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Abstract. Uncertainty in expert systems is essential re-
search point in artificial intelligence domain. Uncertain
knowledge representation and analysis in expert systems
is one of the challenges that takes researchers concern as
different uncertainty types which are imprecision, vague-
ness, ambiguity, and inconsistence need different han-
dling models. This paper reviews some of the multi-
valued logic models which are fuzzy set, intuitionistic
fuzzy set, and suggests a new approach which is neutro-
sophic set for handling uncertainty in expert systems to

derive decisions. The paper highlights, compares and
clarifies the differences of these models in terms of the
application area of problem solving. The results shows
that neutrosophic expert system for learning manage-
ment systems evaluation as a better option to simulate
human thinking than fuzzy and intuitionistic fuzzy logic
because fuzzy logic can't express false membership and
intuitionistic fuzzy logic is not able to handle indetermi-
nacy of information.

Keywords: Uncertainty; Expert System; Fuzzy Set; Intuitionistic Fuzzy Set; Neutrosophic Set, Learning Management Systems.

1 Introduction

Uncertainty is the shortage of knowledge regardless of
what is the reason of this deficient data [1]. Modeling un-
certainty for solving real life situations is one of the crucial
problems of artificial intelligence [2]. Previous researches
presented various models that handle uncertainty by simu-
lating the process of human thinking in expert systems, but
these models are not enough to express uncertainty in
problems [3][4]. Decision making includes ill-defined sit-
uations where it is not true or false; therefore it needs nov-
el models to increase understanding of the realization out-
come better than crisp [5].

Learning Management Systems (LMSs) are e-learning
applications which help instructors in course administra-
tion. In higher education, the use of these applications has
been rising as it supports universities in spreading educa-
tional resources to the learners [6][7]. System quality is an
essential determinant of user satisfaction. It includes the
usability, availability, stability, response time, and reliabil-
ity of the system [8][9]. Previous studies [10] in learning
management system evaluation are implemented under
complete information, while real environment has uncer-
tainty aspects.

This leads to emerging new approaches such as fuzzy,
intuitionistic fuzzy and neutrosophic models all of which
give better attribute explications. The fuzzy theory which

considers the degree of the membership of elements in a
set was introduced by Professor Lotfi Zadeh in 1965 [11].
Intuitionistic fuzzy set theory presented as an extension of
the fuzzy sets by Attanssov in 1983 [12]. A novel ap-
proach proposed by Smarandache to handle indeterminacy
information in 1999 called neutrosopic logic [13].

Expert system simulates human expert reasoning to
solve issues in particular domain such as diagnosis, repair,
decision support, monitoring and control, and evaluation
[14][15]. Expert system in uncertainty environment needs
to draw conclusion as would a human expert do [14]. Un-
certainties types that can emerge include vagueness when
information is gradually in natural, imprecision when in-
formation is not determined, ambiguity when available in-
formation leads to several feasible explications, and incon-
sistency when the conflicts and paradoxes in obtainable in-
formation is found [16][17]. This uncertainty types need
models that handle different types of uncertainties [18].

This paper discusses multivalued logic models includ-
ing fuzzy set, intuitionistic fuzzy set, and neutrosophic set
for managing uncertainty in expert systems. The paper is
organized as following: Section 1 provides an introduction
to the paper; Section 2 presents multivalued logic models
differences for managing uncertainty in expert systems;
Then Section 3 presents the proposed neutrosophic expert
systems for evaluating learning management systems and
finally Section 4 presents the conclusion and future work.
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2 Multivalued Logic Models for Managing Uncer-
tainty in Expert System

This section explores basic properties and differences of
multivalued logic models for handling uncertainty in expert
systems.

2.1 Fuzzy Inference System

Crisp set deals with objects belonging to a set or is ex-
cluded from it. The fuzzy set theory discusses an aspect in
which each object has a related value in the interval be-
tween 0 and 1; This indicates the degree of its membership
in the set .The basic types of fuzzy logic membership func-
tion are triangular, trapezoidal, Gaussian, and bell. In
Fuzzy Set Theory, each element x € U (Universe of dis-
course) is assigned a single membership value. A fuzzy set
A = {<x, pA(x) > [x € U} in a universe of discourse U is
characterized by a membership function, pA, as follows
[11]: pA: U — [0, 1]. Q)

Fuzzy inference systems responsible for indicating the
mapping from a given an input to an output as shown in
Figure 1. It consists of fuzzification of input, knowledge
based system, and defuzzification of output as shown in
Figure 1 [19] [20]. Fuzzy knowledge base contains the
membership functions of the fuzzy sets and set of fuzzy
production rules. In fuzzification, the crisp input is con-
verted to a fuzzy output using the membership functions
stored in the fuzzy knowledge base. In defuzzification, the
fuzzy output is converted to a crisp output using common
techniques : centroid, bisector, and maximum methods.

Crisp Fuzzification Unit N

Input

s True "
memebership

function

Defuzzification
Unit

Fuzzy
Knowledge
Base

Crisp
output

&

Figure 1: Block Diagram of Fuzzy Inference System

2.2 Intuitionistic Fuzzy Inference System

Atanassov said that the idea of intutuitionistic fuzzy set
was a coincidence as he added to the fuzzy set definition a
degree of non-membership. The intuitionistic idea incorpo-
rates the degree of hesitation [21]. An intuitionistic fuzzy
set describes the membership of an element to a set, so that
the sum of these degrees is always less or equal to 1. An
intuitionistic fuzzy set A = {<u, pA(u), vA(u) > |u € U}
in a universe of discourse U is characterized by a member-
ship function pA, and a non-membership function vA, as
follows [22] [23]:
pA: U — [0, 1],
and 0 < pA(u) + vA(u) < 1.

VA U

—

(0,1],
)

The membership of an element to a fuzzy set is a sin-
gle value between zero and one. However, it is not true

that the degree of non-membership of an element is equal
to 1 minus the membership degree as there is a hesitation
degree. Intuitionistic fuzzy set is suitable in simulating
human imprecise decision making [24]. Figure 2 shows the
intuitionistic fuzzy inference system. Fuzzy knowledge
base contains the true and false membership functions of
the intuitionistic fuzzy sets and set of intuitionistic fuzzy
production rules.

Intuitionistic

Intuitionistic
Defuzzification
Unit

Intuitionistic
Fuzzy
Knowledge
Base

Crisp Fuzzification Unit

Input

o 2

true membership

Crisp

output

false membership

Figure 2: Block Diagram of Intuitionistic Fuzzy Inference System

2.3 Neutrosophic Inference System

Smarandache [13] proposed a novel approach called
neutrosophic logic as an extension of fuzzy logic. Neutro-
sophic logic is an extension of the fuzzy logic, intuition-
istic logic, and the three-valued, all of which variable x is
described by triple values x= (t, i, f) where t for the degree
of truth, f for the degree of false and i for the degree of in-
determinacy [20]. Current expert systems are constrained
with strict conditions while futuristic expert systems do not
depend only on truth value, but also on falsity and inde-
terminacy membership. So in neutrosophic logic approach,
experts are asked about certain statement to give a degree
that the statement is true, degree the statement is false; and
degree of indeterminate. In neutrosophic logic t, i, and f
are independent from each other and there is not restriction
on their sum where [25]:

@)

O<=t+i+f<=3

Neutrosophic inference system consists of neutrosoph-
ication unit that accepts the crisp input and assigns the ap-
propriate membership functions, neutrosophic knowledge
base that maps input to output variable, and deneutrosoph-
ication unit that maps neutrosophic value to crisp value as
shown in Figure 3 [20].

Neutrosophication Unit
Deneutro-

Neutrosophic
Knowledge
Base

Crisp true membership

Input

sophication
Unit

LN

o =

=

indetermiancy membership

Crisp
output

false membership

Figure 3: Block Diagram of Neutrosophic Inference System

2.4 Multivalued Logic Models for Handling Uncer-
tainty
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A better understanding of the differences and use be-
tween the uncertainty models is presented in this section.
The selection of the appropriate uncertainty model for a
problem is essential to get the desirable results. As men-
tioned in introduction section, the primary uncertainties
types are imprecision, vagueness, ambiguity, and incon-
sistence. An example of vague information: "the colour of
the flower is nearly red”, this type of uncertainty can be
handled by Fuzzy set. An example of imprecise: “the tem-
perature of the machine is between 88-92 °C", this type of
uncertainty can be handled by intuitionistic fuzzy set. An
example of ambiguity information: "votes for this candi-
date is about 60%", and an example of inconsistence: "the
chance of raining tomorrow is 70%, it does not mean that
the chance of not raining is 30%, since there might be hid-
den weather factors that is not aware of", these types of
uncertainties can be handled by neutrosophic set. Table 1
is concluded from [26-28] that shows multivalued logic
models and their ability to express various uncertainty data

types.

Table 1: Multivalued Logic Models and Uncertainty Data Types

Uncertainty Data Types
Uncertainty Models
< = » =
28| 23| €5 §%
5 s <2 33
Fuzzy v
Intuitionistic Fuzzy | v/ v
Neutrosophic v v v v

3 Neutrosophic Expert System for Evaluation of
Learning Management System

3.1 Neutrosophic Expert System Algorithm

Developing neutrosophic expert system is shown in Figure

4:

1- Determine the system requirements represented in in-
puts, rules and outputs.

2- Experts define the neutrosophic memberships of in-
puts variables of the system, rules of neutrosophic
knowledge base of the system and output membership
of the system quality.

3- Inputs are expressed in neutrosophic sets using truth,
falsity and indeterminacy membership functions. This
step is called as neutrosophication step.

4- Creating neutrosophic set rules for three knowledge
bases for true, false and indeterminacy.

5-  Neutrosophic sets are converted into a single crisp
value which has triplet format truth, indeterminacy
and false. This process is called as deneutrosophica-
tion.

Determine the system requirements

'

Experts define the inputs membership,
rules and the output membership of
neutrosophic expert system

Inputs are presented to appropriate
neutrosophic sets

Neutrosophied sets are then used by the
inference engine to create the rules

Neutrosophic sets are then converted
mnto a single crisp value

Figure 4: Steps for Developing Neutrosophic Expert System

3.2 Membership Functions for Input Attributes

LMS system quality is described by higher education
organizations with uncertainty terms which are imprecise,
vague, ambiguity and inconsistent. That is why conven-
tional evaluation methods may not be virtuous. System
can be defined as the stability, reliability, usability, availa-
bility, response time and adaptability attributes of the sys-
tem. It quality is an important determinant of user satisfac-
tion and system performance [29][30][31]. Previous stud-
ies in learning management system evaluation are imple-
mented under complete information, while real world has
uncertainty aspects. This leads us to illustrate the multi-
valued logic approaches differences such as fuzzy, intui-
tionistic fuzzy, and suggest a new one which is neutro-
sophic model to evaluate LMSs. In Table 2, a representa-
tion for each input attribute in usability using fuzzy, intui-
tionistic fuzzy and neutrosophic expert system for evaluat-
ing LMSs usability.

Table 2: Multivalued Logic Models Input Memberships

Typel Fuzzy

Intuitionistic Fuzzy

Neutrosophic

HLOW(X) in
[0,1],
uMedium(X) in
[0.1],
Miign(X) in [0,
1],

Where pw(X)
is member-
ship func-
tion.

Hiow (X) in [Ovl]v
Viowin [0,1],
HMedium(x) in [0,1],
VMedium in [0,1],
Hrigh(x) in [0,1],
Vhign(X) in [0,1],
Where u(X) is mem-
bership function,
V(x) is a non-
membership function
and 0 < p(x) + V(x)
<l

TrowX),

ILow(X)y FLow(X)v
TMedium(X)y IMedium(X)y
FMedium(x)y

Thign(X), lhign(X),
Frign(X),

Where T(x) is mem-
bership/truth value,
1(x) is indeterminacy
value, F(x) is a non-
membership/False
value.

3.3 Knowledge

base and Evaluation Process

The proposed neutrosophic model evaluates system
LMSs system quality considering one main criterion: usa-
bility. A usability criterion is derived into several attributes
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as following: usability can be evaluated by efficiency,
learnability, memorability, error tolerance and user satis-
faction attributes. In the proposed neutrosophic model, five
inputs for usability are considered; each consisting of three
terms, then each true, indeterminacy, and false usability
knowledge base consists of 3°= 243 rules after considering
all the possible combinations of inputs. In fuzzy expert
system depend on true knowledge base; while in intuition-
istic fuzzy set expert rely on true and false knowledge base.
Sample of the rules for true, false, indeterminacy are listed
in Figure 5, 6,and 7.

g m — g % g:’ cC
= =} 2 3 = 9
S g | 2% | 3 3 2s &
2 g | 28| & g | &2 =
5 | S |f | & | & |¢ <
1 low low low low low v. low
2 med low low low low v.low
3 high low low low low low
243 high high high high high v.high
Figure 5: True Usability Knowledge Base
g m — g % g:’ cC
=% o 5} 3 =4 )
S & | g8 | 2 s | &g g
pe g £3g g g g a =
= e 8 5 = g g
1 < < =
1 low low low low low low
2 med low low low low low
high low low low low low
243 high high high high high high
Figure 6: False Usability Knowledge Base
zZ - < %)
o | 3 |¢ 8 | 5 |2 g
S g | g% | 3 s | 2¢ &
2 g | 88| & g | &% =
—_ = = o <
3 = ® < Z 3
1 low low low low low low
2 med low low low low low
3 high low low low low low
243 high high high high high med

Figure 7: Indeterminacy Usability Knowledge Base

4 Discussion

The authors presented fuzzy, intuitionistic fuzzy, neu-
trosophic expert system for evaluating LMSs quality. The
neutrosophic expert system represents three components of
truth, indeterminacy, and falsity unlike in fuzzy expert sys-

tem which expresses the true membership value only and
has no solution when experts have a hesitancy to define
membership. Fuzzy system handles vagueness; while in-
tuitionistic fuzzy system deals with vagueness and impre-
cision.

Neutrosophic system handles vagueness, imprecision,
ambiguity, and inconsistent uncertainties types. For exam-
ple; a vote with two symbols which are: A and B is oc-
curred, in which some votes can’t be determined if it’s
written A or B.

Table 1 shows the comparison of fuzzy, intutuionistic
fuzzy, and neutrosophic expert system and their ability to
represent different uncertainty data types. In Table 2, a
representation for input attributes for usability using fuzzy,
intuitionistic fuzzy and neutrosophic expert system for
evaluating LMSs usability. The results show that fuzzy
and intuitionistic fuzzy system is limited as it cannot rep-
resent paradoxes which are a feature of human thinking.

Conclusion and Future Work

Artificial intelligence disciplines like decision support
systems and experts systems depend on true and indeter-
minate information which is the unawareness value be-
tween true and false. For example, if an opinion of an ex-
pert is asked about certain statement, then he may say that
that the statement is true, false and indeterminacy are 0.6,
0.3 and 0.4 respectively. This can be appropriately handled
by neutrosophic logic.

In this paper, a proposal for neutrosophic expert sys-
tem for LMSs quality evaluation based on efficiency,
learnability, memorability, error tolerance and user satis-
faction for usability. Though, neutrosophic systems using
varies according to the problem and available knowledge.

Future work will deal with the implementation of neu-
trosophic expert system for LMSs system quality evalua-
tion. Neutrosophic Logic is a new approach for evaluating
the system quality attributes of various systems that can
adapt variations and changes. This is an assertion to use
neutrosophic logic approach for assessing the system qual-
ity of LMSs.
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Abstract Interval-valued neutrosophic set (INS) is a
generalization of fuzzy set (FS) that is designed for some
practical situations in which each element has different truth
membership function, indeterminacy membership function and
falsity membership function and permits the membership
degrees to be expressed by interval values. In this paper, we first
introduce the similarity measure between single valued

1.Introduction

In 1965, Zadeh first introduced Fuzzy set, which has
been widely used in decision making, artificial intelligence,
pattern recognition, information fusion, etc [1,2]. Later,
several high-order fuzzy sets have been proposed as an
extension of fuzzy sets, including interval-valued fuzzy set,
type-2 fuzzy set, type-n fuzzy set, soft set, rough set,
intuitionistic fuzzy set, interval-valued intuitionistic fuzzy
set, hesitant fuzzy set and neutrosophic set (NS) [2,3,4,5].

As a generalization of fuzzy set, the NS was proposed
by Smarandache [5] not only to deal with the decision
information which is often incomplete, indeterminate and
inconsistent but also include the truth membership degree,
the falsity membership degree and the indeterminacy
membership degree. Since NS contains both non-standard
and standard intervals in its theory and related operations
which restricts its application in many fields. For
simplicity and practical application, Wang proposed the
interval NS (INS) and the single valued NS (SVNS) which
are the instances of NS and gave some operations on these
sets [9,10]. Ye proposed the similarity measure of interval
valued neutrosophic set and applied them to decision
making [11], he also proposed the wvector similarity
measures of simplified neutrosophic sets [12]. Ali
proposed the entropy and similarity measure of interval
valued neutrosophic set [13]. Zhang proposed the cross-
entropy of interval neutrosophic set and applied it to multi-
criteria decision making [14]. All these papers have
enriched the theory of neutrosophic set.

neutrosophic sets, then propose a new method to construct
entropy of interval-valued neutrosophic sets based on the
similarity measure between the two single valued neutrosophic
sets, finally we give an example to show that our method is
effective and reasonable.
Keywords: Interval-valued neutrosophic set (INS), Entropy,
Similarity measure

Consistently with axiomatic definition of entropy of
INS, we introduce the similarity measure between single
valued neutrosophic sets, and propose a new method to
construct entropy of interval-valued neutrosophic sets
based on the similarity measure between single valued
neutrosophic sets, then we give an example to show that
our method is effective and reasonable.

The structure of this paper is organized as follows.
Section 2 introduces some basic definitions of the interval-
valued neutrosophic sets and the single valued
neutrosophic sets (SVNSs). Section 3 presents a new
similarity measure of SVNSs. Section 4 gives entropy of
INS. Section 5 concludes our work.

2. Preliminaries

Definition1 [9] Let X be a space of points (objects), and
its element is denoted by X . A NS A in X , if the
functions TAEX : IAEX , FA(X) are singleton subsets in
the real standard [0,1]. Then, a single valued NS A is
denoted by

A= {(x;TA(x), L (). Fa(x))|x e X

which is called a single valued neutrosophic set (SVNS).
Definition2 [9] For two SVNSs A and B , A is
contained in B, if and only if

Ta () <Tg (%), 14(x) 2 15 (%), Fo(x) 2 Fy (x)
forevery X in X .
Definition3 [9] The complement of SVNS A is defined
by

AC = {(x; Fa(x),1- IA(x),TA(x)>|x c X}

Chunfang Liu,Yuesheng Luo, A new method to construct entropy of interval-valued Neutrosophic Set
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Interval-valued neutrosophic set (INS) improves the
ability of NS expressing the uncertainty of information
whose membership functions take the form of interval
values.

Definition 4 [10] Assume X be a universe of discourse,
with a generic element in X denoted by x. An interval-
valued neutrosophic set A in X is

x)>|x € X}

A={{xT, (%), 1,(x),Fu(
l,(X) and F,(x) are the truth

where T, ()

membership function, indeterminacy membership function
and falsity membership function, respectively. For each
point X in X, we have

T, (x)=[infT,(x),supT,(x)1<[0,1]

| (x) =[inf 1, (x),sup1, (x)1<[0,1],
F,(x)=[inf F,(x),supF,(x)]<[0,1]

and 0 < SupT, (x)+Supl, (x)+SupF, (x) <3.

Definition5 [10] For two INSs A and B , A is
contained in B, if and only if

inf T, (x) < infTB(x)’ supTA(x)SSupTB(x),
inf 1, (x)>inf IB(X)lSUpIA(X)ZSUplB(X)’
inf F, (x)>inf F, (x)’sup F.(X)=supF, (x)

forevery X in X .

Definition6 [10] The complement of INS A is defined by

AC:{<X;TAC(X),IAC(X), o >|X€X}

where
T (X)=F,(x)=[inf F,(x),sup F, (x)].
| e (X)=[1-supl,(x),1-inf IA(x)],
Fe (X)=Ta(x)=[inf T,(x),supT,(x)]

3. Similarity measure of valued

neutrosophic sets

single

Definition7 [11] Let A and B be two SVNSs, a function
S is the similarity measure between A and B , if
S satisfies the following properties:

(N1) S(A, AC):0 if A isacrisp set;
(N2) S(A,B)=1< A=B;

(N3) S(A,B)zS(B,A);
(N4) for all SVNSs A,B,C , if AcBcC,
S(A,C)SS(A,B), S(A,C)SS(B,C).
Let
A={T,(x),1,(x),F.(x)}
B:{TB(X), IB(X),FB(X)} be two SVNSs, we will

use the Hamming distance to define the similarity measure
of single valued neutrosophic sets.

‘T . —TB(xj )\+

then

S(AB) 1—— ‘I ()] + | @

‘F —F, (xj )
It is easy to prove the S|m|Iar|ty measure satisfies the
Definition 7.
4. Entropy of interval-valued neutrosophic set

Based on [15], we give the definition of entropy of INS
as follows:
Definition8 A real valued function E : INSs— [0, 1] is
called an entropy of INS, if E satisfies the following
properties:

(P1) E(A)=0 if A isacrisp set;

(P2) E(A)=1iff inf I, (x)=supl,(x),

[inf T, (x),supT,(x)] =[inf F,(x),sup F, (x)];
(P3) E(A)=E(A°);

(P4) E(A)<E(B)

if Ac B when
inf T, <inf K, and supT, <sup kg
infl, >1-suplg;
or B < A when
inf F; <infT, and sup R, <supTg
infl, >1-supl;.
Let

[inf T, (x),supT, (X)I,[inf 1, (x),sup 1, (x)]
A_{,[inf F, (%),sup F, (X)] }

be an INS, we construct the new SVNSs based on A

A ={inf T, (x),inf 1,(x),inf F, ()} (2)
A, ={supT,(x),supl,(x),supF,(x)} (3)
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AC ={supF,(x),1—sup 1, (x),supT,(x)} ()
Theorem1 Suppose S is the similarity measure of SVNSs ,
E is the entropy of INS, S(Ai,Af) is the similarity
and Af then

measure  of SVNSs A

E(A)=S(A,A).
Proof. (P1) If A is a crisp set, then for every X € X , we
have

infT,(x)=supT,(x)=1
inf 1,,(x)=supl,(x)=0
inf F, (x)=supF,(x)=0

?;ﬁ T, (x)=supT,(x)
inf 1,,(x)=supl,(x)=
inf F, (x)=supF,(x)=1

which means that

A ={1,0,0} A, ={1,0,0},A° ={0,1,1} .Itis
obvious that E (A) = S(A,Af):o_

(P2) By the definition of similarity measure of fuzzy sets,
we have

E(A)=S(A.A)=1
A=A
< infT, (x)=supF,(x),
inf 1, (x)=1-supl,(x),
inf F, (x)=supT,(x)

Az{[0.5,0.5],[inf 1, (%), }

1-inf 1,(x)],[0.5,0.5]

= E(A) =1
(P3) Because (AC )2 = Af,(AC )lc =A,
we have

(P4) Since AcB it means
inf T, (x) <inf T, (x), supT, (x)<supT;(x)

that

inf I,,(x)>inf I (x),supl,(x)=>supl,(x)
inf F, (x) > inf Fy (x),supF, (x)>sup F; (x).
when

inf T, (x) <inf K, (x)
inf 1, (x)>1-sup I (x)

then we get
inf T, (x) <inf T, (x) <inf K, (x) <inf F,(x)
supT, (X)<supTg(x)<supF;(x)<supF,(x)
By computing, we can get

AcBCcB A
and using the definition of similarity measure, we get
E(A)=S(A,A )<S(A.BS)<S(B,B)=E(B)
With the same reason, if B C A
inf F; <infT, sup F; <supT,
inf I, >1-sup |, we conclude E(A)<E(B).

Hence, we complete the proof of Theorem 1.

We can define entropy of INS by similarity measure
between two SVNSs, which constructed by A | it satisfied
the definition of entropy.

Example .

Let X = {Xl, Xy, Xn} be a universe of discourse.

Let A={(x,[0.7,0.8],[0.5,0.7],[0.,0.2])|x, € X } .

Lol l{\gi,[0.6,0.8],[0.4,0.6],[0.1,0.3]>|xi e X} be

Now we will obtain the entropy E (A) , E ( B) as follows.

. supT; (x) <supF;(x)

when
and

For A, from (1), (2), (3) , (4), we obtain
A ={0.7,05,0.1} A, ={0.8,0.7,0.2} and

A° ={0.2,0.3,0.8};
E(A)=S(A, Af):l—%(0.5+0.2+0.7) =0.5333

For B, B,={0.6,0.4,0.1} A B,={0.8,0.6,0.3} and
B ={0.3,0.4,0.8};

E(B)=5(B, B§)=1—%(0.3+0.7) = 0.6667 .

E (A) <E ( B) is consistent with our intuition.

5. Conclusion

Neutrosophic set is a necessary tool to deal with the
uncertain information. In this paper, we commented on the
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axiomatic definitions of similarity measure of SVNSs and
entropy of INSs, respectively. We first introduced the
similarity measure between SVNSs, and proposed a new
method to construct entropy of INS based on the similarity
measure between SVNSs, then we gave an example to
show that our method is effective and reasonable. In the
future, we want to give the entropy of INSs based on
similarity measure of INSs.
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Keywords: Soft sets, single valued neutrosophic soft sets, weighted single valued neutrosophic soft sets.

1 Introduction

The classical methods are not always successful, be-
cause the uncertainties appearing in these domains may be
of various types. While a wide range of theories, such as
probability theory, fuzzy set theory, intuitionistic fuzzy set
theory, rough set theory, vague set theory, and interval
mathematics, are well-known mathematical approaches to
modelling uncertainty, each of this theories has its inherent
difficulties, as pointed out by Molodtsov [21]. The possible
reason for their inconveniences is the inadequacy of the pa-
rameterization tool. Consequently, Molodtsov initiated the
soft set theory as a completely new approach for modelling
vagueness and uncertainty, free from the ponderosity af-
fecting existing methods [20]. This theory has been useful
in many different fields, such as decision making [7, 8, 10,
13, 15, 23] or data analysis [32].

Up to date, the research on soft sets has been very ac-
tive and many important results have been achieved in the-
ory. The concept and basic properties of soft set theory
were presented in [14, 21]. Practically, Maji et al. intro-
duced several algebraic operations in soft set theory and
published a detailed theoretical study. Firstly, Maji et al.
[15] applied soft sets to solve the decision making problem
with the help of rough approach. Arockiarani et al. [4] ex-
tended the (classical) soft sets to single valued neutrosoph-
ic (fuzzy neutrosophic) soft sets. Zadeh introduced the de-
gree of membership/truth (t), in 1965, and defined the
fuzzy set. Atanassov introduced the degree of nonmember-
ship/falsehood (f), in 1986, and defined the intuitionistic
fuzzy set. Smarandache introduced the degree of indeter-
minacy / neutrality (i) as an independent component, in
1995 (published in 1998), and he defined the neutrosophic
set on three independent components (t,i,f) = (truth, inde-

terminacy, falsehood). He coined/invented the words “neu-
trosophy”, and its derivative - “neutrosophic”, whose ety-
mology is: Neutrosophy (from Latin "neuter" - neutral,
Greek "sophia" — skill / wisdom), as a branch of philoso-
phy, studying the origin, nature, and scope of neutralities,
as well as their interactions with different ideational spec-
tra. Neutrosophy considers a proposition, theory, event,
concept, or entity "A" in relation to its opposite, "Anti-A",
and that which is not "A", "Non-A", and that which is nei-
ther "A", nor "Anti-A", denoted by "Neut-A". Neutrosophy
is thus a generalization of dialectics. Neutrosophy is the
basis of neutrosophic logic, neutrosophic set, neutrosophic
set, neutrosophic probability and neutrosophic statistics. In
2013, Smarandache refined the single valued neutrosophic
set to n components: ty, ty, ...; iy, ip, ...; f1, T, ... .

In this paper, we present an adjustable approach and
mean potentiality approach to single valued neutrosophic
soft sets by using single valued neutrosophic level soft sets,
and give some illustrative examples. The properties of lev-
el soft sets are as well discussed. Also, we introduce the
weighted single valued neutrosophic soft sets and investi-
gate its application in decision making.

2 Preliminaries

Definition 2.1 [11]

Let X be a space of points (objects), with a generic el-
ement in X denoted by x. A single valued neutrosophic set
(SVNS) A in X is characterized by truth-membership func-
tion T,, indeterminacy-membership function I, and falsity-
membership function Fa.

For each point x in X, Ta(X), 1a(X), Fa(x) € [0,1]. When
Xis continuous, a SVNS A can be written as A,

[ (700 1,00, Fa ) 1 x,x € X .

J. Martina Jency and I. Arockiarani, Adjustable and mean potentiality approach on decision making
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When X is discrete, a SVNS A can be written as
AZZ<T(Xi), 1(X;), F(Xi)>/xi,xi e X
i=1

Definition 2.2 [20]

Let U be the initial universe set and E be a set of pa-
rameters. Let P(U) denote the power set of U. Consider a
non-empty set A, A c E. A pair (F, A) is called a soft set
over U, where F is a mapping given by F: A — P(U).

Definition 2.3 [4]

Let U be the initial universe set and E be a set of pa-
rameters. Consider a non-empty set A, A cE. Let P(U) de-
note the set of all single valued neutrosophic (fuzzy neu-
trosophic) sets of U. The collection (F, A) is termed to be
the (fuzzy neutrosophic) single valued neutrosophic soft
set over U, where F is a mapping given by F: A — P(U).

3 An adjustable approach to single valued neu-
trosophic soft sets based decision making

Definition 3.1
Let @ = <F,A> be a single valued neutrosophic soft set

over U, where Ac E and E is a set of parameters. For
r,s,t e[01], the (r,s,t) - level soft set of & is a crisp soft
set L(w;r,s,t) = (FpspA) defined by Fesoe) =
L(F(e);r,s,t) )J={xeU / Tre)(x) 21, Ire)(x) 25, Fre)(x) <t}
forall ec A.

Here r € [0,1] can be viewed as a given least threshold
on membership values, s < [0,1] can be viewed as a given
least threshold on indeterministic values, and t € [0,1] can
be viewed as a given greatest threshold on non-
membership values.

For real-life applications of single valued neutrosophic
soft sets based decision making, usually the thresholds
r,s,t are chosen in advance by decision makers and repre-
sent their requirements on “membership levels”, “indeter-
ministic levels” and “non-membership levels” respectively.

To illustrate this idea, let us consider the following ex-
ample.

Example 3.2
Let us consider a single valued neutrosophic soft set

@ = <F, A> which describes the “features of the air condi-

tioners” that Mr. X is considering for purchase. Suppose
that there are five air conditioners produced by different
companies in the domain u - {x,x,, x5, x,, x5 | Under con-

sideration, and that A = {el,ez,e3,e4} is a set of decision

parameters. The e; (i =12,34) stands for the parameters

LERNT

“branded”, “expensive”, “cooling speed” and “after sale
product service”, respectively.

Suppose that F(e;) = {<X;,0.7,0.3,0.1>, <X,,0.8,0.3,
0.1>, <X;,0.9,0.4,0.05>, <X,4,0.6,0.3,0.2>, <X;0.5,0.4,
0.2>}, F(e;) = {<X;,0.6,0.25,0.1>, <X,,0.9,0.3,0.05>, <X3,
0.8,0.3,0.05>, <X,4,0.6,0.2,0.4>, < Xs, 0.7,0.2,0.3>}, F(e3) =
{<X1,0.75,0.35,0.1>, <X,,0.7,0.4,0.15>, <X5,0.85,0.5, 0.1>,
<X4,0.5,0.4,0.3>, <X5,0.6,0.45,0.2>}, F(e,) = {<X;,0.65,0.3,
0.2>, <X,,0.85,0.5,0.15>, <X;,0.9,0.6,0.1>, <X,,0.7,0.4,
0.2>, <X5,0.6,0.3,0.1>}.

The single valued neutrosophic soft set @ = <F, A> isa

parameterized family {F(e;), i=1,2,3,4} of single valued
neutrosophic sets on U and (F, A) = {branded air condi-
tioners = F(e;), expensive air conditioners = F(e,), High
cooling speed air conditioners = F(e3), Good after sale
product service = F(e4)}. Table 1 gives the tabular repre-
sentation of the single valued neutrosophic soft set

@ =(F.,A).

u €1 €2 €3 ey
X; (0.7,0.3,0.1) (0.6,0.25,0.1) (0.75,0.35,0.1) (0.65,0.3,0.2)
X, (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15)

X; (0.9,0.4,0.05) (0.8,0.3,0.05 (0.85,0.5,0.1) (0.9,0.6,0.1)
X, (0.6030.2) (0.60204) (050403) (0.7,0.4,0.2)
Xs (0504,02) (0.7,0203) (0.60450.2) (0.6,0.30.1)

Table 1: Tabular representation of the single valued neutrosophic soft set
@ =(F,A).

Now we take r = 0.7, s = 0.3, t = 0.2, then we have the
following:

L(F(e1);0.7,0.3,0.2) = {X1, X», X},
L(F(e2);0.7,0.3,0.2) = {Xo, X5},

L(F(e3);0.7,0.3,0.2) = {Xy, Xo, Xa},
L(F(€4);0.7,0.3,0.2) = {Xz, X3, Xa}.

Hence, the (0.7,0.3,0.2)-level soft set of & = (F,A) is

the set-valued

.....

,,,,,,,,,,

L(F(e;);0.7,0.3,0.2), for i=1,2,3,4. Table 2 gives the tabular
representation of the (0.7,0.3, 0.2)-level soft set of
L(w:0.7,0.3,0.2) .
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U e e, €3 €4
X4 1 0 1 0
X5 1 1 1 1
X3 1 1 1 1
X4 0 0 0 1
Xs 0 0 0 0

Table 2: Tabular representation of the (0.7,0.3,0.2)-level soft set of
L(#;0.7,0.3,0.2)

Now, we show some properties of the (r,s,t) - level
soft sets.

Theorem 3.3

Let & = <F, A> be a single valued neutrosophic soft set
over U, where Ac E and E is a set of parameters. Let
L(z;r,s ,t ) and L(wz;r_,s_,t_) be (ry, s;, ty)- level

(@it (@iryi5,ty) be (fy s t)
soft set, and (rp, S, ,tp)- level soft set of & respectively,
where ry,S1,t;, 12,5t € [0,1]. If 1< g $< 59 and t> t,
then we have L(w;r s ,t ) C L(@:r ,s_,t ).
111 2'72"2

Proof
Let L(w; rl, sl,tl) =<F(r,51,t1), A>, where F(r,53,t(€)

= L(F(e); o Sl’tl): {xeU IMeg(x)= 1, lee)(x)> 51, Fre(X)

<t} forall eeA.
Let L(w;r_,s
2 2
SLFE)r,s,0t) ={xeU ITre)(x)> ra, lre)(x)> 52, Frey(x)<

,tz) :<F(r2,52,t2), A> where F(r21521t2)(e)

t,} for all e €A. Obviously, Ac A.

In the following, we will prove that for all ecA,
Frusuty(e) < F(ra,s,ty(e). Since ro<ri,sp<syand t,> t; ,
then, for all e €A, we have the following {x €U /Tge)(x)> 11,
lre)(X)= 51, Fre@)< 61} < {XeU Mrey(x)= 1, lre)(x)> 52,
Fee(x)< t2}. Since Fq,81,ty(€)={X €U Meey(x)= 11, lre(x)=
s1, Fre@)< i} and  F(ry,syty(e)={xeU [Tre(x)> 1,
lre)(X)> 52, Fre®)< 2}, thus we have F( ry,Si,ty(e) <
F(r2,2,t;(e). Therefore, L(m;rl’sl'tl) C L@ir,.s,.t)"

Theorem 3.4

Let @ = <F, A> and ¢ = (G, A> be a single valued neu-
trosophic soft sets over U, where A < E and E is a set of
parameters. L(w ;r,s,t) and L(<;r,s,t) are (r,s,t) - level
soft sets of & and ¢, respectively, where r, s, t €[0,1]. If
@ < ¢ thenwe have L(w;r,s,t)  L(S;r,58,1) .

Proof

L(w;r,s,t) = <Fspn.A>, where Fggp(e) = L(F(e);r,s,t)
={xeU/ Tee(x) =71, Irex) =5, Fre(x) <}, for all e €A.
Let L(S;r,s,t) =<Gs,A> Where Gy sn(e) = L(G(e);r,s,1)
={xeU / Tge)x) > r, Ioe(x) =5, Forx) <}, forall eeA.
Obviously, Ac A.

In the following, we will prove that, for all eeA,
Fesn(€) < Gesyl€). Since @ < ¢, then we have the fol-
lowing Tee)(x) < Toe)(X), Ire)(X) < Ioe)(X): Fre(X)= Foe(X)
for all xeU and ecA. Assume that xeFsy(e). Since
Frsn®) = {XeU I Tegx) =1, Ire(x) 25, Fre(x) <}, then
we have that Tee(x) > 7, Ire(x) =5, Frex) <t Since
Trex) < TG(e)(X)v IF(e)(X) < IG(e)(X)v Fre(x)> FG(e)(X)v thus
Tee®) > r, Igex) > s, Foex) <t Hence, xe{xeU /
To@)(®) =7, Ige)(x) 25, Foe(x) < t}. Since Gsp(€) = {xeU
| Toe(®) =1, Ige(®) =5, Foex) < t}, then we have x
€Grsp(€). Thus, we have that F(sy(€) < Grsy(€). Conse-
quently, L(w;r,s,t) © L(S;r,s,t) .

Note 3.5

In the definition of (r,s,t) - level soft sets of single
valued neutrosophic soft sets, the level triplet (or threshold
triplet) assigned to each parameter has always constant
values r,s,te[0,1]. However, in some decision making
problems, it may happen that decision makers would like
to improve different threshold triplets on different parame-
ters. To cope with such problems, we need to use a func-
tion instead of a constant value triplet as the thresholds on
membership values, indeterministic values and non-
membership values respectively.

Definition 3.6
Let o = <F, A> be a single valued neutrosophic soft set

over U, where A c E and E is a set of parameters. Let A:

A—1® (1= [0,1]) be a single valued neutrosophic set in A
which is called a threshold single valued neutrosophic set.
The level soft set of & with respect to A is a crisp soft set

L(w:2) = <F X A> defined by F,(e) = L(F(e):A(e)) = {xeU

/ Tp(e)(x) > Tg(e), Ip(e)(x) > 1,1(6), F,:(e)(x) < FA(E)}, for all
eeA. To illustrate this idea, let us consider the following
examples.

Example 3.7
Based on the single valued neutrosophic soft set
@ = <F, A> , we can define a single valued neutrosophic set

mid:A—[0,1]% , by
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Tmidg, (&) = v 2 TR )

1
' midg (® = mxgu lE(e) ).

1
Fridg (&) = vl 2y FFe ™

for all e €A.

The single valued neutrosophic set mid, is called the
mid-threshold single valued neutrosophic soft set & . Fur-
ther, the level soft set of @ with respect to the mid-
threshold single valued neutrosophic set mid, , namely

L(z;mid ) is called the mid-level soft set of & and
o

simply denoted by L(w ;mid).

Consider the problem in Example 3.2 with its tabular
representation given by Table 1. It is clear that the mid-
threshold of <F,A> is a single valued neutrosophic set

mid<r a>={<e;0.7,0.34,0.13>,<e, 0.72,0.25,0.18>,

<e;0.68,0.42,0.17> < ¢,0.74,0.42,0.15>}.
The mid-level soft set of <F,A> is a soft set L(<F,A>;mid)
and its tabular representation is given by Table 3.

U e e, e3 €4
Xy 0 0 0 0
Xs 0 1 0 1
X3 1 1 1 1
Xa 0 0 0 0
Xs 0 0 0 0

Table 3: Tabular representation of mid-level soft set L{F,A),mid)

Example 3.8
Let & = <F, A> be a single valued neutrosophic soft set

over U, where A c E and E is a set of parameters. Then,
we can define:
(i) asingle valued neutrosophic set topbottom,, : A1

T topbottomw(e): max TF(e)(X)a Itopbottomzv(e): max IF(e)(X),
xeU xeU
Fopbottoma{€)= )r(ﬂelﬂ Fee(x) for all e €A.

(i) a single valued neutrosophic set toptop,, : A—I°

T toptopw(e): max TF(e)(X)v Itoptopm(e): max IF(e)(X),
xeU xeU
Froptopz{(€)= max Fee(x) for all e €A.
xeU

(iii) a single valued neutrosophic set bottombottom,, :
AP

T bottombottomz(€)= Min TF(e)(X): I bottombottomz(€)= min IF(e)(X),
xeU xeU

F bottombottoma{€)= mi{] Fee)(x) for all e €A, where 1=[0,1]
Xel

The single valued neutrosophic set topbottom, is
called the top-bottom-threshold of the single valued neu-
trosophic soft set & , the single valued neutrosophic set
toptop,, is called the top-top-threshold of the single valued
neutrosophic soft set & , the single valued neutrosophic set
bottombottom,, is called the bottom-bottom-threshold of
the single valued neutrosophic soft set = .

In addition, the level soft set of = with respect to the
top-bottom-threshold of the single valued neutrosophic soft

set @, namely L(w ;topbottom ) is called the top-bottom-
w

level soft set of & and simply denoted by L (e ;topbottom) .

Similarly, the top-top-level soft set of & is denoted by
L(w ;toptop) and the bottom-bottom-level soft set of @ is
denoted by L (e ; bottombottom) .

Let us consider the problem in Example 3.2 with its
tabular representation given by Table 1. Here,

topbottom.g a-={<e;0.9,0.4,0.05>, <e,0.9,0.3,0.05>,

<¢30.85,0.5,0.1><¢40.9,0.6,0.1>
is a single valued neutrosophic set and the top-bottom-
level soft set of (F,A)is L(< F, A >;topbottom) , see below.

U €1 7} €3 €4
Xy 0 0 0 0
X 0 1 0 0
X3 1 0 1 1
Xa 0 0 0 0
Xs 0 0 0 0

Table 4: Tabular representation of top-bottom-level soft set
L({F,A);topbottom)

Also, the top-top-threshold of (F,A) is a single valued
neutrosophic set toptop={<e;0.9,0.4,0.2>, <e,0.9,0.3,
0.4>, <e;30.85,0.5,0.3>, <e,0.9,0.6,0.2>} and the top-top-
level soft set of (F,A)is L(< F, A >;toptop) .

Its tabular representation is given by Table 5.

U €1 €r €3 €4
X1 0 0 0 0
X 0 1 0 0
X3 1 0 1 1
X4 0 0 0 0
Xs 0 0 0 0

Table 5: Tabular representation of top-top-level soft set L({F,A)toptop)
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It is clear that the bottom-bottom-threshold of (F,A) is
a single valued neutrosophic set bottombotttom
<Fa>—{<€,0.5,0.3,0.05>, <e,0.6,0.2,0.05>, <e30.5,0.35,
0.1>, < e,0.6,0.3,0.1>} and the bottom-bottom level soft
set of (F,AYis L(< F, A >; bottombottom) .

Its tabular representation is given by Table 6.

) €1 573 €3 €4
X1 0 0 1 0
X 0 1 0 0
X3 1 1 1 1
X4 0 0 0 0
Xs 0 0 0 1
Table 6: Tabular representation of bottom-bottom-level soft set
L(F,A);bottombottom)
Remark 3.9

In Example 3.8, we do not define the bottom-top-level
soft set of a single valued neutrosophic soft set, that is, we
do not define the following single valued neutrosophic set
bottomtop,, : A—I,

T bottomtopw(e): min TF(e)(X), | bottomtopm(e): min ||:(e)(X),
xeU xeU
F bottomtopm(e): Q’leaL)J( FF(e)(X) for all e €A.

The reason is the following: The bottom-top threshold
is dispensable since it indeed consists of a lower bound of
the degree of membership and indeterministic values and
together with an upperbound of the degree of non-
membership values. Thus, the bottom-top-threshold can
always be satisfied.

Let us consider the Example 3.2, where the bottom—
top—threshold of (F,A) is a single valued neutrosophic set
bottomtop< a>={<e;0.5,0.3,0.2>, <e,0.6,0.2,0.4>, <e30.5,
0.35,0.3>, < €,40.6,0.3,0.2>} and the bottom-top-level soft
set of (F,A) is a soft set L(< F, A >;bottomtop) with its

tabular representation given by Table 7.

U €1 573 €3 €4
X, 1 1 1 1
X 1 1 1 1
X3 1 1 1 1
X4 1 1 1 1
Xs 1 1 1 1

Table 7: Tabular representation of bottom-top-level soft set
L((F,A);bottomtop)

From Table 7, we can see that all the tabular entries are
equal to 1. In other words, the bottom-top-threshold can
always be satisfied.

Now, we show some properties of level soft sets with
respect to a single valued neutrosophic soft set.
Theorem 3.10

Let @ = <F, A> be a single valued neutrosophic soft set

over U, where A c E and E is a set of parameters. Let A4:
A—I® (1=[0,1]) and A,: A—I® (1=[0,1]) be two threshold
single valued neutrosophic sets. L(w@;4;) = (F1,A) and
L(@;42) = (F2,A) are the level soft sets of & with respect
to Ay and A,, respectively. If T,o(e) < Tra(e), La(e) < Lu(e)
and F,(e) > Fy4(e), for all e A, then we have L(w;4;) C
L(@42) -

Proof

The proof is similar to Theorem 3.3.

Theorem 3.11
Let » - (F,A)and ¢=(c.A) be two single valued neu-
trosophic soft sets over U, where A< E and E is a set of

parameters.
Let 1. A—I° (1=[0,1]) be a threshold single valued neu-

trosophic set. 1(s;2) - (F, , A) and L(;;ﬂ):<Gi|A> are the
level soft sets of w and ¢ with respect to A respectively. If
@ C ¢, then we have L(w;)) C L(GA).
Proof

The proof is similar to Theorem 3.4.
Theorem 3.12

Let o = <G, A> be a single valued neutrosophic soft set
over U, where A c E and E be a set of parameters.

L(@ ; mid) , L(e ; topbottom) , L(z ; toptop) ,

L( ; bottombottom) are the mid-level soft set, the top-

bottom-level soft set, the top-top-level soft set and the bot-
tom-bottom-level soft set of @, respectively. Then, we
have the following properties:

(i) L(z ; topbottom) C L(w ; mid) .

(i) L(w ; topbottom) C L(z ; toptop) .

(iii) L( ; topbottom) C L (e ; bottombottom) .
Proof

0] Let L(w ; topbottom) =(Gioppottom,A),Where

T topbottomzu(e)= max TG(e)(X), Itopbottomw(e)z max IG(G)(X)y
xeU xeU
Fropbottom (€)= )I(Télﬂ Fee)(x) for all e A.

Let L(w ; mid) =(Gpig,A), Where
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1
Thidg, (€) = U 2 Te(e) %

1
" mid,, (&) = 101 2 'oe)

1
F: e)=— %
mldw() |U | xeU

FG(e) (X)

for all e €A. Obviously, Ac A.
In the following we will prove that for all ecA.
Gtopbottom(e) - Gmid(e)-

1
Since max Tge(x) >— > T X), max lgex) >
g Teol 2 ey e(e) 0 max o

1 1
R I F . S_
|U |XEZU G(e) ¥ Fee U |x§U

F(e) (¥
then for al | ecA we have Tigppottom(@) > Tmig(€), lopbottom(€)
> Inid(€), Fropbotiom(€) < Fmia(e). Thus, we have the following
{X eU /TG(e)(x) 2 Ttopbottom(e)a IG(e)(x) 2 [topbottom(e)v FG(e)(X)
< Ftopbottom(e)}g {xeu /TG(e)(x) > Tria(e), IG(e)(x) > Inig(e),
Fee(X) < Frig(8)}. Since Gioppottom(€)= {XeU [ Tgey(x) >
Ttopbottom(e)! IG(e)(x) = ]topbottom(e)! FG(e)(x) < Ftopbottom(e)} and
Gmia(€)= {xeU [ Tge)(®) = Tmia(e), loe)®) = Inia(e), Fee)(X)
< Fnig(e)}, then we have the following Gigphotiom(€) <=
Gmia(e). Therefore L(w ;topbottom) C L(z ; mid).

Proof of (ii) and (iii) are analogous to proof (i).

Now, we show the adjustable approach to single valued
neutrosophic soft sets based decision making by using lev-
el soft sets.

Algorithm 3.13

Step 1: Input the (resultant) single valued neutrosophic
soft set w=(F,A).

Step 2: Input the threshold single valued neutrosophic set
L A—1® (1=[0,1]) (or give a threshold value triplet (r, s, t)
e I* (1=[0,1]); or choose the mid-level decision rule; or
choose the top-bottom-level decision rule; or choose the
top-top-level decision rule; or choose the bottom-bottom-
level decision rule) for decision making.

Step 3: Compute the level soft set L(a; 1) with the thresh-
old single valued neutrosophic set A (or the (r, s, t)-level
soft set L(a;r,s,t) ; or the mid-level soft set L(a@;mid); or
choose the top-bottom-level soft set L(a;topbottom) ; or
choose the top-top-level soft set L(z;toptop); or choose the
bottom-bottom-level soft set L(@;bottombottom))

Step 4: Present the level soft L(@;A)(or L(w;r,st);
L(@;mid); L(a@;topbottom), L(a;bottombottom)) in tabular
form and compute the choice value c; of o;, for all i.

Step 5: The optimal decision is to select oy if cy= max .
1

Step 6: If k has more than one value, then any of o, may
be chosen.

Note 3.14

In the last step of Algorithm 3.13, one may go back to
the second step and change the previously used threshold
(or decision rule), as to adjust the final optimal decision,
especially when there are too many “optimal choices” to be
chosen.

To illustrate the basic idea of Algorithm 3.13, let us
consider the following example.

Example 3.15

Let us consider the decision making problem (Example
3.2) involving the single valued neutrosophic soft set
o=(F,A) with its tabular representation given by Table 1.

If we deal with this problem by mid-level decision rule,
we shall use the mid-threshold mid , and thus obtain the
mid-level soft set L({F,A),mid) with choice values having
their tabular representation in Table 8.

U e e, €3 €4 Choice values
X 0 0 0 0 c,=0
X5 0 1 0 1 c,=2
Xs 1 1 1 1 cs=4
X4 0 0 0 0 c,=0
Xs 0 0 0 0 cs=0

Table 8: Tabular representation of mid-level soft set L(<F,A>;mid) with
choice values

From Table 8, it follows that the maximum choice val-
ue is c3=4, so the optimal decision is to select Xs.

At the same time, if we deal with this problem by top-
bottom-level soft set L({F,A),topbottom) we obtain the
choice values given by Table 9.

U er e €3 N Choice values
X 0 0 0 0 c,=0
X, 0 1 0 0 c,=1
Xs 1 0 1 1 c;=3
Xa 0 0 0 0 c,=0
Xs 0 0 0 0 cs=0

Table 9: Tabular representation of top-bottom-level soft set
L(<F,A>;topbottom) with choice values

From Table 9, it is clear that the maximum choice val-
ue is c3=3, so the optimal decision is to select Xs.
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4 Weighted single valued neutrosophic soft sets
based decision making

In this section, we will present an adjustable approach
to weighted single valued neutrosophic soft sets based de-
cision making problems.

Definition 4.1

Let FN(U) be the set of all single valued neutrosophic
sets in the universe U. Let A ¢ E and E be a set of param-
eters. A weighted single valued neutrosophic soft set is a
triple E=(F, A, ), where (F, A) is a single valued neutro-
sophic soft set over U , ®:A—[0,1] is a weight function
specifying the weight w;=a(e;) for each attribute g;eA.

By definition, every single valued neutrosophic soft set
can be considered as a weighted fuzzy soft set. The notion
of weighted single valued neutrosophic soft sets provides a
mathematical framework for modelling and analyzing the
decision making problems in which all the choice parame-
ters may not be of equal importance. These differences be-
tween the importance of parameters are characterized by
the weight function in a weighted single valued neutro-
sophic soft set.

Algorithm 4.2 (an adjustable approach to weighted sin-
gle valued neutrosophic soft sets based decision making
problems)

Step 1: Input the weighted single valued neutrosophic soft
set E=(F, A, o).

Step 2: Input the threshold single valued neutrosophic set
L: A—I® (or give a threshold value triplet (r, s, t) e I3 or
choose the mid-level decision rule; or choose the top-
bottom-level decision rule; or choose the top-top-level de-
cision rule; or choose the bottom -bottom-level decision
rule) for decision making.

Step 3: Compute the level soft set L((F,A); 1) of & with re-
spect to the threshold single valued neutrosophic set A (or
the (r, s, t)-level soft set L({F,A);r,s,t) ; or the mid-level
soft set L({(F,A);mid); or choose the top-bottom-level soft
set L({F,A);topbottom) ; or choose the top-top-level soft
set L({F,A);toptop); or choose the bottom-bottom-level
soft set L((F,A);bottombottom)).

Step 4: Present the level soft L((F,A); A)(or L((F,A);r,s,t);
L((F,A);mid);L((F,A);topbottom), L({F,A);bottombottom))
in tabular form and compute the choice value c¢’; of o;, for
all i

Step 5: The optimal decision is to select oy if ¢c’= miax c'..

|
Step 6: If k has more than one value then any of o, may be
chosen.

Note 4.3

In the last step of Algorithm 4.2, one may go back to
the second step and change the previously used threshold
(or decision rule), as to adjust the final optimal decision,
especially when there are too many “optimal choices” to be
chosen.

To illustrate the basic idea of Algorithm 4.2, let us
consider the following example.

Example 4.3

Let us consider the decision making problem (Example
3.2). Suppose that Mr. X has imposed the following
weights for the parameters in A: for the parameter “brand-
ed”, w;=0.8, for the parameter “expensive”, w,=0.6, for
the parameter “cooling speed”, w3=0.9, and for the parame-
ter “after sale product service”, w;=0.7. Thus, we have a
weight function ®:A—[0,1], and the single valued neutro-
sophic soft set w=(F, A) in Example 3.2 is changed into a
weighted single valued neutrosophic soft set E=(F, A, ®).
Its tabular representation is given by Table 10.

U e;,w;=08 e,,W,=0.6 e3,W3=0.9 €4,Ws=07

X; (0.7,0.3,0.1) (0.6,0.25,0.1) (0.75,0.35,0.1) (0.65,0.3,0.2)
X, (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15)
X3 (0.9,0.4,0.05) (0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1)
X4 (0.6,0.3,0.2) (0.6,0.2,0.4) (0.5,0.4,0.3) (0.7,0.4,0.2)
Xs (0.5,04,0.2) (0.7,0.2,0.3) (0.6,0.45,0.2) (0.6,0.3,0.1)

Table 10: Tabular representation of weighted single valued neutrosophic

soft set E=(F, A, ).

As an adjustable approach, one can use different rules
in decision making problem. For example, if we deal with
this problem by mid-level decision rule, we shall use the
mid-threshold midz 5, and thus obtain the mid-level soft
set L({F,A),mid) with weighted choice values having tabu-
lar representation in Table 11.

U e;,w;=0.8 e,w,=0.6 e3w;=0.9 e,w,=0.7 weighted choice

value
X4 0 0 0 0 c¢’'1=0
X, 0 1 0 1 c5=1.3
X3 1 1 1 1 c3=3.2
X4 0 0 0 0 c‘4=0
Xs 0 0 0 0 c's=0

Table 11: Tabular representation of mid-level soft set L(<F,A>;mid) with
weighted choice values

It follows that the maximum weighted choice value is
¢ 3=3.2, so the optimal decision is to select Xs
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5 Mean potentiality approach
Definition 5.1

The potentiality of a single valued neutrosophic soft set
(pins) is defined as the sum of all membership, indetermin-
istic and non-membership values of all objects with respect
to all parameters. Mathematically, it is defined as

-($En8SE8e]

= j=l =l j=l =l el

where Tj |, Fjj are the membership, indeterministic and
non-membership values of the i" object with respect to
the j™ parameter respectively, m is the number of objects
and n is the number of parameters.

Definition 5.2

The mean potentiality (mp) of the single valued neutro-
sophic soft set is defined as its average weight among the
total potentiality.Mathematically, it is defined as

Pfns

mp = mxn
Algorithm 5.3
Step 1: Input the (resultant) single valued neutrosophic
soft set w=(F,A).
Step 2: Compute the potentiality (pgs) Of the single valued
neutrosophic soft set.
Step 3: Find out the mean potentiality (m,) of the single
valued neutrosophic soft set.
Step 4: Form my-level soft soft set of the single valued
neutrosophic soft set in tabular form, then compute the
choice value ¢; of o;, for all i.

Step 5: The optimal decision is to select oy if c,=max c..
|

Step 6: If k has more than one value, then any of o, may
be chosen.

Example 5.4
Let us consider the problem in Example 3.2 with its tabular
representation in Table 1.

Pins -
s js:

The Mean potentiality mp =

mxn

142 7.15 3.15
mp = ’ ,
5x4 5x4 5x4

): (0.71, 0.36, 0.16).

Using this triplet, we can form the mp—level soft set,

which is shown by Table 13.

U e e, €3 €4 Choice values
X1 0 0 0 0 c,=0
X5 0 0 0 1 c,=1
X3 1 0 1 1 c3=3
Xa 0 0 0 0 c,=0
Xs 0 0 0 0 cs=0

U e e €3 €4 Choice value

X, (0.7,0.3,0.1) (0.6,0.25,0.1) (0.75,0.35,0.1) (0.65,0.3,0.2) (2.7,1.2,0.5)
X, (0.8,0.3,0.1) (0.9,0.3,0.05) (0.7,0.4,0.15) (0.85,0.5,0.15)(3.25,1.5,0.45)

X3(0.9,0.4,0.05)(0.8,0.3,0.05) (0.85,0.5,0.1) (0.9,0.6,0.1) (3.45,1.8,0.3)
X, (0.6,0.3,02) (0.6,0.2,04) (050.4,03) (0.7,04,02) (2.4,1.3,1.1)
X5 (0.5,0.4,02) (0.7,0.2,0.3) (0.6,0.450.2) (0.6,0.3,0.1) (2.4,1.35,0.8)

Table 12: Tabular representation of single valued neutrosophic soft set
with choice values.

So, the potentiality is p o= (14.2,7.15,3.15).

Table 13: Tabular representation of mjg-level soft set with choice values.

From Table 13, it is clear that the maximum choice
value is c3=3, so the optimal decision is to select X.

Conclusion

In this paper, we introduced an adjustable and mean
potentiality approach by means of neutrosophic level soft
sets. Different level soft sets were derived by considering
different types of thresholds, namely, mid, topbottom, top-
top, bottombottom. In general, the final optimal decisions
based on different level soft sets could be different. Thus,
the approach discussed in this paper captures an important
feature for decision making in an imprecise environment.
Some of these problems are essentially humanistic, and
thus, subjective in nature; there actually isn’t a unique or
uniform criterion for evaluating the alternatives. Hence, the
decision making models presented in this paper make the
approaches to single valued neutrosophic level soft sets
based decision making more appropriate for many real
world applications.
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Abstract. This paper investigates an extended grey rela-
tional analysis method for multiple attribute decision
making problems under interval neutrosophic uncertain
linguistic environment. Interval neutrosophic uncertain
linguistic variables are hybridization of uncertain linguis-
tic variables and interval neutrosophic sets and they can
easily express the imprecise, indeterminate and incon-
sistent information which normally exist in real life situa-
tions. The rating of performance values of the alterna-
tives with respect to the attributes is provided by the de-
cision maker in terms of interval neutrosophic uncertain

linguistic variables in the decision making situation. The
weights of the attributes have been assumed to be incom-
pletely known or completely unknown to the decision
maker and the weights have been calculated by employ-
ing different optimization models. Then, an extended
grey relational analysis method has been proposed to de-
termine the ranking order of all alternatives and select the
best one. Finally, a numerical example has been solved to
check the validity and applicability of the proposed
method and compared with other existing methods in the
literature.

Keywords: Multiple attribute decision making, Interval neutrosophic set, Interval neutrosophic uncertain linguistic variables, Grey

relational analysis.
1 Introduction

Multiple attribute decision making (MADM) is a pro-
cedure for a decision maker (DM) to get the most desirable
alternative from a set of feasible alternatives with respect
to some predefined attributes. MADM, an important deci-
sion making apparatus have been applied in many kinds of
practical fields such as engineering technology, economics,
operations research, management science, military, urban
planning, etc. However, in real decision making, due to
time pressure, complexity of knowledge or data, ambiguity
of people’s thinking, the performance values of the alterna-
tives regarding the attributes cannot always be represented
by crisp values and it is reasonable to describe them by
fuzzy information. Zadeh [1] proposed the notion of fuzzy
set theory by incorporating the degree of membership to
deal with impreciseness. Atanassov [2] extended the con-
cept of Zadeh [1] and defined intuitionistic fuzzy set by in-
troducing the degree of non-membership in dealing with
vagueness and uncertainty. However, in many real world

decisions making, we often encounter with indeterminate
and inconsistent information about alternatives with re-
spect to attributes. In order to handle indeterminate and in-
consistent information, the theory of neutrosophic set was
incorporated by Smarandache [3-6] by introducing the de-
gree of indeterminacy or neutrality as an independent
component. After the ground-breaking work of
Smarandache [3-6], Wang et al. [7] proposed single valued
neutrosophic set (SVNS) from real scientific and engineer-
ing point of view. Wang et al. [8] introduced interval neu-
trosophic set (INS) which is more realistic and flexible
than neutrosophic set and it is characterized by the degree
of membership, degree of non-membership and a degree of
indeterminacy, and they are intervals rather than real num-
bers.

In interval neutrosophic decision making environment,
Chi and Liu [9] proposed extended technique for order
preference by similarity to ideal solution (TOPSIS) method
for solving MADM problems in which the attribute
weights are unknown and attribute values are expressed in
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terms of INSs. Ye [10] defined Hamming and Euclidean
distances between INSs and proposed a multi-criteria
decision making (MCDM) method based on the distance
based similarity measures. Broumi and Smarandache [11]
defined a new cosine similarity between two INSs based
on Bhattacharya’s distance [12] and applied the concept to
a pattern recognition problem. Zhang et al. [13] developed
two interval neutrosophic number aggregation operators
for solving MCDM problems. Liu and Shi [14] defined
some aggregation operators for interval neutroshic hesitant
fuzzy information and developed a decision making
method for MADM problems. Zhang et al. [15] further
proposed several outranking relations on interval
neutrosophic numbers (INNs) based on ELETRE IV and
established an outranking approach for MCDM problems
using INNs. Ye [16] investigated an improved cross
entropy measures for SVNSs and extended it to INSs.
Then, the proposed cross entropy measures of SVNSs and
INSs are employed to MCDM problems. Sahin and Liu
[17] developed a maximizing deviation method for
MADM problems with interval-valued neutrosophioc
informations. Tian et al. [18] explored a novel and
comprehensive approach for MCDM problems based on a
cross entropy with INSs. Mondal and Pramanik [19]
developed cosine, Dice and Jaccard similarity measures
based on interval rough neutrosophic sets and developed
MADM methods based on the proposed similarity
measures. Ye [20] defined a credibily-induced interval
neutrosophic weighted arithmetic averaging operator and a
credibily-induced interval neutrosophic weighted geometic
averaging operator and established their properties. In the
same study, Ye [20] also presented the projection measure
between INNs the projection measure based ranking
method for solving MADM problems with interval
neutrosophic information and credibility information.

Deng [21] initiated grey relational analysis (GRA)
method which has been applied widely for solving many
MADM problems [22-34] in diverse decision making envi-
ronments. GRA has been identified as an important deci-
sion making device for dealing with the problems with
complex interrelationship between various aspects and var-
iables [25-27]. Biswas et al. [28] first studied GRA tech-
nique to MADM problems with single valued neutrosophic
assessments in which weights of the attributes are com-
pletely unknown. Biswas et al. [29] further proposed an
improved GRA method for MADM problems under neu-
trosophic environment. They formulated a deviation based
optimization model to find incompletely known attribute
weights. They also established an optimization model by
using Lagrange functions to compute completely unknown
attribute weights. Mondal and Pramanik [30] studied rough
neutrosophic MADM through GRA method. Pramanik and
Mondal [32] proposed a GRA method for interval neutro-

sophic MADM problems where the unknown attribute
weights are obtained by using information entropy method.
Recently, Dey et al. [34] developed an extended GRA
based interval neutrosophic MADM for weaver selection
in Khadi institution.

Ye [35] introduced interval neutrosophic linguistic
variables by combining linguistic variables and the idea of
INSs. In the same study Ye [35] proposed aggregation
operatos for interval neutrosophic linguistic information
and presented a decision making method for MADM
problems. Broumi et al. [36] studied an extended TOPSIS
method for MADM problems where the attribute values
are described in terms of interval neutrosophic uncertain
linguistic information and attribute weights are unknown.
However, literature review reveals that there has been no
work on extending GRA with interval neutrosophic
uncertain linguistic information. In this study, we have
developed a new GRA method for MADM problems under
interval neutrosophic uncertain linguistic assessments
where the information about attribute weights are partially
known or completely unknown to the DM.

Rest of the paper is designed as follows; In Section 2,
we have summarized some basic concepts which are essen-
tial for the presentation of the paper. Section 3 has been
devoted to develop an extended GRA method for solving
MADM problems under interval neutrosophic uncertain
linguistic information where the information about attrib-
ute weights is partially known or completely unknown. In
Section 4, an algorithm of the proposed method has been
presented. In Section 5, we have solved a MADM problem
to validate the developed method and compared the results
with the results of other accessible methods in the literature.
Finally, the last Section 6 concludes the paper with future
scope of research.

2 Preliminaries

In the Section, we present several concepts regarding
neutrosophic sets, single-valued neutrosophic sets, interval
neutrosophic sets, uncertain linguistic variable, interval
linguistic neutrosophic set, and interval neutrosophic un-
certain linguistic set.

2.1 Neutrosophic set

Definition 2.1 [3-6]: Let U be a space of objects, then a
neutrosophic set N is defined as follows:

N =%, (Ty (), 1y (%), Fyy (%) ) [ xe U} D
where, T, (X): U —710,1°[; 1,(X): U—>1710, 1'[; Fy (X):
U — J0, 17 are the truth-membership function, indetermi-
nacy-membership function, and falsity-membership func-
tion, respectively with the condition

0<sup Ty (X)+suply (x) +supFy (x) <3
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2.2 Single — valued neutrosophic set

Definition 2.2 [7]: Assume U be a universal space of ob-
jects with generic element in U represented by X, then a
SVNS S U is defined as follows:

S={x (Ts (X, 15 (%), Fs (x) ) | xe U} 2
where, T (x); 15(x);Fs(x): U — [0, 1] are the degree of
truth-membership, the degree of indeterminacy-
membership, and the degree of falsity-membership respec-
tively of the element xe U to the set S with the condition
0SS T (X)) + I (X)+ F(x) <3.

2.3 Interval neutrosophic set

Definition 2.3 [8]: Assume that U be a universal space of
points with generic element in U denoted by x. Then an
INS A is defined as follows:

A={x <TA(X)1|A(X)IFA(X)> | xe U} 3
where, T,(X) , 1,(X) , Fo(x) are the truth-membership
function, indeterminacy-membership function, and falsity-
membership function, respectively with
TA(X), 1,(X), Fa(x) < [0, 1] for each point xe U and
0<sup TA(x)+supl,(x)+supF,(x) <3. For convenience,
an INN is represented by a = ([T, T'], [I', I'], [F, F']).
2.4 Uncertain linguistic variable

A linguistic set P = (po, pP1, P2, .- Pu-1) IS a finite and com-
pletely ordered discrete term set, where u is odd. For ex-
ample, when u = 7, the linguistic term set P can be defined
as given below [36].

P = {po (extremely low); p; (very low); p, (low); ps (medi-
um); pg4 (high); ps (very high); ps (extremely high)}.
Definition 2.4 [36]: Let p = [ p,.p, 1. where

PPy € P with o < B be respectively the lower and upper

limits of P, then, P is said to be an uncertain linguistic var-
iable.

Definition 2.5 [36]: Consider p, = [p, ,p, ] and p, =
[p,,.Pg, ] be two uncertain linguistic variables, then the
distance between p, and p, is defined as given below.

D (Fy.By) = = (Jay-04 ]+ |B, -Bi])

2(u-1) @)

2.5 Interval neutrosophic linguistic set

Ye [35] proposed interval neutrosophic linguistic set based
on interval neutrosophic set and linguistic variables.
Definition 2.6 [35]: An interval neutrosophic linguistic set
L in U is defined as follows:

L={x, pq,(x) , <T|_ (), 1L (x), F(%) > | xe U} )

where T (x) = [T.(X) , TI() ] < [0, 1], 1.(x) =

(L), 1)1 < [0, 1], FL(x) = [FL(x),FL ()] < [0, 1]
denote respectively, truth-membership degree,
indeterminacy-membership degree, and falsity-
membership degree of the element x in U to the linguistic
variable p,,,, € p with the condition

O<S T/ (X)+ I;(X)+ F'(x) <3.

2.6 Interval neutrosophic uncertain linguistic set
Broumi et al. [36] extended the concept of interval neutro-
sophic linguistic set [35] and proposed interval
neutrosophic uncertain linguistic set based on interval neu-
trosophic set and uncertain linguistic variables.

Definition 2.7 [36]: An interval neutrosophic uncertain
linguistic set C in U is defined as follows:

C={x [p(p(x) ) p\y(x)]’ <Tc (), 1 (%), Fe (X)> | xe U} (6)
where To(x) = [Tc(x) , Tc(x) ] < [0, 1], Ic(x) =
[0, 1c() 1< 0, 1], Fe(x) =[Fe (), Fe(x)1< [0, 1]
represent  respectively,  truth-membership  degree,
indeterminacy-membership degree, and falsity-

membership degree of the element x in U to the uncertain
linguistic variable [ p,., , P, ] Wwith the condition

0 TE(X)+ 15 () + F2(x) <3.

Definition 2.8 [36]: Consider & = < [ p,a, » Pya) 1
((T@), T'@)] [I'@E),1"@) ] [F@E),F@E)]) >
and a, = < [ Poa) » Pvay 1 ([ T(a,) ., T°(a,) 1,
[1'@,),1"(3,) 1, [F(@,),F"(a,)]) > be two interval neu-

trosophic  uncertain  linguistic  variables  (INULVS)
and u >0, then the operational laws of INULVS are defined

as given below.

L oa @ & = < [ Pogyoa @ Pvarva b
(T@)+T(@,)-T@).T@),T(@)+T"(@,)-
T'@) . T°@)] [1@).I'@,), 1"@) . 1"@,) 1,
[F@).F(@,).F(@).F@)])>

2.8 ® a4 = < [ Puapa + Pvarwe)
((T@).T@),T@) . T'@)] [@)+1'(@,)-
I'@) . 1'@,), 1"@) +1"@,) - 1"@) . 1@, ],
[F@)+F(@,)-F@).F(@@,), F(@)+F(@,)-
F'(a,).F'(a,)])>

3. 1= < [Pup@): Puvay I (L - (-T°(@))", 1- (1-
T @)L [(r@)”, (r@)" 1 (F@E))",
(F@))"n>
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4. A=<[pye, Pyl MTE)" (TFE))']IL

~@-r@E)"1-Q-rE) LI F@E))",

1-(1-F@))"']D>
Definition 2.9 [36]: Consider p, = < [p,, ,p,, 1. ([TA. Tx 1,
[V 03] [FA FXD) > andp, = < [p,,.py, 1 ([T5. Ts ],
[15,1:) [Fs,Fs 1) > be two INULVS, then the Hamming

distance between them is defined as follows:

-~ - 1
Dham (P1+P2) = ——= (I

o, X T,
2u-1) © A

-0, x Tg| +

o, x Ta-ay x Tg | + o, x Iy-0, x Ig] + o, x 1;-
o, x Ig| + o, x Fa-a, x Fg| + o, X Fi-0, x Fy | +
[Byx Ta-Box Tl + [Byx Ta-Bp x Tg | + [Byx Iy-
Bo x Tg | + [Byx 1By x Ig| + [Byx Fa-B, x Fy
+ By X Fu-By X Fg) ()
Definition 2.10: Letp1—<[pu1 P, 1, ([T, TAl [I,,(E)IA]
[FA Fal) >andp,= < [p,.pg, 1 ([Ts. Te 1 [15. 151,
[Fs,Fsz 1) > be two INULVSs, then we define the Euclidean
distance between them as follows:

DEUC(ﬁllﬁz)z [(ale;\-(xszé)2+

_1
12(u—1)
(o, x TS0y, x T )2+ (o X Iy-a, X 13)% + (o, X 1 -
o, x 1)+ (0, X Fr-o, X Fg )2+ (0, x Fj -0, x F )2+
(ByX Ta-B, X Tg)? + (Byx Ta-By x Tg ) + (By X I~
By x 15)? + (Byx 1a-By x 15)2 + (By x Fa-B, x Fy ) +

(Byx Fi-B, x F{ )22 ®

3 Extended GRA for MADM problems with interval
neutrosophic uncertain linguistic information

Let G ={Gy, G,, ..., Gy}, (M=>2) be a discrete set of al-
ternatives and H ={H,, H,, ..., H,}, (n>2) be the set of at-
tributes in a MADM problem with interval neutrosophic
uncertain linguistic information. Also consider o= {®,,

®,, ..., ®, } be the weighting vector of the attributes with

0<o;<1and _Elo)j = 1. Suppose the performance values
i

of alternatives with respect to the attributes are represented
by INUI—\/VIJ =< [Xu' le] ([Tu’ ij ] [IIJ’ IJ] [FI]7 ij ])

> (i=1,2,..,m; j=1,2,...,n). Here, [ X;, X;] repre-

+

sents uncertain linguistic variable and x;;, X; € P = (po, p1,
P2 o D) Ty Ty o 10 1L Fi W By € [0, 1] with the
condition 0< T (x) + 1j;(x) + Fj(x) <3. Now, the steps

for ranking the alternatives based on extentended GRA
method are described as follows:

Step 1. Normalize the decision matrix

Benefit type and cost type attributes are two types of at-
tributes which exist in real world decision making prob-
lems. In order to eradicate the impact of the attribute types,
we normalize [36] the decision matrix. Suppose Q = (qy)

be the normalized decision matrix, where g;= < [q;, d; ],

([Tu’ Ij] [IIJ' Ij] [Fu' IJ])>(1 'nm;jzlazv
., ), then

For benifit type attribute

a;= X, 0= xfor(i=1,2,...,m; j=1,2,...,n)

T,=T,. T =T, 0=,

ij? ijrrij ij?
For cost type attribute
q; = neg (xij), q;; = neg (xj)fori=1,2,..,
..., )
T =T, T+

ij?

ii=1;,F=F,F =F (9

ijrij ijrij
m; j=1,2,

ii=1 F=F F =F/

ijrij ijr 7 ij

T 0=

ij *ij ij?

(10)

Step 2. ldentify the positive ideal solution (PIS) Q® =
(a7, 45, ... g°) and negative ideal solution Q% =
(90,07 G7)

Broumi et al. [36] defined PIS (Q®) and NIS (QY) in

interval neutrosophic uncertain linguistic environment as
follows:

Q®=(af, a5, ., A7) =[< a7, af" ] ([T7, 7],
[P 5L DR R D > < [ag, a3 ] (T, T 1,
L5057 (R R D > s < Loy, o' (LT, T2 ),
[ I LR R D) > (11)

Y=o Ay an) =< o e ] (Y T
[ L IRY R D > < ey a1 (7 T L
[ B L IR R D > < [a el
(RS A B I b | [an',f:nw*])>] (12)
Whereqj = Max; qij,qj+: Max; qﬁ =Max; TU,T'B*:
Max; T, , %= Min;l;, 1% = Mln.I;,FB Min; F;, R =
Min; F,J,
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9} = Min;g;, g} = Min;q;, T = Min; T, TV" = Min o~
Min; TJ , |}N = Max; |IJ , |]N+ = Max; ||J] , |.:J-W_ = SUbjECt to
. . (M-1B) 4 n - . (18)
MaXi Fli | FJW+ - MaX| FIJ+ . le(l_Q”)wJ <a ,|:1,2,...,m
oe X

Step 3. Determine the neutrosophic grey relational co-
efficient of each alternative from PIS and NIS

The grey relational coefficient of each alternative from PIS
is defined as follows:

Min Min p;; + ¢ Max Max p;;
Q:]- = 1 I 1 1

" ” (13)

pjj +o Miax MiaXPij

where pi =D (0,95 ), (i=1,2,...,m; j=1,2,...,n)

and the grey relational coefficient of each alternative from

NIS is defined as given below

Min Min p;; +c Max Max p;
I I I 1

Q;= (14)

p;; +oMaxMaxp;

where p; =D (g5 95 ). (i=1,2,
Here, 6 €[0, 1] represents the distinguishing coefficient

and generally, o= 0.5 is considered in the decision making
context.

,mp j=1,2,... n).

Step 4. Determination of weights of the attributes

The main idea of GRA method is that the chosen alterna-
tive should have the maximal degree of grey relation from
the PIS. So, the maximal grey relational coefficient pre-
sents the most suitable alternative for the given weight vec-
tor. Here, we assume that the weight vector of the attrib-
utes is partially known to the DM. Now, the grey relational
coefficient between PIS and itself'is (1, 1, ..., 1), similarly,
grey relational coefficient between NIS and itself is also (1,

1, ..., 1). The corresponding comprehensive deviations are
given below.

D (0) = £(1- Q) (15)
D (@)= 2 (1-0;)o, (16)

Smaller values of D (®) and D; () represent the better

alternative. Now we use the max-min operator of Zim-
mermann and Zysco [37] to integrate all the distances

D/ (w)and D; (®w),i=1, 2, ..., m separately. Then, we

construct the following programming model [29] for in-
completely known weight information as:

Min o*
subject to

(M-1A)< » . .
_zl(l—Qij)(Dj <a%,i=1,2,...m
j=

17)

oe X

where o* = Max_%(l—Qa)wj Lo = M_ax%(l—()g)mj Q=
1,2, ...,m.
By solving the model (M-1A) and model (M-1B), we get

the optimal solutionse”™ = (0 ,®;, ...,0, ) and o~ =

(07,05, ...,0, ) respectively.

Finally, we obtain the weight vector (@) by combining the
above two optimal solutions as follows:

o=rt0 +(1-7)o ;7 el0,1] 19
However, if the information about weights of the attributes
are completely unknown, we can formulate another
programming model [29] as follows:

Min D; (@)= £{1-pj)o,

(M-2) 4subject to (20)

fo; =1i=1,2,..,m.
=1

J

Now we can aggregate the above multiple objective opti-
mization models with same weights into the single objec-
tive optimization model as follows:
. + _om _m . n O+ 2
Min D} (0)= D; ()= ]El{(l Qo |

(M-3) {subject to (21)

n
TO; =1
=1

In order to solve the above model, we formulate the La-
grange function as given below.

L (o, g):iglél{(l_g;)@j}z +2((fo,-1) (22)

Here, Cis the Lagrange multiplier.
Now we differentiate the Eq. (22) with respectto o, (j =1,

2, ..., n)and (. Then, by equating the partial derivatives to

zero, we obtain the set of equations as follows:

aL i m
M:Z_gl(l—ﬂﬁ)zmj +2(=0,

0w,
oL (w;, n
M: s, —1=0
o S

By solving the aboveequatins, we obtain
n(m et N
o]

2h-o;f

w =

(23)
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Similarly, we can get the attribute weight @™ by consider-
ing NIS as follows:

ehoaf )]
Sh-o;f

Finally, we can calculate the j-th attribute weight by using
the Eq. (19).

o =

(24)

Step 5. Determine the degree of neutrosophic grey rela-
tional coefficient

The degree of neutrosophic grey relational coefficient of
each alternative from PIS and NIS are obtained by the
equations (25) and (26) respectively.

Q= ,»%1“’1 Q;;i=1,2..,m (25)
Q;: E;(A)j Q- :i=1,2,...m (26)

1 L

Step 6. Determine the neutrosophic relative relational
degree

We compute the neutrosophic relative relational degree of
each alternative from PIS by using the following Eq.

+

:—i,i= 1,2, ...,m.
Qr+Q°

@7)

Step 7. Rank the alternatives

The ranking order of the alternatives is obtained according
to the decreasing order of the neutrosophic relative rela-
tional degree. The maximal value of ®,,i=1, 2, ..., m re-

flects the most desirable alternative.

4 Proposed GRA based algorithm for MADM prob-
lems with interval neutrosophic uncertain linguis-
tic information

In the following steps, we develop a new GRA based algo-
rithm for solving MADM problems under interval neutro-
sophic uncertain linguistic information

Step 1. Assune v = < [x;, x; L ([T Ty L [ 151

[F.FiD>@G=12,..,m j=12,..,n)be aninterval
neutrosophic uncertain linguistic decision matrix provided

by the DM, for the alternative G; with respect to the attrib-
ute H;, where [ x;, x;; ] denotes uncertain linguistic varia-
ble.

Step 2. If the attributes are benefit-type, then we normalize
the decision matrix by using the Eq. (9), or we utilize the
Eg. (10) in case of cost-type attributes.

Step 3. Identify PIS (Q®) and NIS (QY ) from the
decision matrix by using Eqgs (11) and (12) respectively.
Step 4. Use the distance measures to determine the
distances of all alternatives from PIS and NIS.

Step 5. Compute neutrosophic grey relational coefficient
of each alternative from PIS and NIS by using the equa-
tions. (13) and (14) respectively.

Step 6. If the attribute weights are partially known to the
DM, then we solve the models (M-1A) and (M-1B) to find

the optimal solutions 0® = (®;, ®;, ...,o; ) and o =

(0; ,@;, ...,0, ) respectively. Then, weight vector () is
obtained by utilizing the Eq. (19). If the information about

attribute weights are completely unknown, we solve the

model (M-3) to determine " and @™ . Finally the weight
vector (o) is calculated by employing the Eq. (19).

Step 7. Find the degree of neutrosophic grey relational co-
efficient of each alternative from PIS and NIS by employ-
ing the equations (25) and (26) respectively.

Step 8. Determine the neutrosophic relative relational de-
gree (R,) of each alternative from PIS by using the Eq.
27).

Step 9. Rank all the alternatives G; (i =1, 2, ..., m) based
on R, and choose the best alternative.

Step 10. End.

5 Numerical example

A MADM problem with interval neutrosophic uncertain
linguistic information studied by Broumi et al. [36] has
been considered in this Section to show the applicability
and the effectiveness of the proposed extended GRA ap-
proach. Assume that an investment company desires to in-
vest a sum of money in the best option. Suppose there are
four possible alternatives to invest the money: (1) G; is a
car company; (2) G, is a food company; (3) Gs is a com-
puter company; (4) G4 is an arm company. The company
must take a decision based on the following attributes: (1)
H, is the risk; (2) H, is the growth analysis; (3) Hs is the
environmental impact analysis. The rating of performance
values of the four alternatives with respect to the three at-
tributes are presented by the DM in terms of INULVS un-
der the linguistic term set P= {p, = extremely poor; p; =
very poor; p, = poor; pz = medium; ps = good; ps = very
good; ps = extremely good [36]. The decision matrix with
interval neutrosophic uncertain linguistic variables is pre-
sented in Table 1 as follows:

Table 1. The decision matrix in terms of interval neutrosophic
uncertain linguistic variables [36]
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[<[p..ps],([0.4,0.5],[0.2,0.3],[0.3,0.4]) > <[ps,p,],([0.4,0.6],[0.1,0.2],[0.2,0.4]) >

<[ps, P, ([0.5,0.71,[0.1,0.21,[0.2,0.3]) > <[p,,ps],([0.6,0.7],[0.1,0.2],[0.2,0.3]) >
<[ps, P, ([0.3,0.51,[0.1,0.2],[0.3,0.4]) > <[p;, p,],([0.5,0.6],[0.1,0.3],[0.3,0.4]) >
<[py,p,1,([0.7,0.81,[0.0,0.1],[0.1,0.2) > <[p;,p,],([0.5,0.7],[0.1,0.2],[0.2,0.3]) >
<[p,, P51, ([0.2,0.3],[0.1,0.2],[0.5,0.6]) >
<[p,,Ps1,(10.5,0.71,[0.2,0.2,[0.1,0.2]) >

<[p..p.].([0.5,0.6],[0.1,0.3],[0.1,0.3]) >

<[P, p,].([0.3,0.4],[0.1,0.2],[0.1,0.2]) >

Now the proposed approach is described in the following
steps.

Step 1. Normalization

The attributes of the given MADM problem are considered
as benefit types. Therefore, we don’t require the normali-
zation of the decision matrix.

Step 2. Identify the PIS and NIS from the given decision
matrix

The PIS (QB) is obtained from the decision matrix as fol-
lows:

Q"= (<[ps, psl, [0.7, 0.8], [0.0, 0.1], [0.1, 0.2]>; <[ps, Pel,
[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]>; <[ps, pe], [0.5, 0.7], [0.1,
0.2],[0.1, 0.2]>)

The NIS (QW) is obtained from the decision matrix as
follows:

QW :(<[p31 p4]: [03! 05]! [021 03]! [031 04]>1 <[p3l pA],

[0.4, 0.6], [0.1, 0.3], [0.3, 0.4]>; <[pa, pe], [0.2, 0.3], [0.2,
0.3], [0.5, 0.6]>)

Step 3. Determination of neutrosophic grey relational
coefficient of each alternative from PIS and NIS

We calculate the Hamming distance between each
alternative and PIS by utilizing the Eq. (7). Then, the
neutrosophic grey relational coefficient of each alternative
from PIS can be obtained by using the Eq. (13) as follows:

05294  0.9755  0.5051
. _|0.7699  0.9917  1.0000
"" 105414  0.8956  0.9024

0.7745  0.7065  0.8956

We also evaluate the Hamming distance between each
alternative and NIS by using the Eqg. (7). Then, the
neutrosophic grey relational coefficient of each alternative

1 from NIS can be determined with the help of the Eq. (14)

as follows:
0.8314  0.7103  0.9333
O = 0.6000 0.7444 0.4510
Y 10.6995 0.5670 0.5134
0.5343  1.0000 0.5534

Step 4. Determination of the weights of the attributes

Case 1. The partially known weight information is present-
ed as follows:

1025<m®; <04, 02< ®w, <035, 04< ®; <0. 5 such

that _gloaj =landw; 20,j=1,2,3.
J=

Now we construct the single objective programming model
by using the model (M-1A) and model (M-1B) as given
below.

Model (M-1A).

Min a*

subject to

0.4706 ®, +0.0245®,+0.4949 0, < o™,

0.2301 ®, +0.0083 w, < o™,

0.4586 ®, +0.1044 », +0.0976 0, < o™,

0.2255 », +0.2935 0, +0.1044 0, < o,

0.25< ®, <0.4,0.2< 0, <0.35,04< w; <0.5,
fo,=landw, 20,j=1,2,3.

j=1

Model (M-1B).

Min o~

subject to

0.1686 ®, + 0.2897 », + 0.0667 w, < 0.,

04w,+0.25560,+ 0549w, < a”,

0.30050, +0.433w,+ 0.4866 0, < 0™,

0.4657 o, + 0.4466 0, < o,

0.25< ®, £0.4,0.2< 0, <0.3504< ®; <0.5,

fo,=landw, 20,j=1,2,3.
j=1

Solving the above two models (M-1A and M-1B), we get
the weight vectors respectively as given below.

®" =(0.25,0.35, 0.40) and ® " = (0.294, 0.306, 0.40)
For 7 =0.5, the combined weight vector of the attributes is
obtained as w = (0.272, 0.328, 0.4).

Case 2. Consider the information about the attribute
weights be completely unknown to the DM. Then, we can
get the unknown weights of the attributes by using the rela-
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tions (23) and (24). The weights of the attributes are ob-
tained respectively as follows:

®" =(0.118, 0.645, 0.237) and ®~ = (0.318, 0.468, 0.213)
Therefore, the resulting weight vector of the attributes by
taking 7=0.5is ®=(0.218, 0.557, 0.225).

Step 5. Calculate the degree of neutrosophic grey rela-
tional coefficient

The degree of neutrosophic grey relational coefficient of
each alternative from PIS for Case 1 and Case 2 are
presented as follows:

Case 1: Q. = 0.6660, Q;, = 0.9347, Q; = 0.8020, Q; =
0.8000

Case 2: Q; = 0.7724, Q; = 0.9452, ;= 0.8199, Q, =
0.7639.

Similarly, the degree of neutrosophic grey relational coef-
ficient of each alternative from NIS for Case 1 and Case 2
are demonstrated as follows:

Case 1: Q) = 0.8324, Q} = 0.5878, Q; = 0.5816, Q] =
0.6947
Case 2. Q] = 0.7869, Q) = 0.6469, Q; = 0.5838, Q] =
0.7980.

Step 6. Evaluate the neutrosophic relative relational
degree

We calculate the neutrosophic relative relational degree of
each alternative from PIS for Case 1 and Case 2 are
presented as follows:

Case 1: R, = 0.4448, R, = 0.6139, R, = 0.5796, R, =
0.5354

Case 2: R, = 0.4954, R, = 0.5937, R, = 0.5841, R, =
4891.

Step 7. Rank the alternatives

The ranking order of the alternatives for Case 1 and Case 2
are presented according to the values of the neutrosophic
relative relational degrees as given below.

Case 1: R,>R, >R, >R,

Case 2: R,>R,;>R, >N,

We observe that the Arms Company is the best alternative
for investment purpose for both the cases (see Table 2).

Note 1. Broumi et al. [36] consider the weight vector o=
(0.35, 0.25, 0.4) and use TOPSIS method to rank the
alternatives. If we consider the same weight structure i.e.
o = (0.35, 0.25, 0.4), then the ranking order of the
alternatives based on the proposed GRA method is
obtained as follows:

G, > Gz > G4 > G; and obviously, G, would be the best
choice.

Note 2. If we consider the proposed Euclidean measure to
calculate the distance between two INULVS, then (0.25,
0.35, 0.4) and (0.232, 0.559, 0.209) would be the obtained
weight vectors for Case 1 and Case 2 respectively. If we
follow the same procedure as described above, the neutro-
sophic relative relational degree of each alternative from
PIS for Case 1 and Case 2 are computed as follows:

Case 1: R, = 0.4213, R, = 0.6174, R, = 0.5508, R, =

0.496;

Case 2: R, =0.4657, R,=0.599, R, = 0.5556, R, = 4686.
Therefore, the ranking order of the alternatives for Case 1
and Case 2 are shown as given below.

Case 1: R,>R, >R, >R,

Case 2: R,>R,>R,>NR,

So, the Arms Company G, would be the best choice for in-
vestment purpose.

6 Conclusion

In the paper we have presented a solution method for
MADM problems with interval neutrosophic uncertain lin-
guistic information through extended GRA method. Inter-
val neutrosophic uncertain linguistic variables are suitable
for dealing with incomplete and inconsistent information
which exist in real world problems. In this paper, we have
proposed Euclidean distance between two INULVs. Also,
we have addressed the incomplete or completely unknown
weights of the attributes to the decision maker.

Table 2. Comparison of the proposed method with other existing
method

best
option

Method weight vector ranking results

Proposed method (0.272, 0.328, 0.4)
(Case 1)
(using Hamming distance)

G;>G3>G,>G; G,

Proposed method (0.218, 0.557, 0.225) G,>G3>G;>G; G,
(Case 2)
(using Hamming distance)

Proposed method (0.25, 0.35, 0.4)
(Case 1)
(using Euclidean distance)

G;>G3>G4>G; G,

Proposed method (0.232, 0.559, 0.209) G,>G3>G,>G; G,
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(Case 2)
(using Euclidean distance)

Broumi etal. [36] (0.35,0.25,04) G,>G,>G;>G; G,

We have developed two different optimization models to
recognize the weights of the attributes in two different cas-
es. Then, extended GRA method has been developed to
identify the ranking order of the alternatives. Finally, a
numerical example has been solved to demonstrate the fea-
sibility and applicability of the proposed method and com-
pared with other existing methods in the literature. We
hope that the proposed method can be helpful in the field
of practical decision making problems such as school se-

lection, teacher selection, medical diagnosis, pattern
recognition, supplier selection, etc.
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Abstract. The aim of this paper is to propose a new type of
graph called neutrosophic soft graphs. We have established a link
between graphs and neutrosophic soft sets. Basic operations of
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1 Introduction

Graph theory is a nice tool to depict information in a very
nice way. Usually graphs are represented pictorially,
algebraically in the form of relations or by matrices. Their
representation depends on application for which a graph is
being employed. Graph theory has its origins in a 1736
paper by the celebrated mathematician Leonhard Euler
[13] known as the father of graph theory, when he settled a
famous unsolved problem known as Ko nigsburg Bridge
problem. Subject of graph theory may be considered a part
of combinatorial mathematics. The theory has greatly
contributed to our understanding of programming,
communication theory, switching circuits, architecture,
operational research, civil engineering anthropology,
economics linguistic and psychology. From the standpoint
of applications it is safe to say that graph theory has
become the most important part of combinatorial
mathematics. A graph is also used to create a relationship
between a given set of elements. Each element can be
represented by a vertex and the relationship between them
can be represented by an edge.

L.A. Zadeh [26] introduced the notion of fuzzy subset of a
set in 1965 which is an extension of classical set theory.
His work proved to be a mathematical tool for explaining
the concept of uncertainty in real life problems. A fuzzy set
can be defined mathematically by assigning to each
possible individual in the universe of discourse a value
representing its grade of membership in the fuzzy set. This
grade corresponds to the degree to which that individual is
similar or compatible with the concept represented by the
fuzzy set. In 1975 Azriel Rosenfeld [20] considered fuzzy
relations on fuzzy sets and developed the theory of fuzzy
graphs which have many applications in modeling,
Environmental science, Social science, Geography and
Linguistics etc. which deals with problems in these areas
that can be better studied using the concept of fuzzy graph
structures. Many researchers contributed a lot and gave

neutrosophic soft graphs such as union, intersection and
complement are defined here. The concept of strong neutrosophic
soft graphs is also discussed in this paper.

some more generalized forms of fuzzy graphs which have
been studied in [8] and [10]. These contributions show a
new dimension of graph theory.

Molodstov introduced the theory of soft sets [18] which is
generally used to deal with uncertainty and vagueness. He
introduced the concept as a mathematical tool free from
difficulties and presented the fundamental results of the
new theory and successfully applied it to several
directions. During recent past soft set theory has gained
popularity among researchers, scholars practitioners and
academicians. The theory of neutrosophic set is introduced
by Smarandache [21] which is useful for dealing real life
problems having imprecise, indeterminacy and inconsistent
data. The theory is generalization of classical sets and
fuzzy sets and is applied in decision making problems,
control theory, medicines, topology and in many more real
life problems. Maji [17] first time proposed the definition
of neutrosophic soft sets and discussed many operations
such as union, intersection and complement etc of such
sets. Some new theories and ideas about neutrosophic sets
can be studied in [6], [7] and [12]. In the present paper
neutrosophic soft sets are employed to study graphs and
give rise to a new class of graphs called neutrosophic soft
graphs. We have discussed different operations defined on
neutrosophic soft graphs using examples to make the
concept easier. The concept of strong neutrosophic soft
graphs and the complement of strong neutrosophic soft
graphs is also discussed. Neutrosophic soft graphs are
pictorial representation in which each vertex and each edge
is an element of neutrosophic soft sets. This paper has been
arranged as the following;

In section 2, some basic concepts about graphs and
neutrosophic soft sets are presented which will be
employed in later sections. In section 3, concept of
neutrosophic soft graphs is given and some of their
fundamental properties have been studied. In section 4, the
concept of strong neutrosophic soft graphs and its
complement is studied. Conclusion are also given at the
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end of section 4.
2 PRELIMINARIES

In this section, we have given some definitions about
graphs and neutrosophic soft sets. These will be helpful in
later sections.

2.1 Definition [25]: Agraph G” consists of set of finite
objects V ={v;,V,,V,.....v, } called vertices (also called
points or nodes) and other set E ={e;,e,,e;,....., } whose
elements are called edges (also called lines or arcs). Usual-
ly a graph is denoted asG" =(v,E). Let G" be a graph
and {u,v} an edge of G*  Since {u,v}is 2-element set,
It is often more
uv or vu If

we may write {v,u} instead of {u,v}.
convenient to represent this edge by
€ = UV is an edges of a graph G then we say that u

and V are adjacent in G"and that e joins u and V. A
vertex which is not adjacent to any other node is called
isolated vertex.

2.2 Definition [25]: An edge of a graph that joins a node
to itself is called loop or self loop.

2.3 Definition [25]: In a multigraph no loops are allowed
but more than one edge can join two vertices, these edges
are called multiple edges or parallel edges and a graph is
called multigraph.

2.4 Definition [25]: A graph which has neither loops nor
multiple edges is called a simple graph.

2.5 Definition [25]: A sub graph H™ of G is a graph
having all of its vertices and edges in G* . If H™ isa sub
graph of G' then G' isasuper graphof H’.

2.6 Definition [25]: Let G, =(V,,E,)and G, =(V,,E,)

be two graphs. A function f:V, >V, is called
isomorphism if

i) f isonetooneand onto.

i) for all a,beV,{ab}eE if and only if

{f(a), f(b)} €E, when such a function exists, G; and
G, are called isomorphic graphs and is written as

G, =G,.
In other words, two graph G, and G, are said to be

isomorphic to each other if there is a one to one
correspondence between their vertices and between edges
such that incidence relationship is preserved.

2.7 Definition [25]: The union of two simple graphs

G, =(V,,E))and G, =(V,,E,) is the simple graph with
the vertex set V, UV, and edge setE, UE,. The union of

by

* *

G, G, is
G =G, UG, =(V, uV,,E, UE,).

and denoted

2.8 Definition [25]: The join of two simple graphs
G, =(V,,E))and G, =(V,,E,) is the simple graph with
the vertex set V, UV, and edge set E, UE, UE'where E’
is the set of all edges joining the nodes of V, and V,
assume that V, NV, = ¢ . The join of G, and G, is denoted
by G" =G, +G, =(V, UV,,E, UE, UE).

2.9 Definition [18]: Let U be an initial universe and E

be the set of all possible parameters under consideration
with respect to U . The power set of U is denoted by

P(U)and Ais a subset of E. Usually parameters are
attributes, characteristics, or properties of objects in U .

A pair (F,A) is called a soft set over U , where F is a
In other words, a soft set over
U is a parameterized family of subsets of the universe U .
For ec A F(e) may be considered as the set of e-

mapping F:A—>P(U)

approximate elements of the soft set (F, A).

2.10 Definition [21]: A neutrosophic set A on the
universe of discourse X is defined as

A={(XTa().14(x), Fa(x)), x € X}, where

T,I,F:X—>]5,1*[ and 0<T,(0)+1,(0)+F,(x)<3" .

From philosophical point of view, the neutrosophic set
takes the value from real standard or non-standard subsets

of J@,l*[. But in real life application in scientific and

engineering problems it is difficult to use neutrosophic set
with value from real standard or non-standard subset of

]6,1{ . Hence we consider the neutrosophic set which

takes the value from the subset of [0,1].

2.11 Definition [17]: Let N(U) be the set of all
neutrosophic sets on universal set U,E be the set of
parameters that describes the elements of U and Ac E .

A pair (F,A) is called a neutrosophic soft set NSS over
U, where F is a mapping given by F:A— N(U). A
neutrosophic soft set is a mapping from parameters to
N(U). It is a parameterized family of neutrosophic
subsets of U. For e A, F(e) may be considered as the

set of e-approximate elements of the neutrosophic soft set
(F,A). The neutrosophic soft set (F,A) is parameterized

family {F(e),i=12,3,e € A}.
2.12  Definition  [17]: Let E,E,€E
(F.E;).(G,E, ) be two neutrosophic soft sets over U then

and

(F,E,) is said to be a neutrosophic soft subset of (G, E,)
if
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(1) E cE,
2 {TF(e) (%) <Tge) (¥): Te(ey (X) < g (%),

Fr(e) (X) = Fg(e) (X)
forall ee E,xeU .
In this case, we write (F,E;) = (G,E,).
2.13 Definition [17]: Two neutrosophic soft sets
(F,E;)and (G,E,) are said to be neutrosophic soft equal
if (F,E,)is a neutrosophic soft subset of (G,E,) and
(G,E,) is aneutrosophic soft subset of _Inthis case,
we write (F,E,)=(G,E,). |

2.14 Definition [14]: Let U be an initial universe, E be
the set of parameters, and Ac E .

() (H,A) is called a relative whole neutrosophic soft set
(with respect to the parameter set A ), denoted by ¢, , if
TH(E) (X):l'IH(e) (X):l, FH(E) (X):O, fOI‘ a“ eEA,
xeU.

(b) (G, A) is called a relative null neutrosophic soft set
(with respect to the parameter set A ), denoted by ¢, , if
TH(E)(X):O'IH(Q)(X):O’ FH(E) (X):l, fOI’ a" eEA,
xeU.

The relative whole neutrosophic soft set with respect to the
set of parameters E is called the absolute neutrosophic
soft set over U and simply denoted by U, . In a similar

way, the relative null neutrosophic soft set with respect to
E is called the null neutrosophic soft set over U and is
denoted by ¢ .

2.15 Definition [17]: The complement of a NSS (G, A)
(G,AY defined by
where G :-=A—>N(U) is a

is  denoted and s

by
(G,A) =(G°.—A)
mapping given by G®(—e) = neutrosophic soft comple-

ment with T =T,

6°(-¢)

(e)°

2.16 Definition [14](1): Extended union of two NSS
(H,A) and (G,B) over the common universe U is
denoted by (H,A)ug(G,B)
(H,A)Ue (G,B)=(K,C), where C=AUB and the

truth-membership, indeterminacy-membership and falsity-
membership of (K,C) are as follows

=Foe IGC(—e) =loge); Fec(ﬂe)

and is define as

ifeeB-A,

(x)} ifecAnB

ifee A-B,
ifeeB-A,

max{IH(e)(x), IG(e)(x)} ifee AnB

Fuo(X) ifecA-B,
Fee) (x)= Foe) (x) ifeeB-A
min{Fy ) (X), Fg(o (X)} ifec AnB

2.17 Definition [14]: The restricted union of two NSS
(H,A) and (G,B) over the common universe U is

denoted by (H,A)u,(G,B)
(H,A)Up (G,B)=(K,C), where C=AnB and the

truth-membership, indeterminacy-membership and falsity-
membership of (K,C) are as follows

TK(e) (X) =max {TH(e) (X)’TG(E) (X)} |f ee Aﬁ B,

IK(e) (X) = maX{IH(e) (X)y IG(e) (X)} |fe (S Am B,

Fee) (x)= min{FH(e) (x), Foge) (X)} ifee ANB.

and is define as

2.18 Definition [14]: Extended intersection of two NSS
(H,A) and (G,B) over the common universe U is
by (H,A)n:(G,B) and s
(H,A)ne (G,B)=(K,C), where C=AUB and the
truth-membership, indeterminacy-membership and falsity-
membership of (K,C)are as follows

denoted define as

TH(e)(x) ifee A-B,

T (X) = Toe (X)  ifeeB-A,
min (T, ) (X). T (X)] ifee AnB

lye (X)  ifec A-B,

Ik(e)(x): IG(e)(x) ifee B—A,

min{IH(e)(x), loe) (x)} ifee ANB
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FH(e)(X) ifee A-B, Table 1
Fe (X)= Foe(x) ifeeB-A f X, X, X5
. e (0.4,05,0.6) (0.4,0.5,0.7) (0,0,1)
F F feeA !
max {Fy) (), Fogy (X)f ifec AnB e, (0.30.405) (01,0304) (0.10.3,0.6)
2.19 Definition [14]: The restricted intersection of two e, (0.2,03,05) (0.1,02,04) (0.1,05,0.7)
NSS (H,A)and (G,B) over the common universe U is g (o) (o) TN
denoted by (H,A)n;(G,B) and is define as . (026’320 ) (026 i) (01,0 i)
1 LU0, UL (g} Lt}
(H.A)n¢ (G.B)=(K.,C), where C=AnB and the e, (010306) (001  (0.1,0308)
truth-membership, indeterminacy-membership and falsity- e (0.1,0.1,09) (0.1,0.2,0.7) (0.1,0.3,0.8)

membership of (K,C)are as follows

Tee () =min{T (x). Toe) (X)) ife € ANB,

Ly (X) =Min{ 1y (), g, (%)} ife € ANB,
FK(E) (X) = maX{FH(e) (X), FG(e) (X)} ifee ANB.

3 Neutrosophic soft graphs
3.1 Definition Let G™ =(V,E)be a simple graph and A

be the set of parameters. Let N (V) be the set of all
neutrosophic sets in V. By a neutrosophic soft graph NSG,

N (e,) Corresponding to e,

(0.4,05,0.6)

(0.203,0.8)

we mean a A-tuple G :(G*,A, f,g) where figure 1

f:AS>N(V),g: Ao N(VxV) defined as

()=, = {(xTe (), 4 (), Fy (x)).x V) ang N (&) Corresponding to e,

9(e)= 0. = {{(x V). Te (% ¥). T (X ¥), Fe () (X, y) €V <V x %

are neutrosophic sets overV and V xV respectively, such
that

Ty (X, y) < min{T (x), T, (¥)},

e (X y) <min {1 (%), 1 (¥)},

Fe (%) 2 max{F (x),Fy (y)}-
forall(x,y)eV xV and e € A Wwe can also denote a NSG
by G =(G*, A f,g) ={N(e):e e A} which is a parameter-

ized family of graphs N(e) we call them Neutrosophic

graphs.

3.2 Example

Let G =(V,E) be a simple graph with
V={X.% %} A={e.e, e} be a set of parameters. A
NSG is given in Table 1 below and
T (%% ) =01 (%, %, ) =0and Fy (x, %) =1, for all

(%% ) €V xV (%, %), (%, %), (%, %)} and for all
ecA

(0.1,0.3,0.6) O
(0.1,0.3,0.4)

figure 2

N (e,) Corresponding to e,
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N (e ) Corresponding to e,

X1 X2
(0.1,0.1,0.9)
(0.1,0.2,0.4)
(030205) 120301 (0.3,02,0.6)
(0.1,0.2,0.7)
(0.1,0.5,0.7)
figure 4
X3 .
N (e,) Corresponding to e,
figure 3
X1
3.3 Definition A neutrosophic soft graph
* . . (0.1,0.1,0.6)

G= (G AL FL gl) is called a neutrosophic soft subgraph (0.1,0.2,0.4)
of G :(G A f,g) if (0.1,0.2,0.8)
(i) ALc A
(i) £l c f, thatis,
Tfel (X) ST (x),1 o (X)< T (x), Ffel ()= Fg (x). —
1 .
(iii) g, < g, that is, figure 5
Ts (% Y)<Te (X Y), s (%)<l (xy), Fa (X, y)=Fg (X, y).
forall e e A",
3.4 Example 3.5 Definition A neutrosophic soft subgraph

Let G" =(V,E)be a simple graph with V = {x;, X,, X, } and
set of parameters A={e,e,} . A neutrosophic soft
subgraph of example 3.2 is given in Table 2 below and

Tge(x. x.):o,lge(xi,xj)=0andFge(xi,xj)zl, for all

177

(%% )€V xV (%, %), (%, %), (%, %)} and for all
eeA

Table 2.
f! X X5 X3
e, (030205) (030206 (0,01
e, (01,0105 (0.1,02,04) (0.1,0.2,0.6)
g' (%% ) (%1 %) (%, %)
e, 020207  (00.0) 0.0.0)
e, (0.10.1,06)  (001)  (0.1,0208)

G:(G*,Al, fl,gl) is said to be spanning neutrosophic
soft subgraph of G =(G*,A, f,g)if f1(x)=f(x), for all

xeV,ee Al

(Here two neutrosophic soft graphs have the same
neutrosophic soft vertex set, But have opposite edge sets.
3.6 Definition The union of two neutrosophic soft graphs

G, =(G/ A, f',¢') and G, =(G;, A, f?,g°) is denoted
by G=(G",A f,g) withA=AUA, where the truth-

membership, indeterminacy-membership and falsity-

membership of union are as follows

ifee A-A andxeV, -V, or
ifee A—A andxeV,nV, or
ifee ANA andxeV,-V,.
ifee A,—A andxeV, -V, or
ifee A,—A andxeV, NV, or
ifee ANnA andxeV,-V,.

Tfel (x)

Te (X)=

Tfez (x)

max{Tfl (x),Tf2 (x)}{if ee ANA andxeV,NV,}

0, otherwise
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ifee A-A andxeV, -V, or ifee A—A and (x,y)e(V,xV,)-(V, xV,) or
Ifel(x) ifee A—A andxeV, NV, or Fg% (x,y)jifee A—A, and (x,y)e(V,xV,)N(V,xV,) or
ifec ANA, andxeV,-V,. ifee AnA and (x,y)e(V,xV;)-(V, xV,).
ifee A)—A andxeV, -V, or ifee A, —A and (x,y)e(V,xV,)-(V,xV,) or
le (X)=1 12 (x)jifec A=A andxeV, NV, or Foe (¥) =1 F o (xy)ifec A=A and (x,y) € (V, xV,)n(V, xV, Jor
ifee ANA andxeV, -V,. ifee AnA and (x,y)e(V,xV,)-(V,xV,).
ifec A A, and ifec A N A, and
max{l X), | x}{ } i { }
fel( ) er( ) xeV, NV, min Fg%(x'y)'FgeZ(X’y) (X y) e (VixVy) N (V,xV,)
0, otherwise 0, otherwise
ifee A-A, andxeV, -V, or 3.7 Example
Fa(x)jifec A—A andxeV, NV, or Let G, =(V,,E,) be a simple graph with V; ={x,%,, X}

ifee AnA andxeV,-V,.
ifee A,—A andxeV, -V, or
Fr(X)= Fer(x) ifeec A —A andxeV, NV, or

and set of parameters A ={e;,e,,e,}. Let G, =(V,,E,) be

a simple graph with V, = {X,,X;, X} and set of parameters

ifee ANA andxeV, -V, A, ={e,e,} . A NSG Glz(Gf,A,fl,gl) is given in

. ifee AnA, and Table 3 below and
mln{':fel(x)":fez(X)}{xevlmv2 } Ty (%% ) =014, (%, %) =0and Fy, (%, %) =1 for all
0, otherwise (Xiyxj)€V1><V1\{(X11X4)1(X3’X4)’(X1'X3)} and for all

Also

ifec A—A and (x,y)e(V,xV,)-(V, xVZe)eofAl' Table 3
Tg%(x,y) ifee A-A and (x,y)e(V,xV,)n(V,xV,) or £ 1% %, %

ifee ANA and (x,y)e(V,xV,)-(V, xV,). (01,02,03) (0.2,0.3,04) (0.2,05,0.7)
ifec A —A and (xy)e(V,xV,)-(V, xV,) or (0.,03,0.7) (0.4,06,0.7) &0.1,0.2,0.3)

o @

N

_ e, |(0.506,07) (0.6,0.809) (03,04,0.6)
T.(xy)= Tge2 (x,y)qifee A, —A and (x,y)e(V,xV;)N(V, xV, )or o | () (x%) (%)
ifee AnA and (X, y)e(V,xV,)-(VixVy). e |(0.102,07) (0.1,0.3,08) (0.10205)
ifec A A and e, |(01,0.2,07) (0.1,01,09) (0.1,0208)
T YY), T , .1,0.3,0. .2,0.3,0.
max{ 2 (6Y)T o (x y)}{ (x,y)e(levl)m(szVZ)} e, |(01,0.3,08) (02,0309) (0,0,0)

0. otherwise N (e,) Corresponding to e,

ifee A—A and (x,y)e(V,xV;)-(V,xV,) or
(x,y)jifee A—-A and (x,y)e(V,xV,)n(V,xV,) or
ifee AnA and (x,y)e(V,xV;)-(V, xV,).
ifee A, —A and (x,y)e(V,xV,)-(V,xV,) or
le (X, y)= Ig2 (x,y)qifee A, — A and (x,y)e(V,xV)N(V, xV, )or
’ ifee AnA and (x,y)e(V,xV,)-(V,xV,).
ifee ANnA, and
max {14 (4y).1, (X'y)}{ (x,y)e(levl)m(szVZ)}
0, otherwise

|
%

(0.1,0.2,0.7)

(0.1,0.3,0.8)

figure 6

N (e,) Corresponding to e,
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(0.1,0.2,0.7)

(0.1,0.2,0.8)

(0.1,0.3,0.7)

(0.1,0.2,0.3) (0.2,0.3,0.4)

(0.1,0.2,09

(0.1,0.1,0.9)

(0.2,0.3,0.9)

(0.2,0.4,0.7) (0.4,0.6,0.7)

X3 Xs

figure 7 figure 9

N (e, ) Corresponding to e
N (e,) Corresponding to e, (€) ponding to &,

X1 X4

(0.5,0.6,0.7)

(0.2,0.3,0.8)

(0.1,0.3,0.8) (0.3,0.4,0.5) (0.3,0.6,0.8)

(0.3,0.4,0.6)

(0.1,0.1,0.9)

(0.2,0.3,0.9)

(0.6,0.8,0.9) (0.5,0.7,0.9)

X3 X3

figure 8 figure 10
A NSG G, =(G}, A,, 1%,g7) is given in Table 4 below The union G =(G",A f,g)is given in Table 5 below and
and T, (x.%)=0.1g (x.%)=0and Fy (%% ) =1 for Ty (%.%)=0,15(x.x;)=0and Fy, (x,x)=1 for all

all (%%, ) €V, XV, \{(%,, %), (%5, %), (%. % )} and for all (%) €V xV \{(x,% ), (%% ). (%05, (%% ). (0% ) (00 % )}

ecA,. and forall ec A
Table 4

f2 X, X3 X5

e, (01,0204) (0.2,0304) (0.4060.7)

e, (03,06,0.8) (050.7,09) (0.3,0.4,0.5)

g° (% %) (%31 %) (% %)

6 (01,0208) (020309  (00.1)

¢, (0.1,0.1,0.9) (0.2,0.2,09) (0.2,0.3,0.8)

N (e,) Corresponding to e,
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Table 5
N (e,) Corresponding to e,
f X, %, %, X, X,
e | (01,0203) (0,0,0) (0.2,05,07) (0.2,03,04) (0,01)
e, | (0103,07) (0.1,02,03) (0.204,04) (0.10,2,03) (0.4,06,07)
e, [(0506,07) (0,0,1)  (06,0809) (0.304,06)  (001)
e, (0,01) (03,0608 (050.7,09) (0,01) (03,04,05)

(0.2,0.3,0.9)

9] () (%) (%) (%) (X))

e | (0402,07) (010308) (010208) (0,01) (001 (009

e, | (040207) (0.,01,09) (010208) (0,10,208) (020309) (0,01) Xa
e, |(0.1,03,08) (020309) (0,01) (0.01) (001 (002 )

. figure 13
(001 (001) (0.01) (0101,09)  (02,02,09) (020308)

N (e,) Corresponding to e,

N (el) Corresponding to e,

X2 X3

X1 X4

(0.1,0.1,0.9)

(0.3,0.6,0.8) (0.5,0.7,0.9)

(0.1,0.2,0.7)

(0.1,0.2,0.3) (0.2,0.3,0.4)

(0.2,0.3,0.8)
(0.2,0.2,0.9)

(0.1,0.3,0.8)

(0.3,0.4,0.5)

Xs

figure 14
figure 11

3.8 Proposition
The union G*=(v,A,f,, of two neutrosophic soft graph

G =(G"A,f¢') and G,=(G"A,f%g") is a

neutrosophic soft graph.

N (e,) Corresponding to e,

Proof
(0.1,0.2,0.8)

(0.1,0.2,0.8)

(0.2,0.3,0.9)

X4

figure 12

Nasir Shah and Asim Hussain, Neutrosophic Soft Graphs



Neutrosophic Sets and Systems, Vol. 11, 2016 39
Casei) Ifee A —A and (X, Y)e(V,xV,)-(V,xV,), then I .
X) ifeeA -
T (xy) =T (xy) <min{T, (x).T; ()} E (x) AR
= mingT_(x).T, ()} I ()= I (x) .ifee A - A
0 T (X y) <min{T_(x),T, . 1 2 .
© T =mint, 0.0} min{l} (x),1: ()}.ifee A NA
Also 1, (xy) =1, (xy) < mindl, (0.1, (1)} o
= min{l, (0,1, ()} F (x) ifee A-A
S0 I (xy) <min{l (x), 1 ()} _ 2 .
’ F (x) = F (x) ifecA -A
Now F (X y)= Fg: (x,y) = max{Flve (x), que N} ¢ ¢
=max{F, (%) F, ()} max{F, (x),F, (X)} ifee AnA
Similarly If{fee A — A and (x,y) € (V, xV.)N(V, xV,)}, or T (X y) ifec Ai _ A2
If{ee ANA and (x,y) € (V, xV.) = (V, xV,)}, we & _
can show the same as done above. Tge (X’ y) - ng (X ' y) ifee AZ - A1
Caseii) Ifee ANA and (x,y) e (V,xV.)N(V, xV,), then min{Tg1 (x, y),ng (x,y)} ifee AL A A2
T, 06Y) = maT, ()T, (60} EI E ’
(X, y) ife -
< max{min{T, (x), T, ()}, min{T, (x), T, (¥)} ge( » “AA
* * * h I (x,y)= 1,(x,y) ife - ,
< min{max{T, (x.T, (0}, max{T, ().T; (N} <0 AN Af2 )
o " " min{l , (x,y),1 ,(x,y)} ife
1 {1, (). ()} ifec A A,
Also 1, (xy) =max{l (xy). 1 (x )} Fgl (x,y) ifeeA-A,
< max{min{l, (x), 1, ()} min{l, (91, (Y)}} F, (xy)= Fgez (x,y) ifee A, -A 3.10
< min{max{l, (x),1, (O} max{l, (¥).1, (V)}} max{Fgl (x,y), Fe (x,y)} ifee AnA,
=min{l (x), 1, ()} 3.10 Example
Now  F (x,y) =min{F (xy),F (x y)} Let G, =(V,E,) be a simple graph with with V, = {x,,%,,%;}

= min{max{F, (9. F, (y)},max{F; (9.F, (}}
> max{min{F, (x),F, ()} min{F, (y),F, (Y)}}
= max{F (x), F, (¥)}

Hence the union G = G, UG, is a neutrosophic soft graph.

3.9 Definition The intersection of two neutrosophic soft
graphs G,=(G,A.fg) and G,=(G,A,f*g’) is denoted by
G=(G',Af,g) where A=AnAV=VnV, and the truth-

membership, indeterminacy-membership and falsity-
membership of intersection are as follows

T (x) ifeeA-A,
To(x) ifee A —A ,
min{T; (x), T ()} ifee ANA,

T, (x)=

and set of parameters A ={e,,e,} . ANSG G =(V,A, "¢
is given in Table 6 below and
T (%% ) =01, (%, %) =0and Fy (%) =1, for all
(%% ) €VixV, (%, % ), (%, %, ), (%, %)} and for all
ecA.

Table 6
fl Xl XZ X5
e, (01.0203) (020405) (010507
e, (02,0.30.7) (0.40607) (0.3.0.40.6)
g' (%,%) (% %) (%,%,)
e, (010108 (010308 (0.10.106)
e, (02,0307) (0.304,08) (0.20.30.7)

N (e,) Corresponding to e,
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X1

(0.1,0.1,0.8)

(0.1,0.2,0.3)

(0.2,0.4,0.5)

X2

(0.1,0.5,0.7)

(0.1,0.3,0.8)

Xs

figure 15

N (e,) Corresponding to e,

N

X2 Xs

(0.2,0.4,0.9)

(0.3,0.5,0.6)

(0.4,0.5,0.9)

(0.1,0.3,0.7)
(0.2,0.4,0.9)

(0.2,0.4,0.6)

X3

figure 17

(e;) Corresponding to e,

(0.2,0.3,0.7)

(0.2,0.3,0.7)

(0.4,0.6,0.7)

(0.3,0.4,0.6)

(0.3,0.4,0.8)

figure 16

Let G;=(V,,E,) be a simple graph with V, = {x,,,, X} and

set of parameters A, ={e,,e,}

A ={e,,&,}. A NSG

(0.1,0.4,0.8)

(0.1,0.2,0.9)

(0.1,0.2,0.6)

X3

figure 18

Let V=V,NV,={x,, %}, A=A UA ={e,e,6}

The intersection of two neutrosophic soft graphs

G,=(, A, f2¢") is given in Table 7 below and G=(Af.g) and G,=(G,,A,f*,g") is given in Table 8.
T (%% ) =015, (%, %, ) =0and Fy (%, %) =1, for all Table 8.
(%% ) €Vo ¥V, \{(%,,% ), (X5, %), (%, %)} and for all
ech,. bl % *s 9 (%, %)
Table 7.
.2,0.4,0. .1,0.5,0.7 .1,0.3,0.
Py X, X X e | (0.204,05) | (0.1,050.7) | g (0.1,0.3,0.8)
e, (0305,06) (0204,06) (0.40509) [¢ [(0.3050.7) | (030409 | e, (0.2,0.4,0.9)
e, (02,0405 (0.1,020.6) (0.1,050.7)
. (%) (o) (ox) | & (0204085 |(010507) | e, | (0.10408)
e, (01,0307) (020409) (0.204009)
e, 010208 (010209 (010408) | (o) ooty

N (e,) corresponding to e,
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X2 X5
| (0.1,0.3,0.8)
1 (0.2,0.4,05) (0.1,05,0.7)

figure 19

N (e,) corresponding to e,

X2

77N

(0.3,0.5,0.7)

Xs

(0.2,0.4,0.9)
(0.3,0.4,0.9)

(

figure 20

N (es) Corresponding to e,

X2 Xs
/ . (0.1,0.4,0.8)
' (0.2,0.4,0.5) (0.1,0.5,0.7)
/4
figure 21

3.11 Proposition
The intersection G=(G',Af,g) of two neutrosophic soft

graphs G =(G A, f',g")and G,=(G,A, f*,¢°) is a neutrosophic
soft graph where , A=AUA, and V=VY,nV, .
Proof
Casei) Ifee A -A thenT (X,y)= Tg, (X, y)

< min{T, (x), T, (y)} = min{T, (x), T, (v)}

so T (x,y) <min{T_(x), T, (¥)}

1,06y =1, (6 y) < mingl s, (9,1 (0}

=min{l (x), I, (¥)}
SO Ige(x, y) <min{l_(x),1_(¥)}
Now F_(x,y)= Fge x,y) = max{Ffel (x), Ffel (D)3

= max{F_(x), F,(¥)}

Similarly Ife e A — A we can show the same as done above.

Also

Caseii) Ifec ANA, then T, (xy) =min{T_(xy).T_(xy)}
< min{min{T, ()T, (y)}.min{T, (9.T, ()3}
< min{min{T, (x),T, ()}, min{T, (y).T, (¥)}}
=min{T, (x), T, (y)}

Also 1 (x,y) =min{l  (x,y),1.(x y)}
< min{min{l, (X): L (D} ;min{l 2 (0,1, (V)}}
< min{min{l, (x), 1, O} min{l, (V)1 (V)}}
= min{l, (), 1, ()}

Now  F (x y) =max{F (xy),F.(x y)}

> max{max{F, (x),F, (y)},max{F, (4, F, ()}
> max{max{F, (x),F, (0} max{F, (y).F, ()}}

= max{F (x), Fy, ()}

Hence the intersection G = G, (1G, is a neutrosophic soft graph.

4 Strong Neutrosophic Soft Graph
4.1 Definition A neutrosophic soft graph G=(G A f,q), is

called strong if g,(xy)=1,(x)nf,(y), for all x,yeV,eeA
That is if

Fe (X, Y)= max{Ffe (x), Fe (y)}
forall (x,y)eE.

4.2 Example

Let V={x.%.%}, A={e,e,} A strong NSG
G=(G',Af,g) is given in Table 9 below and
Tge(xi,xj)=0,Ige(xi,xj)=0andFge(xi,xj)=1 for all

(%% ) €V xV (%, %), (%, %), (%, %)} and for all
eeA
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Table 9. (i) A=A
i " X, X (i) T (0 =T (0100 =T (0, F, () = F, (x) forall x eV
e (0.10204) (0.203,05) (0.3040.7) | (;iiyT.(x y)_{min{T 1o T (VI T (X y) =0
fe ' - .

e, (0.3,0.6,0.8) (0.4,0.5,0.9) (0.3,0.4,0.5) 0 otherwise
g (%, %,) (%,%) (%, %) T (xY) :{min{lfe(X), le ()} if 1. (x,y) =0
6 (0.1,0.2,05) (0.2,0.3,0.7) (0,0,1) 0 otherwise
e, (0.3,0509) (0.3,04,09) (0.3,0.4,0.8) Fo(Xy) = max{F, (x), Fr ()} if Fy (X, ¥) =0

' 0 otherwise

N (e, ) Corresponding to e
( 1) P : ' 4.4 Example
For the strong neutrosophic soft graph in previous
s X example, the complements are given below for e, and e,

Corresponding to e, the complement of

(0.1,0.2,0.4) (0.3,0.4,0.7)

X1 X3

(0.1,0.2,0.5)

(0.2,0.3,.07)

(0.1,0.2,0.4) (0.3,0.4,0.7)

(0.2,0.3,0.5)

(0.1,0.2,0.5)

(0.2,0.3,.07)

figure 22
(0.2,0.3,0.5)

N (ez) Corresponding to e,

X2

X3 X figure 24
(0.3,0.4,0.8)

(0.3,0.4,0.5) is given by

(0.3,0.6,0.8)

(0.3,0.5,0.9)

(0.1,0.2,0.7)
(0.1,0.2,0.4)

(0.3,0.4,0.7)

figure 23
(0.2,0.3,0.5)

4.3 Definition Let G=(G',Af,g) be a strong neutrosophic
soft graph that is g,(xy)="f,(x)nf(y), for all for all
x,yeV,ee A The complement G=(G",Af,g) of strong
neutrosophic soft graph G=(G',A f,q) is neutrosophic soft
graph where

X2

figure 25

Corresponding to e, ,the complement of
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(0.3,0.4,0.8)

(0.3,0.6,0.8)

(0.3,0.5,0.9)

figure 26

is given by

(0.3,0.4,0.5) (0.3,0.6,0.8)

(0.4,0.5,0.9)

figure 27

Conclusion: Neutrosophic soft set theory is an approach
to deal with uncertainty having enough parameters so that
it is free from those difficulties which are associated with
other contemporary theories dealing with study of
uncertainty. A graph is a convenient way of representing
information involving relationship between objects. In this
paper we have combined both the theories and introduced
and discussed neutrosophic soft graphs which are

representatives of neutrosophic soft sets.
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Abstract. Numerous studies by different researchers
have confirmed that skewed sex ratio is a critical so-
cial problem in India. This enduring problem of gen-
der imbalance is the collective result of factors like sex
selective abortion, gender discrimination, son prefer-
ence for the preservation of tribe, emergence of new
technologies in medical field and many more factors.
Another severe problem to be addressed in India is
poverty. Many factors contribute to the perpetuation
of poverty such as illiteracy, bad governance, under
employment and various other reasons. Despite of In-
dia's accelerated growth rate, poverty in India is still
prevalent.

This paper employs a new soft computing based
methodology for identifying and analyzing the rela-
tionships among the causes and implications of the
two challenging problems in India: unbalanced sex

ratio and poverty. The methodology proposed by au-
thors is based on Linked Fuzzy Relational Maps
which is a variation to Fuzzy Relational Maps and
Linked Neutrosophic Relational Maps which is a var-
iation to Neutrosophic Relational Maps. The relation-
ships among the causes and consequences can be easi-
ly drawn through the given methodologies. The au-
thors have implemented two models for the two social
problems under study, one using Fuzzy Relational
Maps and the other using Neutrosophic Relational
Maps. Neutrosophic Relational Maps can support de-
cision making on uncertain and indeterminate data.
Authors have demonstrated that the model imple-
mented using Neutrosophic Relational Maps presents
more realistic and sensitive results as compared to the
model using Fuzzy Relational Maps.

Keywords: Skewed Sex Ratio; Poverty; Fuzzy Relational Maps; Linked Fuzzy Relational Maps; Neutrosophic Relational

Maps; Linked Neutrosophic Relational Maps.

1 Introduction
1.1 Sex ratio

India has significantly enhanced against multiple so-
cio-economic indicators over the last few decades includ-
ing level of economic growth, health related services, level
of nutrition, level of education and status of women, but it
has not been as victorious at achieving gender equality.
One significant measure of this inequality in India is the
country’s sex ratio, defined as the number of females per
1000 males in the population, whereas internationally, sex
ratio is defined as number of males per 100 females [4]. In
this paper, authors follow the first definition.Son prefer-
ence over daughter is an issue in many parts of the world.
But with social and economic changes and rise in women's
status, the preference for a son over daughter has declined
in many countries. However it is still observed in some

parts of the world mainly from East Asia to South Asia,
particularly in China and India [12].

CENSUS 2011 CENSUS 2001
COUNTRY | SEX RA- | CHILD SEX RA- | CHILD
TIO SEX RA-| TIO SEX RA-
TIO TIO
India 943 919 933 927

Table 1 Sex Ratio of India, (Census data Sex ratio 2011)

The attributes associated with causes and consequences
that result in deteriorating or improving the status of
skewed sex ratio in India are described in Table 2.
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Gender This attribute [5] sexual slavery
Equality in helps in balanc- etc.
education and | ing the sex ratio Surplus men Imbalance of sex | [11]
employment | as equal rights ratio leads to
are given to boys Consequenc- more number of
as well as girls. es males than fe-
Literacy rate | If parents are ed- | [27] males.
ucated then there Geographical | The females are [8]
are minor chanc- spread in traveled from
es of discrimina- marriage one part of coun-
tion between a market. try to another for
boy and a girl. the purpose of
Emergence of | With the emerg- | [9] marriage.
new technol- | ing technology Inter- These are the re- | [6]
ogies like ultrasound, generational lationships be-
there are more relationships | tween persons of
chances of sex different genera-
abortions which tions.
leads to decline Polyandrous Due to shortage [26]
Causes in sex ratio. relationships | of brides, a fe-
Sons pre- Parents always [2] male is married
ferred, prefer a boy to number of
preservation child as they males leading to
of the clan think boys earn polyandry.
more, have more Homosexual | These are the re- | [18]
rights and carry relationships | lationships be-
the family name. tween same sex
Government | They conduct [19] of people due to
and NGOs various aware- decline in sex ra-
awareness ness campaigns tio.
campaigns regarding no dis- Cross class Due to shortage [1]
crimination be- and cross of females, inter-
tween male and caste mar- caste marriages
female, equal riages are encouraged
rights to both in India.
male and female. Economic The economic [3]
Government They are taking [14] condition of condition of the
support for some steps to de- the country country is im-
girl child crease the sex ra- proved by
tio like beti providing equal
bachao beti opportunity in
padhao yojana, education and
ladli scheme etc. employment to
Female sex India is a male [13,15] both boys and
abuse dominating girls.
country, every Women em- Women are giv- | [16]
parent prefers a powerment en equal rights
boy child which and opportunities
leads to sex se- to increase their
lective abortions. power so as to
Women traf- | Due to declinein | [22] balance the sex
ficking sex ratio, girls ratio.
are more exploit- .
ed and moved Table 2: Causes and consequences of sex ratio
from one place to 1.2 Poverty
another for the
purpose of Poverty is multidimensional deprivation in income, il-
forced labor, literacy, malnutrition, mortality, morbidity and vulnerabil-
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ity to economic shocks[17].Overcoming poverty in India is of new tech- | emergence
a key challenge; one third of the world's poor live in India. nologies of new
According to World Bank estimation,68%4 of the popula- technology
tion live on less than US$ 2 a day [29]. UNICEF latest millions  of
report shows that one in three Indian children is malnour- jobs  have
ished or underweight [30]. bgen_ creat-
According to 2011 poverty Development Goals Report, eatem grr1|<j
around 320 million people in India and China are expected Vublic en-
to be no more part of poverty in the next four years, with Ferprises
the estimation that India's poverty rate will fall from 0 . :
. X verpopula- | With lim- | [21]
51% in 1990 to about 22%p in 2015 [28]. tion ited  jobs
and re-
Poverty Ratio (%) Number of Poor (million) sources
OVerpopu-
Rural | Urban | Total | Rural | Urban | Total lation tends
to increase
1993-94 50.1 31.8 45.3 328.6 | 745 403.7 poverty.
Government | Due to | [23]
2004-05 41.8 25.7 37.2 326.3 | 80.8 407.1 support  for | govern-
girl child ment  sup-
2011-12 257 | 137 |219 [2165 [528 | 269.3 port to the
girl child,
Annual  Aver- | .75 55 74 NUMETOUS
age  Decline job oppor-
1993-94  to tunities
2004- have been
05(percentage provided to
points per an- female
num) candidates.
Annual Aver- | 232 | 1.69 | 218 Female sex | Poverty [13]
age  Decline abuse would lead
2004-05  to to ~ poor
2011- Conse- conditions
12(percentage quences for women
points per an- and female
num) sex abuse
being one
Table 3:Percentage and nurr;tl);rz%flri())or estimated in India, (Cen- Women traf- g]:)g;emjlob- 7]
ficking less people
The attributes associated with causes and consequences ‘é"r!\an gg
that result in deteriorating or improving the status of pov- unethical
erty in India are described in Table 4. jobs  and
- - ma be
Literacy rate | Literacy [7] wiI)Iling to
rate direct- do any-
Causes ly affects thing  for
poverty as money.
with in-
creased lit- Inter- Poverty [6]
eracy, generational | will direct-
more  Op- relationships | ly  affect
portunities the living
of  em- conditions
ploymen_tl of a family
;)S|e avarla- and will af-
: fect the
Emergence Due to | [9] mindset of
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all the gen-
erations in
the family.

Economic
condition of
the country

With  in- | [3]
crease in
poverty,
the eco-
nomic
condition
of a coun-
try would
worsen.

Mass  emi-

gration

People will
tend to
immigrate
to other
countries

in  search
of jobs.

[10]

Terrorism Poverty
will  lead
people to
take steps
in favor of
terrorism
when mon-
ey will be
promised
to them in
return for
their  ser-
vices.

[20]

Due to
poverty, a
family will
not be able
to get ade-
quate food
or nutrition
leading to
malnutri-
tion.

Malnutrition [24]

Table 4 : Causes and consequences of poverty

This paper uses the relational maps to map relations
among different factors. Authors proposed two soft com-
puting based methodologies Fuzzy relational maps (FRM)
and Neutrosophic relational maps (NRM), for highlighting
the causes and implications of skewed sex ratio and pov-
erty problem pervasive in India. FRMs divides problem
space into domain and range space, thereby represent the
relationship between the elements of domain and range
space. When the data under analysis is indeterminate, there

is no definite relation between concepts but interrelation
between concepts exists in a hidden way. In real life situa-
tions indeterminate relations can be seen everywhere i.e.
Consider a situation where it is difficult to decide whether
a relation between two concepts exists or not. The proba-
bility that a person wins an election is 35% true, 25% false
and 40% indeterminate i.e. percentage of people giving a
blank vote or not giving a vote.FRM cannot handle such
data. NRM is an innovative technique for processing data
uncertainty and indeterminacy while observing impacts
among various factors to obtain more sensitive results.

The remaining of the paper is organized as follows.
Section 2 presents Relational Maps. Section 3 presents
basics of FRMs, Linked FRMs and gives a model based on
FRM for studying India’s skewed sex ratio and poverty
problem. Section 4 introduces the NRM and Linked NRM
methodology developed. This section gives a model based
on NRM for studying India’s skewed sex ratio and poverty
problem. Section 5 details discussion of results. Finally,
section 6 outlines the conclusion.

2 Relational Maps

A relational map is related to cognitive map, which is
also known as mental map. It is a representation and rea-
soning model on causal knowledge [32].1t is a labeled,
directed and cyclic graph with disjoint set of nodes and
edges represent causal relations between these set of
nodes . A relational map represents knowledge (useful in-
formation) which further helps to find hidden patterns and
support in decision making. Fuzzy Relational Maps are re-
lational maps which use fuzzy values in domain {0, 1}.
This represent the cases of existence and nonexistence of
relations between nodes but indeterminacy between the re-
lations are not represented. F. Smarandache proposed Neu-
trosophic Relational Maps which is an extension of fuzzy
relational maps that can represent and handle indeterminate
relations [31].

3 Fuzzy Relational Maps

W.B.Vasantha et.al(2000) introduced a new methodol-
ogy called Fuzzy Relational Maps which is an extension of
Fuzzy Cognitive Maps (FCM) and is used in applications
like banking [33], IT expert systems [25] etc. In FRM, the
problem space is divided into a domain space D) and a
range space R. There are relationships that exist between
the domain space and range space concepts. No intermedi-
ate relations exist between the concepts within the domain
Oor range space.

3.1 Basics of FRM

A FRM is a directed graph from Domain I (dimension
m) to Range R (dimension n) such that D N R = ¢,
with concepts as nodes. The concepts represented as varia-
bles describe the behavior of system and the edges repre-
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sent the relationships among the concepts which can be ei-
ther positive or negative. The positive relationship shows
that the effect variable undergoes a change in the same di-
rection and negative relationship shows that the effect var-
iable undergoes a change in the opposite direction [32].

Let xx denote concepts of the range space or the do-
main space, where x = {0 or 1}

If x = 1, represents the on state of the node.

If x = 0, represents the off state of the node.

Let D, and Rj denote the two concepts of FRM. The
directed edge from D, to R. denote the relation or effect
of D, on R.. The edge has the value which lies in the
range {0, —I-i,—l}

Let e be the
and efj € {0,+1, —1}.

If & =1decrease in D, implies decrease in R or
increase in Di implies i increase in RJ

If e —O then there is no effectof D, on R;.

If e = 1 then decrease in D, infers increase in R
or mcrease in D, implies decrease |n R

3.2 Linked FRM methodology

W.B. Vasantha et.al [31] also introduced yet another
new technique to help in decision making using FRMs
called Linked FRMs which is not feasible in case of FCMs.
This methodology is more adaptable in those cases of data
where two or more systems are inter-related in some way
but we are not in a position to inter-relate them directly.
Assume we have 3 disjoint sets of concepts, say space P
(m set of nodes), ¢ (n set of nodes) and R (+ set of nodes).
We can directly find FRMs relating F and ¢}, FRMs relat-
ing ¢ and R but we are not in a position to link or get a di-
rect relation between P and R but in fact there exists a

edge DR,  weight

hidden link between them which cannot be easily weighted.

The linked FRM methodology developed uses FRMs
connecting three distinct spaces P (7t nodes), (11 nodes)
and R (r nodes) in such a way that by using the pairs of
FRMs between P & ¢} and @ & R we obtain FRM relat-
ing P & R.

Let E; be the causal matrix between P and {J of order
m X 1 and E, be the causal matrix between ( and R of
order 7. * . Now cross product of E; & E, gives a matrix
which is the causal matrix relating Pand R.

3.3 Hidden pattern for FRM

Let Di Rj(or RjDi) be an edge from D; to Rj. D; is
the ith node in domain space and Rj is the jth node in range
space where 1 =j=m and 1 <i=Zmrn . When
Ri(or Dj)is switched on and if causality flows through
edges of the cycle and if it again causes Ri{orDj), we
say that the dynamical system goes round and round. This
is true for any node Rj{aor Di) for 1 <1 =<, or

(1 = j =< m). The equilibrium state of this dynamical
system is called the hidden pattern [30].

If the equilibrium state of a dynamical system is a
unique state vector, then it is called a fixed point.

Consider an FRM with (R1,R3Z, ...,
(D1,D2,... ..., Dn) as nodes.

For example, let us start the dynamical system by
switching on R1 (or D1).

Rm)) and

If the FRM settles down with R1 and Rmi(or D'1 and
Dmn) on, eg. the state vector remains as (1,0,.,0,1) in
R or(1,0,.,0,1)in D. This state vector is called the
fixed point.

If the FRM settles down with a state vector repeating
in the form
( Al = A2 - A3 = - = Ai = A1) Or
(Bl —+ B2— B3 — --- — Bi — B1)this equilibrium
is called a limit cycle.

3.4 MODEL: Implementation of linked FRM model
in study of skewed sex ratio and poverty problem

The sex ratio and poverty problem in India are two of
the major problems which are discussed in this section.
There are three sets of conceptual nodes in three spaces.
The spaces under study are P, @@ and R where

P - The attributes associated with causes that result in
deteriorating or improving the status of poverty and
skewed sex ratio in India,

(- Attributes representing the two problems, and

R - Attributes associated with resultant implications of
the two problems under study.

The attributes / concepts used in the model are given
below:

P - The attributes associated with various causes of
poverty and unbalanced sex ratio. Though there could be
many such attributes but here the authors have prominently
categorized 7 important causes in P.

P1 — Gender Equality in education and employment

P2 — Literacy rate

P3 — Emergence of new technologies

P4 — Overpopulation

P5 — Sons preferred, preservation of the clan

P& — Government and NGOs awareness campaigns,
which aim to change the people’s mindset and attitude to-
wards girls

P7 — Government’s support to families that have girl
child for example direct subsidies at the time of birth, fe-
male quotas, scholarships and old age pensions

{J — The attributes representing the problems under
study.
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@1 — Skewed sex ratio

2 — Poverty

R — The attributes associated with the various implica-
tions. Here the authors have basically taken 13 important
possible such consequences. Though there could be many
more.

R1 — Female sex abuse

R2 — Women trafficking

R3 — Surplus men, more unmarried men still in mar-
riage market

R4 — Geographical spread in marriage market

R5 — Inter-generational relationships, young girls get-
ting married with much older men

R& — Polyandrous relationships, where one women is
married to multiple men

R7 — Homosexual relationships

R3 — Cross class and cross caste marriages

R9 — Economic condition of the country

R10 — Women empowerment

R11 - Mass emigration

R12 — Terrorism

R13 — Malnutrition

Subsequent to the deliberations with the researchers
working in this domain, the authors generated the relation-
al directed graph of the model for spacesP & Qand Q & R
as shown in Fig. 1a and 1b.

-
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Figure. 1a FRM for spaces P and Q
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Figure. 1b FRM for spaces Q and R

The relational or connection matrix for spaces P & Q
and Q & R can be constructed as given by table 5a and ta-

ble 5b.

CAUSES Q1 Q2
P1 -1 0
P2 -1 -1
P3 1 -1
P4 0 1
P5 1 0
P6 -1 0
P7 -1 -1

Table 5a FRM Matrix (E1) for P and
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IM- RI|R |R |RIRRR|R|R R|R|RR|R1

PLI 2 3 |4|5/6 |7 |8/9|1]11]3

CA 0]12

TIO

NS

Q1 1 1 1 1117111 -10{0]0
111

Q2 1 1 0 0f1{0 |0 |0O|-]0]|1]1]|1
1

Table 5b FRM Matrix (E2) for (} and R

Thus Elisa 7 * 2 matrix and E2 isa 2 X 13 matrix.
E1 % EZ2 gives the relational matrix which is a7 % 13
matrix say E, known as the hidden connection matrix, as
shown in Table 6.

Caus- R1 RIRIR|R|R|IR|[R|R|R |[R |R |[R
es\Implicat 31415 7181910 |11 |12 |13
ions
P1 -1 tlala e el 2]t |0 |0 ]oO
P2 -1 R R R
P3 0 of1(1]o|2|2f2]O|-1]|-1]-1]-1
P4 1 1/0/0f1]0|0f|O 1 0 |1 |1 |1
P5 1 1111 ]1]1]1 1 :1]/0 |0 |0
P6 -1 ilalala e el 2|2 |0 [0 ]O
P7 -

-1 AR R L e e A

Table 6 Hidden FRM Matrix (E) for P and R

Thus, by this method even if the authors were not in a
position to get directed graph, authors could indirectly ob-
tain the FRMs relating them. Now using these three FRMs
and their related matrices, conclusion is derived by study-
ing the effect of each state vector.

For the given model,

First take initial vector A1 by keeping P2 i.e. literacy
rate in ON state.

Let £ =Hidden connection matrix for P and R

Initial state vector A1 should pass through the rela-
tional matrix E.

This is done by multiplying A1 with the relational ma-
trix E.

Let ALE = (r1,r2,...vm)

‘enale sexual Abuse

Figure. 2 Problem simulation using MATLAB for FRM when
‘Literacy Rate’ is ON

After thresholding and updating the resultant vector we
get AZ2=A1E € R. Now pass A2 into ETand calcu-
late AZET.

Update and threshold the vector AZET such that vec-
tor A3 isobtainedand A3 € D.

This procedure is repeated till we get a limit cycle or a
fixed point.

Al = (0100000)
A1E =(0000000011000)= A2
AZE =(1100011)=As

A3E =(0000000011000)=As
Hence, A4 = A2 we got a fixed point.
Problem simulation using MATLAB

The authors have created a graphical user interface us-
ing MATLAB as shown in Fig. 2

The GUI takes input from the user which can be either
0 or 1, where 1 represents the concept is in ON state and 0
represents the OFF state. The GUI contains a graph which
shows the impact on various concepts based on the initial
state vector taken as input.

Resultant vector can have two outputs:

‘1’ represents the existence of relation among the con-
cepts , whereas ‘0’ represents that there is no causal rela-
tionship.
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3.5 Limitations of FRM

The concepts for which the experts are not in a position
to draw any relations, i.e. concepts may or may not have
causal effects, cannot be associated in FRMs. The edges
can take either of the values 0,1 or -1 as shown in Table
5a and Table 6 . An expert may not always be able to make
certain decisions on the relation between two nodes. This
drawback can be overcome by using Neutrosophic Rela-
tional Maps which support decision-making under uncer-
tainty in dynamic systems as shown in Table 7 and Table
8.

In FRMs, either a relation exists or do not exist, but
this will not always be true in case of real world problems.
When the data under analysis is unsupervised data, the re-
lation can be indeterminate like considering a relation
where skewed sex ratio may or may not lead to homosexu-
al relations as it depends upon the mindset of the individu-
als. In such cases only NRMs are better applied than
FRMs. Thus NRMs play a better role and give a sensitive
result than the FRMs as shown in Table 10.

Fuzzy world is about fuzzy data and fuzzy membership
but it has no capacity to deal with indeterminate concepts.

Thus with the help of NRM, whenever in the resultant
data indeterminacy is observed i.e. the symbol I, the per-
son who analyze the data can deal with more caution
thereby getting sensitive results rather than treating the
nonexistence or associating 0 to that co-ordinate.

4 Neutrosophic Relational Maps

NRM is an extension of FRM where indeterminacy is
included [32]. The concept of fuzzy relational maps fails to
deal with the indeterminate relation. Neutrosophic logic is
the soft computing technique which is able to support in-
complete information i.e. it deals with the notions of inde-
terminacy.

The input state vectors are always taken as the real
state vectors i.e. the node or the concept is in the on state
or in the off state but when we are indeterminate about any
concept then it is represented as indeterminate, with the
symbol I.

4.1 Basics of NRM

Let I be the domain space with nodes D1, ..., Di and
R be the range space with the conceptual
nodes R1,...,Rj ,iel..nand j=1..m such that
they form a disjoint class i.e. I i B = ¢ . Suppose
there is a FRM relating D) and R and if any edge relating

Di Rj is indeterminate then we call the FRM as the Neu-
trosophic Relational Maps (NRMs).

Every edge in the NRM is weighted with a number in
theset {0, +1,-1,1%.

Let e, be the
and eij € {ij +1,—-1,1}

If e =1decrease in D, implies decrease in R or
increase in D1 implies i mcrease in RJ

If & =0, then there is no effect of D onR..

If & = 1 then decrease in D, |nfers increase in R
orincrease in D, implies decrease i |n R..

If e; = —1 it implies that the effect of D, on R
mdetermlnate so we denote it by .

edge DR,  weight

4.2 NRM hidden patterns

Let DiRj(orRjDi)1 < j = m :
1 =i =< n,when Rj (or Di ) is switched on and if
causality flows through edges of a cycle and if it again
causes Rj (or Di) we say that the Neutrosophical dy-
namical system goes round and round. This is true for any
node Rj{ or Diforl < j <=m(arl =i = n).
The equilibrium state of this Neutrosophical dynamical
system is called the Neutrosophic hidden pattern.

Fixed point and Limit cycle in an NRM

If the equilibrium state of a Neutrosophical dynamical
system is a unique Neutrosophic state vector, then it is
called the fixed point.

Consider an NRM
and D1,D2, ..., D1 as nodes.

with  R1,R2,..,Rm

For example let us start the dynamical system by
switching on R1 (er D1). Let us assume that the NRM
settles down with R1 and Rm(or D1 and Dmn) on, or
indeterminate, eg. the Neutrosophic state vector remains as
El,l],l],...,lj oo (1,0,0,..I) in R or

1,0,0,..1)or
(1,0,0,...I) in D, this state vector is called the fixed
point.

If the NRM settles down with a state vector repeating
in the form

(A1 —-42 - A3 = -~ = 4i =+ A1) or
(F1— B2 — B3 — --- = Bi — B1) then this equi-
librium is called a limit cycle.

Now we proceed on to define the notion of linked
NRM as in the case of FRM.

This methodology is more adaptable in those cases of
data where two or more systems are inter-related in some
way but we are not in a position to inter-relate them direct-
ly i.e. cases where related conceptual nodes can be parti-
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tioned into disjoint sets. Such study is possible only by us-
ing linked NRMs.

Assume we have 3 disjoint sets of concepts, say spaces
P (i set of nodes), & (st set of nodes) and R (r set of
nodes). We can directly find NRMs relating F and @,
NRMs relating ¢ and R but we are not in a position to link
or get a direct relation between P and R but in fact there
exists a hidden link between them which cannot be easily
weighted; in such cases we use linked NRMs where using
the pair of NRMs we obtain a resultant NRM.

4.3 Linked NRM Methodology

The methodology developed uses NRMs connecting
three distinct spaces namely, P (i1 nodes), {J(rz nodes) and
E (r nodes) in such a way that using the pairs of FRMSs be-
tween P & (J and {} & R we obtain FRM relating P & R
(VasanthaKandasamy & Sultana, 2000).

If E'1 is the connection matrix relating F and { then
Elisam X mmatrix and E2 is the connection matrix
relating ¢} and R which is a . * + matrix. Now E1E2
is asm ¥ 7 matrix which is the connection matrix relat-
ing Pand R and E2T E1T matrix relating R and P,
when we have such a situation we call it the pair wise
linked NRMs.

4.4 MODEL: Implementation of linked NRM model
in study of skewed sex ratio and poverty problem

Recall the model in section 3.4 where the study of sex
ratio and poverty is carried out using linked FRM where no
indeterminacy is considered.

Now instead of FRM we instruct the expert that they
need not always state the presence or absence of relation
between any two concepts but they can also spell out the
missing relations between two concepts, with these addi-
tional instruction to the expert, the opinions are taken.

In order to implement our model using linked NRM,
we take the same three sets of conceptual nodes in three
spaces as taken in section 3.4 i.e. the spaces under study
are P, and R.

The attributes / concepts used in the model can be re-
ferred from section 3.4.

In our model the relations where indeterminacy can be
represented are:

FP1 (Gender Equality in education and employ-
ment ) —» {2(Poverty)

If there is equality in education and employment i.e.
women are given equal opportunity to study and earn for
their families then there may be a possibility that there
might be a decline in poverty, but we cannot conclude this
for sure(refer Table 5a).

Q1(Skewed sex ratio)> R7(homosexual relationships)

If there exists imbalance in male to female ratio then
there would be surplus men. There is a possibility that the
situation would lead to more homosexual relations in
shortage of women(refer Table 5hb).

Other indeterminacies between nodes introduced in
this model are highlighted in the Table 7 and Table 8.

Taking the expert opinion, the authors give the Neutro-
sophic Relational maps as shown in Fig. 3a and Fig. 3b.

.
=
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-

Figure. 3a NRM for spaces P and Q
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Figure. 3b NRM for spaces Q and R

The matrices for the three NRMs formulated which can
contain the values from set{Q, 1, — 1, I'} are given by:

CAUSES Q1 Q2
P1 -1 [
P2 -1 -1
P3 1 -1
P4 [ 1
P5 1 0
P6 -1 0
P7 -1 -1

Table 7 NRM Matrix for P and {J

IMPLI- RIR|R|R|R|R|R|RIR |R |[R |R |R

CATI- 112|3[4|5[6|7(8]9 10 | 11 | 12 | 13
ONS

Q1 1j1)1j1)2j1j1rj1}j-11-1 40 0 0

Q2 1/1j0j0jIfjl1jojoj-11]o0 1 1 1

Table 8 NRM Matrix for ¢} and R

CulR IR IR IR IR [RIRIR [R [R |R |R [R
sesil |1 2 [3 |4 |5 [6|l7]8 9o [10|11 |12 )13
mpli

cati-

ons

Pl 11|11 -1 o111 |1 | | |
P2 |1 |1 |1 |11 1|11t |1 [1]1]1
P3 |0 |0 |1 |1 |1 Jol1|1 |o |1 |1 |1 |1
Pa |1 [T |1 [t [r [ttt |21 1 |1 |1
Ps |1 |1 |1 |1 [1 |1[1[1 |11 o |o

P6 | gl |alafa]i|i]2]1 |1 oo |o
Pl g lalalalalii]als |1 |alala

Table 9 Hidden NRM Matrix for P and R

The “I" factor was introduced in the NRM matrix. The
hidden pattern using Linked NRM was calculated as,

N(E)Hidden connection matrix with indeterminacy
added. (Table 9)

I =Indeterminacy

The hidden pattern for Linked NRM is calculated as
follows:

We first take same initial vector (as in section 3.4)
A1 by keeping P2, literacy rate in ON state

IfA1= (0100000),

AIN(E)=(0000077011000) = A2
AZN(E)=(1100011) = A3
A3N(E)=(000007I011000) = A4

Problem simulation using MATLAB

The authors have created a graphical user interface us-
ing MATLAB as shown in Fig. 4.

The GUI takes input from the user which can be either
0 or 1 where 1 represents the concept is in ON state and 0
represents is in OFF state. The GUI contains a graph which
shows the impact on various concepts based on the initial
state vector taken as input.

L el | I I
R R R R R R R RS R RO Rt RZ RN
ONSeQENES

Figure. 4 Problem simulation using MATLAB for NRM when
‘Literacy Rate’ is ON

Resultant vector can have three outputs: ’1° represents
the existence of relation among the concepts ,

‘0’ represents that there is no causal relationship,
whereas

‘I’ represents that there might be a causal relationship
among the concepts i.e. the existence of the relationship is
indeterminate.

5 Discussion of results

The development of the models to support decision
making in this research is to identify and analyze the indi-
rect relations among the factors responsible in the distorted
sex ratio and poverty of India and their implications, have
been proved as reliable and valid.

Values achieved in the Fig. 2 and Fig. 4 shows impacts
of various causes and their consequences. FRMs and
NRMs are modeled in section 3.4 and 4.4 to show how the
various spaces are related.
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The perceptions of the expert could not be 100% accu-
rate. In addition, different experts may have different per-
ceptions working with the same data, which will lead to
different conclusions.

The results show that due to emergence of new tech-
nologies available in medical field like ultrasound, the fac-
tors like female abuse, crime rate, surplus men in marriage
market, geographical marriage spread and women traffick-
ing are indirectly influenced. However, the author is not in
a position to surely say anything about the implications
like polyandrous relationships and homosexual relation-
ships because these depend on the mindset of the individu-
als. There is one positive outcome; greater acceptance to-
wards inter-caste and inter religious marriages. Problems
such as terrorism, mass emigration and malnutrition are a
result of poverty pervasive in India which in turn is a result
of overpopulation.

6 Conclusion

This paper discusses two major problems existing in
India-namely, skewed sex ratio and poverty. The authors
use the methodologies which help in decision-making
when the information is incomplete and dynamic in nature.
The paper highlights the various factors leading to these
problems in India and show in what ways these causes re-
late to their positive as well as negative implications. The
data concludes the explanation that due to the sources con-
tributing in female deficit in India, there is a tremendous
impact on the country’s economic growth and the status of
women in society. Authors also show that prevalence of
the problems discussed in the paper depends heavily on the
literacy rate of the population.

The model used here is NRM which has significant ad-
vantages over FRM. As discussed in the cases above, in
the FRM model, the literacy rate has effect only on two
factors but the NRM model along with two previous fac-
tors has drawn our attention to two other factors which
may have indeterminate effect on polyandrous and homo-
sexual relation hence depicting that increase in literacy rate
may or may not lead to polyandrous or homosexual rela-
tion. The other factor discussed using both the models is
the effect of sons preferred preservation of clan and its ef-
fect on other factors, here the NRM model suggests that af-
fect on polyandrous and homosexual relations is indeter-
minate.

Literacy has a direct impact in the growth of a country
eradicating problems like mass emigration of labor by
providing employment opportunities in the country, direct-
ly or indirectly affecting poverty. Also, literacy has a direct
relation with the attitude of the society towards females.
There is a need for enlightened mindset towards females.

In India, different schemes encouraging the parents to
have a girl child have been launched by the National and
State Governments. Some of the schemes are the Ladli

Scheme in Delhi and Haryana, the Rajlakshmi Scheme in
Rajasthan, Rakshak Yojna in Punjab, Bhagyalakshmi
Scheme in Karnataka. As discussed by the authors, if such
schemes are put in place females will no longer be consid-
ered as economic burden on their families.
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Abstract. In this article, starting from primary represen-
tation of neutrosophic information, namely the triplet (u,
w, v) made up of the degree of truth y, degree of indeter-
minacy o and degree of falsity v, we define a refined rep-
resentation in a penta-valued fuzzy space, described by
the index of truth t, index of falsity f, index of ignorance
u, index of contradiction ¢ and index of hesitation h. In
the proposed penta-valued refined representation the in-
determinacy was split into three sub-indeterminacies

such as ignorance, contradiction and hesitation. The set
of the proposed five indexes represents the similarities of
the neutrosophic information («, @, v) with these particu-
lar values: T=(1,0,0), F=(0,0,1), U=(0,0,0), C=(1,0,1) and
H=(0.5,1,0.5). This representation can be useful when the
neutrosophic information is obtained from bipolar infor-
mation which is defined by the degree of truth and the
degree of falsity to which is added the third parameter, its
cumulative degree of imprecision.

Keywords: Neutrosophic information, refined representation, hesitation, contradiction, ignorance, falsity, truth, ambiguity.

1 Introduction

The neutrosophic representation of information was
proposed by Florentin Smarandache [6], [13-22] and it is a
generalisation of intuitionistic fuzzy representation pro-
posed by Krassimir Atanassov [1-4] and also for fuzzy rep-
resentation proposed by Lotfi Zadeh [23]. The neutrosoph-
ic representation is described by three parameters: degree
of truth x, degree of indeterminacy w and degree of falsity
v. In this paper we assume that the parameters y, w,v €
[0,1].

The representation space (u, w,v) is a primary space
for neutrosophic information. Starting from primary space,
it can be derived other more nuanced representations be-
longing to multi-valued fuzzy spaces where the set of pa-
rameters defines fuzzy partitions of unity. In these multi-
valued fuzzy spaces, at most four parameters of representa-
tion are different from zero while all the others are zero [7],
[8]. [9], [10].

In the following, the paper has the structure: Section 2
presents previous works: two penta-valued representations.
In the first representation, the indeterminacy was split in
neutrality, ignorance and saturation while in the second the
indeterminacy was split into neutrality, under-definedness
and over-definedness; Section 3 presents the construction
of two multi-valued representation for bipolar information.

The first is based on Belnap logical values, namely true,
false, unknown and contradictory while the second is based
on a new logic that was obtained by adding to the Belnap
logic the fifth value: ambiguity; Section 4 presents two

variants for penta-valued representation of neutrosophic in-
formation based on truth, falsity, ignorance, contradiction
and hesitation; Section 5 presents a penta-valued logic that
uses the following values: true, false, unknown, contradic-
tory and hesitant; Section 6 presents five operators for the
penta-valued structures constructed in section 4. Firstly, it
was defined two binary operators namely union and inter-
section, and secondly, three unary operators, namely com-
plement, negation and dual. All these five operators where
defined in concordance with the logic presented in the sec-
tion 5; The last section outlines some conclusions.

2 Previous works

It was constructed two representations using penta-valued
fuzzy spaces [7], [8], [9]. One that is based on truth, falsity,
neutrality, ignorance and saturation and the other that is
based on truth, falsity, neutrality, under-definedness and
over-definedness.

Below is a brief overview of these variants.

2.1 Penta-valued representation of neutrosophic
information based on truth, falsity, neutrality, ig-
norance and saturation

We can define a penta-valued partition with five indexes:
index of truth, index of falsity, index of neutrality, index of
ignorance and index of saturation by:
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—u- min( u, @) + min( 4, v)

t . 2.1.1)
foy— mi”(""");min(“"’) (2.1.2)
_ oo MinC4, ) ; min(v, ) (2.1.3)
u=1-max(uw,v) (2.1.4)

s = min(u, w,v) (2.1.5)

These five indexes verify the condition of partition of unity,
namely:

t+f+n+u+s=1 (2.1.6)
Also, there exists the equality:
t-f'n=0 (2.1.7)

Having this representation, the neutrosophic information
could be true, false, neutral, unknown, and saturated.
These five information features have the following proto-
types: T =(1,00) ; F=(0,01) ; N=(010) ; S=
(1,1,1) ; U = (0,0,0). The geometrical representation of
this construction can be seen in the figure 1.

saturated

true

false

unknown

Fig.1. The geometrical representation for the penta-valued space
based on true, false, neutral, unknown and saturated.

Also, we can define the inverse transform from the penta-
valued space (t,f,n,u,s) to the primary three-valued
space (u, w, V) using the next formulae:

u =t +min(t, f) + min(t,n) + s
w =n + min(t,n) + min(f,n) + s

v = f +min(t, f) + min(f,n) + s

2.2 Penta-valued representation of neutrosophic
information based on truth, falsity, neutrality, un-
der-definedness and over-definedness

Firstly, we will define the neutrosophic definedness.
Before the definedness construction, we will denote the
mean of neutrosophic components:

_utV+o
3

2 (2.2.1)

The neutrosophic definedness is described by a function:
0 :[01] — [-11] having the following properties:

i) 5(0)=-1
.. 1
i d|=|=0
KH
iii) o) =1
iv) S increases with its argument

Here are some examples:

31-1
S(A) = T2 (2.2.2)
5(4) = 2sin(/1%j -1 (2.2.3)
5(2) = @ -1 (2.2.4)
S5(A) = w (2.2.5)
J2a—1-2

oA)=—F—— 2.2.6
(4) o i (2.2.6)

If the neutrosophic definedness is positive, the information
is inconsistent or over-defined, if it is zero, the
neutrosophic information is consistent or complete and if it
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is negative, the information is incomplete or under-defined.
We denote by:

5* =max(5,0) (2.2.7)

6~ =max(-9,0) (2.2.8)
Using the neutrosophic definedness we define index of
truth, index of falsity, index of neutrality, index of over-
definedness and index of under-definedness by:

1-5°
t= - 229
+o (2.2.9)
n=1=% ., (2.2.10)
3+0
Sl 2.2.11)
31+0
0=5" (2.2.12)
u=_9 (2.2.13)
31+6"

These five parameters verify the condition of fuzzy
partition of unity, namely:
t+n+f+o+u=1 (2.2.14)
with u-0=0.
Having this representation, the neutrosophic information
could be true, false, neutral, over-defined and under-
defined.
For this penta-valued representation the indeterminacy has
three components: neutrality, over-definedness and under-
definedness, namely:
i=n+o0+u (2.2.15)
We must draw attention to the difference between
saturation that represents the similarity to the vector (1,1,1)
and the over-definedness that is related to the inequality
U+ w+v > 1. Inthe same time, for both parameters, the
maximum is obtained for y = w =v = 1.
Also, the ignorance supplies a similarity to the vector
(0,0,0) while the under-definedness represents a measure
of the inequality u+w +v <1 and the maximum is
obtainedforuy=w=v=0.
In figure 2 we can see the geometrical representation of
this construction.

over-defined

true

false

under-defined

Fig.2. The geometrical representation for the penta-valued space
based on true, false, neutral, under-defined and over-defined.

3 Tetra and penta-valued representation of bi-
polar information

The bipolar information is defined by the degree of truth u
and the degree of falsity v. Also, it is associated with a
degree of certainty and a degree of uncertainty. The bipolar
uncertainty can have three features well outlined:
ambiguity, ignorance and contradiction. All these three
features have implicit values that can be calculated using
the bipolar pair (u, v).

In the same time, ambiguity, ignorance and contradiction
can be considered features belonging to indeterminacy but
to an implicit indeterminacy. We can compute the values
of these implicit features of indeterminacy. First we

calculate the index of ignorance m and index of
contradiction k:
m = 1-min(1,p + v) (3.1
k=max(l,u+v)—1 (3.2)
There is the following equality:
utv+mr—xk=1 (3.3)
which turns into the next tetra valued partition of unity:
w-K+uv-K)+n+r=1 (3.4)

The four terms form (3.4) are related to the four logical
values of Belnap logic: true, false, unknown and contradic-
tory [5]. Further, we extract from the first two terms the
bipolar ambiguity a:
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a=2-min(L—Kv—K) (3.5

The formula (3.5) has the following equivalent forms:
a = 2min(u,v) — 2k (3.6)
a=1—-|u—v|—|u+v-1| 3.7)
a=1—-—max(|2u—1|,12v—1|) (3.8)

Moreover, on this way, we get the two components of bi-
polar certainty: index of truth =+ and index of falsity 7~:

‘r+=,u—rc—E (3.9
2
T‘=v—1c—g (3.10)
2
having the following equivalent forms:
tt = u— min(y,v) (3.11)
77 =v —min(y,v) (3.12)

So, we obtained a penta-valued representation of bipolar
information by (z*,77,a,m, k). The vector components
verify the partition of unity condition, namely:

"+ 1 ta+n+r=1 (3.13)

The bipolar entropy is achieved by adding the components
of the uncertainty, namely:

e=a+m+kK (3.14)

Any triplet of the form (u, v, i) where i is a combination of
the entropy components (a,m, k) does not define a
neutrosophic information, it is only a ternary description of
bipolar information.

In the following sections, the two representations defined
by (3.4) and (3.13) will be used to represent the neutro-
sophic information in two penta-valued structures.

4 Penta-valued representation of neutrosophic in-
formation based on truth, falsity, ignorance, con-
tradiction and hesitation

In this section we present two options for this type of
penta-valued representation of neutrosophic information.

4.1 Option (1)

Using the penta-valued partition (3.13), described in
Section 3, first, we construct a partition with ten terms for

neutrosophic information and then a penta-valued one,
thus:

Gt+t+a+n+)(w+1l-w)=1 (411

By multipling, we obtain ten terms that describe the
following ten logical values: weak true, weak false, neutral,
saturated, hesitant, true, false, unknown, contradictory and
ambiguous.

+

ty, = Wt
fw = wt”

n=wn

5 = wkK

h= wa
t=01-w)rt
f=A-w)~
u=010-w)r
c=(1—-w)k
a=(1-w)a

The first five terms refer to the upper square of the
neutrosophic cube (fig. 3) while the next five refer to the
bottom square of the neutrosophic cube (fig. 4).

We distribute equally the first four terms between the fifth
and the next four and then the tenth, namely the ambiguity,
equally, between true and false and we obtain:

*(1-wa
t=(1—w)r++%+%

f=(1—w)r‘+wTT_+@

wTT
‘LL=(1-(1))T[+7

wk
c=(1—a));c+7

P AL S
T weTT 2 "2 72

wTT WK

then, we get the following equivalent form for the five fi-
nal parameters:
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weak true

neutral saturated

weak false

Fig. 3. The upper square of neutrosophic cube and its five logical
values.

true

ambiguous
°

unknown contradictory

false

Fig. 4 The bottom square of neutrosophic cube and its five logical
values.

t=(1 —%) (1 —K) —% (4.1.2)
f= (1—%) (v—x) —% (4.1.3)
u=(1- %)n (4.1.4)
c=(1- %) K (4.1.5)
hel ;’ “) (4.1.6)

The five parameters defined by relations (4.1.2-4.1.6) de-
fine a partition of unity:

t+f+h+c+u=1 (4.1.7)

Thus, we obtained a penta-valued representation of neutro-
sophic information based on logical values: true, false, un-
known, contradictory and hesitant.

Since - k = 0, it results that u - ¢ = 0 and hence the con-
clusion that only four of the five terms from the partition
can be distinguished from zero.

Geometric representation of this construction can be seen
in figures 5 and 6.

The inverse transform.
Below, we present the inverse transform calculation, name-
ly the transition from penta-valued representation

(t, f, h,c,u) tothe primary representation (u, w, v).
From formulas (4.1.2) and (4.1.3), it results by subtraction:

t-f=(1-3)w-v

From formulas (4.1.4) and (4.1,5), it results by subtraction:

(4.1.8)

C—u=(1—g)(u+v—1) (4.1.9)
2
Then from (4.1.2), (4.1.3) and (3.5) it results:
2min(t, f) = (1 — w)a (4.1.10)
Formula (4.1.6) is equivalent to the following:
2h-o _ 4111
P a (4.1.11)

Eliminating parameter a« between equations (4.1.10) and
(4.1.11), we obtained the equation for determining
parameter w:

w? — w(1+ 2h + 2min(t, f)) +2h =0 (4.1.12)
Note that the second-degree polynomial:
p(w) = w? — w(1 + 2h + 2min(¢, f)) + 2k (4.1.13)

has negative values for o = 1 and w = 2h, namely
p(1) = ph) = —2min(t, f)

So, it has a root grater than max(1,2h) and one less than
min(1,2h). Also, for w =0, it has a positive value,
namely p(0) = 2h. Therefore, the root belongs to the
interval [0, min(1,2h)] and it is defined by formula:
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Then, from (4.1.8) and (4.1.9), it results the system:
hesitant t—f
u—-v= w
=7
c—u
utv—1= )
2
false contradictory Finally, we obtain formulas for u and v.
1+ t—f+c—u (4.1.16)
l,[_ = — ..
2 2-p+.p2-2h
1 f—-t+c—u
unknown e V== (4117

Fig. 5. The geometrical representation of the penta-valued space,
based on true, false, unknown, contradictory and hesitant.

H(0.5,1,0.5)

F(0,0,1) C(1,0,1)

U(0,0,0) T(1,0,0)

Fig. 6. Geometric representation of prototypes for features: truth,
falsity, ignorance, contradiction and hesitation.

w=p—+Bp%-2h (4.1.14)
where:
B = % + h + min(t, ) (4.1.15)

We must observe that

2 2

1 1
ﬁ2—2h2<§+h> —2h=(§—h) >0

and hence formula (4.1.14) provides a real value for w.

2 g+ Jprozn

Formulas (4.1.14), (4.1.16) and (4.1.17) represent the re-
calculating formulas for the primary space components
(u, w,v) namely inverse transformation formulas.

4.2 Option (I1)

Using the tetra-valued partition defined by formula (3.4)
we obtain:

aw aw
y—K—7+v—K—T+n+K+w=1+w—aw

(u—k—%)+(v—k—%)+n+lc+w

1+w—aw

=1 (4.2.1)

We obtained a penta-valued partition of unity for neutro-
sophic information. These five terms are related to the fol-
lowing logical values: true, false, unknown, contradictory,
hesitation:

-
t= m (4.2.2)
V—K-— %
V[
K
w

Formula (4.2.1) becomes:
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t+f+h+c+u=1 (4.2.7)
The inverse transform
From (4.2.2) and (4.2.3) it results:
__ kv
t—f = T d-ow (4.2.8)
From (4.2.4) and (4.2.5) it results:
S prvod 429
R v (4.2.9)
From (4.2.8) and (4.2.9) it results:
(t=fl+lc—uD
- 4.2.10
T Ty )
from (4.2.6) it results:
! +1 L 4211
> p = (4.211)

Finally, from (4.2.10) and (4.2.11) it results the following
equation:

(t=fl+lc—uDw?>*—w+h=0 (4.2.12)
Note that the second-degree polynomial defined by:
p@) = (It—=fl+lc—uhw*-w+h

has a negative value for w = 1, namely:

p(1) = —2min(t, f)

Hence, it has a root grater than 1 and and another smaller
than 1. Also for w = h it has a positive value, namely:

p(h) = (It = fl + lc —uDh?

So the solution belongs to the interval : [h, 1]

The value of the parameter w is given by:

2h

= 4.2.13

@ 1+ J1—4h(lt—fl+lc—ul) ( )
From (4.2.11) it results:

_ 2(1t = f1 + le = ul) (42.14)

1+ JI-4h(t—fl+lc—uD
from (4.2.13) and (4.2.14) it results:

2
1+1—4h(lt—fl+c—ul)

1+(1-aw=

Then, from (4.2.8) and (4.2.9) it results:

L 2(t—f)
1+1—4h(lt—fl+c—ul)
2(c —u)

u+tv—-1=
1+\/1—4h(|t—f|+lc—u|)

Finally, it results for the degree of truth and degree of fal-
sity, the following formulas:

1 t—f+c—u
n=s+
2 1+ J1—-4h(It—fl+]c—ul)

(4.2.15)

1 f—-t+c—u
v==+ (4.2.16)
2 1+ /1—-4h(lt—fl+]c—ul)

The formulae (4.2.15), (4.2.16) and (4.2.13) represent the
formulae for recalculating of the primary space compo-
nents (u, w,v), namely the inverse transformation formu-
las.

5 Penta-valued logic based on truth, falsity, igno-
rance, contradiction and hesitation

This five-valued logic is a new one, but is related to our
previous works presented in [11], [12].

In the framework of this logic we will consider the
following five logical values: true t, false f , unknown
U, contradictory C, and hesitant . We have obtained
these five logical values, adding to the four Belnap logical
values the fifth: hesitant.

Tables 1, 2, 3, 4, 5, 6 and 7 show the basic operators in
this logic.

Table 1. The Union

—-|C (Do |[—~|C
| =+ | =+ | =+ | =+ |~
o|T|T|o|~|o
jun e o e o ) e
C|C|TTo)|—+ <
-l |T|o|—~+|—

Table 2. The intersection.

oY== 3 i o e o e o e
—h| =h| =h| =h| —h| —n

—|C [T |~D

—|C | T |

—|C [T O ||~
- (SO OO
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The main differences between the proposed logic and the The equivalence is calculated by:

Belnap logic are related to the logical values U and C.

We have defined cu=h and cUu=h while in the xeoy=(=xUy)NxU=ay) (5.4)
Belnap logic there were defined cNu=f and cUu=t.

Table 7. The S-implication
Table 3. The complement.

- |t{c|hju]|f

- t [tjc|hju]|f

t] f c [t{c|[h|h]c

c| C hitih|h|h|h

h|h ultih]jhjuju

uju flt]jt]t]t]t
flt

The S-implication is calculated by:

Table 4. The negation. Xx—>y==xUy (5.5)
t] f 6 New operators defined on the penta-valued
cl u

structure
h|h
ujc . o
flt There be x=(t,c,h,u, f)€ [0,1]. For this kind of vectors,

one defines the union, the intersection, the complement,
the negation and the dual operators. The operators are re-
lated to those define in [12].

Table 5. The dual.

The Union: For two vectors a,be[01]° , where
a=(t,c,,h,,u, f.), b=(t,c, h,,u,, f,) ., one defines

a’™a?' 'a’Ya’' "a

the union (disjunction) d =aub by the formula:

—|c |||~
—|o|z|c |~

t, =t, vt
Cy = (C,+ F)A(C, + f)— Fon £y 61)
The complement, the negation and the dual are interrelated Ug = (U + f)a(u, + )= foafy
and there exists the following equalities: f, =1, Af,
X=X GD  with hy =1—(t, +¢, +U, + f,)
—X=—=X (5.2) . 5 ;
The Intersection: For two vectors a,b €[0,1]° one defines
—X=—==X (5.3) the intersection (conjunction) ¢ =anb by the formula:
te =ty Aty

Table 6. The equivalence
Ce = (Ca +ta) A (Cb +tb) —ta /\tb

(6.2)

ol t[c[h]ulf Ug = (Ua +ta) A(Up +1tp) —ta Aty
t| t|lc|lhlulf fo=1"F,vf
c|lc|c|lh|h]ec ¢ : °
h|{h|h|h|h|h with h, =1—(t, +c, +u, + f)
ulu|h|hj|ulu

f flc|lhju]t
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In formulae (6.1) and (6.2), the symbols “V ” and “A”
represent the maximum and the minimum operators,
namely:
VX, y €[0]1],

Xv'y =max(X,Y)

XAy =min( X,Yy)

The union “U” and intersection “M” operators preserve
de properties t +c+u+ f <1 and u-c =0, namely:

tap + Cab +Uap + Fap <1

aub
Caub "Uaup =0

tamnb +Camb +Uarb + famb <1
Canb "Uarp =0

The Complement: For x = (t,c,h,u, f)€ [0,1]° one defines
the complement x© by formula:
x®=(f,c,h,u,t) (6.3)

The Negation: For x = (t,c,h,u, f)€ [0,1]° one defines the
negation x" by formula:

x"=(f,u,h,c,t) (6.4)

The Dual: For x = (t,c,h,u, f)€ [0,1]° one defines the du-
al x4 by formula:

x* =(t,u,h,c, f) (6.5)
In the set {0,1}5 there are five vectors having the form
x=(t,c,h,u, f) , which verify the condition
t+f+c+h+u=1:
T =(1,0,0,0,00 (True), F =(0,0,0,01) (False),

C=(010,0,0) (Contradictory),
and H =(0,0,1,0,0) (Hesitant).
Using the operators defined by (6.1), (6.2), (6.3), (6.4) and
(6.5), the same truth table results as seen in Tables 1, 2, 3,
4,5,6and?7.

Using the complement, the negation and the dual operators
defined in the penta-valued space and returning in the
primary three-valued space, we find the following
equivalent unary operators:

U =(0,0,0,1,0) (Unknown)

(wwv)t = o (6.6)
wo,v)=0-pwl-v) (6.7)
ww)i=>0-v,01-u (6.8)

Conclusion

In this paper it was presented two new penta-valued struc-
tures for neutrosophic information. These structures are
based on Belnap logical values, namely true, false, un-
known, contradictory plus a fifth, hesitant.

It defines the direct conversion from ternary space to the
penta-valued one and also the inverse transform from pen-
ta-valued space to the primary one.

There were defined the logical operators for the penta-
valued structures: union, intersection, complement, dual
and negation.
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Abstract. The concepts of equations and solutions are
constantly developed and expanded. With Neutrosophy
and Quad-stage method, this paper attempts to expand
the concepts of equations and solutions in the way of re-
ferring to the concepts of domain of function, the geome-
try elements included in domain of function, and the like;
and discusses point equation, line equation, plane equa-
tion, solid equation, sub-domain equation, whole-domain
equation, and the like; as well as point solution, line solu-

tion, plane solution, solid solution, sub-domain solution,
whole-domain solution, and the like. Where: the point so-
lutions may be the solutions of point equation, line equa-
tion, plane equation, and the like; similarly, the line solu-
tions may be the solutions of point equation, line equa-
tion, plane equation, and the like; and so on. This paper
focuses on discussing the single point method to deter-
mine "point solution™.

Keywords: Neutrosophy, Quad-stage, point equation, line equation, plane equation, point solution, line solution, plane solu-

tion, single point method

1 Introduction

As well-known, equations are equalities that contain
unknown.

Also, the concepts of equations and solutions are con-
stantly developed and expanded. From the historical per-
spective, these developments and expansions are mainly
processed for the complexity of variables, functional rela-
tionships, operation methods, and the like. For example,
from elementary mathematical equations develop and ex-
pand into secondary mathematical equations, and advanced
mathematical equations. Again, from algebra equations
develop and expand into geometry equations, trigonomet-
ric equations, differential equations, integral equations, and
the like.

With Neutrosophy and Quad-stage method, this paper
considers another thought, and attempts to expand the con-
cepts of equations and solutions in the way of referring to
the concepts of domain of function, the geometry elements
included in domain of function, and the like; and discusses
point equation, line equation, plane equation, solid equa-
tion, sub-domain equation, whole-domain equation, and
the like; as well as point solution, line solution, plane solu-

tion, solid solution, sub-domain solution, whole-domain
solution, and the like. Where: the point solutions may be
the solutions of point equation, line equation, plane equa-
tion, and the like; similarly, the line solutions may be the
solutions of point equation, line equation, plane equation,
and the like; and so on.

2 Basic Contents of Neutrosophy

Neutrosophy is Florentin
Smarandache in 1995.

Neutrosophy is a new branch of philosophy that studies
the origin, nature, and scope of neutralities, as well as their
interactions with different ideational spectra.

This theory considers every notion or idea <A> togeth-
er with its opposite or negation <Anti-A> and the spectrum
of "neutralities”" <Neut-A> (i.e. notions or ideas located be-
tween the two extremes, supporting neither <A> nor <An-
ti-A>). The <Neut-A> and <Anti-A> ideas together are re-
ferred to as <Non-A>.

Neutrosophy is the base of neutrosophic logic, neutro-
sophic set, neutrosophic probability and statistics used in
engineering applications (especially for software and in-
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formation fusion), medicine, military, cybernetics, and
physics.

Neutrosophic Logic is a general framework for unifica-
tion of many existing logics, such as fuzzy logic (especial-
ly intuitionistic fuzzy logic), paraconsistent logic, intui-
tionistic logic, etc. The main idea of NL is to characterize
each logical statement in a 3D Neutrosophic Space, where
each dimension of the space represents respectively the
truth (T), the falsehood (F), and the indeterminacy (1) of
the statement under consideration, where T, I, F are stand-
ard or non-standard real subsets of ]-0, 1+[ without neces-
sarily connection between them.

More information about Neutrosophy can be found in
references [1, 2].

3 Basic Contents of Quad-stage

The first kind of “four stages” is presented in reference
[3], and is named as “Quad-stage”. It is the expansion of
Hegel’s triad-stage (triad thesis, antithesis, synthesis of de-
velopment). The four stages are “general theses", "general
antitheses", "the most important and the most complicated
universal relations", and "general syntheses". They can be
stated as follows.

The first stage, for the beginning of development (the-
sis), the thesis should be widely, deeply, carefully and re-
peatedly contacted, explored, analyzed, perfected and so
on; this is the stage of general theses. It should be noted
that, here the thesis will be evolved into two or three, even
more theses step by step. In addition, if in other stage we
find that the first stage’s work is not yet completed, then
we may come back to do some additional work for the first
stage.

The second stage, for the appearance of opposite (an-
tithesis), the antithesis should be also widely, deeply, care-
fully and repeatedly contacted, explored, analyzed, per-
fected and so on; this is the stage of general antitheses. It
should be also noted that, here the antithesis will be
evolved into two or three, even more antitheses step by
step.

The third stage is the one that the most important and
the most complicated universal relations, namely the seed-
time inherited from the past and carried on for the future.
Its purpose is to establish the universal relations in the
widest scope. This widest scope contains all the regions re-
lated and non-related to the "general theses”, "general an-
titheses", and the like. This stage's foundational works are
to contact, grasp, discover, dig, and even create the oppor-
tunities, pieces of information, and so on as many as possi-
ble. The degree of the universal relations may be different,
theoretically its upper limit is to connect all the existences,
pieces of information and so on related to matters, spirits
and so on in the universe; for the cases such as to create
science fiction, even may connect all the existences, pieces
of information and so on in the virtual world. Obviously,

this stage provides all possibilities to fully use the com-
plete achievements of nature and society, as well as all the
humanity's wisdoms in the past, present and future. There-
fore this stage is shortened as "universal relations" (for
other stages, the universal relations are also existed, but
their importance and complexity cannot be compared with
the ones in this stage).

The fourth stage, to carry on the unification and syn-
thesis regarding various opposites and the suitable pieces
of information, factors, and so on; and reach one or more
results which are the best or agreed with some conditions;
this is the stage of "general syntheses”. The results of this
stage are called "synthesized second generation theses", all
or partial of them may become the beginning of the next
quad-stage.

4 Expanding concepts of equations and solutions
with Neutrosophy and Quad-stage method

For realizing the innovations in the areas such as
science and technology, literature and art, and the like, it is
a very useful tool to combine neutrosophy with quad-stage
method. For example, in reference [4], expanding Newton
mechanics with neutrosophy and quad-stage method, and
establishing New Newton Mechanics taking law of
conservation of energy as unique source law; in reference
[5], negating four color theorem with neutrosophy and
quad-stage method, and "the two color theorem" and "the
five color theorem™ are derived to replace "the four color
theorem"; in reference [6], expanding Hegelian triad thesis,
antithesis, synthesis with Neutrosophy and Quad-stage
Method; in reference [7], interpretating and expanding
Laozi’s governing a large country is like cooking a small
fish with Neutrosophy and Quad-stage Method; in
reference [8], interpretating and expanding the meaning of
“Yi” with Neutrosophy and Quad-stage Method; and in
reference [9], creating generalized and hybrid set and
library with Neutrosophy and Quad-stage Method.

Now we briefly describe the general application of
neutrosophy to quad-stage method.

In quad-stage method, “general theses" may be
considered as the notion or idea <A>; "general antitheses"
may be considered as the notion or idea <Anti-A>; "the
most important and the most complicated universal
relations” may be considered as the notion or idea <Neut-
A>; and "general syntheses" are the final results.

The different kinds of results in the above mentioned
four stages can also be classified and induced with the
viewpoints of neutrosophy. Thus, the theory and
achievement of neutrosophy can be applied as many as
possible, and the method of quad-stage will be more
effective.

The process of expanding concepts of equations and
solutions can be divided into four stages.
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The first stage (stage of "general theses"), for the
beginning of development, the thesis (namely "traditional
concepts of equations and solutions™) should be widely,
deeply, carefully and repeatedly contacted, explored,
analyzed, perfected and so on.

The concepts of equations and solutions have been
continuously developed and expanded. From the historical
perspective, in this process of development and expansion,
for equations, the linear equation, dual linear equation,
quadratic equation, multiple equation, geometry equation,
trigonometric equation, ordinary differential equation,
partial differential equation, integral equation, and the like
are appeared step by step; for solutions, the approximate
solution, accurate solution, analytical solution, numerical
solution, and the like are also appeared step by step.
Obviously, these developments and expansions are mainly
processed for the complexity of variables, functional
relationships, operation methods, and the like.

In the second stage (the stage of "general antitheses"),
the opposites (antitheses) should be discussed carefully.
Obviously, there are more than one opposites (antitheses)
here.

For example, according to the viewpoint of
Neutrosophy, if "traditional concepts of equations and
solutions™ are considered as the concept <A>, the opposite
<Anti-A> may be: "non-traditional concepts of equations
and solutions™; while the neutral (middle state) fields
<Neut-A> including: "undetermined concepts of equations
and solutions™ (neither "traditional concepts of equations
and solutions", nor "non-traditional concepts of equations
and solutions"; or, sometimes they are "traditional concepts
of equations and solutions", and sometimes they are "non-
traditional concepts of equations and solutions™; and the
like).

In the third stage, considering the most important and
the most complicated universal relations to link with
"concepts of equations and solutions”. The purpose of this
provision stage is to establish the universal relations in the
widest scope.

Here, differ with traditional thought, we consider a
new thought, and attempt to expand the concepts of
equations and solutions in the way of referring to the
concepts of domain of function, the geometry elements
included in domain of function, and the like.

Obviously, considering other thought, different result
may be reached; but this situation will not be discussed in
this paper.

In the fourth stage, we will carry on the unification
and synthesis regarding various opposites and the suitable
pieces of information, factors, and the like that are related
to the concepts of equations and solutions; and reach one
or more results for expanding the concepts of equations
and solutions, which are the best or agreed with some
conditions.

It should be noted that, in this stage, various methods
can also be applied. Here, we will seek the results
according to Neutrosophy and Quad-stage method.

Firstly, analyzing the concept of “domain of function”.
According to the viewpoint of Neutrosophy, the two
extreme elements of “domain of function” are "point
domain™ and "whole-domain®, and in the middle there are:
"line domain", “plane domain”, “solid domain”, “sub-
domain”, and the like; therefore, we can discuss the
concepts of point equation, line equation, plane equation,
solid equation, sub-domain equation, whole-domain
equation, and the like; as well as the concepts of point
solution, line solution, plane solution, solid solution, sub-
domain solution, whole-domain solution, and the like.

4.1 Point equation and point solution, line equa-
tion and line solutiom, and the like

We already know that, “point equation” is the one
suitable for a certain solitary point only. For example,
when considering the gravity between the Sun
(coordinates: 0,0,0) and a planet located at a certain
solitary point (coordinates: Xq,Yo0,20), then according to the
law of gravity, the following "point equation" can be
reached.

GM,,m
F=———-755— L
X5+ Yo + 2,
where, M, is the mass of the Sun; the unknown in the

equation is the mass of the planet only.

When considering the gravity between the Sun and a
planet located at its elliptical orbit, substituting the polar
equation of the ellipse into the law of gravity, then the
following "line equation” can be reached, and it is suitable
for the entire elliptical orbit.

GM_, m(l+ecosp)’
a2 (1_ eZ)Z

When considering the gravity between the Sun and a

planet located at the inner surface of the sphere (I =),

F=- (2)

substituting r =1, into the law of gravity, then the

following "plane Cinner surface ) equation" can be
reached, and it is suitable for the entire inner surface of the
sphere.

F:_GMmm
r
When considering the gravity between the Sun and a

point located in a hollow ball (I, <1 <T,), substituting

(3

L <r<r, into the law of gravity, then the following

"solid equation” can be reached, and it is suitable for the
entire hollow ball.
GM_ m

_ sun
F—_r—zy '?I.S

r<r, 4
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When considering the gravity between the Sun and a
point located in the sub-domain ( X = X, ), substituting

X 2 X, into the law of gravity, then the following "sub-

domain equation™ can be reached, and it is suitable for the
entire sub-domain.

Fo_ GM,,m

- 2 2 2

X“+y +z
When considering the gravity between any two
objects, according to the law of gravity, the following
"whole-domain equation™ can be reached, it is suitable for
the entire three-dimensional space, and the two objects

may not include the Sun.

GMm
Fe—
X +y +z
Accordingly, when considering the gravity between

the Sun (coordinates: 0,0,0) and a planet located at a
certain solitary point (coordinates: Xq,Yo,20), and if the mass

of the planet is given (equals to M, ), then according to the

law of gravity, the following "point solution" can be
reached.

;X=X (5)

(6

F - _ G'Vlsunmo

¥P)
Xe+yo+28

where, M,

the planet.

When considering the gravity between the Sun and a
planet located at its elliptical orbit, substituting the polar
equation of the ellipse into the law of gravity, if the

planet's parameters are given (equal to €, and a,), and

o is the mass of the Sun; M, is the mass of

the mass of the planet is also given (equals to m, ), then

the following "line solution" can be reached, and it is
suitable for the entire elliptical orbit.

2
l::_GMSmeQ(1+eO COS @) -

2 2\2
) (1_ € )
When considering the gravity between the Sun and a
planet located at the inner surface of the sphere (I =),

substituting I = I into the law of gravity, and if the mass

of the planet is given (equals to M, ), then the following

"plane Cinner surface) solution" can be reached, and it is
suitable for the entire inner surface of the sphere.

F=-— GMsun mO
= —rz
0
When considering the gravity between the Sun and a

point located in a hollow ball (I, <r <T,), substituting

(9

I <<V, into the law of gravity, and if the mass of the

point is given (equals to M, ), then the following "solid

solution" can be reached, and it is suitable for the entire
hollow ball.

F :_GMsuan

r2

When considering the gravity between the Sun and a
point located in the sub-domain ( X = X, ), substituting

. L<r<r, (10)

X 2 X, into the law of gravity, and if the mass of the point

is given (equals to m,), then the following "sub-domain
solution” can be reached, and it is suitable for the entire
sub-domain.

GM,,.m,

X? +y? +17° %

When considering the gravity between any two
objects, if both the masses of the two objects are given
(equal to M, and m, ), then according to the law of

gravity, the following "whole-domain solution” can be
reached, it is suitable for the entire three-dimensional space,
and the two objects may not include the Sun.

F___GMm,
X? +y? +17°

(1

(12>

4.2 Determining point solution with single point
method

In the existing methods for solving ordinary
differential equations, there are already the examples for
seeking the solution (point solution) suitable for one
solitary point.

For example, consider the following differential
equation

y'=y. y(0)=1
It gives

y'(0)=y"(0)=y"(0)=y™(0)=1

According to the power series formula for X = X,

(13)

1 n 2
Y = Y06) + Y (6)X/ Ly (%)X 2+
It gives the “point solution” for X, =0 as follows
y=14+X/14 x>/ 21
However, this “point solution” is applicable to the

"whole-domain”, while in this paper we will consider the
“point solution” suitable for one solitary point only.
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For example, the single point method can be used to
find the “point solution” of hydraulic problem that is
suitable for one solitary point only. This kind of “point
solution” is finding independently, namely the effect of
other points may not be considered. As finding “point
solution” for a certain point, the point collocation method
should be used; that means that the “point solution” will
satisfy the boundary condition on some selected boundary
points; and on this certain point satisfy the hydraulic
equation and the derived equations that are formed by
running the derivitive operations to the hydraulic equation.
Finally all the undetermined constants for the “point
solution” will be determined by solving the equations that
are formed by above mentioned point collocation method.

In reference [10], the single point method was used to
determine the “point solution” on a certain solitary point
for the problem of potential flow around a cylinder
between two parallel plates.

Fig. 1. Potential flow around a cylinder between two paral-

lel plates

As shown in Figure 1, due to symmetry, one-fourth
flow field in the second quadrant can be considered only.
The differential equation is as follows

F=0plox*+d°ploy* =0
On boundary ab

QYY)

¢=0, v, =0

On cylinder boundary bc
=0, v.=0

On boundary cd
v, =0

On plate boundary ed
p=2, v,=0

On entrance boundary ae
p=y, v, =1

Taking “point solution” as the following form con-
taining n undetermined constants

@ =y+Yy(x*=12.25)(y* - 4)(K, + K, x> + K,y* +
K, x* + Koyt + K x2y? +---+ K xPy?)
(15

Other 4 boundary equations are as follows
On point b

V.(-1,0)=0 (16)
On point C

»(0,1)=0 an
On point f

¢(~0.7071,0.7071) =0 (18)

v, (-0.7071,0.7071) =0 (19

For a certain solitary point (X,, Y,), as N =6, only

2 boundary equations Eq.(16) and Eq.(17) are considered;
and the following 4 single point equations are considered.
The first single point equation is reached by Eq.(14)

F(X,Y,)=0 (20)

Other 3 single point equations are reached as follows
by running the derivitive operations to Eq.(14).

OF (Xy,Y,)/0x=0 2D
OF (X,,Y,)/0y=0 (22)
O*F (X, Y,)/ oxoy =0 (23)

Substituting the coordinates values (X,,Y,) into
Eq.(16) and Eq.(17), and Eq.(20) to Eq.(23); after solving
these 6 equations, the 6 undetermined constants K; to Kg

can be determined, namely the “point solution” for N = 6
is reached.

As N>8, the 4 boundary equations Eq.(16) to
Eq.(19) are considered; and besides the 4 single point
equations Eq.(20) to Eq.(23), the following single point
equations derived by running the derivitive operations to
Eq.(14) are also considered.

O°F (%, Y,)/ 0X* =0 (24)
O°F(%,,Y,)/ 0y* =0 (25)
O°F (X, Y,)/ 0X° =0 (26)
O°F(X,,Y,)/ X0y =0 27)
O°F (X, Y,) ! X0y’ =0 (28)
O°F (X, Y,)/ 0y* =0 (29)

Substituting the coordinates values (X,,Y,) into

Eq.(16) to Eq.(19), as well as Eq.(20) to Eq.(24), and the
like; after solving these n equations, the n undetermined
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constants K, to K can be determined, namely the “point

solution” as the form of Eq.(15) is reached.

For 8 solitary points, the comparisons between accu-
rate analytical solution (AS) and point solution (PS) for the
values of ¢ are shown in table 1.

Table 1. Comparisons between accurate analytical solu-
tion (AS) and point solution (PS) for the values of @

X, Yo AS n=6n=10 n=14 n=19
3.4 1.751.747 1.744 1.743 1746 1.746
3.0 1.751.744 1.729 1.735 1736  1.738
2.5 1.751.736 1.694 1.751 1713 1.732
2.0 1.751.721 1.609 1.782  1.631  1.766
-3.4 1.501.494 1.489 1483 1492 1493
-3.0 1.501.488 1.459 1452 1473 1474
-2.5 1.50 1.474 1.397 1450 1439  1.460
2.0 1.501.445 1.248 1518 1272 1.563

For more information about single point method, see
references [11-13].

The single point method can also be used for predic-
tion.

For example, the sea surface temperature distribution
of a given region, is a special two-dimensional problem in-
fluenced by many factors, and it is very difficult to be
changed into 2 one-dimensional problems. However, this
problem can be predicted for a certain solitary point by
single point method.

The following example is predicting the monthly
average sea surface temperature.

Based on sectional variable dimension fractals, the
concept of weighted fractals is presented, i.e., for the data
points in an interval, their I' coordinates multiply by dif-
ferent weighted coefficients, and making these data points
locate at a straight-line in the double logarithmic coordi-
nates. By using weighted fractals, the monthly average sea
surface temperature (MASST) data on the point 30°N,
125°E of Northwest Pacific Ocean are analyzed. According
to the MASST from January to August in a certain year
(eight-point-method), the MASST from September to De-
cember of that year has been predicted. Also, according to
the MASST of August merely in a certain year (one-point-
method), the MASST from September to December of that
year has been predicted.

The MASST prediction results are as follows.

Table 2. MASST prediction results (unit: &) by using
eight-point-method (§8PM) and one-point-method(1PM)

Year Notes  Sep. Oct. Nov. Dec.
1958 8PM 2821 2551 22,67 20.17
IPM 2824 2555 2272 2022

Real value 27.7 25.5 21.2 20
1959 8PM  28.20 25.56 2275 20.28
IPM 2819 2554 2273 20.26

Real value 27.6 24.7 22.9 20
1960 8PM 2795 2536 22.60 20.16
IPM  28.05 2551 2278 20.36

Real value 28 26 21.8 20
1961 8PM  28.70 26.14 23.37 20091
IPM 2834 2557 22,69 20.16

Real value 28.4 26.2 22.8 22
1962 8PM  28.30 26.00 2346 21.17
IPM 2790 2548 22.83 2047

Real value 28 25 21 20
1963 8PM 2936 27.86 25.78 23.80
IPM 2786 2547 22.85 20.50

Real value 27.5 24.5 21 18
1964 8PM  28.04 2583 2332 21.05
IPM  27.80 2546 22.86 20.54

Real value 28 24.5 22 19

In addition, according to the phenomenon of fractal
interrelation and the fractal coefficients of this point’s
MASST and the monthly average air temperature of Au-
gust of some points, the monthly average air temperatures
of these points from September to December have also
been predicted. For detailed information, see reference
[14].

4.3 Relationship between various equations and
various solutions

According to Neutrosophy and Quad-stage method;
and contacting the concepts of domain of function, the
geometry elements included in domain of function, and the
like; the concept of equation can be expanded into the
concepts of point equation, line equation, plane equation,
solid equation, sub-domain equation, whole-domain
equation, and the like; and the concept of solution can be
expanded into the concepts of point solution, line solution,
plane solution, solid solution, sub-domain solution, whole-
domain solution, and the like. However, the relationships
between them are not the one by one corresponding
relationships. Where: the point solutions may be the
solutions of point equation, line equation, plane equation,
and the like; similarly, the line solutions may be the
solutions of point equation, line equation, plane equation,
and the like; and so on.

5 Conclusions

The combination of neutrosophy and quad-stage
method can be applied to effectively reliaze the expansion
of “traditional concepts of equations and solutions”. The
results of expansion are not fixed and immutable, but the
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results are changeable depending on the times, places and
specific conditions. This paper deals only with a limited
number of situations and instances as an initial attempt,
and we hope that it will play a valuable role.
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Abstract: Many results have been obtained on isolated
graphs and complete graphs. In this paper, a necessary
and sufficient condition will be proved for a single valued

neutrosophic graph to be an isolated single valued
neutrosophic graph.

Keywords: Single valued neutrosophic graphs, complete single valued neutrosophic graphs, isolated single valued neutrosophic

graphs.

1. Introduction

The notion of neutrosophic sets (NSs) was proposed by
Smarandache [8] as a generalization of the fuzzy sets [14],
intuitionistic fuzzy sets [12], interval valued fuzzy set [11]
and interval-valued intuitionistic fuzzy sets [13] theories.
The neutrosophic set is a powerful mathematical tool for
dealing with incomplete, indeterminate and inconsistent
information in real world. The neutrosophic sets are
characterized by a truth-membership function (t), an
indeterminacy-membership function (i) and a falsity-
membership function (f) independently, which are within
the real standard or nonstandard unit interval -0, 1+[. In
order to conveniently use NS in real life applications,
Wang et al. [9] introduced the concept of the single-valued
neutrosophic set (SVNS), a subclass of the neutrosophic
sets. The same authors [10] introduced the concept of the
interval valued neutrosophic set (IVNS), which is more
precise and flexible than the single valued neutrosophic
set. The IVNS is a generalization of the single valued
neutrosophic set, in which the three membership functions
are independent and their value belong to the unit interval
[0, 1]. More works on single valued neutrosophic sets,
interval valued neutrosophic sets and their applications can
be found on http://fs.gallup.unm.edu/NSS/ [38].

Graph theory has now become a major branch of
applied mathematics and it is generally regarded as a
branch of combinatorics. Graph is a widely used tool for
solving combinatorial problems in different areas such as
geometry, algebra, number theory, topology, optimization
and computer science.

If one has uncertainty regarding either the set of
vertices or edges, or both, the model becomes a fuzzy

graph. The extension of fuzzy graph [2, 4, 25] theory have
been developed by several researchers, e.g. vague graphs
[27], considering the vertex sets and edge sets as vague
sets; intuitionistic fuzzy graphs [3, 15, 26], considering the
vertex sets and edge sets as intuitionistic fuzzy sets;
interval valued fuzzy graphs [16, 17, 23, 24], considering
the vertex sets and edge sets as interval valued fuzzy sets;
interval valued intuitionistic fuzzy graphs [35], considering
the vertex sets and edge sets as interval valued
intuitionistic fuzzy sets; bipolar fuzzy graphs [18, 19, 21,
22], considering the vertex sets and edge sets as bipolar
fuzzy sets; m-polar fuzzy graphs [20], considering the
vertex sets and edge sets as m-polar fuzzy sets.

But, if the relations between nodes (or vertices) in
problems are indeterminate, the fuzzy graphs and their
extensions fail. For this purpose, Smarandache [5, 6, 7, 37]
defined four main categories of neutrosophic graphs; two
are based on literal indeterminacy (l), called: I-edge
neutrosophic graph and I-vertex neutrosophic graph,
deeply studied and gaining popularity among the
researchers due to their applications via real world
problems [1, 38]; the two others are based on (t, i, f)
components, called: (t, i, f)-edge neutrosophic graph and (t,
i, f)-vertex neutrosophic graph, concepts not developed at
all by now.

Later on, Broumi et al. [29] introduced a third
neutrosophic graph model, which allows the attachment of
truth-membership (t), indeterminacy-membership (i) and
falsity-membership degrees (f) both to vertices and edges,
and investigated some of their properties. The third
neutrosophic graph model is called the single valued
neutrosophic graph (SVNG for short). The single valued
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neutrosophic graph is a generalization of fuzzy graph and
intuitionistic fuzzy graph. Also, the same authors [28]
introduced neighborhood degree of a vertex and closed
neighborhood degree of a vertex in single valued
neutrosophic graph as a generalization of neighborhood
degree of a vertex and closed neighborhood degree of a
vertex in fuzzy graph and intuitionistic fuzzy graph.
Recently, Broumi et al. [31, 33, 34] introduced the concept
of interval valued neutrosophic graph as a generalization of
fuzzy graph, intuitionistic fuzzy graph and single valued
neutrosophic graph and discussed some of their properties
with proof and examples.

The aim of this paper is to prove a necessary and
sufficient condition for a single valued neutrosophic graph
to be a single valued neutrosophic graph.

2. Preliminaries

In this section, we mainly recall some notions related to
neutrosophic sets, single valued neutrosophic sets, single
valued neutrosophic graphs, relevant to the present article.
See [8, 9] for further details and background.

Definition 2.1 [8]

Let X be a space of points (objects) with generic
elements in X denoted by x; then, the neutrosophic set A
(NS A) is an object having the form A = {< x: Ty (x),
[5 (%), Fa(x)>, X € X}, where the functions T, I, F: X —
170,1°[ define respectively a truth-membership function, an
indeter-minacy-membership  function and a falsity-
membership function of the element x € X to the set A
with the condition:

0 <TA()+ [A()+ FA(0)=3". 1)

The functions T, (x), [5(x) and F,(x) are real standard
or nonstandard subsets of 170,1°.

Since it is difficult to apply NSs to practical problems,
Wang et al. [9] introduced the concept of SVNS, which is
an instance of a NS, and can be used in real scientific and
engineering applications.

Definition 2.2 [9]

Let X be a space of points (objects) with generic
elements in X denoted by x. A single valued neutrosophic
set A (SVNS A) is characterized by a truth-membership
function T,(x), an indeterminacy-membership function
[, (%), and a falsity-membership function F,(x). For each
point x in X Ta(x), [,(x), FA(x) € [0, 1]. A SVNS A can
be written as

A= {< X TA(X), IA(X), FA(X)>, X € X} (2)
Definition 2.3 [29]

A single valued neutrosophic graph (SVN-graph) with
underlying set V is defined to be a pair G= (A, B), where:

1. The functions T,:V-[0, 1], I,:V-[0, 1] and
F,:V-[0, 1] denote the degree of truth-membership,

degree of indeterminacy-membership and falsity-
membership of the element v; € V, respectively, and:

0= To(v) + Lo(vy) +Fa(vy) <3,

forall v; € V.

2. The functions Tg: ES VXV -[0,1], [[EES VXV
-[0, 1] and Fg: E € V x V [0, 1] are defined
by Tg (v, vj) < min [Ty(vy), Ta(v))], Ig(v;,v;) = max
[La(v), Lu(vj)] and  Fp(v;,v;) = max [Fu(vi), Fa(v))l,
denoting the degree of truth-membership, indeterminacy-
membership and falsity-membership of the edge (v;, v;) €
E respectively, where:

0< TB(vi! UJ) + IB(Ui'vj)+ FB(vi! U]) < 3,

forall (v;,v)) €E(i,j=1,2,...,n)
We call A the single valued neutrosophic vertex set of
V, and B the single valued neutrosophic edge set of E,
respectively.
(0.5,0.1,0.4)
(0.6,0.3,0.2)
(0.5,0.4,0.5)

(0.4.0.3.0.6)
(0.2.0.3.0.4)

(0.2,0.4 0.5)

(0.4,0.2 0.5) (0.2,0.3,0.4)

Figure 1: Single valued neutrosophic graph.

Definition 2.4 [29]

A partial SVN-subgraph of SVN-graph G= (A, B) is a
SVN-graph H = (' V', E’), such that:

-V cv,

where  To(v;) < Ta(vy),
Fa(vy), forall v; €V;

-E'CE,

[,(vi)) = Ip(vi), Fa(v) =

where T];(Vi,Vj) < TB(Vi,V]'), 1131] = IB(Vi,Vj), Fig(Vi,Vj) =
FB(Vi,V]'), for all (Vi V]) €E.

Definition 2.8 [29]

A single valued neutrosophic graph G = (A, B) of G* =
(V, E) is called complete single valued neutrosophic graph,
if:

Tg(vi, vj) = min [Ta(v;), Ta(vj],

Ig(vi, vj) = max [I4(vi), Ta(vj],

Fp(vi, vj) = max [Fo(vi), Fa(vp],
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forall v;,v; € V. forall (u,v) EVX YV,
Definition 2.9 [29] Fp(u, v) = max(F,(w), Fy(v),

The complement of a single valued neutrosophic graph  hence G = (4, B) is a complete single valued neutrosophic
G (A, B) on G* is a single valued neutrosophic graph G on  graph. ~ B
G*, where: Conversely, let G = (4, B) be a complete single valued
_ neutrosophic graph
1. A =A= (Ty, L, Fa); phic grap

2. To(vi)= Ta(vy), [a(v)=1a(v}), Fa(v;) = Fa(vy), Tp(u, v) = min(TA(u), TA(U)).
forall v; € V. forall (u, v) € VX V.

Since
3. Ty(vi, v)= min [Ty (v), Ta (vj)] = Ta (v, v;), T(u, v) = min(T,(w), Ta(v)) — Tp(u, v),
ITa(Vi,Vj): max [IA(Vi)r IA(V]')] - IB(Vi'Vj) for all (u, v) e VX V,
and =Tg(u, v) —T5(u, V),
F_B(Vi,V]'): max [FA(Vi)J FA(V])] - FB(Vi,V]'), for all (U, V) € VX V,
for all (v, v;) €E. =0,
] forall (u, v) e VX V,
3. Main Result
Tg(u, v) = 0,
Theorem 3.1
. . . for all (u, v) € VX V.
A single valued neutrosophic graph G = (A, B) is an _
isolated single valued graph if and only if its complement Iz(u, v) = max(ly(u), [1(v)),
is a complete single valued neutrosophic graph. for all (u, v) € VX V.
Proof Since
Let G : (4, B) be a single valued neutrosophic graph, Ig(u, v) = max(ly(w), [;(v)) — I(u, v),

G= (A, B ) be its complement, and G : (A, B) be an for all (U, v) € VX V
isolated single valued neutrosophic graph. '

Then, =Ig(u, v) —I(u, v),

Tg(u, v) =0, forall (u,v) e VXV

Ig(u,v)=0 =0,
and forall (u,v) e VXV,

Fg(u,v) =0, Ig(u, v) = 0,
forall (u,v) e VX V. forall (u,v) e VX V.

Since Also,

Tp(u, v) = min (T, (w), To(v)) — Tp(u, V), Fp(u, v) = max(F,(w), Fy(v)),
forall (u,v) e VX V, forall (u,v) e VX V.

Since

Tp(u, v) = min(T,(w), Ty(v))
and

Ig(u, v) = max(l,(w), I, (v)) — Iz(u, v),
forall (u, v) € VX V,

Ig(u, v) = max(l, (w), I (v))

Fg(u, v) = max(Fy(w), Fa(v)) — F(u, V),
forall (u,v) e VXV,

=Fg(u, v) —Fp(u, v),
forall (u,v) e VXV

=0,
forall (u,v) e VXV

and
Fp(u, v) = max(F,(u), F4(v)) — Fg(u, V),
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Fg(u,v) = Oforall (u,v) VXV,

hence G = (A4, B) is an isolated single valued neutrosophic
graph.

4. Conclusion

Many problems of practical interest can be represented
by graphs. In general, graph theory has a wide range of
applications in various fields. In this paper, we defined for
the first time the notion of an isolated single valued
neutrosophic graph. In future works, we plan to study the
concept of an isolated interval valued neutrosophic graph.
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Abstract. In this paper we have defined neutrosophic ideals,
neutrosophic interior ideals, netrosophic quasi-ideals and
neutrosophic bi-ideals (neutrosophic generalized bi-ideals) and
proved some results related to them. Furthermore, we have done
some characterization of a neutrosophic LA-semigroup by the
properties of its neutrosophic ideals. It has been proved that in a

neutrosophic intra-regular LA-semigroup neutrosophic left, right,
two-sided, interior, bi-ideal, generalized bi-ideal and quasi-ideals
coincide and we have also proved that the set of neutrosophic
ideals of a neutrosophic intra-regular LA-semigroup forms a
semilattice structure.

Keywords: Neutrosophic LA-semigroup; neutrosophic intra-regular LA-semigroup; neutrosophic left invertive law; neutrosophic

ideal.

Introduction

It is well known fact that common models with their
limited and restricted boundaries of truth and falsehood are
insufficient to detect the reality so there is a need to
discover and introduce some other phenomenon that
address the daily life problems in a more appropriate way.
In different fields of life many problems arise which are
full of uncertainties and classical methods are not enough
to deal and solve them. In fact, reality of real life problems
cannot be represented by models with just crisp
assumptions with only yes or no because of such certain
assumptions may lead us to completely wrong solutions.
To overcome this problem, Lotfi A.Zadeh in 1965
introduced the idea of a fuzzy set which help to describe
the behaviour of systems that are too complex or are ill-
defined to admit precise mathematical analysis by classical
methods. He discovered the relationships of probability
and fuzzy set theory which has appropriate approach to
deal with uncertainties. According to him every set is not
crisp and fuzzy set is one of the example that is not crisp.
This fuzzy set help us to reduce the chances of failures in
modelling.. Many authors have applied the fuzzy set theory
to generalize the basic theories of Algebra. Mordeson et al.
has discovered the grand exploration of fuzzy semigroups,
where theory of fuzzy semigroups is explored along with
the applications of fuzzy semigroups in fuzzy coding,
fuzzy finite state mechanics and fuzzy languages etc.
Zadeh introduced the degree of membership/truth (t) in
1965 and defined the fuzzy set. Atanassov introduced the
degree of nonmembership/falsehood (f) in 1986 and
defined the intuitionistic fuzzy set. Smarandache
introduced the degree of indeterminacy/neutrality (i) as

independent component in 1995 (published in 1998) and
defined the neutrosophic set. He has coined the words
neutrosophy and neutrosophic. In 2013 he refined the

neutrosophic set to n components: t;,t,,...; i,iy,...;

f,, f,,.... The words neutrosophy and neutrosophic were

coined/invented by F. Smarandache in his 1998 book.
Etymologically, neutro-sophy (noun) [French neutre
<Latin neuter, neutral, and Greek sophia, skill/wisdom]
means knowledge of neutral thought. While neutrosophic
(adjective), means having the nature of, or having the
characteristic of Neutrosophy.

Recently, several theories have been presented to dispute
with uncertainty, vagueness and imprecision. Theory of
probability, fuzzy set theory, intutionistic fuzzy sets, rough
set theory etc., are consistently being used as actively
operative tools to deal with multiform uncertainties and
imprecision enclosed in a system. But all these above
theories failed to deal with indeterminate and inconsistent
infomation. Therefore, due to the existance of
indeterminancy in various world problems, neutrosophy
founds its way into the modern research. Neutrosophy was
developed in attempt to generalize fuzzy logic.
Neutrosophy is a Latin world "neuter" - neutral, Greek
"sophia" - skill/wisdom). Neutrosophy is a branch of
philosophy, introduced by Florentin Smarandache which
studies the origin, nature, and scope of neutralities, as well
as their interactions with different ideational spectra.
Neutrosophy considers a proposition, theory, event,
concept, or entity, "A" in relation to its opposite, "Anti-A"
and that which is not A, "Non-A", and that which is neither
"A" nor "Anti-A", denoted by "Neut-A". Neutrosophy is
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the basis of neutrosophic logic, neutrosophic probability,
neutrosophic set, and neutrosophic statistics.

Inpiring from the realities of real life phenomenons like
sport games (winning/ tie/ defeating), votes (yes/ NA/ no)
and decision making (making a decision/ hesitating/ not
making), F. Smrandache introduced a new concept of a
neutrosophic set (NS in short) in 1995, which is the
generalization of a fuzzy sets and intutionistic fuzzy set.
NS is described by membership degree, indeterminate
degree and non-membership degree. The idea of NS
generates the theory of neutrosophic sets by giving
representation to indeterminates. This theory is considered
as complete representation of almost every model of all
real-world problems. Therefore, if uncertainty is involved
in a problem we use fuzzy theory while dealing
indeterminacy, we need neutrosophic theory. In fact this
theory has several applications in many different fields like
control theory, databases, medical diagnosis problem and
decision making problems.

Using Neutrosophic theory, Vasantha Kandasmy and
Florentin Smarandache introduced the concept of
neutrosophic algebraic structures in 2003. Some of the
neutrosophic algebraic structures introduced and studied
including neutrosophic fields, neutrosophic vector spaces,
neutrosophic groups, neutrosophic bigroups, neutrosophic
N-groups, neutrosophic bisemigroups, neutrosophic N-
semigroup, neutrosophic loops, neutrosophic biloops,
neutrosophic N-loop, neutrosophic groupoids,
neutrosophic bigroupoids and neutrosophic AG-groupoids.
Madad Khan et al., for the first time introduced the idea of
a neutrosophic AG-groupoid in [13].

1 Preliminaries

Abel-Grassmann's Groupoid (abbreviated as an AG-
groupoid or LA-semigroup) was first introduced by
Naseeruddin and Kazim in 1972. LA-semigroup is a
groupoid S whose elements satisfy the left invertive law
(ab)c=(cb)a for all a, b, ceS . LA-semigroup

generalizes the concept of commutative semigroups and
have an important application within the theory of flocks.
In addition to applications, a variety of properties have
been studied for AG-groupoids and related structures. An
LA-semigroup is a non-associative algebraic structure that
is generally considered as a midway between a groupoid
and a commutative semigroup but is very close to
commutative semigroup because most of their properties
are similar to commutative semigroup. Every commutative
semigroup is an AG-groupoid but not vice versa. Thus
AG-groupoids can also be non-associative, however, they
do not necessarily have the Latin square property. An LA-
semigroup S can have left identity € (unique) i.e ea=a
forall a€ S but it cannot have a right identity because if

it has, then S becomes a commutative semigroup. An

element S of LA-semigroup S is called idempotent if

s?=s and if holds for all elements of S then S is
called idempotent LA-semigroup.

Since the world is full of indeterminacy, the neutrosophics
found their place into contemporary research. In 1995,
Florentin Smarandache introduced the idea of neutrosophy.
Neutrosophic logic is an extension of fuzzy logic. In 2003
W.B Vasantha Kandasamy and Florentin Smarandache
introduced algebraic structures (such as neutrosophic
semigroup, neutrosophic ring, etc.). Madad Khan et al., for
the first time introduced the idea of a neutrosophic LA-

semigroup in [Madad Saima]. Moreover SUI ={a+bl :
where a, beS and | is literal indeterminacy such that

I =1} becomes neutrosophic LA-semigroup under the

operation defined as:

(@+bl)*(c+dl)=ac+bdl for all (a+bl) ,
(c+dl)e SUI. Thatis (SUI,*) becomes neutrosophic
LA-semigroup. They represented it by N(S).

[(a, +a,1) (b, +b,1)](c, +c,1) =[(c, +c,1)(b, +b,1)]l(a, +a,1),
holds ~ for all (& +a,l), (b, +b,1),
(c,+c,1)e N(S).

It is since then called the neutrosophic left invertive law. A
neutrosophic groupoid satisfying the left invertive law is

called a neutrosophic left almost semigroup and is
abbreviated as neutrosophic LA-semigroup.

In a neutrosophic LA-semigroup N (S) medial law holds
i.e

(@ + 3,00, b, DI +& D@ +d D]
=[(a, +a,1)(c, +c,D]I(b, +b,1)(d, +d,1)],

for all (a, +a,l) , (b+b,d) , (c,+c,l)
(d, +d,1)e N(S).

There can be a unique left identity in a neutrosophic LA-
semigroup. In a neutrosophic LA-semigroup N(S) with

left identity (e+el) the following laws hold for all
(a+a,d) ,  (b+bl) (g+cl)
(d, +d,1) e N(S).

[(a, +a,1)(b, +b,][(c, +¢,1)(d; +d,1)]

=[(d, +d,1)(b, +b,][(c, +¢c,1)(a, +a,1)],

[(a +a,1)(b, +b,][(c, +¢,1)(d, +d,1)] =[(d, +d,1)(c, +c,I[(b, +b,1)(a, +a,1)],

and

(@ +a,1I(By +b,1)(c, +¢, 1] = (b, +b,1)[(&, +2,1)(c, + ¢, 1 )]
(3) is called neutrosophic paramedial law and a
neutrosophic LA semigroup satisfies (5) is called
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neutrosophic AG - -groupoid.

Now, (a+bl)>=a+bl implies a-+bl s
idempotent and if holds for all a+bl € N(S) then
N (S) is called idempotent neutrosophic LA-semigroup.

2 Neutrosophic LA-semigroups

Example 2.1 Let S = {1, 2,3} with binary operation " is

an LA-semigroup with left identity 3 and has the following
Calley's table:
-1

)
5]

2
1
3

| S IS B

3
2
1

b N =

then

Then N(R)N(S) = N(R). Now,let a+bl e N(R) .
Then
= (e+el)(a+bl

)
=[(e+el)(e+el)](a+bl).
=[(a+bl)(e+el)](e+el)

e (N(R)N(S))N(S)
< N(R)N(S).
Thus N(R) = N(R)N(S)
N(R)N(S)=N(R).
A subset N(Q) of an neutrosophic LA-semigroup is

called neutrosophic quasi-ideal if
N(Q)N(S)NN(S)N(Q) = N(Q) . A subset N(1)

of an LA-semigroup N(S) is called idempotent if

(N(1)*=N(1).

a+bl

Hence

N(S)={1+11,1+21,1+3I,2+11,2+21,2+31,3+1LBw212 3:+BE}intersection of a neutrosophic left ideal

is an example of neutrosophic LA-semigroup under the
operation " * " and has the following Callay's table:
* 1+17 1+27

1+37 2+ 17 2+27 2+31 3+11 3+21 3+3]

L+ 17|3+37 3+17
1+2I3+2I 3+31

3427 1437 1+ 1+27 2+37 2+17
3+ 1 1427 1437 1+ 10 2+21 2+3]
1+3I3+17 3+27 3+37 1+17 1+21 1+37 2+11 2+21
24+ M| 2+371 2+ 1 2+21 3+31 3+1 3+21 1+371 1+1
2+21\2+21 2+31 2+ 1 3+27 3+31 3+11 1+21 1+31
24372+ 10 2427 2+37 3+ 17 3+27 3+37 1+17 1+2]
3+ 1| 1+37 1+ 1+27 2+31 2+ 10 2+21 3+371 3+11
3427\ 1+27 1437 1+ 17 2+27 2+37 2+ 11 3+21 3+3]
3437\ 1+10 1+27 1+37 2+1 2+21 2+31 3+11 3+2I

2+27
2+ 1
2+371
1+27
1+17
1+37
3+27
3+ 17
3+37

It is important to note that if N(S) contains left identity
3+3l then (N(S))* = N(S).
Lemma 2.1: If a neutrosophic LA-semigroup N(S)

contains left identity €+ le then the following conditions
hold.

(i) N(S)N(L)=N(L) for every neutrosophic left
ideal N(L) of N(S).
(i) N(R)N(S)=N(R) for every neutrosophic right
ideal N(R) of N(S).
Proof (i) Let N(L) be the neutrosophic left ideal of

N(S) implies that N(S)N(L)g N(L). Let
a+bl e N(L) and since
a+bl =(e+el)(a+bl)e N(S)N(L) which implies

that N(L)< N(S)N(L). Thus N(L)=N(S)N(L)
(ii) Let N(R) be the neutrosophic right ideal of N(S).

N(L) and a neutrosophic right ideal N(R) of a
neutrosophic LA-semigroup N(S) is a neutrosophic
quasi-ideal of N(S).

Proof Let N(L) and N(R) be the neutrosophic left and
right ideals of neutrosophic LA-semigroup N(S) resp.
N(L)m N(R)c N(R) and
N(L) and N(S)N(L)< N(L) and

) Thus
) (S)(N(L)m N(R))

Since
N(L)m
N(R)

Hence, N(L)NN(R) is a neutrosophic quasi-ideal of
N(S)

A subset(neutrosophic LA-subsemigroup) N(B) of a
neutrosophic LA-semigroup N (S) is called neutrosophic
generalized bi-ideal(neutosophic bi-ideal) of N(S) if
(N(B)N(S))N(B) = N(B).

Lemma 2.3: If N(B) is a neutrosophic bi-ideal of a
neutrosophic LA-semigroup N(S) with left identity
e+el , then ((x,+1y,)N(B))(x, +1y,) is also a
neutrosophic bi-ideal of N(S), ly, and
X, + 1y, in N(S).

for any X, +
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Proof Let N(B) be a neutrosophic bi-ideal of N(S),
now using (1), (2), (3) and (4), we get

[{{x1 + Y1 DNB)} (X2 + Y2 DIN(S)]{(X1 + Y1 DN(B)} (X2 +Y21)]

= INS)(X2 + Y23 {1 + Y1 DNB)FI[{(X1 + Y1 DN(B)} (X2 + y21)]
= [{{&X1 +y1DN(B)} (X2 + y2D)}{(X1 + Y1 DN(B)}]IN(S)(x2 + y21)]
= [{{(x1 +y1DN(B)} (X1 + y1 )}{(X2 + Y2)N(B)}]IN(S) (X2 + y21)]
= [{{&x1 +y1DN(B)} (X1 + y1 DIN(S)][{(x2 + y2IN(B)} (X2 + y21)]
= [INS)(X1 + Y1 DF{X1 + Y1 DNB)F[{(X2 + y2DN(B)} (X2 + Y2 1)]
= [INB)(X1 +y1D}{(X1 + Y1 DN(S)F[{(X2 +y2DN(B)} (X2 +Y21)]
= [{NB)(X1 +y1D}{(x2 + y2DN(B)}][{(X1 + Y1 DN(S)} (X2 +y21)]
< KNB)(x1 +Y1D)}{Xx2 +y2)N(B)}IN(S)
= [{N(B)(x1 +y1D)}{(x2 + y2)N(B)}][(e + eDN(S)]
= [{NB)(X1 +y11)} (e + eD][{(Xx2 + Y2 )N(B)}N(S)]
= [{(e +eDx1 + Y1 DFNB)I{NENB)} (x2 +y21)]
= [(X2 +y2){N(S)N(B)}]IN(B) (X1 +y11)]
= [{(e +el(xz2 + Y2} (N(S)N(B)JIN(B) (X1 +y11)]
= [{NBIN(S)}{(x2 +y21)(e +eD)}][N(B)(x1 +y11)]
= [(N(BN(S)NB)][{(x2 + y21)(e + el)}(x1 +y11)]
NB)[{(x2 +y21)(e +eD} (X1 +y11)]
= [(x2 +y21)(e + eD][N(B)(x1 +y11)]

[(x1 +y1DN(B)][(e + eD)(X2 +Y>I]
= [(x1 + Y1 DN(B)](x2 +y21).

N

A subset N(I) of a neutrosophic LA-semigroup N(S)
is called a neutrosophic interior ideal if
(N(S)N(DIN(S) = N(1).

A subset N(M) of a neutrosophic LA-semigroup N(S)

is called a neutrosophic minimal left (right, two sided,
interior, quasi- or bi-) ideal if it does not contains any other
neutrosophic left (right, two sided, interior, quasi- or bi-)
ideal of N(S) other than itself.

Lemma 2.4: If N(M) is a minimal bi-ideal of N(S)
with left identity and N (B) is any arbitrary neutrosophic
bi-ideal of N(S) then
N(M) = ((x, + 1y, )N(B))(x, +1y,)
(¢ +yil), (X +Y,1)eN(M) .
Proof Let N(M) be a neutrosophic minimal bi-ideal and
N (B) be any neutrosophic bi-ideal of N(S), then by
23, [(Xx, + Y )N(B)I(x, +y,l) is a
neutrosophic bi-ideal of N(S) for every (X, +VY,l),
(X, +Yy,1)e N(S) Let (X, +y,1)

for every

Lemma

(X, +Yy,1)e N(M), we have

[(x, + Y )N (B)I(x, + y,1) = [N(M)N(B)IN (M)
< [N(M)N(S)IN(M)
< N(M).

But N(M) is a neutrosophic minimal bi-ideal, so

[(x; + Y DN (B)I(X,. ¥, 1) = N(M).

Lemma 2.5: In a neutrosophic LA-semigroup N(S) with

left identity, every idempotent neutrosophic quasi-ideal is a
neutrosophic bi-ideal of N(S).

Proof Let N(Q) be an idempotent neutrosophic quasi-

ideal of N(S), then clearly N(Q) is a neutrosophic LA-
subsemigroup too.

(N(QN(S))N(Q) < (N(Q)N(S))N(S)
= (N(S)N(S))N(Q)
= N(S)N(Q),and

(N@QN(S)N(Q) = (N(S)N(S)N(Q)
= (N(S)N(S))(N(QIN(Q))
= (N(QN(Q))(N(S)N(S))
= N(QN(S).

Thus

(N(QN($))N(@Q) = (N(QN(S))n(N(S)N(Q)) = N(Q)
. Hence, N(Q) is a neutrosophic bi-ideal of N (S).

Lemma 2.6: If N(A) is an idempotent neutrosophic
quasi-ideal of a neutrosophic LA-semigroup N(S) with

left identity e+el , then N(A)N(B) is a neutrosophic

bi-ideal of N(S), where N(B) is any neutrosophic

subset of N(S).

Proof Let N(A) be the neutrosophic quasi-ideal of

N(S) and N(B) be any subset of N(S).

((N(AN(B))N(S))(N(A)N(B))
((N(S)N(B))N(A))(N(A)N(B))
((N(S)N(S)N(A))(N(AN(B))
(N(S)N(A))(N(AN(B))
(
(

IN

(
N(B)N(A))(N(AN(S))

(N(A)N(S))N(A))N(B)
< N(A)N(B)

Hence N(A)N(B) is neutrosophic bi-ideal of N (S).
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Lemma 2.7:1f N(L) is a neutrosophic left ideal and
N (R) is a neutrosophic right ideal of a neutrosophic LA-
semigroup N(S) with left identity e+el then
N(L)UN(L)N(S) and N(R)UN(S)N(R) are
neutrosophic two sided ideals of N(S) .

Proof Let N(R) be a neutrosophic right ideal of N(S)
then by using (3) and (4), we have

[N(R)UN(S)N(R)IN(S)
= N(R)N(S)U[N(S)N(RJIN(S)
< N(R)UIN(S)N(R)IIN(S)N(S)]
= N(R)UIN(S)N(S)IIN(R)N(S)]
= N(R)UN(S)IN(R)N(S)]
= N(R)UN(R)[N(S)N(S)]
= N(R)UN(R)N(S)

= N(R) = N(R)UN(S)N(R)
and
N(S)IN(R)UN(S)N(R)]
= N(S)N(R)UN(S)IN(S)N(R)]
= N(S)N(R)UIN(S)N(S)IIN(S)N(R]]
= N(SNR)UIN(RIN(SIIN(S)N(S)]
< N(S)N(R)UN(R)[N(S)N(S)]
= N(S)N(R)UN(R)N(S)
< N(S)N(R)UN(R)
= N(R)UN(S)N(R).
Hence [N(R)UN(S)N(R)] is a neutrosophic two
sided ideal of N(S) . Similarly we can show that
[N(L) UN(S)N (L)] is a neutrosophic two-sided ideal
of N(S) .
Lemma 2.8: A subset N(I) of a neutrosophic LA-
semigroup N(S) with left identity e+el is a
neutrosophic right ideal of N(S) if and only if it is a
neutrosophic interior ideal of N(S).
Proof Let N (1) be a neutrosophic right ideal of N(S)
N(SN(1) =[N(S)N(S)IN(I)
=[N()N(S)IN(S)
< N(I)N(S)
< N(I).
So N(I) is a neutrosophic two-sided ideal of N(S), so

is a neutrosophic interior ideal of N(S).
Conversely, assume that N (1) is a neutrosophic interior
ideal of N(S), then by using (4) and (3), we have
N(N(S) = N(DIN(S)N(S)]
= N(S)IN()N(S)]
=[NIN(SIIN(N(S)]
=[NN(DIIN(SIN(S)]
=[N(S)N(DIN(S)
< N(I).
If N(A) and N(M) are neutrosophic two-sided ideals
of a neutrosophic LA-semigroup N(S), such that
(N(A)?> = N(M) implies N(A)c N(M) , then
N (M) is called neutrosophic semiprime.
Theorem 2.1: In a neutrosophic LA-semigroup N(S) with

left identity e+el
equivalent.

(i) If N(A) and N(M) are neutrosophic two-sided
ideals of N(S), then (N(A))* < N(M) implies
N(A)c N(M).

(i) 1f N(R) is a neutrosophic right ideal of N(S) and
N (M) is a neutrosophic two-sided ideal of N(S) then
(N(R))? = N(M) implies N(R) = N(M).

(iii) 1f N(L) is a neutrosophic left ideal of N(S) and
N (M) is a neutrosophic two-sided ideal of N(S) then
(N(L))?> = N(M) implies N(L) = N(M) .
Proof (i)=> (iii)

Let N(L) be a N(S)
IN(LD]? < N(M) , then by Lemma eI

N(L) UNLINC() is a neutrosophic two sided ideal of
N(S) , therefore by assumption (i), we have
[N(L)UN(L)N(S)]? =< N(M)  which  implies
[N(L)UN(L)N(S)] = N(M) which further implies
that N(L) < N(M).

(iii) = (i) and (ii)= (i) are obvious.

Theorem 2.2: A neutrosophic left ideal N(M) of a
neutrosophic LA-semigroup N(S) with left identity

the following conditions are

left ideal of and

e+el is neutrosophic quasi semiprime if and only if
(a, +b,1)> e N(M) implies a, +b,1 e N(M).

Madad Khan, Florentin Smarandache and Sania Afzal, Neutrosophic Set Approach for Characterizations of Left

Almost Semigroups



Neutrosophic Sets and Systems, Vol. 11, 2016

84

Proof Let N(M) be a neutrosophic semiprime left ideal
of N(S) (a, +b1)>eN(M)
N(S)(a, +b,1)? is a neutrosophic left ideal of N(S)
containing (a, +1b,)* , also (a, +b1)>eN(M) ,
therefore we have
(a, +b1)*> e N(S)(a, +b,1)*> = N(M). But by using
(2), we have
N(S)[a, +b11* = N(S)I(a +b,1)(a +b,1)]
= [N(S)N(S)Il(a, +bi1)(a, +b,1 )]
=[N(S)(a, +b,IIN(S)(a, +b;1)]
= [N(S)(a, +b,)]".

and Since

Therefore, [N(S)(a, +0,1)]> = N(M), but N(M) is

neutrosophic semiprime ideal S0
N(S)(a, +bl)c= N(M) Since
(a +b 1) e N(S)(a +bl), therefore

(a,+bl)eN(M).

Conversely, assume that N (1) is an ideal of N(S) and
let (N(1))> = N(M) and (a, +b,1) e N(I)

implies that (a, +b,1)* € (N(1))?, which implies that
(a, +b,1)? € N(M) which further implies

that (a,+bl)eN(M) Therefore,
(N(1))> = N(M) implies N(I)=N(M) . Hence
N(M) isa

neutrosophic semiprime ideal.

A neutrosophic  LA-semigroup N(S) is called

neutrosophic  left  (right) quasi-regular if every
neutrosophic left (right) ideal of N(S) is idempotent.

Theorem 2.3: A neutrosophic LA-semigroup N(S) with
left identity is neutrosophic left quasi-regular if and only if

a+bl e[N(S)@+bD][N(S)@+bl)].

Proof Let N(L) be any left ideal of N(S) and
a+bl e[N(S)(a+bl)]J[N(S)(a+bl)] . Now for

each |, +1,1 € N(L), we have
L +1,1 e [IN(S)( +1,DIIN(S)(, +1,1)]
< [N(S)N(L)IIN(S)N(L)]
< N(L)N(L) = (N(L))%.
Therefore, N(L) = (N (L))

Conversely, assume that N(A)=(N(A))? for every
neutrosophic left ideal N(A) of N(S) . Since
N (S)(a-+bl) is a neutrosophic left ideal of N(S). So,

a+bl e N(S)(@+bl) =[N(S)@-+bl][N(S)@-+bl)]

Theorem 2.4: The subset N(I) of a neutrosophic left
quasi-regular LA-semigroup N(S) is a neutrosophic left
ideal of N(S) if and only if it is a neutrosophic right
ideal of N(S).

Proof Let N(L) be a neutrosophic left ideal of N(S) and

S, +5,1 € N(S) therefore, by Theorem 2.3 and (1), we
have
(I, +L,1) (s, +5,1)
= [0+ XD+ (Y, + Y2 D0+ 1LTR(Gs, +5,1)
= [{(s, + 5, DAYs + Yo D0+ L0 + %, (, + 1,1 ]
€ [{NS{N(SN(LFHIN(S)N(L]]
= [N(S)N(LJIIN(S)N(L)]
< N(L)N(L) = N(L).
Conversely, assume that N (1) is a neutrosophic right

ideal of N(S), as N(S) is itself a neytrosophic left ideal

and by assumption N(S) is idempotent, therefore by
using (2), we have

N(S)N(1)=[N(S)N(S)IN(I)

= [N()N(S)IN(S)

< N(IN(S) = N(1).
This implies N (1) is neutrosophic left bideal too.
Lemma 2.9: The intersection of any number of
neutrosophic quasi-ideals of N(S) is either empty or
quasi-ideal of N(S).
Proof Let N(Q,) and N(Q,) be two netrosophic quasi
ideals of neutrosophic LA-semigroup N(S). If N(Q,)

and N(Q,) are distinct then their intersection must be
empty but if not then

N(S)IN(Q) N N(Q)ININ(Q) NN(Q,)IN(S)
=[N(SIN(Q) NN(S)N(Q)ININ(Q)IN(S) N N(Q,)N(S)]
=[N(SIN(Q) A N(Q)N(S)ININ(SIN(Q,) "N (Q,)N(S)]
c N(Ql)m N(Qz)-
Therefore, N(Q,) " N(Q,) is a neutrosophic quasi-

ideal.

Now, generalizing the result and let

Madad Khan, Florentin Smarandache and Sania Afzal, Neutrosophic Set Approach for Characterizations of Left

Almost Semigroups



Neutrosophic Sets and Systems, Vol. 11, 2016

85

N(Q), N(Q,),...N(Q,) be the n-number of
neutrosophic quasi ideals of neutrosophic quasi-ideals of
N (S) and assume that their intersection is not empty then

N(S)IN(Q)AN(Q,)M..aN@Q)ININ(Q) AN(Q,) M. N(Q,)IN(S)
=[N(S)N(Q) N N(S)N(Q,) N...aN(S)N(Q,)] N

[IN(QIN(S)AN(Q)N(S) N...AN(Q,)N(S)]
=[N(S)N(Q) N N(Q)IN(S)IN[N(S)N(Q,) N

N(Q)N($)]-[N(S)N(Q,) "N(Q,)N(S)]
S N@Q)NN@Q,)N..AN(Q,).

Hence  N(Q)NN(Q,)n..NAN@Q,) is a

neuteosophic quasi-ideal.
Therefore, the intersection of any number of neutrosophic

quasi-ideals of N(S) is either empty or quasi-ideal of
N(S).

3 Neutrosophic Regular LA-semigroups

An element a-+bl of a neutrosophic LA-semigroup
N(S) is called regular if there exists X + Yl € N(S)
such that a+bl =[(a+bl)(x+yl)J(a+bl)
N(S) is called neutrosophic regular LA-semigroup if
every element of N(S) is regular.

Example Let S = {1, 2, 3} with binary operation " - " given
in the following Callay's table, is a regular LA-semigroup
with left identity 4

.

=W N

3
1
4
2
3

[SE R )

1
3
2
4
1

[ S L N

then

1#0 1+20 1430 1447 2+ 1 2+ 20 2437 244 3+ 1 3+ 20 3+ 37 3+4T 4+ U 4+ 4+37 4+4
1+ U|3+37 3+48 3+ 10 3+20 437 4+4F 4+ U 427 137 1+47 1+ 10 1427 23 r I2+2
1+ |(3+20 3+ 10 3+4T 3+30 427 4+ 10 4+ 47 4437 1+20 1+ 10 1+4F 1431 I
1+30|3+4] 3+37 3+ 3+ 447 437 4+ 20 417 147 1+37 1+ 20 1417 247 2+37 2420 I
I+ 4|3+ 3+ 3+ 3+ 4+ 1 4+ 0 4+3 4+47 1+ 10 1+ 1+30 1+47 2+ 1 2+ 2+31 2+4
3+U T 1+4F 1+ 1+20 4+37 4+40 4+ 0 4+20 3+ 3+4 3+17 3+

p 1+2 1+ 1+47 1+37 420 4+ 17 4+41 4437 3+ 3+ 10 3+4] 3+3]
1+4 1+30 1+ 20 1+ 4+4 4+30 4+ 2 4+ 3+4 3+3 3+ 3+

I 1+17 1+20 1+37 1+4T 4+ 4+ 20 4+ 3] 4+47 3+ 10 3+ 3+57 3+4
S+ U[4+37 4+ 4 4+ U 4+ 3+37 3+ 4 3+ 0 3+ 2+3 2+4 2+ 0 2+20 1+3 1+4 1+ 1+
3|4+ 4+ T 4+ 4 4431 327 3+ 10 3+40 I 1+37
3+3T|4+45 4437 4+ 4+1T 347 3437 3+ 1+1r
34|41 4+ 4430 44T 30T 3220 3431 2+ 2 2+4] 1+4
4+ U137 1+4F 1+ U 1427 237 2+4F 2+ 0 2420 3+3] 3+4F 3+ 0 3+2T 4+ 4+ 47 4+17 4+
4+ U |1+20 1+ 10 1+48 1+37 2+20 2+ 10 2+ 48 2+30 3+ 3+ 1T 3+41 3+31 4+ U 4+ 17 4+41 4+3]
4+ 3| 1+47 1430 1+ 20 1+ 2447 2+30 2+ 20 2+ 1T 3+4T 3+37 3+ A 3+1 4+4 4+37 4+20 4+17
4+4I| 11T 120 1+3 1447 207 2+ 27 2437 244 3+ 10 3+ 20 3+37 3+4T 4+ 4+ 20 4+31 4+47

Clearly N(S) is a neutrosophic LA-semigroup also
[L+11)(4+41)](2+31) = L +11)[(4+41)(2+31)]

, so N(S) is non-associative and is regular because
@+11) =[@+1)(2+21)]@+11)
@2+21)=[2+2D@B+3D](2+21)
(3+21)=[(3+21)(L+31)](3+21) ,
@A4+1) =[@4+1)@E+2D]¢@4 + 1D
A+4D)=[(4+41)(4+41)](4+41) etc.
Note that in a neutrosophic regular LA-semigroup,
[N(S))* =N(S).

Lemma 3.1: If N(A) is a neutrosophic bi-
ideal(generalized bi-ideal) of a regular neutrosophic LA-

semigroup N(S) then [N(A)N(S)IN(A) = N(A).
Proof Let N(A) be a bi-ideal(generalized bi-ideal) of
N(S), then [N(A)N(S)IN(A) = N(A).

Let a+bl € N(A), since N(S) is neutrosophic regular

LA-semigroup  so  there  exists an  element
X+ Yyl € N(S) such that
a+bl =[(a+bl)(x+ yl)](a+Dbl), therefore,

a+bl =[(a+bl)(x+Dbl)](a+bl)e[N(A)N(S)IN(A).

This implies that N(A) <[N(A)N(S)]N(A). Hence

N(S) ={l+11,1+21,1+31,2+11,2+ 21,2+ 31,3+ LI NAPNGBIIN (A2 INAARI 4+ 31,4+ 41}

is an example of neutrosophic regular LA-semigroup un-
der the operation " * " and has the following Callay's table:

Lemma 3.2: If N(A) and N(B) are any neutrosophic
ideals of a neutrosophic regular LA-semigroup N(S),
then N(A) " N(B)=N(A)N(B).

Proof Assume that N(A) and N(B) are any
neutrosophic ideals of N(S) S0
N(AN(B) < N(AN(S) <= N(A) and

N(A)N(B) = N(S)N(B) < N(B). This implies that
N(A)N(B) < N(A)nN(B) Let
a+bl e N(A)nN(B) , then a+bl eN(A) and
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a+bl e N(B). since N(S) is a neutrosophic regular
AG-groupoid, so there exist X+ Yyl such that
a+bl =[(a+bl)(x+yl)l(a+bl) e [N(A)N(SIN(B)
< N(AN(B)

, which implies that N(A)"N(B) < N(A)N(B) .
Hence N(A)N(B) = N(A)nN(B).

Lemma 3.3: If N(A) and N(B) are any neutrosophic
ideals of a neutrosophic regular LA-semigroup N(S),
then N(A)N(B) = N(B)N(A).

Proof Let N(A) and N(B) be any neutrosophic ideals
of a neutrosophic regular LA-semigroup N(S). Now, let
a,+a,l eN(A) and b, +b,I e N(B) Since,
N(A) = N(S) and N(B) = N(S) and N(S) is a

neutrosophic regular LA-semigroup so  there exist
X, + X, | Y, + Y, € N(S) such  that
a, +a,l =[(a, +a,1)(x +x,1)](a, +a,l) and
b, +b,I =[(b, +b,1)(y, +y,1 )b, +b,1).

Now, let (a, +a,1)(b, +b,1)e N(A)N(B) but

(a, +a,l)(b, +D,1)
= [{(al +a, I )(Xl + le )}(al +a, I )]
[{(b, +b,1)(y, + ¥, 1 }(b, +b,1)]

€ [IN(ANIN(AIINBINSIN(BHuiar  LA-semigroup  N(S)

< [N(AN(A)]IN(B)N(B)]
= [N(B)N(B)I[N(A)N(A)]
< N(B)N(A)

N(A)N(B) = N(B)N(A).

Now, let (b, +b,1)(a, +a,1) e N(B)N(A) but
(b1+b2|)(al+azl): [{(b1+bz|)(y1+y2|)}(b1+b2|)]
[{(a, +2,1)(x, + x,1 (2, +2,1)]
€ [{N(B)N(S)IN(B)I{N(A)N(S)IN(A)]
< [N(B)N(B)IIN(AN(A)]
=[N(A)N(AIIN(B)N(B)]
< N(A)N(B).
Since N(B)N(A) = N(A)N(B)
N(A)N(B) = N(B)N(A).
Lemma 3.4; Every neutrosophic bi-ideal of a regular
neutrosophic LA-semigroup N(S) with left identity

Hence

e +el is a neutrosophic quasi-ideal of N(S).
Proof Let N(B) be a bi-ideal of N(S) and
(s, +5,1)(b, +b,1) e N(S)N(B) for
S, +S,1 e N(S) and b, +b,1 e N(B) . Since N(S)
is a neutrosophic regular LA-semigroup, so there exists
X + X1
in N(S) such that
b, + 0,1 =[(b, +b,1)(x + X, 1 )I(b, +b,1) , then by
using (4) and (1), we
have

(s, +5,1)(b, +Db,1)
= (8, + 5, DI{(by +0,1)(x, + %, 1)}(b, +b,1)]
= [(b, +b,1)(%, + X, II(s, +5,1)(b; +b, 1 )]
= [{(s, + 5,1 (0, + b, 1 (%, +x%,1)](b, +b,1)
= [(s, 8, DAL, +b,1)(x, +X,1 JH(b, +b,1)3(x +%,1)](b, +b1)
= [[{(b1 +h, )%, + X, | )}{(51 +5,1)(b, +D, 1 )}](Xl +X,1)](b, +b,1)
= [0 + %, 1)((, +5,1)(By +b, 1 )H(by +b,1)(x, +%,1 F1(b, +D,1)
= [(by, +b, L%, + X, DA(s; +5,1)(by +b, 13} (%, + X, 1)} (b, +b, 1)
< [N(B)N(S)IN(B)
< N(B).
Therefore,

N(B)N(S)N(S)N(B) = N(S)N(B) = N(B).
Lemma 3.5. In a neutrosophic regular LA-semigroup
N (S), every neutrosophic ideal is idempotent.

Proof. Let N(I) pe any neutrosophic ideal of neutrosophic

As we know,
(N(1)> < N(1) and let a+bleN(l), since
N (S) is regular so there exists an element
X+ Yyl € N(S) such that
a+bl =[(a+bl)(x+yl)](a+bl)

e IN(ON(S)IN(I)

c N(DN() =(N(1))*
This implies N(I) < (N(1))? Hence,
(N(1)* =N(1).

As N(I) is the arbitrary neutrosophic ideal of N(S). So

every ideal of neutrosophic regular AG-groupoid is
idempotent.
Corollary 3.1. In a neutrosophic regular LA-semigroup

N (S), every neutrosophic right ideal is idempotent.
Proof. Let N(R) be any neutrosophic right ideal of
neutrosophic  regular  LA-semigroup N(S) then

N(R)N(S) = N(R) and (N(R))? = N(R). Now,let
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a+bl e N(R),
as N(S) is regular implies for a+bl € N(R) ,there
exists X+ Yl € N(S) such that
a+bl =[(a+bl)(x+yl)l(a+bl)
e IN(RIN(S)IN(1)
< N(R)N(R)

= (N(R))*.
Thus (N(R))? = N(R). Hence, (N(R))* = N(R). So
every neutrosophic right ideal of neutrosophic
regular LA-semigroup N (S) is idempotent.
Corollary 3.2: In a neutrosophic regular LA-semigroup
N (S), every neutrosophic ideal is semiprime.

Let N(P) be any neutrosophic ideal of
neutrosophic regular LA-semigroup N (S)

Proof:

and let N(I) be any other neutrosophic ideal such that
[N(DI* = N(P).

Now as every ideal of N(S) is idempotent by lemma 3.5.
so, [N(1)]?> =N(I) implies N(1) = N(P) . Hence,
every neutrosophic ideal of N(S) is semiprime.

4 Neutrosophic Intra-regular LA-semigroups
An LA-semigroup N(S) is called neutrosophic intra-

regular if for each element a1 + azl € N(S) there exist
elements (X +X,1), (Y, +Y,1)eN(S) such that

a +a,l :[(X1+X2I)(a1+a2|)2](y1+ yzl)-

Example Let S = {1, 2,3} with binary operation - " given
in the following Callay's table, is an intra-regular LA-
semigroup with left identity 2 .

—
[\
98]

3
2
1

L) = D

I
2
3 2

then

* I+ 17 1+21
1+ 1 |2+21 2+31 2+11 3421 3+3] 3+11
1+27|2+17 2+27 2+31 341 3+27 3+37 1+17 1+2I 1+371
1+37|2+37 2+ 17 2+2I 3437 3+17 3+2I 1+37 1+1I 1+21
2+ 11 +27 1+37 1+1I 2+427 2+37 2+ 11 3+21 3+3I 3+171
2+2N\1+17 1+27 1+31 2+10 2+27 2+31 3+11 3+2I 3+31
2+ 37\ 1+37 1+17 1+2I 2437 2+ 17 2+27 3+31 3+11 3+2]
3+ 1 (3+2] 3+37 3+17 1427 1+37 1+1I 2+21 2+3I 2+171
3+203+11 3+21 3+31 1+1 1+27 1+37 2+11 2+2I 2+31
3+37(3+37 3+17 3+2I 1437 1+17 1+27 2+37 2+11 2+21

1437 2+ 10 2+2I 2+37 3+ 17 3+2] 3+3]
1427 1+37 1+11

Clearly N(S) is a neutrosophic
non-associative
[(L+11)*(2+21)]*(2+3I)
# @+ =[(2+21)*(2+3l)]
regular as

(L+11) =[(@+31)(@+11)%](2+31)

(2+31) =[(L+11)(2+31)*](3+11)

(3+11) =[(2+31)(3+11)*](3+31) etc.
Note that if N(S) is a neutrosophic intra-regular LA-

semigroup then [N (S)]*> = N(S).

Lemma 4.1: In a neutrosophic intra-regular LA-semigroup
N (S) with left identity e+ €l , every neutrosophic ideal
is idempotent.

Proof Let N(I) be any neutrosophic ideal of a

LA-semigroup and is
because

and N(S) is intra-

neutrosophic intraregular LA-semigroup N(S) implies
[N(D]J? = N(1). Now, let a, +a,l € N(I) and since
N(I1) < N(S) implies a, +a,l € N(S). Since N(S)
is a neutrosophic intra-regular LA-semigroup, so there
exist (X, +X,1), (Y, +Y,1) e N(S) such that
(a1 +a2|) = [(X1+ le)(a1+a2|)2](y1 + yzl)

e [N(S)Y(N(1))’IN(S)

=[N)(N(N)IN(S)

= (N(D(N(S)N(I))IN(S)

< (N(ON())N(S)

= (NN()N(I)

< N(DON(I)

N(S) ={L+11,1+21,1+31,2+11,2+21,2+31,3+11,3+21,3+ 35N ()]".

is an example of neutrosophic intraregular LA-semigroup
under the operation " #* " and has the following Callay's ta-
ble:

* 1+11 1+21 1+ 3l 2+ 1l

Hence [N(1)]> = N(1). As, N(I) is arbitrary so every
neutrosophic ideal of is idempotent in a neutrosophic intra-
regular LA-semigroup N (S) with left identity.

42.1 trosoghjc dntra-regulas LA-semigrayp
Lg%ls”?l D g ngptrosoghjcqjira-reguiad e+§$%‘f7

with left identity
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N(DN(J)=N({)N(J) , for every neutrosophic
ideals N(1) and N(J) in N(S).

Proof: Let N(I) and N(J) be any neutrosophic ideals
of N(S), then obviously N(I)N(J) < N(I)N(S)
and N(DN(J) < N(S)N(@J)
N(DN(J)<N({)NN@Q) Since
N(DNAN)< N(l) and N(I)nN(J)c=N@),
then  [N(I)ANQ)? < N(I)NQJ) Also
N(I)N(J) is a neutrosophic ideal of N(S), so
using Lemma 4.1, we have
N(DANQ)=[N(DANQ)F =N(1)NQ)
Hence N(I)N(J)=N()nN(J).

Theorem 4.1. For neutrosophic intra-regular AG-groupoid

with left identity e+el , the following statements are
equivalent.

(i) N(A) is a neutrosophic left ideal of N(S).
(ii) N(A) is a neutrosophic right ideal of N(S).

implies

N(S), again by Lemma first, N(A)N(S) = N(S).
(viii)= (vii)

Let N(AN(S)=N(A) and N(S)N(A)=N(A)
then  N(AN(S)NN(S)N(A)=N(A),
clearly implies that N (A) is a neutrosophic quasi-ideal of
N(S).

(vii)= (vi)

Let N(A) be a quasi-ideal of N(S) . Now let
[(s, +5,1)(a, +a,1)I(s, +5,1) € [N(S)N(AIN(S) .
since. N(S) is neutrosophic intra-regular LA-semigroup
so there exist (X, +X,1), (Y, +VY,1), (p,+p,l),
(0, +9,1) e N(S) such that

(Sl+82|)=[(X1+X2|)(Sl+32|)2](y1+y2|)

(a1+a2|) =[(p1+ pzl)(ai+a2|)2](q1+q2|)
Therefore using (2), (4), (3) and (1), we have

[(s, +5,0)(a, +a,1 )I(s, +5,1)

which

and

(iii) N(A) is a neutrosophic ideal of N(S).
(iv) N (A) is a neutrosophic bi-ideal of N(S).
(V) N(A) is a neutrosophic generalized bi-ideal of

= [(s, +5,1)(a, + 3, (% + XIS, + 5,17}y, + ¥,1)]
= [{(s, + 8,DL06 + X, 1)(s, + 5,17 3H0(@, +3,1)(y, + Y, )]
= (a, + a3, )[{(s; + S, DL(x, + X, 1)(5, + 5,133y, + ¥, 1)]

N(S).
(vi) N(A) is a neutrosophic interior ideal of N(S).
(vii) N(A) is a neutrosophic quasi-ideal of N(S).
(viii) N(A)N(S) = N(A)
N(S)N(A)=N(A).
Proof: (i)=> (viii)
Let N(A) be a neutrosophic left ideal of N(S). By
Lemma first, N(S)N(A)=N(A) Now let
(a,+a,1)e N(A) and (s,+5S,1)e N(S),
N(S) is a neutrosophic intra-regular LA-semigroup, so
there exist (X, +X,1), (Y, +VY,1) e N(S) such that
(& +a,1) =[04 +X,1)(a, +a,1)° (¥, + Y, !)
therefore by (1), we have
(& +a,1)(s,+5,1) = [{(x + %, 1)(@ +2,1) 3y, + Y, DI(s, +5,1)

= {0+ D@, +2,1) (@, + 3,1 XY, + Y, DI, +5,1)

€ {NSHN(AN(ABN(S)IN(S)

< EN(SH{N(S)N(ARIN(S)IN(S)

C KN(S)N(ARN(S)IN(S)

= [N(S)N(S)IIN(S)N(A]]
= N(S)IN(S)N(A)] = N(S)N(A) = N(A).

which implies that N (A) is a neutrosophic right ideal of

and

since

e N(AN(S).

and

[(s, +5,1)(a +a,1 )I(s, +5,1)
=[5+ 8, DL, + Po1)(@, +23,1)°Hay + G, 1S, +5,1)
= [{(p,+ P,1)(@, + 3,1 ) H{(s, +5,1)(a + T, | BI(s, +5,1)
= H(p. + po) (@, +3,1)(a, + 3,1 (s, +5,1)(0; + 0,1 H(s, +5,1)
=[{(a, + a1 {(p, + p,1)(a, + 3,0 (s, +5,1)( + 0,1 BI(s, +5,1)
= [{{a, + a5+ 8,1 (P, + 1) (& + 3,1}, + 3, 1)3(s, +5,1)
= H(p. + P& + 2, JHA(a + 6, 1)(s, + 5,1 (@, +3,1)H(s, +5,1)
= [{(a, +a,1 ){(q, + 0,1 )(s, + 5,1 BH{(a, +a,1)(py + Pl BI(s, +5,1)
= [(a, +a, 1 {{(a, +a,1){(q, + a4, 1 )(s, + 5,1 BH(p, + p,1)HI(s, +5,1)
= [(s,+ 5,4 (a, +a,1){(a, + G, 1)(5, + 5,1 BH(py + p, 1)} (3, +3,1)
e N(S)N(A) < N(A).
which shows that N (A) is a neutrosophic interior ideal of

N(S).

(vi)= (v)
Let N(A) be a neutrosophic interior ideal of a

neutrosophic intraregular LA-semigroup N(S)
and

[(a, +a,1)(s, +s,1)](a, +a,1) e [N(A)N(S)IN(A)
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. Now using (4) and (1), we get

[(a, +a,1)(s, +5,1 )I(a, +a,!)
= [(a1 +a,1)(s, +52|)][{(X1 +%,1)(a, +2,1)°}y, + Y,1)]
= [0 +x,1)(3; +2, 1) 118, + 2, 1)(s + 8,1 (Y, + Y, ]
=[(x + %1 ){(al +a,1)(a +a,l )}][{(a1 +3,1)(s, +5,1 )}(Y1 +Y,1)]
= [{{(a +a,1)(s, + 5,1}y, + Y, )H(a, +3,1)(@, +2a,1 BI(x, +X,1)
= [(ay + 8, {{{(a, +a,1)(5, + 5,1 JH(y, + Y21 )H@, +a,1)H (% + %, 1)
=[(a, +a,1){{(a, +a,1)(y, + Y, JH(@, +a,1)(s, + 5,1 (% +x,1)
= [{(a, +a,1)(y, + Y, H(a, +a,1){(a, +8,1)(s, +5,1 FHI(x, +%,1)
=[{{(a, + azl){(a1 +a,1)(s, +5s,! )}}(y1 +¥,D)Ha, +a, )%, +x,1)
€ [N(S)N(AJIN(S) = N(A).
(v)= (iv)
Let N(A) be a neutrosophic generalized bi-ideal of
N(S) . Let a,+a,l e N(A) , and since N(S) is
neutrosophic intra-regular LA-semigroup so there exist
Xy +x20) . (Y +Y2D) in N(S) that
a +a,l =[(X1+le)(a1+az|)2](y1+ Y1),
using (3) and (4), we have

(a,+a,l)(a, +a,l)
= [{(X1 + X1 )(31 + azl)z}(y1 +Y,! )](a1 +a, I)
= {06+ % 1)(8y +3, 1) Hle, +&,1)(y, + Y, H(a, +3,1)
= [{(y1+yzl)(el+e2I)}{(al+azl)2(xl+le)}](al+azl)
=[(a+ azl)z{{(y1 +¥,1)(e; +8,1 )}(X1 +X,1)}H(a, +a,1)
=[{(a, +a,1)(@ + &, (Y, + Y, )(& +&,1 (% +%,)}(3; +2,1)
= {0+ %A, + Y2 1)+, DI, +2,1) (3 +a,1 (3, +2,1)
=[(a, +a,){{(x, + le){(Y1 +¥,1)(e; +8,1 )}}(31 +a,1)}(a, +a,l)
e [N(AN(S)IN(A) = N(A).
Hence N (A) is a neutrosophic bi-ideal of N(S).
(iv) = (iii)
Let N(A) be any neutrosophic bi-ideal of N(S) and let
(a,+a,1)(s,+5,1) e N(A)N(S) . since N(S) is
neutrosophic intra-regular LA-semigroup, so there exist
(X, + x,1), (Y, +VY,1)eN(S) such that
(a1+a2|) =[(X1+X2I)(ai+a2|)2](y1+ yzl)-
Therefore, using (1), (3), (4) and (2), we have

such

then

(&, +a,1)(s, +s,1)
= [{(X1 + Xl )(ai + azl)z}(yl + y2|)](81 + Szl)
= [(s,+8,1)(y2 + Y. DX + X, 1)(8; +2,1)°]
=[(a + a2|)2(Xl + X, DICY; + Y2 1)(s, +5,1)]
= [{{(yl + yZI)(Sl + Szl)}(x1 + XZI)}(al + azl)z]
= [{(yl + yZI)(sl + Szl)}(x1 + XZI)][(ai + azl)(ai + azl)]
= [(81 +a,1)(a +a,l )][(Xl + X (Y1 + Y, 1)(s; +5,1)3
= {04+ DAY + Y, 1)(s, +5,1)3Ha, +a,1)](3, +a,1)
= {04+ XD + Y, 1)(s, +8,1)33
O +x,1)(@ +a,1) Hy, + Y, DHa, +a,1)
= [{0x + %, 1)@ +a,1) " H{0 + %, DL + y21)(s, + 5,13}
(y: +¥.D)}(a +a,1)
= [0+ Yo DL+ X DA + Y, 1)(s, + 55,1033}
{(a, +a,1)* (% + %, 1)}(a, +a,1)
= [(a, +a, 1) {{(yy + Y. DL+ DL, + ¥, 1)(s +5,1)3}
(%, +x,1)} (3, +a,l)
= Hla +a,1)(@ + al JH{(Y: + Yo {0 + %)
L2+ Y2 1)(s + 5,130 + X, 1)}H(a, +a,1)
= O+ DL + Y DA+ X, DL + Y, 1(s, +5,1)333}
{(a, +a,1)(a, +a,1)}(a, +a,1)
€ [IN(AN(SJIN(A) = N(A).

(s +5,1)(a, +a,l)
= (51 + SZI)[{(Xl + le)(a1 + azl)z}(yl + yzl)]
= [0 + %, 1)@ +a,1)°T1(s, +5,1)(¥; + Y, 1)]
= [(X1 + XZI){(al + azl)(31 + aZI)}][(Sl + Szl)(Y1 + yZI)]
= [(a1 + aZI){(Xl + le)(a1 + aZI)}][(Sl + SZI)(yl + yzl)]
= [{(s; +5,1)(y; + Y. DH X + X, 1)(2, +8,1)}(a, +a,1)
= [{(al + aZI)(Xl + X, )}{(yl + yzl)(sl +5,l )}](a1 + azl)
= [{{(yl +Y,l )(Sl +5,1 )}(Xl + X1 )}(al +a,l )](a1 +a, 1
= [{ys + Y20y + 8,1 06 + %)}
{04+ %, 1)(8 +8,1) 3y, + ¥, 1)}(a, +2,1)
= [{y: + D)0y + 5 THOG + %, D)(3 + 2,1)°3}
{0 +%,1)(y, + 1 H(a, +a,1)
= [{fle. +a,1)” (6 + X H(S, + 5,100 + v,
{06+ %10 + v, H(a +a,1)
= [{{{(ai + azl)(a1 +a,l )}(Xl + XZI)}{(Sl +5,1 )(yl +Y,l )}}
{06 +%,1)(y + ¥, H(@ +a,1)
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= [0+ %10 + Y DH( +5,D (0 + v 1 )3
{la, +a,1)(a + 2,1 04 + %, D)}H(a +3,1)
= [(a1 + azl){{{{(sl +3, I )(yl + YZI )}(Xl + le)}
{(y, + ¥21)(% + %1 F}a, +a,1)H(a, +a,1)
€ [N(AN(S)IN(A)
< N(A).
Therefore, N (A) is a neutrosophic ideal of N(S).
(iii)= (ii) and (ii)= (i) are obvious.
Lemma 4.4. A neutrosophic LA-semigroup N(S) with left
identity (e+el) is intra-regular if and only if every
neutrosophic bi-ideal of N(S) is idempotent.
Proof. Assume that N(S) is a neutrosophic intra-regular
LA-semigroup with left identity (e+el) and N(B) is a
neutrosophic bi-ideal of N(S). Let (b+bl)e N(B),
and since N(S) is intra-regular so there exist
(c,+c,l) (d,+d,l) in N(S) such that
(b, +b,1) =[(c, +¢,1)(b, +b,1)?1(d, +d,1), then by
using (3), (4) and (1), we have
(b, +b,1)
= [(Cl + CZI)(bl +b2|)2](d1 + dzl)
= [{(Cl +C, I )(bl + bzl)z}{(e +el )(dl + dzl )}]
= [{(d, +d,1)e+el H(b, +b,1)?(c, + ¢, ]
= [(b, +b,1)*{{(d, +d,1)(e +el }c, +c,1)}]
= [{(b, +b,1)(b, +b, 1 H{{(d, +d,1)(e+el }(c, +c,1)}]
= [{{(d, + d,1)(e+e)}e, + ¢, 1)}b, +b, 1 )I(by +b,1)
= [{{(d, +d,I)(e+el)}(c, +c,1)}
{{(c, +c,1)(b, +b,1)}(d, +d,1)}1(b, +b,1)
= [{{(e, +¢,1)(b, +b,1)"HA{(d, +d,1)(e +el)}e, +¢,1 )}
(dy +d,1)}(b, +b,1)
= [{(c, + ¢, (b, +b, 1) (b, +b, N}H{(d, +d,1)(e+el)}
(¢, +c,1)Hd, +d, DI(b, +b,1)
= [{(b, +b, ){(c, +c,1)(b, +b, NIH{{(d, +d,I)(e+el)}
(¢, +¢,1)Hd, +d,1)}](b, +D,1)
= [{{{{(d, +d,I)(e +el)}(c, +c,1)}(d; +d,I)}}
{(c, +c,1)(b, +b,1)}by, +b,1)] (b, +b,1)

= [{{{{(d, +d,1)(e+e)}(c, +c,)}(d, +d,1)}
(e, +c,D{{(c, + ¢, 1)(b, +b,1)7}
(d; +d,1)3}b; +b,1)](b, +b,1)
= [{{{{(d, +d,1)(e+e)}(c, +c,}(d; +d,N}H(c, +¢,1)
{{(e, + e, D{(by + b, 1)(by + b, 1)}}(d, +d,1))}}
(b, +b,1)}1(b, +b,1)
= [{{{{(d, +d,1)(e+e)}(c, +c,1)}(d, +d,1)}H(c, + ¢, {{(b, + b, 1)
(e, +¢,1)(b, +b, 1)}3(d, +d, 1)}}b, +b,1)](b, +b,1)
= [{{{{(d, +d,)(e+el}(c, +c,N}d, +d,)}H(b, +b,1)
(e, + e, D{(e, + ¢, )by + b, 1)IH(d, +d,1)}3(b; +b,1)](by +Db,1)
= [(by + b, D{{{{{(d, +d,I)(e +el)}(c, +c,1)}d, +d,1)}}
(e, + e, D{(e, + ¢, )by + b, 13X, +d, 1330, +b,1)](by +Db,1)
< [{N(B)N(SBN(B)IN(B) = N(B)N(B).
Hence [N(B)]* = N(B).
Conversely, since N(S)(a+bl) is a neutrosophic bi-

ideal of N(S) | and by assumption N(S)(a+bl) is
idempotent, so by using (2), we have

Hence N(S) is neutrosophic intra-regular LA-semigroup.
Theorem 4.2. In a neutrosophic LA-semigroup N(S) with

left identity e-+el
equivalent.

(i) N(S) is intra-regular.

(il) Every neutrosophic two sided ideal of N(S) is
semiprime.

, the following statements are

(ili) Every neutrosophic right ideal of N(S) is
semiprime.

(V) Every neutrosophic left ideal of N(S) is semiprime.
Proof: (i)= (iv)

Let N(S) is intra-regular, then by Theorem equalient and

Lemma 4.1, every neutrosophic left ideal of N(S) is
semiprime.

(iv)= (iii)

Let N(R) be a neutrosophic right ideal and N(I) be
any  neutrosophic N(S) that
[N(D]> = N(R) Then clearly
[N(D]J> = N(R) UN(S)N(R). Now by Lemma 2.7,
N(R)UN(S)N(R) is a neutrosophic two-sided ideal
of N(S), so is neutrosophic left. Then by (iv) we have
N(1) = N(R)UN(S)N(R). Now using (1) we have

ideal of such
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N(S)N(R) = [N(S)N(S)IN(R)
=[N(RIN(S)IN(S)
< N(R)N(S) = N(R).
This implies that
N(1)cN(R)UN(S)N(R) = N(R). Hence N(R)
is semiprime.
Itis clear that (iii)=> (ii).
Now (ii)=> (i)
Since (a+bl1)*N(S) is a neutrosophic right ideal of
N(S) containing (a+bl)> and clearly it is a
neutrosophic two sided ideal so by assumption (ii), it is
semiprime, therefore by Theorem 2.2,
(a+bl) e(@a+bl)>N(S). Thus using (4) and (3), we
have
a+bl e (a+bl)>N(S)

= (a+bI)’[N(S)N(S)]

= N(S)[(a+b1)>N(S)]

= [N(S)N(S)I[(a+b1)>N(S )]

= [N(S)@+b1)2JIIN(S)N(S)]

=[N(S)(a+Dbl)*IN(S).
Hence N(S) is intra-regular.
Theorem 4.3. An LA-semigroup N(S) with left identity

e+el is intra-regular if and only if every neutrosophic
left ideal of N(S) is idempotent.

Proof. Let N(S) be a neutrosophic intra-regular LA-
semigroup then by Theorem equalient and Lemma 4.1,
every neutrosophic ideal of N(S) is idempotent.
Conversely, assume that every neutrosophic left ideal of
N(S) is idempotent. Since N(S)(a+Dbl) is a
neutrosophic left ideal of N (S), so by using (2), we have
a+bl e N(S)(a+bl)

= [N(S)(@+bl J[N(S)@+bl)]

= [{N(S)(@+bD)}N(S)(@+bI)I{N(S)(@a+bl }

= [{N(S)N(S }H{(a+Dbl)(@a+bl BI{N(S)(a+bl }}

c [N(S)(@+b1)*IIN(S)N(S)]

=[N(S)(a+b1)?IN(S).

Theorem 4.4. A neutrosophic LA-semigroup N(S) with

left identity e-+el is intra-regular if and only if

N(R)NN(L) = N(R)N(L), for every neutrosophic
semiprime right ideal N (R) and every neutrosophic left
ideal N(L) of N(S).

Proof. Let N(S) be an intra-regular LA-semigroup, so by
Theorem N(R) N(L)
neutrosophic ideals of N(S), therefore by Lemma 4.2,
N(R)"N(L) = N(L)N(R), for every neutrosophic
ideal N(R) and N(L) and by Theorem every ideal
semiprime, N(R) is semiprime.

Conversely, assume that N(R) "N (L) < N(R)N(L)
for every neutrosophic right ideal N(R), which is

equalient and become

semiprime and every neutrosophic left ideal N(L) of
N(S). since (a+bl)* e (a+bl)>N(S), which is a
neutrosophic right ideal of N(S) so is semiprime which
implies that (a+bl)e(a+bl)>N(S) . Now clearly
N (S)(a+Dbl) is a neutrosophic left ideal of N(S) and
(a+bl) e N(S)(a+Dbl) . Therefore, using (3),we have
a+bl e[(a+bl)*N(S)]|A[N(S)(a+bl)]
< [(a+b1)>N(SJIIN(S)(a+bl)]
< [(a+b1)>N(S JIN(S)N(S)]
=[{a+bl)>N(SJIN(S)
= [{(@a+bl)(@+bl FN(S)IN(S)
=[{(a+bl)(@+bl)HN(S)N(S)FIN(S)
=[{N(S)N(SH(a+b)(@+bI JIN(S)
=[N(S){(a+bl)(@+bl J}]N(S)
=[N(S)(a+bl)*IN(S).
Therefore, N(S) is a neutrosophic intra-regular LA-

semigroup.
Theorem 4.5. For a neutrosophic LA-semigroup N(S)

with left identity e+el , the following statements are
equivalent.

(i) N(S) is intra-regular.

(i) N(L)AN(R) = N(L)N(R) , for every right
ideal N(R), which is neutrosophic semiprime and every
neutrosophic left ideal N (L) of N(S).

(iii) N(L)AN(R) c[N(L)N(R)IN(L) , for every
neutrosophic semiprime right ideal N(R) and every
neutrosophic left ideal N(L).

Proof (i)=> (iii)
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Let N(S) be intra-regular and N(L), N(R) be any
neutrosophic left and right ideals of N(S) and let

a; +azl e N(L)NN(R),  which  implies  that
a, +a,l eN(L) and & +a,l € N(R) . Since N(S)
is intra-regular so there exist (X, + X,1), (y, +Y,I) in
N(S) that

a1+azl :[(X1+X2|)(a1+azl)2](y1+yzl) , then by
using (4), (1) and (3), we have
al+a2| :[(X1+X2|)(a1+az|)2](y1+YZI)
:[(X1+le){(a1+a2|)(a1+a2|)}](Y1+YZI)
:[(a1+a2|){(xi+le)(a1+a2|)}](Y1+YQI)
:[(y1+yzl){(x1+le)(ai+azl)}](ai+azl)
= [(yy + Yo DO+ X DL+ %,1)(3, +23,1)%}
(¥ +¥,1)3H(a +3,1)
= [0y + VDI04 + %) (3, + 3, 1) + %, DY B33, +3,1)
=[{04 + %)@ +2,1) H(y, +y.!)
{06+ %10 + Y, 1H( +a,1)
:[{(X1+le){(a1+azl)(ai+azl)}}{(Y1+yz|)
{06+ 10 + Y, 1H( +a,1)
:[{(a1+a2|){(xl+le)(a1+azl)}}{(Y1+yz|)
{04+ %10+ 1 BH( +a,1)
e [{IN(RYN(S)N(LDIIN(S)IN(L)
< {N(R)N(L)IN(S)IN(L)
= [N(L)N(SIIN(R)N(L)]
= [N(LN(RIIN(S)N(L)]
< [N(LN(R)IN(L),

such

which implies that
N(L) A N(R) c [N(L)N(RJIN(L) Also by
Theorem every ideal semiprime, N (L) is semiprime.
(iii) = (ii)
Let N(R) and N(L) be neutrosophic left and right
ideals of N(S) and N(R) is semiprime, then by
assumption (iii) and by (3), (4) and (1), we have
N(R) " N(L) < [N(R)N(L)IN(R)

< INRIN(L)IN(S)

= INRIN(LIIN(SIN(S)]

= IN(S)N(SIIN(LIN(R)]

= N(DN(S)N(SIN(R)]

= N(DEN(RIN(SIN(S)]

< N(LIN(R)N(S)]

< N(L)N(R).

(ii)= (i)
Since e+el e N(S) implies a+bl € N(S)(a+Dbl),
which is a neutrosophic left ideal of N(S) , and
(a+bl)*e(a+bl)>N(S) , which is a semiprime
neutrosophic right ideal of N(S), therefore by Theorem
2.2 a+bl e (a+bl)*>N(S). Now using (3) we have
a+bl e [N(S)(@a+bl)]n[(a+bl1)*N(S)]

< IN(S)(@-+b1Ii(@-+b1)*N(S)]

< [N(S)N(S)I[(a+b1)*N(S)]

= [N(S)(a+b1)’IIN(S)N(S ]

=[N(S)(a+bl1)*IN(S).
Hence N(S) is intra-regular
A neutrosophic LA-semigroup N(S) is called totally
ordered under inclusion if N(P) and N(Q) are any
neutrosophic ideals of N(S) that

N(P) = N(Q) or N(Q) = N(P).

A neutrosophic ideal N(P) of a neutrosophic LA-

such either

semigroup N(S) is called strongly irreducible if
N(A)NN(B) = N(P) implies
N(A)c N(P) or N(B)< N(P) for all
neutrosophic ideals N(A) , N(B) and N(P) of
N(S).

Lemma 4.4. Every neutrosophic ideal of a neutrosophic
intra-regular LA-semigroup N(S) is prime if and only if
it is strongly irreducible.

Proof. Assume that every ideal of N(S) is neutrosophic

prime. Let N (A) and N(B) be any neutrosophic ideals
of N(S) S0 by Lemma 4.2,
N(A)N(B)=N(A)NN(B), where N(A) " N(B)
is neutrosophic ideal of N(S) Now, let
N(A)NN(B) = N(P) where N(P) is a
neutrosophic ideal of N(S) too. But by assumption every
neutrosophic ideal of a neutrosophic intra-regular LA-
semigroup N(S) is prime so is neutrosophic prime,
therefore, N(A)N(B)=N(A)NN(B) = N(P)
implies N(A) = N(P) or N(B) < N(P) . Hence
N(S) is strongly irreducible.

either

Conversely, assume that N(S) is strongly irreducible. Let
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N(A), N(B) and N(P) be any neutrosophic ideals of

N(S) such that N(A)NN(B) < N(P) implies
N(A)c N(P) or N(B)c< N(P) Now, let
N(A) NN(B) = N(P) but
N(ANB) = N(A)NNB) by  lemma  ij,

N(AN(B) = N(P) implies N(A)= N(P) or
N(B) = N(P). since N(P) is arbitrary neutrosophic
ideal of N(S) so very neutrosophic ideal of a
neutrosophic intra-regular LA-semigroup N(S) is prime.
Theorem 4.6. Every neutrosophic ideal of a neutrosophic
intra-regular LA-semigroup N (S) is neutrosophic prime
if and only if N(S) is totally ordered under inclusion.

Proof. Assume that every ideal of N(S) is neutrosophic
prime. Let N(P) and N(Q) be any neutrosophic ideals
of N(S) , o) by Lemma 4.2,
N(P)N(Q)=N(P)"N(Q), where N(P) "N(Q)
is neutrosophic ideal of N(S), so is neutrosophic prime,

therefore,  N(P)N(Q) = N(P)nN(Q),  which
implies that N(P) < N(P)nN(Q) or
N(Q)= N(P)NAN(Q), which implies  that

N(P) = N(Q) or N(Q) < N(P). Hence N(S) is
totally ordered under inclusion.
Conversely, assume that N(S) is totally ordered under

inclusion. Let N(I) , N(J) and N(P) be any
neutrosophic  ideals of  N(S) such  that
N(I)N(J) = N(P). Now without loss of generality
assume that N (1) < N(J) then

N(1) =[N =N()N(I)

< N(N@J) = N(P).

Therefore, either N(1) < N(P) or N(J) = N(P) ,
which implies that N (P) is neutrosophic prime.
Theorem 4.7. The set of all neutrosophic ideals N (1), of
a neutrosophic intra-regular N(S) with left identity
e+el forms a semilattice structure.
Proof. Let N(A) , N(B) € N(I)s, since N(A) and
N(B) are neutrosophic ideals of N(S) so we have

[N(A)N(B)IN(S) = [N(A)N(BJIIN(S)N(S)]
= [N(AN(SJIIN(B)N(S)]
< N(A)N(B).

Also N(S)[N(A)N(B)] = [N(S)N(SJIIN(A)N(B]]

= [N(S)N(AJIIN(S)N(B)]
< N(A)N(B).

Thus N(A)N (B) is a neutrosophic ideal of N(S) .

Hence N (1), is closed. Also using Lemma ij, we have,
N(A)N(B)=N(A)nN(B)=N(B)NN(A)=N(B)N(A)
which implies that N(l), is commutative, so is
associative. Now by using Lemma i, [N (A)]* = N(A),

forall N(A) e N(I),.Hence N(I), is semilattice.
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Abstract. We have introduced for the first time the
degree of dependence (and consequently the degree of
independence) between the components of the fuzzy set,
and also between the components of the neutrosophic set

in our 2006 book’s fifth edition [1]. Now we extend it for
the first time to the refined neutrosophic set considering
the degree of dependence or independence of
subcomponets.

Keywords: neutrosophy, neutrosophic set, fuzzy set, degree of dependence of (sub)components, degree of independence of

(sub)components.

1 Refined Neutrosophic Set.

We start with the most general definition, that of a
n-valued refined neutrosophic set A. An element x from
A belongs to the set in the following way:

x(Ty, Ty, oo, Tys I 1y, o, s Fy, By, Fs) €4, (1)

where p,r,s = 1 are integers,andp +r +s =n > 3,
where

Tl,Tz,...,Tp; 11'12""'IT; Fl'FZF""F; (2)

are respectively sub-membership degrees, sub-indeter-
minacy degrees, and sub-nonmembership degrees of
element x with respect to the n-valued refined
neutrosophic set A.

Therefore, one has n (sub)components.

Let’s consider all of them being crisp numbers in
the interval [0, 1].

2 General case.

Now, in general, let’s consider n crisp-components
(variables):

Y1, Y2s s Yn € [0,1]. ®)

If all of them are 100% independent two by two,
then their sum:

0<y;+y,+ ..+, <n 4)

But if all of them are 100% dependent (totally
interconnected), then

0<y;+y,+ ..+y, <1 (5)

When some of them are partially dependent and
partially independent, then

yi+y,+ . +y, €(1,n). (6)

For example, if y; and y, are 100% dependent, then
0<y; +y, <1, )

while other variables ys, ..., y,, are 100% independent of
each other and also with respect to y, and y,, then

0<y3+--+yn<n-2 8)
thus

0<y;+ty,ty; +-+y, <n—-1 9)
3  Fuzzy Set.

Let T and F be the membership and respectively the
nonmembership of an element x (T, F) with respect to a
fuzzy set A, where T, F are crisp numbers in [0, 1].

If T and F are 100% dependent of each other, then
one has as in classical fuzzy set theory

0<T+F<1. (10)

But if T and F are 100% independent of each other
(that we define now for the first time in the domain of
fuzzy setand logic), then

0<T+F<2. (11)

We consider that the sum T+ F =1 if the
information about the components is complete, and
T + F < 1 if the information about the components is
incomplete.

Similarly, T + F = 2 for complete information, and
T + F < 2 for incomplete information.

For complete information on T and F, one has
T+FeL2].

4 Degree of Dependence and Degree
of Independence for two Components.
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In general (see [1], 2006, pp. 91-92), the sum of two
components x and y that vary in the unitary interval [0,
1] is:

0<x+y < 2-d°(xy), (12)

where d°(x,y) is the degree of dependence between x
andy.

Therefore 2- d°(x,y) is the degree of
independence between x and .

Of course, d°(x,y) € [0,1], and it is zero when x
and y are 100% independent, and 1 when x and y are
100% dependent.

In general, if T and F are d% dependent [and
consequently (100 — d)% independent], then

0<T+F <2-d/100. (13)

5 Example of Fuzzy Set with Partially
Dependent and Partially Independent
Components.

As an example, if T and F are 75% (= 0.75)
dependent, then

0<T+F<2-075=125 (14)

6 Neutrosophic Set

Neutrosophic set is a general framework for
unification of many existing sets, such as fuzzy set
(especially intuitionistic fuzzy set), paraconsistent set,
intuitionistic set, etc. The main idea of NS is to
characterize each value statement in a 3D-Neutrosophic
Space, where each dimension of the space represents
respectively  the  membership/truth  (T), the
nonmembership/falsehood (F), and the indeterminacy
with respect to membership/nonmembership (1) of the
statement under consideration, where T, I, F are
standard or non-standard real subsets of 10, 1*[ with not
necessarily any connection between them.

For software engineering proposals the classical
unit interval [0, 1] is used.

For single valued neutrosophic set, the sum of the
components (T+I+F) is (see [1], p. 91):

0 < T+HI+F <3, (15)
when all three components are independent;
0 <THI+F <2, (16)

when two components are dependent, while the third
one is independent from them;

0<T+I+F <1, @a7n

when all three components are dependent.

When three or two of the components T, I, F are
independent, one leaves room for incomplete
information (sum < 1), paraconsistent and contradictory

information (sum > 1), or complete information (sum =
1).

If all three components T, I, F are dependent, then
similarly one leaves room for incomplete information
(sum < 1), or complete information (sum = 1).

The dependent components are tied together.

Three sources that provide information on T, I, and
F respectively are independent if they do not
communicate with each other and do not influence each
other.

Therefore, max{T+I+F} is in between 1 (when the
degree of independence is zero) and 3 (when the degree
of independence is 1).

7 Examples of Neutrosophic Set with
Partially Dependent and Partially
Independent Components.

The max{T+I+F} may also get any value in (1, 3).

a) For example, suppose that T and F are 30%
dependent and 70% independent (hence T + F <2-0.3 =
1.7), while 1 and F are 60% dependent and 40%
independent (hence | + F <2-0.6 = 1.4). Then max{T +
I+F}=24andoccursforT=1,1=0.7, F=0.7.

b) Second example: suppose T and | are 100%
dependent, but | and F are 100% independent. Therefore
T+I<landI+F<2 thenT+I1+F<2.

8 More on Refined Neutrosophic Set

The Refined Neutrosophic Set [4], introduced for
the first time in 2013. In this set the neutrosophic
component (T) is split into the subcomponents (T4, T,,
..., Tp) which represent types of truths (or sub-truths),
the neutrosophic component (1) is split into the
subcomponents (I, I, ..., I;) which represents types of
indeterminacies (or sub-indeterminacies), and the
neutrosophic components (F) is split into the
subcomponents (Fy, F», ..., Fs) which represent types of
falsehoods (or sub-falsehoods), such that p, r, s are
integers>landp+r+s=n2>4. (18)

When n = 3, one gets the non-refined neutrosophic
set. All Tj, I, and F, subcomponents are subsets of [0,
1].

: Let’s consider the case of refined single-valued
neutrosophic set, i.e. when all n subcomponents are
crisp numbers in [0, 1].

Let the sum of all subcomponents be:

S:iTj+ilk+iF, (19)
1 1 1

When all subcomponents are independent two by
two, then
0<S<n (20)
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If m subcomponents are 100% dependent, 2 < m <
n, no matter if they are among T, I, F, or mixed, then
0<S<n-m+l (21)
and one has S = n—m + 1 when the information is
complete, while S < n—m + 1 when the information is
incomplete.

9 Examples of Refined Neutrosophic Set
with Partially Dependent and Partially
Independent Components.

Suppose T is split into Ty, T,, Ts, and 1 is not split,

while F is split into F{, F,. Hence one has:

{T1, To, Tsy I Fy, o} (22)

Therefore a total of 6 (sub)components.

a) If all 6 components are 100% independent two

by two, then:
0<T +T,+T3+I1+F +F,<6 (23)

b) Suppose the subcomponets T,, T,, and F; are
100% dependent all together, while the others
are totally independent two by two and
independent from Ty, Ty, Fy, therefore:

0<T;+T,+F <1 (24)
whence

0<T;+T+Ts+I+F +F,<6-3+1=4. (25

One gets equality to 4 when the information is
complete, or strictly less than 4 when the information is
incomplete.

c) Suppose in another case that T, and | are 20%
dependent, or d°(Ty, ) = 20%, while the others
similarly totally independent two by two and
independent from T, and I, hence

0<T,+1<2-02=18 (26)
whence
0<T +Ty+T3+1+F +F,<18+4=58, 27)
since 0 <T,+ Tz +F; +F, <4, (28)

Similarly, to the right one has equality for complete
information, and strict inequality for incomplete
information.

Conclusion.

We have introduced for the first time the degree of
dependence/independence between the components of
fuzzy set and neutrosophic set. We have given easy
examples about the range of the sum of components,
and how to represent the degrees of dependence and
independence of the components. Then we extended it
to the refined neutrosophic set considering the degree of
dependence or independence of subcomponets.
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Abstract. The present paper proposes neutrosophic soft
multi-attribute decision making based on grey relational
projection method. Neutrosophic soft sets is a combina-
tion of neutrosophic sets and soft sets and it is a new
mathematical apparatus to deal with realistic problems in
the fields of medical sciences, economics, engineering,
etc. The rating of alternatives with respect to choice pa-
rameters is represented in terms of neutrosophic soft sets.

The weights of the choice parameters are completely un-
known to the decision maker and information entropy
method is used to determine unknown weights. Then,
grey relational projection method is applied in order to
obtain the ranking order of all alternatives. Finally, an il-
lustrative numerical example is solved to demonstrate the
practicality and effectiveness of the proposed approach.

Keywords: Neutrosophic sets; Neutrosophic soft sets; Grey relational projection method; Multi-attribute decision making.

1 Introduction

In real life, we often encounter many multi-attribute
decision making (MADM) problems that cannot be
described in terms of crisp numbers due to inderminacy
and inconsistency of the problems. Zadeh [1] incorporated
the degree of membership and proposed the notion of
fuzzy set to handle uncertainty. Atanassov [2] introduced
the degree of non-membership and defined intuitionistic
fuzzy set to deal with imprecise or uncertain decision
information. Smarandache [3, 4, 5, 6] initiated the idea of
neutrosophic sets (NSs) by wusing the degree of
indeterminacy as independent component to deal with
problems involving imprecise, indeterminate and
inconsistent information which usually exist in real
situations. In NSs, indeterminacy is quantified and the
truth-membership, indeterminacy-membership, falsity-
membership functions are independent and they assume
the value from ] 0, 1" [ However, from scientific and
realistic point of view Wang et al. [7] proposed single
valued NSs (SVNSs) and then presented the set theoretic
operators and various properties of SVNSs.

Molodtsov [8] introduced the soft set theory for
dealing with uncertain, fuzzy, not clearly described objects
in 1999. Maji et al. [9] applied the soft set theory for
solving decision making problem. Maji et al. [10] also

defined the operations AND, OR, union, intersection of
two soft sets and also proved several propositions on soft
set operations. However, Ali et al. [11] and Yang [12]
pointed out that some assertions of Maji et al. [10] are not
true in general, by counterexamples. The soft set theory
have received a great deal of attention from the researchers
and many researchers have combined soft sets with other
sets to make different hybrid structures like fuzzy soft sets
[13], intuitionistic fuzzy soft sets [14], vague soft sets [15]
generalized fuzzy soft sets [16], generalized intuitionistic
fuzzy soft [17], possibility vague soft set [18], etc. The
different hybrid systems have had quite impact on solving
different practical decision making problems such as
medical diagnosis [16, 18], plot selection, object
recognition [19], etc where data set are imprecise and
uncertain. Maji et al. [13, 14] incorporated fuzzy soft sets
and intuitionistic soft sets based on the nature of the
parameters involved in the soft sets. Cagman et al. [20]
redefined fuzzy soft sets and their properties and then
developed fuzzy soft aggregation operator for decision
problems. Recently, Maji [21] introduced the concept of
neutrosophic soft sets (NSSs) which is a combination of
neutrosophic sets [3, 4, 5, 6] and soft sets [8], where the
parameters are neutrosophic sets. He also introduced
several definitions and operations on NSSs and presented
an application of NSSs in house selection problem. Maji
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[22] further studied weighted NSSs by imposing some
weights on the parameters. Based on the concept of
weighted NSSs, Maji [23] solved a multi-criteria decision
making problem.

MADM problem generally comprises of selecting the
most suitable alternative from a set of alternatives with
respect to their attributes and it has received much
attention to the researchers in the field of decision science,
management, economics, investment [24, 25], school
choice [26], etc. Grey relational analysis (GRA) [27] is an
effective tool for modeling MADM problems with
complicated interrelationships between numerous factors
and variables. GRA is applied in a range of MADM
problems such as agriculture, economics, hiring
distribution [28], marketing, power distribution systems
[29], personal selection, teacher selection [30], etc. Biswas
et al. [24] investigated entropy based GRA method for
solvingg MADM problems under single valued
neutrosophic assessments. Biswas et al. [25] also studied
GRA based single valued neutrosophic MADM problems
with incomplete weight information. Mondal and Pramanik
[26] presented a methodological approach to select the best
elementary school for children using neutrosophic MADM
with interval weight information based on GRA. Mondal
and Pramanik [31] also developed rough neutrosophic
MADM based on modified GRA.

Zhang et al. [32] developed a new grey relational
projection (GRP) method for solving MADM problems in
which the attribute value takes the form of intuitionistic
trapezoidal fuzzy number, and the attribute weights are
unknown. In this paper, we have extended the concept of
Zhang et al. [32] to develop a methodology for solving
neutrosophic soft MADM problems based on grey
relational projection method with unknown weight
information.

Rest of the paper is organized as follows. Section 2
presents some definitions concerning NS, SVNS, soft sets,
and neutrosophic soft sets. A neutrosophic soft MADM
based on GRP method is discussed in Section 3. In Section
4, we have solved a numerical example in order to demon-
strate the proposed procedure. Finally, Section 5 concludes
the paper.

2 Preliminaries

In this section we briefly present some basic defini-
tions regarding NSs, SVNSs, soft sets, and NSSs.

2.1 Neutrosophic set
Definition 1 [3, 4, 5, 6] Consider X be a universal space of
objects (points) with generic element in X denoted by x.

Then a NS is defined as follows:

A= {X, (TA(X), 1 (X),FA (X)) | xe X}
where, T,(X), 1,(X), Fa(X): X = 10, 1 are the truth-

membership, indeterminacy-membership, and falsity-

membership functions, respectively and 0 < sup T,(x) +
sup 1, (x) + sup Fy(x) <3". We consider the NS which

assmes the value from the subset of [0, 1] because] 0, 1*
[ will be hard to apply in real world science and
engineering problems.

Definition 2 [7] Let X be a universal space of points with

generic element in X represented by x. Then a SVNS N
c X is characterized by a truth-membership function

T5(x), a indeterminacy-membership function 15 (x), and
a falsity-membership function F(x) with T (x), 15(x),
F,(x): X — [0, 1] for each point xe X and we have,
0<sup T (x) +sup I (x) +sup F;(x) <3.

Definition 3 [7] The complement of a SVNS N is

represented by NC and is defined by

Tie () =Fi(¥) 5 T5c () =1 - 150 5 Fge (x) = T (%)
Definition 4 [7] For two SVNSs NA and N B

N, = {x, <TNA (9.1, (0).Fg. (x)> | xe X}

and

Ne={x (Ty, 00,15, 00.F, () | xe X}

1. N, c Ngifand only if

To, (0 < T (05 15 () =2 15 (%) F; (%) 2 Fy (X)

2. N, =Njif and only if

To, (0 =Ty (0 Iy, ) =15 () :F (X)=F (X); Vxe

X.
3. NA v NB
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x, max{T 5 (x), Ty ()} min{l i (x), 15 (0},
CAAmi{Fy (0, Fy_ (9} x e X }
4. NA N NB

xemindT g (0, Ty, (0} max{l g (x), 1, (9},
- max{Fy (x),Fy (0} xeX ’

Definition 5 [7] The Hamming distance between NA

O (To, 0005 (0. F, 0)) | xiexy and N,

{x, <TNB () 15, (). F, (xi)> | xie X} is defined as given

below.
H (NA ) NB) :%ié | TNA(Xi) 'TNB(Xi) | +] INA(Xi) -
INB(Xi) |+ FNA(Xi)'FNB(Xi) | 1)

with the property: 0< H (NA : NB) <1.

2.2 Soft sets and Neutrosophic soft sets

Definition 6 [8] Suppose U is a universal set, F is a set of
parameters and P (U) is a power set of U. Consider a non-
empty set A, where A c— F. A pair (M, A) is called a soft
set over U, where M is a mapping given by M: A— P (U).
Definition 7 [21] Let U be an initial universal set. Let F be
a set of parameters and A be a non-empty set such that A
c F. P(U) represents the set of all neutrosophic subsets of
U. A pair (M, A) is called a NSS over U, where M is a
mapping given by M: A— P (U).

In other words, (M, A) over U is a parameterized family f
of all neutrosophic sets over U.

Example: Let U be the universal set of objects or points. F
= {very large, large, medium large, medium low, low, very
low, attractive, cheap, expensive} is the set of parameters
and each parameter is a neutrosophic word or sentence
concerning neutrosophic word. To define neutrosophic soft
set means to find out very large objects, large objects,
medium large objects, attractive objects, and so on. Let U

= (ug, Uy, Us, Uy, Us, Ug) be the universal set consisting of six

objects and F = {f, f,, f3, f;} be a set of parameters. Here,
f1, fa, fs, f4 stand for the parameters ‘very large’, ‘large’,
‘attractive’, ‘expensive’ respectively. Suppose that,

M (very large) = {< uy, 0.8, 0.3, 0.4>, < u,, 0.7, 0.3, 0.5>,
<us 0.8,0.2,0.3>, <u,0.6, 0.4, 05> <us 0.9,0.3,0.3>,
<ug 0.8, 0.4, 0.55},

M (large) = {< uy, 0.7, 0.3, 0.2>, < Uy, 0.6, 0.3, 0.4>, < us,
0.6,0.4,0.4>,< u4,0.6,0.3,0.2>, < us, 0.7, 0.5, 0.4>, < U,
0.6, 0.5, 0.6>},

M (attractive) = {< uy, 0.9, 0.2, 0.2>, < uy, 0.8, 0.3, 0.2>, <
us, 0.8, 0.2, 0.3>, < uy,, 0.9, 0.4, 0.2>, < us, 0.8, 0.5, 0.4>, <
Ug, 0.7, 0.4, 0.6>},

M (expensive) = {< uy, 0.8, 0.2, 0.3>, < u,, 0.9, 0.1, 0.2>,
<us 0.8,0.3,0.5>,<u,0.9,0.3,0.3> < us, 0.8, 0.4, 0.5>,
<ug 0.8,0.2,0.5>}

Therefore, M (very large) means very large objects, M
(attractive) means attractive objects, etc. Now we can
represent the above NSS (M, A) over U in the form of a

table (See the Table 1).
Table 1. Tabular form of the NSSs (M, A)

U f1 = very f, = large fa= f,=
large attractive expensive
U (0.8,0.3, (0.7, 0.3, (0.9,0.2, (0.8,0.2,
0.4) 0.2) 0.2) 0.3)
Uy (0.7, 0.3, (0.6, 0.3, (0.8,0.3, (0.9,0.1,
0.5) 0.4) 0.2) 0.2)
Us (0.8,0.2, (0.6, 0.4, (0.8,0.2, (0.8,0.3,
0.3) 0.4) 0.3) 0.5)
Uy (0.6, 0.4, (0.6, 0.3, (0.9, 0.4, (0.9,0.3,
0.5) 0.2) 0.2) 0.3)
Us (0.9,0.3, (0.7, 0.5, (0.8, 0.5, (0.8,0.4,
0.3) 0.4) 0.4) 0.5)
Ug (0.8,0.4, (0.6, 0.5, (0.7,0.4, (0.8,0.2,
0.5) 0.6) 0.6) 0.5)

Definition 8 [21]: Consider two NSSs (M, A) and (M,, B)
over a common universe U. (M;, A) is said to be
neutrosophic soft subset of (M,, B) if M; < M,, and

T 0 < Tup 0 Tug O < Tug 0 Fug &)
< FMz(f) (x), V fe A, xeU. We represent it by (My,
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Definition 9 [21]: Let (Mg, A) and (M,, B) be two NSSs
over a common universe U. They are said to be equal i.e.
(Mg, A) = (My, B) if (M1, A) < (My, B) and (M, B) < (M4,
A).

Definition 10 [21]: Consider F = {fy, T, ..., f;} be a set of
parameters. Then, the NOT of F is defined by NOT F =
{not f, not f,, ..., not fg}, where it is to be noted that NOT
and not are different operators.

Definition 11 [21]: The complement of a neutrosophic soft
set (M, A) is denoted by (M, A)© and is represented as (M,
A)° = (M, NOT A) with T, e (%) = Ry (005 1y,c ()

=l (05 Fyyep (%) =Ty (), where M®: NOT A— P (U).

Definition 12 [21]: A NSS (M, A) over a universe U is
called a null NSS with respect to the parameter A if

Tup (M) =1ye (M) =Fy, (M =0, Vfe A VmeU.

Definition 13 [21]: Let (M;, A) and (M,, B) be two NSSs
over a common universe U. The union (M;, A) and (M, B)
is defined by (M1, A) U (M,, B) = (M, C), where C = A
U B and the truth-membership, indeterminacy-
membership and falsity-membership functions are defined
as follows:
Tug (M) = Ty (M), iffe My - My,
Tw. 0 (m), if fe My— My,

max (Tml(n (m), TMZ@ (m)), iffe M\ M,.

L (M) = Ly, (M), iffE My~ My,
:IMz(ﬁ (m), iffe M, — My,
| m) +1 m
= Do )2 w0 M e My AM,
Fug (M) = Fv, 0 (m), if fe M- M,,

= FMz(ﬁ (m), iffe M, — My,
=min (Fy o (M), Ry, o (M), iffe MiAM,.

Definition 14 [21]: Suppose (M, A) and (M,, B) are two
NSSs over a common universe U. The intersection (M4, A)
and (M,, B) is defined by (M;, A) n (M,, B) = (N, D),

A n B and

indeterminacy-membership

where D = the truth-membership,

and  falsity-membership

functions of (N, D) are as follows:
Ty (M) = min (TMl(ﬁ (m), Tu,0 (M); Ty (M)

Iy I
_ wo (m); 0 (M) ; Fyg (M) = max ( Ry, (M),

Fy, o (M)).

3 A neutrosophic soft MADM based on grey rela-
tional projection method

Assume G = {01, 9, -.., gp}, (0= 2) be a discrete set of
alternatives and A ={a;, a,, ..., ag}, (0=2) be a set of
choice parameters under consideration in a MADM
problem. The rating of performance value of alternative g;,
i=1,2, ..., pwith respect to the choice parameter a;, j = 1,
2, ..., q is represented by a tuple t;; = (TM(aJ) (9, IM(ai) (9),
Fue,) (9)), where for a fixed i the value tj i=1,2, ..., p;j
=1,2,...,q) denotes NSS of all the p objects. Let w = {wy,
W, ..., Wg} be the weight vector a%signed for the choice
parameters, where 0< w; <1with XW,; = 1, but specific
value of w; is unknown. Now the stéPs of decision making
based on neutrosophic soft information are described as
given below.

Step 1. Construction of criterion matrix with SVNSs

GRA method is appropriate for dealing with
quantitative attributes. However, in the case of qualitative
attribute, the performance values are taken as SVNSs. The
performance values t; (i=1,2,...,p,j=1,2,...,q) could
be arranged in the matrix called criterion matrix and whose
rows are labeled by the alternatives and columns are
labeled by the choice parameters. The criterion matrix is
presented as follows:

t11 t12 th
ty 1ty th
D, =<tﬁi> =
I pxq
tpl th ) tpq

where tij = (Tijx Iij: Fij) where Tij; Iiju FijE [O, 1] and OSTij +
Iij + Fijﬁ?), 1=1,2, ..., pJ =1,2,..., q.

Step 2. Determination of weights of the attributes

In the decision making situation, the decision maker
encounters problem of identifying the unknown attributes
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weights, where it may happen that the weights of attributes
are different. In this paper, we use information entropy
method in order to obtain unknown attribute weight. The
entropy measure can be used when weights of attributes
are dissimilar and completely unknown to the decision
maker. The entropy measure [33] of a SVNS N =
{x, <TN (), 15, (X), F5 () > is defined as given below.

= 1
E(N)=1- ST 00)+Fg )l ) -150) @)
which has the following properties:

(i). E;(N ) =0if N isa crisp set and I5(x)=0,VxeX

(ii). Ei (N) = 0 if (T (), 15,(6), F (%) ) = <05, 05,

0.5>, V xeX.
(iii). Ei(Nl) < Ei(Nz) if Nlis more uncertain than NZ ie.

Tﬁl(xi) + Fﬁl(xi) < TNZ(Xi) + FNZ(Xi)

amnﬁxx)—mxxﬂs

1, ()12, ().

(iv). Ei(N)=E(N®),V xeX

Therefore, the entropy value E; of the j-th attribute can be

obtained as follows:
1
E=1- a}gﬁTh(xi)4—F”(xi»I”(xi)—lg(xiﬂ,

G=1,2,...,09). (3)
Here, 0<E;<1 and according to Hwang and Yoon [34]
and Wang and Zhang [35] the entropy weight of the j-th
attribute is defined as follows:

_E.
; L with0< w; <land $w, =1 4
s1-E, -

=1

W =

Step 3. Determination of ideal neutrosophic estimates
reliability solution (INERS) and
estimates un-reliability solution (INEURS)

ideal neutrosophic

Dezart [36] proposed the idea of single valued
neutrosophic cube. From this cube one can easily obtain
ideal neutrosophic estimates reliability solution (INERS)

and ideal neutrosophic estimates un-reliability solution
(INEURS). An INERS P; = [pf ,p5 > ..., Py 1 is a
solution in which every element py = <T;, 17, F >,
where T;" = max {Ti} 1} = miin {li}, F/ = miin {Fi} in the
criteria matrix Di=<Ti li Fj>pxafori=1,2, ..., p:j=
1,2, ..., q. Also, an INEURS Py =[p5 ,pg » - P5 ]I

a solution in which every elementpy =<T;, 1, F >pxq,
]

LA

where T, = miin {Ti. 1 = m?x {li}, F = m?x {Fij} in the
criterion matrix D = < Ty, Iy, Fj >pxqfori=1,2, ..., p;j
=1,2,...,q.

Step 4. Grey relational projection method

3.1 Projection method

Definition 15 [37, 38]: Consider a = (ay, ay, ..
= (by, by, ...
angle between vectors a and b is defined as follows:

L ag)andb

, bg) are two vectors, then cosine of included

3 (ab;)
Cos(a b= —=2 — ®)

q q
sa? x.[xh?
=11 j=1 !

Obviously, 0 < Cos (a, b) <1, and the direction of a and b
is more accordant according to the bigger value of Cos (a,
b).

Definition 16 [37, 38]: Leta = (ay, a,,

then norm of a is given by

— [3,.2
lall= 22 G)

The direction and norm are two important parts of a vector.
However, Cos (a, b) can only compute whether their
directions are accordant, but cannot determine the
magnitude of norm. Therefore, the closeness degree of two
vectors can be defined by the projection value in order to
take the norm magnitude and cosine of included angle
together.

..., dg) be a vector,

Definition 17 [37, 38]: Leta = (ay, @y, ..., a5) and b = (b,
b,, ..., bg) be two vectors, then the projection of vector a
onto vector b is defined as follows:
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Pr(a)=| a|l Cos (a, b)=

z(a 3 (ab;)
/za == @)
\/za] x\/zbf \/zbJ2

j=1 =1 j=1

The bigger the value of Pr (a) is, the more close the vector

b to the vector a is.

3.2 Grey correlation projection method

The grey correlation projection method is a combination of
grey correlation method and projection method. The
method is presented in the following steps.

Step-1. The grey relational coefficient of each alternative

from INERS is obtained from the following formula:

min min Q +c max max Q

é’i}. = : J 8

Qjf +omax max Q
i i

where Qp = d( th , pgj ) = Hamming distance

betweent; andpy ,(i=1,2,..,p;j=1,2, .., Q).

Also, the grey relational coefficient of each alternative
from INEURS is obtained from the formula given below:

min min Q;; +c max max Q;
- _ I ] I ]
gy = . - ©)
Q;; + o max max Q;
i i

d ty . PR ) =
2,..p;1=1,2, ..

where Q; = Hamming distance

between tN, and pﬁ, ,(i=1 , Q).
Here, o €[0, 1] represents the environmental or resolution
coefficient and it is used to adjust the difference of the

relation coefficient. Generally, we seto=0.5.

Step-2. Grey correlation coefficient matrix ¢ between

every alternative and INERS is formulated as given below.

GGy e

Cho o oo
{r=

_é/[:rl é’1+2 é/;q ]

and correlation coefficient between INERS and INERS is:

é’(;:(é/()qv é/(]+29 AR é/(;.q):(l’ 1= Tt 1)

Grey correlation coefficient matrix {~ between every

alternative and INEURS is constructed as follows.

& e G|

(o $n i
é’ T =

;p_l éTz é/p_q

Simila;ly, the correlation coe_fficient between INEURS and
INEURS is:

go_: (410_11 C_‘J’O_Z! T é,o_q):(ls 1’ T 1)

Step-3. Weighted neutrosophic grey correlation coefficient
matrix G between every alternative and INERS is

formulated as given below.

Wl é’lJrl W2 é/l+2 Wq éllt]

W1§2+1 WZ é/lJrZ Wq é/2+q
G'=

Wlé’;;rl W2 é/lJFZ W é/pq

The Welghted correlation coefﬂment between INERS and
INERS is:

Gy = (W1 Gg1, Waligps s WoLigq) = (Wi, Wo, ..., W)
Weighted neutrosophic grey correlation coefficient matrix

G between every alternative and INEURS is presented as

follows:
Wil W&o, W, g 1:1
Wl 41271 WZ gl; Wq C:Eq
G =
Wl é/p71 W2 é’l; W é/pq

and S|m|IarIy, weighted correlatlon coefficient between
INEURS and INEURS is presented as follows:

Gy = (W1 &1, Walggs s WqGoq ) = (Wi, Wa, ..., W)
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Step-4. Calculation of the weighted grey correlation of Table 2. Tabular form of criterion decision matrix
alternative g; onto the INERS can be obtained as: | | peaytiful cheap ingood | moderate | wooden
. repairing
Prr = G Cos G, G, =
' I ol © o) g | (06,03, | (05, (0.7, (0.8, 0.5, | (0.6,
q N q N 0.8) 0.2, 0.3, .4) 0.6) 0.7,
. S JEl((Wjé/ij )% Wj) JEl((Wjé/ij )% Wj) 0.6) 0.2)
/z W. X =
j:l( Jg” %(W +)2 “ ng ng g | (0.7, (0.6, (0.7, (0.6, 0.8, | (0.8,
=) i 1) = 0.2,0.6) | 0.3, 0.5, .6) 0.3) 0.1,
0.7) 0.8)
_E(wj?gij*) gs | (08, (8, (0.3, 05, | (0.7, 0.2, | (0.7,
== (10) 0.3,04) |05, 0.6) 0.1) 0.2,
42 0.1) 0.6)
= 9. | (0.7, 05, | (0.6, (0.7, 0.6, | (0.8, 0.3, | (0.8,
Similarly, the weighted grey correlation of alternative g; 06) 8'% 08) 06) 8'%
onto the INEURS can be obtained as follows: gs | (0.8, 0.6, | (0.5, (0.8, (0.7, 0.8, | (0.7,
) ) 0.7) 0.6, 0.7,0.6) 0.3) 0.2,
P =l G I Cos G G ) = 0.8) 06)

T Ewg)xw)  L(wigg)xw)
jEl(ngi} 2 x \/ ! =1 —

q N2 q 2
= (Wici) X\/ Wi

L(wicy)

q
/zw?
!

Step-5. Calculation of the neutrosophic relative relational

(11

degree

The ranking order of all alternatives can be obtained
according to the value of the neutrosophic relative
relational degree. We calculate the neutrosophic relative
relational degree by using the following equation

Pr’
Ci=———,i=1,2,....p. 12
' Pr."+ Pr~ P (12)
Rank the alternatives according to the values of C;, i =
1, 2, ..., p in descending order and choose the alternative

with biggest C;.

4 A numerical example

We consider the decision making problem for
selecting the most suitable house for Mr. X [21]. Let Mr. X
desires to select the most suitable house out of p houses on
the basis of g parameters. Also let, the rating of or
performance value of the house g;, i = 1, 2, ..., p with
respect to parameter a;, j = 1, 2, ..., q is represented by
ty = (Teg,) @), IG(fj)(gi_) +Fo s, (@) ) such that f_or a fixed
i, tﬂ.. denotes neutrosophic soft set of all the g objects. Let,
A = {beautiful, cheap, in good repairing, moderate,
wooden} be the set of choice parameters. The criterion
decision matrix (see Table 2) is presented as follows:

The proposed procedure is presented in the following steps.
Step 1. Calculation of the weights of the attribute

Entropy value E; j =1, 2, ..., 5) of the j-th attribute can be
obtained from the equation (3) as follows:

E; =0.576, E; = 0.556, E3 = 0.74, E; = 0.564, Es = 0.24.
Then the corresponding normalized entropy weights are
obtained as given below.

w; = 0.2155, Wg =0.2076, w3 = 0.2763, w, = 0.2111, ws =
0.0895, where > w; = 1.

Step 2. Calculdtion of INERS and INEURS

The INERS (P;) and INEURS (Pg) of the decision
matrix are shown as follows:

7=<(08,02,04); (08, 0.2, 0.1); (0.8, 0.3, 0.4); (0.8,
0.2,0.1); (0.8,0.1,0.2) >
P;=<(0.6,0.6,0.8); (0.5, 0.8, 0.8); (0.3, 0.7, 0.8); (0.6,
0.8, 0.6); (0.6, 0.7, 0.8) >
Step 3. Determine the grey relational coefficient of each
alternative from INERS and INEURS
The grey relational coefficient of each alternative from
INERS can be determined as follows:

[0.571 0532 1.000 0.532 0.532]
0.799 0500 0.665 0.470 0.615
7=11.000 0.799 0500 1.000 0.615
0.615 0.380 0.532 0.615 0.532
10571 0380 0.615 0.500 0.615 |

Similarly, the neutrosophic grey relational coefficient of
each alternative from INEURS can be obtained as given
below.
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[1.000 0.516 0.405 0.650  0.599 |
0.555 0555 0516 0.788 0516
¢;=[0483 0384 0714 0405 0516
0714 0880 0.650 0.555  0.599

1.000 0880 0555 0.714 0516 |

Step 4. Calculation of the weighted grey correlation
projection

Calculation of the weighted grey correlation projection of
alternative g; onto the INERS and INEURS can be
obtained from the equations (10) and (11) respectively as
follows:

Pr," = 0.1538, Pr, = 0.1353, Pr,; = 0.1686, Pr, = 0.1172,

Pr; =0.117;
Pr, = 0.1333, Pr, = 0.1283, Pr; = 0.1157, Pr, = 0.1502,
Pr, = 0.1627.

Step 5. Calculate the grey relative relational degree

We compute the grey relative relational degree by using
equation (12) as follows:

C, = 0.5357, C, = 0.5133, C3 = 0.5930, C, = 0.4188, Cs =
0.4183.

Step 6. The ranking order of the houses can be obtained
according to the value of grey relative relational degree. It
is observed that C; > C; > C, > C, > Cs and so the highest
value of grey relative relational degree is Cs. Therefore, the
house g is the best alternative for Mr. X.

Note: We now compare our proposed method with the
method discussed by Maji [21]. Maji [21] first constructed
the comparison matrix and then computed the score S; of g;,
V i. The preferable alternative is selected based on the
maximum score of S;. The ranking order of the houses is
given by gs > g3 > g4 > g1 > 0. In the present paper, a neu-
trosophic soft MADM problem through grey correlation
projection method is proposed with unknown weights in-
formation. The ranking of alternatives are determined by
the relative closeness to INERS which combines grey rela-
tional projection values from INERS and INEURS to each
alternative. The ranking order of the houses is presented as
03 > 01 > 0> > g4 > gs. However, if he rejects the house h;
for any reason, his next preference will be g;.

5 Conclusion

In this paper, we have presented a new approach for
solving neutrosophic soft MADM problem based on GRP
method with unknown weight information of the choice
parameters. The proposed approach is a hybrid model of
neutrosophic soft sets and GRP method where the choice
parameters are represented in terms of single valued
neutrosophic information. The weights of the parameters
are determined by using information entropy method. In

the proposed approach, grey relative relational degrees of
all alternatives are calculated in order to rank the
alternatives and then the most suitable option is selected.
An illustrative example for house selection is provided in
order to verify the practicality and effectiveness of the
proposed approach. We hope that that the proposed
approach can be effective in dealing with different MADM
problems such as cluster analysis, image processing,
medical diagnosis, pattern recognition, object selection.

In the future, we shall investigate generalized neutro-
sophic soft GRP, interval neutrosophic soft GRP, intuition-
istic soft GRP methods for practical MADM problems.
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Abstract. This article sheds light on the
possibility of finding the minimum solution set
of neutrosophic relational geometric progra-
mming with (max, min) composition. This
work examines the privacy enjoyed by both
neutrosophic logic and geometric progra-
mming, and how it affects the minimum
solutions. It is the first attempt to solve this

type of problems. Neutrosophic relation
equations are important branches of neutro-
sophic mathematics. At present they have been
widely applied in chemical plants, transport-
ation problem, study of bonded labor problem

[5] .

Keyword:- Geometric Programming, Neutrosophic Relational Equations, Fuzzy Integral
Neutrosophic Matrices, Minimum Solution, Fuzzy Neutrosophic Relational Geometric Programming

(FNRGP).

Introduction

The notion of neutrosophic relational
equations which are abundant with the concept
of indeterminacy, was first introduced by
Florentin Smarandache [5]. We call

x0A=b D

a neutrosophic relational equations, where
A = (aj))mxn IS fuzzy integral neutrosophic
matrix with entries from [0,1]Ul b=
(by,...,by),b; €[0,1]UI and ‘o' is the

(max - min) composition operator. The pio-
neering contribution for the theory of geome-
tric programming (GP) problems goes to
Zener , Duffin and Peterson in 1961. A large
number of applications for GP and fuzzy
relation GP can be found in business administ-
ration, technological economic analysis, resou-
rce allocation, environmental engineering,
engineering optimization designment and mod-
ernization of management, therefore it is sig-
nificant to solve such a programming. B.Y.
Cao proposed the fuzzy GP problems in 1987.
He was the first to deal with fuzzy relation
equations with GP at 2007. In a similar way to
fuzzy relational equations, when the solution
set of problem (1) is not empty, it's in general

a non-convex set that can be completely
determined by one maximum solution and a
finite number of minimal solutions. H.E.
Khalid presented in details and for the first
time the structure of maximum solution for
FNRGP at 2015. Recently there is not an
effective method to confirm whether the sol-
ution set has a minimal solution, which makes
the solving problem more difficult. In the
consideration of the importance of the GP and
the neutrosophic relation equation in theory
and applications, we propose a fuzzy neutro-
sophic relation GP, discussed optimal sol-
utions.

1. Fundamentals Concepts
Definition 1.1 [5]

Let N = [0,1] U I where | is the indetermi-
nacy. The m x n matrices A = {(a;;) | a;; €
N} are called fuzzy integral neutrosophic mat-
rices. Clearly the class of m X n matrices is
contained in the class of fuzzy integral
neutrosophic matrices.
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Definition 1.2
The optimization problem

min f(x) = (¢;Ax}*) V, .. ..., V(cpAxim
s.t.
x0A=Db
xeEN)(1<i<m)

is called (V, A) (max-min) fuzzy neutrosophic
relational GP. Where 4 = (a;;) (a;; €N,1 <
i<m,1<j<n) is an (m x n)-dimensional
fuzzy integral neutrosophic matrix, x =
(x4, %3, ..., Xp,) @n m-dimensional variable vec-
tor, ¢=(c; ,cp,cp) (c;=0) and b=
(by, by, ..., by) (b; € N) are (m & n) — dimen-
sional constant vectors respectively, y; is an ar-
bitrary real number.

Without loss of generality, the elements of b
must be rearranged in decreasing order and the
elements of the matrix A is correspondingly
rearranged.

Definition 1.3 [3]:

The neutrosophic algebraic structures are
algebraic structures based on sets of neutro-
sophic numbers of the formZ = a + bl, wh-
ere a, b are real (or complex) numbers, and a is
called the determinate part of Z and b is called
the indeterminate part of Z, while I =
indeterminacy, withml + nl = (m + n)
1,0-1 = 0,I"=1 for integer n > 1, and
I /1 = undefined. When a, b are real
numbers, then a + bl is called a neutro-
sophic real number. While if a, b are com-
plex numbers, then a + bl is called a ne-
utrosophic complex number.

Definition 1.4: [partial ordered relation of
integral fuzzy neutrosophic numbers]

Depending upon the definition of integral
neutrosophic lattice [5] , the author propose
the following axioms:

a- decreasing partial order

1-The greatest elementin [0,1) Ul is],
max(l,x) =1

vV x €[0,1)

2- The fuzzy values in a decreasing order will
be rearranged as follows :

1>x1>x2>X3>-'->xm20

)

3- One is the greatest element in [0,1] U I,
max(/,1) =1

b- Increasing partial order

1- the smallest element in (0,1JUTis I,
min(l,x) =1

vV x € (0,1]

2- The fuzzy values in increasing order will
be rearranged as follows :

0<x1<x2<X3<"'<XmS1
3- Zero is the smallest element in [0,1] U,
min(/,0) =0

Example :- To rearrange the following
matrices:-
b=[I .5 1 .85]

c=[11 01 .4 .1 .85
in

1- decreasing order

bT =[I I 0.85 0.5]
¢"=[11108504 0.10]

2- increasing order

bT=[I1 05 0.85]

cT=[011 0104 085 1]
Definition 1.5

If there exists a solution to Eq.(1) it's called
compatible.

Suppose X (4, b) = {(x1, x5, ..., xp)T € [0,1]"
Ul, I" =1|x0A = b,x; € N}is asolution set
of Eq.(1) we define x! < x? & x} < x?
(1<i<m)Vvxlx?€X(ADb). Where" <"
is a partial order relation on X (4, b).

Definition 1.6 [4]:

If 3% € X(A4,b),suchthatx < X,Vx € X(4,
b), then X is called the greatest solution to
Eq.(1) and
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fl aiijjoraij=bj=1]

b] aij > bj

)?i = 0 ai]- =1 and b] = [0,1] (3)
I b] =1l and aij = (0,1]
not comp.a;; = 0 and b; =1

Corollary 1.7 [2]:
If X(4,b) + @ .thenx € X(4,b).

Similar to fuzzy relation equations , the above
corollary works on fuzzy neutrosophic relation
equations.

Notes 1.8:

1- Every fuzzy variable is always a neutro-
sophic variable, but all neutrosophic variables
in general are not fuzzy variables. [5]

2- The set of all minimal solutions to Eq.(1)
are denoted by X (A,b) .

3- X (4, b) is non-convex, but it is composed
of several n-dimensional rectangular regions
with each rectangular region being a closed
convex set [2].

2. The theory concept for exponents of
variables in the geometric programming via
fuzzy neutrosophic relation equations:-

B.Y Cao (2010) [1] had discussed optimization
for fuzzy relation GP by considering the follo-
wing three cases:

1- if ¥, <0(1<i<m), then the greatest
solution X to Eq.(1) is an optimal solution for
problem (2).

2- if y; =0, then a minimal solution X to
Eq.(1) is an optimal solution to (2).

3- the optimal solution to optimization
problem (2) must exist in X(A4,b). Let
f(x*) = min{f(%)|¥ € X(4,b)}, where
x* € X(A4,b), then Vx €X(4,b) f(x)=
f(x*). Therefore , X* is an optimal solution to
optimization problem (2).

Note that, in a more general case X* may not
be unique.

As for the general situation, the exponent y; of
x; is either a positive number or a negative one
. B.Y.Cao proposed

R, ={ily;<01<i=<mj}
Ry, ={ily; =01 <i<mj}.

ThenR; N R, = @,R, UR, =4, where
i={12,..,m}.

Let f1(x) = [lier, xg“ v f2(0) = [lier, xz/i-

Then f(x) = f1(x)f>(x). Therefore, if some
exponent y; of x; are positive numbers while
others are negative, then x* is an optimal solu-
tion to optimization problem (2) where

. (R i €Ry

i = {X-* iE€R, )

l

Really the above work can be coincided for
our fuzzy neutrosophic relation in GP because
the variables exponents (y;) are still real
numbers in problem (2), note that there is
trouble in case of y; < 0 and corollary 3.3 ha-
ndled it.

3. An adaptive procedure to find the
minimal solution for fuzzy neutrosophic
geometric programming with (max,
min) relation composition.

Definition 3.1 [5]:

Matrix M = (Mij)mxn is called "matrix
pattern” where m;; = (%;,a;;) , this
matrix is important element in the process
of finding minimal solutions.

3.2 Algorithm:

Step 1- Rank the elements of b with decr-
easing order (definition 1.4) and find the
maximum solution & (see Eq.(3)).

Step 2- If 2 is not a solution to Eq.(1), then
go to step 15, otherwise go to step 3.

Step 3- Find the "matrix pattern” (definition
3.1).

Step 4- Mark m;;, which satisfies min(%;,
al-j) = b] .
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Step 5- Let the marked m;; be denoted by

Step 6- If jis the smallest j in all marked

my; , then set X;,~ to be the smaller one of the
two elements in 77; ;. .

Step 7- Delete the ijth row and the j;th
column of M and then delete all the columns
that contain marked f; ;, where j # j;.

Step 8- In all remained and marked fy; , find
the smallest j and set it to be j, , then let X;,"
be the smaller of the two elements in m;, ;, .

Step 9- Delete the iyth row and the j,th
column of M and then delete all the columns
that contain marked i, ;, where j # j,.

Step 10- Repeat step 7 and 8 until no marked
my; is remained .

Step 11- The other ¥;* , which are not set in
5-9, are set to be zero.

Step 12- Let ¥ = (%", %,", ..., %X, ") be the
quasi minimum for problem (2).

Step 13- Check the sign of y; if y; < 0, then
put £; instead of ;" unless &; = I (see Eq.(5))

Step 14- Printx* = ¥*, f(x*) and stop.
Step 15- Print "have no solution" and stop.

Corollary 3.3:

If y; < 0and the component (x; = 1) € %, th-
en the component X; € x* will be optimal for
problem (2).

So the Eq.(4) must be improved to appropriate
problem (2) as follow:-

*_{9?1-. i€ER, and %; # 1 .
YT l% i€eR,or((€R and %, =1) ®)

0
4. Numerical Example:-

Consider the following fuzzy neutrosophic
relation GP problem :-
Minf (x) = (1.54x?)V(IAx,)V (. 84x3)

V(.94x;2) V(. 7Axs )V (14xgY)
s. .

x0A = b where

I .2 .8 .1
.8 .2 .8 .1

1.9 .1 .4 .1

A= .3 .95 .1 .1
.85 I .1 .1
4.8 .1 0y

b =(.85,.6,.5,.1)

Itis clear that b is arranged in decreasing
order.

The maximum solution is
x =(0,5,.5,.6,0,.6)

o, (0,2) (0,8 (0.1)]
(5.8 (52 (5.8 (5.1
(5.9 (51 (54) (5.1
(6,3) (6,.95) (6,.1) (.6,.1)
(0,.85) (0, 0,.1)  (0,.1)
[(6,4)  (6,8) (6.1) (60)]

64
The elements satisfying min(%;, a;;) = b; are:
My, Me2, M33, Moy, M3y, Mys

ﬁiél-Z' ﬁi62' ﬁl23, ﬁi24— ) ﬁi34—l ﬁi44-

The element #i,, is of least column
number, therefore ¥; = min(.6,.95) = .6

At the same time, the fourth row and the
second column will be deleted.

As well as, the column included the elem-
ent m,, must be deleted.

All remained elements of the matrix M are

©,1) (0,.8)
(5,.8) (5,.8)
(5.9) (5,.4)
(0.85)  (0,.1)
(6,.5) (6,.1)

X;, = min(.5,.8) =.5
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Set fis :fu =5Zi5 :fis =0

So the quasi minimum is
xX* = (.6,.5,0,0,0,0)

The exponents of x4, X5, x¢ in objective func-
tion f(x) are negative, therefore

x*=(.6.50, .60.6 )
- L
from quasi from maximum

f(x)=(1540.6%)V({I A05)V(.840°)

V(0.940.6)V(740™)V(1A0.671)
fG) =1

5 Open problems:-

1- It will be a good project to search the
optimal solution for fuzzy neutrosophic
relation GP when the variables exponents (y;)
in the objective function contain indeterminacy
value.

2- More specifically if the variables exponents
are negative and containing indeterminacy
value.

3- Search for optimal solution in case of fuzzy
neutrosophic relation GP if the composition ‘o’
be (max-product).

Conclusion

This essay, contains novel work to find
optimal solution for an important branch of
nonlinear programming named GP subject to a
system of fuzzy neutrosophic relational equa-
tion with (max — min) composition. In 1976,
Sanchez gave the formula of the maximal
solution for fuzzy relation equation concept
and described in details its structure. H.E.
Khalid introduced the structure of maximal
solution for fuzzy neutrosophic relation GP
problems at 2015. There is a debuted nume-
rical example which shows that the proposed
method is an effective to search for an
optimum solution .
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