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Abstract

The motion of the mathematical extra-terrestrial pendulum is considered in
the spherical gravitational field. The potential energy of the pendulum bob is
approximated to give the nonlinear equation of motion. After solving it by the
Landau-Migdal method we obtain the frequency of motion and the swing amplitude.
The crucial point of our experiment is, that if the inertial mass m depends on
its distance from the reference body M , then the calculated frequuency of our
pendulum is not identical with the measured frequency. This crucial knowledge of
the pendulum project can have substantional influence on the future development
of general relativity and physics of elementary particles.

Key words. Mathematical pendulum, Newton gravity potential,
nonlinear equation, Landau-Migdal iteration method.

We suggest experiment for the test if the inertial mass m of a body
depends on its distance from the reference body with mass M . It can
be tested by the large mathematical pendulum, which we denoted as the
cosmical extra-terrestrial pendulum.

We specify such cosmical pendulum by the definition that it is the extra-
terrestrial mathematical pendulum, the pendant of which moves along a
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geostationary orbit, where the geostationary Earth orbit or geosynchronous
equatorial orbit (GEO) is a circular orbit 35,786 kilometres above the Earth
equator and following the direction of the Earth rotation. An object in such
an orbit has an orbital period equal to the Earth rotational period.

The length of the (carbon tube) fibre of the pendulum is considered
sufficiently long to detect the sphericity of the globe gravity.

The mathematics of pendulums are in general quite complicated prob-
lem. However, there are some simplifying assumptions, which allows the
equations of motion to be solved analytically for small-angle oscillations.
We consider here the pendulum bob motion in the nonuniform gravity
field expressed by the Newton gravitational formula. The parameters of
pendulum is as follows: the swing fibre is massless, inextensible and al-
ways remains of the constant length, the moving bob with mass m is a
point mass, motion occurs only in two dimensions, i.e. the bob trajectory
is an arc, the motion does not lose energy to friction or air resistance,
and finally, the pendant point does not move (the pendant point is on the
geo-stationary satellite).

In order to get the differential equation of motion, we first derive the
gravitational potential energy generated by the point with mass M and
with the mass of the bob m.

The force acting on the point mass in such gravity field is

F = −κ
Mm

r3
r. (1)

The performed work by this force is defined by the following formula

W = −
∫ r2

r1
F · dr = κMm

∫ r2

r1

r · dr
r3

, (2)

where the sign (-) in front of integral formula denotes the negative work
performed by the gravitational field. Using r · dr = |r||dr| cosα = rdr, we
get

W = κMm
∫ r2

r1

rdr

r3
= −κMm

(
1

r2
− 1

r1

)
. (3)

Now, let us introduce the general point r by r2 → r and reference point
R by , r1 → R then the potential energy is of the form

Ep = −κMm

(
1

r
− 1

R

)
. (4)
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The potential energy of a point m at the vicinity of the reference point
R, i.e. at point R + h, where h ≪ R is then

Ep(R + h) = −κMm

R

 1

1 + h/R
− 1

 ≈ κMmh

R2
(1− h/R) . (5)

With regard to the fact that the local acceleration at point R is

g =
κM

R2
, (6)

we write the potential energy in the simple form:

Ep = mgh

(
1− h

R

)
= mgh− mg

R
h2, (7)

which is the suitable formula of energy with spherical gravity correction in
order to construct the differential equation for motion of pendulum.

Let us consider the pendulum with the equilibrium z-coordinate at point
z = R and the support coordinate (the pendant point) is at z = R + l,
where l is the length of our pendulum. Then, the standard expression for
the h-coordinate is

h = 2l sin2(φ/2) ≈ l

2
φ2;φ → 0, (8)

where φ is the standard deflection angle of the swing with regard to the
z-coordinate.

The total energy of the pendulum is

E =
1

2
mv2 +mgh− mg

R
h2. (9)

We obtain for small φ that limφ→0(dh/dt) ≈ lφ(dφ/dt) and from
equation dE/dt = 0, we get following equation

φ̈+
g

l
φ− gl

R
φ3 = 0, (10)

or,

φ̈+ ω2
0φ = λφ3; ω2

0 = g/l; λ = gl/R. (11)

The next step is to solve the last differential equation (11) by the
appropriate approximate method.
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We will solve the eq. (11) by iteration. In order to avoid the resonance
solution, we use the method described for instance in the Migdal special
book on special mathematical methods in quantum mechanics (Migdal,
1975). This method was also used by author at solwing the Gross-
Pitaevskii equation for the superfluid medium (Pardy, 1989) with the goal
to detect the gravity waves by the superfluid system (instead of LIGO and
eLISA).

The first step is that we rewrite eq. (11) as follows:

φ̈+ ω2φ = λφ3 + (ω2 − ω2
0)φ; ω2

0 = g/l; λ = gl/R, (12)

where the fundamental solution of the left side is φ0 = C sinωt, where
constant C must be determined from the initial conditions. Then, the
equation for the first iteration is as follows

φ̈1 + ω2φ1 =
1

4
λC3(3 sinωt− sin 3ωt) + C(ω2 − ω2

0) sinωt. (13)

The mathematical consistency demands the coefficient with sinωt, must
be zero from which follows that

ω =

(
ω2
0 −

3

4
λC2

)1/2
; ω2

0 = g/l; λ = gl/R. (14)

Now, we must solve the equation

φ̈1 + ω2φ1 = −λ

4
C3(sin 3ωt). (15)

The partial solution of eq. (15) is φp = A sin 3ωt, which gives after
insertion this function in eq. (15), that

A =
λ

32

1

ω2
C3 (16)

and it means that the first iteration solution of eq. (12) is

φ1 = C sinωt+

(
λ

32

1

ω2
C3

)
sin 3ωt; ω =

(
ω2
0 −

3

4
λC2

)1/2
. (17)

We have seen how to solve, in approximation, the mathematical pen-
dulum moving in the spherical gravity field. We considered here the large
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extra-terrestrial pendulum with the long fibre. The pendant point is con-
sidered on the geo-stationary satellite. While the bob of the Foucalt pendu-
lum moves over the Earth surface, our pendulum bob moves in ionosphere.

We know from history, that Isaac Newton ∼ 1680 measured the period
of pendulums of different mass but identical length difference with the
result being less than 1 part in 1000. Friedrich Wilhelm Bessel in 1832
measured the period of pendulums of different mass but identical length
with no measurable difference. So, we here follow the great scientists of
pendulum experiments.

The crucial point of our experiment is, that if the inertial mass m
depends on its distance from the reference body M , then the calculated
frequuency of our pendulum is not identical with the measured frequency.
This crucial knowledge can have substantional influence on the future
development of general relativity and physics of elementary particles.
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