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Small nonassociative corrections for the SUSY operators Qa,ȧ are considered. The smallness is
controlled by the ratio of the Planck length and a characteristic length `0 = Λ−1/2. Corresponding
corrections of the momentum operator arising from the anticommutator of the SUSY operators
are considered. The momentum operator corrections are defined via the anticommutator of the
unperturbed SUSY operators Qa,ȧ and nonassociative corrections Q1,a,ȧ. Choosing different an-
ticommutators, one can obtain either a modified or q – deformed commutator of position xµ and
momentum operators Pν .
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I. INTRODUCTION

Observational data [1]-[7] indicate that we live in the Universe expanding with acceleration. As a source of the
acceleration, one can introduce either “dark energy” or modify Einstein gravity (for example, by considering F (R)
modified gravities). The list of models explaining the acceleration includes quintessence [8], a phantom scalar field [9],
a tachyon scalar field [10], a Chaplygin gas [11]-[13], holographic dark energy [14]-[16], modified gravitational theories
(including F (R)-gravities) [17] and so on.

All these models are dynamic in the sense that the present value of the cosmological constant Λ is explained in a
dynamic way by using either some kind of matter or modified gravity. Another way is to postulate that Λ is indeed a
fundamental constant. Following this way, it would be very interesting to understand what kind of physics is behind
such approach. In Refs. [18, 19] we proposed the idea that the cosmological constant Λ can be connected with the
appearance of nonassociativity (NA) in physics. In this model, the constant Λ controls the smallness of NA effects in
quantum physics: the dimensionless quantity l2PlΛ ≈ 10−120 shows where the NA effects may occur. It may happen

either on the huge scale `0 = 1/
√

Λ ≈ 1026m (that means that there exists a maximal length `0) or with the small

momentum P0 ≈ ~
√

Λ ≈ 10−80g · m/s. We see for the first case that in Nature there exists a minimal 4D scalar
curvature (a unique Lorentz invariant quantity having the dimensions cm−2): Rmin ≈ Λ. It immediately leads to
a very simple explanation for the acceleration of the present Universe: the Universe reaches the minimally possible
curvature and has to stay in this state.

Physically, in this model the appearance of Λ constant is connected with the breaking of non-associativity that can
be illustrated by the following diagram:

classical physics

quantum physics

breaking of commutativity

?

→ ~

nonassociative physics

breaking of associativity

?

→ `0 = Λ−1/2
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In this diagram the breaking of commutativity is measured by Heisenberg uncertainty principle

[x̂, p̂x] = i~. (1)

In the same way one can breaks the associativity in SUSY:

[Qx, Qy, Qz] = (QxQy)Qz −Qx(QyQz) 6= 0 (2)

where x, y, z are any combination of dotted and undotted indexes. The relation (2) is identical to (1) in the sense
that the first relation (1) breaks the commutativity of physical quantities but the second one breaks the associativity.

In the standard supersymmetry, the operator Qa,ȧ can be presented as a derivative with respect to coordinates
θa, θȧ, xµ. Here we want to consider a NA generalization of these generators when adding small NA terms. We will
show that the introduction of such NA operators gives rise to the appearance of new fundamental constant `0 with
the dimension cm. It means that we can identify `0 = Λ−1/2.

II. SMALL NONASSOCIATIVE CORRECTIONS TO THE STANDARD Qa,ȧ OPERATORS

In standard SUSY the operators Qa,ȧ and the momentum operator Pµ = −i~∂µ are connected by the expression

{Qa, Qȧ} = 2σµaȧPµ. (3)

In Refs. [18, 19] the NA generalization of the simplest SUSY algebra is proposed. Here we would like to investigate
the case when the standard operators Qa,ȧ are slightly changed in a NA manner:

Q̃a = Qa + ξQ1,a + ξ2Q2,a + . . . , (4)

Q̃ȧ = Qȧ + ξQ1,ȧ + ξ2Q2,ȧ + . . . , (5)

Qa =
∂

∂θa
− iσµaȧθ

ȧ∂µ, (6)

Qȧ = − ∂

∂θȧ
+ iθaσµaȧ∂µ, (7)

where ξ = (lP /`0)1/3 is a small NA parameter, lP is the Planck length, `0 = Λ−1/2, and Q1,2,a,ȧ are small additional
NA terms for Qa,ȧ. Henceforth we will work to the accuracy ξ.

Let us recall the definition of an associator

[A,B,C] = (AB)C −A (BC) , (8)

where A,B,C are nonassociative quantities. Evaluation of associators for Qa,ȧ with an accuracy of ξ3 gives us[
Q̃x, Q̃y, Q̃z

]
= ξ3 [Q1,x, Q1,y, Q1,z] , (9)

where the indices x, y, z are any combinations of dotted and undotted indices, and we took into account that the
operators Qa,ȧ are associative ones but Q1,a,ȧ are nonassociative ones. Henceforth, for brevity, we omit the index 1:
Q1,a,ȧ → Qa,ȧ.

It is shown in Ref. [19] that the simplest nonassociative generalization of SUSY operators gives us the following
3-point associators

ξ3 [Qa, Qb, Qc] =
~
`0
ζ1 (Qaεbc −Qcεab) , (10)

ξ3 [Qȧ, Qb, Qc] =
~
`0
ζ2Qȧεbc, (11)

ξ3
[
Qa, Qḃ, Qc

]
= 0, (12)

ξ3 [Qa, Qb, Qċ] = − ~
`0
ζ2Qċεab, (13)

ξ3
[
Qa, Qḃ, Qċ

]
=

~
`0
ζ3Qaεḃċ, (14)

ξ3 [Qȧ, Qb, Qċ] = 0, (15)

ξ3
[
Qȧ, Qḃ, Qc

]
= − ~

`0
ζ3Qcεȧḃ, (16)

ξ3
[
Qȧ, Qḃ, Qċ

]
=

~
`0
ζ4
(
Qȧεḃċ −Qċεȧḃ

)
, (17)
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where |ζ1,2,3,4| = 1. Here we have inserted the coefficient ξ3 on the left hand sides of the equations to have the same
order of smallness of the left-hand and right-hand sides of equations (10)-(17), and

εȧḃ = εab =

(
0 1
−1 0

)
, (18)

εab = εȧḃ =

(
0 −1
1 0

)
. (19)

The dotted indices are lowered and raised by using εȧḃ, ε
ȧḃ, and the undotted – by using εab, ε

ab. Introducing dimen-

sionless operators Q̄x = (~/lP )
1/2

Qx, one can show that the left-hand and right-hand sides of equations (10)-(17)
have the same order.

III. NONASSOCIATIVE CORRECTIONS IN THE MOMENTUM OPERATOR

Now we can calculate the anticommutator (3) using the expansion (4):{
Q̃a, Q̃ȧ

}
= 2σµaȧP̃µ = 2σµaȧPµ + ξ

{
Q̃a, Q1,ȧ

}
+ · · · = 2σµaȧ (Pµ + ξP1,µ + · · · ) . (20)

This expression defines the generalized momentum operator P̃µ with the NA corrections (the terms with ξ) which are
negligibly small since ξ ≈ 10−20.

Let us consider the Heisenberg uncertainty principle with the generalized momentum operator P̃µ[
xµ, P̃ν

]
= i~δµν + ξ [xµ, P1,ν ] + · · · . (21)

The properties of the operator Q1,a,ȧ are determined by the associators (10)-(17) and the anticommutator{
Q̃a, Q1,ȧ

}
= 2σµaȧP1,µ. (22)

Let us consider different choices of the operator P1,µ.

A. The case of P1,µ = Pµf(P 2)

In this case, using the relation [A,BC] = B[A,C] + [A,B]C, we obtain

[xµ, P1,ν ] = [xµ, Pν ] f
(
P 2
)

+ Pµ
[
xµ, f

(
P 2
)]
. (23)

To be specific, let us consider the case f(P 2) = PµP
µ/P 2

0 , where P0 = ~/lP . Substituting it into (23), we obtain[
xµ, Pν

PαP
α

P 2
0

]
=

i~
P 2
0

(
δµνP

2 + 2PµPν
)
. (24)

Finally, we have [
xµ, P̃ν

]
= i~

[
δµν +

ξ

P 2
0

(
δµνP

2 + 2PµPν
)]
. (25)

We see that it is a generalized uncertainty principle [20]. The difference from the standard approach is that the
coefficient ξ in the NA approach (25) is negligibly small and is connected with the constant Λ.

B. The case of P1,µ = αxµf(P 2) + βf(P 2)xµ

Analogously to (23), we have

[xµ, P1,ν ] = αxν
[
xµ, f(P 2)

]
+ β

[
xµ, f(P 2)

]
xν . (26)
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For the simplest case f(P 2) = PαP
α/(2i~) we obtain

[xµ, P1,ν ] = αxµPν + βPνx
µ. (27)

Substituting it into (21), we have [
xµ, P̃ν

]
= i~δµν + ξ (αxµPν + βPνx

µ) , (28)

which can be rewritten as [
xµ, P̃ν

]
q

= i~δµν , (29)

where a q – deformed commutator is[
xµ, P̃ν

]
q

= (1− αξ)xµPν − (1 + βξ)Pνx
µ. (30)

For the case α = β

q = 1− αξ, 1

q
≈ 1 + αξ. (31)

Then (29) and (30) take the form [
xµ, P̃ν

]
q

= qxµP̃ν −
1

q
P̃νx

µ = i~δµν . (32)

We can make a mild conjecture that at least in this direction (non-associativity → q – deformation) this appears to
be the case in this specific case and might be true in general too (for details of q – deformation, see the textbooks
[21, 22]).

IV. DISCUSSION AND CONCLUSIONS

We have investigated small nonassociative corrections for the SUSY generators Qa,ȧ. The corrections are controlled
by the nonassociative parameter ξ. We have considered the corrections with an accuracy of ξ. It is shown that
such corrections give rise to the appearance of additional terms in the momentum operator. These terms modify the
commutator [xµ, Pν ], which depends on the properties of the commutator between the unperturbed SUSY generator
Qa,ȧ and the NA corrections Q1,a,ȧ.

In our approach the cosmological constant Λ = `−2
0 is a NA parameter controlling the smallness of NA effects in

quantum physics. The corresponding dimensionless parameter is ξ = (lP /`0)1/3. But now one surprising effect can
be observed on huge scales when a huge value of `0 gives rise to an extremely small inverse quantity – the scalar
curvature Rmin = `−2

0 = Λ. Physically, it means that the 4-dimensional Ricci scalar curvature of the Universe should
satisfy the inequality R4D & Rmin. Thus, in our model Λ is a constant which is associated with the NA effects in
cosmology.

Another interesting effect of the model under consideration is that the small NA corrections in the SUSY operators
Qa,ȧ give rise to modifications of a quantum commutator of position and momentum operators. These modifications
depend on the properties of an anticommutator of unperturbed and perturbed SUSY operators.

It must be noted that all the NA effects are extremely small because of the smallness of the NA parameter ξ ≈ 10−20.
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