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Abstract – We find an exact solution for the system of Euler equations, supposing 

that there is some solution, following the Eulerian and Lagrangian descriptions, for 

spatial dimension 𝑛 =  3.  As we had seen in other previous articles, it is possible 

that there are infinite solutions for pressure and velocity, given only the condition 

of initial velocity.  
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§ 1 

 Essentially the Euler (and Navier-Stokes) equations relating the velocity 𝑢 

and pressure 𝑝 suffered by a volume element 𝑑𝑉 at position (𝑥, 𝑦, 𝑧) and time 𝑡. In 

the formulation or description Eulerian the position (𝑥, 𝑦, 𝑧) is fixed in time, 

running different volume elements of fluid in this same position, while the time 

varies. In the Lagrangian formulation the position (𝑥, 𝑦, 𝑧) refers to the 

instantaneous position of a specific volume element 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 at time 𝑡, and 

this position varies with the movement of this same element 𝑑𝑉. 

 Basically, the deduction of the Euler equations is a classical mechanics 

problem, a problem of Newtonian mechanics, which use the 2nd law of Newton 

𝐹 = 𝑚𝑎, force is equal to mass multiplied by acceleration. We all know that the 

force described in Newton's law may have different expressions, varying only in 

time or also with the position, or with the distance to the source, varying with the 

body's velocity, etc. Each specific problem must to define how the forces involved 

in the system are applied and what they mean. I suggest consulting the classic 

Landau & Lifshitz[1] or Prandtl’s book[2] for a more detailed description of the 

deduction of these equations (including Navier-Stokes equations). 

 In spatial dimension 𝑛 = 3, the Euler equations can be put in the form of a 

system of three nonlinear partial differential equations, as follows: 

(1) 

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
= 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝑓3
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where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡), 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑢: ℝ
3 × [0,∞) → ℝ3, 

is the velocity of the fluid, of components 𝑢1, 𝑢2, 𝑢3, 𝑝 is the pressure, 𝑝: ℝ3 ×

[0,∞) → ℝ, and 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (𝑓1(𝑥, 𝑦, 𝑧, 𝑡), 𝑓2(𝑥, 𝑦, 𝑧, 𝑡), 𝑓3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑓: ℝ
3 ×

[0,∞) → ℝ3, is the density of external force applied in the fluid in the point (𝑥, 𝑦, 𝑧) 

and at the instant of time 𝑡, for example, gravity force per mass unity, with 

𝑥, 𝑦, 𝑧, 𝑡 ∈ ℝ, 𝑡 ≥ 0. ∇ ≡ (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
) is the nabla operator and ∇2 = ∇ ∙ ∇ =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
≡ ∆ is the Laplacian operator. We are using fluid mass density 𝜌 = 1 

(otherwise substitute 𝑝 by 𝑝/𝜌, supposing 𝜌 is a constant). 

 The non-linear terms 𝑢1
𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
, 1 ≤ 𝑖 ≤ 3, are a natural 

consequence of the Eulerian formulation of motion, and corresponds to part of the 

total derivative of velocity with respect to time of a volume element 𝑑𝑉 in the fluid, 

i.e., its acceleration. If 𝑢 = (𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡), 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)) and these 𝑥, 𝑦, 𝑧 

also vary in time, 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡), then, by the chain rule, 

(2)  
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
. 

 Defining 

(3)    

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1

𝑑𝑦

𝑑𝑡
= 𝑢2

𝑑𝑧

𝑑𝑡
= 𝑢3

 

or synthetically 
𝑑𝑥𝑖

𝑑𝑡
= 𝑢𝑖 , using 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦, 𝑥3 ≡ 𝑧, comes 

(4)  
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
𝑢1 +

𝜕𝑢

𝜕𝑦
𝑢2 +

𝜕𝑢

𝜕𝑧
𝑢3,  

and therefore 

(5)  
𝐷𝑢𝑖

𝐷𝑡
=

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢1

𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
, 1 ≤ 𝑖 ≤ 3, 

which contain the non-linear terms that appear in (1). 

 Numerically, searching a computational result, i.e., in practical terms, there 

can be no difference between the Eulerian and Lagrangian formulations for the 

evaluation of 
𝐷𝑢

𝐷𝑡
 (or 

𝑑𝑢

𝑑𝑡
, it is the same physical and mathematical entity). Only 

conceptually and formally there is difference in the two approaches. I agree, 

however, that you first consider (𝑥, 𝑦, 𝑧) variable in time (Lagrangian formulation) 

and then consider (𝑥, 𝑦, 𝑧) fixed (Eulerian formulation), seems to be subject to 
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criticism. In our present deduction, starting from Euler equations in Eulerian 

description, implicitly with a solution (𝑢, 𝑝), next the pressure, and its 

corresponding gradient, they travel with the volume element 𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧, i.e., 

obeys to the Lagrangian description of motion, as well as the external force 𝑓, in 

order to avoid contradictions. The velocity 𝑢 also will obey to the Lagrangian 

description, and it is representing the velocity of a generic volume element 𝑑𝑉 over 

time, initially at position (𝑥0, 𝑦0, 𝑧0) and with initial velocity 𝑢0 = 𝑢(0) = 𝑐𝑜𝑛𝑠𝑡., 

𝑢 = 𝑢(𝑡). Done the solution in Lagrangian description, the solution for pressure in 

Eulerian description will be given explicitly (§ 4).  

 The equation (3), 
𝑑𝑥𝑖

𝑑𝑡
= 𝑢𝑖, show us that the velocity’s component 𝑢𝑖  is 

dependent only of coordinate 𝑥𝑖 , regardless of the values of others 𝑥𝑗 , 𝑗 ≠ 𝑖. Based 

on this, we should have 

(6)  {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
  

which will greatly simplify our problem, enabling find its exact solution in a fast 

way. 

 Following this idea, the system (1) above can be transformed into  

(7)  

{
 
 

 
 
1

𝑢1

𝜕𝑝

𝜕𝑡
+
𝐷𝑢1

𝐷𝑡
= 𝑓1

1

𝑢2

𝜕𝑝

𝜕𝑡
+

𝐷𝑢2

𝐷𝑡
= 𝑓2

1

𝑢3

𝜕𝑝

𝜕𝑡
+

𝐷𝑢3

𝐷𝑡
= 𝑓3

 

thus (1) and (7) are equivalent systems, according validity of (5), since that the 

partial derivatives of the pressure and velocities were correctly transformed to the 

variable time, using 𝜕𝑥 = 𝑢1𝜕𝑡, 𝜕𝑦 = 𝑢2𝜕𝑡, 𝜕𝑧 = 𝑢3𝜕𝑡. Likewise for the calculation 

of  
𝐷𝑢

𝐷𝑡
, according (5), and external force 𝑓, using 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡). The 

integration of the system (7) shows that anyone of its equations can be used for 

solve it, and the results must be equals each other, except for a constant of 

integration. Then this is a condition to the occurrence of solutions. In the sequence 

the procedure in more details for obtaining the pressure in Lagrangian 

formulation, a time dependent function, starting by solution for pressure in 

Eulerian description.     

 § 2 

 Given 𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) ∈ 𝐶1(ℝ3 × [0,∞)) obeying the initial conditions and a   

vector function 𝑓 (both when in Eulerian description) such that the difference  



4 
 

𝑓 −
𝐷𝑢

𝐷𝑡
 is gradient[3], the system’s solution (1) for 𝑝, using the condensed notation 

given by (5), is 

(8)  𝑝 = ∫ (𝑓 −
𝐷𝑢

𝐷𝑡
) ∙ 𝑑𝑙

𝐿
+ 𝜃(𝑡),  

where 𝐿 is any continuous path linking a point (𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧) and 𝜃(𝑡) is a 

generic time function, physically and mathematically reasonable, for example with 

𝜃(0) = 0. 

 In Eulerian description and in special case when 𝑓 −
𝐷𝑢

𝐷𝑡
 is a constant vector   

or a dependent function only on the time variable, we come to 

(9)  𝑝 = 𝑝0 + 𝑆1(𝑡) (𝑥 − 𝑥0) + 𝑆2(𝑡) (𝑦 − 𝑦0) + 𝑆3(𝑡) (𝑧 − 𝑧0), 

  𝑆𝑖(𝑡) = 𝑓𝑖 −
𝐷𝑢𝑖

𝐷𝑡
, 

where 𝑝0 = 𝑝0(𝑡) is the pressure in the point (𝑥0, 𝑦0, 𝑧0) at time 𝑡.  

 When the variables 𝑥, 𝑦, 𝑧 in (8) as well as 𝑓 and 𝑢 are in Lagrangian 

description, representing a motion over time of a hypothetical volume element 𝑑𝑉 

or particle of fluid, we need eliminate the dependence of the position using in (8) 

(10)  𝑑𝑙 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) = (𝑢1𝑑𝑡, 𝑢2𝑑𝑡,  𝑢3𝑑𝑡)    

and integrating over time. The result is 

(11)  𝑝(𝑡) = 𝑝0 + ∫ ∑ 𝑆𝑖(𝑡) 𝑢𝑖(𝑡) 𝑑𝑡
3
𝑖=1

𝑡

0
, 

𝑝0 = 𝑝(0) = 𝑐𝑜𝑛𝑠𝑡. 

 This expression can be more facilitated making 𝑢𝑖
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑡 = 𝑢𝑖𝑑𝑢𝑖  and 

∫ 𝑢𝑖
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑡

𝑡

0
= ∫ 𝑢𝑖𝑑𝑢𝑖

𝑢𝑖
𝑢𝑖
0 =

1

2
(𝑢𝑖

2 − 𝑢𝑖
0 2), so (11) is equal to 

(12)  𝑝(𝑡) = 𝑝0 −
1

2
∑ (𝑢𝑖

2 − 𝑢𝑖
0 2)3

𝑖=1 + ∫ ∑ 𝑓𝑖(𝑡) 𝑢𝑖(𝑡) 𝑑𝑡
3
𝑖=1

𝑡

0
, 

i.e., 

(13)  𝑝(𝑡) = 𝑝0 −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑢

𝑡

0
𝑑𝑡, 

𝑝, 𝑝0 ∈ ℝ, 𝑢, 𝑢0, 𝑓 ∈ ℝ3, 𝑢 = (𝑢1, 𝑢2, 𝑢3)(𝑡),  𝑢
0 = (𝑢1

0, 𝑢2
0, 𝑢3

0) = 𝑢(0), 

𝑓 = (𝑓1, 𝑓2, 𝑓3)(𝑡), in Lagrangian description. 𝑢2 = 𝑢 ∙ 𝑢 and 𝑢0 2 = 𝑢0 ∙ 𝑢0 are 

the square modules of the respective vectors 𝑢 and 𝑢0.  
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 When 𝑓 = 0 the solution (13) is simply 

(14)  𝑝 = 𝑝0 −
1

2
(𝑢2 − 𝑢0 2), 

which then can be considered an exact solution for Euler equations in Lagrangian  

description, and similarly to Bernoulli’s law without external force (gravity, in 

special) and independent of a velocity’s potential 𝜙. 

 Unfortunately, in Eulerian description, neither 

(15)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥, 𝑦, 𝑧) −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑑𝑙

𝐿
, 

𝑝0(𝑥, 𝑦, 𝑧) = 𝑝(𝑥, 𝑦, 𝑧, 0),  𝑢0 = 𝑢0(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧, 0), nor  

(16)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑡) −
1

2
(𝑢2 − 𝑢0 2) + ∫ 𝑓 ∙ 𝑑𝑙

𝐿
, 

 𝑝0(𝑡) = 𝑝(𝑥0, 𝑦0, 𝑧0, 𝑡),  𝑢
0 = 𝑢0(𝑡) = 𝑢(𝑥0, 𝑦0, 𝑧0, 𝑡), solve (1) for all cases 

of velocities, both formulations supposing 𝑓 a gradient vector function 

(∇ × 𝑓 = 0, 𝑓 = ∇𝜙, 𝜙 potential function of 𝑓). 

 For example, for 𝑓 = 0 the solution (16) is valid only when 

(17)  
𝜕𝑝

𝜕𝑥𝑖
= −∑ 𝑢𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
= −(

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 )3

𝑗=1 , 

i.e., 

(18)  
𝜕𝑢𝑖

𝜕𝑡
= ∑ 𝑢𝑗 (

𝜕𝑢𝑗

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑗
)3

𝑗=1 . 

 How to return to the Eulerian formulation if only was obtained a complete 

solution in the Lagrangian formulation? As well as we can choose any convenient 

velocity 𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)) to calculate the pressure (13) that complies 

with the initial conditions (Lagrangian formulation), we also can choose 

appropriates 𝑢(𝑥, 𝑦, 𝑧, 𝑡) (Eulerian formulation) and 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) to the 

velocities and positions of the system and taking the corresponding inverse 

functions in the obtained solution. This choose is not completely free because will 

be necessary to calculate a system of ordinary differential equations to obtain the 

correct set of  𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), such that   

(19)  

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= 𝑢1(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑦

𝑑𝑡
= 𝑢2(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑧

𝑑𝑡
= 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)
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Nevertheless, this yet can save lots calculation time.    

 It will be necessary find solutions of (19) such that it is always possible to 

make any point (𝑥, 𝑦, 𝑧) of the velocity domain can be achieved for each time 𝑡, 

introducing for this initial positions (𝑥0, 𝑦0, 𝑧0) conveniently calculated according 

to (19). Thus we will have velocities and pressures that, in principle, can be 

calculated for any position and time, independently of one another, not only for a 

single position for each time. For different values of (𝑥, 𝑦, 𝑧) and 𝑡 we will, in the 

general case, obtain the velocity and pressure of different volume elements 𝑑𝑉, 

starting from different initial positions (𝑥0, 𝑦0, 𝑧0). 

 We can escape the need to solve (19), but admitting its validity and the 

corresponding existence of solution, previously choosing differentiable functions 

𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡) and then calculating directly the solution for velocity in 

the Lagrangian formulation, 

(20)  

{
 
 

 
 𝑢1(𝑡) =

𝑑𝑥

𝑑𝑡

𝑢2(𝑡) =
𝑑𝑦

𝑑𝑡

𝑢3(𝑡) =
𝑑𝑧

𝑑𝑡

 

 Concluding, answering the question, in the result of pressure in Lagrangian 

formulation given by (11) or (13), conveniently transforming the initial position 

(𝑥0,  𝑦0, 𝑧0) as function of a generic position (𝑥, 𝑦, 𝑧) and time 𝑡, we will have a 

correct value of the pressure in Eulerian formulation, since that keeping the same 

essential original significance. The same is valid for the velocity in Lagrangian 

formulation, if the correspondent Eulerian formulation was not previously 

obtained.  

§ 3 

 It is worth mentioning that the Euler equations in the standard Lagrangian 

format, traditional one, are different than previously deduced. 

 Based on [4] the Euler equations without external force and with mass 

density 𝜌 = 1 are 

(21.1)  
𝜕2𝑋𝑖

𝜕𝑡2
= −∑

𝜕𝐴𝑗

𝜕𝑥𝑖

𝜕𝑝

𝜕𝑎𝑗
,3

𝑗=1  

(21.2)  
𝜕𝐴𝑗

𝜕𝑥𝑖
≡

𝜕

𝜕𝑥𝑖
𝑋𝑗(𝑥𝑛, 𝑡)|𝑥𝑛=𝑋𝑛(𝑎𝑚,𝑠|𝑡), 

where 𝑎𝑚 is the label given to the fluid particle at time 𝑠. Its position and velocity 

at time 𝑡 are, respectively, 𝑋𝑛(𝑎𝑚, 𝑠|𝑡) and 𝑢𝑛(𝑎𝑚, 𝑠|𝑡). 
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 The significant difference between (21) and (7) is that our pressure (7) is 

varying only with time, as the initial position is a constant for each particle, not 

variable. In (21) the pressure varies with the initial position (label) and there is a   

summation on the three coordinates. We did in (7) 𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡. 

§ 4 

 Without passing through the Lagrangian formulation, given a differentiable 

velocity 𝑢(𝑥, 𝑦, 𝑧, 𝑡) and an integrable external force 𝑓(𝑥, 𝑦, 𝑧, 𝑡), perhaps a better 

expression for the solution of the equation (1) is, in fact, 

(22)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) + 𝑓𝑖] 𝑑𝑥𝑖

𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

supposing possible the integrations and that the vector 𝑆 = −[
𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ ∇)𝑢] + 𝑓 is 

a gradient function[3]. This is the development of the solution (8) for the specific 

path 𝐿 going parallely (or perpendicularly) to axes 𝑋, 𝑌 and 𝑍 from (𝑥1
0, 𝑥2

0, 𝑥3
0) ≡

(𝑥0, 𝑦0, 𝑧0) to (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧), since that the solution (8) is valid for any 

piecewise smooth path 𝐿. We choose 𝑃1
0 = (𝑥0, 𝑦0, 𝑧0), 𝑃2

0 = (𝑥, 𝑦0, 𝑧0),  𝑃3
0 =

(𝑥, 𝑦, 𝑧0) and 𝑃1 = (𝑥, 𝑦0, 𝑧0), 𝑃2 = (𝑥, 𝑦, 𝑧0),  𝑃3 = (𝑥, 𝑦, 𝑧). 𝜃(𝑡) is a generic time 

function, physically and mathematically reasonable, for example with 𝜃(0) = 0 or 

adjustable for some given condition. Again we have seen that the system of Euler 

equations has no unique solution, only given initial conditions, supposing that 

there is some solution. We can choose different velocities that have the same initial 

velocity and also result, in general, in different pressures. 

 The remark given for system (7), when used in (1), leads us to the following 

conclusion: the integration of the system (1), confronting with (7), shows that 

anyone of its equations can be used for solve it, and the results must be equals each 

other, except for a constant or free term of integration, respectively 𝐴(𝑦, 𝑧, 𝑡),

𝐵(𝑥, 𝑧, 𝑡) and 𝐶(𝑥, 𝑦, 𝑡). Then again this is a condition to the occurrence of 

solutions, which shows to us the possibility of existence of breakdown solutions, as 

will become clearer in §6.  

 By other side, using the first condition (6), 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, due to 

Lagrangian formulation, where 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, the original system (1) is simplified as 

(23) 

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
= 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢2

𝜕𝑢2

𝜕𝑦
= 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝑓3

 

where 𝑢𝑖  is a function only of the respective 𝑥𝑖  and 𝑡, but not 𝑥𝑗  if 𝑗 ≠ 𝑖.  
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 If the external force has potential, 𝑓 = ∇𝑉, then the system (23) has solution 

(24)  𝑝 = ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
) + 𝑓𝑖] 𝑑𝑥𝑖

𝑃𝑖
𝑃𝑖
0

3
𝑖=1 + 𝜃(𝑡) 

      = 𝑉 + ∑ ∫ [−(
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑖
)] 𝑑𝑥𝑖

𝑥𝑖
𝑥𝑖
0

3
𝑖=1 + 𝜃(𝑡), 

𝑉 = ∫ 𝑓 ∙ 𝑑𝑙
𝐿

, which although similar to (22) has the solubility guaranteed by 

the special functional dependence of the components of the vector 𝑢, i.e., 

𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), with 
𝜕𝑢𝑖

𝜕𝑥𝑗
= 0 if 𝑖 ≠ 𝑗, supposing 𝑢, its derivatives and 𝑓 integrable 

vectors. Note that if 𝑓 is not an irrotational or gradient vector, i.e., if it does not 

have a potential, then the system (23), with 𝑢𝑖 = 𝑢𝑖(𝑥𝑖, 𝑡), it has no solution, the 

case of “breakdown” solution in [5]. 

 When the incompressibility condition is imposed we have, using (6), a small 

variety of possible solutions for velocity, of the form  

(25)  𝑢𝑖(𝑥𝑖 , 𝑡) = 𝛼𝑖(𝑡)𝑥𝑖 + 𝛽𝑖(𝑡),  

𝛼𝑖, 𝛽𝑖 ∈ 𝐶
∞([0,∞)). In this case is valid ∇2𝑢 = 0 and except when 𝑢 = 0 (for some 

or all 𝑡 ≥ 0) we have always ∫ |𝑢|2
ℝ3

𝑑𝑥𝑑𝑦𝑑𝑧 → ∞, the occurrence of 

unbounded or unlimited energy, what is not difficult to see.  

§ 5 

 Another way to solve (1) with 𝑓 = 0 seems to me to be the best of all, for its 

extreme ease of calculation, also without we need to resort to Lagrangian 

formulation and its conceptual difficulties. If 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑢0(𝑥, 𝑦, 𝑧) is the initial 

velocity of the system, valid solution in 𝑡 = 0, then 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑡, 𝑦 +

𝑡, 𝑧 + 𝑡) is a solution for velocity in 𝑡 ≥ 0, a non-unique solution. Similarly, 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑡, 𝑦 + 𝑡, 𝑧 + 𝑡) is the correspondent solution for pressure in  

𝑡 ≥ 0, being 𝑝0(𝑥, 𝑦, 𝑧) the initial condition for pressure. The velocities 

𝑢0(𝑥 + 𝑡, 𝑦, 𝑧),  𝑢0(𝑥, 𝑦 + 𝑡, 𝑧) and 𝑢0(𝑥, 𝑦, 𝑧 + 𝑡) are also solutions, and respectively 

also the pressures 𝑝0(𝑥 + 𝑡, 𝑦, 𝑧), 𝑝0(𝑥, 𝑦 + 𝑡, 𝑧) and 𝑝0(𝑥, 𝑦, 𝑧 + 𝑡). Other solutions 

may be searched, for example in the kind 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥 + 𝑇1(𝑡), 𝑦 + 𝑇2(𝑡), 𝑧 +

𝑇3(𝑡)), 𝑇𝑖(0) = 0, and therefore 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑥 + 𝑇1(𝑡), 𝑦 + 𝑇2(𝑡), 𝑧 + 𝑇3(𝑡)). 

See [6] regarding additional initial condition 
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0. 

§ 6 

 This article would not be complete without mentioning the potential flows. 

When there is a potential function 𝜙 such that  𝑢 = ∇𝜙 then ∇ × 𝑢 = 0, i.e., the 

velocity is an irrotational field. When the incompressibility condition is required, 
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i.e., ∇ ∙ 𝑢 = 0, the velocity is solenoidal, and if the field is also irrotational then 

∇2𝑢 = ∇(∇ ∙ 𝑢) − ∇ × (∇ × 𝑢) = 0, i.e., the Navier-Stokes equations are reduced to 

Euler’s equations and the velocity-potential 𝜙 must satisfied the Laplace’s 

equation, ∇2𝜙 = 0, as well as the velocity. 

 According Courant[7] (p.241), for 𝑛 = 2 the “general solution” of the 

potential equation (or Laplace’s equation) is the real part of any analytic function 

of the complex variable 𝑥 + 𝑖𝑦. For 𝑛 = 3 one can also easily obtain solutions 

which depend on arbitrary functions. For example, let 𝑓(𝑤, 𝑡) be analytic in the 

complex variable 𝑤 for fixed real 𝑡. Then, for arbitrary values of 𝑡, both the real and 

imaginary parts of the function 

(26)  𝑢 = 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡) 

of the real variables 𝑥, 𝑦, 𝑧 are solutions of the equation ∇2𝑢 = 0. Further solutions 

may be obtained by superposition: 

(27)  𝑢 = ∫ 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡)𝑑𝑡
𝑏

𝑎
.    

 For example, if we set 

(28)  𝑓(𝑤, 𝑡) = 𝑤𝑛𝑒𝑖ℎ𝑡 , 

where 𝑛 and ℎ are integers, and integrate from – 𝜋 to +𝜋, we get homogeneous 

polynomials 

(29)  𝑢 = ∫ (𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡)𝑛
𝜋

−𝜋
𝑒𝑖ℎ𝑡𝑑𝑡 

in 𝑥, 𝑦, 𝑧, following example given by Courant. Introducing polar coordinates 

𝑧 = 𝑟 cos 𝜃, 𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙 , we obtain 

(30)  𝑢 = 2𝑟𝑛𝑒𝑖ℎ𝜙 ∫ (cos 𝜃 + 𝑖 sin 𝜃 cos 𝑡)𝑛 cos ℎ𝑡  𝑑𝑡
𝜋

0
  

                 = 𝑟𝑛𝑒𝑖ℎ𝜙𝑃𝑛,ℎ(cos𝜃),   

where 𝑃𝑛,ℎ(cos𝜃) are the associated Legendre functions.     

 On the other hand, according Tokaty[8], Lagrange[9] came to the conclusion 

that Euler´s equations could be solved only for two specific conditions: (1) for 

potential (irrotational) flows, and (2) for non-potential (rotational) but steady 

flows. The external force in [9] is considered with potential, 𝑓 = ∇𝑉, and the fluid 

is incompressible. 

 Lagrange also proved, as well as Laplace (Mécanique Céleste), Poisson 

(Traité de Méchanique), Cauchy (Mémoire sur la Théorie des Ondes) and Stokes 

(On the Friction of Fluids in Motion and the Equilibrium and Motion of Elastic 
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Solids), that if the differential of the fluid’s velocity 𝑢1𝑑𝑥 + 𝑢2𝑑𝑦 + 𝑢3𝑑𝑧 is a 

differential exact in some instant of time (for example, in 𝑡 = 0) then it is also for 

all time (𝑡 ≥ 0) of this movement on the same conditions. This means that a 

potential flow is always potential flow, since 𝑡 = 0. Then, from the previous 

paragraph, if the initial velocity have not an exact differential (i.e., if the initial 

velocity is not a gradient function, irrotational, with potential) and the external 

force have potential then the Euler’s equations have no solution in this case of 

incompressible and potential flows, for non-steady flows.  

 For steady flows, where 
𝜕𝑢

𝜕𝑡
≡ 0 and 𝑢 = 𝑢0 for all 𝑡 ≥ 0, the condition for 

existence of solution (obtaining the pressure) is that 

(31)  
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
  

for all pair (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 3, defining  

(32)  𝑆𝑖 = 𝑓𝑖 − ∑ 𝑢𝑗
0 𝜕𝑢𝑖

0

𝜕𝑥𝑗

3
𝑗=1 ,  

where 𝑓 ≡ 𝑓0 is the stationary external force. This is a common condition for 

existence of solution for a system ∇𝑝 = 𝑆, representing the stationary Euler’s 

equations, that is ∇ × 𝑆 = 0.    

§ 7 

 Apply some of these methods to the Navier-Stokes equations and to the 

famous 6th Millennium Problem[4] on existence and smoothness of the Navier-

Stokes equations apparently is not so difficult at the same time also it is not 

absolutely trivial. It takes some time. I hope to do it soon. On the other hand, apply 

these methods to the case 𝑛 = 2 is almost immediate.  

 In special, we saw that even if it were widely free choose a movement for a 

fluid's particle, following the Lagrangian description, it is very restrictive the 

correspondent velocity in Eulerian description, principally if the condition of 

incompressibility is required. Except when the velocity is equal to zero (for some 

or all 𝑡 ≥ 0), there is always the occurrence of unlimited energy involving the 

whole space. Thus we realize that it is possible to exist velocities in the Eulerian 

formulation that do not correspond to a real movement of particles of a fluid, 

according to the Lagrangian formulation. 

 I think that this is better than nothing… It is no longer true that the Euler 

equations do not have a general solution (when there is some). 
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       To Leonard Euler, in memorian,  

      the greatest mathematician of all time.  

      He was brilliant, great intuitive genius. 

Euler, and mathematical community,  

forgive me for my mistakes… 

This subject is very difficult! 
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