)(e)  G(r,s,t)(e). Since  ~ , then we have the fol-

lowing TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x)≥ FG(e)(x) 

for all xU and eA. Assume that  xF(r,s,t)(e). Since 

F(r,s,t)(e) = {xU / TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t}, then 

we have that TF(e)(x) ≥ r, IF(e)(x) ≥ s, FF(e)(x) ≤ t. Since 

TF(e)(x) ≤ TG(e)(x), IF(e)(x) ≤ IG(e)(x), FF(e)(x)≥ FG(e)(x), thus 

TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t. Hence, x{xU / 

TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}. Since G(r,s,t)(e) = {xU 

/ TG(e)(x) ≥ r, IG(e)(x) ≥ s, FG(e)(x) ≤ t}, then we have x 

G(r,s,t)(e). Thus, we have that F(r,s,t)(e)  G(r,s,t)(e). Conse-

quently, ~),,;( tsrL  ),,;( tsrL  . 

Note 3.5 

In the definition of ),,( tsr - level soft sets of single 

valued neutrosophic soft sets, the level triplet (or threshold 

triplet) assigned to each parameter has always constant 

values r,s,t[0,1]. However, in some decision making 

problems, it may happen that decision makers would like 

to improve different threshold triplets on different parame-

ters. To cope with such problems, we need to use a func-

tion instead of a constant value triplet as the thresholds on 

membership values, indeterministic values and non-

membership values respectively. 

Definition 3.6 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let : 

AI3 (I= [0,1]) be a single valued neutrosophic set in A 

which is called a threshold single valued neutrosophic  set. 

The level soft set of   with respect to  is a crisp soft set 

AFL ,);(


   defined by F(e) = L(F(e);(e)) = {xU 

/ TF(e)(x) ≥ T(e), IF(e)(x) ≥ I(e), FF(e)(x) ≤ F(e)}, for all 

eA. To illustrate this idea, let us consider the following 

examples. 

Example 3.7 

Based on the single valued neutrosophic soft set 

AF , , we can define a single valued neutrosophic set 

mid:A[0,1]3  , by

14
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for all eA. 

The single valued neutrosophic set mid  is called the 

mid-threshold single valued neutrosophic soft set  . Fur-

ther, the level soft set of   with respect to the mid-

threshold single valued neutrosophic set mid , namely 

);(


 midL  is called the mid-level soft set of  and 

simply denoted by );( midL  . 

Consider the problem in Example 3.2 with its tabular 

representation given by Table 1. It is clear that the mid-

threshold of <F,A>  is a single valued neutrosophic set 

mid<F,A>={<e1,0.7,0.34,0.13>,<e2,0.72,0.25,0.18>, 

< e3,0.68,0.42,0.17> < e4,0.74,0.42,0.15>}.  

The mid-level soft set of <F,A> is a soft set L(<F,A>;mid) 

and its tabular representation is given by Table 3. 

U e1 e2 e3 e4 

X1 0 0 0 0 

X2 0 1 0 1 

X3 1 1 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 3: Tabular representation of mid-level soft set LF,A,mid) 

Example 3.8 

Let AF ,  be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Then, 

we can define:  

(i)  a single valued neutrosophic set topbottom : AI3

T topbottom(e)=
Ux

max TF(e)(x), Itopbottom(e)=
Ux

max IF(e)(x), 

Ftopbottom(e)=
Ux

min FF(e)(x) for all eA. 

(ii) a single valued neutrosophic set toptop : AI3

T toptop(e)=
Ux

max TF(e)(x), Itoptop(e)=
Ux

max IF(e)(x), 

Ftoptop(e)=
Ux

max FF(e)(x) for all eA. 

(iii) a single valued neutrosophic set bottombottom : 

AI3 

T bottombottom(e)=
Ux

min TF(e)(x), I bottombottom(e)=
Ux

min IF(e)(x), 

F bottombottom(e)=
Ux

min FF(e)(x) for all eA, where I=[0,1] 

The single valued neutrosophic set topbottom  is 

called the top-bottom-threshold of the single valued neu-

trosophic soft set  , the single valued neutrosophic set 

toptop  is called the top-top-threshold of the single valued 

neutrosophic soft set  , the single valued neutrosophic set 

bottombottom  is called the bottom-bottom-threshold of 

the single valued neutrosophic soft set  . 

In addition, the level soft set of   with respect to the 

top-bottom-threshold of the single valued neutrosophic soft 

set  , namely );(


 topbottomL is called the top-bottom-

level soft set of  and simply denoted by );( topbottomL  . 

Similarly, the top-top-level soft set of  is denoted by 

);( toptopL  and the bottom-bottom-level soft set of  is 

denoted by );( ombottombottL  . 

Let us consider the problem in Example 3.2 with its 

tabular representation given by Table 1. Here, 

topbottom<F,A>={<e1,0.9,0.4,0.05>, <e2,0.9,0.3,0.05>, 

< e3,0.85,0.5,0.1> < e4,0.9,0.6,0.1>  

is a single valued neutrosophic set and the top-bottom-

level soft set of  F,A is );,( topbottomAFL  , see below. 

U e1 e2 e3 e4

X1 0 0 0 0 

X2 0 1 0 0 

X3 1 0 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 4: Tabular representation of top-bottom-level soft set 

L(F,A;topbottom)

Also, the top-top-threshold of F,A is a single valued 

neutrosophic set toptopF,A={<e1,0.9,0.4,0.2>, <e2,0.9,0.3, 

0.4>, <e3,0.85,0.5,0.3>, <e4,0.9,0.6,0.2>} and the top-top-

level soft set  of  F,A is );,( toptopAFL  . 

Its tabular representation is given by Table 5. 

U e1 e2 e3 e4

X1 0 0 0 0 

X2 0 1 0 0 

X3 1 0 1 1 

X4 0 0 0 0 

X5 0 0 0 0 

Table 5: Tabular representation of top-top-level soft set L(F,Atoptop) 
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It is clear that the bottom-bottom-threshold of F,A is 

a single valued neutrosophic set bottombotttom 

<F,A>={<e1,0.5,0.3,0.05>, <e2,0.6,0.2,0.05>, <e3,0.5,0.35, 

0.1>, < e4,0.6,0.3,0.1>} and the bottom-bottom level soft 

set  of  F,A is );,( ombottombottAFL  . 

Its tabular representation is given by Table 6. 

U e1 e2 e3 e4 

X1 0 0 1 0 

X2 0 1 0 0 

X3 1 1 1 1 

X4 0 0 0 0 

X5 0 0 0 1 

Table 6: Tabular representation of bottom-bottom-level soft set

L(F,A;bottombottom)

Remark 3.9 

In Example 3.8, we do not define the bottom-top-level 

soft set of a single valued neutrosophic soft set, that is, we 

do not define the following single valued neutrosophic set   

bottomtop : AI3 ,

T bottomtop(e)=
Ux

min TF(e)(x), I bottomtop(e)=
Ux

min IF(e)(x), 

F bottomtop(e)=
Ux

max FF(e)(x) for all eA. 

The reason is the following: The bottom-top threshold 

is dispensable since it indeed consists of a lower bound of 

the degree of membership and indeterministic values and 

together with an upperbound of the degree of non-

membership values. Thus, the bottom–top–threshold can 

always be satisfied. 

Let us consider the Example 3.2, where the bottom–

top–threshold of F,A is a single valued neutrosophic set 

bottomtop<F,A>={<e1,0.5,0.3,0.2>, <e2,0.6,0.2,0.4>, <e3,0.5, 

0.35,0.3>, < e4,0.6,0.3,0.2>} and the bottom-top-level soft 

set of  F,A is a soft set );,( bottomtopAFL   with its 

tabular representation given by Table 7. 

U e1 e2 e3 e4 

X1 1 1 1 1 
X2 1 1 1 1 
X3 1 1 1 1 
X4 1 1 1 1 
X5 1 1 1 1 

Table 7: Tabular representation of bottom-top-level soft set

L(F,A;bottomtop) 

From Table 7, we can see that all the tabular entries are 

equal to 1. In other words, the bottom-top-threshold can 

always be satisfied. 

Now, we show some properties of level soft sets with 

respect to a single valued neutrosophic soft set. 

Theorem 3.10 

Let AF , be a single valued neutrosophic soft set 

over U, where EA   and E is a set of parameters. Let 1: 

AI3 (I=[0,1]) and 2: AI3 (I=[0,1]) be two threshold

single valued neutrosophic sets. L(;1) = F1,A and 

L(;2) = F2,A are the level soft sets of  with respect 

to 1 and  2 , respectively. If T2(e) ≤ T1(e), I2(e) ≤ I1(e) 

and F2(e) ≥ F1(e), for all eA, then we have L(;1)  
~

L(;2) . 

Proof 

The proof is similar to Theorem 3.3. 

Theorem 3.11 

Let AF , and AG,  be two single valued neu-

trosophic soft sets over U, where EA   and E is a set of 

parameters.  

Let : AI3 (I=[0,1]) be a threshold single valued neu-

trosophic set.   AFL ,;   and    AGL ,;    are the 

level soft sets of  and  with respect to  respectively. If 

 ~  , then we have L(;) ~  L(;).

Proof 

The proof is similar to  Theorem 3.4. 

Theorem 3.12 

Let AG,  be a single valued neutrosophic soft set 

over U, where EA   and E be a set of parameters. 

);( midL  , );( topbottomL  , );( toptopL  , 

);( ombottombottL  are the mid–level soft set, the top-

bottom-level soft set, the top-top-level soft set and the bot-

tom-bottom-level soft set of  , respectively. Then, we 

have the following properties: 

(i) );( topbottomL  ~ );( midL  . 

(ii) );( topbottomL  ~ );( toptopL  . 

(iii) );( topbottomL  ~ );( ombottombottL  . 

Proof 

(i) Let );( topbottomL  =Gtopbottom,A,where 

T topbottom(e)=
Ux

max TG(e)(x), Itopbottom(e)=
Ux

max IG(e)(x), 

Ftopbottom(e)=
Ux

min FG(e)(x) for all eA. 

Let );( midL  =Gmid,A, where 
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for all eA. Obviously, A A. 

In the following we will prove that for all eA. 

Gtopbottom(e)  Gmid(e). 

Since 
Ux

max TG(e)(x) ≥ )()(
||

1
x

Ux eGT
U




,
Ux

max IG(e)(x) ≥

)()(
||

1
x

Ux eGI
U




, FG(e)(x) ≤ )()(
||

1
x

Ux eGF
U




, 

then for al l eA we have Ttopbottom(e) ≥ Tmid(e), Itopbottom(e) 

≥ Imid(e), Ftopbottom(e) ≤ Fmid(e). Thus, we have the following 

{xU  / TG(e)(x) ≥ Ttopbottom(e), IG(e)(x) ≥ Itopbottom(e), FG(e)(x) 

≤ Ftopbottom(e)} {xU  / TG(e)(x) ≥ Tmid(e), IG(e)(x) ≥ Imid(e), 

FG(e)(x) ≤ Fmid(e)}. Since Gtopbottom(e)= {xU  / TG(e)(x) ≥ 

Ttopbottom(e), IG(e)(x) ≥ Itopbottom(e), FG(e)(x) ≤ Ftopbottom(e)} and 

Gmid(e)= {xU  / TG(e)(x) ≥ Tmid(e), IG(e)(x) ≥ Imid(e), FG(e)(x) 

≤ Fmid(e)}, then we have the following Gtopbottom(e)  

Gmid(e).  Therefore );( topbottomL  ~ );( midL  . 

Proof of (ii) and (iii) are analogous to proof (i). 

Now, we show the adjustable approach to single valued 

neutrosophic soft sets based decision making by using lev-

el soft sets. 

Algorithm 3.13 

Step 1: Input the (resultant) single valued neutrosophic 

soft set =F,A. 

Step 2: Input the threshold single valued neutrosophic set  

: AI3  (I=[0,1]) (or give a threshold value triplet (r, s, t)

 I3 (I=[0,1]); or choose the mid-level decision rule; or 

choose the top-bottom-level decision rule; or choose the 

top-top-level decision rule; or choose the bottom-bottom-

level decision rule) for decision making. 

Step 3: Compute the level soft set L(;) with the thresh-

old single valued neutrosophic set  (or the (r, s, t)–level 

soft set L(;r,s,t)  ; or the mid-level soft set L(;mid); or 

choose the top-bottom-level soft set L(;topbottom) ; or 

choose the top-top-level soft set L(;toptop); or choose the 

bottom-bottom-level soft set L(;bottombottom)) 

Step 4: Present the level soft L(;)(or L(;r,s,t); 

L(;mid); L(;topbottom), L(;bottombottom)) in tabular 

form and compute the choice value ci of oi , for all i. 

Step 5: The optimal decision is to select ok  if ck= .max
i

c
i

Step 6: If k has more than one value, then any of ok  may 

be chosen. 

Note 3.14 

In the last step of Algorithm 3.13, one may go back to 

the second step and change the previously used threshold 

(or decision rule), as to adjust the final optimal decision, 

especially when there are too many “optimal choices” to be 

chosen. 

To illustrate the basic idea of Algorithm 3.13, let us 

consider the following example. 

Example 3.15 

Let us consider the decision making problem (Example 

3.2) involving the single valued neutrosophic soft set 

=F,A with its tabular representation given by Table 1.

If we deal with this problem by mid-level decision rule, 

we shall use the mid-threshold midF,A and thus obtain the 

mid-level soft set L(F,A,mid) with choice values having 

their tabular representation in Table 8. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 1 0 1 c2=2 

X3 1 1 1 1 c3=4 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 8: Tabular representation of mid-level soft set L(<F,A>;mid) with

choice values 

From Table 8, it follows that the maximum choice val-

ue is c3=4, so the optimal decision is to select X3.  

At the same time, if we deal with this problem by top-

bottom-level soft set L(F,A,topbottom) we obtain the 

choice values given by Table 9. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 1 0 0 c2=1 

X3 1 0 1 1 c3=3 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 9: Tabular representation of top-bottom-level soft set 

L(<F,A>;topbottom) with choice values 

From Table 9, it is clear that the maximum choice val-

ue is c3=3, so the optimal decision is to select X3. 
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4 Weighted single valued neutrosophic soft sets 

based decision making 

In this section, we will present an adjustable approach 

to weighted single valued neutrosophic soft sets based de-

cision making problems. 

Definition 4.1 

Let FN(U) be the set of all single valued neutrosophic 

sets in the universe U. Let EA   and E be a set of param-

eters. A weighted single valued neutrosophic soft set is a 

triple =F, A, , where F, A  is a single valued neutro-

sophic soft set over U , :A[0,1] is a weight function 

specifying the weight wj=(ej) for each attribute ejA. 

By definition, every single valued neutrosophic soft set 

can be considered as a weighted fuzzy soft set. The notion 

of weighted single valued neutrosophic soft sets provides a 

mathematical framework for modelling and analyzing the 

decision making problems in which all the choice parame-

ters may not be of equal importance. These differences be-

tween the importance of parameters are characterized by 

the weight function in a weighted single valued neutro-

sophic soft set. 

Algorithm 4.2 (an adjustable approach to weighted sin-

gle valued neutrosophic soft sets based decision making 

problems) 

Step 1: Input the weighted single valued neutrosophic soft 

set =F, A, . 

Step 2: Input the threshold single valued neutrosophic set  

: AI3 (or give a threshold value triplet (r, s, t)  I3; or

choose the mid-level decision rule; or choose the top-

bottom-level decision rule; or choose the top-top-level de-

cision rule; or choose the bottom -bottom-level decision 

rule) for decision making. 

Step 3: Compute the level soft set L(F,A;) of  with re-

spect to  the threshold single valued neutrosophic set  (or 

the (r, s, t)–level soft set L(F,A;r,s,t)  ; or the mid-level 

soft set L(F,A;mid); or choose the top-bottom-level soft 

set L(F,A;topbottom) ; or choose the top-top-level soft 

set L(F,A;toptop); or choose the bottom-bottom-level 

soft set L(F,A;bottombottom)). 

Step 4: Present the level soft L(F,A;)(or L(F,A;r,s,t); 

L(F,A;mid);L(F,A;topbottom), L(F,A;bottombottom)) 

in tabular form and compute the choice value c’i of oi , for 

all i. 

Step 5: The optimal decision is to select ok if c’k= .'max
i

c
i

 

Step 6: If k has more than one value then any of ok  may be 

chosen. 

Note 4.3 

In the last step of Algorithm 4.2, one may go back to 

the second step and change the previously used threshold 

(or decision rule), as to adjust the final optimal decision, 

especially when there are too many “optimal choices” to be 

chosen. 

To illustrate the basic idea of Algorithm 4.2, let us 

consider the following example. 

Example 4.3 

Let us consider the decision making problem (Example 

3.2). Suppose that Mr. X has imposed the following 

weights for the parameters in A: for the parameter “brand-

ed”, w1=0.8, for the parameter “expensive”, w2=0.6, for 

the parameter “cooling speed”, w3=0.9, and for the parame-

ter “after sale product service”, w4=0.7. Thus, we have a 

weight function :A[0,1], and the single valued neutro-

sophic soft set =F, A in Example 3.2 is changed into a 

weighted single valued neutrosophic soft set =F, A, . 

Its tabular representation is given by Table 10. 

U e1,w1=0.8 e2,w2=0.6 e3,w3=0.9 e4,w4=0.7

X1 (0.7,0.3,0.1) ( 0.6,0.25,0.1) ( 0.75,0.35,0.1) (0.65,0.3,0.2) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4) ( 0.5,0.4,0.3) (0.7,0.4,0.2) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) 

Table 10: Tabular representation of weighted single valued neutrosophic 

soft set =F, A, . 

As an adjustable approach, one can use different rules 

in decision making problem. For example, if we deal with 

this problem by mid-level decision rule, we shall use the 

mid-threshold midF,A  and thus obtain the mid-level soft 

set L(F,A,mid) with weighted choice values having tabu-

lar representation in Table 11. 

Table 11: Tabular representation of mid-level soft set L(<F,A>;mid) with 

weighted choice values 

It follows that the maximum weighted choice value is 

c‘3=3.2, so the optimal decision is to select X3. 

U e1,w1=0.8 e2,w2=0.6 e3,w3=0.9 e4,w4=0.7 weighted choice 

value 

X1 0 0 0 0 c’1=0 

X2 0 1 0 1 c‘2=1.3 

X3 1 1 1 1 c‘3=3.2 

X4 0 0 0 0 c‘4=0 

X5 0 0 0 0 c‘5=0 
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5 Mean potentiality approach 

Definition 5.1 

The potentiality of a single valued neutrosophic soft set 

(pfns) is defined as the sum of all membership, indetermin-

istic and non-membership values of all objects with respect 

to all parameters. Mathematically, it is defined as 














 

   

m

i

n

j

ij

m

i

n

j

ij

m

i

n

j

ijfns FITp
1 11 11 1

,,  

where Tij ,  Iij, Fij are the membership, indeterministic and 

non-membership values of  the ith  object with respect to 

the jth parameter respectively, m is the number of objects 

and n is the number of parameters. 

Definition 5.2 

The mean potentiality (mp) of the single valued neutro-

sophic soft set is defined as its average weight among the 

total potentiality.Mathematically, it is defined as 

nm

fnsp

pm


 . 

Algorithm 5.3 

Step 1: Input the (resultant) single valued neutrosophic 

soft set =F,A. 

Step 2: Compute the potentiality (pfns) of the single valued 

neutrosophic soft set. 

Step 3: Find out the mean potentiality (mp) of the single 

valued neutrosophic soft set. 

Step 4: Form mp-level soft soft set of the single valued 

neutrosophic soft set in tabular form, then  compute the 

choice value ci of oi , for all i. 

Step 5: The optimal decision is to select ok  if ck= .max
i

c
i

Step 6: If k has more than one value, then any of ok  may 

be chosen. 

Example 5.4 

Let us consider the problem in Example 3.2 with its tabular 

representation in Table 1. 

U e1 e2 e3 e4 Choice value 

X1 (0.7,0.3,0.1) (0.6,0.25,0.1)  (0.75,0.35,0.1) (0.65,0.3,0.2) (2.7,1.2,0.5) 

X2 (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15) (3.25,1.5,0.45) 

X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) (3.45,1.8,0.3) 

X4 (0.6,0.3,0.2) (0.6,0.2,0.4) (0.5,0.4,0.3) (0.7,0.4,0.2) (2.4,1.3,1.1) 

X5 (0.5,0.4,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1) (2.4,1.35,0.8) 

Table 12: Tabular representation of single valued neutrosophic soft set 

with choice values. 

So, the potentiality is fnsp = (14.2,7.15,3.15).

The Mean potentiality 
nm

fnsp

pm


  is: 













45

15.3
,

45

15.7
,

45

2.14

pm = (0.71, 0.36, 0.16). 

Using this triplet, we can form the pm -level soft set,

which is shown by Table 13. 

U e1 e2 e3 e4 Choice values 

X1 0 0 0 0 c1=0 

X2 0 0 0 1 c2=1 

X3 1 0 1 1 c3=3 

X4 0 0 0 0 c4=0 

X5 0 0 0 0 c5=0 

Table 13: Tabular representation of  mp-level soft set with choice values. 

From Table 13, it is clear that the maximum choice 

value is c3=3, so the optimal decision is to select X3. 

Conclusion 

In this paper, we introduced an adjustable and mean 

potentiality approach by means of neutrosophic level soft 

sets. Different level soft sets were derived by considering 

different types of thresholds, namely, mid, topbottom, top-

top, bottombottom. In general, the final optimal decisions 

based on different level soft sets could be different. Thus, 

the approach discussed in this paper captures an important 

feature for decision making in an imprecise environment. 

Some of these problems are essentially humanistic, and 

thus, subjective in nature; there actually isn’t a unique or 

uniform criterion for evaluating the alternatives. Hence, the 

decision making models presented in this paper make the 

approaches to single valued neutrosophic level soft sets 

based decision making more appropriate for many real 

world applications. 
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Abstract. This paper investigates an extended grey rela-

tional analysis method for multiple attribute decision 

making problems under interval neutrosophic uncertain 

linguistic environment. Interval neutrosophic uncertain 

linguistic variables are hybridization of uncertain linguis-

tic variables and interval neutrosophic sets and they can 

easily express the imprecise, indeterminate and incon-

sistent information which normally exist in real life situa-

tions. The rating of performance values of the alterna-

tives with respect to the attributes is provided by the de-

cision maker in terms of interval neutrosophic uncertain 

linguistic variables in the decision making situation. The 

weights of the attributes have been assumed to be incom-

pletely known or completely unknown to the decision 

maker and the weights have been calculated by employ-

ing different optimization models. Then, an extended 

grey relational analysis method has been proposed to de-

termine the ranking order of all alternatives and select the 

best one. Finally, a numerical example has been solved to 

check the validity and applicability of the proposed 

method and compared with other existing methods in the 

literature. 

Keywords: Multiple attribute decision making, Interval neutrosophic set, Interval neutrosophic uncertain linguistic variables, Grey 

relational analysis.

1 Introduction 

Multiple attribute decision making (MADM) is a pro-
cedure for a decision maker (DM) to get the most desirable 
alternative from a set of feasible alternatives with respect 
to some predefined attributes. MADM, an important deci-

sion making apparatus have been applied in many kinds of 
practical fields such as engineering technology, economics, 
operations research, management science, military, urban 
planning, etc. However, in real decision making, due to 
time pressure, complexity of knowledge or data, ambiguity 
of people’s thinking, the performance values of the alterna-

tives regarding the attributes cannot always be represented 
by crisp values and it is reasonable to describe them by 
fuzzy information. Zadeh [1] proposed the notion of fuzzy 
set theory by incorporating the degree of membership to 
deal with impreciseness. Atanassov [2] extended the con-
cept of Zadeh [1] and defined intuitionistic fuzzy set by in-

troducing the degree of non-membership in dealing with 
vagueness and uncertainty. However, in many real world 

decisions making, we often encounter with indeterminate 

and inconsistent information about alternatives with re-
spect to attributes. In order to handle indeterminate and in-
consistent information, the theory of neutrosophic set was 
incorporated by Smarandache [3-6] by introducing the de-
gree of indeterminacy or neutrality as an independent 
component. After the ground-breaking work of 

Smarandache [3-6], Wang et al. [7] proposed single valued 
neutrosophic set (SVNS) from real scientific and engineer-
ing point of view. Wang et al. [8] introduced interval neu-
trosophic set (INS) which is more realistic and flexible 
than neutrosophic set and it is characterized by the degree 
of membership, degree of non-membership and a degree of 

indeterminacy, and they are intervals rather than real num-
bers. 

In interval neutrosophic decision making environment, 
Chi and Liu [9] proposed extended technique for order 
preference by similarity to ideal solution (TOPSIS) method 
for solving MADM problems in which the attribute 

weights are unknown and attribute values are expressed in 
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terms of INSs. Ye [10] defined Hamming and Euclidean 
distances between INSs  and proposed a multi-criteria 
decision making (MCDM) method based on the distance 
based similarity measures. Broumi and Smarandache [11] 
defined a new cosine similarity between two INSs based 
on Bhattacharya’s distance [12] and applied the concept to 

a pattern recognition problem.  Zhang et al. [13] developed 
two interval neutrosophic number aggregation operators 
for solving MCDM problems. Liu and Shi [14] defined 
some aggregation operators for interval neutroshic hesitant 
fuzzy information and developed a decision making 
method for MADM problems. Zhang et al. [15] further 

proposed several outranking relations on interval 
neutrosophic numbers (INNs) based on ELETRE IV and 
established an outranking approach for MCDM problems 
using INNs. Ye [16] investigated an improved cross 
entropy measures for SVNSs and extended it to INSs.  
Then, the proposed cross entropy measures of SVNSs and 

INSs are employed to MCDM problems. Şahin and Liu 
[17] developed a maximizing deviation method for 
MADM problems with interval-valued neutrosophioc 
informations. Tian et al. [18] explored a novel and 
comprehensive approach for MCDM problems based on a 
cross entropy with INSs. Mondal and Pramanik [19] 

developed cosine, Dice and Jaccard similarity measures 
based on interval rough neutrosophic sets and developed 
MADM methods based on the proposed similarity 
measures. Ye [20] defined a credibily-induced interval 
neutrosophic weighted arithmetic averaging operator and a 
credibily-induced interval neutrosophic weighted geometic 

averaging operator and established their properties. In the 
same study, Ye [20]  also presented the projection measure 
between INNs the projection measure based ranking 
method for solving MADM problems with interval 
neutrosophic information and credibility information.     

Deng [21] initiated grey relational analysis (GRA) 

method which has been applied widely for solving many 
MADM problems [22-34] in diverse decision making envi-
ronments. GRA has been identified as an important deci-
sion making device for dealing with the problems with 
complex interrelationship between various aspects and var-
iables [25-27]. Biswas et al. [28] first studied GRA tech-

nique to MADM problems with single valued neutrosophic 
assessments in which weights of the attributes are com-
pletely unknown. Biswas et al. [29] further proposed an 
improved GRA method for MADM problems under neu-
trosophic environment. They formulated a deviation based 
optimization model to find incompletely known attribute 

weights. They also established an optimization model by 
using Lagrange functions to compute completely unknown 
attribute weights. Mondal and Pramanik [30] studied rough 
neutrosophic MADM through GRA method. Pramanik and 
Mondal [32] proposed a GRA method for interval neutro-

sophic MADM problems where the unknown attribute 
weights are obtained by using information entropy method. 
Recently, Dey et al. [34] developed an extended GRA 
based interval neutrosophic MADM for weaver selection 
in Khadi institution. 

Ye [35] introduced interval neutrosophic linguistic 

variables by combining linguistic variables and the idea of 
INSs. In the same study Ye [35] proposed aggregation 
operatos for interval neutrosophic linguistic information 
and presented a decision making method for MADM 
problems.  Broumi et al. [36] studied an extended TOPSIS 
method for MADM problems where the attribute values 

are described in terms of interval neutrosophic uncertain 
linguistic information and attribute weights are unknown. 
However, literature review reveals that there has been no 
work on extending GRA with  interval neutrosophic 
uncertain linguistic information. In this study, we have 
developed a new GRA method for MADM problems under 

interval neutrosophic uncertain linguistic assessments 
where the information about attribute weights are partially 
known or completely unknown to the DM.   

Rest of the paper is designed as follows; In Section 2, 
we have summarized some basic concepts which are essen-
tial for the presentation of the paper. Section 3 has been 

devoted to develop an extended GRA method for solving 
MADM problems under interval neutrosophic uncertain 
linguistic information where the information about attrib-
ute weights is partially known or completely unknown. In 
Section 4, an algorithm of the proposed method has been 
presented. In Section 5, we have solved a MADM problem 

to validate the developed method and compared the results 
with the results of other accessible methods in the literature. 
Finally, the last Section 6 concludes the paper with future 
scope of research. 

2 Preliminaries 

In the Section, we present several concepts regarding 

neutrosophic sets, single-valued neutrosophic sets, interval 
neutrosophic sets, uncertain linguistic variable, interval 
linguistic neutrosophic set, and interval neutrosophic un-
certain linguistic set. 

2.1 Neutrosophic set 

Definition 2.1 [3-6]: Let U be a space of objects, then a 

neutrosophic set N is defined as follows: 

N = {x, )(F),(I),(T xxx NNN   x U}     (1) 

where, )(T xN : U  ]-0, 1+[; )(I xN : U  ]-0, 1+[; )(F xN : 

U  ]-0, 1+[ are the truth-membership function, indetermi-

nacy-membership function, and falsity-membership func-

tion, respectively with the condition 
-0  sup )(T xN + sup )(I xN + sup )(F xN  3+. 
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2.2 Single – valued neutrosophic set 

Definition 2.2 [7]: Assume U be a universal space of ob-

jects with generic element in U represented by x, then a 

SVNS S   U is defined as follows: 

S = {x, )(F),(I),(T xxx SSS   x U}                               (2) 

where, )(T xS ; )(I xS ; )(F xS : U  [0, 1] are the degree of 

truth-membership, the degree of indeterminacy-

membership, and the degree of falsity-membership respec-

tively of the element x U to the set S with the condition 

0  )(T xS + )(I xS + )(F xS  3. 

2.3 Interval neutrosophic set 

Definition 2.3 [8]: Assume that U be a universal space of 

points with generic element in U denoted by x. Then an 

INS A is defined as follows: 

A = {x, )(F),(I),(T xxx AAA   x U}        (3) 

where, )(T xA , )(I xA , )(F xA are the truth-membership 

function, indeterminacy-membership function, and falsity-

membership function, respectively with 

),x(TA  ),x(IA )(F xA  [0, 1] for each point x U and 

0  sup )(T xA + sup )(I xA + sup )(F xA  3. For convenience, 

an INN is represented by a~  = ([T-, T+], [I-, I+], [F-, F+]).

2.4 Uncertain linguistic variable 

A linguistic set P = (p0, p1, p2, ..., pu-1) is a finite and com-

pletely ordered discrete term set, where u is odd. For ex-

ample, when u = 7, the linguistic term set P can be defined 

as given below [36]. 

P = {p0 (extremely low); p1 (very low); p2 (low); p3 (medi-

um); p4 (high); p5 (very high); p6 (extremely high)}. 

Definition 2.4 [36]: Let p~ = [ βα p,p ], where 

βα p,p  P
~

with α  β be respectively the lower and upper 

limits of P, then, p~ is said to be an uncertain linguistic var-

iable.  

Definition 2.5 [36]: Consider 1p~ = [
11 βα p,p ] and 2p~ = 

[
22 βα p,p ] be two uncertain linguistic variables, then the 

distance between 1p~ and 2p~ is defined as given below. 

D ( 1p~ , 2p~ ) = 
1)2(u

1


(| 2α - 1α | + | 2β - 1β |)         (4) 

2.5 Interval neutrosophic linguistic set 

Ye [35] proposed interval neutrosophic linguistic set based 

on interval neutrosophic set and linguistic variables. 

Definition 2.6 [35]: An interval neutrosophic linguistic set 

L in U is defined as follows: 

L = {x, 
)(φp x
, )(F),(I),(T xxx LLL   x U}      (5) 

where )(T xL  = [ )(T - xL , )(T xL


]  [0, 1], )(I xL  = 

[ )(I - xL , )(I xL


]  [0, 1], )(F xL  = [ )(F- xL , )(F xL


]  [0, 1] 

denote respectively, truth-membership degree, 

indeterminacy-membership degree, and falsity-

membership degree of the element x in U to the linguistic 

variable )(φp x  p̂ with the condition 

 0  )(T xL


+ )(I xL


+ )(F xL


 3. 

2.6 Interval neutrosophic uncertain linguistic set 
Broumi et al. [36] extended the concept of interval neutro-

sophic linguistic set [35] and proposed interval 

neutrosophic uncertain linguistic set based on interval neu-

trosophic set and uncertain linguistic variables. 

Definition 2.7 [36]: An interval neutrosophic uncertain 

linguistic set C in U is defined as follows: 

C = {x, [ )(φp x , )(ψp x ], )(F),(I),(T xxx CCC   x U}  (6) 

where )(T xC  = [ )(T - xC , )(T xC


]  [0, 1], )(I xC  = 

[ )(I - xC , )(I xC


]  [0, 1], )(F xC  = [ )(F - xC , )(F xC


]  [0, 1] 

represent respectively, truth-membership degree, 

indeterminacy-membership degree, and falsity-

membership degree of the element x in U to the uncertain 

linguistic variable [ )(φp x , )(ψp x ] with the condition 

0  )(T xC


+ )(I xC


+ )(F xC


 3. 

Definition 2.8 [36]: Consider 1a~ = < [ )a~(φ 1
p , )a~(ψ 1

p ], 

([ )a~(T 1

-
, )a~(T 1


], [ )a~(I 1

-
, )a~(I 1


], [ )a~(F 1

-
, )a~(F 1


]) > 

and 2a~ = < [ )a~(φ 2
p , )a~(ψ 2

p ], ([ )a~(T 2

-
, )a~(T 2


], 

[ )a~(I 2

-
, )a~(I 2


], [ )a~(F 2

-
, )a~(F 2


]) > be two interval neu-

trosophic uncertain linguistic variables (INULVs) 

and μ 0, then the operational laws of INULVs are defined 

as given below. 

1. 1a~  2a~ = < [ )a~(φ)a~(φ 21
p  , )a~(ψ)a~(ψ 21

p  ], 

([ )a~(T 1

-
+ )a~(T 2

-
- )a~(T 1

-
. )a~(T 2

-
, )a~(T 1


+ )a~(T 2


-

)a~(T 1


. )a~(T 2


], [ )a~(I 1

-
. )a~(I 2

-
, )a~(I 1


. )a~(I 2


], 

[ )a~(F 1

-
. )a~(F 2

-
, )a~(F 1


. )a~(F 2


]) > 

2. 1a~  2a~ = < [ )a~(φ)a~(φ 21
p  , )a~(ψ)a~(ψ 21

p  ], 

([ )a~(T 1

-
. )a~(T 2

-
, )a~(T 1


. )a~(T 2


], [ )a~(I 1

-
+ )a~(I 2

-
-

)a~(I 1

-
. )a~(I 2

-
, )a~(I 1


+ )a~(I 2


- )a~(I 1


. )a~(I 2


], 

[ )a~(F 1

-
+ )a~(F 2

-
- )a~(F 1

-
. )a~(F 2

-
, )a~(F 1


+ )a~(F 2


-

)a~(F 1


. )a~(F 2


]) > 

3. μ . 1a~ = < [ )a~(φμ 1
p , )a~(ψμ 1

p ], ([1 – (1- )a~(T 1

-
)
μ

, 1- (1-

)a~(T 1


)
μ

], [( )a~(I 1

-
)
μ

, ( )a~(I 1


)
μ

], [( )a~(F 1

-
)
μ

,

( )a~(F 1


)
μ

]) >
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4. μ

1a~ = < [
)a~(φ 1

μp ,
)a~(ψ 1

μp ], ([( )a~(T 1

-
) μ , ( )a~(T 1


) μ ], [1 

– (1 - )a~(I 1

-
) μ , 1 – (1 - )a~(I 1


) μ ], [1 – (1 - )a~(F 1

-
) μ , 

1 – (1 - )a~(F 1


) μ ]) >. 

Definition 2.9 [36]: Consider 1p~ = < [
11 βα p,p ], ([

-TA ,


AT ], 

[
-I A ,



AI ], [
-FA ,



AF ]) > and 2p~ = < [
22 βα p,p ], ([

-TB ,


BT ], 

[
-I B ,



BI ], [
-FB ,



BF ]) >  be two INULVs, then the Hamming 

distance between them is defined as follows: 

DHam ( 1p~ , 2p~ ) = 
1)12(u

1


(| 1α 

-TA - 2α 
-TB | + 

| 1α 


AT - 2α 


BT | + | 1α 
-I A - 2α 

-I B | + | 1α 


AI -

2α 


BI | + | 1α 
-FA - 2α 

-FB | + | 1α  

AF - 2α 


BF | + 

| 1β 
-TA - 2β 

-TB | + | 1β 


AT - 2β 


BT | + | 1β 
-I A -

2β 
-I B | + | 1β 



AI - 2β 


BI | + | 1β 
-FA - 2β 

-FB | 

+| 1β  

AF - 2β  

BF |)       (7) 

Definition 2.10: Let 1p~ = < [
11 βα p,p ], ([

-TA ,


AT ], [
-I A ,



AI ], 

[
-FA ,



AF ]) > and 2p~ = < [
22 βα p,p ], ([

-TB ,


BT ], [
-I B ,



BI ], 

[
-FB ,



BF ]) >  be two INULVs, then we define the Euclidean 

distance between them as follows: 

DEuc ( 1p~ , 2p~ ) = 
1)12(u

1


[( 1α 

-TA - 2α 
-TB )2 +

( 1α 


AT - 2α 


BT )2 + ( 1α  -I A - 2α  -I B )2 + ( 1α  

AI -

2α 


BI )2 + ( 1α  -FA - 2α  -FB )2 + ( 1α 


AF - 2α 


BF )2 + 

( 1β  -TA - 2β  -TB )2 + ( 1β 


AT - 2β 


BT )2 + ( 1β  -I A -

2β 
-I B )2 + ( 1β 



AI - 2β 


BI )2 + ( 1β 
-FA - 2β 

-FB )2 +

( 1β 


AF - 2β 


BF )2] 2
1

       (8) 

3 Extended GRA for MADM problems with interval 
neutrosophic uncertain linguistic information 

Let G = {G1, G2, …, Gm}, (m  2) be a discrete set of al-

ternatives and H ={H1, H2, …, Hn}, (n  2) be the set of at-

tributes in a MADM problem with interval neutrosophic 

uncertain linguistic information. Also consider ω = { 1ω , 

2ω , …, nω } be the weighting vector of the attributes with 

0  jω  1 and 


n

1j
jω = 1. Suppose the performance values 

of alternatives with respect to the attributes are represented 

by INULV vij = < [ 

ijij , xx ], ([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], [ -

ijF , 

ijF ]) 

>; (i = 1, 2, …, m;  j = 1, 2, …, n). Here, [ 

ijij , xx ] repre-

sents uncertain linguistic variable and 

ijij , xx    P = (p0, p1, 

p2, ..., pu-1),
-

ijT , 

ijT , -

ijI , 

ijI , -

ijF , 

ijF  [0, 1] with the 

condition 0  )(Tij x + )(I ij x + )(Fij x  3. Now, the steps 

for ranking the alternatives based on extentended GRA 

method are described as follows: 

Step 1. Normalize the decision matrix 

Benefit type and cost type attributes are two types of at-

tributes which exist in real world decision making prob-

lems. In order to eradicate the impact of the attribute types, 

we normalize [36] the decision matrix. Suppose Q = (qij) 

be the normalized decision matrix, where qij = < [ 

ijij q,q ], 

([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], [ -

ijF , 

ijF ]) >; (i = 1, 2, …, m;  j = 1, 2,

…, n), then 

For benifit type attribute 


ijq = 

ijx , 

ijq = 

ijx for (i = 1, 2, …, m;  j = 1, 2, …, n) 

-

ijT = -

ijT , 

ijT = 

ijT , -

ijI = -

ijI , 

ijI = 

ijI , -

ijF = -

ijF , 

ijF = 

ijF  (9) 

(i) For cost type attribute 


ijq = neg ( 

ijx ), 

ijq = neg ( 

ijx ) for (i = 1, 2, …, m;  j = 1, 2, 

…, n) 
-

ijT = -

ijT , 

ijT = 

ijT , -

ijI = -

ijI , 

ijI = 

ijI , -

ijF = -

ijF , 

ijF = 

ijF     (10) 

Step 2. Identify the positive ideal solution (PIS) BQ = 

(
B

1q ,
B

2q , ..., 
B

nq ) and negative ideal solution WQ = 

(
W

1q ,
W

2q , ..., 
W

nq ) 

Broumi et al. [36] defined PIS ( BQ ) and NIS ( WQ ) in 

interval neutrosophic uncertain linguistic environment as 

follows: 
BQ = (

B

1q ,
B

2q , ..., 
B

nq ) = [< [
 B

1

B

1 q,q ], ([
-B

1T ,
B

1T ],

[
-B

1I ,
B

1I ], [
-B

1F ,
B

1F ]) >; < [
 B

2

B

2 q,q ], ([
-B

2T ,
B

2T ],

[
-B

2I ,
B

2I ], [
-B

2F ,
B

2F ]) >; ...; < [
 B

n

B

n q,q ], ([
-B

nT ,
B

nT ],

[
-B

nI ,
B

nI ], [
-B

nF ,
B

nF ]) >]        (11) 

WQ = (
W

1q ,
W

2q , ..., 
W

nq ) = [< [
 W

1

W

1 q,q ], ([
-W

1T ,
W

1T ],

[
-W

1I ,
W

1I ], [
-W

1F ,
W

1F ]) >; < [
 W

2

W

2 q,q ], ([
-W

2T ,
W

2T ],

[
-W

2I ,
W

2I ], [
-W

2F ,
W

2F ]) >; ...; < [
 W

n

W

n q,q ], 

([
-W

nT ,
W

nT ], [
-W

nI ,
W

nI ], [
-W

nF ,
W

nF ]) >]    (12) 

where B

jq = Maxi 


ijq , B

jq = Maxi 


ijq , -B

jT =Maxi
-

ijT , B

jT =

Maxi


ijT , -B

jI = Mini
-

ijI , B

jI = Mini


ijI ,
-B

1F = Mini
-

ijF ,
B

1F =

Mini


ijF ;
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W

jq = Mini


ijq , W

jq = Mini


ijq , -W

jT = Mini
-

ijT , W

jT = 

Mini


ijT , -W

jI = Maxi
-

ijI , W

jI = Maxi


ijI , -W

jF = 

Maxi
-

ijF , W

jF = Maxi


ijF .

Step 3. Determine the neutrosophic grey relational co-

efficient of each alternative from PIS and NIS 

The grey relational coefficient of each alternative from PIS 

is defined as follows: 

 ij =








ij
ii

ij

ij
ii

ij
ii

ρMaxMaxσρ

ρMaxMaxσρMinMin
,    (13) 

where 

ijρ  = D (qij,
B

ijq ), (i = 1, 2, …, m;  j = 1, 2, …, n) 

and the grey relational coefficient of each alternative from 

NIS is defined as given below 

 ij =








ij
ii

ij

ij
ii

ij
ii

ρMaxMaxσρ

ρMaxMaxσρMinMin
,    (14) 

where 

ijρ  = D (qij,
W

ijq ), (i = 1, 2, …, m;  j = 1, 2, …, n). 

Here, σ [0, 1] represents the distinguishing coefficient 

and generally, σ= 0.5 is considered in the decision making 

context. 

Step 4. Determination of weights of the attributes 

The main idea of GRA method is that the chosen alterna-

tive should have the maximal degree of grey relation from 

the PIS. So, the maximal grey relational coefficient pre-

sents the most suitable alternative for the given weight vec-

tor. Here, we assume that the weight vector of the attrib-

utes is partially known to the DM. Now, the grey relational 

coefficient between PIS and itself is (1, 1, …, 1), similarly, 

grey relational coefficient between NIS and itself is also (1, 

1, …, 1). The corresponding comprehensive deviations are 

given below. 



iD (ω ) = j

n

1j
ij )ω(1



  (15) 



iD (ω ) = j

n

1j
ij )ω(1



  (16) 

Smaller values of 


iD (ω ) and 


iD (ω ) represent the better 

alternative. Now we use the max-min operator of Zim-

mermann and Zysco [37] to integrate all the distances 


iD (ω ) and 


iD (ω ), i = 1, 2, …, m separately. Then, we 

construct the following programming model [29] for in-

completely known weight information as: 

(M-1A)






















X.ω

m...,2,1,i,α)ω(1

tosubject

αMin

n

1j
jij

 (17) 

(M-1B)






















X.ω

m...,2,1,i,α)ω(1

tosubject

αMin

n

1j
jij

      (18) 

where 
α = 




n

1i
jij

i
)ω(1Max ; 

α = 



n

1i
jij

i
)ω(1Max , i = 

1, 2, …, m. 

By solving the model (M-1A) and model (M-1B), we get 

the optimal solutions
ω = (



1ω ,


2ω , …,


nω ) and 
ω = 

(


1ω ,


2ω , …,


nω ) respectively. 

Finally, we obtain the weight vector (ω ) by combining the 

above two optimal solutions as follows: 

ω=  ω + (1 -  )
ω ;  [0, 1]        (19) 

However, if the information about weights of the attributes 

are completely unknown, we can formulate another 

programming model [29] as follows: 

(M-2) 

 

























.m...,2,1,i,1ω

tosubject

)ωρ(1)(ωDMin

n

1j
j

n

1j

2

jiji

  (20) 

Now we can aggregate the above multiple objective opti-

mization models with same weights into the single objec-

tive optimization model as follows: 

(M-3)

 
































.1ω

tosubject

)ω(1)(ωD)(ωDMin

n

1j
j

n

1j

2

jij

m

1i

m

1i
ii

   (21) 

In order to solve the above model, we formulate the La-

grange function as given below. 

L (ω , ζ ) =  






m

1i

n

1j

2

jij )ω(1 + 2 ζ ( 



n

1j
j 1ω )       (22) 

Here, ζ is the Lagrange multiplier. 

Now we differentiate the Eq. (22) with respect to jω (j = 1, 

2, ..., n) and ζ . Then, by equating the partial derivatives to 

zero, we obtain the set of equations as follows: 

j

j

ω

)ζ,ω(L




= 2 




m

1i
j

2

ij ω)(1 + 2 ζ = 0, 

ζ

)ζ,ω(L j




= 




n

1j
j 1ω = 0 

By solving the aboveequatins, we obtain 

ω =

  
 



























m

1i

2

ij

1
n

1j

1m

1i

2

ij

1

1

 (23) 
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Similarly, we can get the attribute weight ω by consider-

ing NIS as follows: 

-ω = 

  
 



























m

1i

2

ij

1
n

1j

1m

1i

2

ij

1

1

        (24) 

Finally, we can calculate the j-th attribute weight by using 

the Eq. (19). 

Step 5. Determine the degree of neutrosophic grey rela-

tional coefficient 

The degree of neutrosophic grey relational coefficient of 

each alternative from PIS and NIS are obtained by the 

equations (25) and (26) respectively. 

 i = 


n

1j
jω  ij ; i = 1, 2, ..., m    (25) 

 i = 


n

1j
jω  ij ; i = 1, 2, ..., m    (26) 

Step 6. Determine the neutrosophic relative relational 

degree 

We compute the neutrosophic relative relational degree of 

each alternative from PIS by using the following Eq. 

i =








ii

i , i = 1, 2, …, m.   (27) 

Step 7. Rank the alternatives 

The ranking order of the alternatives is obtained according 

to the decreasing order of the neutrosophic relative rela-

tional degree. The maximal value of i , i = 1, 2, …, m re-

flects the most desirable alternative. 

4 Proposed GRA based algorithm for MADM prob-
lems with interval neutrosophic uncertain linguis-
tic information 

In the following steps, we develop a new GRA based algo-

rithm for solving MADM problems under interval neutro-

sophic uncertain linguistic information 

Step 1. Assune vij = < [ 

ijij , xx ], ([ -

ijT , 

ijT ], [ -

ijI , 

ijI ], 

[ -

ijF , 

ijF ]) >; (i = 1, 2, …, m;  j = 1, 2, …, n) be an interval 

neutrosophic uncertain linguistic decision matrix provided 

by the DM, for the alternative Gi with respect to the attrib-

ute Hj, where [ 

ijij , xx ] denotes uncertain linguistic varia-

ble. 

Step 2. If the attributes are benefit-type, then we normalize 

the decision matrix by using the Eq. (9), or we utilize the 

Eq. (10) in case of cost-type attributes. 

Step 3. Identify PIS ( BQ ) and NIS ( WQ ) from the 

decision matrix by using Eqs (11) and (12) respectively. 

Step 4. Use the distance measures to determine the  

distances of all alternatives from PIS and NIS. 

Step 5. Compute neutrosophic grey relational coefficient 

of each alternative from PIS and NIS by using the equa-

tions. (13) and (14) respectively. 

Step 6. If the attribute weights are partially known to the 

DM, then we solve the models (M-1A) and (M-1B) to find 

the optimal solutions
ω = ( ,ω+

1 ,ω+
2  …,



nω ) and 
ω = 

(


1ω ,


2ω , …,


nω ) respectively. Then, weight vector (ω ) is 

obtained by utilizing the Eq. (19). If the information about 

attribute weights are completely unknown, we solve the 

model (M-3) to determine
ω and

-ω . Finally the weight 

vector (ω ) is calculated by employing the Eq. (19). 

Step 7. Find the degree of neutrosophic grey relational co-

efficient of each alternative from PIS and NIS by employ-

ing the equations (25) and (26) respectively. 

Step 8. Determine the neutrosophic relative relational de-

gree ( i ) of each alternative from PIS by using the Eq. 

(27). 

Step 9. Rank all the alternatives Gi (i = 1, 2, …, m) based 

on i and choose the best alternative. 

Step 10. End. 

5 Numerical example 

A MADM problem with interval neutrosophic uncertain 

linguistic information studied by Broumi et al. [36] has 

been considered in this Section to show the applicability 

and the effectiveness of the proposed extended GRA ap-

proach. Assume that an investment company desires to in-

vest a sum of money in the best option. Suppose there are 

four possible alternatives to invest the money: (1) G1 is a 

car company; (2) G2 is a food company; (3) G3 is a com-

puter company; (4) G4 is an arm company. The company 

must take a decision based on the following attributes: (1) 

H1 is the risk; (2) H2 is the growth analysis; (3) H3 is the 

environmental impact analysis. The rating of performance 

values of the four alternatives with respect to the three at-

tributes are presented by the DM in terms of INULVs un-

der the linguistic term set P= {p0 = extremely poor; p1 = 

very poor; p2 = poor; p3 = medium; p4 = good; p5 = very 

good; p6 = extremely good [36]. The decision matrix with 

interval neutrosophic uncertain linguistic variables is pre-

sented in Table 1 as follows: 

Table 1. The decision matrix in terms of interval neutrosophic 

uncertain linguistic variables [36] 
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





































































0.2])[0.1,0.2],[0.1,0.4],([0.3,],p,[p

0.3])[0.1,0.3],[0.1,0.6],([0.5,],p,[p

0.2])[0.1,0.2],[0.2,0.7],([0.5,],p,[p

0.6])[0.5,0.2],[0.1,0.3],([0.2,],p,[p

0.3])[0.2,0.2],[0.1,0.7],([0.5,],p,[p0.2])[0.1,0.1],[0.0,0.8],([0.7,],p,[p

0.4])[0.3,0.3],[0.1,0.6],([0.5,],p,[p0.4])[0.3,0.2],[0.1,0.5],([0.3,],p,[p

0.3])[0.2,0.2],[0.1,0.7],([0.6,],p,[p0.3])[0.2,0.2],[0.1,0.7],([0.5,],p,[p

0.4])[0.2,0.2],[0.1,0.6],([0.4,],p,[p0.4])[0.3,0.3],[0.2,0.5],([0.4,],p,[p

65

44

54

54

4343

6565

5465

6554

Now the proposed approach is described in the following 

steps. 

Step 1. Normalization 

The attributes of the given MADM problem are considered 

as benefit types. Therefore, we don’t require the normali-

zation of the decision matrix. 

Step 2. Identify the PIS and NIS from the given decision 

matrix 

The PIS (
BQ ) is obtained from the decision matrix as fol-

lows: 
BQ = (<[p5, p6], [0.7, 0.8], [0.0, 0.1], [0.1, 0.2]>; <[p5, p6], 

[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]>; <[p5, p6], [0.5, 0.7], [0.1, 

0.2], [0.1, 0.2]>) 

The NIS (
WQ ) is obtained from the decision matrix as 

follows: 
WQ =(<[p3, p4], [0.3, 0.5], [0.2, 0.3], [0.3, 0.4]>; <[p3, p4], 

[0.4, 0.6], [0.1, 0.3], [0.3, 0.4]>; <[p4, p4], [0.2, 0.3], [0.2, 

0.3], [0.5, 0.6]>) 

Step 3. Determination of neutrosophic grey relational 

coefficient of each alternative from PIS and NIS 

We calculate the Hamming distance between each 

alternative and PIS by utilizing the Eq. (7). Then, the 

neutrosophic grey relational coefficient of each alternative 

from PIS can be obtained by using the Eq. (13) as follows: 

 ij = 



















8956.07065.07745.0

9024.08956.05414.0

0000.19917.07699.0

5051.09755.05294.0

We also evaluate the Hamming distance between each 

alternative and NIS by using the Eq. (7). Then, the  

neutrosophic grey relational coefficient of each alternative 

from NIS can be determined with the help of  the Eq. (14) 

as follows: 

 ij = 



















5534.00000.15343.0

5134.05670.06995.0

4510.07444.06000.0

9333.07103.08314.0

Step 4. Determination of the weights of the attributes 

Case 1. The partially known weight information is present-

ed as follows: 

0.25  1ω  0.4, 0.2  2ω  0.35, 0.4  3ω  0. 5 such 

that 



3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Now we construct the single objective programming model 

by using the model (M-1A) and model (M-1B) as given 

below. 

Model (M-1A). 

Min 
α

subject to 

0.4706 1ω +0.0245 2ω +0.4949 3ω 
α , 

0.2301 1ω +0.0083 2ω 
α , 

0.4586 1ω +0.1044 2ω +0.0976 3ω 
α , 

0.2255 1ω +0.2935 2ω +0.1044 3ω  α , 

0.25  1ω  0.4, 0.2 2ω  0.35, 0.4 3ω  0. 5, 





3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Model (M-1B). 

Min 
-α

subject to 

0.1686 1ω + 0.2897 2ω + 0.0667 3ω 
α , 

0.4 1ω + 0.2556 2ω + 0.549 3ω 
α , 

0.3005 1ω + 0.433 2ω + 0.4866 3ω 
α , 

0.4657 1ω + 0.4466 3ω 
α , 

0.25 1ω  0.4, 0.2 2ω  0.35, 0.4 3ω  0. 5, 





3

1j
j 1ω and jω  0, j = 1, 2, 3. 

Solving the above two models (M-1A and M-1B), we get 

the weight vectors respectively as given below. 
ω = (0.25, 0.35, 0.40) and

ω = (0.294, 0.306, 0.40) 

For  = 0.5, the combined weight vector of the attributes is 

obtained asω= (0.272, 0.328, 0.4). 

Case 2. Consider the information about the attribute 

weights be completely unknown to the DM. Then, we can 

get the unknown weights of the attributes by using the rela-
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tions (23) and (24). The weights of the attributes are ob-

tained respectively as follows: 
ω = (0.118, 0.645, 0.237) and

ω = (0.318, 0.468, 0.213) 

 Therefore, the resulting weight vector of the attributes by 

taking  = 0.5 is  ω= (0.218, 0.557, 0.225). 

Step 5. Calculate the degree of neutrosophic grey rela-

tional coefficient  

The degree of neutrosophic grey relational coefficient of 

each alternative from PIS for Case 1 and Case 2 are 

presented as follows: 

Case 1:
1 = 0.6660, 

 2 = 0.9347, 
 3 = 0.8020, 

 4 = 

0.8000 

Case 2:
1 = 0.7724, 

 2 = 0.9452, 
 3 = 0.8199, 

 4 = 

0.7639. 

Similarly, the degree of neutrosophic grey relational coef-

ficient of each alternative from NIS for Case 1 and Case 2 

are demonstrated as follows: 

Case 1: 
1 = 0.8324, 

 2 = 0.5878, 
 3 = 0.5816, 

 4 = 

0.6947 

Case 2: 
1 = 0.7869, 

 2 = 0.6469, 
 3 = 0.5838, 

 4 = 

0.7980. 

Step 6. Evaluate the neutrosophic relative relational 

degree 

We calculate the neutrosophic relative relational degree of 

each alternative from PIS for Case 1 and Case 2 are 

presented as follows: 

Case 1: 1 = 0.4448, 2 = 0.6139, 3 = 0.5796, 4 = 

0.5354 

Case 2: 1 = 0.4954, 2 = 0.5937, 3 = 0.5841, 4 = 

4891. 

Step 7. Rank the alternatives 

The ranking order of the alternatives for Case 1 and Case 2 

are presented according to the values of the neutrosophic 

relative relational degrees as given below. 

Case 1: 2 > 3 > 4 > 1

Case 2: 2 > 3 > 1 > 4

We observe that the Arms Company is the best alternative 

for investment purpose for both the cases (see Table 2). 

Note 1. Broumi et al. [36] consider the weight vector ω= 

(0.35, 0.25, 0.4) and use TOPSIS method to rank the 

alternatives. If we consider the same weight structure  i.e. 

ω = (0.35, 0.25, 0.4), then the ranking order of the 

alternatives based on the proposed GRA method is 

obtained as follows:  

G2 > G3 > G4 > G1 and obviously, G2 would be the best 

choice. 

Note 2.  If we consider the proposed Euclidean measure to 

calculate the distance between two INULVs, then (0.25, 

0.35, 0.4) and (0.232, 0.559, 0.209) would be the obtained 

weight vectors for Case 1 and Case 2 respectively. If we 

follow the same procedure as described above, the neutro-

sophic relative relational degree of each alternative from 

PIS for Case 1 and Case 2 are computed as follows:  

Case 1: 1 = 0.4213, 2 = 0.6174, 3 = 0.5508, 4 = 

0.496; 

Case 2: 1 = 0.4657, 2 = 0.599, 3 = 0.5556, 4 = 4686. 

Therefore, the ranking order of the alternatives for Case 1 

and Case 2 are shown as given below. 

Case 1: 2 > 3 > 4 > 1

Case 2: 2 > 3 > 4 > 1

So, the Arms Company G2 would be the best choice for in-

vestment purpose. 

6 Conclusion 

In the paper we have presented a solution method for 

MADM problems with interval neutrosophic uncertain lin-

guistic information through extended GRA method. Inter-

val neutrosophic uncertain linguistic variables are suitable 

for dealing with incomplete and inconsistent information 

which exist in real world problems. In this paper, we have 

proposed Euclidean distance between two INULVs. Also, 

we have addressed the incomplete or completely unknown 

weights of the attributes to the decision maker. 

Table 2. Comparison of the proposed method with other existing 

method 

____________________________________________________ 

Method              weight vector                 ranking results   best 

     option 

____________________________________________________ 

Proposed method  (0.272, 0.328, 0.4)     G2 > G3 > G4 > G1  G2 

(Case 1) 

(using Hamming distance) 

Proposed method (0.218, 0.557, 0.225)  G2 > G3 > G1 > G4  G2 

(Case 2) 

(using Hamming distance) 

Proposed method  (0.25, 0.35, 0.4)  G2 > G3 > G4 > G1  G2 

(Case 1) 

(using Euclidean distance) 

Proposed method (0.232, 0.559, 0.209)  G2 > G3 > G4 > G1  G2 

28



Neutrosophic Sets and Systems, Vol. 11, 2016 

Partha Pratim Dey, Surapati Pramanik,  Bibhas C. Giri, An extended grey relational analysis based multiple attribute 
decision making in interval neutrosophic uncertain linguistic setting

(Case 2) 

(using Euclidean distance) 

Broumi et al. [36]   (0.35, 0.25, 0.4)       G2 > G4 > G3 > G1      G2  

____________________________________________________ 

We have developed two different optimization models to 

recognize the weights of the attributes in two different cas-

es. Then, extended GRA method has been developed to 

identify the ranking order of the alternatives. Finally, a 

numerical example has been solved to demonstrate the fea-

sibility and applicability of the proposed method and com-

pared with other existing methods in the literature. We 

hope that the proposed method can be helpful in the field 

of practical decision making problems such as school se-

lection, teacher selection, medical diagnosis, pattern 

recognition, supplier selection, etc. 
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Abstract. The aim of this paper is to propose a new type of 

graph called neutrosophic soft graphs. We have established a link 

between graphs and neutrosophic soft sets. Basic operations of 

neutrosophic soft graphs such as union, intersection and 

complement are defined here. The concept of strong neutrosophic 

soft graphs is also discussed in this paper. 
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1 Introduction 

Graph theory is a nice tool to depict information in a very 

nice way. Usually graphs are represented pictorially, 

algebraically in the form of relations or by matrices. Their 

representation depends on application for which a graph is 

being employed. Graph theory has its origins in a 1736  

paper by the celebrated mathematician Leonhard Euler 

[13] known as the father of graph theory, when he settled a 

famous unsolved problem known as Ko¨nigsburg Bridge 

problem. Subject of graph theory may be considered a part 

of combinatorial mathematics. The theory has greatly 

contributed to our understanding of programming, 

communication theory, switching circuits, architecture, 

operational research, civil engineering anthropology, 

economics linguistic and psychology. From the standpoint 

of applications it is safe to say that graph theory has 

become the most important part of combinatorial 

mathematics. A graph is also used to create a relationship 

between a given set of elements. Each element can be 

represented by a vertex and the relationship between them 

can be represented by an edge. 

L.A. Zadeh [26] introduced the notion of fuzzy subset of a 

set in 1965   which is an extension of classical set theory. 

His work proved to be a mathematical tool for explaining 

the concept of uncertainty in real life problems. A fuzzy set 

can be defined mathematically by assigning to each 

possible individual in the universe of discourse a value 

representing its grade of membership in the fuzzy set. This 

grade corresponds to the degree to which that individual is 

similar or compatible with the concept represented by the 

fuzzy set. In  1975   Azriel Rosenfeld [20] considered fuzzy 

relations on fuzzy sets and developed the theory of fuzzy 

graphs which have many applications in modeling, 

Environmental science, Social science, Geography and 

Linguistics etc. which deals with problems in these areas 

that can be better studied using the concept of fuzzy graph 

structures. Many researchers contributed a lot and gave 

some more generalized forms of fuzzy graphs which have 

been studied in [8] and [10]. These contributions show a 

new dimension of graph theory. 

Molodstov introduced the theory of soft sets [18] which is 

generally used to deal with uncertainty and vagueness. He 

introduced the concept as a mathematical tool free from 

difficulties and presented the fundamental results of the 

new theory and successfully applied it to several 

directions. During recent past soft set theory has gained 

popularity among researchers, scholars practitioners and 

academicians. The theory of neutrosophic set is introduced 

by Smarandache [21] which is useful for dealing real life 

problems having imprecise, indeterminacy and inconsistent 

data. The theory is generalization of classical sets and 

fuzzy sets and is applied in decision making problems, 

control theory, medicines, topology and in many more real 

life problems. Maji [17] first time proposed the definition 

of neutrosophic soft sets and discussed many operations 

such as union, intersection and complement etc of such 

sets. Some new theories and ideas about neutrosophic sets 

can be studied in [6], [7] and [12]. In the present paper 

neutrosophic soft sets are employed to study graphs and 

give rise to a new class of graphs called neutrosophic soft 

graphs. We have discussed different operations defined on 

neutrosophic soft graphs using examples to make the 

concept easier. The concept of strong neutrosophic soft 

graphs and the complement of strong  neutrosophic soft 

graphs is also discussed. Neutrosophic soft graphs are 

pictorial representation in which each vertex and each edge 

is an element of neutrosophic soft sets. This paper has been 

arranged as the following; 

In section 2, some basic concepts about graphs and 

neutrosophic soft sets are presented which will be 

employed in later sections. In section 3, concept of 

neutrosophic soft graphs is given and some of their 

fundamental properties have been studied. In section 4, the 

concept of strong neutrosophic soft graphs and its 

complement is studied. Conclusion are also given at the 
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end of section 4.  

2 PRELIMINARIES 
In this section, we have given some definitions about 

graphs and neutrosophic soft sets. These will be helpful in 
later sections. 

2.1 Definition [25]:  A graph  *G   consists of set of finite 

objects  1 2 3, , ,...... nV v v v v called vertices (also called

points or nodes) and other set  1 2 3, , ,...... nE e e e e whose

elements are called edges (also called lines or arcs). Usual-

ly a graph is denoted as ( , )V EG  .  Let  *G   be a graph 

and  ,u v  an edge of  G
.  Since  ,u v is 2-element set,

we may write  ,v u instead of  ,u v .  It is often more

convenient to represent this edge by  uv   or vu . If

e  uv   is an edges of a graph G
,  then we say that  u

and  v   are adjacent in G and that e  joins  u   and  v .  A 

vertex which is not adjacent to any other node is called 

isolated vertex. 

 2.2 Definition [25]: An edge of a graph that joins a node 

to itself is called loop or self loop. 

2.3 Definition [25]: In a multigraph no loops are allowed 

but more than one edge can join two vertices, these edges 

are called multiple edges or parallel edges and a graph is 

called multigraph. 

2.4 Definition [25]: A graph which has neither loops nor 

multiple edges is called a simple graph. 

 2.5 Definition [25]: A sub graph  
*H   of  G   is a graph 

having all of its vertices and edges in  G
 . If  

*H   is a sub 

graph of  G
,  then  G   is a super graph of

*H . 

2.6 Definition [25]: Let  *

1 1 1,G V E and  *

2 2 2,G V E

be two graphs. A function 1 2:f V V is called 

isomorphism if 

i) f   is one to one and onto.

ii) for all  1 1, , ,a b V a b E  if and only if 

     2,f a f b E when such a function exists, 
*

1G and 

*

2G are called isomorphic graphs and is written as 

* *

1 2G G . 

In other words,  two graph 
*

1G and 
*

2G are said to be 

isomorphic to each other if there is a one to one 

correspondence between their vertices and between edges 

such that incidence relationship is preserved. 

2.7 Definition [25]: The union of two simple graphs 

 *

1 1 1,G V E and  *

2 2 2,G V E is the simple graph with

the vertex set 1 2V V and edge set 1 2E E . The union of 

*

1G and 
*

2G is denoted by 

 * * *

1 2 1 2 1 2, .G G G V V E E      

2.8 Definition [25]: The join of two simple graphs  

 *

1 1 1,G V E and  *

2 2 2,G V E is the simple graph with

the vertex set 1 2V V and edge set 1 2E E E  where E   

is the set of all edges joining the nodes of 1V and 2V

assume that 1 2V V   . The join of 
*

1G and 
*

2G is denoted 

by  * * *

1 2 1 2 1 2, .G G G V V E E E     

2.9 Definition [18]: Let U  be an initial universe and E  

be the set of all possible parameters under consideration 

with respect to U . The power set of U is denoted by 

 P U and A is a subset of .E  Usually parameters are

attributes, characteristics, or properties of objects in U . 

A pair  ,F A  is called a soft set over U ,  where F  is a

mapping  :F A P U .  In other words, a soft set over

U is a parameterized family of subsets of the universe U .  

For  ,e A F e may be considered as the set of e

approximate elements of the soft set  ,F A .

 2.10 Definition [21]:  A neutrosophic set A on the 

universe of discourse X is defined as 

      , , , , ,A A AA x T x I x F x x X   where 

, , : ]0,1 [T I F X


  and ) ) ) 30 ( ( (A A AT x I x F x


   . 

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of 0,1 
 

. But in real life application in scientific and 

engineering problems it is difficult to use neutrosophic set 

with value from real standard or non-standard subset of 

0,1 
 

. Hence we consider the neutrosophic set which 

takes the value from the subset of  0,1 .

 2.11 Definition [17]: Let  ( )N U   be the set of all 

neutrosophic sets on universal set ,U E be the set of 

parameters that describes the elements of U  and A E . 

A pair  ,F A  is called a neutrosophic soft set NSS over

,U where F  is a mapping given by  :F A N U . A

neutrosophic soft set is a mapping from parameters to 

 N U .  It is a parameterized family of neutrosophic

subsets of .U  For e A ,  F e   may be considered as the

set of e-approximate elements of the neutrosophic soft set 

 ,F A . The neutrosophic soft set  ,F A  is parameterized

family { ( , 1, 2,3, }.)
i

F e i e A   

 2.12 Definition [17]: Let 1 2,E E E  and 

   1 2, , ,F E G E be two neutrosophic soft sets over U  then

 1,F E  is said to be a neutrosophic soft subset of  2,G E

if 
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(1)  
1 2E E

(2) 
               

       

, ,F e G e F e G e

F e G e

T x T x I x I x

F x F x

 





for all 1,e E x U  . 

In this case, we write    1 2, ,F E G E .

 2.13 Definition [17]: Two neutrosophic soft sets 

 1,F E and  2,G E  are said to be neutrosophic soft equal

if  1,F E is a neutrosophic soft subset of  2,G E  and 

 2,G E   is a neutrosophic soft subset of  
1( , ).F E

 In this case, 

we write     1 2, ,F E G E .

 2.14 Definition [14]: Let U be an initial universe, E be 

the set of parameters, and A E . 

(a)  ,H A  is called a relative whole neutrosophic soft set

(with respect to the parameter set A ), denoted by A  , if 

           1, 1, 0,H e H e H eT x I x F x   for all ,e A  

x U . 

(b)  ,G A  is called a relative null neutrosophic soft set

(with respect to the parameter set  A  ), denoted by A  , if 

           0, 0, 1,H e H e H eT x I x F x    for all ,e A  

x U . 

The relative whole neutrosophic soft set with respect to the 

set of parameters E  is called the absolute neutrosophic  

soft set over U  and simply denoted by EU  . In a similar 

way, the relative null neutrosophic soft set with respect to 

E  is called the null neutrosophic soft set over U  and is 

denoted by E . 

2.15 Definition [17]: The complement of a NSS  ,G A

is denoted by  ,
c

G A  and is defined by

   , ,
c cG A G A  where  :cG A N U   is a

mapping given by  cG e = neutrosophic soft comple-

ment with 
           , , .c c cG e G e G eG e G e G e

T F I I F T
  

    

 2.16 Definition [14](1): Extended union of two NSS 

( , )H A   and  ( , )G B   over the common universe U is 

denoted by    , ,EH A G B  and is define as 

     , , , ,EH A G B K C   where C A B   and the

truth-membership, indeterminacy-membership and falsity- 

membership of  ( , )K C   are as follows 

   

   

   

        

if ,

if ,

max ,   if  

H e

k e G e

H e G e

T x e A B

T x T x e B A

T x T x e A B


 


  

  


   

   

   

        

if ,

if ,

max ,   if  

H e

k e G e

H e G e

I x e A B

I x I x e B A

I x I x e A B


 


  

  


   

   

   

        

if ,

if ,

min ,   if  

H e

k e G e

H e G e

F x e A B

F x F x e B A

F x F x e A B


 


  

  


 2.17 Definition [14]: The restricted union of two NSS 

 ,H A and  ,G B over the common universe U is

denoted by    , ,RH A G B  and is define as 

     , , , ,RH A G B K C   where C A B   and the

truth-membership, indeterminacy-membership and falsity- 

membership of  ( , )K C   are as follows 

            

            

            

max , if ,

max , if ,

min ,  if .

K e H e G e

K e H e G e

K e H e G e

T x T x T x e A B

I x I x I x e A B

F x F x F x e A B

  

  

  

2.18 Definition [14]: Extended intersection of two NSS 

 ,H A and  ,G B   over the common universe U is

denoted by    , ,EH A G B and is define as 

     , , , ,EH A G B K C  where C A B  and the

truth-membership, indeterminacy-membership and falsity- 

membership of  ,K C are as follows

   

   

   

        

  if ,

  if ,

min ,   if  

H e

k e G e

H e G e

T x e A B

T x T x e B A

T x T x e A B


 


  

  


   

   

   

        

if ,

if ,

min ,   if  

H e

k e G e

H e G e

I x e A B

I x I x e B A

I x I x e A B


 


  

  

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   

   

   

        

if ,

if ,

max , if  

H e

k e G e

H e G e

F x e A B

F x F x e B A

F x F x e A B


 


  

  


 2.19 Definition [14]: The restricted intersection of two 

NSS  ,H A and  ,G B  over the common universe  U   is

denoted by    , ,RH A G B and is define as 

     , , , ,RH A G B K C   where C A B  and the 

truth-membership, indeterminacy-membership and falsity- 

membership of  ,K C are as follows

            

            

            

min , if ,

min , if ,

max , if .

K e H e G e

K e H e G e

K e H e G e

T x T x T x e A B

I x I x I x e A B

F x F x F x e A B

  

  

  

3 Neutrosophic soft graphs

3.1 Definition Let  * ,G V E be a simple graph and  A

be the set of parameters. Let  N V be the set of all

neutrosophic sets in .V  By a neutrosophic soft graph NSG, 

we mean a 4-tuple  *, , ,G G A f g  where 

   : , :f A N V g A N V V   defined as

        , , , ,e fe fe fef e f x T x I x F x x V   and

            , , , , , , , , ,e fe fe feg e g x y T x y I x y F x y x y V V   

 are neutrosophic sets overV and V V respectively, such 

that 

      

      

      

, min , ,

, min , ,

, max , .

ge fe fe

ge fe fe

ge fe fe

T x y T x T y

I x y I x I y

F x y F x F y







for all  ,x y V V   and .e A  We can also denote a NSG

by     *, , , :G G A f g N e e A   which is a parameter-

ized family of graphs  N e we call them Neutrosophic

graphs. 

3.2   Example 

Let  * ,G V E be a simple graph with 

   1 2 3 1 2 3, , , , ,V x x x A e e e    be a set of parameters. A 

NSG is given in Table 1 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        1 2 2 3 3 1, \ , , , , ,i jx x V V x x x x x x  and for all 

.e A  

Table 1 

f 1x 2x 3x

1e (0.4,0.5,0.6) (0.4,0.5,0.7) (0,0,1) 

2e (0.3,0.4,0.5) (0.1,0.3,0.4) (0.1,0.3,0.6) 

3e (0.2,0.3,0.5) (0.1,0.2,0.4) (0.1,0.5,0.7) 

g  1 2,x x  2 3,x x  1 3,x x

1e (0.2,0.3,0.8) (0,0,1) (0,0,1) 

2e (0.1,0.3,0.6) (0,0,1) (0.1,0.3,0.8) 

3e (0.1,0.1,0.9) (0.1,0.2,0.7) (0.1,0.3,0.8) 

 1N e  Corresponding to 1e

(0.4,0.5,0.6)

(0.2,0.3,0.8)

(0.4,0.5,0.7)

x1 x2

figure 1

 2N e  Corresponding to 2e

x1 x2

x3

(0.1,0.3,0.6)
(0.3,0.4,0.5 ) (0.1,0.3,0.4)

 (0.1,0.3,0.6)

(0.1,0.3,0.8)

figure 2

 3N e  Corresponding to 3e
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x1 x2

x3

(0.1,0.1,0.9)

(0.1,0.2,0.7)

(O.2,0.3,0.5)

(0.1,0.3,0.8)

(0.1,0.5,0.7)

(0.1,0.2,0.4)

figure 3

 3.3 Definition A neutrosophic soft graph 

 * 1 1 1, , ,G G A f g  is called a neutrosophic soft subgraph

of  *, , ,G G A f g   if 

(i) 1A A

(ii) 
1 ,ef f that is, 

           1 1 1, , .fe fe fef f fe e e

T x T x I x I x F x F x    

(iii) 
1 ,eg g that is, 

           1 1 1, , , , , , , , .ge ge geg g ge e e

T x y T x y I x y I x y F x y F x y  

for all 
1.e A  

3.4   Example 

Let  * ,G V E be a simple graph with  1 2 3, ,V x x x and

set of parameters  1 2,A e e . A neutrosophic soft 

subgraph of example 3.2 is given in Table 2 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        1 2 2 3 3 1, \ , , , , ,i jx x V V x x x x x x  and for all 

.e A  
Table 2. 

1f 1x 2x 3x

1e (0.3,0.2,0.5) (0.3,0.2,0.6) (0,0,1) 

2e (0.1,0.1,0.5) (0.1,0.2,0.4) (0.1,0.2,0.6) 

1g  1 2,x x  2 3,x x  1 3,x x

1e (0.2,0.2,0.7) (0,0,1) (0,0,1) 

2e (0.1,0.1,0.6) (0,0,1) (0.1,0.2,0.8) 

 1N e  Corresponding to 1e

(0.3,0.2,0.5) (0.3,0.2,0.6)

x1 x2

(0.2,0.3,0.7)

figure 4

 2N e  Corresponding to 2e

(0.1,0.1,0.5)
(0.1,0.2,0.4)

(0.1,0.2,0.6)

x1 x2

x3

(0.1,0.1,0.6)

(0.1,0.2,0.8)

figure 5

3.5 Definition A neutrosophic soft subgraph 

 * 1 1 1, , ,G G A f g  is said to be spanning neutrosophic 

soft subgraph of  *, , ,G G A f g if    1 ,ef x f x  for all

1, .x V e A   

(Here two neutrosophic soft graphs have the same 

neutrosophic soft vertex set, But have opposite edge sets. 

 3.6 Definition The union of two neutrosophic soft graphs 

 * 1 1

1 1 1, , ,G G A f g  and  * 2 2

2 2 2, , ,G G A f g  is denoted 

by  *

1 2, , , , with G G A f g A A A    where the truth-

membership, indeterminacy-membership and falsity- 

membership of union are as follows 

 

 

 

    

1 2 1 2

1 1 2 1 2

1 2 1 2

2 1 2 1

2 2 1 1 2

1 2 2 1

1 2 1 2

if and or

if and or

if and .

if and or

if and or

if and .

max , if and

fe

fe fe

f fe e

e A A x V V

T x e A A x V V

e A A x V V

e A A x V V

T x T x e A A x V V

e A A x V V

T x T x e A A

   


   
    

   


    
    

  1 2

0,  otherwise

x V V













 



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 

 

 

    

1 2 1 2

1 1 2 1 2

1 2 1 2

2 1 2 1

2 2 1 1 2

1 2 2 1

1 2

1 2

if and or

if and or

if and .

if and or

if and or

if and .

if and
max ,

 

fe

fe fe

f fe e

e A A x V V

I x e A A x V V

e A A x V V

e A A x V V

I x I x e A A x V V

e A A x V V

e A A
I x I x

   


   
    

   


    
    

 

1 2

0,  otherwise

x V V











  
  

   



 

 

 

    

1 2 1 2

1 1 2 1 2

1 2 1 2

2 1 2 1

2 2 1 1 2

1 2 2 1

1 2

1 2

if and or

if and or

if and .

if and or

if and or

if and .

if  and
min ,

 

fe

fe fe

f fe e

e A A x V V

F x e A A x V V

e A A x V V

e A A x V V

F x F x e A A x V V

e A A x V V

e A A
F x F x

   


   
    

   


    
    

 

1 2

0,  otherwise

x V V











  
  

   



Also 

 

 

     

     

     

 

     

     

1 2 1 1 2 2

1 1 2 1 1 2 2

1 2 1 1 2 2

2 1 2 2 1 1

2 2 1 1 1 2 2

1 2

if and , - or

, if and , or

if and , - .

if and , - or

, , if and , or

if a

ge

ge ge

e A A x y V V V V

T x y e A A x y V V V V

e A A x y V V V V

e A A x y V V V V

T x y T x y e A A x y V V V V

e A A

    


     
     

    

      

       

          

2 2 1 1

1 2

1 2

1 1 2 2

nd , - .

if and
max , , ,

,

0,  otherwise

g ge e

x y V V V V

e A A
T x y T x y

x y V V V V






 
 
 
    
      

      



 

 

     

     

     

 

     

     

1 2 1 1 2 2

1 1 2 1 1 2 2

1 2 1 1 2 2

2 1 2 2 1 1

2 2 1 1 1 2 2

1 2

if and , - or

, if and , or

if and , - .

if and , - or

, , if and , or

if  a

ge

ge ge

e A A x y V V V V

I x y e A A x y V V V V

e A A x y V V V V

e A A x y V V V V

I x y I x y e A A x y V V V V

e A A

    


     
     

    

      

       

          

2 2 1 1

1 2

1 2

1 1 2 2

nd , - .

if  and
max , , ,

,

0,  otherwise

g ge e

x y V V V V

e A A
I x y I x y

x y V V V V






 
 
 
    
      

      



 

 

     

     

     

 

     

     

1 2 1 1 2 2

1 1 2 1 1 2 2

1 2 1 1 2 2

2 1 2 2 1 1

2 2 1 1 1 2 2

1 2

if and , - or

, if and , or

if and , - .

if and , - or

, , if and , or

if a

ge

ge ge

e A A x y V V V V

F x y e A A x y V V V V

e A A x y V V V V

e A A x y V V V V

F x y F x y e A A x y V V V V

e A A

    


     
     

    

      

       

          

2 2 1 1

1 2

1 2

1 1 2 2

nd , - .

if and
min , , ,

,

0,  otherwise

g ge e

x y V V V V

e A A
F x y F x y

x y V V V V






 
 
 
    
      

      



 3.7  Example 

Let  *

1 1 1,G V E be a simple graph with  1 1 2 3, ,V x x x

and set of parameters  1 1 2 3, ,A e e e . Let  *

2 2 2,G V E be

a simple graph with  2 2 3 5, ,V x x x and set of parameters 

 2 2 4,A e e . A NSG  * 1 1

1 1 1, , ,G G A f g is given in 

Table 3 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        1 1 1 4 3 4 1 3, \ , , , , ,i jx x V V x x x x x x  and for all 

1.e A  

Table 3 

     

     

     

     

   

1

1 3 4

1

2

3

1

1 4 3 4 1 3

1

2

0.1,0.2,0.3 0.2,0.3,0.4 0.2,0.5,0.7

0.1,0.3,0.7 0.4,0.6,0.7 0.1,0.2,0.3

0.5,0.6,0.7 0.6,0.8,0.9 0.3,0.4,0.6

( , ) ( , ) ( , )

0.1,0.2,0.7 0.1,0.3,0.8 0.1,0.2,0.5

0.1,0.2,0.7 0.1,0.1,0.9 0.1,0

f x x x

e

e

e

g x x x x x x

e

e  

   3

.2,0.8

0.1,0.3,0.8 0.2,0.3,0.9 (0,0,1)e

 1N e  Corresponding to 1e

(0.1,0.2,0.3) (0.2,0.5,0.7)

(0.2,0.3,0.4)

x1 x4

x3

(0.1,0.2,0.7)

(0.1,0.2,0.5)

(0.1,0.3,0.8)

figure 6

 2N e  Corresponding to 2e
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(0.1,0.3,0.7) (0.1,0.2,0.3)

(0.2,0.4,0.7)

x1 x4

x3

(0.1,0.2,0.7)

(0.1,0.2,0.8)

(0.1,0.1,0.9)

figure 7

 3N e  Corresponding to 3e

(0.5,0.6,0.7) (0.3,0.4,0.6)

(0.6,0.8,0.9)

x1 x4

x3

(0.1,0.3,0.8)

(0.2,0.3,0.9)

figure 8

A NSG  * 2 2

2 2 2, , ,G G A f g  is given in Table 4 below 

and      , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for 

all         2 2 2 3 3 5 2 5, \ , , , , ,i jx x V V x x x x x x  and for all 

2 .e A  

Table 4 
2f 2x 3x 5x

1e (0.1,0.2,0.4) (0.2,0.3,0.4) (0.4,0.6,0.7) 

2e (0.3,0.6,0.8) (0.5,0.7,0.9) (0.3,0.4,0.5) 

2g  2 3,x x  3 5,x x  2 5,x x

1e (0.1,0.2,0.8) (0.2,0.3,0.9) (0,0,1) 

2e (0.1,0.1,0.9) (0.2,0.2,0.9) (0.2,0.3,0.8) 

 2N e  Corresponding to 2e

(0.1,0.2,0.4) (0.2,0.3,0.4)

(0.4,0.6,0.7)

x2 x3

x5

(0.1,0.2,0.8)

(0.2,0.3,0.9)

figure 9

 4N e  Corresponding to 4e

(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.5,0.7,0.9)

x5 x2

x3

(0.2,0.3,0.8)

(0.2,0.2,0.9)

(0.1,0.1,0.9)

figure 10

The union  *, , ,G G A f g is given in Table 5 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

              1 4 3 4 1 3 2 3 3 5 2 5, \ , , , , , , , , , , ,i jx x V V x x x x x x x x x x x x 

and for all .e A  
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Table 5 

       

   

 

 

1 52 3 4

1

2

3

4

0, 0,1

0, 0,1

                    

0.1, 0.2, 0.3    (0, 0,1) 0.2, 0.5, 0.7 0.2, 0.3,0.4       

0.1, 0.3, 0.7  0.1, 0.2, 0.3

0.5, 0.6, 0.7   (0, 0, 1)

      

x xf x x x

e

e

e

e

 

 

 

   

   

   0.5, 0.7, 0.9 0, 0,1 0.3, 0.4, 0.5

0.2, 0.4, 0.4 0,.1, 0, 2, 0,3  0.4,0.6,0.7

0.6, 0.8,0.9 0.3, 0.4,0.6          0, 0,1

(0.3, 0.6, 0.8)       

       

 

1 4 3 4 1 3 2 3 3 5 2 5

1

2

3

4

     ( , )         ( , ) ( , ) ( , )  ( , )         ( , )

0, 0,1

            

0.1, 0.2, 0.7    (0.1, 0.3, 0.8) 0.1, 0.2, 0.8 0, 0,1                        (0, 0,1)

0.1, 0.2,0.7  0.1, 0.1

x x x x x x x x x x x xg

e

e

e

e

 

   

   

 

 

 

     

     

     0.1, 0.1, 0.9 0.2, 0.2, 0.9 0.2, 0.3, 0.80, 0,1

, 0.9 0.1, 0.2,0.8 0,.1, 0, 2, 0,8  0.2,0.3, 0.9   0, 0,1

0.1, 0.3, 0.8    0.2, 0.3, 0.9 0, 0,1 0, 0,1                0, 0,1          0, 0,1

               0, 0,1 0, 0,1

 1N e  Corresponding to 1e

(0.1,0.2,0.3) (0.2,0.3,0.4)

(0.2,0.5,0.7)}

x1 x4

x3

(0.1,0.2,0.7)

(0.1,0.2,0.8)

(0.1,0.3,0.8)

figure 11

 2N e  Corresponding to 2e

(0.1,0.3,0.7)

x1 x3 x2

x4 x5

(0.2,0.4,.04) (0.1,0.2,0.3)

(0.1,0.2,0.3) (0.4,0.6,0.7)

(0.1,0.2,0.8)

(0.2,0.3,0.9)(0.1,0.2,0.7)

(0.1,0.1,0.9)

(0.1,0.2,0.8)

figure 12

 3N e  Corresponding to 3e

(0 .5 ,0 .6 ,0 .7 ) (0 .6 ,0 .8 ,0 .9 )

(0 .3 ,0 .4 ,0 .6 )

x 1 x 3

x 4

(0 .2 ,0 .3 ,0 .9 )
(0 .1 ,0 .3 ,0 .8 )

figure 13

 4N e  Corresponding to 4e

x5

x2 x3

(0.3,0.6,0.8) (0.5,0.7,0.9)

(0.3,0.4,0.5)

(0.1,0.1,0.9)

(0.2,0.3,0.8)

(0.2,0.2,0.9)

figure 14

3.8 Proposition 

The union  * ( , , , )G V A f g   of two neutrosophic soft graph 

 * 1 1

1 1, , ,G G A f g and  * 2 2

2 2, , ,G G A f g  is a 

neutrosophic soft graph. 

Proof 
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1

1 2 1 1 2 2

1 1

Case i)     If and ( ) ( ( ,  then

( , ) ( , ) min{ ( ), ( )}

=  min{ ( ), ( )} 

so  ( , ) min{ ( ), ( )}

Also   I ( , )

, ) )

e

ge g

fe fe

ge fe fe

ge

fe fe

e A A V V V V

T x y T x y T x T y

T x T y

T x y T x T y

x y

x y     

 




1

1

1

1 1

1 1

( , ) min{ ( ), ( )}

=  min{ ( ), ( )}

so   ( , ) min{ ( ), ( )}

Now    F ( , ) ( , ) max{ ( ), ( )}

= max{ ( ), ( )}

Similarly    If {

e

e

g

fe fe

ge fe fe

ge g

fe fe

fe fe

fe fe

I x y I x I y

I x I y

I x y I x I y

x y F x y F x F y

F x F y

e A A





 

 
2 1 1 2 2

1 2 1 1 2 2

and ( , ) ( ) ( )},  or

If {  and ( , ) ( ) ( )},  we 

can show the same as done above.

x y V V V V

e A A x y V V V V

  

    

1 2 1 1 2 2

1 2

1 1 2 2

1

Case ii)     If  and ( , ) ( ) ( ),  then

( , ) max{ ( , ), ( , )}

max{min{ ( ), ( )}, min{ ( ), ( )}

min{max{ ( ),

ge
ge ge

fe fe fe fe

fe

e A A x y V V V V

T x y T x y T x y

T x T y T x T y

T x

   







1 2

2 1 2

1 1 2 2

1

( )}, max{ ( ), ( )}}

min{ ( ), ( )}

Also        I ( , ) max{ ( , ), ( , )}

max{min{ ( ), ( )}, min{ ( ) ( )}}

min{max{

e e

fe fe

ge g g

fe fe fe

fe fe fe fe

fe

T x T y T y

T x T y

x y I x y I x y

I x I y I x I y

I









1 1

2 1 2

1 1 2 2

1 2

( ), ( )}, max { ( ), ( )}}

min{ ( ), ( )}

Now      F ( , ) min{ ( , ), ( , )}

min{max{ ( ), ( )}, max{ ( ), ( )}}

max{min{ ( ), (

e e

fe fe

ge g g

fe fe fe

fe fe fe fe

fe fe

x I x I y I y

I x I y

x y F x y F x y

F x F y F x F y

F x F x









1 2

1 2

Hence the union  is a neutrosophic soft graph.

)}, min{ ( ), ( )}}

max{ ( ), ( )}

fe fe

fe fe

G G G

F y F y

F x F y





3.9 Definition The intersection of two neutrosophic soft 

graphs  * 1 1

1 1 1( , , , )G G A f g   and  
* 2 2

2 2 2( , , , )G G A f g   is denoted by 

*( , , , )G G A f g  where 1 2 1 2,A A A V V V    and the truth-

membership, indeterminacy-membership and falsity- 

membership of intersection are as follows 
1

2

1 2

1 2

2 1

1 2

(x)   if 

( ) (x)   if ,

min{ ( ), (x)}    if 

e

e e

e e

f

f f

f f

T e A A

T x T e A A

T x T e A A

  


  


 

1

2

1 2

1

2

1 2

1 2

2 1

1 2

1 2

2 1

1 2

( )    if  

( ) ( ) ..if 

min{ ( ), ( )}. if 

( )   if 

( ) ( )   if 

max{ ( ), ( )}   if 

e

e e

e e

e

e e

e e

f

f f

f f

f

f f

f f

I x e A A

I x I x e A A

I x I x e A A

F x e A A

F x F x e A A

F x F x e A A

 

  

 

 

  

 













1

2

1 2

1 2

2 1

1 2

(x , y)    if 

( , ) (x , y)   if 

min{ ( , ), (x , y)}  if 

e

e e

e e

g

g g

g g

T e A A

T x y T e A A

T x y T e A A

  



  


 

1

2

1 2

1 2

2 1

1 2

(x , y)   if 

( , ) ( x , y)   if ,

min{ ( , ), (x,y)}  if 

e

e e

e e

g

g g

g g

I e A A

I x y I e A A

I x y I e A A

  



  


 

1

2

1 2

1 2

2 1

1 2

(x , y)   if 

( , ) (x , y)   if 

max{ ( , ), (x , y)}   if 

e

e e

e e

g

g g

g g

F e A A

F x y F e A A

F x y F e A A

  



  


 

3.10  

3.10 Example 

Let  *

1 1 1,G V E  be a simple graph with with  1 1 2 3, ,V x x x

and set of parameters  1 1 2,A e e . A NSG  
1 1

1 1 1( , , , )G V A f g

is given in Table 6 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        1 1 1 5 1 2 2 5, \ , , , , ,i jx x V V x x x x x x  and for all 

1.e A  

Table 6 
1f 1x 2x 5x

1e (0.1,0.2,0.3) (0.2,0.4,0.5) (0.1,0.5,0.7) 

2e (0.2,0.3,0.7) (0.4,0.6,0.7) (0.3,0.4,0.6) 

1g  1 5,x x  2 5,x x  1 2,x x

1e (0.1,0.1,0.8) (0.1,0.3,0.8) (0.1,0.1,0.6) 

2e (0.2,0.3,0.7) (0.3,0.4,0.8) (0.2,0.3,0.7) 

 1N e  Corresponding to 1e
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(0.1,0.2,0.3) (0.1,0.5,0.7)

(0.2,0.4,0.5)

x1 x5

x2

(0.1,0.1,0.8)

(0.1,0.3,0.8)
(0.1,0.1,0.6)

figure 15

 2N e  Corresponding to 2e

(0.2,0.3,0.7) (0.3,0.4,0.6)

(0.4,0.6,0.7)

x1 x5

x2

(0.2,0.3,0.7)

(0.2,0.3,0.7)

(0.3,0.4,0.8)

figure 16

Let  *

2 2 2,G V E    be a simple graph with  2 1 2 3, ,V x x x and 

set of parameters  2 2 3,A e e
2 2 3{ , }.A e e   A NSG 

2 2

2 2 2( , , , )G V A f g  is given in Table 7 below and  

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        2 2 2 3 3 5 2 5, \ , , , , ,i jx x V V x x x x x x  and for all 

2 .e A  

Table 7. 
2f 2x 3x 5x

2e (0.3,0.5,0.6) (0.2,0.4,0.6) (0.4,0.5,0.9) 

3e (0.2,0.4,0.5) (0.1,0.2,0.6) (0.1,0.5,0.7) 

2g  2 3,x x  3 5,x x  2 5,x x

2e (0.1,0.3,0.7) (0.2,0.4,0.9) (0.2,0.4,0.9) 

3e (0.1,0.2,0.8) (0.1,0.2,0.9) (0.1,0.4,0.8) 

 2N e  corresponding to 2e

(0.3,0.5,0.6) (0.4,0.5,0.9)

(0.2,0.4,0.6)

x2 x5

x3

(0.2,0.4,0.9)

(0.1,0.3,0.7)

(0.2,0.4,0.9)

figure 17

 3N e  Corresponding to 3e

(0.2,0.4,0.5) (0.1,0.5,0.7)

(0.1,0.2,0.6)

x2 x5

x3

(0.1,0.4,0.8)

(0.1,0.2,0.8)

(0.1,0.2,0.9)

figure 18

Let    1 2 2 5 1 2 1 2 3, , , ,V V V x x A A A e e e     

The intersection of two neutrosophic soft graphs

* 1 1

1 1 1( , , , )G G A f g   and  
* 2 2

2 2 2( , , , )G G A f g   is given in Table 8. 

Table 8. 

f 2x 5x g  2 5,x x

1e (0.2,0.4,0.5) (0.1,0.5,0.7) 
1e (0.1,0.3,0.8) 

2e (0.3,0.5,0.7) (0.3,0.4,0.9) 
2e (0.2,0.4,0.9) 

3e (0.2,0.4,0.5) (0.1,0.5,0.7) 
3e (0.1,0.4,0.8) 

 1N e  corresponding to 1e
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(0.2,0.4,0.5)

x2 x5

(0.1,0.5,0.7)
(0.1,0.3,0.8)

figure 19

 2N e  corresponding to 2e

(0.3,0.5,0.7)

x2 x5

(0.3,0.4,0.9)
(0.2,0.4,0.9)

figure 20

 3N e  Corresponding to 3e

(0.2,0.4,0.5)

x2 x5

(0.1,0.5,0.7)
(0.1,0.4,0.8)

figure 21

3.11   Proposition  

The intersection 
*( , , , )G G A f g  of two neutrosophic soft 

graphs 
* 1 1

1 1( , , , )G G A f g and 
* 2 2

2 2( , , , )G G A f g  is a neutrosophic 

soft graph where , 1 2A A A   and 1 2V V V   . 

Proof 

1

11 2

1 1

1 1

Case i)     If  

so ( , ) min{ ( ), ( )}

Also   I ( , ) ( , ) min{ ( ), ( )}

 ( , ) ( , )

min{ ( ), ( )} min{ ( ), ( )}

e

e

ge fe fe

ge g

e e

e e

ge g

fe fef f

f f

e A A

T x y T x T y

x y I x y I x I y

then T x y T x y

T x T y T x T y

 



 



 

1

2 1

1 1

min{ ( ), ( )}

so    ( , ) min{ ( ), ( )}

Now    F ( , ) ( , ) max{ ( ), ( )}

max{ ( ), ( )}

Similarly    If we can show the same as done above.

e

fe fe

ge fe fe

ge g

fe fe

e ef f

I x I y

I x y I x I y

x y F x y F x F y

F x F y

e A A





 



 

1 21 2

1 1 2 2

1 2 1 2

Case ii)     If then ( , ) min{ ( , ), ( , )}

min{min{ ( ), ( )}, min{ ( ), ( )}}

min{min{ ( ), ( )}, min{ ( ), ( )}}

e e

ge g g

fe fe fe fe

fe fe fe fe

e A A T x y T x y T x y

T x T y T x T y

T x T x T y T y

 





1 2

1 1 2 2

1 2 1 2

min{ ( ), ( )}

Also        I ( , ) min{ ( , ), ( , )}

min{min{ ( ), ( )}, min{ ( ), ( )}}

min{min{ ( ), ( )}, min{ ( ) ( )}}

e e

fe fe

ge g g

fe fe fe fe

fe fe fe fe

T x T y

x y I x y I x y

I x I y I x I y

I x I x I y I y









1 1

1 1 2 2

1 2 1 2

min{ ( ), ( )}

Now F ( , ) max{ ( , ), ( , )}

max{max{ ( ), ( )}, max{ ( ), ( )}

max{max{ ( ), ( )}, max{ ( ), ( )}}

m

e e

fe fe

ge g g

fe fe fe fe

fe fe fe fe

I x I y

x y F x y F x y

F x F y F x F y

F x F x F y F y











1 2

ax{ ( ), ( )}

Hence the intersection is a neutrosophic soft graph.

fe fe
F x F y

G G G

4 Strong Neutrosophic Soft Graph 

4.1 Definition A neutrosophic soft graph 
*( , , , )G G A f g , is 

called strong if      ,e e eg x y f x f y  , for all , , .x y V e A   

That is if 

      

      

      

, min , ,

, min , ,

, max , .

ge fe fe

ge fe fe

ge fe fe

T x y T x T y

I x y I x I y

F x y F x F y







for all ( , )x y E . 

 4.2 Example 

 Let    1 2 3 1 2, , , ,V x x x A e e  . A strong NSG 

*( , , , )G G A f g is given in Table 9 below and 

     , 0, , 0 and , 1,ge i j ge i j ge i jT x x I x x F x x   for all 

        1 2 2 3 1 3, \ , , , , ,i jx x V V x x x x x x  and for all 

.e A  
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Table 9. 

f 1x 2x 5x

1e (0.1,0.2,0.4) (0.2,0.3,0.5) (0.3,0.4,0.7) 

2e (0.3,0.6,0.8) (0.4,0.5,0.9) (0.3,0.4,0.5) 

g  1 2,x x  2 3,x x  1 3,x x

1e (0.1,0.2,0.5) (0.2,0.3,0.7) (0,0,1) 

2e (0.3,0.5,0.9) (0.3,0.4,0.9) (0.3,0.4,0.8) 

 1N e  Corresponding to 1e

(0 .1 ,0 .2 ,0 .4 ) (0 .3 ,0 .4 ,0 .7 )

(0 .2 ,0 .3 ,0 .5 )

x 1 x 3

x 2

(0 .1 ,0 .2 ,0 .5 )

(0 .2 ,0 .3 ,.0 7 )

figure 22

 2N e  Corresponding to 2e

(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.4,0.5,0.9)

x3 x1

x2

(0.3,0.4,0.8)

(0.3,0.5,0.9)(0.3,0.4,0.9)

figure 23

 4.3 Definition Let *( , , , )G G A f g  be a strong neutrosophic 

soft graph that is      ,e e eg x y f x f y  , for all for all 

, , .x y V e A   The complement *( , , , )G G A f g  of strong 

neutrosophic soft graph *( , , , )G G A f g  is neutrosophic soft 

graph where 

( )   

( )  ( ) ( ), ( ) ( ), ( ) ( )  for all x

min{ ( ), ( )} if ( , ) 0
( ) ( , )

0                 otherwise   

m
 ( , )

fe fe fe fe fe fe

fe fe ge

fe

ge

i A A

ii T x T x I x I x F x F x V

T x T y T x y
iii T x y

I x y



   


 



in{ ( ), ( )} if ( , ) 0

              0                   otherwise   

max{ ( ), ( )} if ( , ) 0
 ( , )

0                   otherwise   

fe fe ge

fe fe ge
ge

I x I y I x y

F x F y F x y
F x y











4.4   Example 
 For the strong neutrosophic soft graph in previous 

example, the complements are given below for 1e  and 
2e . 

Corresponding to 1e ,  the complement of 

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

x1 x3

x2

(0.1,0.2,0.5)

(0.2,0.3,.07)

figure 24

is given by 

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

x1 x3

x2

(0.1,0.2,0.7)

figure 25

       Corresponding to 2e  ,the complement of 
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(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.4,0.5,0.9)

x3 x1

x2

(0.3,0.4,0.8)

(0.3,0.5,0.9)(0.3,0.4,0.9)

figure 26

is given by 

(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.4,0.5,0.9)

x3 x1

x2

figure 27

Conclusion:  Neutrosophic soft set theory is an approach 

to deal with uncertainty having enough parameters so that 

it is free from those difficulties which are associated with 

other contemporary theories dealing with study of 

uncertainty. A graph is a convenient way of representing 

information involving relationship between objects. In this 

paper we have combined both the theories and introduced 

and discussed neutrosophic soft graphs which are 

representatives of neutrosophic soft sets. 
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Abstract. Numerous studies by different researchers 

have confirmed that skewed sex ratio is a critical so-

cial problem in India. This enduring problem of gen-

der imbalance is the collective result of factors like sex 

selective abortion, gender discrimination, son prefer-

ence for the preservation of tribe, emergence of new 

technologies in medical field and many more factors. 

Another severe problem to be addressed in India is 

poverty. Many factors contribute to the perpetuation 

of poverty such as illiteracy, bad governance, under 

employment and various other reasons. Despite of In-

dia's accelerated growth rate, poverty in India is still 

prevalent. 

This paper employs a new soft computing based 

methodology for identifying and analyzing the rela-

tionships among the causes and implications of the 

two challenging problems in India: unbalanced sex 

ratio and poverty. The methodology proposed by au-

thors is based on Linked Fuzzy Relational Maps 

which is a variation to Fuzzy Relational Maps and 

Linked Neutrosophic Relational Maps which is a var-

iation to Neutrosophic Relational Maps. The relation-

ships among the causes and consequences can be easi-

ly drawn through the given methodologies. The au-

thors have implemented two models for the two social 

problems under study, one using Fuzzy Relational 

Maps and the other using Neutrosophic Relational 

Maps. Neutrosophic Relational Maps can support de-

cision making on uncertain and indeterminate data. 

Authors have demonstrated that the model imple-

mented using Neutrosophic Relational Maps presents 

more realistic and sensitive results as compared to the 

model using Fuzzy Relational Maps.  

Keywords: Skewed Sex Ratio; Poverty; Fuzzy Relational Maps; Linked Fuzzy Relational Maps; Neutrosophic Relational 

Maps; Linked Neutrosophic Relational Maps. 

1 Introduction 

1.1 Sex ratio 

India has significantly enhanced against multiple so-
cio-economic indicators over the last few decades includ-
ing level of economic growth, health related services, level 
of nutrition, level of education and status of women, but it 
has not been as victorious at achieving gender equality. 
One significant measure of this inequality in India is the 

country’s sex ratio, defined as the number of females per 
1000 males in the population, whereas internationally, sex 
ratio is defined as number of males per 100 females [4]. In 
this paper, authors follow the first definition.Son prefer-
ence over daughter is an issue in many parts of the world. 
But with social and economic changes and rise in women's 

status, the preference for a son over daughter has declined 
in many countries. However it is still observed in some 

parts of the world mainly from East Asia to South Asia, 
particularly in China and India [12]. 

CENSUS 2011 CENSUS 2001 

COUNTRY SEX RA-

TIO 

CHILD 

SEX RA-

TIO 

SEX RA-

TIO 

CHILD 

SEX RA-

TIO 

India 943 919 933 927 

Table 1 Sex Ratio of India, (Census data Sex ratio 2011) 

The attributes associated with causes and consequences 

that result in deteriorating or improving the status of 
skewed sex ratio in India are described in Table 2.  
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Causes 

Gender 

Equality in 

education and 

employment 

This attribute 

helps in balanc-

ing the sex ratio 

as equal rights 

are given to boys 

as well as girls. 

[5] 

Literacy rate If parents are ed-

ucated then there 

are minor chanc-

es of discrimina-

tion between a 

boy and a girl. 

[27] 

Emergence of 

new technol-

ogies 

With the emerg-

ing technology 

like ultrasound, 

there are more 

chances of sex 

abortions which 

leads to decline 

in sex ratio. 

[9] 

Sons pre-

ferred, 

preservation 

of the clan 

Parents always 

prefer a boy 

child as they 

think boys earn 

more, have more 

rights and carry 

the family name. 

[2] 

Government 

and NGOs 

awareness 

campaigns 

They conduct 

various aware-

ness campaigns 

regarding no dis-

crimination be-

tween male and 

female, equal 

rights to both 

male and female. 

[19] 

Government 

support for 

girl child 

They are taking 

some steps to de-

crease the sex ra-

tio like beti 

bachao beti 

padhao yojana, 

ladli scheme etc. 

[14] 

Female sex 

abuse 

India is a male 

dominating 

country, every 

parent prefers a 

boy child which 

leads to sex se-

lective abortions. 

[13,15] 

Women traf-

ficking 

Due to decline in 

sex ratio, girls 

are more exploit-

ed and moved 

from one place to 

another for the 

purpose of 

forced labor, 

[22] 

Consequenc-

es 

sexual slavery 

etc. 

Surplus men Imbalance of sex 

ratio leads to 

more number of 

males than fe-

males. 

[11] 

Geographical 

spread in 

marriage 

market. 

The females are 

traveled from 

one part of coun-

try to another for 

the purpose of 

marriage. 

[8] 

Inter-

generational 

relationships 

These are the re-

lationships be-

tween persons of 

different genera-

tions. 

[6] 

Polyandrous 

relationships 

Due to shortage 

of brides, a fe-

male is married 

to number of 

males leading to 

polyandry. 

[26] 

Homosexual 

relationships 

These are the re-

lationships be-

tween same sex 

of people due to 

decline in sex ra-

tio. 

[18] 

Cross class 

and cross 

caste  mar-

riages 

Due to shortage 

of females, inter-

caste marriages 

are encouraged 

in India. 

[1] 

Economic 

condition of 

the country 

The economic 

condition of the 

country is im-

proved by 

providing equal 

opportunity in 

education and 

employment to 

both boys and 

girls. 

[3] 

Women em-

powerment 

Women are giv-

en equal rights 

and opportunities 

to increase their 

power so as to 

balance the sex 

ratio. 

[16] 

1.2 Poverty 

Poverty is multidimensional deprivation in income, il-
literacy, malnutrition, mortality, morbidity and vulnerabil-
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ity to economic shocks[17].Overcoming poverty in India is 
a key challenge; one third of the world's poor live in India. 
According to World Bank estimation,  of the popula-
tion live on less than  a day [29]. UNICEF latest 
report shows that one in three Indian children is malnour-
ished or underweight [30]. 

According to 2011 poverty Development Goals Report, 
around 320 million people in India and China are expected 
to be no more part of poverty in the next four years, with 
the estimation that India's poverty rate will fall from 

to about in  [28]. 

Poverty Ratio (%) Number of Poor (million) 

Rural Urban Total Rural Urban Total 

1993-94 50.1 31.8 45.3 328.6 74.5 403.7 

2004-05 41.8 25.7 37.2 326.3 80.8 407.1 

2011-12 25.7 13.7 21.9 216.5 52.8 269.3 

Annual Aver-

age Decline 

1993-94 to 

2004-

05(percentage 

points per an-

num) 

.75 .55 .74 

Annual Aver-

age Decline 

2004-05 to 

2011-

12(percentage 

points per an-

num) 

2.32 1.69 2.18 

Table 3:Percentage and number of poor estimated in India, (Cen-

sus 2011) 

The attributes associated with causes and consequences 
that result in deteriorating or improving the status of pov-

erty in India are described in Table 4. 

Causes 

Literacy rate Literacy 
rate direct-
ly affects 
poverty as 
with in-
creased lit-
eracy, 
more op-
portunities 
of em-
ployment 
is availa-
ble. 

[7] 

Emergence Due to [9] 

of new tech-
nologies 

emergence 
of new 
technology 
millions of 
jobs have 
been creat-
ed in pri-
vate and 
public en-
terprises. 

Overpopula-
tion 

With lim-
ited jobs 
and re-
sources 
overpopu-
lation tends 
to increase 
poverty. 

[21] 

Government 
support for 
girl child 

Due to 
govern-
ment sup-
port to the 
girl child, 
numerous 
job oppor-
tunities 
have been 
provided to 
female 
candidates. 

[23] 

Conse-
quences 

Female sex 
abuse 

Poverty 
would lead 
to poor 
conditions 
for women 
and female 
sex abuse 
being one 
of them. 

[13] 

Women traf-
ficking 

Poor job-
less people 
will get 
drawn to 
unethical 
jobs and 
may be 
willing to 
do any-
thing for 
money. 

[22] 

Inter-
generational 
relationships 

Poverty 
will direct-
ly affect 
the living 
conditions 
of a family 
and will af-
fect the 
mindset of 

[6] 
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all the gen-
erations in 
the family. 

Economic 
condition of 
the country 

With in-
crease in 
poverty, 
the eco-
nomic 
condition 
of a coun-
try would 
worsen. 

[3] 

Mass emi-
gration 

People will 
tend to 
immigrate 
to other 
countries 
in search 
of jobs. 

[10] 

Terrorism Poverty 
will lead 
people to 
take steps 
in favor of 
terrorism 
when mon-
ey will be 
promised 
to them in 
return for 
their ser-
vices. 

[20] 

Malnutrition Due to 
poverty, a 
family will 
not be able 
to get ade-
quate food 
or nutrition 
leading to 
malnutri-
tion. 

[24] 

Table 4 : Causes and consequences of poverty 

This paper uses the relational maps to map relations 
among different factors. Authors proposed two soft com-
puting based methodologies Fuzzy relational maps (FRM) 
and Neutrosophic relational maps (NRM), for highlighting 
the causes and implications of skewed sex ratio and pov-
erty problem pervasive in India. FRMs divides problem 

space into domain and range space, thereby represent the 
relationship between the elements of domain and range 
space. When the data under analysis is indeterminate, there 

is no definite relation between concepts but interrelation 
between concepts exists in a hidden way. In real life situa-
tions indeterminate relations can be seen everywhere i.e. 
Consider a situation where it is difficult to decide whether 
a relation between two concepts exists or not. The proba-
bility that a person wins an election is 35% true, 25% false 

and 40% indeterminate i.e. percentage of people giving a 
blank vote or not giving a vote.FRM cannot handle such 
data. NRM is an innovative technique for processing data 
uncertainty and indeterminacy while observing impacts 
among various factors to obtain more sensitive results.  

The remaining of the paper is organized as follows. 

Section  presents Relational Maps. Section  presents 
basics of FRMs, Linked FRMs and gives a model based on 
FRM for studying India’s skewed sex ratio and poverty 
problem. Section 4 introduces the NRM and Linked NRM 
methodology developed. This section gives a model based 
on NRM for studying India’s skewed sex ratio and poverty 

problem. Section  details discussion of results. Finally, 
section 6 outlines the conclusion. 

2 Relational Maps 

A relational map is related to cognitive map, which is 
also known as mental map. It is  a representation  and  rea-
soning  model  on  causal knowledge [32].It  is  a labeled, 

directed  and  cyclic graph with disjoint set of nodes  and 
edges  represent  causal  relations  between these set of 
nodes .  A relational map represents knowledge (useful in-
formation) which further helps to find hidden patterns and 
support in decision making. Fuzzy Relational Maps are re-
lational maps which use fuzzy values in domain .  

This represent the cases of existence and nonexistence of 
relations between nodes but indeterminacy between the re-
lations are not represented. F. Smarandache proposed Neu-
trosophic Relational Maps which is an extension of fuzzy 
relational maps that can represent and handle indeterminate 
relations [31]. 

3 Fuzzy Relational Maps 

W.B.Vasantha et.al(2000) introduced a new methodol-
ogy called Fuzzy Relational Maps which is an extension of 
Fuzzy Cognitive Maps (FCM) and is used in applications 
like banking [33], IT expert systems [25] etc. In FRM, the 
problem space is divided into a domain space  and a 

range space . There are relationships that exist between 
the domain space and range space concepts. No intermedi-
ate relations exist between the concepts within the domain 
or range space. 

3.1 Basics of FRM 

A FRM is a directed graph from Domain (dimension 

m) to Range  (dimension n) such that , 
with concepts as nodes. The concepts represented as varia-
bles describe the behavior of system and the edges repre-
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sent the relationships among the concepts which can be ei-
ther positive or negative. The positive relationship shows 
that the effect variable undergoes a change in the same di-
rection and negative relationship shows that the effect var-
iable undergoes a change in the opposite direction [32].  

Let  denote concepts of the range space or the do-
main space, where 

If , represents the on state of the node. 
If , represents the off state of the node. 

Let iD  and  denote the two concepts of FRM. The 

directed edge from iD  to 
jR  denote the relation or effect 

of iD  on 
jR . The edge has the value which lies in the 

range . 
Let 

ije be the edge 
i jD R  weight 

and . 
If 1ije  decrease in iD  implies decrease in 

jR  or 

increase in implies increase in 
jR

If 0ije  , then there is no effect of iD  on 
jR . 

If 1ije    then decrease in iD  infers increase in 
jR

or increase in iD implies decrease in 
jR

3.2 Linked FRM methodology 

W.B. Vasantha et.al [31] also introduced yet another 

new technique to help in decision making using FRMs 
called Linked FRMs which is not feasible in case of FCMs. 
This methodology is more adaptable in those cases of data 
where two or more systems are inter-related in some way 
but we are not in a position to inter-relate them directly. 
Assume we have 3 disjoint sets of concepts, say space 

(m set of nodes), (n set of nodes) and ( set of nodes). 
We can directly find FRMs relating  and  FRMs relat-
ing  and  but we are not in a position to link or get a di-
rect relation between  and  but in fact there exists a 
hidden link between them which cannot be easily weighted. 

The linked FRM methodology developed uses FRMs 
connecting three distinct spaces ( nodes), ( nodes) 
and  (r nodes) in such a way that by using the pairs of 
FRMs between  and  we obtain FRM relat-
ing . 

Let E1 be the causal matrix between  and  of order 

and E2 be the causal matrix between and  of 
order . Now cross product of E1 & E2 gives a matrix 
which is the causal matrix relating and . 

3.3 Hidden pattern for FRM 

Let  be an edge from Di to Rj. Di is 

the ith node in domain space and Rj is the jth node in range 
space where and . When 

 is switched on and if causality flows through 
edges of the cycle and if it again causes , we 
say that the dynamical system goes round and round. This 
is true for any node for or 

. The equilibrium state of this dynamical 
system is called the hidden pattern [30]. 

If the equilibrium state of a dynamical system is a 
unique state vector, then it is called a fixed point. 

Consider an FRM with and 

 as nodes. 
For example, let us start the dynamical system by 

switching on 

If the FRM settles down with  and (or and 
) on, eg. the state vector remains as in 

 or in . This state vector is called the 
fixed point. 

If the FRM settles down with a state vector repeating 
in the form 
( Or 

( this equilibrium 
is called a limit cycle. 

3.4 MODEL: Implementation of linked FRM model 
in study of skewed sex ratio and poverty problem 

The sex ratio and poverty problem in India are two of 
the major problems which are discussed in this section. 
There are three sets of conceptual nodes in three spaces. 
The spaces under study are ,  and where 

 - The attributes associated with causes that result in 

deteriorating or improving the status of poverty and 
skewed sex ratio in India, 

- Attributes representing the two problems, and 

- Attributes associated with resultant implications of 

the two problems under study.  

The attributes / concepts used in the model are given 
below: 

 - The attributes associated with various causes of 
poverty and unbalanced sex ratio. Though there could be 

many such attributes but here the authors have prominently 
categorized 7 important causes in P. 

– Gender Equality in education and employment
– Literacy rate
– Emergence of new technologies
– Overpopulation

– Sons preferred, preservation of the clan
– Government and NGOs awareness campaigns,

which aim to change the people’s mindset and attitude to-
wards girls 

– Government’s support to families that have girl
child for example direct subsidies at the time of birth, fe-

male quotas, scholarships and old age pensions 
– The attributes representing the problems under

study. 
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– Skewed sex ratio
– Poverty

– The attributes associated with the various implica-
tions. Here the authors have basically taken 13 important 
possible such consequences. Though there could be many 
more. 

– Female sex abuse
– Women trafficking
– Surplus men, more unmarried men still in mar-

riage market 
– Geographical spread in marriage market
– Inter-generational relationships, young girls get-

ting married with much older men 
– Polyandrous relationships, where one women is

married to multiple men 
– Homosexual relationships
– Cross class and cross caste marriages
– Economic condition of the country

– Women empowerment
– Mass emigration
– Terrorism
– Malnutrition

Subsequent to the deliberations with the researchers 
working in this domain, the authors generated the relation-

al directed graph of the model for spaces P & Q and Q & R 
as shown in Fig. 1a and 1b. 

Figure. 1a FRM for spaces P and Q 

Figure. 1b FRM for spaces Q and R 

The relational or connection matrix for spaces P & Q 

and Q & R can be constructed as given by table 5a and ta-

ble 5b. 

CAUSES Q1 Q2 

P1 -1 0 

P2 -1 -1 

P3 1 -1 

P4 0 1 

P5 1 0 

P6 -1 0 

P7 -1 -1 

Table 5a FRM Matrix (E1) for and 
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IM-

PLI

CA

TIO

NS 

R1 R

2 

R

3 

R

4 

R

5 

R

6 

R

7 

R

8 

R

9 

R

1

0 

R

1

1 

R

1

2 

R1

3 

Q1 1 1 1 1 1 1 1 1 -

1 

-

1 

0 0 0 

Q2 1 1 0 0 1 0 0 0 -

1 

0 1 1 1 

Table 5b FRM Matrix (E2) for and 

Thus E1 is a matrix and E2 is a matrix. 
 gives the relational matrix which is a 

matrix say , known as the hidden connection matrix, as 

shown in Table 6. 

Caus-

es\Implicat

ions 

R1 R

2 

R

3 

R

4 

R

5 

R

6 

R

7 

R

8 

R

9 

R

10 

R

11 

R

12 

R

13 

P1 -1 
-

1 

-

1 

-

1 

-

1 

-

1 

-

1 

-

1 
1 1 0 0 0 

P2 -1 
-

1 

-

1 

-

1 

-

1 

-

1 

-

1 

-

1 
1 1 -1 -1 -1 

P3 0 0 1 1 0 1 1 1 0 -1 -1 -1 -1 

P4 1 1 0 0 1 0 0 0 
-

1 
0 1 1 1 

P5 1 1 1 1 1 1 1 1 
-

1 
-1 0 0 0 

P6 -1 
-

1 

-

1 

-

1 

-

1 

-

1 

-

1 

-

1 
1 1 0 0 0 

P7 
-1 

-

1 

-

1 

-

1 

-

1 

-

1 

-

1 

-

1 
1 1 -1 -1 -1 

Table 6 Hidden FRM Matrix (E) for  and 

Thus, by this method even if the authors were not in a 
position to get directed graph, authors could indirectly ob-
tain the FRMs relating them. Now using these three FRMs 
and their related matrices, conclusion is derived by study-
ing the effect of each state vector. 

For the given model, 
First take initial vector  by keeping  i.e. literacy 

rate in ON state. 
Let Hidden connection matrix for  and 
Initial state vector  should pass through the rela-

tional matrix 
This is done by multiplying  with the relational ma-

trix .  

Let

Figure. 2 Problem simulation using MATLAB for FRM when 

‘Literacy Rate’ is ON 

After thresholding and updating the resultant vector we 
get . Now pass 2A  into and calcu-
late 

Update and threshold the vector  such that vec-
tor  is obtained and  

This procedure is repeated till we get a limit cycle or a 
fixed point. 

  (0 1 0 0 0 0 0) 
(0 0 0 0 0 0 0 0 1 1 0 0 0) 2A
(1 1 0 0 0 1 1) 3A  
(0 0 0 0 00 0 0 1 1 0 0 0) 4A

Hence,  we got a fixed point. 
Problem simulation using MATLAB  

The authors have created a graphical user interface us-
ing MATLAB as shown in Fig. 2 

The GUI takes input from the user which can be either 
0 or 1 , where 1 represents the concept is in ON state and 0 

represents the OFF state. The GUI contains a graph which 
shows the impact on various concepts based on the initial 
state vector taken as input.  

Resultant vector can have two outputs: 
‘1’ represents the existence of relation among the con-

cepts , whereas ‘0’ represents that there is no causal rela-

tionship. 
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3.5 Limitations of FRM 

The concepts for which the experts are not in a position 
to draw any relations, i.e. concepts may or may not have 
causal effects, cannot be associated in FRMs. The edges 

can take either of the values ,  or -  as shown in Table 
5a and Table 6 . An expert may not always be able to make 
certain decisions on the relation between two nodes. This 
drawback can be overcome by using Neutrosophic Rela-
tional Maps which support decision-making under uncer-
tainty in dynamic systems as shown in Table  and Table 

. 

In FRMs, either a relation exists or do not exist, but 
this will not always be true in case of real world problems. 
When the data under analysis is unsupervised data, the re-
lation can be  indeterminate like considering a relation 

where skewed sex ratio may or may not lead to homosexu-
al relations as it depends upon the mindset of the individu-
als.  In such cases only NRMs are better applied than 
FRMs. Thus NRMs play a better role and give a sensitive 
result than the FRMs as shown in Table 10. 

Fuzzy world is about fuzzy data and fuzzy membership 
but it has no capacity to deal with indeterminate concepts. 

Thus with the help of NRM, whenever in the resultant 
data indeterminacy is observed i.e. the symbol , the per-
son who analyze the data can deal with more caution 

thereby getting sensitive results rather than treating the 
nonexistence or associating to that co-ordinate. 

4 Neutrosophic Relational Maps 

NRM is an extension of FRM where indeterminacy is 
included [32]. The concept of fuzzy relational maps fails to 

deal with the indeterminate relation.  Neutrosophic logic is 
the soft computing technique which is able to support in-
complete information i.e. it deals with the notions of inde-
terminacy. 

The input state vectors are always taken as the real 

state vectors i.e. the node or the concept is in the on state 
or in the off state but when we are indeterminate about any 
concept then it is represented as indeterminate, with the 
symbol I. 

4.1 Basics of NRM 
Let  be the domain space with nodes  and 

R be the range space with the conceptual 
nodes , and j  such that 
they form a disjoint class i.e. . Suppose 
there is a FRM relating  and and if any edge relating 

j is indeterminate then we call the FRM as the Neu-
trosophic Relational Maps (NRMs). 

Every edge in the NRM is weighted with a number in 
the set 

Let 
ije be the edge 

i jD R  weight 

and . 
If 1ije  decrease in iD  implies decrease in 

jR  or 
increase in implies increase in 

jR
If 0ije  , then there is no effect of iD  on 

jR . 
If 1ije    then decrease in iD  infers increase in 

jR
or increase in iD implies decrease in 

jR
If 

ije I  it implies that  the effect of iD  on 
jR is 

indeterminate so we denote it by  

4.2 NRM hidden patterns 
Let , 

 when  is switched on and if 

causality flows through edges of a cycle and if it again 
causes  we say that the Neutrosophical dy-
namical system goes round and round. This is true for any 
node for m ( . 
The equilibrium state of this Neutrosophical dynamical 
system is called the Neutrosophic hidden pattern. 

Fixed point and Limit cycle in an NRM 
If the equilibrium state of a Neutrosophical dynamical 

system is a unique Neutrosophic state vector, then it is 
called the fixed point.  

Consider an NRM with 
and as nodes. 

For example let us start the dynamical system by 
switching on . Let us assume that the NRM 
settles down with  and  on, or 

indeterminate, eg. the Neutrosophic state vector remains as 
 or  in or 

or 
 in , this state vector is called the fixed 

point. 

If the NRM settles down with a state vector repeating 
in the form 

(  or 
( then this equi-
librium is called a limit cycle. 

Now we proceed on to define the notion of linked 

NRM as in the case of FRM. 

This methodology is more adaptable in those cases of 
data where two or more systems are inter-related in some 
way but we are not in a position to inter-relate them direct-
ly i.e. cases where related conceptual nodes can be parti-
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tioned into disjoint sets. Such study is possible only by us-
ing linked NRMs.  

Assume we have 3 disjoint sets of concepts, say spaces 
 (  set of nodes), (  set of nodes) and (  set of 

nodes). We can directly find NRMs relating and , 
NRMs relating  and  but we are not in a position to link 

or get a direct relation between  and  but in fact there 
exists a hidden link between them which cannot be easily 
weighted; in such cases we use linked NRMs where using 
the pair of NRMs we obtain a resultant NRM. 

4.3 Linked NRM Methodology 
The methodology developed uses NRMs connecting 

three distinct spaces namely, (  nodes), (  nodes) and 
(  nodes) in such a way that using the pairs of FRMs be-

tween  &  and &  we obtain FRM relating &  
(VasanthaKandasamy & Sultana, 2000). 

If  is the connection matrix relating  and  then 

 is a  matrix and  is the connection matrix 
relating  and  which is a matrix. Now 
is a matrix which is the connection matrix relat-
ing and  and  matrix relating and , 
when we have such a situation we call it the pair wise 
linked NRMs. 

4.4 MODEL: Implementation of linked NRM model 
in study of skewed sex ratio and poverty problem 

Recall the model in section  where the study of sex 
ratio and poverty is carried out using linked FRM where no 
indeterminacy is considered. 

Now instead of FRM we instruct the expert that they 
need not always state the presence or absence of relation 
between any two concepts but they can also spell out the 
missing relations between two concepts, with these addi-
tional instruction to the expert, the opinions are taken. 

In order to implement our model using linked NRM, 
we take the same three sets of conceptual nodes in three 
spaces as taken in section 3.4 i.e. the spaces under study 
are  and . 

The attributes / concepts used in the model can be re-

ferred from section . 

In our model the relations where indeterminacy can be 
represented are: 

(Gender Equality in education and employ-
ment ) (Poverty) 

If there is equality in education and employment i.e. 
women are given equal opportunity to study and earn for 
their families then there may be a possibility that there 
might be a decline in poverty, but we cannot conclude this 
for sure(refer Table 5a). 

Q1(Skewed sex ratio) R7(homosexual relationships) 

If there exists imbalance in male to female ratio then 
there would be surplus men. There is a possibility that the 
situation would lead to more homosexual relations in 
shortage of women(refer Table 5b). 

Other indeterminacies between nodes introduced in 
this model are highlighted in the Table  and Table . 

Taking the expert opinion, the authors give the Neutro-
sophic Relational maps as shown in Fig. 3a and Fig. 3b. 

Figure. 3a NRM for spaces P and Q 
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Figure. 3b NRM for spaces Q and R 

The matrices for the three NRMs formulated which can 
contain the values from set  are given by: 

CAUSES Q1 Q2 

P1 -1 I 

P2 -1 -1 

P3 1 -1 

P4 I 1 

P5 1 0 

P6 -1 0 

P7 -1 -1 

Table 7 NRM Matrix for  and 

IMPLI-

CATI-

ONS 

R

1 

R

2 

R

3 

R

4 

R

5 

R

6 

R

7 

R

8 

R

9 

R

10 

R

11 

R

12 

R 

13 

Q1 1 1 1 1 1 I I 1 -1 -1 0 0 0 

Q2 1 1 0 0 I I 0 0 -1 0 1 1 1 

Table 8 NRM Matrix for  and 

Cau

ses/I

mpli

cati-

ons 

R

1 

R

2 

R

3 

R

4 

R

5 

R

6 

R

7 

R

8 

R

9 

R

10 

R

11 

R

12 

R

13 

P1 -1 -1 -1 -1 -1 0 I -1 1 1 I I I 

P2 -1 -1 -1 -1 -1 I I -1 1 1 -1 -1 -1 

P3 0 0 1 1 1 0 I 1 0 -1 -1 -1 -1 

P4 1 1 I I I I I I -1 I 1 1 1 

P5 1 1 1 1 1 I I 1 -1 -1 0 0 0 

P6 
-1 -1 -1 -1 -1 I I -1 1 1 0 0 0 

P7 
-1 -1 -1 -1 -1 I I -1 1 1 -1 -1 -1 

Table 9 Hidden NRM Matrix for and 

The  factor was introduced in the NRM matrix. The 
hidden pattern using Linked NRM was calculated as, 

Hidden connection matrix with indeterminacy 
added. (Table 9) 

Indeterminacy 
The hidden pattern for Linked NRM is calculated as 

follows: 
We first take same initial vector (as in section 3.4) 
by keeping , literacy rate in ON state 
If 

Problem simulation using MATLAB 

The authors have created a graphical user interface us-
ing MATLAB as shown in Fig. 4.  

The GUI takes input from the user which can be either 
0 or 1 where 1 represents the concept is in ON state and 0 

represents is in OFF state. The GUI contains a graph which 
shows the impact on various concepts based on the initial 
state vector taken as input.  

Figure. 4 Problem simulation using MATLAB for NRM when 

‘Literacy Rate’ is ON 

Resultant vector can have three outputs: ’1’ represents 

the existence of relation among the concepts ,  
‘0’ represents that there is no causal relationship, 

whereas  
‘I’ represents that there might be a causal relationship 

among the concepts i.e. the existence of the relationship is 
indeterminate. 

5 Discussion of results 

The development of the models to support  decision 
making in this research is to identify and analyze the indi-
rect relations among the factors responsible in the distorted 
sex ratio and poverty of India and their implications, have 
been proved as reliable and valid.  

Values achieved in the Fig. 2 and Fig. 4 shows impacts 
of various causes and their consequences. FRMs and 
NRMs are modeled in section 3.4 and 4.4 to show how the 
various spaces are related. 
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The perceptions of the expert could not be 100% accu-
rate. In addition, different experts may have different per-
ceptions working with the same data, which will lead to 
different conclusions.  

The results show that due to emergence of new tech-
nologies available in medical field like ultrasound, the fac-

tors like female abuse, crime rate, surplus men in marriage 
market, geographical marriage spread and women traffick-
ing are indirectly influenced.  However, the author is not in 
a position to surely say anything about the implications 
like polyandrous relationships and homosexual relation-
ships because these depend on the mindset of the individu-

als.  There is one positive outcome; greater acceptance to-
wards inter-caste and inter religious marriages. Problems 
such as terrorism, mass emigration and malnutrition are a 
result of poverty pervasive in India which in turn is a result 
of overpopulation.  

6 Conclusion 
This paper discusses two major problems existing in 

India-namely, skewed sex ratio and poverty. The authors 
use the methodologies which help in decision-making 
when the information is incomplete and dynamic in nature. 
The paper highlights the various factors leading to these 

problems in India and show in what ways these causes re-
late to their positive as well as negative implications. The 
data concludes the explanation that due to the sources con-
tributing in female deficit in India, there is a tremendous 
impact on the country’s economic growth and the status of 
women in society. Authors also show that prevalence of 

the problems discussed in the paper depends heavily on the 
literacy rate of the population.   

The model used here is NRM which has significant ad-
vantages over FRM. As discussed in the cases above, in 
the FRM model, the literacy rate has effect only on two 

factors but the NRM model along with two previous fac-
tors has drawn our attention to two other factors which 
may have indeterminate effect on polyandrous and homo-
sexual relation hence depicting that increase in literacy rate 
may or may not lead to polyandrous or homosexual rela-
tion. The other factor discussed using both the models is 

the effect of sons preferred preservation of clan and its ef-
fect on other factors, here the NRM model suggests that af-
fect on polyandrous and homosexual relations is indeter-
minate. 

Literacy has a direct impact in the growth of a country 

eradicating problems like mass emigration of labor by 
providing employment opportunities in the country, direct-
ly or indirectly affecting poverty. Also, literacy has a direct 
relation with the attitude of the society towards females. 
There is a need for enlightened mindset towards females.  

In India, different schemes encouraging the parents to 
have a girl child have been launched by the National and 
State Governments. Some of the schemes are the Ladli 

Scheme in Delhi and Haryana, the Rajlakshmi Scheme in 
Rajasthan, Rakshak Yojna in Punjab, Bhagyalakshmi 
Scheme in Karnataka. As discussed by the authors, if such 
schemes are put in place females will no longer be consid-
ered as economic burden on their families.  
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Abstract. In this article, starting from primary represen-

tation of neutrosophic information, namely the triplet (μ, 

ω, ν) made up of the degree of truth μ, degree of indeter-

minacy ω and degree of falsity ν, we define a refined rep-

resentation in a penta-valued fuzzy space, described by 

the index of truth t, index of falsity f, index of ignorance 

u, index of contradiction c and index of hesitation h. In 

the proposed penta-valued refined representation the in-

determinacy was split into three sub-indeterminacies 

such as ignorance, contradiction and hesitation. The set 

of the proposed five indexes represents the similarities of 

the neutrosophic information (μ, ω, ν) with these particu-

lar values: T=(1,0,0), F=(0,0,1), U=(0,0,0), C=(1,0,1) and 

H=(0.5,1,0.5). This representation can be useful when the 

neutrosophic information is obtained from bipolar infor-

mation which  is defined by the degree of truth and the 

degree of falsity to which is added the third parameter, its 

cumulative degree of imprecision.  

Keywords: Neutrosophic information, refined representation, hesitation, contradiction, ignorance, falsity, truth, ambiguity. 

1 Introduction 

The neutrosophic representation of information was 
proposed by Florentin Smarandache [6], [13-22] and  it is a 
generalisation of intuitionistic fuzzy representation pro-
posed by Krassimir Atanassov [1-4] and also for fuzzy rep-
resentation proposed by Lotfi Zadeh [23]. The neutrosoph-
ic representation is  described by three parameters: degree 

of truth μ, degree of indeterminacy ω and degree of falsity 
ν. In this paper we assume that the parameters 𝜇, 𝜔, 𝜈 ∈
[0,1]. 

The representation space (𝜇, 𝜔, 𝜈) is a primary space 
for neutrosophic information. Starting from primary space, 
it can be derived  other more nuanced representations be-

longing to multi-valued fuzzy spaces where the set of pa-
rameters defines fuzzy partitions of unity. In these multi-
valued fuzzy spaces, at most four parameters of representa-
tion are different from zero while all the others are zero [7],  
[8], [9], [10].  

In the following, the paper has the structure: Section 2 

presents previous works: two penta-valued representations. 
In the first representation, the indeterminacy was split in 
neutrality, ignorance and saturation while in the second the 
indeterminacy was split into neutrality, under-definedness 
and over-definedness; Section 3 presents the construction 
of two multi-valued representation for bipolar information.  

The first is based on Belnap logical values, namely true, 
false, unknown and contradictory while the second is based 
on a new logic that was obtained by adding to the Belnap 
logic the fifth value: ambiguity; Section 4 presents two 

variants for penta-valued representation of neutrosophic in-

formation based on truth, falsity, ignorance, contradiction 
and hesitation; Section 5 presents a penta-valued logic that 
uses the following values: true, false, unknown, contradic-
tory and hesitant; Section 6 presents five operators for the 
penta-valued structures constructed in section 4. Firstly, it 
was defined two binary operators namely union and inter-

section, and secondly, three unary operators, namely com-
plement, negation and dual. All these five operators where 
defined in concordance with the logic presented in the sec-
tion 5; The last section outlines some conclusions. 

2 Previous works 

It was constructed two representations using penta-valued 
fuzzy spaces [7], [8], [9]. One that is based on truth, falsity, 
neutrality, ignorance and saturation  and the  other that is 
based on truth, falsity, neutrality, under-definedness and 
over-definedness.     
Below is a brief overview of these variants. 

2.1 Penta-valued representation of neutrosophic 
information based on truth, falsity, neutrality, ig-
norance and saturation 

We can define a penta-valued partition with five indexes: 
index of truth, index of falsity, index of neutrality, index of 

ignorance and index of saturation by: 
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2

),min(),min( 



t     (2.1.1) 

2

),min(),min( 



f     (2.1.2) 

2

),min(),min( 



n     (2.1.3) 

 𝑢 = 1 − 𝑚𝑎𝑥(𝜇, 𝜔, 𝜈)  (2.1.4) 

 𝑠 = 𝑚𝑖𝑛(𝜇, 𝜔, 𝜈)  (2.1.5) 

These five indexes verify the condition of partition of unity, 
namely: 

𝑡 + 𝑓 + 𝑛 + 𝑢 + 𝑠 = 1      (2.1.6)  

Also, there exists the equality: 

𝑡 ∙ 𝑓 ∙ 𝑛 = 0       (2.1.7) 

Having this representation, the neutrosophic information 

could be true, false, neutral, unknown, and saturated. 

These five information features have the following proto-

types:  𝑇 = (1,0,0)  ; 𝐹 = (0,0,1)  ;  𝑁 = (0,1,0)  ; 𝑆 =
(1,1,1) ; 𝑈 = (0,0,0).  The geometrical representation of 

this construction can be seen in the figure 1.   

Fig.1. The geometrical representation for the penta-valued space 

based on true, false, neutral, unknown and saturated. 

Also, we can define the inverse transform from the penta-

valued space (𝑡, 𝑓, 𝑛, 𝑢, 𝑠)  to the primary three-valued 

space  (𝜇, 𝜔, 𝜈) using the next formulae: 

𝜇 = 𝑡 + min(𝑡, 𝑓) + min(𝑡, 𝑛) + 𝑠 

𝜔 = 𝑛 + min(𝑡, 𝑛) + min(𝑓, 𝑛) + 𝑠 

𝜈 = 𝑓 + min(𝑡, 𝑓) + min(𝑓, 𝑛) + 𝑠 

2.2 Penta-valued representation of neutrosophic 
information based on truth, falsity, neutrality, un-
der-definedness and over-definedness 

Firstly, we will define the neutrosophic definedness. 
Before the definedness construction, we will denote the 
mean of neutrosophic components: 

3





       (2.2.1) 

The neutrosophic definedness is described by a function: 
]1,1[]1,0[:   having the following properties:   

i) 1)0(   

ii) 0
3

1









  

iii) 1)1( 

iv)   increases with its argument

Here are some examples: 











1

13
)(    (2.2.2) 

1
2

sin2)( 










           (2.2.3) 

1
2

37
)(

2







           (2.2.4) 

4

|13|39
)(





          (2.2.5) 











12

12
)(          (2.2.6) 

If the neutrosophic definedness is positive, the information 
is inconsistent or over-defined, if it is zero, the 
neutrosophic information is consistent or complete and if it 
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is negative, the information is incomplete or under-defined. 
We denote by: 

 0,max                  (2.2.7)

   )0,max(             (2.2.8) 

Using the neutrosophic definedness   we define index of 
truth, index of  falsity, index of  neutrality, index of  over-
definedness and index of  under-definedness by: 
















3

1
t           (2.2.9) 
















3

1
n         (2.2.10) 
















3

1
f           (2.2.11) 

 o        (2.2.12) 












3
u        (2.2.13) 

These five parameters verify the condition of fuzzy 
partition of unity, namely:  

1 uofnt             (2.2.14) 
with 0ou .  
Having this representation, the neutrosophic information 
could be true, false, neutral, over-defined and under-
defined. 
For this penta-valued representation the indeterminacy has 

three components: neutrality, over-definedness and under-
definedness, namely: 

uoni     (2.2.15) 

We must draw attention to the difference between 

saturation that represents the similarity to the vector )1,1,1(  
and the over-definedness that is related to the inequality 
𝜇 + 𝜔 + 𝜈 > 1. In the same time, for both parameters, the 
maximum is obtained for  𝜇 = 𝜔 = 𝜈 = 1. 
Also, the ignorance supplies a similarity to the vector 

)0,0,0(   while the under-definedness represents a measure 

of the inequality 𝜇 + 𝜔 + 𝜈 < 1  and the maximum is 
obtained for 𝜇 = 𝜔 = 𝜈 = 0 . 
 In figure 2 we can see the geometrical representation of 
this construction. 

Fig.2. The geometrical representation for the penta-valued space 

based on  true, false, neutral, under-defined and over-defined. 

3 Tetra and penta-valued representation of bi-
polar information  

The bipolar information is defined by the degree of truth 𝜇 
and the degree of falsity 𝜈. Also, it is associated with a 

degree of certainty and a degree of uncertainty. The bipolar 
uncertainty can have three features well outlined: 
ambiguity, ignorance and contradiction. All these three 
features have implicit values that can be calculated using 
the bipolar pair (𝜇, 𝜈). 

In the same time, ambiguity, ignorance and contradiction 
can be considered  features belonging to indeterminacy but 
to an implicit indeterminacy. We can compute the values 
of these implicit features of indeterminacy. First we 
calculate the index of ignorance 𝜋  and index of 
contradiction 𝜅: 

 π = 1-min (1, μ + ν)       (3.1) 

 𝜅 = 𝑚𝑎 𝑥(1, 𝜇 + 𝜈) − 1           (3.2) 

There is the following equality: 

 𝜇 + 𝜈 + 𝜋 − 𝜅 = 1  (3.3) 

which turns into the next tetra valued partition of unity: 

   (𝜇 − 𝜅) + (𝜈 − 𝜅) + 𝜋 + 𝜅 = 1         (3.4) 

The four terms form (3.4) are related to the four logical 
values of Belnap logic: true, false, unknown and contradic-
tory  [5]. Further, we extract from the first two terms the 
bipolar ambiguity 𝛼: 
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       𝛼 = 2 ∙ 𝑚𝑖𝑛(𝜇 − 𝜅, 𝜈 − 𝜅)        (3.5) 

The formula (3.5) has the following equivalent forms: 

      𝛼 = 2 𝑚𝑖𝑛(𝜇, 𝜈) − 2𝜅           (3.6) 

 𝛼 = 1 − |𝜇 − 𝜈| − |𝜇 + 𝜈 − 1|  (3.7) 

 𝛼 = 1 − 𝑚𝑎𝑥(|2𝜇 − 1|, |2𝜈 − 1|)  (3.8) 

Moreover, on this way, we get the two components of bi-
polar certainty: index of truth 𝜏+ and index of falsity 𝜏−: 

 𝜏+ = 𝜇 − 𝜅 −
𝛼

2
 (3.9) 

 𝜏− = 𝜈 − 𝜅 −
𝛼

2
 (3.10) 

having the following equivalent forms: 

      𝜏+ = 𝜇 − min(𝜇, 𝜈)      (3.11) 

 𝜏− = 𝜈 − min (𝜇, 𝜈)    (3.12) 

So, we obtained a penta-valued representation of bipolar 

information by  (𝜏+, 𝜏−, 𝛼, 𝜋, 𝜅) . The vector components 
verify the partition of unity condition, namely: 

  𝜏+ + 𝜏− + 𝛼 + 𝜋 + 𝜅 = 1        (3.13) 

The bipolar entropy is achieved by adding the components 
of the uncertainty, namely:  

   𝑒 = 𝛼 + 𝜋 + 𝜅          (3.14) 

Any triplet of the form (𝜇, 𝜈, 𝑖) where 𝑖 is a combination of 
the entropy components (𝛼, 𝜋, 𝜅)   does not define a 
neutrosophic information, it is only a ternary description of 
bipolar information. 
In the following sections, the two representations defined 
by (3.4) and (3.13) will be used to represent the neutro-

sophic information in two penta-valued structures. 

4 Penta-valued representation of neutrosophic in-
formation based on truth, falsity, ignorance, con-
tradiction and hesitation 

In this section we present two options for this type of 

penta-valued representation of neutrosophic information. 

4.1 Option (I) 

Using the penta-valued partition (3.13), described in 

Section 3, first, we construct a partition with ten terms for 

neutrosophic information and then a penta-valued one, 
thus: 

      (𝜏+ + 𝜏− + 𝛼 + 𝜋 + 𝜅)(𝜔 + 1 − 𝜔) = 1       (4.1.1) 

By multipling, we obtain ten terms that describe the 
following ten logical values: weak true, weak false, neutral, 
saturated, hesitant, true, false, unknown, contradictory and 
ambiguous. 

𝑡𝑤 = 𝜔𝜏+

𝑓𝑤 = 𝜔𝜏−

𝑛 = 𝜔𝜋 

𝑠 = 𝜔𝜅 

ℎ =  𝜔𝛼 

𝑡 = (1 − 𝜔)𝜏+ 

𝑓 = (1 − 𝜔)𝜏− 

𝑢 = (1 − 𝜔)𝜋 

𝑐 = (1 − 𝜔)𝜅 

𝑎 = (1 − 𝜔)𝛼 

The first five terms refer to the upper square of the 
neutrosophic cube (fig. 3) while the next five refer to the 
bottom square of the neutrosophic cube (fig. 4). 
We distribute equally the first four terms between the fifth 

and the next four and then the tenth, namely the ambiguity, 
equally, between true and false and we obtain: 

𝑡 = (1 − 𝜔)𝜏+ +
𝜔𝜏+

2
+

(1 − 𝜔)𝛼

2

𝑓 = (1 − 𝜔)𝜏− +
𝜔𝜏−

2
+

(1 − 𝜔)𝛼

2

𝑢 = (1 − 𝜔)𝜋 +
𝜔𝜋

2

𝑐 = (1 − 𝜔)𝜅 +
𝜔𝜅

2

ℎ =  𝜔𝛼 +
𝜔𝜏+

2
+

𝜔𝜏−

2
+

𝜔𝜋

2
+

𝜔𝜅

2

then, we get the following equivalent form for the five fi-

nal parameters: 
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Fig. 3. The upper square of neutrosophic cube and its five logical 

values. 

Fig. 4 The bottom square of neutrosophic cube and its five logical 

values. 

 𝑡 = (1 −
𝜔

2
) (𝜇 − 𝜅) −

𝜔𝛼

4
 (4.1.2) 

 𝑓 = (1 −
𝜔

2
) (𝜈 − 𝜅) −

𝜔𝛼

4
 (4.1.3) 

 𝑢 = (1 −
𝜔

2
) 𝜋  (4.1.4) 

 𝑐 = (1 −
𝜔

2
) 𝜅  (4.1.5) 

 ℎ =  
(1 + 𝛼)

2
𝜔  (4.1.6) 

The five parameters defined by relations (4.1.2-4.1.6) de-

fine a partition of unity:  

         𝑡 + 𝑓 + ℎ + 𝑐 + 𝑢 = 1  (4.1.7) 

Thus, we obtained a penta-valued representation of neutro-
sophic information based on logical values: true, false, un-

known, contradictory and hesitant. 
Since 𝜋 ∙ 𝜅 = 0, it results that 𝑢 ∙ 𝑐 = 0 and hence the con-
clusion that only four of the five terms from the partition 
can be distinguished from zero. 
Geometric representation of this construction can be seen 
in figures 5 and 6. 

The inverse transform. 

Below, we present the inverse transform calculation, name-

ly the transition from penta-valued representation 

(𝑡, 𝑓, ℎ, 𝑐, 𝑢)  to the primary representation (𝜇, 𝜔, 𝜈). 

From formulas (4.1.2) and (4.1.3), it results by subtraction: 

 𝑡 − 𝑓 = (1 −
𝜔

2
) (𝜇 − 𝜈)  (4.1.8) 

From formulas (4.1.4) and (4.1,5), it results by subtraction: 

 𝑐 − 𝑢 = (1 −
𝜔

2
) (𝜇 + 𝜈 − 1)  (4.1.9) 

Then from (4.1.2),  (4.1.3) and (3.5)  it results: 

       2 min(𝑡, 𝑓) = (1 − 𝜔)𝛼        (4.1.10) 

Formula (4.1.6) is equivalent to the following: 

 2ℎ − 𝜔

𝜔
=  𝛼  (4.1.11) 

Eliminating parameter 𝛼  between equations (4.1.10) and 
(4.1.11), we obtained the equation for determining 

parameter 𝜔: 

 𝜔2 − 𝜔(1 + 2ℎ + 2min (𝑡, 𝑓)) + 2ℎ = 0  (4.1.12) 

Note that the second-degree polynomial: 

𝑝(𝜔) = 𝜔2 − 𝜔(1 + 2ℎ + 2min (𝑡, 𝑓)) + 2ℎ  (4.1.13) 

has negative values for 𝜔 = 1 and 𝜔 = 2ℎ, namely 

𝑝(1) = 𝑝(2ℎ) = −2𝑚𝑖𝑛(𝑡, 𝑓) 

So, it has a root grater than 𝑚𝑎𝑥 (1,2ℎ) and one less than 
𝑚𝑖𝑛 (1,2ℎ) . Also, for 𝜔 = 0 , it has a positive value, 
namely 𝑝(0) = 2ℎ . Therefore, the root belongs to the 
interval [0, 𝑚𝑖𝑛 (1,2ℎ)] and it is defined by formula: 
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Fig. 5. The geometrical representation of the penta-valued space, 

based on true, false, unknown, contradictory and hesitant. 

Fig. 6. Geometric representation of prototypes for features: truth, 

falsity, ignorance, contradiction and hesitation.  

 𝜔 = 𝛽 − √𝛽2 − 2ℎ  (4.1.14) 

where: 

 𝛽 =
1

2
+ ℎ + min(𝑡, 𝑓)  (4.1.15) 

We must observe that 

𝛽2 − 2ℎ ≥ (
1

2
+ ℎ)

2

− 2ℎ = (
1

2
− ℎ)

2

≥ 0 

and  hence formula (4.1.14) provides a real value for 𝜔. 

Then, from (4.1.8) and (4.1.9), it results the system: 

𝜇 − 𝜈 =
𝑡 − 𝑓

1 −
𝜔
2

 

𝜇 + 𝜈 − 1 =
𝑐 − 𝑢

1 −
𝜔
2

 

Finally, we obtain formulas for 𝜇 and 𝜈. 

 𝜇 =
1

2
+

𝑡 − 𝑓 + 𝑐 − 𝑢

2 − 𝛽 + √𝛽2 − 2ℎ
 (4.1.16) 

 𝜈 =
1

2
+

𝑓 − 𝑡 + 𝑐 − 𝑢

2 − 𝛽 + √𝛽2 − 2ℎ
 (4.1.17) 

Formulas (4.1.14), (4.1.16) and (4.1.17) represent the re-

calculating formulas for the primary space components 

(𝜇, 𝜔, 𝜈) namely inverse transformation formulas. 

4.2 Option (II) 

Using the tetra-valued partition defined by formula (3.4) 
we obtain: 

𝜇 − 𝜅 −
𝛼𝜔

2
+ 𝜈 − 𝜅 −

𝛼𝜔

2
+ 𝜋 + 𝜅 + 𝜔 = 1 + 𝜔 − 𝛼𝜔 

(𝜇 − 𝜅 −
𝛼𝜔
2

) + (𝜈 − 𝜅 −
𝛼𝜔
2

) + 𝜋 + 𝜅 + 𝜔

1 + 𝜔 − 𝛼𝜔
= 1   (4.2.1) 

We obtained a penta-valued partition of unity for neutro-

sophic information. These five terms are related to the fol-

lowing logical values:  true, false, unknown, contradictory, 

hesitation: 

 𝑡 =
𝜇 − 𝜅 −

𝛼𝜔
2

1 + (1 − 𝛼)𝜔
 (4.2.2) 

 𝑓 =
 𝜈 − 𝜅 −

𝛼𝜔
2

1 + (1 − 𝛼)𝜔
 (4.2.3) 

 𝑢 =
𝜋

1 + (1 − 𝛼)𝜔
 (4.2.4) 

 𝑐 =
𝜅

1 + (1 − 𝛼)𝜔
 (4.2.5) 

 ℎ =  
𝜔

1 + (1 − 𝛼)𝜔
 (4.2.6) 

Formula (4.2.1) becomes: 
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       𝑡 + 𝑓 + ℎ + 𝑐 + 𝑢 = 1  (4.2.7) 

The inverse transform 

From (4.2.2) and (4.2.3) it results: 

 𝑡 − 𝑓 =
𝜇 − 𝜈

1 + (1 − 𝛼)𝜔
 (4.2.8) 

From  (4.2.4) and (4.2.5) it results: 

 𝑐 − 𝑢 =
𝜇 + 𝜈 − 1

1 + (1 − 𝛼)𝜔
 (4.2.9) 

From (4.2.8) and (4.2.9) it results: 

 𝛼 = 1 −
(|𝑡 − 𝑓| + |𝑐 − 𝑢|)

1 − 𝜔(|𝑡 − 𝑓| + |𝑐 − 𝑢|)
 (4.2.10) 

from (4.2.6) it results: 

1

𝜔
+ 1 −

1

ℎ
= 𝛼  (4.2.11) 

Finally, from (4.2.10) and (4.2.11) it results the following 

equation: 

 (|𝑡 − 𝑓| + |𝑐 − 𝑢|)𝜔2 − 𝜔 + ℎ = 0  (4.2.12) 

Note that the second-degree polynomial defined by: 

 𝑝(𝜔) =  (|𝑡 − 𝑓| + |𝑐 − 𝑢|)𝜔2 − 𝜔 + ℎ 

has a negative value for 𝜔 = 1 , namely: 

𝑝(1) = −2min (𝑡, 𝑓) 

Hence, it has a root grater than 1 and and another smaller 
than 1.  Also for 𝜔 = ℎ  it has a positive value, namely: 

𝑝(ℎ) = (|𝑡 − 𝑓| + |𝑐 − 𝑢|)ℎ2 

So the solution belongs to the interval : [ℎ, 1] 

The value of the parameter 𝜔 is given by: 

 𝜔 =
2ℎ

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)
 (4.2.13) 

From (4.2.11) it results: 

 𝛼 = 1 −
2(|𝑡 − 𝑓| + |𝑐 − 𝑢|)

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)
 (4.2.14) 

from (4.2.13) and (4.2.14) it results: 

1 + (1 − 𝛼)𝜔 =
2

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)

Then, from  (4.2.8) and (4.2.9) it results: 

𝜇 − 𝜈 =
2(𝑡 − 𝑓)

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)

𝜇 + 𝜈 − 1 =
2(𝑐 − 𝑢)

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)

Finally,  it results for the degree of truth and degree of fal-

sity, the following formulas: 

 𝜇 =
1

2
+

𝑡 − 𝑓 + 𝑐 − 𝑢

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)
 (4.2.15) 

 𝜈 =
1

2
+

𝑓 − 𝑡 + 𝑐 − 𝑢

1 + √1 − 4ℎ(|𝑡 − 𝑓| + |𝑐 − 𝑢|)
 (4.2.16) 

The formulae (4.2.15), (4.2.16) and (4.2.13) represent the 

formulae for recalculating of the primary space compo-

nents (𝜇, 𝜔, 𝜈), namely the inverse transformation formu-

las. 

5 Penta-valued logic based on truth, falsity, igno-
rance, contradiction and hesitation 

This five-valued logic is a new one, but is related to our 

previous works presented in [11], [12].  
In the framework of this logic we will consider the 
following five logical values: true t , false f , unknown 
u , contradictory c , and hesitant ℎ.  We have obtained 
these five logical values, adding to the four Belnap logical 
values the fifth: hesitant. 

 Tables 1, 2, 3, 4, 5, 6 and 7 show the basic operators in 
this logic. 

Table 1. The Union 

 t c h u f
t t t t t t 
c t c h h c 
h t h h h h 
u t h h u u 
f t c h u f 

Table 2. The intersection. 

 t c h u f
t t c h u f 
c c c h h f 
h h h h h f 
u u h h u f 
f f f f f f 
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The main differences between the proposed logic and the 
Belnap logic are related to the logical values  u  and c . 
We have defined  huc   and huc   while in the 
Belnap logic there were defined fuc   and tuc  . 

Table 3. The complement. 


t f 
c c 
h h 
u u 
f t 

Table 4. The negation. 

  
t f 
c u 
h h 
u c 
f t 

Table 5. The dual. 

  
t t 

c u 

h h 

u c 

f f 

The complement, the negation and the dual are interrelated 

and there exists the following equalities:    

         xx                           (5.1) 

xx     (5.2) 

        xx        (5.3) 

Table 6. The equivalence 

 t c h u f 

t t c h u f 

c c c h h c 

h h h h h h 

u u h h u u 

f f c h u t 

The equivalence is calculated by: 

)()( yxyxyx     (5.4) 

 Table 7. The S-implication 

The S-implication is calculated by: 

yxyx        (5.5) 

6 New operators defined on the penta-valued 

structure 

There be 5]1,0[∈),,,,( fuhctx  . For this kind of vectors, 

one defines the union, the intersection, the complement, 

the negation and the dual operators. The operators are re-

lated to those define in [12]. 

The Union: For two vectors 5]1,0[, ba , where 

),,,,( aaaaa fuhcta  , ),,,,( bbbbb fuhctb  , one defines 

the union (disjunction)  bad   by the formula: 

bad

babbaad

babbaad

bad

fff

fffufuu

fffcfcc

ttt









)()(

)()(
        (6.1) 

with          )(1 ddddd fucth   

The Intersection: For two vectors 5]1,0[, ba  one defines 

the intersection (conjunction) bac   by the formula: 

bac

babbaac

babbaac

bac

fff

tttutuu

tttctcc

ttt









)()(

)()(
 (6.2) 

 with         )(1 ccccc fucth 

 t c h u f 
t t c h u f 
c t c h h c 
h t h h h h 
u t h h u u 
f t t t t t 
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In formulae (6.1) and (6.2), the symbols “  ” and “  ” 
represent the maximum and the minimum operators, 
namely: 

],1,0[,  yx  

),max( yxyx 

),min( yxyx 

The union “ ” and intersection “ ” operators preserve 
de properties 1 fuct  and 0 cu , namely: 

1  babababa fuct  

0  baba uc

1  babababa fuct  

0  baba uc

The Complement: For 5]1,0[∈),,,,( fuhctx   one defines 
the complement cx  by formula: 

),,,,( tuhcfx c   (6.3) 

The Negation: For 5]1,0[∈),,,,( fuhctx   one defines the 
negation nx  by formula: 

),,,,( tchufxn          (6.4) 

The Dual: For 5]1,0[∈),,,,( fuhctx   one defines the du-

al dx  by formula: 

),,,,( fchutxd     (6.5) 

In the set 5}1,0{  there are five vectors having the form 

),,,,( fuhctx  , which verify the condition 

1 uhcft : 

)0,0,0,0,1(T  (True),  )1,0,0,0,0(F  (False), 

)0,0,0,1,0(C  (Contradictory),   )0,1,0,0,0(U  (Unknown) 
and )0,0,1,0,0(H  (Hesitant). 
Using the operators defined by (6.1), (6.2), (6.3), (6.4) and 

(6.5), the same truth table results as seen in Tables 1, 2, 3, 
4, 5, 6 and 7. 
Using the complement, the negation and the dual operators 
defined in the penta-valued space and returning in the 
primary three-valued space, we find the following 
equivalent unary operators: 

 (𝜇, 𝜔, 𝜈)c = (𝜈, 𝜔, 𝜇)         (6.6) 

  (𝜇, 𝜔, 𝜈)n = (1 − 𝜇, 𝜔, 1 − 𝜈)   (6.7) 

  (𝜇, 𝜔, 𝜈)d = (1 − 𝜈, 𝜔, 1 − 𝜇)  (6.8) 

Conclusion 

In this paper it was presented two new penta-valued struc-
tures for neutrosophic information. These structures are 
based on Belnap logical values, namely true, false, un-
known, contradictory plus a fifth, hesitant. 
It defines the direct conversion from ternary space to the 

penta-valued one and also the inverse transform from pen-
ta-valued space to the primary one. 
There were defined the logical operators for the penta-
valued structures: union, intersection, complement, dual 
and negation. 
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Abstract. The concepts of equations and solutions are 

constantly developed and expanded. With Neutrosophy 

and Quad-stage method, this paper attempts to expand 

the concepts of equations and solutions in the way of re-

ferring to the concepts of domain of function, the geome-

try elements included in domain of function, and the like; 

and discusses point equation, line equation, plane equa-

tion, solid equation, sub-domain equation, whole-domain 

equation, and the like; as well as point solution, line solu-

tion, plane solution, solid solution, sub-domain solution, 

whole-domain solution, and the like. Where: the point so-

lutions may be the solutions of point equation, line equa-

tion, plane equation, and the like; similarly, the line solu-

tions may be the solutions of point equation, line equa-

tion, plane equation, and the like; and so on. This paper 

focuses on discussing the single point method to deter-

mine "point solution". 

Keywords: Neutrosophy, Quad-stage, point equation, line equation, plane equation, point solution, line solution, plane solu-

tion, single point method 

1 Introduction 

As well-known, equations are equalities that contain 

unknown. 
Also, the concepts of equations and solutions are con-

stantly developed and expanded. From the historical per-
spective, these developments and expansions are mainly 
processed for the complexity of variables, functional rela-
tionships, operation methods, and the like. For example, 

from elementary mathematical equations develop and ex-
pand into secondary mathematical equations, and advanced 
mathematical equations. Again, from algebra equations 
develop and expand into geometry equations, trigonomet-
ric equations, differential equations, integral equations, and 
the like. 

With Neutrosophy and Quad-stage method, this paper 
considers another thought, and attempts to expand the con-
cepts of equations and solutions in the way of referring to 
the concepts of domain of function, the geometry elements 
included in domain of function, and the like; and discusses 
point equation, line equation, plane equation, solid equa-

tion, sub-domain equation, whole-domain equation, and 
the like; as well as point solution, line solution, plane solu-

tion, solid solution, sub-domain solution, whole-domain 
solution, and the like. Where: the point solutions may be 

the solutions of point equation, line equation, plane equa-
tion, and the like; similarly, the line solutions may be the 
solutions of point equation, line equation, plane equation, 
and the like; and so on. 

2 Basic Contents of Neutrosophy 

Neutrosophy is proposed by Prof. Florentin 

Smarandache in 1995. 
Neutrosophy is a new branch of philosophy that studies 

the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 

This theory considers every notion or idea <A> togeth-
er with its opposite or negation <Anti-A> and the spectrum 

of "neutralities" <Neut-A> (i.e. notions or ideas located be-
tween the two extremes, supporting neither <A> nor <An-
ti-A>). The <Neut-A> and <Anti-A> ideas together are re-
ferred to as <Non-A>. 

Neutrosophy is the base of neutrosophic logic, neutro-
sophic set, neutrosophic probability and statistics used in 

engineering applications (especially for software and in-
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formation fusion), medicine, military, cybernetics, and 
physics. 

Neutrosophic Logic is a general framework for unifica-
tion of many existing logics, such as fuzzy logic (especial-
ly intuitionistic fuzzy logic), paraconsistent logic, intui-
tionistic logic, etc. The main idea of NL is to characterize 

each logical statement in a 3D Neutrosophic Space, where 
each dimension of the space represents respectively the 
truth (T), the falsehood (F), and the indeterminacy (I) of 
the statement under consideration, where T, I, F are stand-
ard or non-standard real subsets of ]-0, 1+[ without neces-
sarily connection between them. 

More information about Neutrosophy can be found in 
references [1，2]. 

3 Basic Contents of Quad-stage 

The first kind of “four stages” is presented in reference 
[3], and is named as “Quad-stage”. It is the expansion of 
Hegel’s triad-stage (triad thesis, antithesis, synthesis of de-

velopment). The four stages are "general theses", "general 
antitheses", "the most important and the most complicated 
universal relations", and "general syntheses". They can be 
stated as follows. 

The first stage, for the beginning of development (the-
sis), the thesis should be widely, deeply, carefully and re-

peatedly contacted, explored, analyzed, perfected and so 
on; this is the stage of general theses. It should be noted 
that, here the thesis will be evolved into two or three, even 
more theses step by step. In addition, if in other stage we 
find that the first stage’s work is not yet completed, then 
we may come back to do some additional work for the first 

stage. 
The second stage, for the appearance of opposite (an-

tithesis), the antithesis should be also widely, deeply, care-
fully and repeatedly contacted, explored, analyzed, per-
fected and so on; this is the stage of general antitheses. It 
should be also noted that, here the antithesis will be 

evolved into two or three, even more antitheses step by 
step. 

The third stage is the one that the most important and 
the most complicated universal relations, namely the seed-
time inherited from the past and carried on for the future. 
Its purpose is to establish the universal relations in the 

widest scope. This widest scope contains all the regions re-
lated and non-related to the "general theses", "general an-
titheses", and the like. This stage's foundational works are 
to contact, grasp, discover, dig, and even create the oppor-
tunities, pieces of information, and so on as many as possi-
ble. The degree of the universal relations may be different, 

theoretically its upper limit is to connect all the existences, 
pieces of information and so on related to matters, spirits 
and so on in the universe; for the cases such as to create 
science fiction, even may connect all the existences, pieces 
of information and so on in the virtual world. Obviously, 

this stage provides all possibilities to fully use the com-
plete achievements of nature and society, as well as all the 
humanity's wisdoms in the past, present and future. There-
fore this stage is shortened as "universal relations" (for 
other stages, the universal relations are also existed, but 
their importance and complexity cannot be compared with 

the ones in this stage). 
The fourth stage, to carry on the unification and syn-

thesis regarding various opposites and the suitable pieces 
of information, factors, and so on; and reach one or more 
results which are the best or agreed with some conditions; 
this is the stage of "general syntheses". The results of this 

stage are called "synthesized second generation theses", all 
or partial of them may become the beginning of the next 
quad-stage. 

4 Expanding concepts of equations and solutions 
with Neutrosophy and Quad-stage method 

For realizing the innovations in the areas such as 

science and technology, literature and art, and the like, it is 
a very useful tool to combine neutrosophy with quad-stage 
method. For example, in reference [4], expanding Newton 
mechanics with neutrosophy and quad-stage method, and 
establishing New Newton Mechanics taking law of 
conservation of energy as unique source law; in reference 

[5], negating four color theorem with neutrosophy and 
quad-stage method, and "the two color theorem" and "the 
five color theorem" are derived to replace "the four color 
theorem"; in reference [6], expanding Hegelian triad thesis, 
antithesis, synthesis with Neutrosophy and Quad-stage 
Method; in reference [7], interpretating and expanding 

Laozi’s governing a large country is like cooking a small 
fish with Neutrosophy and Quad-stage Method; in 
reference [8], interpretating and expanding the meaning of 
“Yi” with Neutrosophy and Quad-stage Method; and in 
reference [9], creating generalized and hybrid set and 
library with Neutrosophy and Quad-stage Method. 

Now we briefly describe the general application of 
neutrosophy to quad-stage method. 

In quad-stage method, "general theses" may be 
considered as the notion or idea <A>; "general antitheses" 
may be considered as the notion or idea <Anti-A>; "the 
most important and the most complicated universal 

relations" may be considered as the notion or idea <Neut-
A>; and "general syntheses" are the final results.  

The different kinds of results in the above mentioned 
four stages can also be classified and induced with the 
viewpoints of neutrosophy. Thus, the theory and 
achievement of neutrosophy can be applied as many as 

possible, and the method of quad-stage will be more 
effective. 

The process of expanding concepts of equations and 
solutions can be divided into four stages. 
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The first stage (stage of "general theses"), for the 
beginning of development, the thesis (namely "traditional 
concepts of equations and solutions") should be widely, 
deeply, carefully and repeatedly contacted, explored, 
analyzed, perfected and so on. 

The concepts of equations and solutions have been 

continuously developed and expanded. From the historical 
perspective, in this process of development and expansion, 
for equations, the linear equation, dual linear equation, 
quadratic equation, multiple equation, geometry equation, 
trigonometric equation, ordinary differential equation, 
partial differential equation, integral equation, and the like 

are appeared step by step; for solutions, the approximate 
solution, accurate solution, analytical solution, numerical 
solution, and the like are also appeared step by step. 
Obviously, these developments and expansions are mainly 
processed for the complexity of variables, functional 
relationships, operation methods, and the like. 

In the second stage (the stage of "general antitheses"), 
the opposites (antitheses) should be discussed carefully. 
Obviously, there are more than one opposites (antitheses) 
here.  

For example, according to the viewpoint of 
Neutrosophy, if "traditional concepts of equations and 

solutions" are considered as the concept <A>, the opposite 
<Anti-A> may be: "non-traditional concepts of equations 
and solutions"; while the neutral (middle state) fields 
<Neut-A> including: "undetermined concepts of equations 
and solutions" (neither "traditional concepts of equations 
and solutions", nor "non-traditional concepts of equations 

and solutions"; or, sometimes they are "traditional concepts 
of equations and solutions", and sometimes they are "non-
traditional concepts of equations and solutions"; and the 
like). 

In the third stage, considering the most important and 
the most complicated universal relations to link with 

"concepts of equations and solutions". The purpose of this 
provision stage is to establish the universal relations in the 
widest scope.  

Here, differ with traditional thought, we consider a 
new thought, and attempt to expand the concepts of 
equations and solutions in the way of referring to the 

concepts of domain of function, the geometry elements 
included in domain of function, and the like. 

Obviously, considering other thought, different result 
may be reached; but this situation will not be discussed in 
this paper. 

In the fourth stage, we will carry on the unification 

and synthesis regarding various opposites and the suitable 
pieces of information, factors, and the like that are related 
to the concepts of equations and solutions; and reach one 
or more results for expanding the concepts of equations 
and solutions, which are the best or agreed with some 
conditions. 

It should be noted that, in this stage, various methods 
can also be applied. Here, we will seek the results 
according to Neutrosophy and Quad-stage method. 

Firstly, analyzing the concept of “domain of function”. 
According to the viewpoint of Neutrosophy, the two 
extreme elements of “domain of function” are "point 
domain" and "whole-domain", and in the middle there are: 
"line domain", “plane domain”, “solid domain”, “sub-
domain”, and the like; therefore, we can discuss the 

concepts of point equation, line equation, plane equation, 
solid equation, sub-domain equation, whole-domain 
equation, and the like; as well as the concepts of point 
solution, line solution, plane solution, solid solution, sub-
domain solution, whole-domain solution, and the like. 

4.1 Point equation and point solution, line equa-
tion and line solutiom, and the like  

We already know that, “point equation” is the one 

suitable for a certain solitary point only. For example, 

when considering the gravity between the Sun 

(coordinates: 0,0,0) and a planet located at a certain 

solitary point (coordinates: x0,y0,z0), then according to the 

law of gravity, the following "point equation" can be 

reached. 

sun

2 2 2

0 0 0

GM m
F

x y z
 

 
         （1） 

where, sunM  is the mass of the Sun; the unknown in the 

equation is the mass of the planet only. 

When considering the gravity between the Sun and a 

planet located at its elliptical orbit, substituting the polar 

equation of the ellipse into the law of gravity, then the 

following "line equation" can be reached, and it is suitable 

for the entire elliptical orbit. 
2

sun

2 2 2

(1 cos )

(1 )

GM m e
F

a e


 


   （2） 

When considering the gravity between the Sun and a 

planet located at the inner surface of the sphere ( 0r r ), 

substituting 0r r  into the law of gravity, then the 

following "plane （ inner surface ）  equation" can be 

reached, and it is suitable for the entire inner surface of the 

sphere. 

sun

2

0

GM m
F

r
   （3） 

When considering the gravity between the Sun and a 

point located in a hollow ball ( 1 2r r r  ), substituting 

1 2r r r   into the law of gravity, then the following 

"solid equation" can be reached, and it is suitable for the 

entire hollow ball. 

sun

2

GM m
F

r
  ， 1 2r r r          （4） 
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When considering the gravity between the Sun and a 

point located in the sub-domain ( 0x x ), substituting

0x x  into the law of gravity, then the following "sub-

domain equation" can be reached, and it is suitable for the 

entire sub-domain. 

sun

2 2 2

GM m
F

x y z
 

 
， 0x x         （5） 

When considering the gravity between any two 

objects, according to the law of gravity, the following 

"whole-domain equation" can be reached, it is suitable for 

the entire three-dimensional space, and the two objects 

may not include the Sun. 

2 2 2

GMm
F

x y z
 

 
   （6） 

Accordingly, when considering the gravity between 

the Sun (coordinates: 0,0,0) and a planet located at a 

certain solitary point (coordinates: x0,y0,z0), and if the mass 

of the planet is given (equals to 0m ), then according to the 

law of gravity, the following "point solution" can be 

reached. 

sun 0

2 2 2

0 0 0

GM m
F

x y z
 

 
    （7） 

where, sunM  is the mass of the Sun; 0m  is the mass of 

the planet. 

When considering the gravity between the Sun and a 

planet located at its elliptical orbit, substituting the polar 

equation of the ellipse into the law of gravity, if the 

planet's parameters are given (equal to 0e  and 0a ), and 

the mass of the planet is also given (equals to 0m ), then 

the following "line solution" can be reached, and it is 

suitable for the entire elliptical orbit. 
2

sun 0 0

2 2 2

0 0

(1 cos )

(1 )

GM m e
F

a e


 


   （8） 

When considering the gravity between the Sun and a 

planet located at the inner surface of the sphere ( 0r r ), 

substituting 0r r  into the law of gravity, and if the mass 

of the planet is given (equals to 0m ), then the following 

"plane （inner surface） solution" can be reached, and it is 

suitable for the entire inner surface of the sphere. 

sun 0

2

0

GM m
F

r
       （9） 

When considering the gravity between the Sun and a 

point located in a hollow ball ( 1 2r r r  ), substituting 

1 2r r r   into the law of gravity, and if the mass of the 

point is given (equals to 
0m ), then the following "solid 

solution" can be reached, and it is suitable for the entire 

hollow ball. 

sun 0

2

GM m
F

r
  ， 1 2r r r          （10） 

When considering the gravity between the Sun and a 

point located in the sub-domain ( 0x x ), substituting 

0x x  into the law of gravity, and if the mass of the point 

is given (equals to 0m ), then the following "sub-domain 

solution" can be reached, and it is suitable for the entire 

sub-domain. 

sun 0

2 2 2

GM m
F

x y z
 

 
， 0x x      （11） 

When considering the gravity between any two 

objects, if both the masses of the two objects are given 

(equal to 0M  and 0m ), then according to the law of 

gravity, the following "whole-domain solution" can be 

reached, it is suitable for the entire three-dimensional space, 

and the two objects may not include the Sun. 

0 0

2 2 2

GM m
F

x y z
 

 
    （12） 

4.2 Determining point solution with single point 
method  

In the existing methods for solving ordinary 
differential equations, there are already the examples for 

seeking the solution (point solution) suitable for one 
solitary point. 

For example, consider the following differential 

equation 

'y y ， (0) 1y                 (13) 

It gives 

( )'(0) ''(0) '''(0) (0) 1ny y y y     

According to the power series formula for 0x x

2

0 0 0( ) '( ) /1! ''( ) / 2!y y x y x x y x x   

It gives the “point solution” for 0 0x   as follows 

21 /1! / 2!y x x   

However, this “point solution” is applicable to the 

"whole-domain", while in this paper we will consider the 

“point solution” suitable for one solitary point only. 
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For example, the single point method can be used to 

find the “point solution” of hydraulic problem that is 

suitable for one solitary point only. This kind of “point 

solution” is finding independently, namely the effect of 

other points may not be considered. As finding “point 

solution” for a certain point, the point collocation method 

should be used; that means that the “point solution” will 

satisfy the boundary condition on some selected boundary 

points; and on this certain point satisfy the hydraulic 

equation and the derived equations that are formed by 

running the derivitive operations to the hydraulic equation. 

Finally all the undetermined constants for the “point 

solution” will be determined by solving the equations that 

are formed by above mentioned point collocation method. 

In reference [10], the single point method was used to 
determine the “point solution” on a certain solitary point 
for the problem of potential flow around a cylinder 
between two parallel plates. 

Fig. 1. Potential flow around a cylinder between two paral-

lel plates 

As shown in Figure 1, due to symmetry, one-fourth 

flow field in the second quadrant can be considered only. 

The differential equation is as follows 
2 2 2 2/ / 0F x y               （14） 

On boundary ab

  0  ， 0yv   

On cylinder boundary bc

  0  ， 0rv   

On boundary cd

  0yv   

On plate boundary ed

  2  ， 0yv   

On entrance boundary ae  

  y  ， x 1v   

Taking “point solution” as the following form con-

taining n undetermined constants 

2 2 2 2

1 2 3

4 4 2 2

4 5 6

( 12.25)( 4)(

)p q

n

y y x y K K x K y

K x K y K x y K x y

       

   

（15） 

Other 4 boundary equations are as follows 

On point b  

  ( 1,0) 0rv           （16） 

On point c

  (0,1) 0              （17） 

On point f

  ( 0.7071,0.7071) 0        （18） 

  ( 0.7071,0.7071) 0rv       （19） 

For a certain solitary point 0 0( , )x y , as 6n  , only 

2 boundary equations Eq.(16) and Eq.(17) are considered; 

and the following 4 single point equations are considered. 

The first single point equation is reached by Eq.(14) 

0 0( , ) 0F x y        （20） 

Other 3 single point equations are reached as follows 

by running the derivitive operations to  Eq.(14). 

  0 0( , ) / 0F x y x         （21） 

  0 0( , ) / 0F x y y      （22） 

  
2

0 0( , ) / 0F x y x y        （23） 

Substituting the coordinates values 0 0( , )x y  into 

Eq.(16) and Eq.(17), and Eq.(20) to Eq.(23); after solving 

these 6 equations, the 6 undetermined constants 1K  to 6K  

can be determined, namely the “point solution” for 6n   

is reached. 

As 8n  , the 4 boundary equations Eq.(16) to 

Eq.(19) are considered; and besides the 4 single point 

equations Eq.(20) to Eq.(23), the following single point 

equations derived by running the derivitive operations to 

Eq.(14) are also considered. 

  
2 2

0 0( , ) / 0F x y x       （24） 

  
2 2

0 0( , ) / y 0F x y       （25） 

  
3 3

0 0( , ) / 0F x y x       （26） 

  
3 2

0 0( , ) / 0F x y x y           （27） 

  
3 2

0 0( , ) / 0F x y x y           （28） 

  
3 3

0 0( , ) / 0F x y y         （29） 

  …… 

Substituting the coordinates values 0 0( , )x y  into 

Eq.(16) to Eq.(19), as well as Eq.(20) to Eq.(24), and the 

like; after solving these n equations, the n undetermined 
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constants 1K  to 
nK  can be determined, namely the “point 

solution” as the form of Eq.(15) is reached. 

For 8 solitary points, the comparisons between accu-

rate analytical solution (AS) and point solution (PS) for the 

values of   are shown in table 1. 

Table 1. Comparisons between accurate analytical solu-

tion (AS) and point solution (PS) for the values of   

0x    0y       AS     6n   10n     14n       19n 

-3.4  1.75 1.747   1.744    1.743      1.746       1.746 

-3.0  1.75 1.744   1.729    1.735       1.736     1.738 

-2.5  1.75 1.736   1.694    1.751       1.713     1.732 

-2.0  1.75 1.721   1.609    1.782    1.631      1.766 

-3.4  1.50 1.494   1.489    1.483     1.492       1.493 

-3.0  1.50 1.488   1.459    1.452       1.473      1.474 

-2.5  1.50 1.474   1.397    1.450       1.439       1.460 

-2.0  1.50 1.445   1.248    1.518       1.272      1.563 

For more information about single point method, see 

references [11-13]. 

The single point method can also be used for predic-

tion. 

For example, the sea surface temperature distribution 

of a given region, is a special two-dimensional problem in-

fluenced by many factors, and it is very difficult to be 

changed into 2 one-dimensional problems. However, this 

problem can be predicted for a certain solitary point by 

single point method. 

The following example is predicting the monthly 

average sea surface temperature. 

Based on sectional variable dimension fractals, the 

concept of weighted fractals is presented, i.e., for the data 

points in an interval, their r  coordinates multiply by dif-

ferent weighted coefficients, and making these data points 

locate at a straight-line in the double logarithmic coordi-

nates. By using weighted fractals, the monthly average sea 

surface temperature (MASST) data on the point 30ºN, 

125ºE of Northwest Pacific Ocean are analyzed. According 

to the MASST from January to August in a certain year 

(eight-point-method), the MASST from September to De-

cember of that year has been predicted. Also, according to 

the MASST of August merely in a certain year (one-point-

method), the MASST from September to December of that 

year has been predicted.  

The MASST prediction results are as follows. 

 Table 2. MASST prediction results (unit: ℃) by using 

eight-point-method (8PM) and one-point-method(1PM) 

Year    Notes      Sep.   Oct.      Nov.       Dec. 

1958    8PM       28.21      25.51      22.67      20.17 

    1PM       28.24      25.55      22.72      20.22 

    Real value  27.7       25.5    21.2      20 

1959    8PM       28.20      25.56      22.75      20.28 

    1PM       28.19      25.54      22.73      20.26 

    Real value  27.6      24.7      22.9       20 

1960    8PM       27.95      25.36      22.60      20.16 

    1PM       28.05      25.51      22.78      20.36 

    Real value  28         26   21.8  20 

1961    8PM       28.70      26.14      23.37      20.91 

  1PM       28.34      25.57      22.69      20.16 

    Real value  28.4      26.2    22.8    22 

1962    8PM       28.30      26.00      23.46      21.17 

     1PM       27.90      25.48      22.83      20.47 

    Real value  28         25   21        20 

1963    8PM       29.36      27.86      25.78      23.80 

  1PM       27.86      25.47      22.85      20.50 

    Real value  27.5       24.5      21        18 

1964    8PM       28.04      25.83      23.32      21.05 

     1PM       27.80      25.46      22.86      20.54 

    Real value  28         24.5    22        19 

In addition, according to the phenomenon of fractal 

interrelation and the fractal coefficients of this point’s 

MASST and the monthly average air temperature of Au-

gust of some points, the monthly average air temperatures 

of these points from September to December have also 

been predicted. For detailed information, see reference 

[14]. 

4.3 Relationship between various equations and 
various solutions  

According to Neutrosophy and Quad-stage method; 
and contacting the concepts of domain of function, the 
geometry elements included in domain of function, and the 
like; the concept of equation can be expanded into the 

concepts of point equation, line equation, plane equation, 
solid equation, sub-domain equation, whole-domain 
equation, and the like; and the concept of solution can be 
expanded into the concepts of point solution, line solution, 
plane solution, solid solution, sub-domain solution, whole-
domain solution, and the like. However, the relationships 

between them are not the one by one corresponding 
relationships. Where: the point solutions may be the 
solutions of point equation, line equation, plane equation, 
and the like; similarly, the line solutions may be the 
solutions of point equation, line equation, plane equation, 
and the like; and so on.  

5 Conclusions 

The combination of neutrosophy and quad-stage 
method can be applied to effectively reliaze the expansion 
of “traditional concepts of equations and solutions”. The 
results of expansion are not fixed and immutable, but the 
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results are changeable depending on the times, places and 
specific conditions. This paper deals only with a limited 
number of situations and instances as an initial attempt, 
and we hope that it will play a valuable role. 
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Abstract: Many results have been obtained on isolated 

graphs and complete graphs. In this paper, a necessary 

and sufficient condition will be proved for a single valued 

neutrosophic graph to be an isolated single valued 

neutrosophic graph.  

Keywords: Single valued neutrosophic graphs, complete single valued neutrosophic graphs, isolated single valued neutrosophic 

graphs. 

1. Introduction

The notion of neutrosophic sets (NSs) was proposed by 

Smarandache [8] as a generalization of the fuzzy sets [14], 

intuitionistic fuzzy sets [12], interval valued fuzzy set [11] 

and interval-valued intuitionistic fuzzy sets [13] theories. 

The neutrosophic set is a powerful mathematical tool for 

dealing with incomplete, indeterminate and inconsistent 

information in real world. The neutrosophic sets are 

characterized by a truth-membership function (t), an 

indeterminacy-membership function (i) and a falsity-

membership function (f) independently, which are within 

the real standard or nonstandard unit interval ]−0, 1+[. In 

order to conveniently use NS in real life applications, 

Wang et al. [9] introduced the concept of the single-valued 

neutrosophic set (SVNS), a subclass of the neutrosophic 

sets. The same authors [10] introduced the concept of the 

interval valued neutrosophic set (IVNS), which is more 

precise and flexible than the single valued neutrosophic 

set. The IVNS is a generalization of the single valued 

neutrosophic set, in which the three membership functions 

are independent and their value belong to the unit interval 

[0, 1]. More works on single valued neutrosophic sets, 

interval valued neutrosophic sets and their applications can 

be found on http://fs.gallup.unm.edu/NSS/ [38]. 

Graph theory has now become a major branch of 

applied mathematics and it is generally regarded as a 

branch of combinatorics. Graph is a widely used tool for 

solving combinatorial problems in different areas such as 

geometry, algebra, number theory, topology, optimization 

and computer science.  

If one has uncertainty regarding either the set of 

vertices or edges, or both, the model becomes a fuzzy 

graph. The extension of fuzzy graph [2, 4, 25] theory have 

been developed by several researchers, e.g. vague graphs 

[27], considering the vertex sets and edge sets as vague 

sets; intuitionistic fuzzy graphs [3, 15, 26], considering the 

vertex sets and edge sets as intuitionistic fuzzy sets; 

interval valued fuzzy graphs [16, 17, 23, 24], considering 

the vertex sets and edge sets as interval valued fuzzy sets; 

interval valued intuitionistic fuzzy graphs [35], considering 

the vertex sets and edge sets as interval valued 

intuitionistic fuzzy sets; bipolar fuzzy graphs [18, 19, 21, 

22], considering the vertex sets and edge sets as bipolar 

fuzzy sets; m-polar fuzzy graphs [20], considering the 

vertex sets and edge sets as m-polar fuzzy sets.  

But, if the relations between nodes (or vertices) in 

problems are indeterminate, the fuzzy graphs and their 

extensions fail. For this purpose, Smarandache [5, 6, 7, 37] 

defined four main categories of neutrosophic graphs; two 

are based on literal indeterminacy (I), called: I-edge 

neutrosophic graph and I-vertex neutrosophic graph, 

deeply studied and gaining popularity among the 

researchers due to their applications via real world 

problems [1, 38]; the two others are based on (t, i, f) 

components, called: (t, i, f)-edge neutrosophic graph and (t, 

i, f)-vertex neutrosophic graph, concepts not developed at 

all by now.  

Later on, Broumi et al. [29] introduced a third 

neutrosophic graph model, which allows the attachment of 

truth-membership (t), indeterminacy-membership (i) and 

falsity-membership degrees (f) both to vertices and edges, 

and investigated some of their properties. The third 

neutrosophic graph model is called the single valued 

neutrosophic graph (SVNG for short). The single valued 

University of New Mexico 
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neutrosophic graph is a generalization of fuzzy graph and 

intuitionistic fuzzy graph. Also, the same authors [28] 

introduced neighborhood degree of a vertex and closed 

neighborhood degree of a vertex in single valued 

neutrosophic graph as a generalization of neighborhood 

degree of a vertex and closed neighborhood degree of a 

vertex in fuzzy graph and intuitionistic fuzzy graph. 

Recently, Broumi et al. [31, 33, 34] introduced the concept 

of interval valued neutrosophic graph as a generalization of 

fuzzy graph, intuitionistic fuzzy graph and single valued 

neutrosophic graph and discussed some of their properties 

with proof and examples. 

The aim of this paper is to prove a necessary and 

sufficient condition for a single valued neutrosophic graph 

to be a single valued neutrosophic graph.  

2. Preliminaries

In this section, we mainly recall some notions related to 
neutrosophic sets, single valued neutrosophic sets, single 
valued neutrosophic graphs, relevant to the present article. 
See [8, 9] for further details and background. 

Definition 2.1 [8] 

Let X be a space of points (objects) with generic 

elements in X denoted by x; then, the neutrosophic set A 

(NS A) is an object having the form A = {< x: TA(x),

IA(x), FA(x)>, x ∈ X}, where the functions T, I, F: X →

]−0,1+[ define respectively a truth-membership function, an 

indeter-minacy-membership function and a falsity-

membership function of the element x ∈ X to the set A 

with the condition: 

−0 ≤ TA(x)+ IA(x)+ FA(x)≤ 3+. (1) 

The functions TA(x), IA(x) and FA(x) are real standard

or nonstandard subsets of ]−0,1+[. 

Since it is difficult to apply NSs to practical problems, 

Wang et al. [9] introduced the concept of SVNS, which is 

an instance of a NS, and can be used in real scientific and 

engineering applications. 

Definition 2.2 [9] 

Let X be a space of points (objects) with generic 

elements in X denoted by x. A single valued neutrosophic 

set A (SVNS A) is characterized by a truth-membership 

function TA(x), an indeterminacy-membership function

IA(x), and a falsity-membership function FA(x). For each

point x in X  TA(x), IA(x), FA(x) ∈ [0, 1]. A SVNS A can

be written as  

A = {< x: TA(x), IA(x), FA(x)>, x ∈ X}. (2) 

Definition 2.3 [29] 

A single valued neutrosophic graph (SVN-graph) with 

underlying set V is defined to be a pair G= (A, B), where:  

1. The functions 𝑇𝐴:V→[0, 1], 𝐼𝐴:V→[0, 1] and

𝐹𝐴:V→[0, 1] denote the degree of truth-membership,

degree of indeterminacy-membership and falsity-

membership of the element 𝑣𝑖 ∈ V, respectively, and:

0≤ 𝑇𝐴(𝑣𝑖) + 𝐼𝐴(𝑣𝑖) +𝐹𝐴(𝑣𝑖) ≤3,

for all  𝑣𝑖 ∈ V.

2. The functions TB: E ⊆ V x V →[0, 1], IB:E ⊆ V x V

→[0, 1] and FB: E ⊆ V x V →[0, 1] are defined

by 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) ≤ min [𝑇𝐴(𝑣𝑖), 𝑇𝐴(𝑣𝑗)], 𝐼𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max

[𝐼𝐴(𝑣𝑖), 𝐼𝐴(𝑣𝑗)] and  𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≥ max [𝐹𝐴(𝑣𝑖), 𝐹𝐴(𝑣𝑗)],

denoting the degree of truth-membership, indeterminacy-

membership and falsity-membership of the edge (𝑣𝑖, 𝑣𝑗) ∈

E respectively, where: 

0≤ 𝑇𝐵(𝑣𝑖 , 𝑣𝑗) + 𝐼𝐵(𝑣𝑖 , 𝑣𝑗)+ 𝐹𝐵(𝑣𝑖 , 𝑣𝑗) ≤ 3,

for all  (𝑣𝑖 , 𝑣𝑗) ∈ E (i, j = 1, 2, …, n)

We call A the single valued neutrosophic vertex set of 

V, and B the single valued neutrosophic edge set of E, 

respectively. 

        

Figure 1: Single valued neutrosophic graph. 

Definition 2.4 [29] 

A partial SVN-subgraph of SVN-graph G= (A, B) is a 

SVN-graph H = ( V′, E′), such that: 

- V′ ⊆ V, 

where  TA
′ (vi) ≤ TA(vi),  IA

′ (vi) ≥ IA(vi),  FA
′ (vi) ≥

FA(vi),   for all  vi ∈ V;

- E′ ⊆ E, 

where TB
′ (vi, vj) ≤ TB(vi, vj),  IBij

′  ≥ IB(vi, vj), FB
′ (vi, vj) ≥

FB(vi, vj),  for all (vi vj) ∈ E.

Definition 2.8 [29] 

A single valued neutrosophic graph G = (A, B) of G∗ = 

(V, E) is called complete single valued neutrosophic graph, 

if: 

TB(vi, vj) = min [TA(vi),  TA(vj)],

IB(vi, vj) = max [IA(vi),  IA(vj)],

FB(vi, vj) = max [FA(vi), FA(vj)],
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for all vi, vj ∈ V.

Definition 2.9 [29] 

The complement of a single valued neutrosophic graph 

G (A, B) on  G∗ is a single valued neutrosophic graph G̅ on 

G∗, where: 

1. A̅ =A= (TA, IA, FA);

2. TA
̅̅ ̅(vi)= TA(vi),  IA̅(vi)= IA(vi),  FA

̅̅ ̅(vi) = FA(vi),

for all vj ∈ V.

3. TB
̅̅ ̅(vi, vj)= min [TA(vi), TA(vj)] − TB(vi, vj),

IB̅(vi, vj)= max [IA(vi), IA(vj)] − IB(vi, vj)

and 

FB
̅̅ ̅(vi, vj)= max [FA(vi), FA(vj)] − FB(vi, vj),

for all (vi, vj) ∈ E.

3. Main Result

Theorem 3.1 

A single valued neutrosophic graph G = (A, B) is an 

isolated single valued graph if and only if its complement 

is a complete single valued neutrosophic graph. 

Proof 

Let G : (𝐴, 𝐵) be a  single valued neutrosophic graph, 

𝐺 ̅= (𝐴, 𝐵̅ ) be its complement, and G : (A, B) be an

isolated single valued neutrosophic graph. 

Then, 

𝑇𝐵(u, v) = 0,

𝐼𝐵(u, v) = 0

and 

𝐹𝐵(u, v) = 0,

for all (u, v) ∈ V× V. 

Since 

𝑇𝐵
̅̅ ̅(u, v) = min (𝑇𝐴(𝑢), 𝑇𝐴(𝑣))  − 𝑇𝐵(u, v),

for all (u, v) ∈ V× V, 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣))

and 

𝐼𝐵̅(u, v) =  max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)) − 𝐼𝐵(u, v),

for all (u, v) ∈ V× V, 

𝐼𝐵̅(u, v) = max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣))

and 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣))   − 𝐹𝐵(u, v),

for all (u, v) ∈ V× V, 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣),

hence 𝐺̅ = (𝐴, 𝐵̅)  is a complete single valued neutrosophic 

graph. 

Conversely, let  𝐺̅ = (𝐴, 𝐵̅) be a complete single valued 

neutrosophic graph 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣)),

for all (u, v) ∈ V× V. 

Since 

𝑇𝐵
̅̅ ̅(u, v) =  min(𝑇𝐴(𝑢), 𝑇𝐴(𝑣))   −  𝑇𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

= 𝑇𝐵
̅̅ ̅(u, v) −𝑇𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

= 0,  

for all (u, v) ∈ V× V, 

𝑇𝐵(u, v) =  0,

for all (u, v) ∈ V× V. 

𝐼𝐵̅(u, v) = max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)),

for all (u, v) ∈ V× V. 

Since 

𝐼𝐵̅(u, v) =  max(𝐼𝐴(𝑢), 𝐼𝐴(𝑣)) −  𝐼𝐵̅(u, v),

for all (u, v) ∈ V× V 

=𝐼𝐵̅(u, v) −𝐼𝐵̅(u, v),

for all (u, v) ∈ V× V 

= 0, 

for all (u, v) ∈ V× V, 

𝐼𝐵(u, v) =  0,

for all (u, v) ∈ V× V. 

Also, 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣)),

for all (u, v) ∈ V× V. 

Since 

𝐹𝐵
̅̅ ̅(u, v) =  max(𝐹𝐴(𝑢), 𝐹𝐴(𝑣)) −  𝐹𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V, 

=𝐹𝐵
̅̅ ̅(u, v) −𝐹𝐵

̅̅ ̅(u, v),

for all (u, v) ∈ V× V 

=0, 

for all (u, v) ∈ V× V 
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𝐹𝐵(u, v) =  0 for all (u, v) ∈ V× V,

hence G = (𝐴, 𝐵) is an isolated single valued neutrosophic 

graph.  

4. Conclusion

Many problems of practical interest can be represented 

by graphs. In general, graph theory has a wide range of 

applications in various fields. In this paper, we defined for 

the first time the notion of an isolated single valued 

neutrosophic graph. In future works, we plan to study the 

concept of an isolated interval valued neutrosophic graph. 
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Abstract. In this paper we have defined neutrosophic ideals, 

neutrosophic interior ideals, netrosophic quasi-ideals and 

neutrosophic bi-ideals (neutrosophic generalized bi-ideals) and 

proved some results related to them. Furthermore, we have done 

some characterization of a neutrosophic LA-semigroup by the 

properties of its neutrosophic ideals. It has been proved that in a 

neutrosophic intra-regular LA-semigroup neutrosophic left, right, 

two-sided, interior, bi-ideal, generalized bi-ideal and quasi-ideals 

coincide and we have also proved that the set of neutrosophic 

ideals of a neutrosophic intra-regular LA-semigroup forms a 

semilattice structure.

  Keywords: Neutrosophic LA-semigroup; neutrosophic intra-regular LA-semigroup; neutrosophic left invertive law; neutrosophic 

ideal.

Introduction 

It is well known fact that common models with their 

limited and restricted boundaries of truth and falsehood are 

insufficient to detect the reality so there is a need to 

discover and introduce some other phenomenon that 

address the daily life problems in a more appropriate way. 

In different fields of life many problems arise which are 

full of uncertainties and classical methods are not enough 

to deal and solve them. In fact, reality of real life problems 

cannot be represented by models with just crisp 

assumptions with only yes or no because of such certain 

assumptions may lead us to completely wrong solutions. 

To overcome this problem, Lotfi A.Zadeh in 1965 

introduced the idea of a fuzzy set which help to describe 

the behaviour of systems that are too complex or are ill-

defined to admit precise mathematical analysis by classical 

methods. He discovered the relationships of probability 

and fuzzy set theory which has appropriate approach to 

deal with uncertainties. According to him every set is not 

crisp and fuzzy set is one of the example that is not crisp. 

This fuzzy set help us to reduce the chances of failures in 

modelling.. Many authors have applied the fuzzy set theory 

to generalize the basic theories of Algebra. Mordeson et al. 

has discovered the grand exploration of fuzzy semigroups, 

where theory of fuzzy semigroups is explored along with 

the applications of fuzzy semigroups in fuzzy coding, 

fuzzy finite state mechanics and fuzzy languages etc. 

Zadeh introduced the degree of membership/truth (t) in 

1965 and defined the fuzzy set. Atanassov introduced the 

degree of nonmembership/falsehood (f) in 1986 and 

defined the intuitionistic fuzzy set. Smarandache 

introduced the degree of indeterminacy/neutrality (i) as 

independent component in 1995 (published in 1998) and 

defined the neutrosophic set. He has coined the words 

neutrosophy and neutrosophic. In 2013 he refined the 

neutrosophic set to n components: ,..., 21 tt ; ,..., 21 ii ; 

,..., 21 ff . The words neutrosophy and neutrosophic were 

coined/invented by F. Smarandache in his 1998 book. 

Etymologically, neutro-sophy (noun) [French neutre 

<Latin neuter, neutral, and Greek sophia, skill/wisdom] 

means knowledge of neutral thought. While neutrosophic 

(adjective), means having the nature of, or having the 

characteristic of Neutrosophy. 

Recently, several theories have been presented to dispute 

with uncertainty, vagueness and imprecision. Theory of 

probability, fuzzy set theory, intutionistic fuzzy sets, rough 

set theory etc., are consistently being used as actively 

operative tools to deal with multiform uncertainties and 

imprecision enclosed in a system. But all these above 

theories failed to deal with indeterminate and inconsistent 

infomation. Therefore, due to the existance of 

indeterminancy in various world problems, neutrosophy 

founds its way into the modern research. Neutrosophy was 

developed in attempt to generalize fuzzy logic. 

Neutrosophy is a Latin world "neuter" - neutral, Greek 

"sophia" - skill/wisdom). Neutrosophy is a branch of 

philosophy, introduced by Florentin Smarandache which 

studies the origin, nature, and scope of neutralities, as well 

as their interactions with different ideational spectra. 

Neutrosophy considers a proposition, theory, event, 

concept, or entity, "A" in relation to its opposite, "Anti-A" 

and that which is not A, "Non-A", and that which is neither 

"A" nor "Anti-A", denoted by "Neut-A". Neutrosophy is 
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the basis of neutrosophic logic, neutrosophic probability, 

neutrosophic set, and neutrosophic statistics. 

Inpiring from the realities of real life phenomenons like 

sport games (winning/ tie/ defeating), votes (yes/ NA/ no) 

and decision making (making a decision/ hesitating/ not 

making), F. Smrandache introduced a new concept of a 

neutrosophic set (NS in short) in 1995, which is the 

generalization of a fuzzy sets and intutionistic fuzzy set. 

NS is described by membership degree, indeterminate 

degree and non-membership degree. The idea of NS 

generates the theory of neutrosophic sets by giving 

representation to indeterminates. This theory is considered 

as complete representation of almost every model of all 

real-world problems. Therefore, if uncertainty is involved 

in a problem we use fuzzy theory while dealing 

indeterminacy, we need neutrosophic theory. In fact this 

theory has several applications in many different fields like 

control theory, databases, medical diagnosis problem and 

decision making problems. 

Using Neutrosophic theory, Vasantha Kandasmy and 

Florentin Smarandache introduced the concept of 

neutrosophic algebraic structures in 2003. Some of the 

neutrosophic algebraic structures introduced and studied 

including neutrosophic fields, neutrosophic vector spaces, 

neutrosophic groups, neutrosophic bigroups, neutrosophic 

N-groups, neutrosophic bisemigroups, neutrosophic N-

semigroup, neutrosophic loops, neutrosophic biloops, 

neutrosophic N-loop, neutrosophic groupoids, 

neutrosophic bigroupoids and neutrosophic AG-groupoids. 

Madad Khan et al., for the first time introduced the idea of 

a neutrosophic AG-groupoid in [13]. 

1 Preliminaries 

Abel-Grassmann's Groupoid (abbreviated as an AG-

groupoid or LA-semigroup) was first introduced by 

Naseeruddin and Kazim in 1972. LA-semigroup is a 

groupoid S  whose elements satisfy the left invertive law 

acbcab )()(   for all a , b , Sc . LA-semigroup 

generalizes the concept of commutative semigroups and 

have an important application within the theory of flocks. 

In addition to applications, a variety of properties have 

been studied for AG-groupoids and related structures. An 

LA-semigroup is a non-associative algebraic structure that 

is generally considered as a midway between a groupoid 

and a commutative semigroup but is very close to 

commutative semigroup because most of their properties 

are similar to commutative semigroup. Every commutative 

semigroup is an AG-groupoid but not vice versa. Thus 

AG-groupoids can also be non-associative, however, they 

do not necessarily have the Latin square property. An LA-

semigroup S  can have left identity e  (unique) i.e aea 

for all Sa  but it cannot have a right identity because if 

it has, then S  becomes a commutative semigroup. An 

element s  of LA-semigroup S  is called idempotent if 

ss 2
 and if holds for all elements of S  then S  is 

called idempotent LA-semigroup. 

Since the world is full of indeterminacy, the neutrosophics 

found their place into contemporary research. In 1995, 

Florentin Smarandache introduced the idea of neutrosophy. 

Neutrosophic logic is an extension of fuzzy logic. In 2003 

W.B Vasantha Kandasamy and Florentin Smarandache 

introduced algebraic structures (such as neutrosophic 

semigroup, neutrosophic ring, etc.). Madad Khan et al., for 

the first time introduced the idea of a neutrosophic LA-

semigroup in [Madad Saima]. Moreover bIaSUI { : 

where a , Sb  and I is literal indeterminacy such that 

}2 II   becomes neutrosophic LA-semigroup under the 

operation defined as: 

bdIacdIcbIa  )()(  for all )( bIa , 

SUIdIc  )( . That is ),( SUI  becomes neutrosophic 

LA-semigroup. They represented it by )(SN . 

 ,))]()([())]()([( 212121212121 IaaIbbIccIccIbbIaa 

holds for all ),( 21 Iaa   ,21 Ibb 

  )(21 SNIcc  . 

It is since then called the neutrosophic left invertive law. A 

neutrosophic groupoid satisfying the left invertive law is 

called a neutrosophic left almost semigroup and is 

abbreviated as neutrosophic LA-semigroup. 

In a neutrosophic LA-semigroup )(SN  medial law holds 

i.e

 ,)])()][()([(

)])()][()([(

21212121

21212121

IddIbbIccIaa

IddIccIbbIaa




holds 

for all )( 21 Iaa  , )( 21 Ibb  , )( 21 Icc  , 

)()( 21 SNIdd  . 

There can be a unique left identity in a neutrosophic LA-

semigroup. In a neutrosophic LA-semigroup )(SN  with 

left identity  eIe   the following laws hold for all

)( 21 Iaa  , )( 21 Ibb  , )( 21 Icc  , 

)()( 21 SNIdd  . 

)],)()][()([(

)])()][()([(

21212121

21212121

IaaIccIbbIdd

IddIccIbbIaa





)],)()][()([()])()][()([( 2121212121212121 IaaIbbIccIddIddIccIbbIaa 

and 

  .])()[()])()[(( 212121212121 IccIaaIbbIccIbbIaa 

3  is called neutrosophic paramedial law and a

neutrosophic LA semigroup satisfies 5  is called
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neutrosophic AG
**

-groupoid.

Now, bIabIa  2)(  implies bIa   is 

idempotent and if holds for all )(SNbIa   then 

)(SN  is called idempotent neutrosophic LA-semigroup. 

2 Neutrosophic LA-semigroups 

Example 2.1 Let  3,2,1S  with binary operation "  " is

an LA-semigroup with left identity 3  and has the following 

Calley's table: 

then 

}33,23,13,32,22,12,31,21,11{)( IIIIIIIIISN 

 is an example of neutrosophic LA-semigroup under the 

operation " " and has the following Callay's table: 

It is important to note that if )(SN  contains left identity 

I33  then )())(( 2 SNSN  . 

Lemma 2.1: If a neutrosophic LA-semigroup )(SN  

contains left identity Iee  then the following conditions 

hold. 

 i  )()()( LNLNSN   for every neutrosophic left

ideal )(LN  of )(SN . 

 ii  )()()( RNSNRN   for every neutrosophic right

ideal )(RN  of )(SN . 

Proof  i  Let )(LN  be the neutrosophic left ideal of

)(SN  implies that      .LNLNSN   Let

 LNbIa   and since

      LNSNbIaeIebIa   which implies

that       .LNSNLN   Thus      .LNSNLN 

 ii  Let )(RN  be the neutrosophic right ideal of ).(SN

Then ).()()( RNSNRN   Now,let )(RNbIa  . 

Then 

  

    

    

).()(

)())()((

.

SNRN

SNSNRN

eIeeIebIa

bIaeIeeIe

bIaeIebIa











Thus )()()( SNRNRN  . Hence 

).()()( RNSNRN    

A subset )(QN  of an neutrosophic LA-semigroup is 

called neutrosophic quasi-ideal if 

)()()()()( QNQNSNSNQN  . A subset )(IN  

of an LA-semigroup )(SN  is called idempotent if 

)())(( 2 ININ  . 

Lemma 2.2: The intersection of a neutrosophic left ideal 

)(LN  and a neutrosophic right ideal )(RN  of a 

neutrosophic LA-semigroup )(SN  is a neutrosophic 

quasi-ideal of )(SN . 

Proof Let  LN  and  RN  be the neutrosophic left and

right ideals of neutrosophic LA-semigroup )(SN  resp. 

Since      RNRNLN   and

     LNRNLN   and      LNLNSN   and

     RNSNRN  . Thus

             
       
   
   .RNLN

LNRN

LNSNSNRN

RNLNSNSNRNLN









Hence,    RNLN   is a neutrosophic quasi-ideal of

 .SN

A subset(neutrosophic LA-subsemigroup) )(BN  of a 

neutrosophic LA-semigroup )(SN  is called neutrosophic 

generalized bi-ideal(neutosophic bi-ideal) of )(SN  if 

  )()()()( BNBNSNBN  .

Lemma 2.3: If )(BN  is a neutrosophic bi-ideal of a 

neutrosophic LA-semigroup )(SN  with left identity 

eIe , then )))(()(( 2211 IyxBNIyx   is also a 

neutrosophic bi-ideal of )(SN , for any 11 Iyx   and 

22 Iyx   in )(SN . 
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Proof Let  BN  be a neutrosophic bi-ideal of )(SN ,

now using (1), (2), (3) and (4), we get 

x 1  y1INBx 2  y2INSx 1  y1INBx 2  y2I

 NSx 2  y2Ix 1  y1INBx 1  y1INBx 2  y2I

 x 1  y1INBx 2  y2Ix 1  y1INBNSx 2  y2I

 x 1  y1INBx 1  y1Ix 2  y2INBNSx 2  y2I

 x 1  y1INBx 1  y1INSx 2  y2INBx 2  y2I

 NSx 1  y1Ix 1  y1INBx 2  y2INBx 2  y2I

 NBx 1  y1Ix 1  y1INSx 2  y2INBx 2  y2I

 NBx 1  y1Ix 2  y2INBx 1  y1INSx 2  y2I

 NBx 1  y1Ix 2  y2INBNS

 NBx 1  y1Ix 2  y2INBe  eINS

 NBx 1  y1Ie  eIx 2  y2INBNS

 e  eIx 1  y1INBNSNBx 2  y2I

 x 2  y2INSNBNBx 1  y1I

 e  eIx 2  y2INSNBNBx 1  y1I

 NBNSx 2  y2Ie  eINBx 1  y1I

 NBNSNBx 2  y2Ie  eIx 1  y1I

 NBx 2  y2Ie  eIx 1  y1I

 x 2  y2Ie  eINBx 1  y1I

 x 1  y1INBe  eIx 2  y2I

 x 1  y1INBx 2  y2I.
 

A subset )(IN  of a neutrosophic LA-semigroup )(SN  

is called a neutrosophic interior ideal if  

)()())()(( INSNINSN  . 

A subset )(MN  of a neutrosophic LA-semigroup )(SN  

is called a neutrosophic minimal left (right, two sided, 

interior, quasi- or bi-) ideal if it does not contains any other 

neutrosophic left (right, two sided, interior, quasi- or bi-) 

ideal of )(SN  other than itself. 

Lemma 2.4: If )(MN  is a minimal bi-ideal of )(SN  

with left identity and )(BN  is any arbitrary neutrosophic 

bi-ideal of )(SN , then 

)))(()(()( 2211 IyxBNIyxMN  , for every 

)( 11 Iyx  , )()( 21 MNIyx   . 

Proof Let )(MN  be a neutrosophic minimal bi-ideal and 

)(BN  be any neutrosophic bi-ideal of )(SN , then by 

Lemma 2.3, ))](()[( 2211 IyxBNIyx   is a 

neutrosophic bi-ideal of )(SN  for every )( 11 Iyx  , 

)()( 22 SNIyx  . Let )( 11 Iyx  , 

)()( 22 MNIyx  , we have 

.)(

)()]()([

)()]()([))](()[( 2211

MN

MNSNMN

MNBNMNIyxBNIyx







But )(MN  is a neutrosophic minimal bi-ideal, so 

)())](()[( 2211 MNIyxBNIyx   . 

Lemma 2.5: In a neutrosophic LA-semigroup )(SN  with 

left identity, every idempotent neutrosophic quasi-ideal is a 

neutrosophic bi-ideal of )(SN . 

Proof Let  QN  be an idempotent neutrosophic quasi-

ideal of  SN , then clearly  QN  is a neutrosophic LA-

subsemigroup too. 

             
 

   
  
  

).()(

)()()()(

)()()()(

)()()()()()(

and ,)()(

)()()(

SNQN

SNSNQNQN

QNQNSNSN

QNSNSNQNSNQN

QNSN

QNSNSN

SNSNQNQNSNQN















Thus 

      )()()()()()()()( QNQNSNSNQNQNSNQN 

. Hence, )(QN  is a neutrosophic bi-ideal of ).(SN   

Lemma 2.6: If )(AN  is an idempotent neutrosophic 

quasi-ideal of a neutrosophic LA-semigroup )(SN  with 

left identity eIe , then )()( BNAN  is a neutrosophic 

bi-ideal of )(SN , where )(BN  is any neutrosophic 

subset of )(SN . 

Proof Let )(AN  be the neutrosophic quasi-ideal of 

)(SN  and )(BN  be any subset of )(SN . 

   
   
   
  
  
  

 )()(

)()()()(

)()()()(

)()()()(

)()()()()(

)()()()()(

)()()()()(

BNAN

BNANSNAN

SNANANBN

BNANANSN

BNANANSNSN

BNANANBNSN

BNANSNBNAN













Hence )()( BNAN  is neutrosophic bi-ideal of ).(SN  
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Lemma 2.7:If )(LN  is a neutrosophic left ideal and 

)(RN  is a neutrosophic right ideal of a neutrosophic LA-

semigroup )(SN  with left identity eIe  then 

)()()( SNLNLN   and )()()( RNSNRN   are 

neutrosophic two sided ideals of )(SN  . 

Proof Let )(RN  be a neutrosophic right ideal of )(SN  

then by using (3) and (4), we have 

 
 

   
 

 
 

 .()())(

)()()(

]())[()(

]())[()(

)]()(][()[)(

]()][()[)(

)(]()[)()(

)(]()()[

RNSNRNRN

SNRNRN

SNSNRNRN

SNRNSNRN

SNRNSNSNRN

SNSNRNSNRN

SNRNSNSNRN

SNRNSNRN

















and 

 
 

 
   

.)()()(

)()()(

)()()()(

)]()()[()()(

]()][()[)()(

]())][()([)()(

]())[()()(

]()())[(

RNSNRN

RNRNSN

SNRNRNSN

SNSNRNRNSN

SNSNSNRNRNSN

RNSNSNSNRNSN

RNSNSNRNSN

RNSNRNSN

















Hence  ]()()[ RNSNRN   is a neutrosophic two

sided ideal of )(SN . Similarly we can show that  

 ]()()[ LNSNLN   is a neutrosophic two-sided ideal

of )(SN  . 

Lemma 2.8: A subset  IN  of a neutrosophic LA-

semigroup  SN  with left identity eIe  is a

neutrosophic right ideal of )(SN  if and only if it is a 

neutrosophic interior ideal of )(SN . 

Proof Let )(IN  be a neutrosophic right ideal of )(SN   

).(

)()(

)()]()([

)()]()([)()(

IN

SNIN

SNSNIN

INSNSNINSN









So )(IN  is a neutrosophic two-sided ideal of )(SN , so 

is a neutrosophic interior ideal of )(SN . 

Conversely, assume that )(IN  is a neutrosophic interior 

ideal of )(SN , then by using (4) and (3), we have 

).(

)()]()([

)]()()][()([

)]()()][()([

)]()()[(

)]()()[()()(

IN

SNINSN

SNSNINSN

SNINSNSN

SNINSN

SNSNINSNIN













If )(AN  and )(MN  are neutrosophic two-sided ideals 

of a neutrosophic LA-semigroup ),(SN  such that 

)())(( 2 MNAN   implies )()( MNAN  , then 

)(MN  is called neutrosophic semiprime. 

Theorem 2.1: In a neutrosophic LA-semigroup )(SN  with 

left identity eIe , the following conditions are 

equivalent. 

 i  If )(AN  and )(MN  are neutrosophic two-sided

ideals of ),(SN  then )())(( 2 MNAN   implies 

)()( MNAN  . 

 ii  If )(RN  is a neutrosophic right ideal of )(SN  and

)(MN  is a neutrosophic two-sided ideal of )(SN  then 

)())(( 2 MNRN   implies )()( MNRN  . 

 iii  If )(LN  is a neutrosophic left ideal of )(SN  and

)(MN  is a neutrosophic two-sided ideal of )(SN  then 

)())(( 2 MNLN   implies )()( MNLN   . 

Proof    iiii 

Let )(LN  be a left ideal of )(SN  and 

)()]([ 2 MNLN  , then by Lemma ref: slrs , 

NL  NLNS  is a neutrosophic two sided ideal of

NS , therefore by assumption  ,i  we have

)()]()()([ 2 MNSNLNLN   which implies 

)()]()()([ MNSNLNLN   which further implies 

that  )()( MNLN  . 

)()( iiiii   and    iii   are obvious.

Theorem 2.2: A neutrosophic left ideal )(MN  of a 

neutrosophic LA-semigroup )(SN  with left identity 

eIe  is neutrosophic quasi semiprime if and only if 

)()( 2

11 MNIba   implies )(11 MNIba  . 
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Proof Let )(MN  be a neutrosophic semiprime left ideal 

of )(SN  and )()( 2

11 MNIba  . Since 

2

11 ))(( IbaSN   is a neutrosophic left ideal of )(SN  

containing 
2

11 )( Iba  , also )()( 2

11 MNIba   , 

therefore we have 

)())(()( 2

11

2

11 MNIbaSNIba  . But by using 

(2), we have 

 

 

.)])(([

)])(()][)(([

 ])()][()([

.])()[(])[(

2

11

1111

1111

1111

2

11

IbaSN

IbaSNIbaSN

IbaIbaSNSN

IbaIbaSNIbaSN









Therefore, )()])(([ 2

11 MNIbaSN  , but )(MN  is 

neutrosophic semiprime ideal so 

)())(( 11 MNIbaSN  . Since 

),)(()( 1111 IbaSNIba   therefore 

)()( 11 MNIba  . 

Conversely, assume that )(IN  is an ideal of )(SN  and 

let )())(( 2 MNIN   and )()( 11 INIba 

implies that 
22

11 ))(()( INIba  , which implies that 

)()( 2

11 MNIba   which further implies 

that )()( 11 MNIba  . Therefore, 

)())(( 2 MNIN   implies )()( MNIN  . Hence 

)(MN  is a 

neutrosophic semiprime ideal. 

A neutrosophic LA-semigroup )(SN  is called 

neutrosophic left (right) quasi-regular if every 

neutrosophic left (right) ideal of )(SN  is idempotent. 

Theorem 2.3: A neutrosophic LA-semigroup )(SN  with 

left identity is neutrosophic left quasi-regular if and only if 

)])(()][)(([ bIaSNbIaSNbIa  . 

Proof Let )(LN  be any left ideal of NS  and

)])(()][)(([ bIaSNbIaSNbIa  . Now for 

each )(21 LNIll  , we have 

Therefore, .))(()( 2LNLN   

Conversely, assume that 
2))(()( ANAN   for every 

neutrosophic left ideal )(AN  of )(SN . Since 

))(( bIaSN   is a neutrosophic left ideal of )(SN . So, 

)])(()][)(([))(( bIaSNbIaSNbIaSNbIa 

. 

Theorem 2.4: The subset )(IN  of a neutrosophic left 

quasi-regular LA-semigroup )(SN  is a neutrosophic left 

ideal of  )(SN  if and only if it is a neutrosophic right 

ideal of )(SN . 

Proof Let NL  be a neutrosophic left ideal of )(SN  and

)(21 SNIss   therefore, by Theorem 2.3 and (1), we 

have 

   

   

   
   

.)()()(

]()][()[

]()}}][()){([{

])(}}][)(){[{(

)}]()(}{)([{

))((

2121212121

2121212121

2121

LNLNLN

LNSNLNSN

LNSNLNSNSN

IllIxxIllIyyIss

IssIllIyyIllIxx

IssIll













 

Conversely, assume that )(IN  is a neutrosophic right 

ideal of NS , as )(SN  is itself a neytrosophic left ideal

and by assumption )(SN  is idempotent, therefore by 

using (2), we have 

 
 

.)()()(

)(]()[

)(]()[)()(

INSNIN

SNSNIN

INSNSNINSN







This implies )(IN  is neutrosophic left bideal too. 

Lemma 2.9: The intersection of any number of 

neutrosophic quasi-ideals of )(SN  is either empty or 

quasi-ideal of )(SN . 

Proof Let )( 1QN  and )( 2QN  be two netrosophic quasi 

ideals of neutrosophic LA-semigroup )(SN . If )( 1QN

and )( 2QN  are distinct then their intersection must be 

empty but if not then 

).()(

)]()()()([)]()()()([

)]()()()([)]()()()([

)()]()([)]()()[(

21

2211

2121

2121

QNQN

SNQNQNSNSNQNQNSN

SNQNSNQNQNSNQNSN

SNQNQNQNQNSN









 

Therefore, )()( 21 QNQN   is a neutrosophic quasi-

ideal. 

Now, generalizing the result and let 

.))(()()(

)]()()][()([

)])(()][)(([

2

212121

LNLNLN

LNSNLNSN

IllSNIllSNIll







84



Neutrosophic Sets and Systems, Vol. 11, 2016 

  Madad Khan, Florentin Smarandache and Sania Afzal, Neutrosophic Set Approach for Characterizations of Left 

Almost Semigroups 

)(),...,(),( 21 nQNQNQN  be the n-number of 

neutrosophic quasi ideals of neutrosophic quasi-ideals of 

)(SN  and assume that their intersection is not empty then 

 

   

 

 

).(...)()(

)]()()()]...[()(

)([)]()()()([

)]()(...)()()()([

)](...)()()([

)](...)()([)](...)()()[(

21

2

211

21

21

2121

n

nn

n

n

nn

QNQNQN

SNQNQNSNSNQN

QNSNSNQNQNSN

SNQNSNQNSNQN

QNSNQNSNQNSN

SNQNQNQNQNQNQNSN













Hence )(...)()( 21 nQNQNQN   is a 

neuteosophic quasi-ideal. 

Therefore, the intersection of any number of neutrosophic 

quasi-ideals of )(SN  is either empty or quasi-ideal of 

NS.

3 Neutrosophic Regular LA-semigroups 

An element bIa  of a neutrosophic LA-semigroup 

)(SN  is called regular if  there exists x  yI  NS

such that   )]()([ bIayIxbIabIa  , and

)(SN  is called neutrosophic regular LA-semigroup if 

every element of )(SN  is regular. 

Example Let  3,2,1S  with binary operation "  " given

in the following Callay's table, is a regular LA-semigroup 

with left identity 4

then  

}44,34,24,14,33,23,13,32,22,12,31,21,11{)( IIIIIIIIIIIIISN 

  is an example of neutrosophic regular LA-semigroup un-

der the operation " " and has the following Callay's table: 

Clearly )(SN  is a neutrosophic LA-semigroup also 

   ]32)(44)[11()32](44)(11[ IIIIII 

, so )(SN  is non-associative  and is regular because 

)11)](22)(11[()11( IIII  , 

2  2I  2  2I3  3I2  2I , 

)23)](31)(23[()23( IIII  , 

4  1I  4  1I4  2I4  1I , 

)44)](44)(44[()44( IIII   etc. 

Note that in a neutrosophic regular LA-semigroup, 

)()]([ 2 SNSN  . 

Lemma 3.1: If )(AN  is a neutrosophic bi-

ideal(generalized bi-ideal) of a regular neutrosophic LA-

semigroup )(SN  then  NANSNA  NA .

Proof Let )(AN  be a bi-ideal(generalized bi-ideal) of 

)(SN , then   ).()(]()[ ANANSNAN 

Let )(ANbIa  , since )(SN  is neutrosophic regular 

LA-semigroup so there exists an element  

)(SNyIx   such that 

))]()([( bIayIxbIabIa  , therefore, 

    ).(]()[)]()([ ANSNANbIabIxbIabIa 

 This implies that ).()]()([)( ANSNANAN   Hence 

  )()(]()[ ANANSNAN  . 

Lemma 3.2: If )(AN  and )(BN are any neutrosophic 

ideals of a neutrosophic regular LA-semigroup )(SN , 

then )()()()( BNANBNAN  . 

Proof Assume that )(AN  and )(BN  are any 

neutrosophic ideals of )(SN  so 

NANB  )()()( ANSNAN   and 

).()()()()( BNBNSNBNAN   This implies that 

)()()()( BNANBNAN  . Let 

)()( BNANbIa  , then )(ANbIa   and 
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)(BNbIa  . Since )(SN  is a neutrosophic regular 

AG-groupoid, so there exist yIx   such that 

 

)()(

)(]()([)]()([

BNAN

BNSNANbIayIxbIabIa





, which implies that )()()()( BNANBNAN  . 

Hence ).()()()( BNANBNAN    

Lemma 3.3: If )(AN  and )(BN  are any neutrosophic 

ideals of a neutrosophic regular LA-semigroup )(SN , 

then )()()()( ANBNBNAN  . 

Proof Let )(AN  and )(BN  be any neutrosophic ideals 

of a neutrosophic regular LA-semigroup )(SN . Now, let 

)(21 ANIaa   and )(21 BNIbb  . Since, 

)()( SNAN   and )()( SNBN   and )(SN  is a 

neutrosophic regular LA-semigroup so  there exist 

Ixx 21  , )(21 SNIyy   such that  

  )]()([ 21212121 IaaIxxIaaIaa   and 

  )]()([ 21212121 IbbIyyIbbIbb  . 

Now, let   )()()( 2121 BNANIbbIaa   but 

 

 

 

 ).()()()(

)()(

)]()()][()([

 )]()()][()([

)]()}()()][{()}()([{

)]}()([{

)]}()([{

)(

212121

212121

2121

ANBNBNAN

ANBN

ANANBNBN

BNBNANAN

BNSNBNANSNAN

IbbIyyIbb

IaaIxxIaa

IbbIaa

















Now, let   )()()( 2121 ANBNIaaIbb   but 

   

 

).()(

)]()()][()([

)]()()][()([

)]()}()()][{()}()([{

)]}()([{

)]}()([{)(

212121

2121212121

BNAN

BNBNANAN

ANANBNBN

ANSNANBNSNBN

IaaIxxIaa

IbbIyyIbbIaaIbb













 

Since )()()()( BNANANBN  . Hence 

).()()()( ANBNBNAN    

Lemma 3.4; Every neutrosophic bi-ideal of a regular 

neutrosophic LA-semigroup )(SN  with left identity 

eIe  is a neutrosophic quasi-ideal of ).(SN   

Proof Let )(BN  be a bi-ideal of )(SN  and 

)()())(( 2121 BNSNIbbIss  , for 

)(21 SNIss   and )(21 BNIbb  . Since )(SN  

is a neutrosophic regular LA-semigroup, so there exists 

Ixx 21 

in NS  such that 

  )]()([ 21212121 IbbIxxIbbIbb  , then by 

using (4) and (1), we 

have 

   

 

 

   

   

 

.)(

)(]()[

))}]()}}]()(){()[{([(

)}]()()}{)()([{(

))](}]()(}{)([[{

))]()}(}()(){{[(

))](}()([{

])(][)([

)])}()()[{((

))((

212121212121

212121212121

212121212121

12121212121

21212121

21212121

21212121

2121

BN

BNSNBN

IbbIxxIbbIssIxxIbb

IbbIxxIbbIbbIssIxx

IbbIxxIbbIssIxxIbb

bIbIxxIbbIxxIbbIss

IbbIxxIbbIss

IbbIssIxxIbb

IbbIxxIbbIss

IbbIss





















Therefore, 

)()()()()()()( BNBNSNBNSNSNBN  . 

Lemma 3.5. In a neutrosophic regular LA-semigroup 

)(SN , every neutrosophic ideal is idempotent. 

Proof. Let NI  be any neutrosophic ideal of neutrosophic

regular LA-semigroup )(SN . As we know, 

)())(( 2 ININ   and let ),(INbIa   since 

)(SN  is regular so there exists an element 

)(SNyIx   such that 

 

 

.))(()()(

 )(]()[

)]()([

2INININ

INSNIN

bIayIxbIabIa







This implies 
2))(()( ININ  . Hence, 

)())(( 2 ININ  . 

As )(IN  is the arbitrary neutrosophic ideal of )(SN . So 

every ideal of neutrosophic regular AG-groupoid is 

idempotent. 

Corollary 3.1. In a neutrosophic regular LA-semigroup 

)(SN , every neutrosophic right ideal is idempotent. 

Proof. Let )(RN  be any neutrosophic right ideal of 

neutrosophic regular LA-semigroup )(SN  then 

)()()( RNSNRN   and ).())(( 2 RNRN   Now,let 
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),(RNbIa    

as )(SN  is regular implies for )(RNbIa   ,there 

exists )(SNyIx   such that 

 
 

.))((

)()(

 )(]()[

)]()([

2RN

RNRN

INSNRN

bIayIxbIabIa









Thus )())(( 2 RNRN  . Hence, )())(( 2 RNRN  . So 

every neutrosophic right ideal of neutrosophic 

regular LA-semigroup  SN  is idempotent.

Corollary 3.2: In a neutrosophic regular LA-semigroup 

)(SN , every neutrosophic ideal is semiprime. 

Proof: Let )(PN  be any neutrosophic ideal of 

neutrosophic regular LA-semigroup  SN

and let )(IN  be any other neutrosophic ideal such that 

).()]([ 2 PNIN 

Now as every ideal of )(SN  is idempotent by lemma 3.5. 

So, )()]([ 2 ININ   implies )()( PNIN  . Hence, 

every neutrosophic ideal of )(SN  is semiprime. 

4 Neutrosophic Intra-regular LA-semigroups 

An LA-semigroup )(SN  is called neutrosophic intra-

regular if for each element a1  a2I  NS  there exist

elements ),( 21 Ixx   )()( 21 SNIyy   such that 

)]())([( 21

2

212121 IyyIaaIxxIaa  . 

Example Let  3,2,1S  with binary operation "  " given

in the following Callay's table, is an intra-regular LA-

semigroup with left identity 2 . 

then 

}33,23,13,32,22,12,31,21,11{)( IIIIIIIIISN 

 is an example of neutrosophic intraregular LA-semigroup 

under the operation " " and has the following Callay's ta-

ble: 

    I11  I21 1  3I 2  1I  2  2I    2  3I    3  1I    3  2I    3  3I   

Clearly  SN  is a neutrosophic LA-semigroup and is

non-associative because 

)]32()22[()11(

)32()]22()11[(

III

III




 and )(SN  is intra-

regular as 

 )312]()11)(31[()11( 2  III , 

)13]()32)(11[()32( 2 IIII  , 

)33]()13)(32[()13( 2 IIII   etc. 

Note that if )(SN  is a neutrosophic intra-regular LA-

semigroup then )()]([ 2 SNSN  . 

Lemma 4.1: In a neutrosophic intra-regular LA-semigroup 

)(SN  with left identity eIe , every neutrosophic ideal 

is idempotent. 

Proof Let )(IN  be any neutrosophic ideal of a 

neutrosophic intraregular LA-semigroup )(SN  implies  

)()]([ 2 ININ  . Now, let )(21 INIaa   and since 

)()( SNIN   implies )(21 SNIaa  . Since )(SN  

is a neutrosophic intra-regular LA-semigroup, so there 

exist )( 21 Ixx  , )()( 21 SNIyy   such that 

.)]([

)()(

)())()((

)())()((

)()))()()(((

)())]()()(([

)(]))()(([

)]())([()(

2

2

21

2

212121

IN

ININ

ININSN

SNININ

SNINSNIN

SNININSN

SNINSN

IyyIaaIxxIaa

















Hence )()]([ 2 ININ  . As, )(IN  is arbitrary so every 

neutrosophic ideal of is idempotent in a neutrosophic intra-

regular LA-semigroup )(SN  with left identity. 

Lemma 4.2. In a neutrosophic intra-regular LA-semigroup

)(SN  with left identity eIe , 

87



Neutrosophic Sets and Systems, Vol. 11, 2016 

Madad Khan, Florentin Smarandache and Sania Afzal, Neutrosophic Set Approach for Characterizations of Left 

Almost Semigroups 

)()()()( JNINJNIN  , for every neutrosophic 

ideals )(IN  and )(JN  in )(SN . 

Proof: Let )(IN  and )(JN  be any neutrosophic ideals 

of )(SN , then obviously )()()()( SNINJNIN   

and )()()()( JNSNJNIN   implies 

)()()()( JNINJNIN  . Since 

)()()( INJNIN   and )()()( JNJNIN  , 

then   )()(]()[ 2 JNINJNIN  . Also 

)()( JNIN   is a neutrosophic ideal of ),(SN  so 

using Lemma 4.1, we have 

  )()(]()[)()( 2 JNINJNINJNIN  . 

Hence )()()()( JNINJNIN  . 

Theorem 4.1. For neutrosophic intra-regular AG-groupoid 

with left identity eIe , the following statements are 

equivalent. 

 i  )(AN  is a neutrosophic left ideal of )(SN .

 ii  )(AN  is a neutrosophic right ideal of )(SN .

 iii  )(AN  is a neutrosophic ideal of )(SN .

 iv  )(AN  is a neutrosophic bi-ideal of )(SN .

 v  )(AN  is a neutrosophic generalized bi-ideal of

)(SN . 

 vi  )(AN  is a neutrosophic interior ideal of )(SN .

 vii  )(AN  is a neutrosophic quasi-ideal of )(SN .

 viii  )()()( ANSNAN   and

)()()( ANANSN  . 

Proof:    viiii 

Let )(AN  be a neutrosophic left ideal of )(SN . By 

Lemma first, )()()( ANANSN  . Now let  

)()( 21 ANIaa   and ),()( 21 SNIss   since 

)(SN  is a neutrosophic intra-regular LA-semigroup, so 

there exist )( 21 Ixx  , )()( 21 SNIyy   such that 

)]())([()( 21

2

212121 IyyIaaIxxIaa  , 

therefore by (1), we have 

 

 
 

 
   

    .)()(]())[(

]()][()[

)()](}()[{

)()](}}()){([{

)()](}}()){([{

))](}}()(){[{(

))](}())([{())((

2121212121

2121

2

21212121

ANANSNANSNSN

ANSNSNSN

SNSNANSN

SNSNANSNSN

SNSNANANSN

IssIyyIaaIaaIxx

IssIyyIaaIxxIssIaa















which implies that )(AN  is a neutrosophic right ideal of 

)(SN , again by Lemma first, ).()()( SNSNAN    

   viiviii 

Let )()()( ANSNAN   and )()()( ANANSN   

then ),()()()()( ANANSNSNAN   which 

clearly implies that )(AN  is a neutrosophic quasi-ideal of 

)(SN . 

   vivii 

Let )(AN  be a quasi-ideal of )(SN . Now let 

    )(]()[)]()([ 212121 SNANSNIssIaaIss  ,

since  )(SN  is neutrosophic intra-regular LA-semigroup 

so there exist )( 21 Ixx  , )( 21 Iyy  , )( 21 Ipp  ,  

)()( 21 SNIqq   such that 

)]())([()( 21

2

212121 IyyIssIxxIss   and  

)]())([()( 21

2

212121 IqqIaaIppIaa  . 

Therefore using (2), (4), (3) and (1), we have 

 

 

 

.)()(

)]}}())(){()[{((

])(}}][))(){([{(

)]}())(][{()([

)]()([

21

2

21212121

2121

2

212121

21

2

2112121

212121

SNAN

IyyIssIxxIssIaa

IyyIaaIssIxxIss

IyyIssxIxIaaIss

IssIaaIss











and 
 

 

   

   

   

   

   

 

 

).()()(

))}](}}()(){){{([(

))}](}}()(){){{([(

)}]()(}}{)(){[{(

))}](}()(}{{)([{

))}](}()(}{{)([{

)}]()(}}{)(){[{(

)}]()(}}{)(){[{(

)}]()(}{))([{(

))}](}())(){{([(

)]()([

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121

2

2121

2121

2

212121

212121

ANANSN

IaaIppIssIqqIaaIss

IssIppIssIqqIaaIaa

IssIppIaaIssIqqIaa

IssIaaIssIqqIaaIpp

IssIaaIaaIppIssIqq

IssIqqIssIaaIppIaa

IssIqqIssIaaIaaIpp

IssIqqIssIaaIpp

IssIqqIaaIppIss

IssIaaIss























which shows that )(AN  is a neutrosophic interior ideal of 

)(SN . 

   vvi 

Let )(AN  be a neutrosophic interior ideal of a 

neutrosophic intraregular LA-semigroup )(SN   

and 

    )(]()[)]()([ 212121 ANSNANIaaIssIaa 
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. Now using (4) and (1), we get 
 

 

 

   

   

 

   

   

 

  .)()(]()[

))]()}(}}()(){[{{(

)}}]()(){}{()([{

)}}]()(}{)(){{[(

))}]()}(}()(){{{[(

)}]()()}{}()([{{

)]}()(}][{)(){[(

)]}()(][{))([(

)]}())(][{()([

)]()([

212121212121

212121212121

212121212121

212121212121

212121212121

212121212121

212121

2

2121

21

2

21212121

212121

ANSNANSN

IxxIaaIyyIssIaaIaa

IxxIssIaaIaaIyyIaa

IxxIssIaaIyyIaaIaa

IxxIaaIyyIssIaaIaa

IxxIaaIaaIyyIssIaa

IyyIssIaaIaaIaaIxx

IyyIssIaaIaaIxx

IyyIaaIxxIssIaa

IaaIssIaa





















   ivv 

Let )(AN  be a neutrosophic generalized bi-ideal of 

)(SN . Let )(21 ANIaa  , and since )(SN  is 

neutrosophic intra-regular LA-semigroup so there exist 

x1  x2I , y1  y2I  in )(SN  such that

),]())([( 21

2

212121 IyyIaaIxxIaa   then 

using (3) and (4), we have 

 

   
 

   

 

 

  .)()(]()[

))}](}}()(){){{([(

)}]()()}}{)(){([{(

))}](}()(}{{)([{

))}](}()({{)[(

)}](()}{)([{

)}]()(}{))([{(

))](}())([{(

))((

212121212121

212121212121

212121212121

21212121

2

21

2121

2

212121

212121

2

2121

2121

2

2121

2121

ANANSNAN

IaaIaaIeeIyyIxxIaa

IaaIaaIaaIeeIyyIxx

IaaIxxIeeIyyIaaIaa

IaaIxxIeeIyyIaa

IaaIxxIaaIeeIyy

IaaIyyIeeIaaIxx

IaaIyyIaaIxx

IaaIaa



















Hence )(AN  is a neutrosophic bi-ideal of )(SN . 

)()( iiiiv 

Let )(AN  be any neutrosophic bi-ideal of )(SN  and let 

)()())(( 2121 SNANIssIaa  . Since )(SN   is 

neutrosophic intra-regular LA-semigroup, so there exist 

),( 21 Ixx   )()( 21 SNIyy   such that 

).]())([()( 21

2

212121 IyyIaaIxxIaa 

Therefore, using (1), (3), (4) and (2), we have 

 

 

)}})(){({(

))]()}}()(){([{(

)}])(){(][()([

])()][)}()([{(

]))}()}()([{{(

)])()][(()[(

]))()][()([(

))](}())([{(

))((

212121

2121212121

2121212121

2121212121

2

21212121

212121

2

21

2

21212121

2121

2

2121

2121

IssIyyIxx

IaaIaaIssIyyIxx

IssIyyIxxIaaIaa

IaaIaaIxxIssIyy

IaaIxxIssIyy

IssIyyIxxIaa

IaaIxxIyyIss

IssIyyIaaIxx

IssIaa



















))}]((

)}}})(){(){({{()[(

))}]((){(

)}}})(){(){([{(

))}]((

)}})(){(}{{())([{(

))}(}())({{(

2121

21212121

2

21

2121

2

21

21212121

2121

212121

2

2121

2121

2

2121

IaaIxx

IssIyyIxxIyyIaa

IaaIxxIaa

IssIyyIxxIyy

IaaIyy

IssIyyIxxIaaIxx

IaaIyyIaaIxx















 

  .)()(]()[

))}]()({(

)}}}})(){(){(){([{(

))}]()}}}()({(

)){(}{{()([{

212121

2121212121

21212121

21212121

ANANSNAN

IaaIaaIaa

IssIyyIxxIyyIxx

IaaIxxIssIyy

IxxIyyIaaIaa











 

 

   

  )]()}()}()([{{

)}]()(}{)([{

))}]()()}{()([{(

)])(}][()(){[(

)])(}][()(){[(

)])(][())([(

)]}())()[{((

))((

2121212121

2121212121

2121212121

2121212121

2121212121

2121

2

2121

21

2

212121

2121

IaaIaaIxxIssIyy

IaaIssIyyIxxIaa

IaaIaaIxxIyyIss

IyyIssIaaIxxIaa

IyyIssIaaIaaIxx

IyyIssIaaIxx

IyyIaaIxxIss

IaaIss

















 

 

 

   

 

   

  )}]()({

}})()}{}()([{{{

)}]()({

}})(}{()[{{

)}]()({

}}))(}{()([{{

))}](}())({{(

)}}()([{{

212121

2121212121

212121

212121

2

21

212121

2

21212121

2121

2

2121

212121

IaaIyyIxx

IyyIssIxxIaaIaa

IaaIyyIxx

IyyIssIxxIaa

IaaIyyIxx

IaaIxxIssIyy

IaaIyyIaaIxx

IxxIssIyy

















89



Neutrosophic Sets and Systems, Vol. 11, 2016 

Madad Khan, Florentin Smarandache and Sania Afzal, Neutrosophic Set Approach for Characterizations of Left 

Almost Semigroups 

 

 

 

 

.)(

)()]()([

))}](}}()({

)}}()(){{{{[(

))}](}()({{

}})()}{)([{{(

21212121

21212121

21212121

21212121

AN

ANSNAN

IaaIaaIxxIyy

IxxIyyIssIaa

IaaIxxIaaIaa

IyyIssIyyIxx













Therefore, )(AN  is a neutrosophic ideal of )(SN . 

   iiiii   and    iii   are obvious.

Lemma 4.4. A neutrosophic LA-semigroup )(SN  with left 

identity )( eIe  is intra-regular if and only if every 

neutrosophic bi-ideal of )(SN  is idempotent. 

Proof. Assume that  SN  is a neutrosophic intra-regular

LA-semigroup with left identity )( eIe  and )(BN  is a 

neutrosophic bi-ideal of )(SN . Let )()( BNbIb  , 

and since )(SN  is intra-regular so there exist 

)( 21 Icc  , )( 21 Idd   in )(SN  such that 

)]())([()( 21

2

212121 IddIbbIccIbb  , then by 

using (3), (4) and (1), we have 

 

   
 

   
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Ibb
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
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
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










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))]()}}((
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2
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IddIbbIbbIcc

IccIddIcceIeIdd

IbbIbbIdd

IbbIccIcc

IddIcceIeIdd
















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))]()}}()}}()(){({{(
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IddIcceIeIddIbb
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









 

Hence )()]([ 2 BNBN  . 

Conversely, since ))(( bIaSN   is a neutrosophic bi-

ideal of NS , and by assumption NSa  bI  is

idempotent, so by using (2), we have 

Hence )(SN  is neutrosophic intra-regular LA-semigroup. 

Theorem 4.2. In a neutrosophic LA-semigroup )(SN  with 

left identity eIe , the following statements are 

equivalent. 

i  )(SN  is intra-regular.

ii  Every neutrosophic two sided ideal of )(SN  is

semiprime. 

iii  Every neutrosophic right ideal of )(SN  is

semiprime. 

iv  Every neutrosophic left ideal of )(SN  is semiprime.

Proof:    ivi 

Let )(SN  is intra-regular, then by Theorem equalient and 

Lemma 4.1, every neutrosophic left ideal of )(SN  is 

semiprime. 

   iiiiv 

Let  )(RN  be a neutrosophic right ideal and )(IN  be 

any neutrosophic ideal of )(SN  such that 

)()]([ 2 RNIN  . Then clearly 

)()()()]([ 2 RNSNRNIN  . Now by Lemma 2.7, 

)()()( RNSNRN   is a neutrosophic two-sided ideal 

of )(SN , so is neutrosophic left. Then by  iv  we have

)()()()( RNSNRNIN  . Now using (1) we have  

   

     

       

 

.)(]))(([

]()][))(([

])(}][}{()[{

])(}][)(}{)([{

])(][)([
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2

2

SNbIaSN

SNSNbIaSN

bIaSNbIabIaSNSN

bIaSNbIaSNbIaSN

bIaSNbIaSN

bIa












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 

 

).()()(

)(]()[

)(]()[)()(

RNSNRN

SNSNRN

RNSNSNRNSN







This implies that 

).()()()()( RNRNSNRNIN   Hence )(RN  

is semiprime. 

It is clear that     iiiii  .

Now    iii 

Since )()( 2 SNbIa   is a neutrosophic right ideal of 

)(SN  containing 
2)( bIa   and clearly it is a 

neutrosophic two sided ideal so by assumption  ii , it is

semiprime, therefore by Theorem 2.2, 

).()()( 2 SNbIabIa   Thus using (4) and (3), we 

have 

 

 
   
   

.)(]))(([

]()][))([

]()][()[

]())[(

]()[)(

)()(

2

2

2

2

2

2

SNbIaSN

SNSNbIaSN

SNbIaSNSN

SNbIaSN

SNSNbIa

SNbIabIa













Hence )(SN  is intra-regular. 

Theorem 4.3. An LA-semigroup )(SN  with left identity 

eIe  is intra-regular if and only if every neutrosophic 

left ideal of )(SN  is idempotent. 

Proof. Let )(SN  be a neutrosophic intra-regular LA-

semigroup then by Theorem equalient and Lemma 4.1, 

every neutrosophic ideal of )(SN  is idempotent. 

Conversely, assume that every neutrosophic left ideal of 

)(SN  is idempotent. Since ))(( bIaSN   is a 

neutrosophic left ideal of )(SN , so by using (2), we have 

   
 

     

.)(]))(([

)]()(][))(([

})(}]{)(}{()[{

})()}]{)(()}{)(([{

])(][)([

))((

2

2

SNbIaSN

SNSNbIaSN

bIaSNbIabIaSNSN

bIaSNbIaSNbIaSN

bIaSNbIaSN

bIaSNbIa













Theorem 4.4. A neutrosophic LA-semigroup )(SN  with 

left identity eIe  is intra-regular if and only if  

)()()()( LNRNLNRN  , for every neutrosophic 

semiprime right ideal )(RN  and every neutrosophic left 

ideal )(LN  of )(SN . 

Proof. Let )(SN  be an intra-regular LA-semigroup, so by 

Theorem equalient )(RN  and )(LN  become 

neutrosophic ideals of )(SN , therefore by Lemma 4.2, 

),()()()( RNLNLNRN   for every neutrosophic 

ideal )(RN  and )(LN  and by Theorem every ideal 

semiprime, )(RN  is semiprime. 

Conversely, assume that )()()()( LNRNLNRN   

for every neutrosophic right ideal ),(RN  which is 

semiprime and every neutrosophic left ideal )(LN  of 

)(SN . Since )()()( 22 SNbIabIa  , which is a 

neutrosophic right ideal of )(SN  so is semiprime which 

implies that )()()( 2 SNbIabIa  . Now clearly 

))(( bIaSN   is a neutrosophic left ideal of )(SN  and 

))(()( bIaSNbIa  . Therefore, using (3),we have 

   

   

   

 
 

   
 

.)(]))(([

)(}])(){([

)(}])(}{()[{

)()}]()()}{)([{(

)()](})([{

)(]()[

]()][()[

])(][()[

])([]()[

2

2

2

2

2

SNbIaSN

SNbIabIaSN

SNbIabIaSNSN

SNSNSNbIabIa

SNSNbIabIa

SNSNbIa

SNSNSNbIa

bIaSNSNbIa

bIaSNSNbIabIa



















Therefore, )(SN  is a neutrosophic intra-regular LA-

semigroup. 

Theorem 4.5. For a neutrosophic LA-semigroup )(SN  

with left identity eIe , the following statements are 

equivalent. 

 i  )(SN  is intra-regular.

 ii  )()()()( RNLNRNLN  , for every right

ideal ),(RN  which is neutrosophic semiprime and every 

neutrosophic left ideal )(LN  of )(SN . 

 iii    )(]()[)()( LNRNLNRNLN  , for every

neutrosophic semiprime right ideal )(RN  and every 

neutrosophic left ideal )(LN . 

Proof    iiii 
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Let )(SN  be intra-regular and ),(LN  )(RN  be any 

neutrosophic left and right ideals of )(SN  and let 

a1  a2I  NL  NR,  which implies that 

)(21 LNIaa   and )(21 RNIaa  . Since )(SN  

is intra-regular so there exist )( 21 Ixx  , )( 21 Iyy   in 

)(SN , such that 

)]())([( 21

2

212121 IyyIaaIxxIaa  , then by 

using (4), (1) and (3), we have 

 

 

 

 

 

 

 

 

 

 

   

   

  ,)(]()[

]()][()[

]()][()[

)(]()}()[{

)()]()}}()){([{

)}}]()({

)}}{()(){[{(

)}}]()({

)}}{()(){[{(

)}}]()({

)}{())([{(

)}}]()(}{))(){{([(

))}}]((

}))(){{(){([(

))}]()(){([(

)}]()(){[(

)}]()(){[(

)]())([(

212121

21212121

212121

21212121

212121

21

2

2121

2121

2

212121

2121

2

21212121

21212121

21212121

21212121

21

2

212121

LNRNLN

LNSNRNLN

LNRNSNLN

LNSNLNRN

LNSNLNSNRN

IaaIyyIxx

IyyIaaIxxIaa

IaaIyyIxx

IyyIaaIaaIxx

IaaIyyIxx

IyyIaaIxx

IaayIxxIaaIxxIyy

IaaIyy

IaaIxxIxxIyy

IaaIaaIxxIyy

IyyIaaIxxIaa

IyyIaaIaaIxx

IyyIaaIxxIaa





































which implies that 

  )(]()[)()( LNRNLNRNLN  . Also by 

Theorem every ideal semiprime, )(LN  is semiprime. 

   iiiii 

Let  )(RN  and )(LN  be neutrosophic left and right 

ideals of )(SN  and )(RN  is semiprime, then by 

assumption  iii   and by (3), (4) and (1), we have

 
 
   
   

 
 
 

).()(

]())[(

)](}())[{(

)](}())[{(

]()][()[

]()][()[

)(]()[

)(]()[)()(

RNLN

SNRNLN

SNSNRNLN

RNSNSNLN

RNLNSNSN

SNSNLNRN

SNLNRN

RNLNRNLNRN

















   iii 

Since )(SNeIe   implies ),)(( bIaSNbIa   

which is a neutrosophic left ideal of )(SN , and 

)()()( 22 SNbIabIa  , which is a semiprime 

neutrosophic right ideal of )(SN , therefore by Theorem 

2.2 )()( 2 SNbIabIa  . Now using (3) we have 

   
 

 

 

).(]))(([

]()][))(([

)]()][(()[

)]()][()([

]()[])([

2

2

2

2

2

SNbIaSN

SNSNbIaSN

SNbIaSNSN

SNbIabIaSN

SNbIabIaSNbIa











Hence )(SN  is intra-regular 

A neutrosophic LA-semigroup )(SN  is called totally 

ordered under inclusion if )(PN  and )(QN  are any 

neutrosophic ideals of )(SN  such that either 

)()( QNPN   or )()( PNQN  . 

A neutrosophic ideal )(PN  of a neutrosophic LA-

semigroup )(SN  is called strongly irreducible if  

)()()( PNBNAN   implies either 

)()( PNAN   or )()( PNBN  , for all 

neutrosophic ideals )(AN , )(BN  and )(PN  of 

)(SN . 

Lemma 4.4. Every neutrosophic ideal of a neutrosophic 

intra-regular LA-semigroup )(SN  is prime if and only if 

it is strongly irreducible. 

Proof. Assume that every ideal of )(SN  is neutrosophic 

prime. Let )(AN  and )(BN  be any neutrosophic ideals 

of )(SN  so by Lemma 4.2, 

)()()()( BNANBNAN  , where )()( BNAN   

is neutrosophic ideal of )(SN . Now, let 

)()()( PNBNAN   where )(PN  is a 

neutrosophic ideal of )(SN  too. But by assumption every 

neutrosophic ideal of a neutrosophic intra-regular LA-

semigroup )(SN  is prime so is neutrosophic prime, 

therefore, )()()()()( PNBNANBNAN   

implies )()( PNAN   or )()( PNBN  . Hence 

)(SN  is strongly irreducible. 

Conversely, assume that )(SN  is strongly irreducible. Let 
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)(AN , )(BN  and )(PN  be any neutrosophic ideals of 

)(SN  such that )()()( PNBNAN   implies 

)()( PNAN   or )()( PNBN  . Now, let 

NA  NB  NP  but 

NANB  NA  NB  by lemma ij, 

NANB  NP  implies )()( PNAN   or

)()( PNBN  . Since )(PN  is arbitrary neutrosophic 

ideal of )(SN  so very neutrosophic ideal of a 

neutrosophic intra-regular LA-semigroup )(SN  is prime. 

Theorem 4.6. Every neutrosophic ideal of a neutrosophic 

intra-regular LA-semigroup )(SN  is neutrosophic prime 

if and only if )(SN  is totally ordered under inclusion. 

Proof. Assume that every ideal of )(SN  is neutrosophic 

prime. Let )(PN  and )(QN  be any neutrosophic ideals 

of NS , so by Lemma 4.2, 

)()()()( QNPNQNPN  , where )()( QNPN   

is neutrosophic ideal of  )(SN , so is neutrosophic prime, 

therefore, ),()()()( QNPNQNPN   which 

implies that )()()( QNPNPN   or 

),()()( QNPNQN   which implies that 

)()( QNPN   or )()( PNQN  . Hence )(SN  is 

totally ordered under inclusion. 

Conversely, assume that )(SN  is totally ordered under 

inclusion. Let )(IN , )(JN  and )(PN  be any 

neutrosophic ideals of )(SN  such that 

)()()( PNJNIN  . Now without loss of generality 

assume that )()( JNIN   then  

.)()()(

)()()]([)( 2

PNJNIN

ININININ





Therefore, either )()( PNIN   or )()( PNJN  , 

which implies that )(PN  is neutrosophic prime. 

Theorem 4.7. The set of all neutrosophic ideals sIN )(  of 

a neutrosophic intra-regular )(SN  with left identity 

eIe  forms a semilattice structure. 

Proof. Let NA , NB  NIs , since NA  and

NB  are neutrosophic ideals of NS  so we have

   

   

   

 

.)()(

)]()(][()[

]()][()[)]()()[( Also

 .)()(

]()][()[

]()][()[)()]()([

BNAN

BNSNANSN

BNANSNSNBNANSN

BNAN

SNBNSNAN

SNSNBNANSNBNAN













Thus   )(BNAN  is a neutrosophic ideal of )(SN .

Hence sIN )(  is closed. Also using Lemma ij, we have,  

)()()()()()()()( ANBNANBNBNANBNAN 

which implies that sIN )(  is commutative, so is 

associative. Now by using Lemma ii, )()]([ 2 ANAN  , 

for all sINAN )()(  . Hence sIN )(  is semilattice. 
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Abstract. We have introduced for the first time the 

degree of dependence (and consequently the degree of 

independence) between the components of the fuzzy set, 

and also between the components of the neutrosophic set 

in our 2006 book’s fifth edition [1]. Now we extend it for 

the first time to the refined neutrosophic set considering 

the degree of dependence or independence of 

subcomponets.

Keywords: neutrosophy, neutrosophic set, fuzzy set, degree of dependence of (sub)components, degree of independence of 

(sub)components. 

1    Refined Neutrosophic Set. 

We start with the most general definition, that of  a 

n-valued refined neutrosophic set 𝐴. An element 𝑥 from 

𝐴 belongs to the set in the following way: 

𝑥(𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠) ∈ 𝐴,    (1)

where 𝑝, 𝑟, 𝑠 ≥ 1 are integers, and 𝑝 + 𝑟 + 𝑠 = 𝑛 ≥ 3, 
where 

𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠 (2) 

are respectively sub-membership degrees, sub-indeter-

minacy degrees, and sub-nonmembership degrees of 

element x with respect to the n-valued refined 

neutrosophic set A. 

Therefore, one has n (sub)components. 

Let’s consider all of them being crisp numbers in 

the interval [0, 1]. 

2 General case. 

Now, in general, let’s consider n crisp-components 

(variables): 

𝑦1, 𝑦2, … , 𝑦𝑛 ∈ [0, 1].      (3)

If all of them are 100% independent two by two, 

then their sum: 

0 ≤ 𝑦1 + 𝑦2 + … + 𝑦𝑛 ≤ 𝑛.   (4)

But if all of them are 100% dependent (totally 

interconnected), then 

0 ≤ 𝑦1 + 𝑦2 + … + 𝑦𝑛 ≤ 1. (5) 

When some of them are partially dependent and 

partially independent, then 

𝑦1 + 𝑦2 + … + 𝑦𝑛 ∈ (1, 𝑛). (6) 

For example, if 𝑦1 and 𝑦2 are 100% dependent, then

0 ≤ 𝑦1 + 𝑦2 ≤ 1, (7) 

while other variables 𝑦3, … , 𝑦𝑛 are 100% independent of

each other and also with respect to 𝑦1 and 𝑦2, then

0 ≤ 𝑦_3 + ⋯ + 𝑦_𝑛 ≤ 𝑛 − 2,    (8) 

thus 

0 ≤ 𝑦1 + 𝑦2 + 𝑦3 + ⋯ + 𝑦𝑛 ≤ 𝑛 − 1. (9) 

3 Fuzzy Set. 

Let 𝑇 and 𝐹 be the membership and respectively the 

nonmembership of an element 𝑥(𝑇, 𝐹) with respect to a 

fuzzy set 𝐴, where 𝑇, 𝐹 are crisp numbers in [0, 1]. 
If 𝑇 and 𝐹 are 100% dependent of each other, then 

one has as in classical fuzzy set theory 

0 ≤ 𝑇 + 𝐹 ≤ 1.         (10) 

But if 𝑇 and 𝐹 are 100% independent of each other 

(that we define now for the first time in the domain of 

fuzzy setand logic), then 

0 ≤ 𝑇 + 𝐹 ≤ 2.         (11) 

We consider that the sum 𝑇 + 𝐹 = 1  if the 

information about the components is complete, and 

𝑇 + 𝐹 < 1 if the information about the components is 

incomplete. 

Similarly, 𝑇 + 𝐹 = 2 for complete information, and 

𝑇 + 𝐹 < 2 for incomplete information. 

For complete information on T and F, one has 

𝑇 + 𝐹 ∈ [1, 2]. 

4 Degree of Dependence and Degree 

 of Independence for two Components. 

University of New Mexico 
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In general (see [1], 2006, pp. 91-92), the sum of two 

components x and y that vary in the unitary interval [0, 

1] is:

0 ≤  𝑥 + 𝑦 ≤  2 –  𝑑°(𝑥, 𝑦),         (12) 

where 𝑑°(𝑥, 𝑦) is the degree of dependence between x 

and y.  

Therefore 2 –  𝑑°(𝑥, 𝑦) is the degree of 

independence between x and y.  

Of course, 𝑑°(𝑥, 𝑦)  ∈  [0, 1], and it is zero when x 

and y are 100% independent, and 1 when x and y are 

100% dependent. 

In general, if T and F are 𝑑%  dependent [and 

consequently (100 − 𝑑)% independent], then 

0 ≤ 𝑇 + 𝐹 ≤ 2 − 𝑑/100.           (13) 

5 Example of Fuzzy Set with Partially 

 Dependent and Partially Independent 

 Components. 

As an example, if 𝑇  and 𝐹  are 75% (= 0.75) 

dependent, then 

0 ≤ 𝑇 + 𝐹 ≤ 2 − 0.75 = 1.25.         (14) 

6 Neutrosophic Set 

Neutrosophic set is a general framework for 

unification of many existing sets, such as fuzzy set 

(especially intuitionistic fuzzy set), paraconsistent set, 

intuitionistic set, etc.  The main idea of NS is to 

characterize each value statement in a 3D-Neutrosophic 

Space, where each dimension of the space represents 

respectively the membership/truth (T), the 

nonmembership/falsehood (F), and the indeterminacy 

with respect to membership/nonmembership (I) of the 

statement under consideration, where T, I, F are 

standard or non-standard real subsets of ]-0, 1+[ with not 

necessarily any connection between them.  

For software engineering proposals the classical 

unit interval [0, 1] is used. 

For single valued neutrosophic set, the sum of the 

components (T+I+F) is (see [1], p. 91):  

0 ≤ T+I+F ≤ 3,         (15) 

when all three components are independent; 

0 ≤ T+I+F ≤ 2,  (16) 

when two components are dependent, while the third 

one is independent from them; 

0 ≤ T+I+F ≤ 1,  (17) 

when all three components are dependent. 

When three or two of the components T, I, F are 

independent, one leaves room for incomplete 

information (sum < 1), paraconsistent and contradictory 

information (sum > 1), or complete information (sum = 

1). 

If all three components T, I, F are dependent, then 

similarly one leaves room for incomplete information 

(sum < 1), or complete information (sum = 1).  

The dependent components are tied together. 

Three sources that provide information on T, I, and 

F respectively are independent if they do not 

communicate with each other and do not influence each 

other. 

Therefore, max{T+I+F} is in between 1 (when the 

degree of independence is zero) and 3 (when the degree 

of independence is 1).  

7 Examples of Neutrosophic Set with 

Partially Dependent and Partially 

Independent Components. 

The max{T+I+F} may also get any value in (1, 3). 

a) For example, suppose that T and F are 30%

dependent and 70% independent (hence T + F ≤ 2-0.3 = 

1.7), while I and F are 60% dependent and 40% 

independent (hence I + F ≤ 2-0.6 = 1.4). Then max{T + 

I + F} = 2.4 and occurs for T = 1, I = 0.7, F = 0.7.   

b) Second example: suppose T and I are 100%

dependent, but I and F are 100% independent. Therefore 

T + I ≤ 1 and I + F ≤ 2, then T + I + F ≤ 2. 

8 More on Refined Neutrosophic Set 

The Refined Neutrosophic Set [4], introduced for 

the first time in 2013. In this set the neutrosophic 

component (T) is split into the subcomponents (T1, T2, 

…, Tp) which represent types of truths (or sub-truths), 

the neutrosophic component (I) is split into the 

subcomponents (I1, I2, …, Ir) which represents types of 

indeterminacies (or sub-indeterminacies), and the 

neutrosophic components (F) is split into the 

subcomponents (F1, F2, …, Fs) which represent types of 

falsehoods (or sub-falsehoods), such that p, r, s are 

integers ≥ 1 and p + r + s = n ≥ 4.       (18) 

When n = 3, one gets the non-refined neutrosophic 

set. All Tj, Ik, and Fl subcomponents are subsets of [0, 

1]. 

Let’s consider the case of refined single-valued 

neutrosophic set, i.e. when all n subcomponents are 

crisp numbers in [0, 1]. 

Let the sum of all subcomponents be: 

1 1 1

p r s

j k lS T I F       (19) 

When all subcomponents are independent two by 

two, then 

0 ≤ S ≤ n.                                                        (20) 
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If m subcomponents are 100% dependent, 2 ≤ m ≤ 

n, no matter if they are among Tj, Ik, Fl or mixed, then  

0 ≤ S ≤ n – m +1                                             (21) 

and one has S = n – m + 1 when the information is 

complete, while S < n – m + 1 when the information is 

incomplete. 

9 Examples of Refined Neutrosophic Set 

with Partially Dependent and Partially 

Independent Components. 

Suppose T is split into T1, T2, T3, and I is not split, 

while F is split into F1, F2. Hence one has: 

{T1, T2, T3; I; F1, F2}.                                       (22) 

Therefore a total of 6 (sub)components.  

a) If all 6 components are 100% independent two

by two, then:

0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 6    (23) 

b) Suppose the subcomponets T1, T2, and F1 are

100% dependent all together, while the others

are totally independent two by two and

independent from T1, T2, F1, therefore:

0 ≤ T1 + T2 + F1 ≤ 1                                        (24) 

 whence 

0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 6 – 3 + 1 = 4.  (25) 

One gets equality to 4 when the information is 

complete, or strictly less than 4 when the information is 

incomplete. 

c) Suppose in another case that T1 and I are 20%

dependent, or d°(T1, I) = 20%, while the others

similarly totally independent two by two and

independent from T1 and I, hence

0 ≤ T1 + I ≤ 2 – 0.2 = 1.8     (26) 

whence 

0 ≤ T1 + T2 + T3 + I + F1 +F2 ≤ 1.8 + 4 = 5.8,       (27) 

since 0 ≤ T2 + T3 + F1 +F2 ≤ 4.           (28) 

Similarly, to the right one has equality for complete 

information, and strict inequality for incomplete 

information. 

Conclusion. 

We have introduced for the first time the degree of 

dependence/independence between the components of 

fuzzy set and neutrosophic set. We have given easy 

examples about the range of the sum of components, 

and how to represent the degrees of dependence and 

independence of the components. Then we extended it 

to the refined neutrosophic set considering the degree of 

dependence or independence of subcomponets. 
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Abstract. The present paper proposes neutrosophic soft 

multi-attribute decision making based on grey relational 

projection method. Neutrosophic soft sets is a combina-

tion of neutrosophic sets and soft sets and it is a new 

mathematical apparatus to deal with realistic problems in 

the fields of medical sciences, economics, engineering, 

etc. The rating of alternatives with respect to choice pa-

rameters is represented in terms of neutrosophic soft sets. 

The weights of the choice parameters are completely un-

known to the decision maker and information entropy 

method is used to determine unknown weights. Then, 

grey relational projection method is applied in order to 

obtain the ranking order of all alternatives. Finally, an il-

lustrative numerical example is solved to demonstrate the 

practicality and effectiveness of the proposed approach. 

Keywords: Neutrosophic sets; Neutrosophic soft sets; Grey relational projection method; Multi-attribute decision making.

1 Introduction 

In real life, we often encounter many multi-attribute 

decision making (MADM) problems that cannot be 
described in terms of crisp numbers due to inderminacy 
and inconsistency of the problems. Zadeh [1] incorporated 
the degree of membership and proposed the notion of 
fuzzy set to handle uncertainty. Atanassov [2] introduced 
the degree of non-membership and defined intuitionistic 

fuzzy set to deal with imprecise or uncertain decision 
information. Smarandache [3, 4, 5, 6] initiated the idea of 
neutrosophic sets (NSs) by using the degree of 
indeterminacy as independent component to deal with 
problems involving imprecise, indeterminate and 
inconsistent information which usually exist in real 

situations. In NSs, indeterminacy is quantified and the 
truth-membership, indeterminacy-membership, falsity-
membership functions are independent and they assume 
the value from ] -0, 1+ [.  However, from scientific and 
realistic point of view Wang et al. [7] proposed single 
valued NSs (SVNSs) and then presented the set theoretic 

operators and various properties of SVNSs. 
Molodtsov [8] introduced the soft set theory for 

dealing with uncertain, fuzzy, not clearly described objects 
in 1999. Maji et al. [9] applied the soft set theory for 
solving decision making problem. Maji et al. [10] also 

defined the operations AND, OR, union, intersection of 
two soft sets and also proved several propositions on soft 

set operations. However, Ali et al. [11] and Yang [12] 
pointed out that some assertions of Maji et al. [10] are not 
true in general, by counterexamples. The soft set theory 
have received a great deal of attention from the researchers 
and many researchers have combined soft sets with other 
sets to make different hybrid structures like fuzzy soft sets 

[13], intuitionistic fuzzy soft sets [14], vague soft sets [15] 
generalized fuzzy soft sets [16], generalized intuitionistic 
fuzzy soft [17], possibility vague soft set [18], etc. The 
different hybrid systems have had quite impact on solving 
different practical decision making problems such as 
medical diagnosis [16, 18], plot selection, object 

recognition [19], etc where data set are imprecise and 
uncertain. Maji et al. [13, 14] incorporated fuzzy soft sets 
and intuitionistic soft sets based on the nature of the 
parameters involved in the soft sets.  Cağman et al. [20] 
redefined fuzzy soft sets and their properties and then 
developed fuzzy soft aggregation operator for decision 

problems. Recently, Maji [21] introduced the concept of 
neutrosophic soft sets (NSSs) which is a combination of 
neutrosophic sets [3, 4, 5, 6] and soft sets [8], where the 
parameters are neutrosophic sets. He also introduced 
several definitions and operations on NSSs and presented 
an application of NSSs in house selection problem. Maji 
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[22] further studied weighted NSSs by imposing some 
weights on the parameters. Based on the concept of 
weighted NSSs, Maji [23] solved a multi-criteria decision 
making problem.  

 MADM problem generally comprises of selecting the 
most suitable alternative from a set of alternatives with 

respect to their attributes and it has received much 
attention to the researchers in the field of decision science, 
management, economics, investment [24, 25], school 
choice [26], etc. Grey relational analysis (GRA) [27] is an 
effective tool for modeling MADM problems with 
complicated interrelationships between numerous factors 

and variables. GRA is applied in a range of MADM 
problems such as agriculture, economics, hiring 
distribution [28], marketing, power distribution systems 
[29], personal selection, teacher selection [30], etc. Biswas 
et al. [24] investigated entropy based GRA method for 
solving MADM problems under single valued 

neutrosophic assessments. Biswas et al. [25] also studied 
GRA based single valued neutrosophic MADM problems 
with incomplete weight information. Mondal and Pramanik 
[26] presented a methodological approach to select the best 
elementary school for children using neutrosophic MADM 
with interval weight information based on GRA. Mondal 

and Pramanik [31] also developed rough neutrosophic 
MADM based on modified GRA. 

Zhang et al.. [32] developed a new grey relational 
projection (GRP) method for solving MADM problems in 
which the attribute value takes the form of intuitionistic 
trapezoidal fuzzy number, and the attribute weights are 

unknown. In this paper, we have extended the concept of 
Zhang et al. [32] to develop a methodology for solving 
neutrosophic soft MADM problems based on grey 
relational projection method with unknown weight 
information. 

Rest of the paper is organized as follows. Section 2 

presents some definitions concerning NS, SVNS, soft sets, 
and neutrosophic soft sets. A neutrosophic soft MADM 
based on GRP method is discussed in Section 3. In Section 
4, we have solved a numerical example in order to demon-
strate the proposed procedure. Finally, Section 5 concludes 
the paper. 

2 Preliminaries 

In this section we briefly present some basic defini-
tions regarding NSs, SVNSs, soft sets, and NSSs. 

2.1 Neutrosophic set 

Definition 1 [3, 4, 5, 6] Consider X be a universal space of 

objects (points) with generic element in X denoted by x. 

Then a NS is defined as follows: 

A= {x, )(F),(I),(T AAA xxx   x X}. 

where, )(TA x , )(IA x , )(FA x : X  ]-0, 1+[ are the truth-

membership, indeterminacy-membership, and falsity-

membership functions, respectively and -0  sup )(TA x + 

sup )(IA x + sup )(FA x  3+. We consider the NS which 

assmes the value from the subset of [0, 1] because] -0, 1+ 

[ will be hard to apply in real world science and 

engineering problems. 

Definition 2 [7] Let X be a universal space of points with 

generic element in X represented by x. Then a SVNS N
~

  X is characterized by a truth-membership function 

)(T
N
~ x , a indeterminacy-membership function )(I

N
~ x , and 

a falsity-membership function )(F
N
~ x with )(T

N
~ x , )(I

N
~ x , 

)(F
N
~ x : X  [0, 1] for each point x X and we have, 

0  sup )(T
N
~ x + sup )(I

N
~ x + sup )(F

N
~ x  3. 

Definition 3 [7] The complement of a SVNS N
~

is 

represented by
CN

~
and is defined by 

)(T CN
~ x = )(F

N
~ x ; )(I CN

~ x = 1 - )(I
N
~ x ; )(F CN

~ x = )(T
N
~ x    

Definition 4 [7] For two SVNSs AN
~

and BN
~

AN
~

= {x, )(F),(I),(T
AAA N

~
N
~

N
~ xxx  x X} 

and 

BN
~

= {x, )(F),(I),(T
BBB N

~
N
~

N
~ xxx   x X} 

1. AN
~

 BN
~

if and only if 

)(T
AN

~ x  )(T
BN

~ x ; )(I
AN

~ x  )(I
BN

~ x ; )(F
AN

~ x  )(F
BN

~ x  

2. AN
~

= BN
~

if and only if 

)(T
AN

~ x = );(T
BN

~ x )(I
AN

~ x = )(I
BN

~ x ; )(F
AN

~ x = );(F
BN

~ x  x

X. 

3. AN
~

 BN
~
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= }
|)}(F),(Fmin{

)},(I),(min{I)},(T),(max{T,
{

BA

BABA

N
~

N
~

N
~

N
~

N
~

N
~

Xxxx

xxxxx


 

4. AN
~

 BN
~

= }
|)}(F),(Fmax{

)},(I),(max{I)},(T),(min{T,
{

BA

BABA

N
~

N
~

N
~

N
~

N
~

N
~

Xxxx

xxxxx


 

Definition 5 [7] The Hamming distance between AN
~

= 

{xi, )(F),(I),(T iN
~iN

~iN
~

AAA

xxx   xiX} and BN
~

= 

{xi, )(F),(I),(T iN
~iN

~iN
~

BBB

xxx   xi X} is defined as given 

below. 

H ( AN
~

, BN
~

) = 


n

1i3

1
| )(T iN

~
A

x - )(T iN
~

B

x | + | )(I iN
~

A

x -

)(I iN
~

B

x | + | )(F iN
~

A

x - )(F iN
~

B

x |     (1) 

with the property: 0   H ( AN
~

, BN
~

)  1. 

2.2 Soft sets and Neutrosophic soft sets 

Definition 6 [8] Suppose U is a universal set, F is a set of 

parameters and P (U) is a power set of U. Consider a non-

empty set A, where A  F. A pair (M, A) is called a soft 

set over U, where M is a mapping given by M: A P (U). 

Definition 7 [21] Let U be an initial universal set. Let F be 

a set of parameters and A be a non-empty set such that A 

 F. P(U) represents the set of all neutrosophic subsets of 

U. A pair (M, A) is called a NSS over U, where M is a 

mapping given by M: A P (U). 

In other words, (M, A) over U is a parameterized family f 

of all neutrosophic sets over U.  

Example: Let U be the universal set of objects or points. F 

= {very large, large, medium large, medium low, low, very 

low, attractive, cheap, expensive} is the set of parameters 

and each parameter is a neutrosophic word or sentence 

concerning neutrosophic word. To define neutrosophic soft 

set means to find out very large objects, large objects, 

medium large objects, attractive objects, and so on. Let U 

= (u1, u2, u3, u4, u5, u6) be the universal set consisting of six 

objects and F = {f1, f2, f3, f4} be a set of parameters. Here, 

f1, f2, f3, f4 stand for the parameters ‘very large’, ‘large’, 

‘attractive’, ‘expensive’ respectively. Suppose that, 

M (very large) = {< u1, 0.8, 0.3, 0.4>, < u2, 0.7, 0.3, 0.5>, 

< u3, 0.8, 0.2, 0.3>, < u4, 0.6, 0.4,  0.5>, < u5, 0.9, 0.3, 0.3>, 

< u6, 0.8, 0.4, 0.5>}, 

M (large) = {< u1, 0.7, 0.3, 0.2>, < u2, 0.6, 0.3, 0.4>, < u3, 

0.6, 0.4, 0.4>, < u4, 0.6, 0.3, 0.2>, < u5, 0.7, 0.5, 0.4>, < u6, 

0.6, 0.5, 0.6>}, 

M (attractive) = {< u1, 0.9, 0.2, 0.2>, < u2, 0.8, 0.3, 0.2>, < 

u3, 0.8, 0.2, 0.3>, < u4, 0.9, 0.4, 0.2>, < u5, 0.8, 0.5, 0.4>, < 

u6, 0.7, 0.4, 0.6>}, 

M (expensive) = {< u1, 0.8, 0.2, 0.3>, < u2, 0.9, 0.1, 0.2>, 

< u3, 0.8, 0.3, 0.5>, < u4, 0.9, 0.3, 0.3>, < u5, 0.8, 0.4, 0.5>, 

< u6, 0.8, 0.2, 0.5>} 

Therefore, M (very large) means very large objects, M 

(attractive) means attractive objects, etc. Now we can 

represent the above NSS (M, A) over U in the form of a 

table (See the Table 1). 

Table 1. Tabular form of the NSSs (M, A) 

U f1 = very 

large 

f2 = large f3 = 

attractive 

f4 = 

expensive 

u1 (0.8, 0.3, 

0.4) 

(0.7, 0.3, 

0.2) 

(0.9, 0.2, 

0.2) 

(0.8, 0.2, 

0.3) 

u2 (0.7, 0.3, 

0.5) 

(0.6, 0.3, 

0.4) 

(0.8, 0.3, 

0.2) 

(0.9, 0.1, 

0.2) 

u3 (0.8, 0.2, 

0.3) 

(0.6, 0.4, 

0.4) 

(0.8, 0.2, 

0.3) 

(0.8, 0.3, 

0.5) 

u4 (0.6, 0.4, 

0.5) 

(0.6, 0.3, 

0.2) 

(0.9, 0.4, 

0.2) 

(0.9, 0.3, 

0.3) 

u5 (0.9, 0.3, 

0.3) 

(0.7, 0.5, 

0.4) 

(0.8, 0.5, 

0.4) 

(0.8, 0.4, 

0.5) 

u6 (0.8, 0.4, 

0.5) 

(0.6, 0.5, 

0.6) 

(0.7, 0.4, 

0.6) 

(0.8, 0.2, 

0.5) 

Definition 8 [21]: Consider two NSSs (M1, A) and (M2, B) 

over a common universe U. (M1, A) is said to be 

neutrosophic soft subset of (M2, B) if M1   M2, and 

(f)M1
T (x)  (f)M2

T (x), (f)M1
I (x)  (f)M2

I (x), (f)M1
F (x) 


(f)M2

F (x),  f  A, xU. We represent it by (M1, 

A) (M2, B).
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Definition 9 [21]: Let (M1, A) and (M2, B) be two NSSs 

over a common universe U. They are said to be equal i.e. 

(M1, A) = (M2, B) if (M1, A)  (M2, B) and (M2, B)  (M1, 

A). 

Definition 10 [21]: Consider F = {f1, f2, …, fq} be a set of 

parameters. Then, the NOT of F is defined by NOT F = 

{not f1, not f2, …, not fq}, where it is to be noted that NOT 

and not are different operators. 

Definition 11 [21]: The complement of a neutrosophic soft 

set (M, A) is denoted by (M, A)C and is represented as (M, 

A)C = (MC, NOT A) with
(f)MCT (x) = M(f)F (x); 

(f)MCI (x) 

= M(f)I (x); 
(f)M CF (x) = M(f)T (x), where MC: NOT A P (U). 

Definition 12 [21]: A NSS (M, A) over a universe U is 

called a null NSS with respect to the parameter A if 

M(f)T (m) = M(f)I (m) = M(f)F (m) = 0,  f  A,  mU. 

Definition 13 [21]: Let (M1, A) and (M2, B) be two NSSs 

over a common universe U. The union (M1, A) and (M2, B) 

is defined by (M1, A)   (M2, B) = (M, C), where C = A 

  B and the truth-membership, indeterminacy-

membership and falsity-membership functions are defined 

as follows: 

M(f)T (m)  = (f)M1
T (m), if f M1 - M2, 

      = (f)M 2
T (m), if f M2 – M1, 

      = max ( (f)M1
T (m), (f)M2

T (m)), if f M1M2. 

M(f)I (m)  = (f)M1
I (m), if f M1 - M2, 

      = (f)M2
I (m), if f M2 – M1, 

 = 
2

)m(I)m(I (f)M(f)M 21


 if f M1M2. 

M(f)F (m)  = (f)M1
F (m), if f M1 - M2, 

      = (f)M2
F (m), if f M2 – M1, 

      = min ( (f)M1
F (m), (f)M2

F (m)), if f M1M2. 

Definition 14 [21]: Suppose (M1, A) and (M2, B) are two 

NSSs over a common universe U. The intersection (M1, A) 

and (M2, B) is defined by (M1, A)   (M2, B) = (N, D), 

where D = A  B and the truth-membership, 

indeterminacy-membership and falsity-membership 

functions of (N, D) are as follows: 

N(f)T (m) = min ( (f)M1
T (m), (f)M2

T (m)); N(f)I (m) 

=
2

)m(I)m(I (f)M(f)M 21


; N(f)F (m) = max ( (f)M1
F (m), 

(f)M2
F (m)). 

3 A neutrosophic soft MADM based on grey rela-
tional projection method 

Assume G = {g1, g2, …, gp}, (p  2) be a discrete set of 
alternatives and A ={a1, a2, …, aq}, (q  2) be a set of 
choice parameters under consideration in a MADM 
problem. The rating of performance value of alternative gi, 

i = 1, 2, …, p with respect to the choice parameter aj, j = 1, 
2, …, q is represented by a tuple tij = ( )M(a j

T (gi), )M(a j
I (gi), 

)M(a j
F (gi)), where for a fixed i the value tij (i = 1, 2, …, p; j 
= 1, 2, …, q) denotes NSS of all the p objects. Let w = {w1, 
w2, …, wq} be the weight vector assigned for the choice 
parameters, where 0   wj  1with 



q

1j
jw = 1, but specific 

value of wj is unknown. Now the steps of decision making 
based on neutrosophic soft information are described as 
given below. 

Step 1. Construction of criterion matrix with SVNSs 

GRA method is appropriate for dealing with 
quantitative attributes. However, in the case of qualitative 
attribute, the performance values are taken as SVNSs. The 
performance values 

ijN
t ~ (i = 1, 2, …, p; j = 1, 2, …, q) could 

be arranged in the matrix called criterion matrix and whose 
rows are labeled by the alternatives and columns are 
labeled by the choice parameters.  The criterion matrix is 
presented as follows: 

N
D ~  =

qp
N ij

t


~ = 

























pqp2p1

2q2221

1q1211

...

......

......

...

...

ttt

ttt

ttt

where tij = (Tij, Iij, Fij) where Tij, Iij, Fij[0, 1] and 0  Tij + 

Iij + Fij  3, i = 1, 2, …, p; j = 1, 2, …, q. 

Step 2. Determination of weights of the attributes 

In the decision making situation, the decision maker 
encounters problem of identifying the unknown attributes 
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weights, where it may happen that the weights of attributes 
are different.  In this paper, we use information entropy 
method in order to obtain unknown attribute weight. The 
entropy measure can be used when weights of attributes 
are dissimilar and completely unknown to the decision 
maker. The entropy measure [33] of a SVNS N

~
 = 

{x, )(F),(I),(T
N
~

N
~

N
~ xxx is defined as given below. 

Ei( N
~

) = 1 - )(I)(I))(F)(T(
1 C

N
~

N
~

N
~

p

1 N
~ iii

i
i xxxx

n



  (2)          

which has the following properties: 

(i). Ei ( N
~

) = 0 if N
~

is a crisp set and )(I iN
~ x = 0, xX. 

(ii). Ei ( N
~

) = 0 if )(F),(I),(T iN
~iN

~iN
~ xxx  = <0.5, 0.5, 

0.5>,  xX. 

(iii). Ei ( 1N
~

)  Ei ( 2N
~

) if 1N
~

is more uncertain than 2N
~

i.e. 

)(T iN
~

1

x + )(F iN
~

1

x  )(T iN
~

2

x + )(F iN
~

2

x

and )(I)(I i

C

N
~iN

~
11

xx   )(I)(I i

C

N
~iN

~
22

xx  . 

(iv).  Ei ( N
~

) = Ei (
CN

~
), xX. 

Therefore, the entropy value Ej of the j-th attribute can be 

obtained as follows: 

Ej = 1 - )(xI)(xI))(xF)(x(T
q

1
i

C

ijiijiij

p

1i
iij 


, 

(j = 1, 2,…, q).                                                                  (3)    

Here, 0 Ej 1 and according to Hwang and Yoon [34] 

and Wang and Zhang [35] the entropy weight of the j-th 

attribute is defined as follows: 

wj = 






q

1j
j

j

E1

E1
, with 0  wj  1 and 



q

1j
jw = 1      (4)                                                                       

Step 3. Determination of ideal neutrosophic estimates 

reliability solution (INERS) and ideal neutrosophic 

estimates un-reliability solution (INEURS) 

Dezart [36] proposed the idea of single valued 

neutrosophic cube. From this cube one can easily obtain 

ideal neutrosophic estimates reliability solution (INERS) 

and ideal neutrosophic estimates un-reliability solution 

(INEURS). An INERS 

N
~P = [ 

1N
~p , 

2N
~p , …, 

qN
~p ] is a 

solution in which every element


jN
~p = <



jT ,


jI ,


jF >, 

where


jT =
i

max {Tij},


jI =
i

min {Iij},


jF =
i

min {Fij} in the 

criteria matrix
N

D ~ = < Tij, Iij, Fij > qp  for i = 1, 2, …, p; j = 

1, 2, …, q. Also, an INEURS 


N
~P = [ 

1N
~p , 

2N
~p , …, 

qN
~p ] is 

a solution in which every element


jN
~p = <



jT ,


jI ,


jF > qp  , 

where


jT =
i

min {Tij},


jI =
i

max {Iij},


jF =
i

max {Fij} in the 

criterion matrix
N

D ~ = < Tij, Iij, Fij > qp  for i = 1, 2, …, p; j 

= 1, 2, …, q. 

Step 4. Grey relational projection method  

3.1 Projection method 

Definition 15 [37, 38]: Consider a = (a1, a2, …, aq) and b 

= (b1, b2, …, bq) are two vectors, then cosine of included 

angle between vectors a and b is defined as follows: 

Cos (a, b) = 











q

1j

2

j

q

1j

2

j

q

1j
jj )(

ba

ba

 (5)   

Obviously, 0 < Cos (a, b)  1, and the direction of a and b 

is more accordant according to the bigger value of Cos (a, 

b). 

Definition 16 [37, 38]: Let a = (a1, a2, …, aq) be a vector, 

then norm of a is given by 

 || a || = 


q

1j

2

ja     (6) 

The direction and norm are two important parts of a vector. 
However, Cos (a, b) can only compute whether their 
directions are accordant, but cannot determine the 
magnitude of norm. Therefore, the closeness degree of two 
vectors can be defined by the projection value in order to 
take the norm magnitude and cosine of included angle 

together. 

Definition 17 [37, 38]: Let a = (a1, a2, …, aq) and b = (b1, 

b2, …, bq) be two vectors, then the projection of vector a 

onto vector b is defined as follows: 
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Pr (a) = || a || Cos (a, b) = 




q

1j

2

ja 










q

1j

2

j

q

1j

2

j

q

1j
jj )(

ba

ba

=







q

1j

2

j

q

1j
jj )(

b

ba

 (7) 

The bigger the value of Pr (a) is, the more close the vector 

b to the vector a is. 

3.2 Grey correlation projection method 

The grey correlation projection method is a combination of 
grey correlation method and projection method. The 

method is presented in the following steps. 

Step-1. The grey relational coefficient of each alternative 

from INERS is obtained from the following formula: 



ij =








ij
ji

ij

ij
ji

ij
ji

maxmaxσ

maxmaxσminmin

  (8)    

where
 ij = d(

jN
~t , 



jN
~p ) = Hamming distance 

between
jN

~t and


jN
~p , (i = 1, 2, ..., p; j = 1, 2, ..., q).  

Also, the grey relational coefficient of each alternative 

from INEURS is obtained from the formula given below: 



ij =








ij
ji

ij

ij
ji

ij
ji

maxmaxσ

maxmaxσminmin

 (9)   

where
 ij = d(

jN
~t , 

jN
~p ) = Hamming distance 

between
jN

~t and


jN
~p , (i = 1, 2, ..., p; j = 1, 2, ..., q).  

Here, σ[0, 1] represents the environmental or resolution 

coefficient and it is used to adjust the difference of the 

relation coefficient. Generally, we setσ= 0.5. 

Step-2. Grey correlation coefficient matrix
 between 

every alternative and INERS is formulated as given below. 

 = 































pq12p1

2q1221

1q1211

...

......

......

...

...







 

and correlation coefficient between INERS and INERS is: 



0 = (


01 , 


02 , …, 

0q ) = (1, 1, …, 1) 

Grey correlation coefficient matrix
 between every 

alternative and INEURS is constructed as follows. 

 = 































pq12p1

2q1221

1q1211

...

......

......

...

...







Similarly, the correlation coefficient between INEURS and 

INEURS is: 



0 = (


01 , 


02 , …, 


0q ) = (1, 1, …, 1) 

Step-3. Weighted neutrosophic grey correlation coefficient 

matrix G between every alternative and INERS is 

formulated as given below. 

G+ = 































pqq122p11

2qq122211

1qq122111

...

......

......

...

...







www

www

www

The weighted correlation coefficient between INERS and 

INERS is: 



0G = (w1


01 , w2


02 , …, wq


0q ) = (w1, w2, …, wq) 

Weighted neutrosophic grey correlation coefficient matrix 

G- between every alternative and INEURS is presented as 

follows: 

G- = 































pqq122p11

2qq122211

1qq122111

...

......

......

...

...







www

www

www

and similarly, weighted correlation coefficient between 

INEURS and INEURS is presented as follows: 



0G = (w1


01 , w2


02 , …, wq


0q ) = (w1, w2, …, wq) 
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Step-4. Calculation of the weighted grey correlation of 

alternative gi onto the INERS can be obtained as:       



iPr = || Gi || Cos (Gi, 


0G ) = 




q

1j

2

ijj )( w 

















q

1j

2

j

q

1j

2

ijj

q

1j
jijj

)(

))((

ww

ww




=







 

q

1j

2

j

q

1j
jijj ))((

w

ww 

=









q

1j

2

j

q

1j
ij

2

j )(

w

w 
        (10) 

Similarly, the weighted grey correlation of alternative gi 

onto the INEURS can be obtained as follows: 



iPr =|| Gi || Cos (Gi, 


0G ) = 




q

1j

2

ijj )( w 

















q

1j

2

j

q

1j

2

ijj

q

1j
jijj

)(

))((

ww

ww




=







 

q

1j

2

j

q

1j
jijj ))((

w

ww 









q

1j

2

j

q

1j
ij

2

j )(

w

w 
        (11)                                                                                                 

Step-5. Calculation of the neutrosophic relative relational 

degree 

The ranking order of all alternatives can be obtained 
according to the value of the neutrosophic relative 
relational degree. We calculate the neutrosophic relative 
relational degree by using the following equation 

Ci = 



 ii

i

PrPr

Pr
, i = 1, 2, …, p.      (12) 

Rank the alternatives according to the values of Ci, i = 
1, 2, …, p in descending order and choose the alternative 
with biggest Ci. 

4 A numerical example 

We consider the decision making problem for 
selecting the most suitable house for Mr. X [21]. Let Mr. X 
desires to select the most suitable house out of p houses on 
the basis of q parameters. Also let, the rating of or 
performance value of the house gi, i = 1, 2, ..., p with 

respect to parameter aj, j = 1, 2, …, q is represented by 

ijN
t ~ = ( )(gT i)(fG j

, )(gI i)(fG j
, )(gF i)(fG j

) such that for a fixed 
i, 

ijN
t ~ denotes neutrosophic soft set of all the q objects. Let, 

A = {beautiful, cheap, in good repairing, moderate, 
wooden} be the set of choice parameters. The criterion 
decision matrix (see Table 2) is presented as follows: 

Table 2. Tabular form of criterion decision matrix 

U beautiful cheap in good 

repairing 
moderate wooden 

g1 (0.6,0.3, 

0.8) 

(0.5, 

0.2, 

0.6) 

(0.7, 

0.3, .4) 

(0.8, 0.5, 

0.6) 
(0.6, 

0.7, 

0.2) 

g2 (0.7, 

0.2, 0.6) 

(0.6, 

0.3, 

0.7) 

(0.7, 

0.5, .6) 
(0.6, 0.8, 

0.3) 
(0.8, 

0.1, 

0.8) 

g3 (0.8, 

0.3, 0.4) 

(0.8, 

0.5, 

0.1) 

(0.3, 0.5, 

0.6) 

(0.7, 0.2, 

0.1) 
(0.7, 

0.2, 

0.6) 

g4 (0.7, 0.5, 

0.6) 

(0.6, 

0.8, 

0.7) 

(0.7, 0.6, 

0.8) 
(0.8, 0.3, 

0.6) 
(0.8, 

0.3, 

0.8) 

g5 (0.8, 0.6, 

0.7) 
(0.5, 

0.6, 

0.8) 

(0.8, 

0.7,0.6) 
(0.7, 0.8, 

0.3) 

(0.7, 

0.2, 

0.6) 

The proposed procedure is presented in the following steps. 

Step 1. Calculation of the weights of the attribute 

Entropy value Ej (j = 1, 2, …, 5) of the j-th attribute can be 
obtained from the equation (3) as follows: 
E1 = 0.576, E2 = 0.556, E3 = 0.74, E4 = 0.564, E5 = 0.24. 

Then the corresponding normalized entropy weights are 
obtained as given below. 
w1 = 0.2155, w2 = 0.2076, w3 = 0.2763, w4 = 0.2111, w5 = 
0.0895, where 



5

1j
jw = 1. 

Step 2. Calculation of INERS and INEURS 

The INERS (


N
~P ) and INEURS (



N
~P ) of the decision 

matrix are shown as follows: 


N
~P = < (0.8, 0.2, 0.4); (0.8, 0.2, 0.1); (0.8, 0.3, 0.4); (0.8, 

0.2, 0.1); (0.8, 0.1, 0.2) > 


N
~P = < (0.6, 0. 6, 0.8); (0.5, 0.8, 0.8); (0.3, 0.7, 0.8); (0.6, 

0.8, 0.6); (0.6, 0.7, 0.8) > 
Step 3. Determine the grey relational coefficient of each 

alternative from INERS and INEURS 
The grey relational coefficient of each alternative from 
INERS can be determined as follows: 



ij =























615.0500.0615.0380.0571.0

532.0615.0532.0380.0615.0

615.0000.1005.0799.0000.1

615.0470.0665.0500.0799.0

532.0532.0000.1532.0571.0

Similarly, the neutrosophic grey relational coefficient of 
each alternative from INEURS can be obtained as given 
below. 
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

ij =























516.0714.0555.0880.0000.1

599.0555.0650.0880.0714.0

516.0405.0714.0384.0483.0

516.0788.0516.0555.0555.0

599.0650.0405.0516.0000.1

Step 4. Calculation of the weighted grey correlation 

projection 

Calculation of the weighted grey correlation projection of 
alternative gi onto the INERS and INEURS can be 
obtained from the equations (10) and (11) respectively as 
follows: 



1Pr = 0.1538, 

2Pr = 0.1353, 


3Pr = 0.1686, 

4Pr = 0.1172, 


5Pr = 0.117; 


1Pr = 0.1333, 

2Pr = 0.1283, 


3Pr = 0.1157, 

4Pr = 0.1502, 


5Pr = 0.1627. 
Step 5. Calculate the grey relative relational degree 
We compute the grey relative relational degree by using 
equation (12) as follows: 

C1 = 0.5357, C2 = 0.5133, C3 = 0.5930, C4 = 0.4188, C5 = 
0.4183. 
Step 6. The ranking order of the houses can be obtained 
according to the value of grey relative relational degree. It 
is observed that C3 > C1 > C2 > C4 > C5 and so the highest 
value of grey relative relational degree is C3. Therefore, the 

house g3 is the best alternative for Mr. X. 
Note: We now compare our proposed method with the 
method discussed by Maji [21]. Maji [21] first constructed 
the comparison matrix and then computed the score Si of gi, 
 i. The preferable alternative is selected based on the 
maximum score of Si. The ranking order of the houses is 

given by g5 > g3 > g4 > g1 > g2. In the present paper, a neu-
trosophic soft MADM problem through grey correlation 
projection method is proposed with unknown weights in-
formation. The ranking of alternatives are determined by 
the relative closeness to INERS which combines grey rela-
tional projection values from INERS and INEURS to each 

alternative. The ranking order of the houses is presented as 
g3 > g1 > g2 > g4 > g5. However, if he rejects the house h3 
for any reason, his next preference will be g1. 

5 Conclusion 

In this paper, we have presented a new approach for 
solving neutrosophic soft MADM problem based on GRP 

method with unknown weight information of the choice 
parameters. The proposed approach is a hybrid model of 
neutrosophic soft sets and GRP method where the choice 
parameters are represented in terms of single valued 
neutrosophic information. The weights of the parameters 
are determined by using information entropy method. In 

the proposed approach, grey relative relational degrees of 
all alternatives are calculated in order to rank the 
alternatives and then the most suitable option is selected. 
An illustrative example for house selection is provided in 
order to verify the practicality and effectiveness of the 
proposed approach. We hope that that the proposed 

approach can be effective in dealing with different MADM 
problems such as cluster analysis, image processing, 
medical diagnosis, pattern recognition, object selection. 

In the future, we shall investigate generalized neutro-
sophic soft GRP, interval neutrosophic soft GRP, intuition-
istic soft GRP methods for practical MADM problems. 
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Abstract.  This article sheds light on the 

possibility of finding the minimum solution set 

of neutrosophic relational geometric progra-

mming with (max, min) composition. This 

work examines the privacy enjoyed by both 

neutrosophic logic and geometric progra- 

mming, and how it affects the minimum 

solutions. It is the first attempt to solve this 

type of problems. Neutrosophic relation 

equations are important branches of neutro-

sophic mathematics. At present they have been 

widely applied in chemical plants, transport-

ation problem, study of bonded labor problem 

[5] . 

Keyword:- Geometric Programming, Neutrosophic Relational Equations, Fuzzy Integral 

Neutrosophic Matrices, Minimum Solution, Fuzzy Neutrosophic Relational Geometric Programming 

(FNRGP).   

Introduction 

    The notion of  neutrosophic relational 

equations which are abundant with the concept 

of indeterminacy, was first introduced by 

Florentin Smarandache [5]. We call 

𝑥𝜊𝐴 = 𝑏  (1) 

a neutrosophic relational equations, where 

A = (aij)m×n is fuzzy integral neutrosophic

matrix with entries from [0,1] ∪ 𝐼 ,𝑏 =
(𝑏1, … , 𝑏𝑛), 𝑏𝑗 ∈ [0,1] ∪ 𝐼 and ′ο′ is the 

(𝑚𝑎𝑥 –𝑚𝑖𝑛) composition operator. The pio-

neering contribution for the theory of geome-

tric programming (GP)  problems goes to 

Zener , Duffin and Peterson in 1961. A large 

number of applications for  GP and fuzzy 

relation GP can be found in business administ-

ration, technological economic analysis, resou-

rce allocation, environmental engineering, 

engineering optimization designment and mod-

ernization of management, therefore it is sig-

nificant to solve such a programming. B.Y. 

Cao proposed the fuzzy GP problems in 1987. 

He was the first to deal with fuzzy relation 

equations with GP at 2007. In a similar way to 

fuzzy relational equations, when the solution 

set of  problem (1) is not empty, it's in general 

a non-convex set that can be completely 

determined by one maximum solution and a 

finite number of minimal solutions. H.E. 

Khalid presented  in details and for the first 

time the structure of  maximum solution for 

FNRGP at 2015. Recently there is not  an 

effective method to confirm whether the sol-

ution set has a minimal solution, which makes 

the solving problem more difficult. In the 

consideration of the importance of the GP and 

the neutrosophic relation equation in theory 

and applications, we propose a fuzzy neutro-

sophic relation GP, discussed optimal sol-

utions. 

1. Fundamentals Concepts

Definition 1.1 [5] 

 Let 𝑁 =  [0, 1]   ∪ 𝐼 where I is the indetermi-

nacy. The 𝑚 × 𝑛 matrices 𝐴 =  {(𝑎𝑖𝑗) | 𝑎𝑖𝑗  ∈

 𝑁} are called fuzzy integral neutrosophic mat-

rices. Clearly the  class of 𝑚 × 𝑛 matrices is 

contained in the class of fuzzy integral 

neutrosophic matrices.
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Definition 1.2

The optimization problem 

min f(x) = (c1Λx1
γ1) V,…… , V(cmΛxm

γm)
  s. t.       
xοA = b 
 (xi ∈ N)(1 ≤ i ≤ m) 

}  (2) 

is called (𝑉, 𝛬) (max-min) fuzzy neutrosophic 

relational GP. Where 𝐴 = (𝑎𝑖𝑗) (𝑎𝑖𝑗  ∈ 𝑁, 1 ≤

i ≤ m, 1 ≤ j ≤ n) is an (m x n)-dimensional 

fuzzy integral neutrosophic matrix,  𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑚) an m-dimensional variable vec-

tor, 𝑐 = (𝑐1  , 𝑐2, … , 𝑐𝑚) (𝑐𝑖 ≥ 0) and 𝑏 =
(𝑏1, 𝑏2, … , 𝑏𝑛) (𝑏𝑗 ∈ 𝑁)  are  (m & n) – dimen-

sional constant vectors respectively, γi is an ar-

bitrary real number. 

Without loss of generality, the elements of b 

must be rearranged in decreasing order and the 

elements of the matrix A is correspondingly 

rearranged. 

Definition 1.3  [3]: 

The neutrosophic algebraic structures are 

algebraic structures based on sets of neutro-

sophic numbers of the form 𝑍 =  𝑎 +  𝑏𝐼, wh-

ere a, b are real (or complex) numbers, and a is 

called the determinate part of 𝑍 and b is called 

the indeterminate part of 𝑍, while 𝐼 =
 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑐𝑦, with 𝑚𝐼 +  𝑛𝐼 =  (𝑚 +  𝑛)  
𝐼, 0 ∙ 𝐼 =  0, 𝐼𝑛 = I for integer 𝑛 ≥  1, and 

𝐼 / 𝐼 =  𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑. When  𝑎, 𝑏  are  real  

numbers,  then  𝑎  +   𝑏𝐼  is  called  a neutro-

sophic  real  number.  While  if  a,  b  are  com-

plex numbers,  then  𝑎  +   𝑏𝐼  is  called  a  ne-

utrosophic  complex number. 

Definition 1.4: [partial ordered relation of 

integral fuzzy neutrosophic numbers]

Depending upon the definition of integral 

neutrosophic lattice [5] ,  the author propose 

the following axioms:  

a- decreasing partial order 

1-The  greatest element in  [0,1) ∪ 𝐼 is 𝐼, 

max(𝐼, 𝑥) = 𝐼          ∀  𝑥 ∈ [0,1)  

2- The fuzzy values in a decreasing order will 

be rearranged as follows : 

1 > 𝑥1 > 𝑥2 > 𝑥3 > ⋯ > 𝑥𝑚 ≥ 0

3- One is the greatest element in  [0,1] ∪ 𝐼, 

 max(𝐼, 1) = 1 

b- Increasing partial order 

1- the smallest element in  (0,1] ∪ 𝐼 is 𝐼 , 

min(𝐼, 𝑥) = 𝐼          ∀  𝑥 ∈ (0,1]  

2- The fuzzy values in  increasing  order will 

be rearranged as follows : 

0 < 𝑥1 < 𝑥2 < 𝑥3 < ⋯ < 𝑥𝑚 ≤ 1

3- Zero is the smallest element in  [0,1] ∪ 𝐼 , 

 min(𝐼, 0) = 0 

Example :- To rearrange the following 

matrices:-   

 b = [𝐼 . 5 𝐼 . 85]𝑇  

𝑐 = [1 𝐼 0 𝐼 . 4 . 1 . 85]𝑇

in  

1-  decreasing order 

𝑏𝑇 = [𝐼  𝐼  0.85   0.5] 

𝑐𝑇 = [1  𝐼  𝐼  0.85  0.4   0.1  0] 

2- increasing order

𝑏𝑇 = [𝐼  𝐼   0.5  0.85 ] 

𝑐𝑇 = [0  𝐼  𝐼   0.1  0.4  0.85    1] 

Definition 1.5 

If there exists a solution to Eq.(1) it's called 

compatible.

Suppose 𝑋(𝐴, 𝑏) = {(𝑥1, 𝑥2, … , 𝑥𝑚)
𝑇 ∈ [0,1]𝑛

∪ 𝐼, 𝐼𝑛 = 𝐼 |𝑥𝜊𝐴 = 𝑏, 𝑥𝑖 ∈ 𝑁} is a solution set

of  Eq.(1) we define  𝑥1 ≤ 𝑥2⟺ 𝑥𝑖
1  ≤ 𝑥𝑖

2

(1 ≤ 𝑖 ≤ 𝑚), ∀ 𝑥1, 𝑥2 ∈ 𝑋(𝐴, 𝑏). Where " ≤ " 
is a partial order relation on 𝑋(𝐴, 𝑏).

Definition 1.6 [4]:  

If  ∃𝑥̂ 𝜖 𝑋(𝐴, 𝑏), such that 𝑥 ≤ 𝑥̂, ∀𝑥 ∈ 𝑋(𝐴, 
𝑏), then 𝑥̂ is called the greatest solution to 

Eq.(1)  and
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𝑥̂𝑖 =

{
 
 

 
 
1      𝑎𝑖𝑗 ≤ 𝑏𝑗  𝑜𝑟 𝑎𝑖𝑗 = 𝑏𝑗 = 𝐼

𝑏𝑗   𝑎𝑖𝑗 > 𝑏𝑗
0  𝑎𝑖𝑗 = 𝐼 𝑎𝑛𝑑 𝑏𝑗 = [0,1]

𝐼  𝑏𝑗 = 𝐼 𝑎𝑛𝑑  𝑎𝑖𝑗 = (0,1] 

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝. 𝑎𝑖𝑗 = 0 𝑎𝑛𝑑 𝑏𝑗 = 𝐼}
 
 

 
 

 (3) 

Corollary 1.7  [2]: 

If  𝑋(𝐴, 𝑏) ≠ ∅ . then 𝑥̂ ∈ 𝑋(𝐴, 𝑏).

Similar to fuzzy relation equations , the above  

corollary works on fuzzy neutrosophic relation 

equations. 

Notes 1.8: 

1- Every fuzzy variable is always a neutro-

sophic variable, but all neutrosophic variables 

in general are not fuzzy variables. [5] 

2- The set of all minimal solutions to Eq.(1) 

are denoted by  X̆ (A, b) .

3- X (𝐴, 𝑏) is non-convex, but it is composed 

of several n-dimensional rectangular regions 

with each rectangular region being a closed  

convex set [2].

2. The theory concept for exponents of

variables in the geometric programming via 

fuzzy neutrosophic relation equations:-  

B.Y Cao (2010) [1] had discussed optimization 

for fuzzy relation GP  by considering the follo-

wing three cases: 

1- if 𝛾𝑖 < 0 (1 ≤ 𝑖 ≤ 𝑚), then the greatest

solution 𝑥̂ to Eq.(1) is an optimal solution for 

problem (2). 

2- if 𝛾𝑖 ≥ 0, then a minimal solution 𝑥̆ to

Eq.(1) is an optimal solution to (2). 

3- the optimal solution to optimization 

problem (2) must exist in 𝑋̆(𝐴, 𝑏). Let 

𝑓(𝑥̆∗) = min {𝑓(𝑥̆)|𝑥̆ ∈ 𝑋̆(𝐴, 𝑏)}, where 

𝑥̆∗ ∈ 𝑋̆(𝐴, 𝑏), then ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏)  𝑓(𝑥) ≥
𝑓(𝑥̆∗). Therefore , 𝑥̆∗ is an optimal solution to 

optimization problem (2). 

Note that, in a more general case 𝑥̆∗ may not 

be unique. 

As for the general situation, the exponent 𝛾𝑖 of

𝑥𝑖 is either a positive number or a negative one

. B.Y.Cao proposed  

𝑅1 = {𝑖|𝛾𝑖 < 0,1 ≤ 𝑖 ≤ 𝑚},

𝑅2 = {𝑖|𝛾𝑖 ≥ 0,1 ≤ 𝑖 ≤ 𝑚}.

Then 𝑅1 ∩ 𝑅2 = ∅ , 𝑅1 ∪ 𝑅2 = 𝒾,  where

𝒾 = {1,2, … ,𝑚}. 

Let 𝑓1(𝑥) = ∏ 𝑥𝑖
𝛾𝑖

𝑖∈𝑅1  ,   𝑓2(𝑥) = ∏ 𝑥𝑖
𝛾𝑖

𝑖∈𝑅2 . 

Then 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥). Therefore, if some

exponent 𝛾𝑖 of 𝑥𝑖 are positive numbers while

others are negative, then 𝑥∗ is an optimal solu-

tion to optimization problem  (2) where 

𝑥𝑖
∗ = {

𝑥̂𝑖 ,  𝑖 ∈ 𝑅1
𝑥̆𝑖
∗  𝑖 ∈ 𝑅2

 (4) 

Really the above work can be coincided for 

our fuzzy neutrosophic relation in GP because 

the variables exponents (𝛾𝑖) are still real

numbers in problem (2), note that there is 

trouble in case of   𝛾𝑖 < 0 and corollary 3.3 ha-

ndled it.  

3. An adaptive procedure to find the

minimal solution for fuzzy neutrosophic 

geometric  programming with (𝒎𝒂𝒙,  
𝒎𝒊𝒏) relation composition. 

Definition 3.1 [5]: 

Matrix 𝑀 = (𝑚𝑖𝑗)𝑚×𝑛 is called "matrix

pattern" where 𝑚𝑖𝑗 = (𝑥̂𝑖  , 𝑎𝑖𝑗) , this

matrix is important element in the process 

of finding minimal solutions. 

3.2 Algorithm: 

Step 1- Rank the elements of b with decr-

easing order (definition 1.4) and find the 

maximum solution x̂ (see Eq.(3)). 

Step 2-  If 𝑥̂ is not a solution to Eq.(1), then 

go to step 15, otherwise go to step 3.  

Step 3- Find the "matrix pattern" (definition 

3.1). 

Step 4- Mark 𝑚𝑖𝑗, which satisfies min(𝑥̂𝑖 ,

𝑎𝑖𝑗) = 𝑏𝑗 .

109



Neutrosophic Sets and Systems, Vol. 11,  2016     

Huda E. Khalid: The Novel Attempt for Finding Minimum Solution in Fuzzy Neutrosophic Relational Geometric 

Programming (FNRGP) with (max,min ) Composition   

Step 5- Let the marked 𝑚𝑖𝑗 be denoted by

m̃ij 

Step 6- If  𝑗1is the smallest 𝑗 in all marked

m̃ij  , then set 𝑥̆𝑖1
∗  to be the smaller one of the

two elements in 𝑚̃𝑖1𝑗1.

Step 7- Delete the 𝑖1𝑡ℎ row and the 𝑗1𝑡ℎ
column of 𝑀 and then delete all the columns 

that contain marked m̃𝑖1𝑗, where 𝑗 ≠ 𝑗1.

Step 8- In all remained and marked m̃ij , find

the smallest 𝑗 and set it to be 𝑗2 , then let  𝑥̆𝑖2
∗

be the smaller of the two elements in m̃𝑖2𝑗2  .

Step 9- Delete the 𝑖2𝑡ℎ row and the 𝑗2𝑡ℎ
column of 𝑀 and then delete all the columns 

that contain marked m̃𝑖2𝑗, where 𝑗 ≠ 𝑗2.

Step 10- Repeat step 7 and 8 until no marked 

m̃ij is remained .

Step 11- The other 𝑥̆𝑖
∗ , which are not set in

5-9 , are set to be zero. 

Step 12- Let 𝑥̆∗ = (𝑥̆1
∗, 𝑥̆2

∗, … , 𝑥̆𝑚
∗) be the

quasi minimum for problem (2). 

Step 13- Check the sign of γi if γi < 0, then

put 𝑥̂𝑖 instead of 𝑥̆𝑖
∗  unless 𝑥̂𝑖 = 𝐼 (see Eq.(5))

Step 14- Print x∗ = 𝑥̆∗ ,  𝑓(𝑥∗) and stop.

Step 15- Print "have no solution" and stop. 

Corollary 3.3: 

If  𝛾𝑖 < 0 and the component (𝑥̂𝑖 = 𝐼) ∈ 𝑥̂, th-

en the component 𝑥̆𝑖
∗ ∈ 𝑥̆∗ will be optimal for

problem (2). 

So the Eq.(4) must be improved to appropriate 

problem (2) as follow:-  

𝑥𝑖
∗ = {

𝑥̂𝑖 ,                     𝑖 ∈ 𝑅1  𝑎𝑛𝑑 𝑥̂𝑖 ≠ 𝐼  

𝑥̆𝑖
∗   𝑖 ∈ 𝑅2  𝑜𝑟 (𝑖 ∈ 𝑅1 𝑎𝑛𝑑 𝑥̂𝑖 = 𝐼)

 (5) 

4. Numerical Example:-

Consider the following fuzzy neutrosophic 

relation GP problem :-    

Min𝑓(𝑥) = (1.5𝛬𝑥1
.5)𝑉(𝐼𝛬𝑥2)𝑉(. 8𝛬𝑥3

.5) 

𝑉(. 9𝛬𝑥4
−2) 𝑉(. 7𝛬𝑥5

−4)𝑉(I𝛬𝑥6
−1) 

 s. t. 

 𝑥𝜊𝐴 = 𝑏   where 

𝐴 =

[
 
 
 
 
 
𝐼
. 8
. 9
. 3
. 85
. 4

. 2

. 2

. 1
. 95
𝐼
. 8

. 8

. 8

. 4

. 1

. 1

. 1

. 1

. 1

. 1

. 1

. 1
0 ]
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𝑏 = (. 85, .6, .5, .1) 

It is clear that 𝑏 is arranged in decreasing 

order. 

The maximum solution is 

 𝑥̂  = (0, .5, .5, .6,0, .6) 

𝑀 =

[
 
 
 
 
 
 (0, 𝐼)
(.5, .8)
(.5, .9)
(.6, .3)
(0, .85)
(.6, .4)

(0, .2)
(.5, .2)
(.5, .1)

(.6, .95

(0, 𝐼)

)

(.6, .8

(0, .8)

)

(.5, .8

(.5, .4)
(.6, .1)
(0, .1)
(.6, .1)

(0, .1)

) (.5, .1)

(.5, .1)

(.6, .1

(0, .1)
(.6,0) ]

 
 
 
 
 
 

64

)

The elements satisfying  min(𝑥̂𝑖 , 𝑎𝑖𝑗) = 𝑏𝑖 are:

𝑚42, 𝑚62, 𝑚23, 𝑚24,𝑚34, 𝑚44

𝑚̃42, 𝑚̃62, 𝑚̃23, 𝑚̃24 , 𝑚̃34, 𝑚̃44

The element 𝑚̃42  is of least column

number, therefore 𝑥̆𝑖1 = min(.6, .95) = .6

At the same time, the fourth row and the 

second column will be deleted. 

As well as, the column included the elem-

ent  𝑚̃44 must be deleted.

All remained elements of the matrix 𝑀 are 

[
 
 
 
 
(0, 𝐼)
(.5, .8)
(.5, .9)
(0.85)
(.6, .5)

(0, .8)

(.5, .8

(.5, .4)
(0, .1)
(.6, .1)]

 
 
 
 
)

𝑥̆𝑖2 = min(.5, .8) = .5

∴ 𝑥̆𝑖2 = .5
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Set   𝑥̆𝑖3 = 𝑥̆𝑖4 = 𝑥̆𝑖5 = 𝑥̆𝑖6 = 0

So the quasi minimum is 

 𝑥̆∗ = (.6, .5,0,0,0,0)

The exponents of 𝑥4, 𝑥5, 𝑥6 in objective func-
tion 𝑓(𝑥) are negative, therefore 

𝑥∗ = ( . 6, .5,0⏟  
𝑓𝑟𝑜𝑚 𝑞𝑢𝑎𝑠𝑖

, . 6,0, .6⏟  
𝑓𝑟𝑜𝑚 𝑚𝑎𝑥𝑖𝑚𝑢𝑚

) 

𝑓(𝑥∗) = (1.5 𝛬 0. 6.5)𝑉(𝐼 𝛬 0.5)𝑉(. 8 𝛬 0.5) 

𝑉(0.9 𝛬 0. 6−2) 𝑉(. 7𝛬 0
−4)𝑉(I 𝛬 0. 6−1) 

𝑓(𝑥∗) = 𝐼. 

5 Open problems:- 

1- It will be a good project to search the 

optimal solution for fuzzy neutrosophic 

relation GP when the variables exponents (𝛾𝑖)
in the objective function contain indeterminacy 

value. 

2- More specifically  if the variables exponents 

are negative and containing indeterminacy 

value. 

3- Search for optimal solution in case of fuzzy 

neutrosophic relation GP if the composition ′𝜊′ 
be (max-product). 

Conclusion 

       This essay, contains novel work to find 

optimal solution for an important branch of 

nonlinear programming named GP subject to a 

system of fuzzy neutrosophic relational equa-

tion with (𝑚𝑎𝑥 −𝑚𝑖𝑛) composition. In 1976, 

Sanchez gave the formula of the maximal 

solution for fuzzy relation equation concept 

and described in details its structure. H.E. 

Khalid introduced the structure of maximal 

solution for fuzzy neutrosophic relation GP 

problems at 2015. There is a debuted nume-

rical example which  shows that the proposed 

method is an effective to search for an 

optimum solution . 
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