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quantum randomness is the output of measurement experiments, whose input com-
mands a logically independent response. Following up on that work, this paper
develops a full mathematical theory of quantum indeterminacy. I explain how, the
Paterek experiments imply, that the measurement of pure eigenstates, and the mea-
surement of mixed states, cannot both be isomorphically and faithfully represented
by the same single operator. Specifically, unitary representation of pure states is
contradicted by the Paterek experiments. Profoundly, this denies the axiomatic
status of Quantum Postulates, that state, symmetries are unitary, and observables
Hermitian. Here, I show how indeterminacy is the information of transition, from
pure states to mixed. I show that the machinery of that transition is unpreventable,
logically circular, unitary-generating self-reference: all logically independent. Pro-
foundly, this indeterminate system becomes apparent, as a visible feature of the
mathematics, when unitarity — imposed by Postulate — is given up and aban-
doned.
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1 Introduction

In Mathematical Physics, validity of a formula stems from its provability — from
Principles and Postulates (Axioms). From that standpoint, Mathematical Physics
is a collection of mathematical systems, under a regime of logical dependence.

But, over the past decade, researchers are taking seriously, logical independence,
as having impact and significance in Physical Theory [16]. Research includes ex-
perimental evidence showing that quantum randomness is rooted in logically inde-
pendent, mathematical information [11,12,13]. Logical independence refers to the
null logical connectivity that exists between mathematical formulae, that neither
prove nor disprove one another.

For certain theories, Mathematical Physics must embrace that independence.
In the normal way, the system of mathematics should include all provable formulae,
derivable from Axioms (whatever they may be); but in addition, the system must
include the class of formulae which are not disprovable. This is because the set of
non-provable, non-disprovable formulae is not empty; and formulae it contains do
not contradict, but comply with Axioms. Together, both classes of formulae form
a single, consistent theory. Interpretationally, such a system comprises formulae
expressing cause & effect, and others expressing effect by non-prevention.

For a fundamental example, well-known to Mathematical Logicians [15], I refer to
logical independence of the imaginary unit.
Consider the mathematical system we know as Elementary Algebra. This is ordi-
nary school-algebra; the abstracted arithmetic of scalars. In relation to this algebra,
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the statement:
∃x |x2 = −1

is logically independent; it can neither be proved nor disproved by the algebra’s
axioms [6]. And yet, existence of any rational number is logically dependent.

Critically, quantum mathematics rests on a foundation of Elementary Algebra.
Understanding the origins the of imaginary information, its entry into quantum
mathematics and its logical relationship with Quantum Postulates is fundamental
and crucial, in revealing Quantum Indeterminacy, as mathematical theory.

In anticipation of readers believing, beyond question, that the imaginary unit is
foundationally axiomatic, I refer to a related article, by this author, providing one
example contradicting that view. That paper shows that symmetry underpinning
wave mechanics of the free particle — the homogeneity symmetry and the Canonical
Commutation Relation deriving from it — has the imaginary unit inserted by the
mathematician, for other reasons, unrelated to homogeneity [7].

This present paper shows the imaginary unit is not axiomatic, because quantum
mathematics of pure states does not require it. And also, this paper shows that
entry of the imaginary unit originates, as a requirement, in allowing orthogonality
between complimentary systems, necessary in the formation of mixed states.

Quantum indeterminacy is a theoretical concept which must be seen in the context
of empirical quantum randomness; conceived as underlying ontology, explaining
quantum randomness. This is ontology, associated with single quantum systems,
whose existence we infer, the evidence for which, we witness as randomness in
statistics of experiments repeated many times over.

This randomness is not an epistemic randomness. It is not due to information,
the detail of which is inaccessible. It is genuine randomness that some regard as
fundamentally irreducible.

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions
would render outcomes perfectly predictable. This ‘classical randomness’ stems
from ignorance of physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [10], the inequalities of John Bell [4], and experimental evidence of
Alain Aspect [1,2], all indicate that quantum randomness does not stem from any
such physical information.

As response, Tomasz Paterek et al provide an explanation in mathematical in-
formation. They demonstrate a link between quantum randomness and logical in-
dependence in a formal system of Boolean propositions [11,12,13]. In experiments
measuring photon polarisation, Paterek et al demonstrate statistics correlating pre-
dictable outcomes with logically dependent mathematical propositions, and random
outcomes with propositions that are logically independent.

Whilst, from the Paterek research, we may reliably infer that the machinery of
quantum randomness does entail logical independence, the fact that this logical in-
dependence is seen in a Boolean system, rather obscures any insight. To understand
the workings of quantum randomness, theory must be written exhibiting logical in-
dependence in context of standard textbook quantum theory — specifically, in terms
of the Pauli algebra su(2).

Here, in this paper, I show what the Paterek Boolean information means for the
system of Pauli operators. The interesting surprise revealed, is that although every
measurement of polarisation is representable by the Pauli algebra su (2), only the
measurement of mixed states requires this algebra. Measurement of pure eigenstates
does not. For pure states, the unitary component of the Pauli algebra is not involved.

In predictable experiments, where measurement is on pure states, unitarity is
shown to be ‘redundant’ — possible but not necessary. And in experiments whose
outcomes are random, where measurement is on mixed states, unitarity is shown
unavoidably necessary. My conclusion is that there is a unitary switch-on in passing
from pure states to mixed and a unitary switch-off in passing from mixed to pure.

Logically, this regime can be viewed in two ways. It can be viewed as a system
that is always unitary, but where unitarity switches between possible and necessary:
such a possible / necessary system constitutes a modal logic. Or otherwise, it can
be seen as a complete switch between different symmetries, where unitarity is new,
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logically independent, extra information required for the transition. To adequately
describe the transition between pure and mixed states, either modal logic is needed,
or logical independence. The classical logic of true and false is not an option.

The question of where the newly formed unitary information comes from is
solved. I show that it has origins in uncaused, unprevented, logically circular self-
reference. By uncaused and unprevented, I mean that no information already present
in the system implies nor denies the logically circular self-reference.

In experiments measuring mixed states, whose outcomes are random; in the usual
way, the system symmetry is isomorphically and faithfully represented, one-one, by
the (unitary) Pauli matrices:

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(1)

But for measurements on pure states, whose outcomes are predictable, the Paterek
findings prove the Pauli operators do not offer isomorphic, faithful representation.
Measurement on pure states, in the Paterek experiments, is faithfully represented
by this set of non-unitary, matrices:

(
ζ η−1

η −ζ

)
has eigenvectors

[
1

η (λ− ζ)

]

with eigenvalues λ = ±
√
ζ2 + 1

sx =
(

0 1
1 0

)
sy(ζ, η) =

(
ζ η−1

η −ζ

)
sz =

(
1 0
0 −1

)
(2)

where ζ and η are a scalars of any value. It can be seen that σy is particular value
of sy(ζ, η). The crucial distinction between (1) and (2) is that, whereas, in the three
Pauli matrices (1) there is 3-way orthogonality – all are mutually orthogonal – in
the non-unitary matrices (2), there is orthogonality, only between sx and sz except
in the accidental coincidence of ζ = 0 and η = ±i.

In the case I argue, I reason that logical independence, identified by Paterek as the
origin of quantum randomness, is traceable to the Pauli algebra — then demonstrate
that only in representing the mixed states is the Pauli algebra faithfully isomor-
phic. And further, demonstrate that, separating the pure states from mixed states,
there is an information-gap, bridgeable by a mechanism of unitary-generating, self-
referential mathematical transformations, which is quantitatively indefinite and
logically non-causative.

Sections 2 – 5 expounds the Paterek thesis and method. The Paterek approach
treats measurement experiments like computer hardware, whose input and output
is machine binary. The machine ‘zeros’ and ‘ones’ register involutory and orthog-
onal items of hardware information. This is related to separated involutory and
orthogonal items of information, extracted from the Pauli algebra — as opposed
to the unseparated Pauli algebra itself. Ingress of logical independence enters mea-
surement information as hardware interacts with the photon density matrix.

Section 6 shows how the Pauli algebra consists of 6 logically independent items
of algebraic information – 3 involutory and 3 orthogonal.

Section 7 shows that all polarisation states need involutory information. And
that only mixed states need the 3 orthogonal items of algebraic information.

Section 8 takes the non-unitary, algebraic system1 (2), and hypothesises certain
quantitative coincidences which accidentally permit logically circular self-reference.
The resultant is the unitary Pauli system.

2 Information and logic

In Mathematical Logic, a formal system is a system of mathematical formulae,
treated as propositions, where focus in on provability and non-provability.

A formal system comprises: a precise language, rules for writing formulae, and
further rules of deduction. Within such a formal system, any two propositions are
either logically dependent — in which case, one proves, or disproves the other —
or otherwise they are logically independent, in which case, neither proves, nor
disproves the other.

A helpful perspective on this is the viewpoint of Gregory Chaitin’s information-
theoretic formulation [5]. In that, logical independence is seen in terms of informa-
tion content. If a proposition contains information, not contained in some given set
of axioms2, then those axioms can neither prove nor disprove the proposition.

1 The algebraic system (2) does not form a Lie algebra.
2 Axioms are propositions presupposed to be ‘true’ and adopted a priori.
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Edward Russell Stabler explains logical independence in the following terms.
A formal system is a postulate-theorem structure; the term postulate being syn-
onymous with axiom. In this structure, there is discrimination, separating assumed
from provable statements. Any statement labelled as a postulate which is capable
of being proved from other postulates should be relabelled as a theorem. And if
retained as a postulate, it is logically superfluous and redundant [15]. If incapable
of being proved or disproved from other postulates, it is logically independent.

Central to the formal system used in the Paterek et al research are these Boolean
functions of a binary argument:

x ∈ {0, 1} 7→ f (x) ∈ {0, 1}

Typical propositions, stemming from those functions, are these:

f (0) = 0 f (1) = 0 f (0) = f (1)
f (0) = 1 f (1) = 1 f (0) 6= f (1) (3)

Such propositions are items of information, taken as being openly true or openly
false. Our interest lies, not so much, in their truth or falsity, but in, which statements
prove which, which disprove which, and which do neither. In other words, which
are logically dependent and which are logically independent.

As illustration, if f (0) = 0 were considered to be true, the statement f (0) = 1
would be proved false. More simply, we could say: f (0) = 0 disproves f (0) = 1,
and accordingly, f (0) = 1 is logically dependent on f (0) = 0.

On the other hand, again, if f (0) = 0 were considered to be true, that would not
prove, or disprove f (1) = 0. We could say: f (0) = 0 neither proves, nor disprove
f (1) = 0, and accordingly, f (0) = 0 and f (1) = 0 are logically independent.

Over and above the propositions in (3), I introduce permanent axioms, which Pa-
terek et al take for granted, but do not state. They are:

f (0) = 0 ⇒ f (1) = 1 f (1) = 0 ⇒ f (0) = 1 (4)

These prohibit the combination f (0) = 0, f (1) = 0. More is said about this in
Section 5.

3 The Paterek et al experiments

The Paterek et al research involves polarised photons as information carriers through
measurement experiments. The experiment hardware consists of a sequence of three
segments, which I denote: State preparation, Black box and Measurement. These pre-
pare, then transform, then measure polarisation states. The orientational configu-
ration of the three segments is the experiment’s input data. This is read from an
X–Y–Z reference system fixed to the hardware. Outcome states of polarisation are
the experiment’s output data. Experiments were performed, very many times, and
statistics of outcomes gathered. The configuration input, is related to whether the
experiment’s output is random or predictable.

1. State preparation
Photons prepared, either as |z+〉, |x+〉 or |y+〉 eigenstates, by filtering, directly
after one of these Pauli transformations:
(a) σz, aligned with the Z axis.
(b) σx, aligned with the X axis.
(c) σy, aligned with the Y axis.

2. Black box
The prepared eigenstates are altered through one of these Pauli transformations:
(a) σz, aligning states with the Z axis,
(b) σx aligning states with the X axis,
(c) σy aligning states with the Y axis.

3. Measurement
Measurement is performed, by detecting photon capture, directly after one of
these Pauli transformations:
(a) σz, aligned with the Z axis.
(b) σx, aligned with the X axis.
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(c) σy, aligned with the Y axis.
Thus, there are 27 possible experiments. In practice, nine are necessary. Results are
sufficiently demonstrated by always keeping the State preparation orientation, set
at the same alignment as the Measurement orientation. The fact that Measurement
copies the State preparation orientation means the full hardware configuration can
be encoded, taking orientations of the Black box and Measurement segments, only.
These encodings come in the form of Boolean ‘4-sequences’ and ‘quad-products’
introduced below.

Within experiments, there exist two classes of orientational information. The more
obvious is segment alignment; this is the orientation of individual hardware seg-
ments with respect to the X–Y–Z reference system. Normally, in standard theory,
segment alignment would be represented as Pauli information, through the σx, σy,
σz operators. In the Paterek et al research, alignment information is fully conveyed
in two bits, through three Boolean pairs — (0, 1), (1, 0), (1, 1).

The less obvious class of information, I refer to as orthogonality index. This
is the degree of orthogonality between one hardware segment and the next —
either orthogonal, or not orthogonal. Orthogonality index is conveyed through the
experiment, as information propagated in the density matrix.

4 Boolean pairs and 4-sequences

In their treatment of the mathematics, Paterek et al represent their experiment
configurations, using sequences of the three Boolean pairs — (0, 1), (1, 0), (1, 1).
Information held in these pairs is taken directly from the indices, in the product
σixσ

j
z , where i and j are interpreted as integers, modulo 2. Thus:

σz = σ0
xσ

1
z σx = σ1

xσ
0
z −iσy = σ1

xσ
1
z (5)

By way of these three formulae, Boolean pairs (0, 1), (1, 0), (1, 1) are linked to the
operators: σz, σx, σy.

The idea is that the whole information of any Pauli operator can be encoded
through different arrangements of σx and σz — just two of the Pauli operators. The
precise structure of that encoding is key to accessing and revealing the information
that constitutes indeterminacy.

Stringing together sequences of Pauli operators, to form ‘quad-products’, invokes
corresponding Boolean ‘4-sequences’. These represent orientational information,
linking two consecutive segments of the experiment hardware. Examples are:

σzσz = σ0
xσ

1
zσ

0
xσ

1
z → (0, 1) (0, 1) (6)

σxσz = σ1
xσ

0
zσ

0
xσ

1
z → (1, 0) (0, 1) (7)

−iσyσz = σ1
xσ

1
zσ

0
xσ

1
z → (1, 1) (0, 1) (8)

These can be used to represent the action of the State preparation followed by the
action of the Black box; OR, the action of the Black box followed by the action of
the Measurement.

Consider a specific experiment where the action of the State preparation is en-
coded thus:

σmx σ
n
z → (m,n)

where the action of the Black box is encoded thus:

σf(0)
x σf(1)

z → (f (0) , f (1)) (9)

where f (0) and f (1) are the Boolean functions relating to propositions written in
(3); and the action of the Measurement is encoded thus: Variables p and q are not used by Paterek et al.

I introduce them for the sake of completeness.
σpxσ

q
z → (p, q)

In this experiment, the joint action for the State preparation and Black box is en-
coded in the quad-product and 4-sequence:

σfin(0)
x σfin(1)

z σmx σ
n
z → (fin (0) , fin (1)) (m,n)

And the joint action for the Black box and Measurement is encoded in the quad-
product and 4-sequence:

σpxσ
q
zσ

fex(0)
x σfex(1)

z → (p, q) (fex (0) , fex (1))
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5 Logical independence from the Boolean viewpoint

This section charts the progress of logical dependence and logical independence
through the experiment hardware. Information flow is considered in two stages. In
Stage 1 the ingress and egress of information is considered, through the Black box;
and in Stage 2, the reading of information by the Measurement hardware.

In the Paterek paper, the approach is to enquire whether propositions agree
or disagree, to serve as a test for the presence or absence of logical independence.
Here, in this paper, emphasis is on tracing lines of dependency, and independency,
to reveal the point where logical independence enters. That is of interest because
the ‘anomaly’ at that point will shed light on the workings of indeterminacy.

Before tracing those lines of dependency and independency, I comment on per-
manent axioms, mentioned in Section 2, written again here:

f (0) = 0 ⇒ f (1) = 1 f (1) = 0 ⇒ f (0) = 1

These do not feature in the Paterek research, but they are taken for granted. Their
purpose here, is to preclude any ‘null Black box’ from being included in the anal-
ysis; that is, any Black box performing an identity transformation. The reason I
make a special point of this, is that a ‘null Black box’ introduces a type of logical
independence, unrelated and irrelevant to the substance of the analysis, and which
superficially makes a lie of the reasoning and conclusion.

But it is important that these axioms correspond to rules of conduct for the
experiments; they cannot be simply imposed by stating them! There are two classes
of configuration for the Black box, resulting in non-random, predictable outcomes.
One is where the Black box imparts the same polarisation alignment, as does the
State preparation. In the other, the Black box imparts no alteration, and photons
exit the Black box, in whatever state they entered from State preparation.

So as to eliminate this second type of predictable outcome, I propose an extra
duty for the experiment operator. Under the assumption that the operator is kept
in ignorance of the Black box configuration settings, she should test for zero change
in predictability as the Black box alignment is rotated. If this is done, or we simply
guarantee that ‘null Black box’ alignments never occur, we can guarantee legitimacy
of the permanent axioms, added here.

Information sources

parallel alignment orthogonal alignment
State preparation

(m,n) (0, 1) (0, 1)

Black box
(fin (0) , fin (1)) (0, 1) (1, 0)

Leaving Black box
compute NB NB = nfin (0) + mfin (1)

Measurement
(0, 1) (0, 1)

compute NB = qf ex (0) + pf ex (1) 1

Permanent axiom fex (0) = 0 ⇒ fex (1) fex (1) = 1

fex (0) = 1 ; fex (1) = 0 or 1

logically independent fex (1)

& fex (1)fex (0)

Information f ow through experimentsl

configuration input

configuration input

configuration input

(p,q ) (m,n)=

NB = 1 × 0 + 0 × 1 → 0 NB = 1 × 1 + 0 × 0 → 1

× fex (0) + 0 × fex (1) 0 1 × fex (0) + 0 × fex (1) 1

fex (0) = 0 ; fex (1) = 0 or 1

= =

& fex (1)fex (0)logically dependent

= 1

Figure 1 The Paterek research involves polarised photons as information carriers through
measurement experiments. Orthogonality index NB = nf (0) + mf (1) is a Boolean quantity,
conveyed through experiments by the density matrix. For the cases of parallel and orthogonal
aligned measurement experiments, the diagram shows information flow involved. For the
orthogonal case only, information conveyed is logically independent.
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Stage 1 Boolean pairs, representing X–Y–Z information, from State preparation
and Black box, feed into the density matrix.

The propagation of information, that encodes, whether states are mixed or pure,
is conveyed in the density matrix. On entry into the Black box, the input density
matrix, is:

ρ = 1
2 [1 + λmni

mnσmx σ
n
z ]

with λ = ±1. Under the action of the Black box the density matrix evolves to:

UρU† = 1
2

[
1 + λmn (−1)nfin(0)+mfin(1)

imnσmx σ
n
z

]
The index, on the factor (−1)nfin(0)+mfin(1), I call the orthogonality index and give
it the label NB, thus:

NB = nfin (0) +mfin (1)

The suffix B stands for ‘leaving the Black box’. This is just downstream of the Black
box; but upstream of any interference from Measurement. Depending on whether
the Black box imparts orthogonal information, the value of NB is either 0 or 1. All
sums are taken modulo 2. Incidental: when alignment is parallel, NB = 0

and consequently ρ = UρU†, so there is no
evolved change in ρ.NB = nfin (0) +mfin (1) = 0 zero orthogonality imparted by the Black box

NB = nfin (0) +mfin (1) = 1 unit orthogonality imparted by the Black box

Leaving the Black box, NB has a definite, deterministic value, logically dependently
computed from (m,n) and (fin (0) , fin (1)). That determination can be thought of
as an information process where (m,n) and (fin (0) , fin (1)) are copied from the
State preparation and Black box, then given as input to nfin (0) + mfin (1), from
which NB is computed, as output.

Stage 2 Measurement attempts to read the Black box X–Y–Z information.
Now comes the interaction between NB and the Measurement hardware. By now,
values of fin (0) and fin (1) are either lost or upstream and inaccessible. The density
matrix conveys NB, not fin (0) and fin (1).

Leaving the Black box, the definite, deterministic value NB, continues its propa-
gation through the experiment, to be read as input, into theMeasurement hardware.
But the Measurement hardware will have the awkward job of attempting a compu-
tation in the ‘backwards’ sense, which will present a problem of computability.

Once the Measurement hardware knows the value NB, given the Measurement
orientation, set by

σpxσ
q
z → (p, q)

the Measurement hardware attempts to compute fout (0) and fout (1), from

NB = qfex (0) + pfex (1)

However, fex (0) and fex (1) are not both determinable from NB and (p, q), because,
one or the other of fex (0) and fex (1), will be logically independent.

To demonstrate the above, it is sufficient to set the Measurement configuration
(p, q) to the same basis (m,n), set for the State preparation. Figure 1 shows the
flow of information schematically, comparing the straight-through, parallel aligned
experiment, against the orthogonal experiment configuration.

6 Information content of the Pauli algebra

It is instructive to review the information content of the Pauli algebra, or more
significantly, the information implied in the formula: −iσy = σ1

xσ
1
z ; or rather more

strictly, asserted in this abstract formulae:

−ib = ac (10)

That review means going through the process of constructing (10), from scratch,
and noting all information needed. The procedure I give is an adaption of a proof
given by W E Baylis, J Huschilt and Jiansu Wei [3]. This proof possibly originates from a paper by

David Hestenes [9].
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The Pauli algebra is a Lie algebra; and hence, is a linear vector space. Therefore, I
begin with information inherited from the vector space axioms, and then add other
information peculiar to the Pauli Lie algebra, su(2).
Closure: For any two vectors u and v, there exists a vector w such that

w = u + v

Identities: There exist additive and multiplicative identities, 0 and 1. For any
arbitrary vector v:

v1 = 1v = v (11)
v + 0 = 0 + v = v (12)

v0 = 0v = 0 (13)
Additive inverse: For any arbitrary vector v, there exists an additive inverse −v
such that

(−v) + v = 0 (14)
Scaling: For any arbitrary vector v, and any scalar a, there exists a vector u such
that

u = av (15)
Products: A feature of Lie algebras is that, between any two arbitrary vectors, u
and v, there exist products uv and vu. Commutators of these products (Lie brackets)
are members of the vector space.
Dimension: Assume a 3 dimensional vector space, with independent basis a, b, c.

The six items of information

Involutory information: Assume all three basis vectors are involutory. Thus:
aa = 1 a involutory (16)
bb = 1 b involutory (17)
cc = 1 c involutory (18)

Orthogonal information: Assume products between basis vectors are orthogonal.
Thus:

ab + ba = 0 ab orthogonal (19)
bc + cb = 0 bc orthogonal (20)
ca + ac = 0 ca orthogonal (21)

Bringing items of information together, the Pauli algebra is constructed thus:
bc + cb = 0 by (20) , bc orthogonal
b + cbc = 0 by (18) , c involutory

ba + cbca = 0 by (13) (22)
And similarly:

ca + ac = 0 by (21) , ca orthogonal
cac + a = 0 by (18) , c involutory

cacb + ab = 0 by (13) (23)
Adding (23) and (22) gives:

cacb + ab + ba + cbca = 0

cacb + cbca = 0 by (19) , ab orthogonal
acb + bca = 0 by (18) , c involutory
acba + bc = 0 by (16) , a involutory
acbac + b = 0 by (18) , c involutory

acbacb + 1 = 0 by (17) , b involutory
(acb)2 = − 1 by (14)
(acb)2 = (−1) 1

acb = ± i1
ac = ± ib by (17) , b involutory (24)
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And a couple of extra steps gives the Pauli algebra:

ca = ∓ ib by (24) , a, b, c involutory (25)
ac− ca = ± 2ib by (24) & (25) (26)

The six formulae (16) – (21) constitute six items of logically independent infor-
mation. They are logically independent because none can be proved nor disproved
from the others. All six are needed in proving ac = ±ib.

The ‘3-way orthogonality’ resulting from (19), (20) and (21) implies complex
unitarity.

7 Logical independence from the viewpoint of symmetry

Quantitatively, standard Pauli theory is superbly successful. But, in terms of rep-
resenting the logic of experiments, it would seem the Paterek Boolean system is an
improvement. Accepting that as fact, the Boolean system must be traced through
for information that standard theory misses.

The Paterek research shows that mathematics encoding the measurement of mixed
states has logically independent structure; and that the measurement of pure states
does not. And therefore, any mathematical structure faithfully3 representing the Faithful representation is one-one, isomorphic

representation.

Note that
(

0 η−1

η 0

)
and

(
0 −i
i 0

)
cannot

be isomorphic because only one of them is a
member of the unitary group.

measurement of mixed states cannot faithfully represent pure eigenstates, also.
For the faithful representation of pure, and of mixed states, two structures are
needed which are not mutually isomorphic: meaning that no one, single mathemat-
ical structure can be isomorphic with every polarisation measurement experiment.
This contradicts standard theory, where the Pauli algebra is understood to repre-
sent every measurement configuration.

Consequently, the Paterek paper establishes, that measurement of arbitrarily
prepared polarised photons, cannot, in general, be isomorphically represented by
any single, exclusive, mathematical structure. Specifically, the Pauli algebra cannot
be relied upon as a general theory, isomorphically representing every configuration
of measurement experiment. Instead, measurement aligned parallel to the prepared
state – and – measurement aligned orthogonal against it, are separately represented
by distinct mathematical structures, not isomorphic with one another.

Having said all the above, quantitatively, the Pauli theory does work. Resolution
to this quantitative versus logical dichotomy, as will be seen, is in the fact that one
of those distinct mathematical structures agrees with the other, but the other does
not agree with the one.

The above is helpful news. Of course, we take for granted the fact that individual
experiments are independent of one another. But extra and further to that, the
above tells us, experiments are independent, to the extent, that algebra for one
experiment does not extrapolate to all others. All Pauli experiments do not share
one same algebraic environment.

In practice, this means the formula (8) does not confer existence of σy upon
the formulae (6). Nor does (8) confer its value of σz upon (6). Et cetera. We must
regard all such formulae, entailing the Pauli quad-products, as individual constructs
of information, in isolation from one another, without passing information between
them.

The Paterek findings rely on a logical isomorphism, linking the Boolean system with
Pauli experiments. That isomorphism is a one – one correspondence that connects
the logic of experiments with the logic of the Boolean system. The Paterek paper
remarks on this logical isomorphism in its conclusion.

In contrast, the Pauli system lacks that one – one logical correspondence with
experiment. The position is that the Pauli system faithfully represents experiments
quantitatively whilst the Boolean system faithfully represents experiments logically.
In order that the Pauli system should be logical also, it must connect logically,
one – one, with Pauli experiments. That means Pauli experiments must connect
logically, one – one, with the Boolean system (as they do); and then in turn, the
Boolean system must connect logically, one – one, with the Pauli system. Thus:

Pauli system � Boolean system � Pauli experiments

3
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To approach this, we must examine the exact nature of the link relating the Pauli
and Boolean systems to see where logical correspondence between them currently
fails.

Readers of the Paterek paper might infer that there is one – one correspondence
linking the Pauli products with Boolean pairs. The actual picture is one –way.
Implication is only directed from the Pauli products, to the Boolean pairs, in the
sense of the arrows shown here:

σz = σ0
xσ

1
z −→ (0, 1) σx = σ1

xσ
0
z −→ (1, 0) −iσy = σ1

xσ
1
z −→ (1, 1) (27)

If the Pauli system were to connect logically, one – one, with the Boolean system, we
would witness a backwards implication, also, in the sense of these reverse arrows:

σz = σ0
xσ

1
z ←− (0, 1) σx = σ1

xσ
0
z ←− (1, 0) −iσy = σ1

xσ
1
z ←− (1, 1) (28)

But, as they stand, the formulae in (28) are invalid. Generally, the Boolean pairs
do not imply the Pauli operators. They invoke operators that are not necessarily
Paulian; they invoke operators belonging to some wider system. They do not form
a Lie algebra. The Pauli operators are merely the special case that happens to be
unitary. And so, we must either abandon the backwards implication — but this
is implicit in the Paterek findings — or accept the replacement of Pauli operators
with operators that maintain backwards validity.

The situation is made clearer when all Pauli notation is dropped and replaced by
abstract symbols c, a, b. Formulae can then be seen for the information they assert,
rather than content we presume, that stems from meaning we place on the symbols
they contain.

Restating (28) abstractly: Involutory matrices:(
a b
c −a

)2

= 12 for a2 + bc = 1

Cases of interest are:(
a −b
b −a

)2

= 12 for a2 − b2 = 1

(
a b−1

b −a

)2

= 12 for a2 + 1 = 1

c = a0c1 ←− (0, 1) a = a1c0 ←− (1, 0) −ib = a1c1 ←− (1, 1) (29)

The first two of these formulae imply involutory information only; whereas the last
formula, corresponding to (1, 1), implies information that is both involutory and
unitary.

Now consider these Boolean 4-sequences:

cc = a0c1a0c1 ←− (0, 1) (0, 1) (30)
ac = a1c0a0c1 ←− (1, 0) (0, 1) (31)

−ibc = a1c1a0c1 ←− (1, 1) (0, 1) (32)

These express information representing three independent experiments. For the
‘straight-through’ experiment (30), the equality holds true for values of a 6= σx.

Measurement Logio – symmetry properties Algebraic Information Algebra implied by Boolean 4-sequences

Random
outcomes

state Unitarity Circularly
Self-referent

Involutory
aa = 1

bb = 1

cc = 1

Orthogonal
ab+ba = 0

bc+cb = 0

ca + ac = 0

Implied
algebra

Implied
quad

product

Boolean
4-sequence

no pure redundant no yes no a2 = 1 ← a0c1 a0c1 ← (0, 1)(0, 1)
yes mixed necessary yes yes yes ac = −ib ← a1c0 a0c1 ← (1, 0)(0, 1)
yes mixed necessary yes yes yes bc = +ia ← a1c1 a0c1 ← (1, 1)(0, 1)

no pure redundant no yes no c2 = 1 ← a1c0 a1c0 ← (1, 0)(1, 0)
yes mixed necessary yes yes yes ba = −ic ← a1c1 a1c0 ← (1, 1)(1, 0)
yes mixed necessary yes yes yes ca = +ib ← a0c1 a1c0 ← (0, 1)(1, 0)

no pure redundant no yes no (ac)2 = −1 ← a1c1 a1c1 ← (1, 1)(1, 1)
yes mixed necessary yes yes yes cb = −ia ← a0c1 a1c1 ← (0, 1)(1, 1)
yes mixed necessary yes yes yes ab = +ic ← a1c0 a1c1 ← (1, 0)(1, 1)

Table 1 Comparison of randomness in experiment outcomes, and logical independence in
symmetry information, implied by the Paterek Boolean system.
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This experiment invokes directly, the formulae c = a0c1 and indirectly, the formula
a = a1c0 from (29). The 4-sequence (0, 1) (0, 1) implies only that a and c be any
involutory operator, nothing more; and not that it should be a Pauli operator
belonging to the Pauli algebra. No unitary information is implied and any unitarity
attributed is redundant.

Considering (31). The right hand side of the equality directly invokes both
c = a0c1 and a = a1c0 from (29), implying involutory c and a. The left hand
side invokes unitarity, indirectly, through −ib = a1c1. As for (32); this implies
unitarity, directly through the formula −ib = a1c1. See Table 1 for the other
4-sequences.

The fact these different experiments invoke different sets of information taken
from (29) shows the variables a, b and c should not be regarded as fixed across all
experiments. For some experiments they are unitary, others, not.

8 Logical independence from the viewpoint of self-reference

An orthogonal vector space can be thought of as a composite of information – The same theoretical ideas should apply to or-
thogonal tensor spaces.consisting of – information that comprises a general, arbitrary vector space, plus

additional information that renders that space orthogonal. More formally we might
think of axioms imposing rules for vector spaces with additional axioms impos-
ing orthogonality. However, the information of orthogonality need not originate in
axioms or definitions; it can originate through self-reference or logical circularity
[14].

This has profound implications for the logical standing of vector spaces used
in the representation of quantum states: in particular – the logical standing of
pure states, in relation to, the logical standing of mixed states; for, it is this self-
reference, that takes place at the interface between pure and mixed states, that
is the root of logical independence in quantum systems — and of an information
deficiency that manifests as quantum randomness. The self-reference constitutes
valid and viable computational machinery, in an environment where no axiomatic
or system information is capable of preventing the process from running, but which
lacks definite quantitative information as input.

This can be compared to a computer program, running in a loop, which needed
no bootstrap and cannot be escaped or halted, and which outputs data, when the
only input available was ambiguous.

Within Elementary Algebra, self-reference can express Linear Algebraic informa-
tion, normally conceptualised as axioms. Thus, this self-reference moves Linear
Algebra into the arena of Elementary Algebra, meaning that, the Hilbert space
mathematics of a quantum theory is expressible as a single algebraic system, rather
than a composite amalgamation of Elementary Algebra plus Linear Algebra. And
so, instead of information, normally expressed as definitions from Linear Algebra,
equivalent information is expressed as self-reference in Elementary Algebra. So in-
stead of the usual definitional demarcation that separates the two algebras, there is
now logic that interfaces them: wholly within Elementary Algebra. Thus, the whole
information of the Hilbert space is expressed as a single integrated algebraic system
— with logical structure within, that replaces definitions that were from outside.

Matrices acting on vectors are notation for sets of simultaneous equations,
within Elementary Algebra. Self-reference imposes the orthogonal scalar product.

In the case of Pauli systems, before the self-reference may proceed, a triplet of In momentum-position wave mechanics, a
dual-pair of spaces forms into a closed system.
The reason this is dual rather than a triplet is
that the system algebra:

[p, x] = −i1

has 1 as its third operator. So the third vector
space is trivial.

non-orthogonal vector spaces (Banach spaces) forms into a closed system. This
self-reference consists of the passing of information, from each vector space to the
next, in complete cycles. But the process is capable of sustaining only orthogonal
spaces, so acts as a unitary filter. Unitarity is implied in this completely mutual,
‘3-way orthogonality’ [8].

The whole process is possible because its component subprocesses are logically
independent of axioms; so no information in the system opposes it. Specifically,
neither the axioms of Linear Algebra nor Elementary Algebra contradicts it. The
incursion of logical independence is marked by the explicit need for the imaginary
unit [8]. This number’s logical independence is well-known to Mathematical Logic
[6]. That logical independence can be regarded as inherited from the self-referential
process.
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In the derivations that follow, the overall plan is to begin with information faithful
to the straight-through experiments – the pure state measurements, then perform
self-reference, arriving at the information faithful to mixed states.

I start with the 3 axioms (16), (18) and (21), capable of proving the 3 pure Note: (33) implies (ac)2 = −1.
state entries of the implied algebra column of Table 1:

a2 = 1 c2 = 1 ac + ca = 0 (33)

but, at the same time, note that the 3 axioms (17), (19) and (20):

b2 = 1 ab + ba = 0 bc + cb = 0 (34)

are not needed for the pure states.
Now write down matrices that faithfully represent the algebraic system, requir-

ing axiom system (33), but for which axioms (34) are extraneous, are not needed,
and do not take part:

a =
(

0 1
1 0

)
b (ζ, η) =

(
ζ η−1

η −ζ

)
c =

(
1 0
0 −1

)
(35)

and note that matrices faithful to information of all six axioms (33) and(34) are
the Pauli matrices of the Lie algebra su (2):

a =
(

0 1
1 0

)
b =

(
0 −i
i 0

)
c =

(
1 0
0 −1

)
(36)

The self-reference takes the step from the non-unitary (35) to the unitary (36),
without imposing the axioms from (34).

Overall, ζ and η permit a matrix-switch, facilitating the transition b (ζ, η)→ b,
which precisely matches the Boolean information, gleaned from the Paterek re-
search, and listed in Table 1. Any non-zero ζ prevents b (ζ, η) itself, from being
involutory, as well as blocking orthogonality with a and c. The condition ζ = 0,
guarantees involutory b (ζ, η) ∀η; and for η = ±i, permits these orthogonalities.

My reason for choosing the matrix
(
ζ η−1

η −ζ

)
, in preference to

(
ζ −η
η −ζ

)
, is to

maintain ζ and η as independent variables. Whereas the former matrix is free of
ζ, η interdependence – in demanding an involutory condition – the latter imposes
the relation: ζ2−η2 = 1. And hence the former is involutory, more generally, under
quantifiers: ∀ζ∀η.

I now derive (36) from (35), paying particular attention to all assumptions made.
Starting with the three matrices of (35), I begin by writing the most general arbi-
trary transformation of which each of these matrices is capable.

∀α1∀α2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)[
α1
α2

]
(37)

∀ζ ∀η ∀β1∀β2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)[
β1
β2

]
(38)

∀γ1∀γ2∃χ1∃χ2

∣∣∣∣ [
χ1
χ2

]
=
(

1 0
0 −1

)[
γ1
γ2

]
(39)

Note that these formulae do not assert equality, they assert existence. I now explore
the possibility of (37), (38) and (39) accepting information, circularly, from one
another, through a ‘forward’ cyclic mechanism where:[

α1
α2

]
feeds off

[
φ1
φ2

] [
β1
β2

]
feeds off

[
χ1
χ2

] [
γ1
γ2

]
feeds off

[
ψ1
ψ2

]
, (40)

and a ‘backward’ mechanism where:[
α1
α2

]
feeds off

[
χ1
χ2

] [
β1
β2

]
feeds off

[
ψ1
ψ2

]
,

[
γ1
γ2

]
feeds off

[
φ1
φ2

]
, (41)

These form closed, self-referential flows of information. There is no cause implying
this self-reference; the idea is that no information, occupying the system, prevents
it.

To proceed with the derivation, the strategy followed will be to make a formal
assumption, by positing the hypothesis that such self-reference does occur; then
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investigate for conditionality implied. To properly document this assumption, the
hypothesis is formally declared, thus:

Part One Substitution involving quantifiers

∀β∀γ∃α | α = β + γ

∀λ∃γ | γ = 2λ
⇒ ∀λ∀β∃α | α = β + 2λ

An existential quantifier of one proposition
is matched with a universal quantifier of the
other. Those matched are underlined.

Hypothesised forward coincidences:

∀A∀φ1∀φ2∃α1∃α2

∣∣∣∣ [
α1
α2

]
= A

[
φ1
φ2

]
(42)

∀B∀χ1∀χ2∃β1∃β2

∣∣∣∣ [
β1
β2

]
= B

[
χ1
χ2

]
(43)

∀C∀ψ1∀ψ2∃γ1∃γc
∣∣∣∣ [

γ1
γ2

]
= C

[
ψ1
ψ2

]
(44)

Note: there is no guarantee that any such coincidence should exist. We proceed to
investigate.. In this block of manipulations, I begin with the transformation (38),
then repeatedly make substitutes, cyclicly.

∀ζ ∀η ∀β1∀β2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)[
β1
β2

]
by (38)

∀B∀ζ ∀η ∀χ1∀χ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

[
χ1
χ2

]
by (43)

∀B∀ζ ∀η ∀γ1∀γ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)[
γ1
γ2

]
by (39)

∀C∀B∀ζ ∀η ∀ψ1∀ψ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

[
ψ1
ψ2

]
by (44)

∀C∀B∀ζ ∀η ∀α1∀α2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

(
0 1
1 0

)[
α1
α2

]
by (37)

∀A∀C∀B∀ζ ∀η ∀φ1∀φ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
=
(
ζ η−1

η −ζ

)
B

(
1 0
0 −1

)
C

(
0 1
1 0

)
A

[
φ1
φ2

]
by (42)

In summary, assuming the Hypothesised forward coincidences, the overall
result is the assertion:

∀X∀ζ ∀η ∀φ1∀φ2∃φ1∃φ2

∣∣∣∣ [
φ1
φ2

]
= X

(
ζ η−1

η −ζ

)(
1 0
0 −1

)(
0 1
1 0

)[
φ1
φ2

]
(45)

Where, for the sake of readability, I define X = BCA. I note the ambiguous quan-
tification ∀φ1∀φ2∃φ1∃φ2, but in some capacity or other, (45) implies the following:

∀X∀ζ ∀η | X

(
ζ η−1

η −ζ

)(
1 0
0 −1

)(
0 1
1 0

)
= 1

=⇒ ∀X∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
= 1 (46)

The assertion (46) is self-contradictory, because the operator cannot equal the iden-
tity for all values of X, ζ and η. This confirms there is something invalid about the
Hypothesised forward coincidences. Nevertheless, it is important to retain the
full information of (46), if valid conditionality is to be revealed.

Part two
Hypothesised backward coincidences:

For the sake of readability, Define Y = ĀC̄B̄.

∀Ā∀χ1∀χ2∃α1∃α2

∣∣∣∣ [
α1
α2

]
= Ā

[
χ1
χ2

]
(47)

∀B̄∀ψ1∀ψ2∃β1∃β2

∣∣∣∣ [
β1
β2

]
= B̄

[
ψ1
ψ2

]
(48)

∀C̄∀φ1∀φ2∃γ1∃γc
∣∣∣∣ [

γ1
γ2

]
= C̄

[
φ1
φ2

]
(49)
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Note: there is no guarantee that any such coincidence should exist. We proceed to
investigate.. In this block of manipulations, I begin with the transformation (37),
then repeatedly make substitutes, cyclicly.

∀α1∀α2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)[
α1
α2

]
by (37)

∀Ā∀χ1∀χ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

[
χ1
χ2

]
by (47)

∀Ā∀γ1∀γ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)[
γ1
γ2

]
by (39)

∀C̄∀Ā∀φ1∀φ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

[
φ1
φ2

]
by (49)

∀C̄∀Ā∀ζ ∀η ∀β1∀β2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

(
ζ η−1

η −ζ

)[
β1
β2

]
by (38)

∀B̄∀C̄∀Ā∀ζ ∀η ∀ψ1∀ψ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
=
(

0 1
1 0

)
Ā

(
1 0
0 −1

)
C̄

(
ζ η−1

η −ζ

)
B̄

[
ψ1
ψ2

]
by (48)

In summary, assuming the Hypothesised backward coincidences, the overall
result is the assertion:

∀Y ∀ζ ∀η ∀ψ1∀ψ2∃ψ1∃ψ2

∣∣∣∣ [
ψ1
ψ2

]
= Y

(
0 1
1 0

)(
1 0
0 −1

)(
ζ η−1

η −ζ

)[
ψ1
ψ2

]
(50)

Where, for the sake of readability, I define Y = ĀC̄B̄. I note the ambiguous quan-
tification ∀ψ1∀ψ2∃ψ1∃ψ2, but in some capacity or other, (50) implies the following:

∀Y ∀ζ ∀η | Y

(
0 1
1 0

)(
1 0
0 −1

)(
ζ η−1

η −ζ

)
= 1 (51)

=⇒ ∀Y ∀ζ ∀η | Y

(
−η ζ
ζ η−1

)
= 1 (52)

The assertion (52) is self-contradictory, because the operator cannot equal the iden-
tity for all values of Y , ζ and η. This confirms there is something invalid about the
Hypothesised backward coincidences. Nevertheless, it is important to retain
the full information of (52), if valid conditionality is to be revealed.

Part three
Noting the forward and backward self-references (46) and (52), both result in the
identity, they can be equated:

∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
= Y

(
−η ζ
ζ η−1

)
=⇒ ∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
− Y

(
−η ζ
ζ η−1

)
= 0

Reading the quantifiers, this holds true for all products X = BCA and all products
Y = ĀC̄B̄. Hence, for every product Y there exists a negative X:

∀Y ∃X | X = −Y

=⇒ ∀ζ ∀η∃X | X

(
−η−1 ζ
ζ η

)
+X

(
−η ζ
ζ η−1

)
= 0

=⇒ ∀ζ ∀η∃X |
(
−η−1 ζ
ζ η

)
+
(
−η ζ
ζ η−1

)
= 0

=⇒ ∀ζ ∀η∃X |
(
−
(
η−1 + η

)
2ζ

2ζ η−1 + η

)
=
(

0 0
0 0

)
(53)
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But (53) is contradictory because ζ and η cannot be zero, ∀ζ ∀η. Nevertheless, re-
placement of the universal quantifiers ∀ζ ∀η by existential quantifiers ∃ζ ∃η removes
the contradiction, thus:

∃X∃ζ ∃η |
(
−
(
η−1 + η

)
2ζ

2ζ η−1 + η

)
=
(

0 0
0 0

)
(54)

Hence, conditionality on the assumed Hypothesised forward coincidence and
Hypothesised backward coincidences is as follows:

X = −Y ζ = 0 η2 = −1 (55)

Part four
More conditionality is extractable from the forward and backward self-references,
(46) and (52), by multiplying them. They give:

∀X∀Y ∀ζ ∀η | X

(
−η−1 ζ
ζ η

)
Y

(
−η ζ
ζ η−1

)
= 1

∀X∀Y ∀ζ ∀η | XY

(
−η−1 ζ
ζ η

)(
−η ζ
ζ η−1

)
= 1

∀X∀Y ∀ζ | XY

(
ζ2 + 1 0

0 ζ2 + 1

)
=
(

1 0
0 1

)
(56)

But (56) is contradictory because ζ and η cannot be zero, ∀ζ ∀η. And the product
XY cannot be equal to one, ∀X∀Y . Nevertheless, replacement of all universal
quantifiers for existential quantifiers removes the contradiction, thus:

∃X∃Y ∃ζ | XY

(
ζ2 + 1 0

0 ζ2 + 1

)
=
(

1 0
0 1

)
(57)

This formula (57) is resolved by the conditionality:

X = Y −1 ζ = 0 (58)

Gathering together conditionality from (55) and (58)

X = −Y = Y −1 ζ = 0 η2 = −1 (59)

Hence as a result of self-reference:

b (η) =
(
ζ η−1

η −ζ

)
7−→ b =

(
0 −i
i 0

)

9 Discussion – Redundant unitarity in free particle pure states

Another quantum system – that of the free particle – mirrors this same unitary
logic, between pure and mixed states.

It is instructive to understand the difference between syntactical information
versus a semantical information. Syntax concerns rules used for constructing and
transforming formulae – the rules of Elementary Algebra, say. Semantics, on the
other hand, concerns interpretation. Here, interpretation does not refer to physical
meaning, but to mathematical meaning: whether symbols might be understood to
mean: complex scalars, real scalars, or rational. Such interpretation has null logical
connectivity with the rules of algebra — the syntax. Indeed, typically, the interpre-
tation may be only in the theorist’s mind and not asserted by the mathematics, at
all.

A most relevant illustration is the comparison of syntax versus semantics in
the mathematics representing pure eigenstates, set against mixed states, in the
quantum free particle system. Consider the eigenformulae pair:

d

dx
[Φ (k) exp (+ikx)] = +ik [Φ (k) exp (+ikx)] (60)

d

dk
[Ψ (x) exp (−ikx)] = −ix [Ψ (x) exp (−ikx)] (61)
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This pair of formulae is true, irrespective of any interpretation placed on the variable
i. But in contrast, the superposition pair:

Ψ (x) =
∫

[Φ (k) exp (+ikx)] dk (62)

Φ (k) =
∫

[Ψ (x) exp (−ikx)] dx (63)

is true, only if we interpret i as pure imaginary. (And if k is restricted to real or
rational k; and if x is restricted to real or rational x.) In the case of the eigenvalue
pair (60)& (61) the imaginary interpretation is purely in the mind of the theorist,
but for the superposition pair (62)& (63), the imaginary interpretation is implied
by the mathematics. Whilst for the superposition pair (62)& (63), specific inter-
pretation is necessary, for the eigenvalue pair (60)& (61), interpretation is possible,
but not necessary.

In Mathematical Logic, ‘necessary information versus possible information’ is
recognised as constituting what is known as a ‘modal logic’. However, in textbook
quantum theory, the distinction separating possible from necessary is not notice-
able, nor is it recognised; and this logical distinction between pure states and mixed
states is lost. The crucial difference in expressing pure states is that their informa-
tion derives from pure syntax. The transition in forming mixed states from pure
states demands the creation of new information4. That creation goes unopposed.

The important point is that the logical status of pure states and mixed is
distinct, not only in experiments, but in current Theory too, even though, currently,
the fact is not recognised.

The fact is that quantum theory for pure states need not be unitary (or self-adjoint);
whereas, for mixed states, unitarity is necessary. The jump between pure states and
mixed states represents a logical jump between possible unitarity and necessary
unitarity.

Historically, this distinction between necessary and possible unitarity has not
drawn attention, as any point of significance. No doubt, standard quantum theory
ignores the fact, for reasons of consistency. But, rewriting (60) – (63) as formulae
in first order logic overcomes any inconsistency; it conveys the whole information
of the mathematics; and it preserves the intrinsic logic, in a single theory. Thus,
for pure states: The specific choice of scalars η+1 and η−1,

over the more instinctive choice of +η and −η,
is suggested by theory for the Pauli system,
shown above. Also, this choice forces the exact
value η = i on the Fourier transforms, rather
than the restriction merely to imaginary val-
ues. That said, this must be made consistent
with algebra deriving from the homogeneity
symmetry [7].

∀η | d

dx

[
Φ (k) exp

(
η+1kx

)]
= η+1k

[
Φ (k) exp

(
η+1kx

)]
(64)

∀η | d

dk

[
Ψ (x) exp

(
η−1xk

)]
= η−1x

[
Ψ (x) exp

(
η−1xk

)]
(65)

And for mixed:

∃η | Ψ (x) =
∫ [

Φ (k) exp
(
η+1kx

)]
dk (66)

∃η | Φ (k) =
∫ [

Ψ (x) exp
(
η−1xk

)]
dx (67)

But having rewritten formulae as (64) – (67), these new formulae are inconsis-
tent with the Postulates of Quantum Mechanics. Specifically, (64)& (65) disagree
with unitarity (or self-adjointness) – imposed by Postulate.Whilst (64) – (67) repre-
sent a mathematical system that is logically self-consistent, that conveys the whole
information of unitarity; that conveyance of whole information is gained at the ex-
pense of textbook quantum theory’s most treasured fact — the self-adjointness of
operators.

Not to worry. The Postulated unitarity (or self-adjointness) is not needed. Uni-
tarity is implied where it is needed – in the mathematics of the mixed states.
Elsewhere, unitarity (or self-adjointness) is redundant.

10 Discussion – Self-reference in free particle mixed states

As in the Pauli system, the transition (64) – (67) from pure to mixed states, again
involves logical self-reference.

4 In some way, yet to be understood, this information is lost again during measurement.
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Consider the following pair of formulae, asserting existence of general sums over
all eigenvectors.

∀η∀x∃a∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
a (k)

]
(68)

∀η∀k∃b∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
b (x)

]
(69)

In writing these, the san-serif notated k and x are the dummy (bound) variables I use the notation
∫

k f (k) =
∫ +∞
−∞ f (k) dk.

over the integrals. The italicised variables η, k, x, a, b are all bound variables over
the existential quantifier ∃ and universal quantifier ∀. The ordering of variables is
laid out to mirror the convention of repeated dummy indices used in summations
of discrete quantities, so as to emphasise the fact that these are transformations.

Note that these formulae do not assert equality, they assert existence. Note also;
the integrals exist, and the pair of propositions is true, when amplitudes a and b
are restricted to the (bounded functions) Banach space5 L1.

I now explore the possibility of (68) and (69) accepting information, circularly,
from one another, through a mechanism where a (k) feeds off Φ (k) and b (x) feeds
off Ψ (x). There is no cause implying this self-reference; the idea is that nothing pre-
vents it. Indeed, the self-referential process is logically independent of all algebraic
rules in operation.

To proceed, the strategy followed will be to make a formal assumption, by
positing the hypothesis that such self-reference does occur; then investigate for
conditionality implied. To properly document this assumption, the hypothesis is
formally declared, thus:
Hypothesised coincidence:

∀Φ∃a | a = Φ; (70)
∀Ψ∃b | b = Ψ. (71)

When these assumptions are substituted into (68) and (69), circular dependency is
enabled, via Φ and Ψ , through this pair of formulae:

∀η∀x∃Φ∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
Φ (k)

]
(72)

∀η∀k∃Ψ∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
Ψ (x)

]
(73)

In these, if both Φ and Ψ are in the Banach space L1, then both integrals exist,
and no issue arises. Without making the assumption of Banach space we proceed
by making the cross-substitution of Φ and Ψ , and watch out for contradiction. We
get:

∀η∀x∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

) ∫
x

[
exp

(
η−1kx

)
Ψ (x)

]]
(74)

∀η∀k∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

) ∫
k

[
exp

(
η+1xk

)
Φ (k)

]]
(75)

Taking the integral signs outside and reversing their order, these tidy up to become:

∀η∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp

[(
η+1x+ η−1x

)
k
]
Ψ (x) (76)

∀η∀k∃Φ | Φ (k) =
∫

k

∫
x exp

[(
η−1k + η+1k

)
x
]
Φ (k) (77)

In the first of these two formulae (76), Ψ (x) serves to bound, only the
∫

x sum, to
finite values. The sum in

∫
k is generally unbounded, unless η = i. And so overall,

for arbitrary values of η, the double integral fails. The predicament is precisely
similar for the second formulae (77). Hence, (76) and (77) are untrue statements,
and hence the hypothesised coincidence (70) & (71) contradicts (68) & (69).

The contradiction is resolved by replacing ∀η by ∃η in (72) & (73). Thus: Please note that quantifiers ∀ and ∃ do not
commute. The common use in this paper
would be ∀a∃b; where, for each a there exist
distinct assignments of a. The other use is seen
in (78) & (79); in these, ∃η∀x means there ex-
ists a unique η for any and every assignment
of x.

∃η∀x∃Φ∃Ψ | Ψ (x) =
∫

k

[
exp

(
η+1xk

)
Φ (k)

]
(78)

∃η∀k∃Ψ∃Φ | Φ (k) =
∫

x

[
exp

(
η−1kx

)
Ψ (x)

]
(79)

resulting in

∃η∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp

[(
η+1x+ η−1x

)
k
]
Ψ (x) (80)

∃η∀k∃Φ | Φ (k) =
∫

k

∫
x exp

[(
η−1k + η+1k

)
x
]
Φ (k) (81)

5 Banach space L1 consists of bounded functions, ensuring convergence of these integrals
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Releasing bound variable η from its quantifier and replacing by particular value η:

∃Ψ | Ψ (x′) =
∫

x

∫
k exp

[(
η+1x′ + η−1x

)
k
]
Ψ (x) (82)

∃Φ | Φ (k′) =
∫

k

∫
x exp

[(
η−1k′ + η+1k

)
x
]
Φ (k) (83)

These integrals exist only when η = ± i. And therefore this pair of propositions is
true — with the Hypothesised coincidence guaranteed — only for η = ± i.

But, up to this point, no imaginary information exists in the system. In order to
validate the pair of integrals, new information must be introduced. This information
must be assumed. To properly document this assumption, the hypothesis is formally
declared, thus:
Hypothesised existence:

∃η | η2 = −1

Setting the particular number i =
√
− 1 and also η = i:

∀x∃Ψ | Ψ (x) =
∫

x

∫
k exp [+i (x− x) k]Ψ (x) (84)

∀k∃Φ | Φ (k) =
∫

k

∫
x exp [−i (k − k) x]Φ (k) (85)

and in conclusion, claim that this pair of formulae are true, providing they are
allowed self-referential information.

It is important to say that, within Elementary Algebra, this number’s existence is
very well-known, by Mathematical Logicians, to be logically independent [6].

11 Conclusions

Treating an algebra as a system based on axioms, those axioms prove (cause)
theorems. And those theorems are logically dependent information. However, in
certain algebras, there are statements and information which axioms do not prove;
nor do they disprove (prevent). That information is known as logically independent.
It might be thought of as having ‘null logical connectivity’ with axioms.

In this paper, a logically independent mathematical mechanism is derived,
matching logical independence, linked empirically to quantum randomness. That
mechanism comprises a logically circular, self-referential set of geometric transfor-
mations, which is permitted because it does not contradict, but is consistent with
system axioms.

Quantum indeterminacy is strictly a phenomenon of mixed states. Measurement
outcomes from pure eigenstates are never random. That is well-known. In alignment
with that, new research of Tomasz Paterek et al shows that logical independence,
also, is a strict feature of mixed states – pure states being logically dependent [12,
13]. And that randomness is the response to logical independence.

That logical dependence and independence is mathematical information. The
transition from pure states to mixed is reflected in corresponding mathematical
transition stepping from dependence to independence. Because only mixed states
include indeterminate randomness, the detail, inner workings of that mathematical
transition reveals information about the inner workings of quantum indeterminacy.

To begin, the only information in the algebraic system is the axioms, along with
all theorems they prove. The transition begins to get underway following an unpre-
ventable coincidence of vectors, from separate vector spaces. These coincidences are
new information to the system, which permits the onset of vectorial information
being passed, cyclicly, around a set of transformations. The logical circularity is in
both cyclic and anticyclic senses. The new information comes with unitary condi-
tionality which transforms a geometrically definite system into one of ambiguous
right and left handedness. In effect the self-referent mechanism is one of ‘sponta-
neous symmetry creation’ – the converse of ‘spontaneous symmetry breaking’ – as
in the Higgs mechanism.

There is nothing exceptional about the coincidences; they are assumed on a daily
basis, without noticing, by mathematicians using orthogonal vector spaces. On the
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face of it, these coincidences seem like quantitative information, but they are logical
information, and for that reason, the creation of Hilbert space from Banach space
is a logical matter. Notice that (finite) Banach spaces are non-orthogonal and can
be constructed purely from information in Elementary Algebra. This is ordinary
school algebra: the algebra of scalars.

Textbook quantum theory demands: Hilbert space, self-adjoint operators and
unitary symmetries, as features. From the viewpoint of the transition, none of these
are required by pure eigenstates; they are required only by mixed states. A truly
faithful, isomorphic theory would need to be non-unitary on the pure state side of
the transition, and unitary on the mixed state side.

Whilst the mathematician might feel free to simply declare a theory unitary, by
declaring: observable operators should be Hermitian — although such a declaration
might seem to impose a purely quantitative restriction on variables — that eigenval-
ues be real, for instance — such declaration includes hidden logical structure. This
logical structure sits at the interface between Elementary Algebra and orthogonal
Linear Algebra. The juxtaposition of these two algebras, in a single environment,
is inherent in quantum mathematics, placing that logical structure squarely and
unavoidably in the domain of quantum theory.

Unlike (physical) energy or momentum, that self-reference is perfectly free and
not subject to any conservation law. There is no resistance to its onset. Self-reference
is a spontaneous logical option, neither caused nor prevented (implied nor denied)
by any information in the mathematical environment — it is logically independent
of all information in that mathematical environment.

The effect of the self-reference is to create the consequent existence of a unitary
symmetry, along with structures that follow from it: self-adjoint operators and
Hilbert space, et cetera – all logically independent of the system axioms. The impact
of all this is that unitarity or self-adjointness, imposed – by Postulate – is redundant.
This is because unitarity and self-adjointness arise freely in the mathematics; they
don’t need to be ‘given’ to it. They occur unpreventably in Elementary algebra;
they don’t need to be taken from linear algebra.

The conclusion of this research is that a quantum theory that adheres strictly to
the faithful representation of (non-unitary) pure states – that switches to – the
strict and faithful representation of (unitary) mixed states, automatically invokes
representation of quantum indeterminacy. Those faithful representations require
isomorphisms under two distinct systems: a non-unitary algebra representing pure
states, and a unitary symmetry representing mixed. Transition between these is
logically self-referential. To allow this logical mechanism to operate, unitarity (and
self-adjointness) must be free to switch on and off. But in standard theory, unitarity
(or self-adjointness) is imposed – by Postulate – and this freedom is blocked.

The most profound conclusion, therefore, is that unitarity and self-adjointness,
imposed – by Postulate – must be given up; the benefit being a quantum theory
that expresses theory and logic of quantum indeterminacy.



Steve Faulkner — The Mathematical foundations of quantum indeterminacy 20

References

1. Alain Aspect, Jean Dalibard, and Gérard Roger, Experimental test of Bell’s inequalities
using time- varying analyzers, Physical Revue Letters 49 (1982), no. 25, 1804–1807.

2. Alain Aspect, Philippe Grangier, and Gérard Roger, Experimental realization of
Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell’s inequal-
ities, Physical Review Letters 49 (1982), no. 2, 91–94.

3. W E Baylis, J Hushilt, and Jiansu Wei, Why i?, American Journal of Physics 60 (1992),
no. 9, 788–797.

4. John Bell, On the Einstein Podolsky Rosen paradox, Physics 1 (1964), 195–200.
5. Gregory J Chaitin, Gödel’s theorem and information, International Journal of Physics

21 (1982), 941–954.
6. Steve Faulkner, Logical independence of imaginary and complex numbers in el-

ementary algebra. [context: Theory of indeterminacy and quantum randomness],
http://vixra.org/abs/1512.0286 (2015).

7. , Quantum system symmetry is not the source of unitary information in wave
mechanics – context quantum randomness, http://vixra.org/abs/1510.0034 (2015).

8. , A short note on why the imaginary unit is inherent in physics,
http://vixra.org/abs/1512.0452 (2015), 2.

9. D Hestenes, Vectors, spinors, and complex numbers in classical and quantum physics,
American Journal of Physics 39 (1971), no. 9, 1013–1027.

10. S Kochen and E P Specker, The problem of hidden variables in quantum mechanics,
Journal of Mathematics and Mechanics 17 (1967), 59–87.

11. Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer,
Anton Zeilinger, and Caslav Brukner, Mathematical undecidability and quantum ran-
domness, http://arxiv.org/abs/0811.4542v1 (2008), 9.

12. , Logical independence and quantum randomness, New Journal of Physics 12
(2010), no. 013019, 1367–2630.

13. , Logical independence and quantum randomness — with experimental data,
arxiv.org/pdf/0811.4542v2.pdf (2010).

14. Elemér E Rosinger and Gusti van Zyl, Self-referential definition of orthogonality,
arXiv:90904.0082v2 (2009).

15. Edward Russell Stabler, An introduction to mathematical thought, Addison-Wesley Pub-
lishing Company Inc., Reading Massachusetts USA, 1948.

16. Gergely Székely, The existence of superluminal particles is consistent with the kinematics
of Einstein’s special theory of relativity, arXiv:1202.5790v1 [physics.gen-ph] (2012).


