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Abstract

We give necessary and sufficient conditions for exchange of limits of double-indexed families,

taking values in sets endowed with an abstract structure of convergence, and for preservation of

continuity or semicontinuity of the limit family, with respect to filter convergence. As consequences,

we give some filter limit theorems and some characterization of continuity and semicontinuity of

the limit of a pointwise convergent family of set functions.

1 Introduction

A widely investigated problem in convergence theory and topology is to find necessary and/or sufficient

conditions for continuity and/or semicontinuity of the limit of a pointwise convergent net of functions

or measures. There have been many recent related studies in abstract structures, like topological

spaces, lattice groups, metric semigroups, cone metric spaces, with respect to usual, statistical or

filter/ideal convergence, and associated with the notions of equicontinuity, filter exhaustiveness and

filter continuous convergence. The study of semicontinuous functions is associated with quasi-metric

spaces, that is spaces endowed with an asymmetric distance function.

A concept associated with these topics is that of strong uniform continuity, which is used to study

the problem of finding a topology with respect to which the set of the continuous functions is closed,

and pointwise convergence of continuous functions implies convergence in this topology.

Another related field is the study of convergence theorems for measures taking values in abstract

structures. When it is dealt with the classical convergence, it is possible to prove σ-additivity, (s)-

boundedness and absolute continuity of the limit measure directly from pointwise convergence (with

respect to a single order sequence of regulator) of the involved measures, without requiring additional

hypotheses. This is not always true in the setting of filter convergence.

We present a unified axiomatic approach and extend results of this kind to double-indexed fami-

lies, taking values in abstract structures, whose particular cases are lattice groups, topological groups,

(quasi-)metric semigroups and cone (quasi-)metric spaces. To include both continuity and semiconti-

nuity, we assume the existence of a “generalized distance” function, which is assumed to satisfy only

the triangular property, and takes values in a group endowed with a suitable system of “intervals”

or “halflines” containing its neutral element 0. Thus, both topological groups and lattice groups
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endowed with (r)-, (D)- or order convergence are particular cases of these abstract structures. We

prove some results on exchange of limits in the setting of filter convergence. Observe that the involved

“distance” can be symmetric or asymmetric. Furthermore, in our setting both sequences and nets of

functions/measures are included, and note that it is possible to consider them as families endowed

with filters.

As applications, we give some necessary and sufficient conditions for continuity from above/below,

absolute continuity and semicontinuity of the limit measure in the context of filter convergence, which

include the cases of σ-additivity and (s)-boundedness, showing, by means of related examples, that

they are not always satisfied, differently from the classical case.

2 Assumptions and examples

We begin with giving our axiomatic approach, which deals with abstract convergence with respect to

filters, without using necessarily nets.

Definitions 2.1. (a) Let Λ be any nonempty set, and P(Λ) be the class of all subsets of Λ. A family

of sets F ⊂ P(Λ) is called a filter of Λ iff F 6= ∅, ∅ 6∈ F , A ∩ B ∈ F for each A, B ∈ F , and B ∈ F
whenever B ⊃ A and A ∈ F .

(b) Let R be a nonempty set, Y = (Y,+) be an abelian group with neutral element 0. Given

k ∈ N and U1, U2, . . . , Uk ⊂ Y , put U1 +U2 + · · ·+Uk := {u1 +u2 + . . .+uk: uj ∈ Uj , j = 1, 2, . . . , k},
and k U := U + · · ·+ U (k times).

(c) Let Π be a nonempty set. A Π-system U is a class of families U = (Uπ)π∈Π of subsets of Y ,

with 0 ∈
⋂
π∈Π

Uπ for each U = (Uπ)π∈Π, and such that for every U = (Uπ)π∈Π, V = (Vπ)π∈Π ∈ U

there is W = (Wπ)π∈Π ∈ U such that Uπ + Vπ ⊂ Wπ for every π ∈ Π. Let ρ : R × R → Y be a

function, and suppose that

H1) for every U = (Uπ)π, V = (Vπ)π ∈ U , for each π ∈ Π and a, b, c ∈ R, if ρ(a, b) ∈ Uπ and

ρ(b, c) ∈ Vπ, then ρ(a, c) ∈ Uπ + Vπ.

(d) Fix a Π-system U on Y and a filter F of Λ. A family bλ, λ ∈ Λ, of elements of R is said to

(UF)-backward (resp. (UF)-forward) converge to b ∈ R iff there is a family (Uπ)π∈Π ∈ U , such that

for every π ∈ Π there is a set F ∈ F with ρ(bλ, b) ∈ Uπ (resp. ρ(b, bλ) ∈ Uπ) for any λ ∈ F . We say

that (bλ)λ (UF)-converges to b ∈ R iff it (UF)-converges both backward and forward to b, and in this

case we write (UF) lim
λ∈Λ

bλ = b.

(e) Let Ξ be a nonempty set. Given two families (aλ,ξ)λ∈Λ,ξ∈Ξ and (aξ)ξ∈Ξ of elements of R,

we say that (aλ,ξ)λ,ξ (ΞUF)-backward (resp. (ΞUF)-forward) converges to (aξ)ξ iff there is a family

(Uπ)π∈Π ∈ U , such that for each π ∈ Π and ξ ∈ Ξ there is F ∈ F with ρ(aλ,ξ, aξ) ∈ Uπ (resp.

ρ(aξ, aλ,ξ) ∈ Uπ) for any λ ∈ F . Analogously as above it is possible to formulate the notions of

(ΞUF)-convergence and (ΞUF)-limit.
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Remark 2.2. Observe that, in our context, we will consider filters without dealing explicitly with

nets, and this is not a restriction. A net on R is a function N : Λ→ R, where Λ = (Λ,≥) is a directed

set, namely a partially ordered set such that for any λ1, λ2 ∈ Λ there exists λ0 ∈ Λ with λ0 ≥ λj ,

j = 1, 2. Given a directed set (Λ,≥), it is possible to associate the filter FΛ generated by the family

C′:= {{λ′ ∈ Λ: λ′ ≥ λ}: λ ∈ Λ}. Note that C′ is a filter base of Λ, that is for every A, B ∈ C′ there is

an element C ∈ C′ with C ⊂ A∩B. The filter generated by a filter base C is the family {A ⊂ Λ: there

is B ∈ C with B ⊂ A}. Conversely, given a filter base C := {Cλ : λ ∈ Λ}, it is possible to associate a

directed partial order ≥ on Λ, by setting λ1 ≥ λ2 if and only if Cλ1 ⊂ Cλ2 , λ1, λ2 ∈ Λ.

Examples 2.3. We now present some kinds of abstract space in which our approach can be applied,

including both symmetric and asymmetric distance functions.

(a) Let R be a Dedekind complete lattice group, Y = R, and let ρ(a, b) := |a − b|, a, b ∈ R, be

the absolute value of a− b. Let Π1 := R+ be endowed with the usual order, U1 := {([−ε u, ε u])ε∈R+ :

u ∈ R, u > 0} ((r)-convergence); Π2 := N be with the usual order, U2 := {([−σp, σp])p∈N: (σp)p

is an (O)-sequence}, where an (O)-sequence is a decreasing sequence in R whose infimum is equal

to 0 (order convergence of (O)-convergence); Π3 := NN be directed with the pointwise order, U3 :={([
−
∞∨
t=1

at,ϕ(t),
∞∨
t=1

at,ϕ(t)

])
ϕ∈NN

: (at,l)t,l is a (D)-sequence
}

, where a (D)-sequence or regulator is a

bounded double sequence in R such that (at,l)l is an (O)-sequence for each t ∈ N ((D)-convergence).

It is not difficult to check that Uj , j = 1, 2, 3, are Πj-systems, satisfying H1).

(b) We can extend the examples given in (a) to the case in which R is a cone metric space (with

respect to Y ), that is R is a nonempty set and (Y,+) is a Dedekind complete lattice group endowed

with a distance function ρ : R×R→ Y , satisfying the following axioms:

• ρ(a, b) ≥ 0 and ρ(a, b) = 0 if and only if a = b;

• ρ(a, b) = ρ(b, a) (symmetric property);

• ρ(a, c) ≤ ρ(a, b) + ρ(b, c) (triangular property) for every a, b, c ∈ R.

When a cone metric space R is a semigroup, we say that R is a cone metric semigroup. A cone metric

semigroup in which Y = R is said to be a metric semigroup. If ρ satisfies the first and the third of the

above axioms, but not the symmetric property, then we say that ρ is an asymmetric distance function

and that R is a cone asymmetric metric space or cone quasi-metric space. For example, let T be a

nonempty set, R = {f : T → R, f is bounded}, a0 6= 1 be a fixed positive real number and u be a

fixed element of R with u > 0. For each f1, f2 ∈ R and t ∈ T , set

d
(u)
a0,t

(f1(t), f2(t)) =


(f2(t)− f1(t))u, if f1(t) ≤ f2(t),

a0(f1(t)− f2(t))u, if f1(t) > f2(t),

(1)

and let ρ(u)
a0 (f1, f2) =

∨
t∈T

d
(u)
a0,t

(f1(t), f2(t)). It is not difficult to see that ρa0 is an asymmetric distance

function.

3



(c) When R is a lattice group and Y = R, it is advisable to deal not only with continuity, but also

with upper or lower semicontinuity. In this setting we take ρ(a, b) := b− a, a, b ∈ R, Πj , j = 1, 2, 3,

as in (a), U (0)
1 := {({r ∈ R : r ≤ ε u})ε∈R+ : u ∈ R, u > 0}, U (0)

2 := {({r ∈ R : r ≤ σp})p∈N: (σp)p is

an (O)-sequence}, U (0)
3 :=

{({
r ∈ R : r ≤

∞∨
t=1

at,ϕ(t)

})
ϕ∈NN

: (at,l)t,l is a (D)-sequence
}

.

(d) Let R be a Hausdorff topological group with neutral element 0 satisfying the first axiom of

countability, Y = R, Π∗ = N, U∗ := {(Up)p∈N: (Up)p∈N is a base of closed symmetric neighborhoods

of 0}, and ρ(a, b) = b− a. It is not difficult to see that U∗ is a Π∗-system.

(e) Let F be a filter of Λ. When we consider (r)-convergence and R is a cone quasi-metric space,

a family (bλ)λ of elements of R is said to (rF)-backward converge to b iff there is u ∈ Y , u > 0, with

{λ ∈ Λ : ρ(bλ, b) ≤ ε u} ∈ F for all ε > 0. When we deal with (O)-sequences, we say that (bλ)λ (OF)-

backward converges to b iff there exists an (O)-sequence (σp)p in Y with {λ ∈ Λ : ρ(bλ, b) ≤ σp} ∈ F
for every p ∈ N. When we consider (D)-sequences, we say that the net (bλ)λ (DF)-backward converges

to b iff there exists a regulator (at,l)t,l in Y with{
λ ∈ Λ : ρ(bλ, b) ≤

∞∨
t=1

at,ϕ(t)

}
∈ F for each ϕ ∈ NN.

When Λ = N and F = Fcofin, we have the classical (r)-, (O)-, (D)-(backward, forward) convergence. If

(R,+) is a Hausdorff topological group and Y = R, then we say that a net bλ, λ ∈ Λ in R, F-backward

converges to b ∈ R iff {λ ∈ Λ : bλ − b ∈ U} ∈ F for each neighborhood U of 0. Similarly as above

it is possible to formulate the corresponding notions of (rF)-, (OF)-, (DF)-(forward) convergences

and limits.

(f) When R is a Dedekind complete lattice group, (aλ,ξ)λ∈Λ,ξ∈Ξ and (aξ)ξ∈Ξ are two families in R

and U is the Π-system associated with (r)-convergence (resp. (O)-convergence, (D)-convergence), we

say that (ΞrF) lim
λ∈Λ

aλ,ξ = aξ (resp. (ΞOF) lim
λ∈Λ

aλ,ξ = aξ, (ΞDF) lim
λ∈Λ

aλ,ξ = aξ) iff (ΞUF) lim
λ∈Λ

aλ,ξ = aξ.

Analogously it is possible to formulate the corresponding concepts of backward and forward conver-

gences. In particular, when R = R endowed with the usual convergence, since it coincides with (r)-

(O)- and (D)-convergence, we will denote by (F)- and (ΞF)-(backward, forward) convergence the

usual filter (backward, forward) convergence and the ordinary pointwise filter (backward, forward)

convergence. When R is a Hausdorff topological group, U∗, Π∗ are as in (d), we get that the (ΞU∗F)-

convergence is equivalent to the pointwise (F)-convergence, and hence we write (F) lim
λ∈Λ

aλ,ξ = aξ for

every ξ ∈ Ξ, or (ΞF) lim
λ∈Λ

aλ,ξ = aξ.

(g) Observe that, in general, a family (bλ)λ can be backward (resp. forward) convergent to more

than one element. For example, if R is a Dedekind complete lattice group, Λ is a nonempty set, F is

any filter of Λ, ρ(a, b) = b − a for every a, b ∈ R, bλ = 0 for every λ ∈ Λ and b is any element of R

with b ≤ 0 (resp. b ≥ 0), then it is not difficult to see that (bλ)λ (rF)-backward (resp. (rF)-forward)

converges to b.

(h) In general, backward and forward convergence are not equivalent. For example, similarly as

in (1), let T be a nonempty set, Λ := [1,+∞[ be endowed with the usual order, F be a filter of Λ
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containing all halflines [c,+∞[ with c ≥ 1, pick R = {f : T → R, f is bounded}, and let 0, 1 be

those functions which associate to every element of T the real constants 0, 1, respectively. For any

f1, f2 ∈ R and t ∈ T , set

d′t(f1(t), f2(t)) =


(f2(t)− f1(t)) · 1, if f1(t) ≤ f2(t),

1, if f1(t) > f2(t),

(2)

and put ρ′(f1, f2) :=
∨
t∈T

d′t(f1(t), f2(t)). It is not difficult to check that ρ′ is an asymmetric distance

function For each λ ∈ Λ, set fλ :=
1

λ
· 1, hλ := −fλ = − 1

λ
· 1. Note that d(0, fλ) = fλ, d(fλ,0) = 1,

d(hλ,0) = fλ, d(0, hλ) = 1, From this it is not difficult to deduce that the family (fλ)λ (rF)-forward

converges to 0 and (hλ)λ (rF)-backward converges to 0, while (fλ)λ does not (rF)-backward converge

to 0 and (hλ)λ does not (rF)-forward converge to 0.

However, if Λ is any nonempty set, F is any filter of Λ, ρ
(u)
a0 is as in (1) and Ca0 = max

{
a0,

1

a0

}
,

then it is not difficult to see that ρ
(u)
a0 (f1, f2) ≤ Ca0 ρ

(u)
a0 (f2, f1) whenever f1, f2 ∈ R. From this

it follows that a family (fλ)λ∈Λ in R is (rF)-backward convergent if and only if it is (rF)-forward

convergent. We claim that, in this case, the involved limit coincide. Indeed, if (fλ)λ (rF)-backward

converges to f0 and (rF)-forward converges to h0 with respect to ρ
(u)
a0 , then there exist v, w ∈ R such

that for every ε > 0 there are F1, F2 ∈ F with ρ
(u)
a0 (h0, fλ) ≤ ε v for every λ ∈ F1, ρ

(u)
a0 (fλ, f0) ≤ εw

whenever λ ∈ F2. Note that F1 ∩ F2 ∈ F . If λ0 is any fixed element of F1 ∩ F2, then from the

triangular property of ρ
(u)
a0 we deduce that

ρ(u)
a0 (h0, f0) ≤ ρ(u)

a0 (h0, fλ0) + ρ(u)
a0 (fλ0 , f0) ≤ ε (v + w).

Thus, by arbitrariness of ε, we get ρ
(u)
a0 (h0, f0) = 0, and hence h0 = f0, getting the claim.

3 The main results

We give the fundamental results of the paper in our unified setting, which includes lattice groups,

cone metric spaces, metric groups and topological groups, symmetric and asymmetric distances,

continuity and semicontinuity of the limit, families of functions and of measures. We first present the

notion of weak filter backward and forward exhaustiveness in our abstract context, which extends the

corresponding ones given in the literature and the classical concept of equicontinuity.

Definitions 3.1. (a) Let Ξ is a nonempty set, fix ξ ∈ Ξ and let Sξ be a filter of Ξ. We say that

the family (aλ,ξ)λ,ξ is weakly (UF)-backward (resp. forward) exhaustive at ξ iff there exists a family

(Uπ)π∈Π ∈ U such that for each π ∈ Π there is a set S ∈ Sξ such that for every ζ ∈ S there is a

set Fζ ∈ F with ρ(aλ,ζ , aλ,ξ) ∈ Uπ (resp. ρ(aλ,ξ, aλ,ζ) ∈ Uπ) for any λ ∈ Fζ . The family (aλ,ξ)λ,ξ is

said to be weakly (UF)-exhaustive at ξ iff it is both weakly (UF)-backward and weakly (UF)-forward

exhaustive at ξ.
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(b) Let Sξ, ξ ∈ Ξ, be a family of filters of Ξ. We say that (aλ,ξ)λ,ξ is weakly (UF)- (backward,

forward) exhaustive on Ξ iff it is weakly (UF)- (backward, forward) exhaustive at every ξ ∈ Ξ with

respect to a single family U ∈ U , independent of ξ.

Example 3.2. We now show that, in general, weak (UF)-backward and forward exhaustiveness do

not coincide. Let Λ = R = Ξ = R, Y = R be equipped with the usual convergence, that is Π := R+

be endowed with the usual order, and U := {([−ε u, ε u])ε∈R+ : u ∈ R+}. Let us define ρ : R×R→ R
by

ρ(ξ, ζ) :=

{
ζ − ξ, if ξ ≤ ζ,
1, if ξ > ζ,

ξ, ζ ∈ R.

It is not difficult to see that ρ is an asymmetric distance function. Let F be any filter of Λ, and

for every ξ ∈ Ξ, let Sξ be the filter of all neighborhoods of ξ with respect to the topology generated

by ρ. Set aλ,ξ := ξ + λ, ξ, λ ∈ R. We claim that the family (aλ,ξ)λ,ξ is weakly (UF)-forward

exhaustive at ξ. Indeed, in correspondence with ε > 0, take η := min
{
ε,

1

2

}
, and set Fζ := Λ for any

ζ ∈ [ξ, ξ + η] = Sρ(ξ, η), where Sρ(ξ, η) denotes the ball of center ξ and radius η with respect to ρ.

For every λ ∈ Λ and ζ ∈ [ξ, ξ + η] we get ρ(aλ,ξ, aλ,ζ) = ζ + λ− (ξ + λ) = ζ − ξ ∈ [−η, η], getting the

claim.

Now, in correspondence with every ξ ∈ R and θ > 0, let η = min{θ, 1} and take ζ = ξ+η. Note that

ζ ∈ Sρ(ξ, θ). Choose arbitrarily F ∈ F . It is not hard to see that ρ(aλ,ζ , aλ,ξ) = ρ(aλ,ξ+η, aλ,ξ) = 1 for

every λ ∈ F . Hence, the family (aλ,ξ)λ,ξ is not weakly (UF)-backward exhaustive at ξ. Furthermore

note that, analogously as in (2), it is not difficult to check that (UF)-forward (resp. backward)

convergence does not imply (UF)-backward (resp. forward) convergence with respect to ρ.

The following result deals with characterizations and properties of the limit family.

Theorem 3.3. Assume that (aλ,ξ)λ,ξ (ΞUF)-converges to (aξ)ξ, fix ξ ∈ Ξ and let Sξ be a filter of Ξ.

Then the following are equivalent:

(i) (aλ,ξ)λ,ξ is weakly (UF)-backward (resp. forward) exhaustive at ξ;

(ii) (aζ)ζ (USξ)-backward (resp. forward) converges to aξ as ζ → ξ.

Remark 3.4. Observe that Theorem 3.3 holds also if (ΞUF)-convergence is replaced by (ΞUF)-

forward convergence, under the hypothesis that forward convergence implies backward convergence.

In general this last condition is essential. Indeed, let Λ := [1,+∞[ be endowed with the usual order,

F be a filter of Λ containing all halflines [c,+∞[ with c ≥ 1, Ξ := [0, 1] be equipped with the usual

distance, Sξ, ξ ∈ Ξ, be the filter of all neighborhoods of ξ, Y = R be endowed with the usual

convergence, R = [0, 1]× [0, 1] and ρ∗ : R×R→ R be defined by

ρ∗((ξ1, ξ2), (ζ1, ζ2)) =



0, if (ξ1, ξ2) = (ζ1, ζ2),

max{|ξ1 − ζ1|, |ξ2 − ζ2|}, if ξ1 ≤ ζ1 and ζ1 > 0,

1, otherwise.
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It is not difficult to check that ρ∗ is an asymmetric distance function. For every λ ∈ Λ and ξ ∈ Ξ,

set a∗λ,ξ :=
( 1

λ
, ξ
)

. Observe that ρ∗
(

(0, ξ),
( 1

λ
, ξ
))

=
1

λ
and ρ∗

(( 1

λ
, ξ
)
, (0, ξ)

)
= 1 for every λ ∈ Λ

and ξ ∈ Ξ. It is not difficult to see that the family (a∗λ,ξ)λ,ξ (ΞUF)-forward converges to (a∗ξ)ξ∈Ξ,

where a∗ξ = (0, ξ), ξ ∈ Ξ, but does not (ΞUF)-backward converges. Moreover, since ρ∗((0, ζ), (0, 0)) =

ρ∗((0, 0), (0, ζ)) = 1 for every ζ ∈ Ξ, ζ 6= 0, the family (a∗ζ)ζ∈Ξ is neither (USξ)-backward nor (USξ)-
forward convergent to a∗0 as ζ → 0. Furthermore, we get

ρ∗(a∗λ,ζ , a
∗
λ,0) = ρ∗

(( 1

λ
, ζ
)
,
( 1

λ
, 0
))

= (3)

= ζ = ρ∗
(( 1

λ
, 0
)
,
( 1

λ
, ζ
))

= ρ∗(a∗λ,0, a
∗
λ,ζ)

for every λ ∈ Λ and ζ ∈ Ξ. From (3) it is not difficult to deduce that the family (a∗λ,ξ)λ,ξ is both

weakly (UF)-forward and weakly (UF)-backward exhaustive at 0.

We now give some kinds of convergences for families, which are some necessary and sufficient

conditions for exchange of limits. We extend to our setting the concepts of Arzelà, Alexandroff and

strong uniform convergence.

Definitions 3.5. (a) Fix ξ ∈ Ξ, and let Sξ be a filter of Ξ. We say that (aλ,ξ)λ,ξ (UF)-forward strongly

uniformly converges to (aξ)ξ at ξ (shortly, aλ,ξ
UF fw−T s

−→ aξ) iff there exists a family (Uπ)π ∈ U such

that for each π ∈ Π there is F ∈ F such that for every λ ∈ F there is a set Sλ ∈ Sξ with ρ(aζ , aλ,ζ) ∈ Uπ
whenever ζ ∈ Sλ.

(b) We say that (aλ,ξ)λ,ξ is (UF)-forward Arzelà convergent to (aξ)ξ at ξ (in brief, aλ,ξ
UF fw−Arz.−→

aξ) iff there exists a family (Uπ)π∈Π ∈ U such that for every π ∈ Π, F ∈ F there are a finite set {λ1,

λ2, . . . , λq} ⊂ F and a set S ∈ Sξ, such that for each ζ ∈ S there is j ∈ [1, q] with ρ(aζ , aλj ,ζ) ∈ Uπ.

(c) If Sξ, ξ ∈ Ξ, is a family of filters of Ξ, then we say that a finitely uniform cover of Ξ is a family

V of subsets of Ξ such that Ξ =
⋃
V ∈V

V , and for every ξ ∈ Ξ there are a set Sξ ∈ Sξ and a finite subset

Y := {Vl1 , . . . , Vlq} of V, such that for each ζ ∈ Sξ there exists j ∈ [1, q] with ζ ∈ Vlj .
(d) The family (aλ,ξ)λ,ξ is said to (UF)-forward strongly uniformly (resp. (UF)-forward Arzelà)

converge to (aξ)ξ on Ξ iff it (UF)-strongly uniformly (resp. (UF)-Arzelà) converges to (aξ)ξ at ξ for

every ξ ∈ Ξ with respect to a single family U ∈ U , independent of ξ.

(e) We say that (aλ,ξ)λ,ξ is (UF)-forward Alexandroff convergent to (aξ)ξ on Ξ (shortly, aλ,ξ
UF fw−Al.−→

aξ on Ξ) iff there exists a family (Uπ)π ∈ U such that for each π ∈ Π and F ∈ F there are a nonempty

set Λ0 ⊂ F and a finitely uniform cover {Vλ : λ ∈ Λ0} of Ξ with ρ(aζ , aλ,ζ) ∈ Uπ for any λ ∈ Λ0 and

ζ ∈ Vλ.

Note that, analogously as above, it is possible to formulate the corresponding concepts of (back-

ward) filter strong uniform, Arzelà and Alexandroff convergence.

Theorem 3.6. Let ξ ∈ Ξ be fixed, Sξ be a filter of Ξ, and suppose that
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3.6.1) (ΛUSξ) lim
ζ→ξ

aλ,ζ = aλ,ξ;

3.6.2) the family (aλ,ζ)λ,ζ (ΞUF)-converges to (aζ)ζ .

Then the following are equivalent:

(i) (aζ)ζ (USξ)-backward converges to aξ as ζ → ξ;

(ii) aλ,ξ
UF fw−T s

−→ aξ at ξ;

(iii) aλ,ξ
UF fw−Arz.−→ aξ at ξ.

Remarks 3.7. (a) In general, Theorem 3.6 does not hold, when the involved “forward” convergences

are replaced by the corresponding “backward” ones. Indeed, for example, let Λ := N, F be any filter

of N, Ξ = [0, 1] be endowed with the usual metric, ξ = 1, Sξ be the filter of all neighborhoods of 1

contained in [0, 1], R = Y = R, U := {({ζ ∈ R: ζ ≤ ε u})ε∈R+ : u ∈ R+}, ρ(a, b) = b − a, a, b ∈ R.

Put an,ζ := ζn, n ∈ N, ζ ∈ [0, 1]. We get lim
ζ→ξ

an,ζ = 1 for every n ∈ N, and

aζ := lim
n
an,ζ =


0, if 0 ≤ ζ < 1,

1, if ζ = 1.

Note that for each ε > 0 and n ∈ N we get

ρ(an,ζ , aζ) = aζ − an,ζ =


−ζn < ε, if 0 ≤ ζ < 1,

0 < ε, if ζ = 1.

Hence, an,ξ
UF bw−T s

−→ aξ at ξ. On the other hand, for every n ∈ N and for each neighborhood S of 1

contained in [0, 1] there is a real number ζ ∈ S∩]0, 1[, close enough to 1, with ζ >
1

21/n
, and hence

ρ(aζ , an,ζ) = an,ζ − aζ = ζn >
1

2
.

Thus, an,ξ
UF fw−T s

6−→ aξ at ξ. The family (aζ)ζ (USξ)-forward, but not backward converges, to aξ

as ζ → ξ: indeed for every ζ ∈ [0, 1[ we have ρ(aξ, aζ) = aζ − aξ = −1 < ε for each ε > 0, but

ρ(aζ , aξ) = aξ − aζ = 1. Note that the function ζ 7→ aζ , ζ ∈ [0, 1], is upper semicontinuous, but not

lower semicontinuous at 1.

(b) Observe that Theorem 3.6 does not hold, where in 3.6.1) the involved convergence is replaced

by the corresponding backward or forward convergence.

Let Λ, F , R, Y , U , ρ be as in (a), Ξ := R be endowed with the usual metric, ξ = 0 and Sξ be the

filter of all neighborhoods of 0. Set

an,ζ :=


0, if ζ ∈

]
−∞,− 1

n

]
∪ {0} ∪

[ 1

n
,+∞

[
,

1, otherwise.
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Observe that aζ := lim
n
an,ζ = 0 for every ζ ∈ R, so that 3.6.2) holds, and the condition (i) of Theorem

3.6 is fulfilled. Moreover it is not difficult to see that, for each n ∈ N, an,ζ converges backward, but not

forward, to an,0 = 0 as ζ tends to 0, and hence 3.6.1) is not verified. However, note that for every n ∈ N
and for every neighborhood U of 0 there is ζ ∈ U with an,ζ = 1, and hence ρ(aζ , an,ζ) = an,ζ −aζ = 1.

Thus, the condition (ii) of Theorem 3.6 is not satisfied.

Furthermore, if we define bn,ζ , n ∈ N, ζ ∈ R, by

bn,ζ :=


1, if ζ ∈

]
−∞,− 1

n

]
∪
[ 1

n
,+∞

[
,

2, if ζ = 0,

0, otherwise,

then

bζ := lim
n
bn,ζ =


1, if ζ 6= 0,

2, if ζ = 0.

Hence, 3.6.2) is satisfied, but the condition (i) of Theorem 3.6 does not hold. Observe that, for any

n ∈ N, bn,ζ converges forward, but not backward, to bn,0 = 2 as ζ tends to 0, and hence 3.6.1) is not

satisfied. On the other hand, since ρ(bζ , bn,ζ) = bn,ζ − bζ ≤ 0 for any n ∈ N and ζ ∈ R, we get that

condition (ii) of Theorem 3.6 is fulfilled.

We now turn to the main theorem in our abstract setting.

Theorem 3.8. Let Sξ, ξ ∈ Ξ, be a family of filters of Ξ, with the property that ξ ∈ S for every ξ ∈ Ξ

and S ∈ Sξ. Suppose that 3.6.2) holds, and that

3.8.1) (ΛUSξ) lim
ζ→ξ

aλ,ζ = aλ,ξ for each ξ ∈ Ξ with respect to a single family Y ∈ U , independent both

of λ and ξ.

Then the following are equivalent:

(i) (aζ)ζ (USξ)-backward converges to aξ as ζ → ξ for every ξ ∈ Ξ, with respect to a single family

U ∈ U , independent of ξ;

(ii) aλ,ξ
UF fw−T s

−→ aξ on Ξ;

(iii) aλ,ξ
UF fw−Al.−→ aξ on Ξ;

(iv) aλ,ξ
UF fw−Arz.−→ aξ on Ξ;

(v) (aλ,ξ)λ,ξ is weakly (UF)-backward exhaustive on Ξ.

Remark 3.9. Observe that, when the function ρ is symmetric, Theorems 3.3, 3.6 and 3.8 can be

viewed as necessary and sufficient conditions in order to have exchange of limits.
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4 Applications to set functions

In this section, as consequences of Theorems 3.3, 3.6 and 3.8, we will give some necessary and sufficient

conditions for some kind of continuity and semicontinuity of the limit of set functions. We givea result

on continuity from below of the limit measure. Note that, thanks to the limit theorems existing in the

literature, these conditions are often fulfilled. However, we give an example in which these properties

do not hold in the setting of filter convergence.

Let Λ be any nonempty set, F be any filter of Λ, G be any infinite set, Σ be a σ-algebra of subsets

of G, (R, Y ) be a (symmetric) cone metric semigroup, Ξ := N ∪ {+∞}, ξ := +∞, Sξ := {F ∪ {+∞}:
F ∈ Fcofin}. It is not difficult to check that Sξ is a filter of Ξ. Moreover, let U be a fixed Π-system

associated with (R, Y ).

A set function m : Σ → R is said to be U-continuous from below (resp. from above) on Σ

iff (USξ) lim
k
ρ(m(Ck),m(C)) = 0 for every increasing (resp. decreasing) sequence (Ck)k in Σ whose

union (resp. intersection) is equal to C. A consequence of Theorems 3.3 and 3.6 is the following

Theorem 4.1. Let mλ : Σ→ R, λ ∈ Λ, be a family of set functions, U-continuous from below on Σ

with respect to a family U ∈ U independent of λ. Suppose that

4.1.1) m(E) := (UF) lim
λ
mλ(E), E ∈ Σ, exists in R with respect to a family V ∈ U independent of

E ∈ Σ.

Then the following are equivalent:

(i) m is U-continuous from below on Σ;

(ii) for every increasing sequence (Ck)k in Σ there is a family (Wπ)π ∈ U such that for any π ∈ Π

there is k ∈ N such that, for every k ≥ k, there is a set F ∈ F with ρ (mλ (Ck) ,mλ (C)) ∈Wπ

for each λ ∈ F ;

(iii) for any increasing sequence (Ck)k in Σ there is a family (Uπ)π ∈ U such that for every

π ∈ Π there is F ∈ F such that for each λ ∈ F there exists a positive integer kλ with

ρ (m(Ck), (mλ (Ck)) for any k ≥ kλ;

(iv) for every increasing sequence (Ck)k in Σ there is a family (Yπ)π ∈ U such that for each π ∈ Π

and F ∈ F there are λ1, . . . , λq ∈ F and k ∈ N such that for each k ≥ k there exists j ∈ [1, q]

with ρ(m(Ck),mλj (Ck)) ∈ Yπ.

Remarks 4.2. (a) Observe that results analogous to Theorem 4.1 hold when the involved set functions

mλ, λ ∈ Λ, are U-continuous from above or U-(s)-bounded on Σ, that is if (U) lim
k
ρ(mλ(Ak), 0) = 0

for every disjoint sequence (Ak)k in Σ.

(b) Note that the conditions (ii)-(iv) of Theorem 4.1 are just satisfied, for example when R = Y

is a Dedekind complete lattice group, ρ(a, b) = |a − b|, a, b ∈ R, Λ = N, F = Fcofin and (mn)n is a

sequence of σ-additive positive R-valued measures, thanks to the classical limit theorems.
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The next step is to give necessary and sufficient conditions for absolute continuity of the limit

measure.

Let ν : Σ→ R+
0 be a finitely additive measure. We endow Σ with the Fréchet-Nikodým topology

generated by the pseudometric ρν(D,E) := |ν(D)− ν(E)|, D, E ∈ Σ. Pick now Ξ = Σ, and for each

E ∈ Σ let SE be the filter generated by the base W := {{D ∈ Σ : ρν(D,E) < η}: η > 0}.
We say that (mλ)λ is weakly (UF)-ν-exhaustive at E ∈ Σ iff there is a family (Uπ)π ∈ U (depending

on E) such that for each π ∈ Π there is η > 0 such that for every D ∈ Σ with ρν(D,E) < η there is

a set FD ∈ F with ρ(mλ(D),mλ(E)) ∈ Uπ whenever λ ∈ F . We say that (mλ)λ is weakly (UF)-ν-

exhaustive on Σ iff it is weakly (UF)-ν-exhaustive at every E ∈ Σ with respect to a family X ∈ U
independent of E ∈ Σ.

A measure m : Σ → R is said to be U-ν-continuous at E ∈ Σ iff there is a family (Uπ)π ∈ U
(depending on E) such that for every π ∈ Π there is η > 0 with ρ(m(D),m(E)) ∈ Uπ whenever

ρν(D,E) < η. We say that m is globally U-ν-continuous on Σ with respect to ν iff it is U-ν-continuous

at E with respect to ν for each E ∈ Σ, relatively to a family T ∈ U , independent of E ∈ Σ.

The next result is a consequence of Theorem 3.8.

Theorem 4.3. Let mλ : Σ → R, λ ∈ Λ, be a family of measures, U-ν-continuous at a fixed set

E ∈ Σ (resp. globally U-ν-continuous on Σ) with respect to a family Z ∈ U independent of λ, and

(ΞUF)-convergent to a measure m0 : Σ→ R. Then the following are equivalent:

(i) the limit measure m0 is U-ν-continuous at E (resp. globally U-ν-continuous on Σ);

(ii) the net mλ, λ ∈ Λ, is weakly (UF)-exhaustive at E (resp. on Σ);

(iii) there is a family (Uπ)π ∈ U , depending on E ∈ Σ (resp. independent of E ∈ Σ), such that for

each π ∈ Π there is F ∈ F such that for every λ ∈ F there is η > 0 with ρ(m0(D),mλ(D)) ∈ Uπ
for each D ∈ Σ with ρν(D,E) < η.

(iv) There is a family (Yπ)π ∈ U , depending on E ∈ Σ (resp. independent of E ∈ Σ), such that for

every π ∈ N and F ∈ F there are λ1, λ2, . . . , λq ∈ F and a positive real number η such that for

any D ∈ Σ with ρν(D,E) < η there exists j ∈ [1, q] with ρ(m0(D),mλj (D)) ∈ Yπ.

Moreover, if the mλ’s are globally U-ν-continuous, the statements (i)-(iv) are equivalent to the fol-

lowing:

(v) there is a family (Wπ)π ∈ U such that for any π ∈ Π and F ∈ F there exist a nonempty set

Λ0 ⊂ F and a finitely uniform cover {Vλ : λ ∈ Λ0} of Σ with ρ(m0(D),mλ(D)) ∈Wπ whenever

λ ∈ Λ0 and D ∈ Vλ.

Remarks 4.4. (a) Observe that, when Λ = N, F = Fcofin, mn, n ∈ N, are positive σ-additive

measures, R is a Dedekind complete lattice group, Y = R, ρ(a, b) = |b− a|, a, b ∈ R, we get that the

conditions (ii)-(v) of Theorem 4.3 are fulfilled, thanks to the limit theorems existing in the literature.
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(b) Let Σ = P(N) be the class of all subsets of N, F be a filter containing Fcofin and ν(A) =
∑
k∈A

1

2k
,

A ∈ Σ. For each n ∈ N, let us define the Dirac measure δn : Σ→ R by

δn(A) :=


1, if n ∈ A,

0, if n ∈ N \A.
(4)

It is not difficult to see that δn is σ-additive on Σ. Moreover, δn is ν-continuous at ∅ (that is, ν-

absolutely continuous): indeed, if ϑn =
1

2n
and ν(A) < ϑn, then n 6∈ A, and hence δn(A) = 0. We

claim that the sequence (δn)n is not weakly F-exhaustive at ∅. Indeed, observe that for each ϑ > 0

there is a cofinite set Dϑ ⊂ N with ν(Dϑ) < ϑ. Note that, since F contains Fcofin, every element

of F is infinite, otherwise ∅ ∈ F , which is impossible. Furthermore, observe that for every infinite

subset F ⊂ N, and a fortiori for any F ∈ F , there are a sufficiently large integer n ∈ F ∩Dϑ, so that

δn(Dϑ) = 1. From this we deduce that the sequence (δn)n is not weakly F-exhaustive at ∅. If F is

an ultrafilter of N containing Fcofin, then for every A ⊂ N we have

δ′(A) := (F) lim
n
δn(A) =


1, if A ∈ F ,

0, if A 6∈ F .
(5)

We claim that δ′ is not ν-continuous at ∅. Indeed, fix arbitrarily η > 0 and let k ∈ N be such

that
1

2k−1
≤ η. Let A be any element of F and set A∗ := A ∩ ([k,+∞[), then A∗ ∈ F . We get

ν(A∗) ≤
∞∑
k=k

1

2k
=

1

2k−1
≤ η and δ′(A∗) = 1, getting the claim.

Furthermore, in this case, the conditions (i)-(iv) in Theorem 4.1 do not hold. Indeed, choose a

filter F of N containing Fcofin, and let Ck := [1, k], k ∈ N. Observe that, as said before, every element

of F is infinite. For every k and for any infinite set F ⊂ N there is n ∈ F \ Ck, and hence we get

δn(N) − δn(Ck) = 1. Thus, in this case, the condition (ii) of Theorem 4.1 is not fulfilled. If F is an

ultrafilter of N, then the measure δ′ defined in (5) is not σ-additive on Σ. Indeed, if A is any element

of F , then we get
∑
n∈A

δ′({n}) = 0 and δ′(A) = 1.

When R is a Dedekind complete lattice group, Y = R, ρ(a, b) = b− a and U (0)
j , j = 1, 2, 3, are as

in Example 2.3 (c), we obtain some results similar to the previous ones also for semicontinuous set

functions. In this setting, the concepts of weak backward (resp. forward) filter exhaustiveness and

lower (resp. upper) semicontinuity are formulated as follows.

Definitions 4.5. (a) We say that (mλ)λ is weakly (UF)-ν-backward (resp. (forward) exhaustive at

E ∈ Σ iff there is a family (Uπ)π ∈ U (depending on E) such that for each π ∈ Π there is η > 0

such that for every D ∈ Σ with ρν(D,E) < η there is a set FD ∈ F with mλ(E) − mλ(D) (resp.

mλ(D)−mλ(E))∈ Uπ whenever λ ∈ F .
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(b) We say that (mλ)λ is weakly (UF)-ν-backward (resp. forward) exhaustive on Σ iff it is weakly

(UF)-ν-backward (resp. forward) exhaustive at every E ∈ Σ with respect to a family X ∈ U
independent of E ∈ Σ.

(c) We say that (mλ)λ is weakly (UF)-ν-exhaustive at E (resp. on Σ) iff it is weakly (UF)-ν-

backward and forward exhaustive at E (resp. on Σ).

(d) We say that m : Σ → R is U-ν-lower (resp. upper) semicontinuous at E ∈ Σ iff there is a

family (Uπ)π ∈ U (depending on E) such that for every π ∈ Π there is η > 0 with m(E) − m(D)

(resp. m(D) − m(E)) ∈ Uπ whenever ρν(D,E) < η. We say that m is globally U-ν-lower (resp.

upper) semicontinuous on Σ iff it is U-ν-lower (resp. upper) semicontinuous at E for each E ∈ Σ

with respect to a family T ∈ U , independent of E ∈ Σ.

Similarly as Theorem 4.3, it is possible to prove the following result about semicontinuity of the

limit set function. The next theorem is given in the case of lower semicontinuity; an analogous result

holds in the setting of upper semicontinuity.

Theorem 4.6. Suppose that mλ : Σ → R, λ ∈ Λ, are globally U-ν-continuous on Σ with respect to

a family S ∈ U , independent of λ, and (ΣUF)-convergent to a set function m0 : Σ → R. Then the

following are equivalent:

(i) m0 is U-ν-lower semicontinuous at E (resp. globally U-ν-lower semicontinuous on Σ);

(ii) the family (mλ)λ is weakly (UF)-backward exhaustive at E (resp. on Σ);

(iii) there is a family (Uπ)π ∈ U , depending on E (resp. independent of E), such that for any π ∈ Π

there is F ∈ F such that for every λ ∈ F there is η > 0 with mλ(D) −m0(D) ∈ Uπ for each

D ∈ Σ with ρν(D,E) < η;

(iv) there exists a family (Vπ)π ∈ U , depending on E (resp. independent of E), such that for every

π ∈ Π and F ∈ F there are λ1, λ2, . . . , λq ∈ F and η > 0 such that for any D ∈ Σ with

ρν(D,E) < η there exists j ∈ [1, q] with mλj (D)−m0(D) ∈ Vπ.

Moreover, global U-ν-lower semicontinuity of m0 is equivalent to the following condition:

(v) there is a family (Wπ)π ∈ U , such that for every π ∈ Π and F ∈ F there exist a nonempty set

Λ0 ⊂ F and a finitely uniform cover {Vλ : λ ∈ Λ0} of Σ with mλ(D) − m0(D) ∈ Wπ for all

λ ∈ Λ0 and D ∈ Vλ.

Remark 4.7. Let F be an ultrafilter of N containing Fcofin, ν be as in Remark 4.4 (b) and δ′, δn,

n ∈ N, be as in (5), (4), respectively. It is not difficult to check that the sequence (δn)n is weakly

(F)-ν-backward exhaustive, but not weakly (F)-ν-forward exhaustive at ∅, and that δ′ is ν-lower

semicontinuous, but not ν-upper semicontinuous at ∅.
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