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Abstract 
A solution of the Maxwell equations for the electromagnetic wave in a 
spherical capacitor which is included in an alternating current circuit or in 
an constant current circuit is proposed. A hypothesis of the Earth 

magnetism nature is presented on the basis of this solution. 
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1. Introduction 
The electromagnetic wave in a capacitor in an alternating current or 

constant current circuit is investigated in [1, 2]. In this paper, a spherical 
capacitor in a sinusoidal current circuit or an constant current circuit is 
considered. The capacitor electrodes are two spheres having the same 

center and radii 12 RR  . A hypothesis of the Earth magnetism nature is 

proposed on the basis of this solution. A model of the ball lightning was 
substantiated previously in a similar manner [3]. 
 

2. Solution of the Maxwell Equations in the 
Spherical Coordinate System  
Let us first consider a spherical capacitor in a sinusoidal current 

circuit.  Fig. 1 shows the spherical coordinate system (  ,, ). 

Expressions for the rotor and the divergence of vector Е in these 
coordinates are given in Table 1 [4]. The following notation is used:  
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E  - electrical intensities, 

H  - magnetic intensities, 
  - absolute magnetic permeability, 

  - absolute dielectric constant. 


 ,T

 
Fig. 1. 

 
Table 1. 

1 2 3 
1  Erot  

    












sintg

EEE
 

2  Erot  

  










 EEE

sin
 

3  Erot  















EEE
 

4  Ediv  

    


















sintg

EEEEE
 

 
With no charge on and no current between the spherical capacitor 

electrodes, the Maxwell equations in the spherical coordinate system take 
the form presented in Table 2.  

 
Table 2. 

1 2 
1. 

0rot 





t

E

c
H






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2. 
0rot 






t

E

c
H 




 

3. 
0rot 






t

E

c
H






 

4. 
0rot 






t

H

c
E






 

5. 
0rot 






t

H

c
E 




 

6. 
0rot 






t

H

c
E






 

7.   0div E  

8.   0div H  

 

Below the solution will be sought for in form of functions HE, , 

which presented in Table. 3, where the functions of the form  E  to 

be calculated. It is important to note that 
• these functions are independent of the argument  ; 

• if     sinE , then 

 
 


cos2

tg







EE
.     (11) 

 
Table 3. 

1 2 
     )sin(cos tEE    

     )sin(sin tEE    

     )sin(sin tEE    

     )cos(cos tHH    

     )cos(sin tHH    

     )cos(sin tHH    

 

We substitute the functions HE,  from the Table 3 in Table 1 

and take into account (11). Then we obtain Table 4. 
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Table 4. 

1 2 3 
1  Erot  

)cos(
2




E
 )sin( t  

2  Erot  
)sin(



















EE
 )sin( t  

3  Erot  
)sin(


















EE
 )sin( t  

4  Ediv  
)cos(

2


































EEE
 )sin( t  

 

Expressions for the rotor and divergence function H  differ from 

those shown in the Table. 4 only in that instead of factors )sin( t  are 

factors )cos( t .  

Substituting the expression for the curl and divergence in 
Maxwell's equations (see Table 2), differentiating with respect to time and 
reducing common factors, we obtain a new form of Maxwell's equations 
- see Table. 5. 
 
Table 5. 

1 2 
1 



E2



H

c
 =0 

2 

















 EE



H

c
 =0 

3 

















 EE



H

c
 =0 

4 































 EEE 2
=0 

5 
0

2
 

 


E

c

H
 

6 
0












 

 


E

c

HH
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7 
0












 

 


E

c

HH
 

8 
0

2































 HHH
 

 

3. The solution of Maxwell's equations for the 
vacuum 
First, we consider the equations for a vacuum where in the GHS 

system 

1  .       (12) 

Then Maxwell's equations are completely symmetrical with respect to the 
intensities E and H. Find the sum pairs of (1-4) and (5-8). Then we get: 

0
2

 

 


W

c

W
,     (13) 

0











 

 


W

c

WW
,    (14) 

0











 

 


W

c

WW
,    (15) 































 WWW 2
=0,    (16) 

where 

HEW  , 2WHE  .    (17) 

The system of 4 equations (13-16) defines 3 unknown functions - 
the system is overdetermined. We show that there is a solution that 
satisfies all equations 

Direct substitution can be seen that the equations (14, 15) has the 
following solution: 

  










 




 R

c

ii
AW exp ,   (18) 

  







 




 R

c

i
AW exp

1
,   (19) 

where cRA ,,,,   - constants. We find from equations (13, 18): 
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  







 







 R
c

iAccW
W exp

22
2

.   (20) 

  




























R

c

ici
A

W
exp

22
23

.   (21) 

 
Substituting equations (19-21) to (16), we see that equation (16) 

turns into the identical relation 0=0. Therefore, three functional relations 
(18-20) comply with four equations (13-16), which was to be proved. 

The decision does not change if instead of (17) will be used 
condition 

 
 i

HEW



1

2
.     (22) 

Next, we will look for a solution in which 

iHE  .       (23) 

From (76, 77), we find: 

 
 

H
i

HiW 2
1

2
1 


      (24) 

or 

2WH  .      (25) 

From (77, 79), we find: 

2WiE  .       (26) 

From (18-20, 79, 80), we find: 

  










 




 R

c

iAi
H exp

2
,   (27) 

  










 




 R

c

iA
H exp

2
,    (28) 

  










 




 R

c

iAc
H exp

2
,   (29) 

  







 




 R

c

iA
E exp

2
,    (30) 

  










 




 R

c

iAi
E exp

2
,   (31) 

  










 




 R

c

iAci
E exp

2
,   (32) 
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The solution obtained is a complex value. It is known that the real 
part of a complex solution is also a solution. It follows that one can take 
the real parts of functional relations (27-32) as a solution instead of these 
functional relations: 

  


  Rq
A

H sin
2

,    (33) 

  


 


 Rq
A

H cos
2

,    (34) 

  


 


 Rq
q

A
H cos

2
,    (35) 

  


  Rq
A

E cos
2

,    (36) 

  


  Rq
A

E sin
2

,    (37) 

  


  Rq
q

A
E sin

2
,    (38) 

where  

c
q


 .                  (38а) 

Для проверки этого решения можно подставить эти функции в 
уравнения табл. 5 и убедится, что они превращаются в тождества. 

Thus, the solution of Maxwell's equations for the spherical vacuum 
capacitor has the form of equations (33-38). 

To find all these functions, it suffices to know the values of 

constants cRA ,,,,  . This solution means that an 

electromagnetic wave does exist in the spherical capacitor in a 
sinusoidal current circuit. 

The solution of Maxwell's equations for the case when the 
dielectric is not a vacuum is given in Application 1 and for the case when 
the dielectric has some electrical conductivity – в Application 2. 

 
 

4. Electric and magnetic intensities 
Let us consider a point T with coordinates ,  on a sphere of 

radius   .Vectors E  and E , going from this point are in plane P, 
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tangent to this sphere at point  ,T  - see Fig. 2. These vectors are 

perpendicular to each other. Hence, at each point  ,  the sum vector  

 HHH


        (39) 

is in plane Р and has an angle of   to a parallel line. As it follows from 

(33, 34) and the Table. 3, the module of this vector and the angle   

defined by the following formulas: 




2

A
H 


       (40) 

    







 







R

cH

H
sincos   

or 

  


  R
c2

.     (41) 

 ,T





E

E

H

H

H


E




e

 
Fig. 2. 

Similarly, the same relationships exist for the vectors E


 and E


. 

At each point  ,  the total vector  

 EEE


        (42) 
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lies in the plane P and is directed at an angle e  to a line parallel. It 

follows from (36, 37) and Table 3, the module of this vector and the 

angle e  defined by the following formulas: 




2

A
E 


       (43) 

    







 







R

cE

E
e coscos   

or 

  


  R
c

e       (44) 

or 




 
2

e .       (45) 

The angle between H


 и E


 in the plane P is straight. 

Therefore, in a spherical capacitor we can consider only one vector 

of the electrical field intensities E


 and only one vector of the magnetic 

field intensities H


. As these vectors lie on the sphere, they will be 

called spherical vectors.  

In Fig. 3 shows the vectors H


 and E


 lying in the plane P, and 

vectors H


 and E


 lying on a radius. 

Note that there are many solutions distinguished by value  . This 

fact reflects the arbitrary rule in the choice of mathematical coordinate 
axes. 

 ,T
H



E


2/

H


2/

2/

E


 
Fig. 3. 
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Angle   (30) is constant for all vectors H


 for a given radius  . 

This means that the directions of all vectors H


 constitute the same 

angle   with all parallels on a sphere with a radius of  . This implies in 

turn that there are the magnetic equatorial plane inclined to the 
mathematical equatorial plane at angle  , magnetic axis, magnetic poles, 

and magnetic meridians, along which vectors H


 are directed – see Fig. 

4, where thin lines mark the mathematical meridional grid, thick lines 

mark the magnetic meridional grid, the mathematical axis mm, and 

magnetic axis aa and electric axis bb are shown. It is important to note 

that the magnetic axis aa, electric axis bb and all vectors E


 и H


 are 

perpendicular  

When 0
c


 and 0  the magnetic axis coincides with the 

mathematical axis. 

Spherical vectors depend on  sin . Radial vectors depend on 

 cos  – see Table 3. Therefore, there are the radial intensities only in 

locations where the spherical intensity is zero.  


m

m

a

a

b

b

 
Fig. 4. 
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5. An Electromagnetic Wave in a Charged 
Spherical Capacitor  
A solution of the Maxwell equations for a parallel-plate capacitor 

being charged [2] stems from a solution of these equations for a parallel-
plate capacitor in a sinusoidal current circuit [1]. In this paper the method 
described in [1] will be used in solving the Maxwell equations for a 
spherical capacitor being charged.  

Let us consider the field intensities in the form of functions 
presented in Table 6. These functions differ from functions of Table 3 
only by the type of time dependence: in Table 3, E and H functions 

depend on time as )cos(),sin( tt  , respectively, while in Table 6, E 

and H functions depend on time as    1)exp(,)exp(1  tt  , 

respectively.  
Table 6. 

1 2 
     )exp(1cos tEE    

     )exp(1sin tEE    

     )exp(1sin tEE    

     1)exp(cos  tHH   

     1)exp(sin  tHH   

     1)exp(sin  tHH   

 
Although the indicated substitution, the solution of Maxwell's 

equations remain unchanged. 
Bias Current 

    )exp(cos tEE
dt

d
J       (31) 

Fig. 6 presents intensities components and their time derivatives as 

well as the bias current as a function of time for 300 : H  is shown 

with a solid line, with a dashed line, and J  with dotted line. It is evident 

that with t  the amplitudes of all intensities components tend to a 
constant together, while the current amplitude approaches zero. This 
corresponds to the capacitor charging via a fixed resistor.  
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When the capacitor becomes fully charged, the current stops to 
flow. However, the stationary flow of the electromagnetic energy is 
maintained according to [2]. 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-1

-0.5

0

0.5

1

E
r(

t)
, 

H
r(

t)
, 

H
r(

t)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
-400

-200

0

200

400

E
r1

(t
),

 H
r1

(t
)

Fig.6. (SSMB6.1)
 

Thus, the solution of the Maxwell equations for a capacitor being 
charged and the solution for a capacitor in a sinusoidal current circuit 
differ only in that the former includes exponential time functions while 
the latter contains sinusoidal time functions.  

The electromagnetic wave structure remains the same - see Section 
3. It is evident from Section 3 that there is an electromagnetic wave in a 

spherical capacitor with only spherical vectors E


, H


 and radial 

vectors E


, H


. 

Thus, we can say that the spherical capacitor is a device equivalent 
to the magnet and, simultaneously, electrets, which are perpendicular. 

 

6. The Magnetic and the Electrical Field of 
the Earth 
It is known that the Earth electrical field can be considered as a 

field "between spherical capacitor electrodes" [5]. These electrodes are 
the Earth surface having a negative charge and the ionosphere having a 
positive charge. The charge of these electrodes is maintained by 
continuous atmospheric thunderstorm activities.  

It is also known that there is the Earth magnetic field. However, in 
this case no generally accepted explanation of the source of this field is 
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available. "The problem of the origin and retaining of the field has not 
been solved as yet." [7]. 

It flows from the above mentioned that the Earth electrical field 
is responsible for the Earth magnetic field.  

Let us consider this problem in more details.  

The vector field H


 in a diametral plane passing through the 

magnetic axis is shown in Fig. 8. Here, .1;7.0  H


 The vector 

field H


 in a diametral plane passing through the magnetic axis is shown 

in Fig. 9. Here, .1;4.0  H


 The vector field  HHH


  in a 

diametral plane passing through the magnetic axis is shown in Fig. 10. 

Here, .1;2.0;3.0   HH


 

-1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 8. (Sfera.88)
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-1.5

-1

-0.5

0

0.5

1

1.5

FIG. 9. (Sfera.88)
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FIG. 10. (Sfera.88)
 

 

Application 1. Solution of Maxwell's equations 
for the medium 
The solution of equations for the vacuum was considered above, 

where in the GHS system, 1  . At this time, we take a look at the 

more general case, where   .  

We consider again Table 5. We shall call 




EE  .      (52) 

Then Table 5 becomes Table 7. We perform simple transforms in Table 
7 and get Table 8. In Table 8, Maxwell's equations are completely 

symmetrical with respect to intensities E  and H . We put together 

equations (1-4) and (5-8) mutually. Then we get: 

0
2

 







W

c

W
,     (53) 

0











 







W

c

WW
,    (54) 

0











 







W

c

WW
,    (55) 































 WWW 2
=0,    (56) 
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when 

HEW  .      (57) 

Equations (53-57) are solved in the same way as equations (13-17) 
in Section 3. As a result, the functions (33-38) are defined. The only 
difference is that instead of the value (38a) is used the value 




c
q  .      (58) 

Next, intensities Е are defined by (52). 
 

Table 7. 

1 2 
1 







E2



H

c
 =0 

2 


























EE



H

c
 =0 

3 























 EE



H

c
 =0 

4 





















 















 EEE 2
=0 

5 
0

2










E

c

H
 

6 
0






















E

c

HH
 

7 
0






















E

c

HH
 

8 
0

2































 HHH
 

 
Table 8. 

1 2 
1 

0
2












H

c

E
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2 
0















 







H

c

EE
 

3 
0























H

c

EE
 

4 
0

2













 



















 EEE
 

5 
0

2
 







E

c

H
 

6 
0












 







E

c

HH
 

7 
0












 







E

c

HH
 

8 
0

2



























 



 HHH
 

 

Application 2. Solution of Maxwell's 
equations for conductive dielectric 
In Application 1 was considered the solution of equations for the 

dielectric, which was   . Next, assume that the dielectric has a certain 

electrical conductivity. In this case, the equation of the form 

0rot 





t

E

c
H


      (71) 

is replaced by the equation of the form 

0rot 



 E

t

E

c
H 


     (72) 

Instead Table 3 in this case we use the Table 9, where   - the phase 

angle between the magnetic and electric field intensities – see Fig. 11.  
At the same time the system of Maxwell's equations can be 

replaced by two independent systems of equations: in the first system is 

used the term )sin()sin( t  from the Table 9, and in the second system 

- the term )cos()cos( t  from the Table 9. After receiving the decision 

of the system the general solution is defined as the sum of the solutions 
found (by the linearity of systems). The solution of the first system is 
given in Appendix 1. 
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

 tJH cos

   tE cos

 tsin

     ,0if,cos tE

  







 0,

2
if,sin 


tE

    sinsin tEim 

    coscos tEr 

 
Fig. 11. 

 
Table 9. 

1 2 
     )cos()cos()sin()sin(cos ttEE    

     )cos()cos()sin()sin(sin ttEE    

     )cos()cos()sin()sin(sin ttEE    

     )cos(cos tHH    

     )cos(sin tHH    

     )cos(sin tHH    

 
Table. 5 for the second system takes the form of Table 10 

(modified formulas (5-7)). Next will also argue, as in Application 1. Let 

EgE  .       (73) 

when 

 



cos




c
g .     (74) 

Then the Table 10 takes the form of the Table 11. We perform a simple 
conversion in Table 11 and to get a Table 12. In Table 12 then Maxwell's 

equations are completely symmetrical with respect to the intensities E  

and H . Find the sum pairs of (1-4) and (5-8). Then we get: 

0
2

 




qW

W
,     (74) 
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0











 




qW

WW
,    (75) 

0











 




qW

WW
,    (76) 































 WWW 2
=0,    (77) 

when  

 





c
q

 cos
,     (78) 

HEW  .      (79) 

Equations (74-77) are solved in the same way as equations (13-17) 
in Section 3. Equations (53-57) are solved in the same way as equations 
(13-17) in Section 3. As a result, the functions (33-38) are defined. The 
only difference is that instead of the value (38a) is used the value (78). 

Next, intensities Е are defined by (63). By combining this solution of the 

second system with the solution the first system, we finally obtain: 

      2211 sinsin
2




  RqRq
A

H , (80) 

      2211 coscos
2




 


 RqRq
A

H , (81) 

     










 22

2

11

1

2
cos

1
cos

1



 Rq

q
Rq

q

A
H , (82) 

      2211 coscos
2




  RqRq
A

E , (83) 

      2211 sinsin
2




  RqRq
A

E , (84) 

     







 22

2

11

1

2
sin

1
sin

1



 Rq

q
Rq

q

A
E , (85) 

where 




c
q 1 ,      (86) 

 





c
q

 cos
2 .     (87) 
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Table 10. 

1 2 
1 



E2



H

c
 =0 

2 

















 EE



H

c
 =0 

3 

















 EE



H

c
 =0 

4 































 EEE 2
=0 

5 
  0cos

2
 





E

H
 

6 
  0cos 












 





E

HH
 

7 
  0cos 












 





E

HH
 

8 
0

2































 HHH
 

 
Table 11. 

1 2 
1 

  

 






H

cc

E






cos

2
=0 

2 

 







cos
















c

EE



H

c
 =0 

3 

 







cos
















c

EE



H

c
 =0 

4 

 







cos

2































c

EEE
=0 
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5 
 

 
0

cos
cos

2

















c
E

H
 

6 
 

 
0

cos
cos 





























c
E

HH
 

7 
 

 
0

cos
cos 





























c
E

HH
 

8 
0

2































 HHH
 

 
Table 12. 

1 2 
1  

0
cos2




 

 


H

c

E
 

2  
0

cos
















 

 


H

c

EE
 

3  
0

cos
















 

 


H

c

EE
 

4 































 EEE 2
=0 

5  
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