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Abstract 

The free-fall time in air was studied using the new dimensionless number GH (here mentioned as 

the Galilei-Huygens number to commemorate the achievements of Galileo Galilei and Christian 

Huygens in physics of free fall), a combination of the falling body mass and effective cross-

section area, air density, and air drag coefficient. This number equals zero in vacuum and can be 

interpreted as the ratio of the air drag resistance force, calculated for the final velocity of the 

freefall in vacuum from the same height, to the gravity force. The free-fall time in air is shown to 

be a function of two parameters: the free-fall time in vacuum and dimensionless parameter GH . 

In most practical cases ( 15GH  ), this function can be closely approximated as the product of 

the free-fall time in vacuum and a linear function of the parameter GH. To illustrate the accuracy 

and simplicity of the approximate equation, the free-fall time was calculated for various spherical 

bodies (ping-pong and tennis balls, hailstones, basketball, and track-and-field men’s shot) if 

dropped off the Leaning Tower of Pisa. The results obtained are straightforward and traceable 

and can be of educational value and interest for physics teachers and students. 

 

I. INTRODUCTION 

   One of the most popular topics of physics for students is the free fall in vacuum and air. The 

earliest fundamental studies performed by Galileo and later Huygens are famous (they are 

compared in particular in essay [1]).  The free vertical fall with quadratic air resistance is well 

studied analytically [2 - 4, etc.] but the direct equation for the free-fall time in air is a relatively 



Simple equation for the free-fall time in air 

2 
 

cumbersome to apply and interpret without calculator or computer. .A simple and 

straightforward equation is needed to encourage the interest and participation of students. 

      

II. PRECISE SOLUTION 

The mathematical model of this effect can be described by the equation  

``   2

0d V S ρ C 
2

1
    Mg    

dt

dV
M      (1) 

with the initial conditions 0  X(0)  0,   V(0)   (at time 0t   when the body starts freely falling 

down from the altitude H ).  

Here 
dt

dX
  V(t)   and X(t) are the instantaneous velocity and displacement of the falling body at 

time t ; S, M, and dC  are respectively the mass, effective cross-section area, and the drag 

coefficient (a dimensionless number depending on the geometry and velocity of the falling 

body);  ρ0 is the air density; g is the acceleration of gravity.  

To reduce the number of the parameters, introduce the dimensionless variables 

vt

t
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H

X
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where the free-fall time in vacuum 

. 
g

 H 2
     t v          (3) 

Substituting Eqs (2) into Eq. (1), obtain equation  
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for the dimensionless velocity  
dτ

dξ
υ(τ)  . Here, the dimensionless parameter 
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M

 H S ρ C
G 0d

H        (5)  

will be mentioned as the Galilei-Huygens number ((in favor of Galileo Galilei and Christian 

Huygens for their important inputs in the physics of free fall). The parameter HG can be 

interpreted as the ratio of the air drag resistance force H g SρC 0d  calculated for the final velocity 

2gHV  of the freefall in vacuum, to the gravity force Mg .  

As known [6], the solution of Eq. (4) with the initial condition 0υ(0)   is expressed in the form  

 
.

G

τG tanh 2
     

dτ

dξ
υ(τ)

H

H
      (6) 

if .0GH   Integrating Eq. (5) with the initial condition 0ξ(0)  , obtain 

  .τGcosh ln   
G

2
  ξ(τ) H

H

      (7) 

The dimensionless free-fall time in air is calculated from Eq. (6) at the condition 1ξ  (that is, 

for HX  ): 
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As shown in the next chapter, the dimensionless time 1 τ  a  and therefore fits the free-fall time 

in vacuum if .0GH    

III. APPROXIMATE SOLUTION  

Now Eq. (7) is rewritten as  

   /2G expτGcosh HaH        

and simplified to the approximate polynomial equation using the Taylor-Maclaurin series 

expansions:  ..../24x/2x1(x)cosh 42   and  .../2xx1 exp(x) 2  .  Considering 
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1G H   and neglecting the terms of the second and higher order to the parameter
HG , obtain 

the biquadratic equation with the unknown variable aτ :   

0
4

G
1ττG

12

1 H2
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aH       (9) 

Consider ε1τa   where 1,G αε H  so, 4ε1τ 4

a   and 2ε1τ 2

a  .  Substituting such 

approximate relationships into Eq. (8) and neglecting the terms of the second order to the 

parameter
HG , obtain 1/12α  and therefore 
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The precise and linear approximation solutions described by Eqs (7) and (10) are plotted for 

comparison in FIG. 1. As seen, both plots all but coincide for 10G H  and are reasonably similar 

for  15GH  even though the approximate Eq. (10) was derived for 1G H  .  

It can be shown that the second term of Eq. (10) generally coincides with the approximate 

amendment obtained in a more complicated form earlier [3]. But Eq. (10) is more convenient for 

use and interpretation, the limits of its application are defined, and the mathematical method 

utilized in this paper is more traceable than in paper [3]. Generally speaking, Eq. (10) is the 

linear part of the Taylor-Maclaurin series expansion of the function defined by Eq. (8) for 

0GH   but due to the reduction of uncertainties Eq. (10) is true for 0GH   too.  A broad-band 

approximation can be provided by the empirically deduced equation  

23 / G1
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which is also plotted in FIG. 1.  This equation is about as accurate as the precise analytical 

solution given by Eq. (8) but it is not as simple as Eq. (10).  
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FIG. 1. The free-fall time in air calculated using the accurate equation (8) and two approximate 

equations (10) and (11). 

 

IV. CALCULATION EXAMPLES 

   For spherical bodies, the drag coefficient 4.0CD  [1-3], the area 2πRS  , and the mass 

/3,R ρ 4πM 3  so, Eq. (5) can be reduced to the form 

.
R

H
  

ρ

ρ
  0.4G 0

H        (12)  

where R is the radius and ρ is the average density of the body, kg/m3.   
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The trends described by Eq. (12) are plotted in FIG. 2 for the uniform balls made of steel, 

aluminum, ice, and wood (here, ρ 7800, 2700, 900, and 500 kg/m3, respectively; aρ 1.25 

kg/m3 ). In most practical cases parameter .10GH     

 

 

FIG. 2. Dimensionless numbers HG  vs. the dimensionless ratio H/R for uniform spherical bodies 

made of various materials.   

However, for hollow and/or small bodies the average density ρ is low, so, the parameter HG  can 

be relatively high and the free-fall time in air may notably exceed that in vacuum.  

Let’s rewrite Eqs. (8) and (10) in a more practical form as  
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respectively. Some calculation examples, using both the precise and approximate equations Eq. 

(13) and Eq. (14) are presented for comparison in Table. 1. In particular, the accuracy of Eq. (10) 

is quite sufficient to illustrate the effect of the air drag on the free-fall time for various bodies if 

dropped off the Leaning Tower of Pisa, the alleged place of Galilei’s experiments with falling 

bodies. From the experimental viewpoint, the human visual resolution is good enough to 

distinguish the free-fall times for men’s shot (track and field) and basketball since the estimated 

difference should be 0.7 s and the mean human reaction time is about 0.2 s, not to mention ping-

pong balls or common hailstones. 

Table 1. Free-fall times calculated with the Eqs (13) and (14) for various bodies dropped off the 

Leaning Tower of Pisa (≈50 m high). 

Falling body Diam., m Mass, kg 
Average 
density, 
kg/m3 

GH 

Free-fall time, s 

Accurate    
Eq. (13) 

Approximate  
Eq. (14) 

Ping-pong ball 0.038 0.0025 87 15.1 6.8 7.2 

Hailstone 0.005 - 900 11.1 6.0 6.1 

Hailstone 0.010 - 900 5.6 4.7 4.7 

Tennis ball 0.067 0.058 368 2.0 3.7 3.7 

Basketball 0.245 0.610 79 2.6 3.9 3.9 

Track-and-field men's 
shot  

0.120 7.260 8024 0.1 3.2 3.2 

Any free-fall in vacuum - - - 0 3.2 3.2 

Notes: The results were rounded to the accuracy of 0.1 s which is considered as the best human 

reaction time. 
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V. CONCLUSIONS 

A close-form relationship for the free-fall time in air was derived as a function of two factors: the 

free-fall time in vacuum and dimensionless parameter GH  (mentioned as the Galilei-Huygens 

number in favor of Galileo Galilei and Christian Huygens for their important inputs in the 

physics of free fall). This parameter can be interpreted as the ratio of the air drag resistance 

force, calculated for the final velocity of the freefall in vacuum, to the gravity force. For most 

practical cases, the relationship is reduced to a quite simple form: the product of the free-fall 

time in vacuum and a linear function of the parameter GH.  The accuracy and simplicity of the 

approximate equation are illustrated for various spherical bodies (ping-pong and tennis balls, 

hailstones, basketball, and track-and-field men’s shot) if they were dropped off the Leaning 

Tower of Pisa. The results are clear and traceable and can be of educational value and interest for 

physics teachers and students. 
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