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1 Data leakage proofs

Notations. re ∈ N is the eavesdropping distance of an E-bot; we refer to the
area within re around the target as the sensitive area. Let distG(v, w) denote
the length of the shortest path between v, w ∈ V ; we assume G is an undirected
4-connected grid; therefore, distG is simply Manhattan distance. RingG(p, k)
denotes points with distance k ∈ N from point p ∈ G. pa, pc, pp are the capture
probabilities by P-bots that are allocated to the roles Area Patrol , Circumference
Patrol and Pursuit respectively, and we assume 0 < pa ≤ pc. P-bots focus on pro-
tecting the target point t. We strictly assume all data is flushed immediately to
the sink after the E-bot escapes from the sensitive area. η is the amount of E-bots,
pd is the transmission-detection probability and R : N→ (0, 1] is a nonincreasing
function which is the reward given to E-bots for a data item which reaches the
sink x rounds after it was eavesdropped. We use Rn =

∑
n
i=1R(i) to denote the

reward given for the n latest consecutively-eavesdropped units. For an E-bot that
uses the crawling E-bot strategy, and spends l rounds within the sensitive area
each time it enters, we denote with u(l) the expected reward it gains before being
captured. C(l) denotes the probability that it will be captured before exiting the
sensitive area. We use lescape = arg maxl∈N u(l). Let x be the reward given for
data that reached the sink exclusively by flush. Eescape(x, pa, pc, R), abbreviated
to Eescape(x)), is the lower bound on the expected captured E-bots before then.
Let k be the reward given for leaked data units that reached the sink exclusively
from inside the sensitive area (by transmission). Estay(k, pa, pp, pd, R), abbrevi-
ated to Estay(k), denotes the lower bound on the expected captured E-bots by
the time they received the reward. If in all the transmissions the E-bots trans-
mitted n units simultaneously, Enstay(k, pa, pp, pd, R), abbreviated to Enstay(k),
denotes the same.

Lemma 1. 1. C(x) may be bounded as follows:

C(x) ≥
{
pc x = 1
(1− (1− pc)2(1− pa)x−2) o.w.

2. u(l) has a single extremum point in [3,∞)



2

3. Eescape(x, pa, pc, R) ≥ x
Rlescape

· C(lescape)
1−C(lescape)

Proof. 1. Consider an E-bot that uses the crawling strategy exclusively. Let l be
the length of a particular visit in the sensitive area, which is also the number
of data items collected - if the E-bot is not captured. The accumulated data
units are necessarily unique, since that E-bot collects data only when no
other E-bot is active. Hence, the 1

C(l) is the expected number of rounds the
E-bot repeats the process until it is captured (Binomial distribution), and
the expected reward is: u(l) ≡ Rl

C(l) −Rl = cl
C(l) − cl.

– For l = 1: the E-bot necessarily visited and immediately escaped a point
in RingG(t, re). Upon escaping, flushing the data do not increase capture
probability, and therefore C(1) = pc. Note that if an E-bot remains in
RingG(t, re) for l = 2, it risks losing the data it accumulated in the first
round, and therefore such a strategy provides no benefit.

– For l > 2: the E-bot has the opportunity to occupy points inRingG(t, 0 <
i < re) (excluding the first and last rounds), thus reducing the capture
probability for some of the rounds. Therefore: C(l) = 1 − (1 − pc)2(1 −
pa)l−2.

2. For any reward functionR, the first point after the extremum is the first point
for which it holds that: Rx+1

(1−(1−γ)2(1−α)x−1) − Rx+1 > Rx

(1−(1−γ)2(1−α)x−2) −

Rx
0<α<γ<1−−−−−−→ R(x + 1) < Rx

(−1+α)α
((1−α)xγ2−2(1−α)xγ−α2+(1−α)x+2α−1) (or the

opposite, where R(x+1) > for the first time). Rx is monotonically increasing
since R(x) > 0. Additionally, it is multiplied by a monotonic term, since:
∆
∆x

(−1+α)α
((1−α)xγ2−2(1−α)xγ−α2+(1−α)x+2α−1) = 0 ←→ (−1 + α)α((1 − α)xln(1 −

α)γ2 − 2(1 − α)xln(1 − α)γ + (1 − α)xln(1 − α)) = 0 is never satisfied. If
the right-hand side is < 0, it will be < 0 < R(x) for any x. If the right-hand
side is > 0, then R(x) is nonincreasing and the left-hand is monotonically
increasing, and therefore may meet only once.

3. An E-bot that transmits from within the sensitive area does not increase
the amount of unique accumulated data (and potentially only decreases it),
and does not contribute to transmissions from outside the sensitive area.
Additionally, by design of the P-bots in this strategy transmissions may
not decrease the probability of the E-bot for being captured. The expected
number of transmitted data from outside the sensitive area until an E-bot
gets captured u(l) = Rl( 1

C(l) − 1) is maximized for l = lescape. That is,
Eescape(

Rlescape

C(lescape) −Rlescape
) ≥ 1 holds, and due to the linearity of expected

value Eescape(l) ≥ l 1
Rlescape

C(lescape)−Rlescape

= l
C(lescape)

Rlescape (1−C(lescape) follows.

Lemma 2. Enstay(l) ≥ (n− (−1+pa)((1−pa)n−1)
pa

+ pp)( l
nRn

).

Proof. Consider an E-bot that exclusively uses the transmitting strategy. Since
only one unique data unit is generated in each round, the E-bot that transmitted
the oldest data unit had stayed for at least n rounds, at least one other E-bot
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had stayed for n−1, another for n−2 and so forth. Accordingly, the independent
risk each E-bot takes is at least 1− (1− pa)n, 1− (1− pa)n−1,. . . , 1− (1− pa),
which is summed up to n − (1 − pa) (1−pa)n−1

(1−pa)−1 = n − (−1+pa)((1−pa)n−1)
pa

. After
the transmission of the n units, the pursuit algorithm was invoked and targeted
one of the transmitting E-bots that was not yet captured. That is, after any
transmission an additional risk of pp follows for some agent. Therefore, for a
reward of Rn, n− (−1+pa)((1−pa)n−1)

pa
E-bots are expected to be captured before

the transmissions begin, and additional pp immediately in the next round. Sim-
ilarly to the previous lemma, due to the linearity of expected value, Enstay(n) =
(n− (−1+pa)((1−pa)n−1)

pa
+pp)

Rn
and Enstay(l) = (n− (−1+pa)((1−pa)n−1)

pa
+ pp)( l

nRn
)

(note that we disregard the option of leaving the sensitive area while trans-
mitting, since this is considered flushing the data).

Theorem 2. The expected reward of the E-bots is bounded from above by:
η

min(Eescape(1),Estay(1)) .

Proof. This follows directly from the previous lemmas since P-bots use a stateless
strategy (i.e. the probability of capturing E-bots in each round does not depend
on the state of P-bots in the previous round) and since in every round only a
single new unique data unit is generated. We denote k = arg maxn∈[1,...,η] E

n
stay.

Consider any data unit that was eventually collected by E-bote. Before the data
unit is accumulated by e , e has a probability of at least p = pa or = pc for
being captured (or p+ (1− p) · pp

k if it transmitted data at the previous round).
This minimal risk is independent of the method used to eventually collect this
data. That is, the expected risk for all E-bots in the sensitive area in that round
was at least Eescape(1) or at least Estay(1), and no additional data units were
accumulated in that round (even if additional E-bots accumulated the same data
unit, it wasn’t unique upon collection). Additionally, accumulating the data and
staying within the sensitive area may not reduce the minimal risk taken by any
other E-bot or increase the reward given for other accumulated data units (and
potentially only worsen the situation). Therefore, combining the two strategies
is not preferable to using any one of them, and E-bots may repeat the preferable
one.

Since the bounds are lenient (it is assumed all simultaneous transmissions are
done with optimal conditions for E-bots), it may appear that the combination of
transmitting and crawling together may not be useful for E-bots, but in practice
the combination may be beneficial e.g. letting by an E-bot participate in several
simultaneous transmission, until most other E-bots were captured, then crawl
back to the sink and flush the remaining untransmitted data.

2 Patrol and pursuit details

Assume P-bots have a velocity of rp. In order to calculate how many P-bots are
needed for Area Patrol , Circumference Patrol and Pursuit methods, we use the
following lemma.
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Lemma 3. For graph G = (V,E) and any two points v1, v2 ∈ RingG(V, {0 ≤
i ≤ r}) it holds that:

1. distG(v1, v2) ≤ 2r.
2. Given distance r > 1 and a point v ∈ V in the graph center, if G is a

4-connected grid graph then |RingG(v, r)| = 4r and |RingG(v, 0 ≤ i ≤ r)| =
2r(r+1)+1 hold (the equations hold iff the numerated points do not intersect
the edges of the grid graph).

Proof:

1. By induction: For r = 1, trivial. We assume for r > 1. Given v1, v2 ∈
RingG(V, r + 1), let v′1, v′2 ∈ RingG(V, r), distG(v1, v

′
1) = distG(v2, v

′
2) = 1.

By assumption, distG(v′1, v′2). By concatenating the paths that correspond
to the distances we create a path of length 2r + 1 + 1 = 2(r+1).

2. By induction: For r = 2, trivial. We assume for r > 2. Let v = V [x0, y0] ∈ V
be the graph center, and vt = V [x0, y0 + r + 1] ∈ RingG(v, r + 1), vb =
V [x0, y0 − r − 1] ∈ RingG(v, r + 1). Except for vt, vb, for each V [x, y] ∈
RingG(v, r+ 1) : if x ≤ x0 then V [x+ 1, y] ∈ RingG(v, r+ 1), and if x ≥ x0
then V [x− 1, y] ∈ RingG(v, r + 1) since the vertex is closer by 1 edge to v.
Clearly, only V [x0, y0 + r], V [x0, y0 +−r] are matched in both connditions,
and we get |RingG(v, r)| + 2 + 2 distinct vertices in RingG(v, r + 1). By
summation,

∑
0≤i≤r

4i = 4 r(r+1)
2 . Including the graph center gives 2r(r+1)+1.

Area Patrol: For an area RingG(t, 0 ≤ i ≤ rp), denoted by At,rp
, a P-bot in

point (xf , yf ) ∈ At,rp
, if x ≤ y (x ≥ y), every point (xd, yd) ∈ At,rp

, xd ≤ yd
(respectively xd ≥ yd) is reachable. Therefore, the 2 P-bots used by the area
patrol algorithm are enough to insure that an area with radius rp is reachable
by at least one of them i.e. two P-bots are designated to an area of size

∣∣At,rp

∣∣ =
2rp(rp + 1) + 1.

An alternative method for the previously presented area patrol is assigning
the area At, rp

2
to a single P-bot. Since for every two points p1, p2 ∈ At, rp

2
it holds

that distG(p1, p2) ≤ rp, every point in the area will be reachable. Even though
twice as many P-bots are required for covering an area using this method, if
the area to cover is smaller (e.g. when a large area cannot be divided exactly to
Ax,rp -sized areas) as illustrated in Figure 1.
Circumference Patrol: |RingG(t, d)| = 4d, and each P-botmay reach rp

2 points
to every direction (and in particular, two directions are in RingG(t, d)), at least
d 4d
rp+1e P-bots are required to cover the area, where each P-bot may reach rp

points other than its current one.
Pursuit: In a single round, a P-bot may reach any point in distance rp i.e.
2rp(rp + 1) different points other than its current one. Since another round is
needed before the P-bot returns to the center of that area, at least two P-bots
are needed for any area Ax,rp , x ∈ G, and therefore its average designated points
per P-bot is similar to that of the area patrol.
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Fig. 1: Comparison of patrolling methods
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3 Impact of not knowing E-bots’ limitations

Figure 3 is similar to Figure 2, but in this case the P-bots may not assume that
E-bots are limited to any specific strategy, even though they are. Since P-bots
are optimized for the most difficult case, the E-bots gain only a small advantage.

Fig. 2: Compare E-bot strategies, for
different discount factor values, and
P-bots are aware of E-bots strategy
(as usual)

Fig. 3: Compare E-bot strategies, for
different discount factor values, and
P-bots are oblivious to E-bots strat-
egy


