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Abstract 
 A concise rigorous axiomatic algebraico-functional theory (AAFT) of a real affine 

Euclidean space of any given dimension n≥1 (nDRAfES), ( )REn
 , is developed from an 

algebraic system gE , called an affine additive group (AAG). The latter consists of a certain 

underlying set of points E , called an affine additive group manifold (AAGM), and of a certain 

commutative [abstract] additive group (CAG) gÊ , called the adjoint group of gE , whose 

underlying set E  of elements, called vectors, is related to E  by a binary surjection 

EEEV ˆ :ˆ →×  , satisfying the appropriate version of the Chasle, or triangle, law, according to 

which any three points x , y , and z  of E  (the apices of a triangle) satisfy the equality 

( ) ( ) ( ) 0̂,ˆˆ,ˆˆ,ˆ =++ xzVzyVyxV  , where 0̂  is the null-vector of E . The prepositive qualifier 

“real” to “space” is concurrent to the postpositive qualifier “over the field of real numbers R”. 

When gÊ  is successively supplemented by the appropriate additional attributes to become 

first a real abstract vector (linear) space (RAbVS) ( )RÊ  and ultimately an n-dimensional 

(nD) real abstract vector Euclidean space (nDRAbVES) ( )REn
ˆ , gE  is automatically self-

adjusted to all current metamorphoses of its adjoint group to become first a real affine space 

(RAfS) ( )RE  and ultimately an nDRAfES ( )REn
 , of which the above ( )RÊ  and ( )REn

ˆ  are 

adjoint. A new consistent method of logographically denoting various algebraic systems is 

suggested. Relative to its any orthonormal basis, ( )REn
ˆ , adjoint of ( )REn

 , is isomorphic to 

the nD real arithmetical vector Euclidean space (nDRArVES) ( )REn , whose underlying set 

nE  consists of ordered n-tuples of real numbers, being coordinates of the respective abstract 

vectors of the underlying vector set Ê  of ( )REn
ˆ . A hypothetical time continuum that is 

1Retired from the Israel Ocenographic and Limnological Research Institute, P.O.B. 8030, Haifa 31080, E-mail: 

yakov.iosilevskii@gmail.com. Phone/Fax: 972-4-236971. 
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associated with ( )RE3
  or by analogy with any ( )REn

  is a special interpretation of ( )RE1
 , 

which is denoted by ‘ ( )RT ’, so that the pertinent interpretations of 1Ê , 1E , 1E , 1Ê , 1E  are 

denoted respectively by ‘ T̂ ’, ‘T ’, ‘T ’, ‘ T̂ ’, ‘T ’. In the framework of the AAFT, a real-

valued functional form that is initially defined on a certain region of nE  or nET  ×  can 

rigorously be transduced into (mapped onto) a certain real-valued functional form defined on 

a certain region of nE  or nET ×  and vice versa. Therefore, the AAFT can serve as an 

underlying discipline of differential and integral calculi and hence it is a formal interface 

between any hypothetical physical processes in ( ) ( )RERT n
 ×  and their mathematical 

descriptions in ( ) ( )RERT n× . Particularly, the AAFT is the underlying discipline of the 

theory that has been developed in Iosilevskii [2015]. By way of an example of AAG’s, an n-

dimensional primitive (Bravais) affine lattice in ( )REn
  is discussed in subsection 5.7. 

 
1. Introduction 

1) In a cosmologically small spatial scale as a linear size of the solar planetary system 

during a cosmologically small span of time as that of the life time of the Earth, the receptacle 

of Nature, i.e. the receptacle of matter along all metamorphoses, which occur to matter in time 

and which are called physical, chemical, biological, etc processes, is commonly regarded as a 

certain 3-dimensional affine Euclidean space ( )RE3
  (briefly 3E ) over the field R of real 

numbers, called also an affine real Euclidean 3-space. Time is a hypothetical non-spatial 1-

dimensional continuum that can be regarded as a special version (interpretation) of a 1-

dimensional affine Euclidean space ( )RE1
  (briefly 1E ) over R, to be denoted by ‘ ( )RT ’ 

(briefly ‘T ’), in which the above processes go on in the irreversible direction from past 

through present to future. It is postulated that, via those processes, ( )RE3
  is united with ( )RT  

to form a 4-dimensional pseudo-Euclidean real affine space of index 1 – the space-time of 

special theory of relativity, which is called the Minkowski space and which will be denoted by 

‘ ( )RM4
 ’. The presence of gravitating masses in the hypothetic ( )RE3

 , along with the 

inseparable gravitational processes going on in and expanded across ( )RT , change the known 

metric properties of ( )RM4
 , so that it is replaced by, i.e. as if turns into, the Riemannian 

space R  of general theory of relativity. 
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2) A physical process occurs in a certain region of the direct product ( ) ( )RERT 3
 × , 

while both ( )RE3
  and ( )RT  comprise points and not vectors or numbers. Therefore, when 

appropriate, a physical process should be described by a certain real-valued or complex-

valued functional form defined in ( ) ( )RERT 3
 × . At the same time, a presently common way 

to treat physical processes theoretically with the purpose to create their concise rigorous 

concepts is to describe them by certain real-valued or complex-valued functional forms 

defined on appropriate regions of the direct product ( ) ( )RERT 3×  of a 1-dimensional real 

arithmetical vector Euclidean space ( )RT  and a 3-dimensional real arithmetical vector 

Euclidean space ( )RE3 , i.e. actually by functional forms depending on four independent real-

valued variables, e.g. ‘ 0x ’¸ ‘ 1x ’, ‘ 2x ’, and ‘ 3x ’. In this case, the latter functional forms are 

treated in the framework of modern differential and integral calculus. 

3) A theoretical physicist usually metamorphoses a functional form, which is 

supposedly defined in ( ) ( )RERT 3
 × , into the respective functional form, defined in 

( ) ( )RERT 3× , by choosing, actually or imaginarily (mentally), the appropriate laboratory 

coordinate systems }3{c  and }1{c  in ( )RE3
  and ( )RT  respectively, relative to which a point of 

( )RE3
  is characterized by the corresponding ordered triple 321 ,, xxx  of real numbers, being 

a vector in ( )RE3 , and a point of ( )RT  is characterized by the corresponding ordered single 

0x  of a real number, being a vector in ( )RT ; 321 ,, xxx  is the repeated ordered pair 

321 ,, xxx  subject to  

{ } { }{ }21121 ,,, xxxxx =                                                    (1.1) 

(see, e.g., Halmos [1960, pp. 22–25]), so that 

{ }{ }{ }32121321 ,,,,,, xxxxxxxx = ,                                       (1.2) 

whereas 0x  is the singleton { }0x , i.e. { }00 xx = . It is understood that }3{c  is a Galilelian 

orthonormal, i.e. normal orthogonal (rectangular), rectilinear or curvilinear, coordinate 

system, whose origin }3{0  is a certain fixed point of the underlying set 3E  of ( )RE3
  and 

whose basis is an ordered triple of orthonormal position vectors 1e , 2e , and 3e , which are the 

bijective images in the power set ( )3EP  of orthonormal free basis vectors 1̂e , 2ê , and 3ê  

belonging to the underlying set 3Ê  of a certain 3-dimensional real abstract vector Euclidean 
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space ( )RE3
ˆ  that is called the abstract vector space adjoint of ( )RE3

 . Therefore, besides }3{c , 

there is a much simpler and much more effective coordinate system }3{c , which consists of the 

same origin }3{0  belonging to 3E  and of the ordered triple of the vectors 1̂e , 2ê , and 3ê  

belonging to 3Ê . The  system }3{c  has the properties that the coordinates of any point of 3E  

relative to it are the same as the coordinates of that point relative to }3{c , and that, in addition, 

a vector of 3Ê  is expandable into the basis vectors of }3{c , while it is not expandable into the 

basis vectors of }3{c , Therefore, in fact, a certain }3{c , and not and }3{c , is used. At the same 

time, }1{c  is a «clock» whose origin (initial instant of time) }1{0 , denoted also by ‘θ ’, is a 

certain fixed point of the underlying set T  of ( )RT  and whose basis is the unit position vector 

τ , directed from past to future, which is the bijective image in the power set ( )TP  of the unit 

free basis vector τ̂  belonging to the underlying set T̂  of a certain 1-dimensional real abstract 

vector Euclidean space ( )RT̂  that is called the abstract vector space adjoint of ( )RT . 

Therefore, besides }1{c , there is a much simpler and much more effective coordinate system 

}1{c , which consists of the same origin }1{0 , or θ , belonging to T  and of the vector τ̂  

belonging to T̂ , and which has the properties that the coordinate of any point of T  relative to 

}1{c  is the same as the coordinate of that point relative to }1{c  and that, in addition, any vector 

of T̂  is expandable into τ̂ , while it is not expandable into τ . Therefore, }1{c , and not }1{c , is, 

in fact, used. The «clocks» }1{c  and }1{c  are alternatively denoted by ‘ω ’ and ‘ω’ respectively, 

the understanding being that mnemonically ‘ω’ is the first letter of the Greek noun 

‘ωρολόγιον’ \orológion\ meaning a clock. A global coordinate system in ( )RT  is called a 

system of chronology or briefly chronology. 

4) In order to continue this discussion conveniently, I shall summarize and generalize 

the above notation as follows. 

i)  R is the field of real numbers. 

ii)  R is the underlying set of R, so that ( )∞∞−= ,R . 

iii)  ( )REn
 , or briefly nE , is an n-dimensional Euclidean affine (point) space over R, 

called also a Euclidean real affine n-space. 

iv)  nE  is the underlying set of points of ( )REn
 . 
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v)  ( )REn
ˆ , or briefly nÊ , is an n-dimensional Euclidean abstract linear, or abstract 

vector, space over R, adjoint of ( )REn
 , called also a Euclidean real abstract 

linear, or abstract vector, n-space. 

vi)  nÊ  is the underlying set of real abstract vectors of ( )REn
ˆ . 

vii)  ( )REn , or briefly nE , is an n-dimensional Euclidean  arithmetical vector space 

over R, isomorphic to ( )REn
ˆ , called also a Euclidean real arithmetical vector n-

space. 

viii)  nE  is the underlying set of real arithmetical vectors of ( )REn . 

ix)  ( )RT , ( )RT̂ , ( )RT , T , T̂ , and T  are time-relevant interpretations of ( )RE1
 , 

( )RE1
ˆ , ( )RE1 , 1E , 1Ê , and 1E  respectively. 

5) As far as modern mathematical analysis, including differential and integral calculi, is 

concerned, this is from the very beginning developed for real-valued or complex-valued 

functional forms or, in other words, for the associated functions of such forms, while the real-

valued functional forms, e.g., are defined in nE  with various natural n≥1. In this case, 

rigorous relations between nE  and nE  are not, as a rule, explicated. Moreover, I dare suggest 

that the book Analyse mathtématiǫue by Laurent Schwartz [1967, Part I, chapter 1III, §1] is 

the only exposition, in which the necessity of developing differential and integral calculi from 

Euclidean affine spaces at scratch was made explicit by the very fact of including a theory of 

affine spaces under the heading «Differential calculus» of chapter III of Part I. There is a 

translation of this book into Russian, but it has not, likely, been translated into English. As 

follows from its subtitle and also from the fact that all its formulas are handwritten, 

Schwartz’s book is a collection of handouts of his lectures, which leaves its mark of 

sloppiness in the interpretation of some relevant notations and in the organization of the 

pertinent subject matter of the book. Still, broadly speaking and putting aside some minor 

inconsistencies, Schwartz employs a system of conventional geometric notations to develop 

an original algebraic theory of Euclidean affine spaces along with some functional relations 

relevant to differential calculus. At the same time, the conventional geometric notations 

employed and extended by Schwartz are visual and in their most part they are nearly 

iconographic (pictographic) and not pure symbolic (ideographic) that should be associated 

with the pertinent denotata by abstract association. Although some elements of his system of 

notation are unavoidably equivocal, the notation as a whole is convenient and mnemonically 
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justified. In fact, however, the conventional visual geometric notations can be employed only 

if they are used for construction of a pure algebraic theory of affine spaces. In developing a 

rigorous functional theory of affine spaces, these notations turn out to be cumbersome and 

inflexible and therefore inappropriate. This is likely the reason that has prevented Schwartz 

from explicating certain fundamental functional relations between, say, a function that is 

defined in nE  or in nET ×  and its successive predecessors that are defined first in nE  or in 

nET  ×  and then in nÊ  or in nET ˆˆ ×  – the relations, which should turn a theory of Euclidean 

affine spaces into an underlying discipline of differential and integral calculus. Some 

peculiarities of Schwartz’s theory and his system of notation, which illustrate the above said, 

are explicated below with the help of the pertinent symbolic notation of this exposition. 

6) Schwartz defines an affine space by two axioms in that order: 1º) the Chasle law and 

2º) the law of a bijection { } nn EEa ˆ→×  , where a is a fixed point of nE . In this case, the vector 

of nÊ , being the result of the concrete act of the bijection from the ordered pair of points a 

and x of nE  into nÊ  is denoted in the book by ‘
→

ax ’, so that the overarrow is tacitly turned out 

to be the functional constant that denotes the bijection itself, i.e. { } nn EEa ˆ: →×
→

  At the same 

time, the bijection { } nn EEa ˆ→×   is a restriction of the surjection nnn EEE ˆ→×   and 

conversely the latter is the ultimate extension (continuation) of the former. Accordingly, the 

surjection can, more naturally, be postulated instead of the bijction. In agreement with this 

fact but without mentioning it and without mentioning the fact of the very existence of the 

surjection, the Chasle law is written in the Schwartz book as 
→→→→

=++ 0cabcab , where a, b, and 

c are assumed to be arbitrary points of nE , whereas 
→

ab , 
→

bc , 
→

ca , and 
→

0  are stated to be 

arbitrary vectors of nÊ  and 
→

0  to be the null-vector of nÊ . Hence, in these occurrences an 

overarrow equivocally denotes the above surjection, i.e. nnn EEE ˆ: →×
→

 . The two different 

functions, which are thus equivocally denoted by ‘
→

’, are syntactically indistinguishable. In 

addition, Schwartz equivocally interprets 
→

ab  (e.g.) as the vector with the initial point a and 

terminal point b, i.e. as the position vector of the point b relative to the point a. Therefore, he 

alternatively denotes 
→

ab  by ‘
→

− ab ’. However, elements of nÊ  are free and only free vectors, 

 6 



being translations of nE , whereas a position vector is an element of the power set ( )nEP , i.e. 

an unmovable manifold (subset) of the set nE . The surjection { } nn EEa ˆ: →×
→

  implies the 

inverse bijectiion { } nn EEa →× ˆ , which Schwartz equivocally denotes by the sign ‘+’, the 

same that he uses for denoting the binary composition operation nnn EEE ˆˆˆ →×  of vectors in 

nÊ . That is to say, if a is a given point of nE  and 
→

h  is a vector of nÊ  then 
→

+ ha  is a point of 

nE . To compare, in accordance with the system of symbolic (ideographic) notation that I use 

in this exposition, the surjection nnn EEE ˆ: →×
→

  is denoted by ‘V̂ ’, the bijection 

{ } nn EEa ˆ: →×
→

  by ‘ aV̂ ’, and its inverse by ‘ 1ˆ −
aV ’.  

7) Schwartz is not the only mathematician who treats the bijection { } nn EEa →× ˆ  as the 

addition of a vector in nÊ  to a point in nE  that results in another point in nE . For instance, 

Mac Lane and Birkhoff [1967, p. 420] employ a like notation to suggest the following 

essentially different definition of an affine space.  

 «DEFINITION. An affine space P over F is a non-void set for which there exists a 

finite-dimensional vector space V and a function PPV →× , written as 

( ) pvpv +, , such that 

 (i) For all vectors Vwv ∈, and all points Pp∈ , 

  pp =+0 ,       ( ) ( )pwvpwv ++=++ . 

 (ii) For any two points Pqp ∈,  there is exactly one vector Vv∈  with 

  pqv =+ . 

 The dimension of P is the vector space dimension of V.» 

The surjection nnn EEE  →×+ ˆ:  that is implicitly defined by axiom (ii) is the extension of 

analogous to the extension of Schwartz’s axiom 2º), but axiom (i) is completely different from 

Schwartz’s axiom 1º). In the first identity of axiom (i), 0 is evidently the null-vector of V. The 

second identity of axiom (i) is a peculiar associative law for the sign ‘+’ with the proviso that 

the function denoted by the first occurrence of ‘+’ on the left-hand side of this identity is 

completely different from the function denoted by the first occurrence of ‘+’ on the right-hand 

side of this identity. 

8) In this exposition, a system of the appropriate symbolic (ideographic, not 

iconographic, pure abstract) notation is employed for developing a rigorous an algebraico-
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functional theory (AAFT) of an n-dimensional real affine Euclidean space ( )REn
  is developed 

from an affine additive group (AAG) as has been described in Abstract. 

9) An affine space ( )RE  is one of the most complex algebraic systems, which involves 

a few simpler algebraic systems. In this exposition, I suggest and employ a consistent method 

of naming algebraic systems instead of the two presently common ones, because these are 

inconsistent as explicated below. In order to maintain distinction between an algebraic system 

and its underlying set formally, many writers on mathematics construe the former as an 

ordered multiple, the first coordinate of which is the underlying set of the system and the other 

coordinates are some or all other attributes of the system. Accordingly, the symbol of the 

ordered multiple is used as a name of the algebraic system (see, e.g., MacLane and Birkhoff 

[1967, pp. 61, 63, 118, etc]). This method of naming algebraic systems is, however, never 

used systematically, because it leads to insuperable notational conflicts and turns out to be 

paradoxical after all. Indeed, an ordered n-tuple with n≥2 is an (n–1)-fold reiterated ordered 

pair defined as  



〉〉〉〉〈〈〈= −
−

− nn
n

nn xxxxxxxxx ,,...,,,..,,...,, 1321
1

121
                                 (1.3) 

subject to (1.1) (cf. (1.2)) and therefore it is a complicated composite set whose complexity 

rapidly increases with n. Therefore, even most basic and simplest set theoretic relations such 

as a relation of belonging an element (as a vector) to a given algebraic system (as a vector 

space) or a relation of inclusion between an algebraic system and its subsystem (as that 

between a vector space and some one of its subspaces) are inexpressible in terms of ordered 

multiple names as names of algebraic systems. Following the above method, the vector space 

( )RÊ  should have been denoted, for instance, by the ordered quadruple name ‘ 〉⋅+〈 ˆ,ˆ ,ˆ ,,ˆ -RE ’, 

or 〈 ‘ Ê ’, ‘R’, ‘ +̂ ’, ‘ -̂ ’, ‘ ⋅̂ ’ 〉 , that contains as its constituents the name ‘ Ê ’ of the 

underlying set of ( )RÊ , the name ‘R’ of the field of real numbers, and the names ‘ +̂ ’, ‘ -̂ ’, 

and ‘ ⋅̂ ’ of three operations, of which +̂  is the binary operation of addition of vectors of Ê , 

-̂  the singulary operation of additive inversion of a vector of Ê , and ⋅̂  is  the binary 

operation of multiplication of a scalar of R and a vector  of Ê  in either order. In this case, in 

order to be consistent in denoting algebraic systems by using ordered multiple names, R 

should in turn be denoted by the ordered multiple name, whose coordinates are the name ‘R’ 

of the underlying set of R and also the logographic names of all algebraic operations on R. By 

(1.3),  
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  〉⋅〉〉+〉〈〈〈〈=〉⋅+〈 ˆ,ˆ ,ˆ ,,ˆˆ,ˆ ,ˆ ,,ˆ -- RR EE  , 

and therefore ‘ 〉⋅+〈 ˆ,ˆ ,ˆ ,,ˆ -RE ’ is actually a name of an extremely complicated set, which has 

nothing to do with a vector space. This is why I do not use ordered multiple names as names 

of algebraic systems and prefer to indicate «togetherness» of the sets (including both the 

underlying sets and the functions), forming an algebraic system, as the union of those sets, 

provided of course that they do not mutually intersect. For the same reason, I do not follow 

the popular method, according to which a relation in general and a function, i.e. a functional 

(single-valued) relation, in particular is considered as the ordered triple of the graph, domain 

of definition, and domain of variation (or domain of arrival) of the relation and is denoted 

accordingly (see, e.g., Bourbaki [1960, chapter II, §3]).  

10) Use of names of ordered multiples as names of algebraic systems or of relations is 

not only inconsistent logically, but it is also paradoxical psychologically. For instance, if 

‘ 〉⋅+〈 ˆ,ˆ ,ˆ ,,ˆ -RE ’ is used as a name of an n-dimensional real vector space then the underlying set 

Ê  of vectors, the field R, and the operations (functions) +̂ , -̂ , and ⋅̂  of the vector space are 

simultaneous denotata of the constituent names ‘ Ê ’, ‘+’, ‘⋅’, ‘-’ of the above ordered multiple 

name, i.e. they are simultaneous objects of an interpreter of that name, while the field R and 

the operations +̂ , -̂ , and ⋅̂ are in fact conceptual properties of elements of Ê  with respect to 

the interpreter rather than to be his objects simultaneous with Ê . Therefore, there is in use an 

alternative method of naming an algebraic system, according to which the name of the 

dominant underlying set of that system is equivocally used as a name of the system itself, 

while properties of elements of the underlying set, – such properties, e.g., as functions, – are 

hided as connotata (connotations values) of that name. For instance, MacLane and Birkhoff 

[1967] say: «Hence a group G is a set G together with the binary operation G×G→G, written 

abba ),( , such that …» (ibid. p. 71) and also «A ring ( )1,,, ⋅+= RR  is a set R with two 

binary operations, addition and multiplication, and a nullary operation, “select 1”, such that … 

» (ibid. p. 118). According to this onomatological method, a logographic symbol such as ‘ Ê ’, 

which is initially is introduced, e.g., as a name of the underlying set of a commutative abstract 

additive group gÊ , becomes after all a homograph (homographonym, homonym) of the 

group. Consequently, if gÊ  is developed so as to become an abstract vector space ( )RÊ  then 

‘ Ê ’ becomes after all a homonym of ( )RÊ . Such equivocality of ‘ Ê ’ is confusing and hence 

inacceptable. Therefore, the latter onomatological method is not used in this treatise either. 
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2. Linear (vector) spaces 

2.1. Underlying meta-definitions 

 For convenience in the subsequent discussion, I begin from restating Definitions 2.1, 

2.4, and 2.5 and Comment 2.1 of Iosilevskii [2015] as the following Definitions 2.1–2.3 and 

Comment 2.1 respectively. 

Definition 2.1. 1) The signs =  and =  are indiscriminately called the asymmetric, or 

one-sided, equality signs by definition or, discriminately, the rightward equality sign by 

definition and the leftward equality sign by definition respectively. A binary figure, in which 

either sign =  or =  is used assertively, is called a formal binary asymmetric synonymic 

definition (FBASD). In making a FBASD, at the head of an arrow I shall write the material 

definiens – the substantive (substance-valued expression), which is already known either from 

a previous definition or from another source; at the base of the arrow I shall write the material 

definiendum – the new substantive, which is being introduced by the definition and which is 

designed to be used instead of or interchangeably with the definiens in the scope of the 

FBASD. Therefore, the sign =  is rendered into ordinary language thus: “is to stand as a 

synonym for” or straightforwardly “is the synonymous definiendum of”, and =  thus: “can be 

used instead of interchangeably with” or straightforwardly “is the synonymous definiens of”. 

The [material] definiendum and [material] definiens of a FBASD are indiscriminately called 

the terms of the definition. Neither the definiendum nor the definiens of an FBASD should 

involve any function symbols, particularly any outermost (enclosing) quotation marks, that are 

not their constituent parts and that are therefore used but not mentioned with the following 

proviso. If it is necessary to indicate the integrity of the definiendum or of the definiens then 

that term of the definition can be enclosed in square brackets as metalinguistic punctuation 

marks, which do not, by definition, belong to the enclosed term and which are therefore used 

but not mentioned. In the scope of a FBASD, which does not include the FBASD itself, 

tokens of the terms of the FBASD can be related by the ordinary reflexive, symmetric, and 

transitive sign of equality =. In contrast to =, either sign =  or =  is transitive, but not reflexive 

and not symmetric. 

2) In order to state formally that two old or two new substantives are to be used 

interchangeably (synonymously), I shall write the substantives, without any quotation marks 

that are not their constituent parts, in either order on both sides of the two-sided sign = . Such 

a relation is called a formal binary symmetric synonymic definition (FBSSD), whereas the sign 
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=  is called the symmetric, or two-sided, equality sign by definition. In this case, =  is read as 

“is to be concurrent to” or, alternatively, “—=  …” is read as “— and … are to be 

concurrent” or as “— and … are to be synonyms”, where alike ellipses should be replaced 

alike. In the scope of an FBSSD, tokens of the terms of the FBSSD can be related by the 

ordinary sign of equality =. 

3) In stating synonymic definitions of substantives, the arrows →, ←, and ↔ can be 

used instead of = , = , and =  respectively, the understanding being that the arrows are general 

definition signs, which can apply to relations and not only to subctantives.• 

Definition 2.2. 1) ‘ 0ω ’ denotes, i.e. 0ω  is, the set of all natural numbers from 0 to 

infinity. 

2) Given 0ω∈n , 

{ }niiin ≥∈=  and 0ωω d ,                                                  (2.1) 

i.e. ‘ 1ω ’, ‘ 2ω ’, etc denote the sets of natural numbers from 1, 2, etc respectively to infinity.  

3) Given 0ω∈m , given mn ω∈ , 

{ }miniinm ≥≥∈=  and 0, ωω d ,                                             (2.2) 

i.e. ‘ nm,ω ’ denotes the set of natural numbers from a given number m to another given number 

n subject to n≥m. It is understood that  

}{, mmm =ω , mm ωω =∞, , ∅=nm,ω  if m≥n.                                 (2.3)• 

Definition 2.3. 1) ‘ ∞∞− ,I ’ denotes, i.e. ∞∞− ,I  is, the set of all natural integers (natural 

integral numbers) – strictly positive, strictly negative, and zero. 

2) Given n I∈ −∞ ∞, , 

{ }niIiiII nn ≥∈== ∞∞−∞∞  and ,,,
d ,                                          (2.4) 

{ }niIiiII nn ≤∈== ∞∞−−∞∞−  and ,,,
d ,                                         (2.5) 

i.e. ∞,nI  or nI ,∞  is the set of all natural integers greater than or equal to n, and nI ,∞−  or −∞,nI  is 

the set of all natural integers less than or equal to n.  

3) Given m I∈ −∞ ∞, : given n Im∈ ∞, : 

{ }minIiiI nm ≥≥∈= ∞∞−  and ,,
d ,                                           (2.6) 

i.e. `,nmI  is the set of all natural integers that are greater than or equal to m and less than or 

equal to n.• 

 11 



Comment 2.1. Definitions 2.1(1) and 2.2(1) are explicative ones. A theory of natural 

integers in particular, and a theory of any numbers (as rational, real, or complex ones) in 

general can consistently be deduced from the five Peano axioms, which are, in turn, theorems 

of an axiomatic set theory (see, e.g., Halmos [1960, pp. 46–53], Burrill [1967], Feferman 

[1964]).• 

2.2. An n-dimensional Euclidean linear (vector) space via its underlying 
algebraic systems 

Definition 2.4. 1) A commutative (or Abelian) additive vector (or linear) group 

(CAVG), or briefly commutative additive group (CAG) gÊ  is an underlying set Ê  of its 

elements, which may sometimes be identified with gÊ , together with two primary 

(postulated) functions: a surjective commutative (symmetrical) and associative binary 

addition function EEE ˆˆˆ:ˆ →×+  and a bijective singulary additive inversion function 

EE ˆˆ:ˆ →-  with respect to the null (additive identity) element Ê0̂∈ . Elements of E , called 

vectors, are denoted by the variables ‘ x̂ ’, ‘ ŷ ’, and ‘ ẑ ’, any of which can be furnished with 

an Arabic numeral subscript ‘1’, ‘2’, etc or with any other label (as an asterisk or any number 

of primes) or with both, thus becoming another variable with the same range. The primary 

functions of gÊ  satisfy the following axioms, called the Commutative Additive Group Axioms 

(CAGA’s): 

CAGA1: The closure law. For each ( ) EEyx ˆˆˆ,ˆ ×∈ : there is exactly one Ez ˆˆ∈  such that 

yxz ˆˆˆˆ += . 

CAGA2: The associative law. For each ( )( ) [ ] EEEzyx ˆˆˆˆ,ˆ,ˆ ××∈ : 

zyxzyx ˆˆ)ˆˆˆ()ˆˆˆ(ˆˆ ++=++ .                                                   (2.7) 

CAGA3: The identity law. There exists a unique element Ê0̂∈ , which is called the null, 

or additive identity, element of Ê , such that for Ex ˆˆ∈ : 

xxx ˆ0̂ˆˆˆˆ0̂ =+=+ .                                                         (2.8) 

CAGA4: The additive inverse law. For each Ex ˆˆ∈ : there is exactly one element 

Ex ˆˆˆ ∈- , which is called the additive inverse, or additive reciprocal, or opposite of 

x̂ , such that 

( ) ( ) 0̂ˆˆˆˆˆˆˆˆ =+=+ xxxx -- .                                                     (2.9) 

CAGA5: The commutative (symmetrical) law. For each ( ) EEyx ˆˆˆ,ˆ ×∈ : 
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xyyx ˆˆˆˆˆˆ +=+ .                                                        (2.10) 

2) Besides the above primary functions, there is in gÊ  a secondary (defined, composite) 

surjective binary subtraction function EEE ˆˆˆ:ˆ →×−  such that for each ( ) EEyx ˆˆˆ,ˆ ×∈ : 

( )yxyx ˆˆˆˆˆˆˆ -+=-  ;                                                     (2.11) 

i.e. -̂ ˆ  ˆ 

 +=- , where ‘  ’ denotes the operation of composition of functions. 

3) Here, and generally in what follows, «togetherness» as stated in the item 1 is 

understood as the union of the pertinent sets (regular classes, small classes), so that gÊ  can 

formally be defined as:  

-̂ˆˆˆ g


 += EE .                                                    (2.12)• 

Definition 2.5. The field R of real numbers is the underlying set R of real numbers, 

which may sometimes be identified with R. together with the following primary (postulated) 

functions: a surjective commutative and associative binary addition function RRR →×+ : , a 

surjective commutative and associative binary multiplication function RRR →×⋅ :  that is 

distributive over + relative to =, a bijective singulary additive inversion function RR →:-  

with respect to the null (additive identity) element R∈0 , and a bijective singulary 

multiplicative inversion function { } { }00: -- RR →-1  with respect to the unity (multiplicative 

identity) element R∈1 . In addition, there are in R two secondary (defined, composite) 

functions, namely a surjective binary subtraction function RRR →×− : , defined as: 

-   

 +=- , and a binary division function { }[ ] RRR →× 0:/ - , defined as: -1    / 

 ⋅= . Elements of 

R, called scalars, are denoted by small italic letters of the Latin alphabet without any 

overscript, as ‘a’, ‘b’, ‘c’, etc, any of which can be furnished with an Arabic numeral subscript 

‘1’, ‘2’, etc or with any other label (as an asterisk or any number of primes) or with both, thus 

becoming another variable with the same range.• 

Definition 2.6. 1) An abstract (not arithmetical) linear, or vector, space ( )RÊ  or 

briefly Ê  over the field R of real numbers, called also a real abstract linear (vector) space, is 

a commutative (Abelian) additive group gÊ  of elements, which are comprised in its 

underlying set Ê  and which are called vectors, together with R and also together with an 

additional surjective commutative and associative binary function (operation) 

[ ] [ ] EREER ˆˆˆ:ˆ →××⋅   of multiplication of a scalar by a vector or of a vector by a scalar. 

The latter function is interrelated with the functions +̂ , +, and ⋅ by the following axioms that 

are called the Vector Space Supplementary Axioms (VSSA’s):  
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VSSA1: The closure and symmetry (commutative) law. For each ( ) REax ×∈ ˆ,ˆ , there is 

exactly one Ey ˆˆ ∈  such that 

axxay ⋅=⋅= ˆˆˆˆˆ .                                                      (2.13) 

VSSA2: The distributive laws over +̂  and +. For each ( ) EEyx ˆˆˆ,ˆ ×∈ , for each 

( ) RRba ×∈, : 

( ) yaxayxa ˆˆˆˆˆˆˆˆˆ ⋅+⋅=+⋅ ,                                               (2.14) 

( ) ,ˆˆˆˆˆˆˆ xbxaxba ⋅+⋅=⋅+                                                (2.15) 

VSSA3: The combined associative law. For each Ex ˆˆ∈ , for each ( ) RRba ×∈, : 

( ) ( )xbaxba ˆˆˆˆˆ ⋅⋅=⋅⋅ .                                                  (2.16) 

VSSA4: The identity law for scalar multiplication. For each Ex ˆˆ∈ :  

xx ˆˆˆ1 =⋅ .                                                           (2.17) 

2) In analogy with (2.12), «togetherness» as stated in the item 1 means that Ê  can 

formally be defined as:  

( ) ⋅== ˆˆˆˆ g


 REREE .                                               (2.18) 

subject to VSSA1–VSSA4. The set Ê  is called the principal, or major, underlying set of Ê , 

while the set R is called the minor underlying set of Ê .• 

Definition 2.7. Given 1ω∈n , an n-dimensional projective (not metric, not Euclidean) 

abstract (not arithmetical) linear (vector) space ( )RE pˆ
n  or briefly pˆ

nE  over the field R is an 

abstract linear space ( )RÊ  or Ê  together with an additional axiom of the dimension of ( )RÊ . 

According to this axiom, ( )RÊ  and hence its underlying set Ê  has at most n linearly 

independent vectors (to be explicated in the subsection 2.5 below), in terms of which any 

other vector of ( )RÊ  can be expressed.• 

Definition 2.8. A metric (inner product, Euclidean) abstract (not arithmetical) linear 

(vector) space ( )RE mˆ  or briefly mÊ  over the field R is an abstract linear space ( )RÊ  or Ê  

together with an additional axiom inner product of vectors of ( )RÊ . According to this axiom, 

there is in ( )RÊ  a commutative (symmetrical) and associative (distributive) binary function of 

inner multiplication of vectors REE →×• ˆˆ:ˆ , which is positively definite in the sense that for 

each  x E∈ : 
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0ˆˆˆ >• xx  if  x ≠ 0  or 0ˆˆˆ =• xx  if  x = 0 .                                  (2.19)• 

Definition 2.9. Given 1ω∈n , an n-dimensional abstract (not arithmetical) linear 

(vector) Euclidean (metric, inner product) space ( )RE }{
ˆ

n  or briefly }{
ˆ

nE  over the field R is an 

abstract linear (or vector) space ( )RÊ  or briefly Ê  over the field R together with both the 

axiom of the dimension of ( )RÊ  and the axiom inner product of vectors of ( )RÊ . Thus, 

equivalently, ( )REn
ˆ  is ( )RE pˆ

n  together with the later axiom or ( )RE mˆ  together with the 

former axiom. For more clarity, the underlying set of vectors of ( )REn
ˆ  will be denoted by 

‘ nÊ ’ so that nÊ  may sometimes be identified with ( )REn
ˆ .• 

Comment 2.2. Conventional definitions of all algebraic systems that has been 

mentioned above in this subsection can be found, e.g., in Birkhoff and Mac Lane [1965].• 

2.3. Ordered n-tuples 

2.3.1. General remarks 

1) Besides the sets of natural, integer (integral), rational, real, and complex numbers, 

which are denoted by ‘N’, ‘I’, ‘Q’, ‘R‘, and ‘C’ in that order and which are called scalars, and 

also besides various algebraic systems as those mentioned in the previous subsection, 

mathematics and physics (especially theoretical physics) deal with hypernumbers of various 

kinds (classes) such as quaternions, tensors of various valences, and matrices. A hypernumber 

is synecdochically called a holor (from the Greek adjective “ὅλοϛ” \ólos\ meaning all or the 

whole), the understanding being that a holor is generally a conceptual object that consists of 

several elements of a certain class (set) or certain classes (sets), which are called the merates 

(from the Greek noun “μέροϛ” \méros\ meaning a part), and also coordinates or components, 

of the holor (see, e.g. Moon and Spencer [1965, pp. 1, 14]). In this case, a hypernumber is a 

holor whose merates are numbers of a certain set and therefore it can alternatively 

(synonymously) be called a numeric holor. Particularly, a complex number is in fact a two-

component holor of real numbers. However, besides numbers, merates of a holor can, e.g., be 

points, vectors, or other holors. A holor is said to be univalent, bivalent, trivalent, 

quadrivalent, etc if its merates are labeled respectively with one, two, three, four, etc, 

subscripts or superscripts. A scalar is alternatively called a nilvalent holor. In any 

conventional set theory, an n-component univalent holor ],1[ nx  of elements nxxx ,...,, 21  of a 
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given set X in that order is called an ordered n-tuple of those elements and it is defined as a 

repeated, (n–1)-fold ordered pair such as 



.,,...,,,..,

,,...,,

1321
1

]1,1[

121],1[
,1

〉〉〉〉〈〈〈==

==

−
−

−

−∈

nn
n

nn

nniin

xxxxxxx

xxxxxx
n





ω

                                   (2.20) 

More specifically, an ordered n-tuple that is defined by the formula (2.20) is called the left-

associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) ordered pair of 1x , 2x , …, nx  in 

that order. 

2) In the general case, a single (simple) ordered pair 21, xx  of elements 1x  and 2x  of 

any given sets 1X  and 2X  in that order is by definition the set { } { }{ }211 ,, xxx , i.e. 

{ } { }{ }21121]2,1[ ,,, xxxxxx ==  ,                                            (2.21) 

(see, e.g., Halmos [1960, pp. 22–25]). Ordered pairs satisfy the theorem (ibid.) such that for 

any elements 1x , 2x , 1x′ , and 2x′ : 

2121 ,, xxxx ′′=  if and only if 11 xx ′=  and 22 xx ′= .                          (2.22) 

Accordingly, for any n elements 1x , 2x ,…, nx  and for any n elements 1x′ , 2x′ , …, nx′ :  

nn xxxxxx ′′′= ,...,,,...,, 2121  if and only if 11 xx ′= , 22 xx ′= , ..., nn xx ′= .           (2.23) 

Also, it is useful for making some general statements to introduce a one-component univalent 

holor – a conceptual object, which is denoted by ‘ ]1,1[x ’ or ‘ 1x ’ and which can therefore be 

also called an ordered one-tuple, or ordered single, the understanding being that such an 

object is distinct from a scalar (nilvalent holor) and that it can have a scalar as its only 

component. For instance, an element of a one-dimensional arithmetical vector space ( )RE p
1  or 

( )RE1  over the field R of real numbers (scalars) is a one-component univalent holor (ordered 

one-tuple) x  of a real number (scalar) x, which is not the real number itself. Without loss of 

generality, ]1,1[x  or 1x  can be identified with the singleton { }1x  – the set having 1x  as its only 

member (element), so that  

{ }11]1,1[ xxx == .                                                     (2.24) 

At the same time, a set of n elements with 2ω∈n  can alternatively be called an unordered n-

tuple. Therefore, 1x  as defined by (2.24) can be regarded as an ordered one-tuple and as an 

unordered one-tuple simultaneously. An ordered n-tuple with any 2ω∈n  is indiscriminately 
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called an ordered multiple. Thus, for any 1ω∈n  an ordered n-tuple, i.e. an n-component 

univalent holor, is a nonempty set and is not a nonempty individual. It is worthy of recalling 

that, in contrast to an ordered multiple, an ordered set is a set that serves as a domain of 

definition of the liner order relation (predicate) ≤. 

3) An ordered pair 21, xx  is conventionally denoted as ‘ ( )21, xx ’ and accordingly an 

ordered n-tuple nn xxxx ,,...,, 121 −  is denoted as ‘ ( )nn xxxx ,,...,, 121 − ’. Particularly, in the 

Clairaut-Euler placeholders ‘ ( )21, xxf ’ and ‘ ( )nn xxxxf ,,...,, 121 − ’, ‘ ( )21, xx ’ is a placeholder for 

an ordered pair, whereas ‘ ( )nn xxxx ,,...,, 121 − ’ is a placeholder for an ordered n-tuple. However, 

if 1x  and 2x  are real numbers then the symbol ‘ ( )21, xx ’ is ambiguous, for it may stand either 

for the ordered pair of those numbers in that order or for the open interval ( )21, xx . Therefore, 

in denoting ordered pairs and ordered multiples, I shall use angle brackets and round brackets 

interchangeably, while in most general conceptual statements preference will be given to the 

former without any comments. 

2.3.2. Definitions 

Definition 2.10. Given 1ω∈n , given n sets 1X , 2X ,…, nX , the set of ordered n-tuples 

defined as: 

[ ]

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                   (2.25) 

subject to (2.20) is called the left-associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) 

direct (or Cartesian) product of 1X , 2X ,…, nX  in that order.• 

Definition 2.11. Given 1ω∈n , given a set X, if XXXX n ==== ...21 , the set of 

ordered n-tuples defined as: 


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n

n
Xn

n
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2

)1(
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e



((( ((( 



                       (2.26) 

 17 



subject to (2.20), i.e. the left-associated repeated (or reiterative) (n–1)-fold (or (n–1)-ary) 

direct (or Cartesian) product of X by itself, is called the left-associated nth direct (or 

Cartesian) power of X, the understanding being that 

{ } { }{ } XXxxXxxX ≠∈=∈=×
1111

1  .                                        (2.27)• 

2.4. Repeated binary operations 

Definition 2.12. 1) Given 1ω∈m , let ξ1 , ..., ξm  be any m  objects, to which a binary 

operation ∗ , denoted by the placeholder ‘∗ ’, applies repeatedly (iteratively) m−1 times in the 

successive order starting from ξ1  and 2ξ . Then  

( )


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                (2.28) 

and in general 

( )


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          (2.29) 

where the sequence mm jjjj ,,...,, 121 −  is any permutation of the sequence mm ,1,...,2,1 − . 

2) If the operation ∗  is associative and commutative then  

( )

( ).,,...,,...

...,,...,,
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1

121

1
121121

mmi

m

i
mm

jjjjj

m

i
jjjj mmimm

ξξξξξξξξξ

ξξξξξξξξξ

−
=

−

=

∗∗

∗∗

==∗∗+∗=

∗∗∗∗==
−−



                      (2.30) 

3) The symbols ‘∗
=

m

i 1
’ and ‘∗ =

=

mi
i 1 ’, e.g., can be used interchangeably. 

4) ‘∗ ’ and ‘∗ ’ is a pair of proportional (homolographic) placeholders, which should 

be replaced by a pair of proportional tokens of the respective sizes of any desired binary 

functional constant as ‘+’, ‘⋅’, ‘×’, ‘∩’, ‘∪’, etc and also as ‘+′’, +̂ , ‘+′ˆ ’, ‘+′’, ‘⋅′’, ‘ ⋅̂ ’, ‘ ⋅′ˆ ’, 

etc. Thus, if an initial binary functional constant ‘∗ ’ is furnished with some labels then ‘∗ ’ 

should be furnished with the same labels.• 

Comment 2.3. 1) In accordance with Definition 2.12, if the symbol ‘+’, e.g., is provided 

with some labels (as one or more primes, a caret, an overbar, a tilde, etc) then the symbol 
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‘+ ’ is provided with the same labels. It is therefore understood that if the convention of 

equivocal use of the sign ‘+’ instead of each one of the plus signs such as ‘+′’, +̂ , ‘+′ˆ ’, etc is 

adopted, tacitly or explicitly, then the sign ‘+ ’ should be used instead of any one of the signs 

‘+′ ’, ‘ +̂ ’, ‘+′ˆ ’, etc. In this case, the denotatum of the operator ‘+ ’ depends on the type 

of its summand (operatum). It is also understood that if the conventional symbol ‘Σ ’ is 

employed instead of ‘+ ’ then the symbols ‘Σ̂ ’, ‘Σ′ ’, and ‘Σ′ˆ  should be employed 

instead of ‘ +̂ ’, ‘+′ ’, ‘+′ˆ  respectively; and similarly with ‘∏’ and ‘⋅ ’ in place of ‘Σ ’ 

and ‘+ ’. Thus, Definition 2.12 makes obvious that the conventional symbol ‘Σ ’, or ‘∏’, is 

equivocal and that for avoidance of confusion it should be provided with additional labels to 

connote the functional constant, which denotes the binary addition, or multiplication, 

operation, underlying the sequence of repeated binary addition, or multiplication, operations 

equivocally denoted by ‘Σ ’, or ‘∏’, respectively. 

2) In the sequel, the ‘+ ’-symbols and the respective ‘Σ ’-symbols will be used 

interchangeably.• 

2.5. Linear superpositions of vectors and dimensions of real vector spaces 

Definition 2.13. A subspace ( )RE′ˆ  of a vector space ( )RÊ  is a subset E′ˆ  of Ê , which 

contains the null-vector 0̂  and which together with the field R and together with the pertinent 

restrictions 

( )  ˆˆˆ:ˆ EEE ′→′×′+′ , EE ′→′′ ˆˆ:-̂ . ( ) ( ) EERRE ′→′××′⋅′ ˆˆˆ:ˆ                      (2.31) 

of the functions 

( ) EEE ˆˆˆ:ˆ →×+ , EE ˆˆ:ˆ →- , ( ) ( ) EERRE ˆˆˆ:ˆ →××⋅                          (2.32) 

of ( )RÊ  is itself a vector space over the field R. If ( )RE′ˆ  is a subspace of ( )RÊ  then the 

latter is called a superspace of the former and vice versa. If the relations 

EE ˆˆ ⊂′ , +⊂+′ ˆˆ , -- ˆˆ ⊂′ , ⋅⊂⋅′ ˆˆ                                           (2.33) 

definitely hold rather than their variants with ‘⊆’ in place of ‘⊂’ then ( )RE′ˆ  is called a strict 

subspace of ( )RÊ , while the latter is called a strict superspace of the former and vice versa. 
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The operations of a subspace are conventionally denoted by the same signs as those denoting 

the operations of its superspace.• 

Definition 2.14. Given  a vector space ( )RÊ , given 1ω∈m , given m  non-zero vectors 

x1 , ..., xm  in Ê , given m  scalars a1 , ..., am  in R, the vector ( )ii

m

i
xa ˆˆ

1̂
⋅+

=

, defined by  

( ) ( ) ( ) ( )nnii

m

i
xaxaxaxa ˆˆˆ...ˆˆˆˆˆˆˆˆ 2211

1̂
⋅++⋅+⋅=⋅+

=

                                (2.34) 

in accordance with Definitions 2.4–2.6, is said to be a linear combination, or linear 

superposition, of the vectors x1 , ..., xm .• 

Theorem 2.1. Under Definition 2.14, let  

( ) ( )( ) ( ) [ ]⋅+=⋅+= ˆˆˆˆ,...,ˆˆˆ,ˆ,ˆ,,ˆ,...,ˆˆˆ,...,ˆˆ
111 





-- RRL mmm xxLxxLxx              (2.35) 

(cf. Definition 2.6), where 

( ) ERajeachforxaxxL jmii
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1
1 ˆ ⊆
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 ∈∈⋅= +

=

ω ,                      (2.36) 

i.e. ( )

 ,..., L x xm1 is the set of all linear combinations of the vectors x1 , ..., xm  of the space 

( )RÊ . Then the set ( )mxx ˆ,...,ˆˆ
1L  is the smallest subspace of ( )RÊ  that contains all the vectors 

x1 , ..., xm . Accordingly, ( )mxx ˆ,...,ˆˆ
1L  is said to be the space generated, or spanned, by the 

vectors x1 , ..., xm , or the linear shell of the vectors x1 , ..., xm . It is understood that it can 

particularly happen that ( ) )(ˆˆ,...,ˆˆ
1 REL =mxx . 

Proof: Let ii
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=
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=

 be linear combinations of the vectors x1 , ..., 

xm , while b  is any element in R. Then, by the pertinent rules established earlier, it follows 

that 
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






⋅′+








⋅

+++

+++

===

===

ii

m

i
ii

m

i
iii

m

i

iii

m

i
ii

m

i
ii

m

i

xaxaxaa

xaaxaxa
                                (2.37) 

( )[ ]

( )[ ] ,ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

1111

1111

















⋅′′+








⋅′+








⋅=⋅′′+′+=

⋅′′+′+=







⋅′′+
















⋅′+








⋅

++++

++++

====

====

ii

m

i
ii

m

i
ii

m

i
iiii

m

i

iiii

m

i
ii

m

i
ii

m

i
ii

m

i

xaxaxaxaaa

xaaaxaxaxa
                 (2.38) 
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0̂0̂ˆˆ0 ˆˆ
11

==⋅ ++
==

m

i
i

m

i
x ,                                                    (2.39) 

( ) ( )( )

( )[ ] ,0̂0̂ˆˆ0ˆˆ

ˆˆ1ˆˆˆˆ1ˆˆ

ˆˆˆ

ˆˆˆˆ

111

1111
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






⋅⋅+








⋅

+++
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m

i
i

m

i
iii

m

i

ii

m

i
ii

m

i
ii

m

i
ii

m

i

xxaa

xaxaxaxa

-

--
                  (2.40) 

( ) ( ) bxaxbaxabxab ii

m

i
i

m

i
ii

m

i
ii

m

i
⋅







⋅=⋅⋅=⋅⋅=








⋅⋅ ++++

====

ˆˆˆˆˆˆˆˆ ˆˆˆˆ
1111

.                    (2.41) 

For 1=b , equation (2.41) yields 

( ) ii

m

i
ii

m

i
ii

m

i
xaxaxa ˆˆˆˆ1ˆˆ1 ˆˆˆ

111
⋅=⋅⋅=








⋅⋅ +++

===

.                                    (2.42) 

Equations (2.37)-(2.42) are the pertinent variants of the defining axioms of a vector space 

over the field R and therefore they prove that the set ( )mxx ˆ,...,ˆˆ
1L  as defined by (2.35) subject 

to (2.36) is a vector space. By Definition 2.13, this vector space is a subspace of ( )RÊ . 

QED.• 

Definition 2.15. Given a vector space ( )RÊ , given 1ω∈m , given m  non-zero vectors 

x1 , ..., xm  in Ê , given m  scalars a1 , ..., am  in R, the vectors x1 , ..., xm  are said to be linearly 

independent if and only if  

0̂ˆˆ
1̂

=⋅+
=

ii

m

i
xa  only if 0=ja  for each mj ,1ω∈ .                              (2.43) 

If the vectors x1 , ..., xm  are not linearly independent then they are said to be linearly 

dependent.• 

Theorem 2.2. Given a vector space ( )RÊ , given 1ω∈m , any m  given non-zero vectors 

x1 , ..., xm  in Ê  are linearly dependent if and only if some one of the vectors is a linear 

combination of the preceding ones. 

Proof: Assume, first, that for some mj ,1ω∈ : there are non-zero scalars a1 , ..., a j−1  in S  

such that  

ii

j

i
j xax ˆˆˆ ˆ

1

1
⋅= +

−

=

.                                                       (2.44) 

Hence, 

0̂ˆˆ)1(ˆˆˆ
1

1
=⋅+⋅+

−

=
jii

j

i
xxa − .                                                (2.45) 
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This equation can be rewritten as 

0̂ˆˆ
1̂

=⋅+
=

ii

m

i
xa ,                                                       (2.46) 

where  

.if 1or 

if 0...and1either 21

m jaa
m  jaa a a

jm

mjjj

===

<===== ++

-
-

d

d

                         (2.47) 

Thus, the ‘if’’-part of the theorem is proved. In order to prove the ‘only-if’-part of the 

theorem, let us assume that the vectors x1 , ..., xm  are linearly dependent. Thus, by Definition 

2.15, we assume that there are m  scalars a1 , ..., am  in R such that at least one of them does 

not equal zero but (2.46) holds. Consequently, there is a unique number mj ,1ω∈  such that  

. if0or 

if...and0either 21

mj aa 
m  j aa a a 

mj

mjjj

=≠=

<====≠ ++ 0d
                          (2.48) 

If j = 1 then, by (2.48), equation (2.46) reduces to 0̂ˆˆ 11 =⋅ xa , whence 0̂1̂ =x  because 01 ≠a . 

However, the above result contradicts the hypothesis of the theorem that none of the vectors 

x1 , ..., xm  equals zero. Hence, 2≥j . Therefore, under either one of two alternative 

conditions (2.48), equation (2.46) can be solved with respect to ‘ x j ’ so that 

( ) iij

j

i
j xaax ˆˆˆ ˆ

1

1
⋅⋅= +

−

=

1−− .                                                 (2.49) 

This equation expresses x j  as a linear combination of the preceding vectors (cf. (2.44). 

QED.• 

Definition 2.16. Given a vector space Ê  over a field R, let for some 1ω∈n : 

{ } Eee n
ˆˆ,...,1̂ ⊂  be a set of n  linearly independent vectors that generate (`span) the whole 

space Ê ; that is, ( ) EL ˆˆ,...,ˆˆ
1 =nee  where ( )nee ˆ,...,ˆˆ

1L  is defined by the variants of (2.35) and 

(2.36) with ‘n’ in place of ‘m’ and ‘e’ in place of ‘x’.  

a) The ordered n -tuple ],1[̂ ne , defined as 

×∈= n
nn Eeee ˆˆ,...,ˆˆ 1],1[

 ,                                                 (2.50) 

is said to be a basis of the vector space Ê . 

b) The number n  of the basis vectors is said to be the dimension of the vector space Ê . 

Accordingly, the latter vector space is denoted by ‘ nÊ ’ and is called an n -dimensional one, 

while the underlying set of nÊ  is denoted by ‘ nE ’.  
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c) A vector space Ê  is said to be finite-dimensional if and only if it has a finite basis. 

Otherwise, Ê  is said to be infinite-dimensional. In other words, if there exists in Ê  a set of as 

many linearly independent vectors as one pleases then the vector space Ê  is an infinite-

dimensional one, denoted by ‘ ∞Ê ’.• 

Corollary 2.1. Given 1ω∈n , let nÊ  be an n -dimensional vector space with a basis 

],1[̂ ne  given by (2.50). Then for each nÊ : there is a unique ordered n -tuple 

×∈= n
nn Rxxx ,...,1],1[

                                                (2.51) 

such that the vector x̂  is given by the equation 

ii

n

i
n exxx ˆˆˆˆ

1̂
],1[ ⋅== +

=

 .                                                  (2.52) 

Conversely, for each x n[ , ]1 , satisfying (2.51): there is exactly one vector nEx ˆˆ∈  given by 

(2.52). The ordered n -tuple x n[ , ]1 , defined by (2.51), is said to be the ordered n -tuple of the 

coordinates of the vector x , defined by (2.52), relative to the basis ],1[̂ ne .  

Proof: Given a vector nEx ˆˆ∈ , the existence of at least one linear combination of the 

vectors  ,..., e en1 , which represents x  in accordance with (2.52), immediately follows from 

Definition 2.15 by Theorem 2.1. Suppose that, besides x n[ , ]1  given by (2.51), there is another 

n -tuple  
×∈′′=′ n

nn Rxxx ,...,1],1[
 ,                                               (2.53) 

such that 

ii

n

i
n exxx ˆˆˆˆ

1̂
],1[ ⋅′=′=′ +

=

 .                                                   (2.54) 

Subtraction of the last equation from (2.52) yields  

( ) 0̂ˆˆˆˆ
1̂

],1[],1[ =⋅′−=′− +
=

iii

n

i
nn exxxx .                                        (2.55) 

By Definition 2.16, the vectors  ,..., e en1  are linearly independent. Hence, by Definition 2.15, 

it follows from the pertinent variant of (2.43) that ′ =x xi i  for each ni ,1ω∈ , so that 

′ =x xn n[ , ] [ , ]1 1 . Conversely, by (2.23), the equation ′ =x xn n[ , ] [ , ]1 1  implies that ′ =x xi i  for each 

ni ,1ω∈ . At the same time, it is evident that given x n[ , ]1  satisfying (2.51): the vector x  is 

uniquely determined by equation (2.52). QED.• 
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Corollary 2.2. Given 1ω∈n , given an n -dimensional vector space nÊ  with a basis 

],1[̂ ne  given by (2.50), for each nEx ˆˆ∈ , for each nEx ˆˆ∈ , for each Ra∈ : 

( ) iii

n

i
ii

n

i
ii

n

i
eyxeyexyx ˆˆˆˆˆˆˆˆˆˆ ˆˆˆ

111
⋅+=








⋅+








⋅=+ +++

===

,                             (2.56) 

( ) ii

n

i
exaxa ˆˆˆˆ

1̂
⋅⋅=⋅ +

=

,                                                   (2.57) 

subject to (2.52) and also subject to 

ii

n

i
n eyyy ˆˆˆˆ

1̂
],1[ ⋅== +

=

 .                                                  (2.58) 

Proof: The corollary follows from Definition 2.14 by Theorem 2.1 (cf. (2.37)) or 

Corollary 2.1.• 

Comment 2.4. According to Corollary 2.2, given a basis of a vector space nÊ , both the 

binary operations of addition of vectors of { }nÊ  and the binary operation of multiplication of a 

vector of nÊ  by a scalar of R, which are initially defined in abstract form, reduce to the 

corresponding operations on the scalars of R, which are coordinates of the vectors relative to 

the basis. In most cases occurring in practice, R is either the field of real numbers or the field 

of complex numbers, so that use of a basis becomes especially effective.• 

Corollary 2.3. Given 1ω∈n : any n +1 vectors x1 , ..., xn+1  of an n -dimensional vector 

space nÊ  are linearly dependent. 

Proof: According to Definition 2.16, the vectors x1 , ..., xn+1  are linearly dependent if 

and only if there are n +1 scalars a1 , .., an+1  in R such that some of them do not equal zero, 

while  

0̂ˆˆˆ
1

1
=⋅+

+

=
ii

n

i
xa .                                                       (2.59) 

At the same time, by Corollary 2.1, there are n +1 n -tuples: 
×∈= n

inini Rxxx ,...,1],1[
  with 1,1 +∈ ni ω ,                                    (2.60) 

such that 

jij

n

j
nii exxx ˆˆˆˆ ˆ

1
],1[ ⋅== +

=

  for each 1,1 +∈ ni ω .                                  (2.61) 

Substitution of (2.61) into (2.59) yields 
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0̂ˆˆˆ
1

=⋅+
=

jj

n

j
eb ,                                                       (2.62) 

where 

iji

n

i
j xab ⋅= +

+

=

1

1

  for each nj ,1ω∈ .                                         (2.63) 

However, by Definition 2.16, the vectors  ,..., e en1  are linearly independent. Therefore, by 

Definition 2.15, equation (2.62) holds if and only if 0=jb  for each nj ,1ω∈ . Hence, by 

(2.63),  

0
1

1
=⋅+

+

=
iji

n

i
xa  for each nj ,1ω∈ .                                          (2.64) 

Relation (2.64) can be regarded as a set of n  homogeneous linear algebraic equations with 

respect to n +1 unknowns ‘ ai ’ with 1,1 +∈ ni ω . It is known from algebra that such a set always 

has a nontrivial solution for the ordered ( )n +1 -tuple 〈‘ 1a ’, … , ‘ 1+na ’〉 of variables. QED.• 

 

3. Real Euclidean vector spaces 

3.1. Real Euclidean abstract vector spaces 

Definition 3.1. A real abstract vector space ( )RÊ , i.e. an abstract vector space Ê  over 

the field R of real numbers, is called a Euclidean one if and only if there is a real-valued 

binary function REE →×• ˆˆ :ˆ , which is called the inner, or scalar, multiplication function on 

E  and which satisfies the following axioms (“IMA” is an abbreviation for “Inner 

Multiplication Axiom”). 

IMA1: The functionality law. For each EEyx ˆˆˆ,ˆ ×∈ , there is a unique real number 

denoted by ‘ yx ˆˆˆ• ’, which is called the inner, or scalar, product of x  and y . 

IMA2: The commutative, or symmetrical, law. For each EEyx ˆˆˆ,ˆ ×∈ : 

  xyyx ˆˆˆˆˆˆ •=• . 

IMA3: The distributive law over +̂ . For each ×∈ 3ˆˆ,ˆ,ˆ Ezyx :  

  ( ) zxyxzyx ˆˆˆˆˆˆˆˆˆˆˆˆ •+•=+• . 

IMA4: The combined associative law. For each EEyx ˆˆˆ,ˆ ×∈ : for each Ra∈   

  ( ) ( )yxayxa ˆˆˆˆˆˆˆˆ •⋅=•⋅ . 
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IMA5: The positive definiteness law. For each  x E∈ : 

  0ˆˆˆ >• xx  if  x ≠ 0  or 0ˆˆˆ =• xx  if  x = 0 . 

According IMA1–IMA5, the inner product of two vectors in E  is given by a symmetric, 

positive definite, homogeneous, bilinear functional form, and conversely, any functional form 

possessing the above properties can be selected to represent the inner product of two vectors 

in E .• 

Definition 3.2. For each  x E∈ , the real number x  defined as 

( ) 0ˆˆˆˆˆˆˆ 2
1

≥•=•= xxxxx                                                  (3.1) 

is called the length of the vector x . The associated function of the functional form ‘ x ’ is said 

to be the length function on E .• 

Theorem 3.1. In any Euclidean space ( )RÊ , the length function has the following 

properties (“LFT” is an abbreviation for “Length Function Theorem”). 

LFT1: The positive definiteness law. 00̂ =  and for each }0̂{ˆˆ -Ex∈ : x > 0 . 

LFT2: The homogeneity law. For each  x E∈  and for each Ra∈ : xaxa ˆˆˆ ⋅=⋅ . 

LFT3: The Cauchy-Schwartz inequality. For each EEyx ˆˆˆ,ˆ ×∈ : yxyx ˆˆˆˆˆ ⋅≤• . 

LFT4: The triangle inequality. For each ,   x y E E∈ × :     x y x y+ ≤ + . 

Proof: The theorem follows from Definition 3.1 by Definition 3.2. Indeed, LFT1 is an 

immediate corollary of IMA5. In accordance with IMA4, ( ) ( ) 22 ˆˆˆˆˆˆ xaxaxa ⋅=⋅•⋅ , which 

yields LFT2 by Definition 3.2. By Definition 3.2, it also follows that for each 

{ }[ ] { }[ ]0̂ˆ0̂ˆˆ,ˆ -- EEyx ×∈  and each { }[ ] { }[ ]00, -- RRba ×∈ :  

( ) ( ) ( ) 2222 ˆˆˆˆ2ˆˆˆˆˆˆˆˆˆˆˆˆˆ0 ybyxbaxaybxaybxa ⋅+•⋅⋅−⋅=⋅−⋅•⋅−⋅≤ . 

At a y=   and b x=  , this relation reduces to ( ) yxyx ˆˆˆˆˆ ⋅≤• . On the other hand, if  x = 0  or 



y = 0 , then LFT3 reduces to 0 0≤ , which is also true. Thus, LFT3 is established. LFT4 

follows from LFT3, for 

( ) ( ) ( ) ( )222222 ˆˆˆˆˆ2ˆˆˆˆˆ2ˆˆˆˆˆˆˆˆˆˆˆ yxyyxxyyxxyxyxyx +=+⋅+≤+•+=+•+=+ , 

where use of LFT3 has been made. QED.• 
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Definition 3.3. For each EEyx ˆˆˆ,ˆ ×∈ , the real number 


x y−  is called the distance 

between the vectors x  and y  in E  The associated function of the functional form ‘ 


x y− ’ is 

called the distance function in E .• 

Theorem 3.2. In any Euclidean space ( )RÊ , the distance function has the following 

properties (“DFT” is an abbreviation for “Distance Function Theorem”): 

DFT1. For each EEyx ˆˆˆ,ˆ ×∈ : (i) 


x y− > 0  if yx ˆˆ ≠  or (ii) 




x x− = =0 0  if yx ˆˆ = . 

DFT2. For each EEyx ˆˆˆ,ˆ ×∈ : 


 



x y y x− = − . 

DFT3. For each ×∈ 3ˆˆ,ˆ,ˆ Ezyx : 


 



 



x y y z x z− + − ≥ − . 

Proof: The theorem follows from Definition 3.3 by Definition 3.2 and by Theorem 3.1. 

Specifically, DFT1 immediately follows from LFT1. Then, by LFT2, 

( ) xyxyxyyx ˆˆˆˆˆˆ1ˆˆˆˆˆˆˆ −=−⋅=−=− −− , 

which proves DFT2. Lastly, DFT3 follows from LFT4, for  

( ) ( )



 



 











 



x y y z x y y z x z− + − ≥ − + − = − . 

QED.• 

Theorem 3.3. For each { }[ ] { }[ ]0̂ˆ0̂ˆˆ,ˆ -- EEyx ×∈ , there is exactly one real number 

],0[ πα ∈  such that 

yx
yx
ˆˆ
ˆˆˆ

cos
⋅
•

=α ,                                                         (3.2) 

whence 

( )
yx
yxyx
ˆˆ
ˆˆˆ

arccosˆ,ˆ
⋅
•

=∠= a .                                               (3.3) 

The number ( )yx ˆ,ˆ∠  is called the angle between the vectors x  and y . 

Proof: The theorem immediately follows from item LFT3 of Theorem 3.1.• 

Definition 3.4. For each { }[ ] { }[ ]0̂ˆ0̂ˆˆ,ˆ -- EEyx ×∈ , the vectors x  and y  are said to be 

orthogonal, which is expressed logographically either as ‘ yx ˆˆ ⊥ ’ or as ‘  y x⊥ ’, if and only if 

( )
2

ˆ,ˆ π
=∠ yx  or equivalently 0ˆˆˆ =• yx ; that is, if 0ˆ ≠x  and 0̂ˆ ≠y  then 

( ) ( )0ˆˆˆ
2

ˆ,ˆˆˆ =•⇔





 =∠⇔⊥ yxyxyx π ,                                      (3.4) 

where, and generally in what follows, ‘⇔’ means if and only if. 
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Comment 3.1. The relation { }[ ] { }[ ]0̂ˆ0̂ˆˆ,ˆ -- EEyx ×∈  means that 0̂ˆ ≠x  and 0̂ˆ ≠y . 

Therefore, under the above condition, the equations ‘ ( )
2

ˆ,ˆ π
=∠ yx ’ and ‘ 0ˆˆˆ =• yx ’ are 

equivalent, by (3.3). Still, the equation ‘ 0ˆˆˆ =• yx ’ also holds if  x = 0  or  y = 0 . Therefore, 

some writers extend the notion of orthogonal vectors to the last case as well. As a 

consequence, 0  becomes the only vector that is orthogonal to any vector in E  including 

itself. Also, in this case, the expression on the right-hand side of equation (3.2) becomes an 

indeterminate functional form of the type ‘ 0 0/ ’, so that equation (3.3) is also meaningless. 

Thus, there are forcible arguments for excluding the case where  x = 0  or 0̂ˆ =y  from the 

definition of orthogonal vectors.• 

Corollary 3.1: For each { }[ ] { }[ ]0̂ˆ0̂ˆˆ,ˆ -- EEyx ×∈  and for each { }[ ] { }[ ]00, -- RRba ×∈ : 

 x y⊥  if and only if ( ) ( )ybxa ˆˆˆˆ ⋅⊥⋅ .                                         (3.5) 

Proof: By IMA3 of Definition 3.1, it follows that 

( ) ( ) ( ) ( )yxbaybxa ˆˆˆˆˆˆˆˆˆ •⋅⋅=⋅•⋅ .                                            (3.6) 

The corollary follows from (3.6) by (3.4) because 0≠a , 0≠b , 0̂ˆ ≠x , and 0̂ˆ ≠y , by the 

hypothesis of the corollary.• 

Lemma 3.1. Given 2ω∈m , given m  non-zero mutually orthogonal vectors  ,..., x xm1  in 

E : 

ijiijji xxxxx δ2ˆˆˆˆˆˆˆ =•=•  for each mi ,1ω∈  and each mj ,1ω∈ ,                    (3.7) 

where ‘ ijδ ’ is the Kronecker delta-symbol. 

Proof: The lemma follows from Definitions 3.2 and 3.4.• 

Theorem 3.4: A generalized Pythagorean theorem. Given 2ω∈m , given m  non-zero 

mutually orthogonal vectors  ,..., x xm1  in E : 

2

1

2

1

ˆˆˆ i

m

i
i

m

i
xx ++

==

= .                                                       (3.8) 

Proof: By (2.28), IMA3, and (3.7), it follows from the variant of (3.1) with ‘ i

m

i
x̂

1̂
+
=

’ in 

place of ‘ x̂ ’ that 

( ) ( ) 2

1111111

2

1

ˆˆˆˆˆˆˆˆˆˆˆ ˆˆˆ i

m

i
ijii

m

j

m

i
ji

m

j

m

i
j

m

j
i

m

i
i

m

i
xxxxxxxx ++++++++

========

=•=•=







•






= δ . 
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QED.• 

Theorem 3.5. Given 1ω∈m , if a vector { }0̂ˆˆ -Ey∈  is orthogonal to each one of m  

given non-zero vectors  ,..., x xm1  in E  then it is orthogonal to each non-zero vector in the 

space ( )mxx ˆ,...,ˆˆ
1L  spanned by  ,..., x xm1 . 

Proof: In compliance with (2.36), let  

0̂ˆˆˆ
1̂

≠⋅= +
=

ii

m

i
xax ,                                                       (3.9) 

where a am1 ,...,  are m  arbitrary scalars in R. In this case, by items IMA2 and IMA3 of 

Definition 3.1, it follows from the hypothesis of the theorem that 

( ) ( ) 00ˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
1111̂

=⋅=•⋅=⋅•=






 ⋅•=• ++++
====

i

m

i
ii

m

i
ii

m

i
ii

m

i
axyaxayxayxy . 

This equation proves the theorem by Definition 3.4.• 

Definition 3.5. Given 2ω∈m , m  non-zero vectors  ,..., x xm1  in a Euclidean vector 

space Ê  are said to be normal orthogonal or orthonormal if and only if 

ijji xx δ=• ˆˆˆ  for each mi ,1ω∈  and each mj ,1ω∈                               (3.10) 

(cf. (3.7)).• 

Corollary 3.2. For each 2ω∈m , m non-zero mutually orthogonal vectors  ,..., x xm1  in a 

Euclidean vector space Ê  are linearly independent. 

Proof: Assume that there are some m scalars a am1 ,...,  in R, not all equal zero, such 

that: 

0̂ˆˆ
1̂

=⋅+
=

ii

m

i
xa .  

Hence, by Definitions 3.1, 3.4, and 3.5, it follows that 

( )

( ) .eachfor ˆˆˆ

ˆˆˆˆˆˆˆˆ0̂ˆˆ0

,1
11

11̂

mjiji

m

i
iji

m

i

iij

m

i
ii

m

i
jj

 j aaxxa

xaxxaxx

ωδ ∈==•⋅=

⋅•=






 ⋅•=•=

++

++

==

==  

This relation proves the corollary by Definition 2.15.• 

3.2. Euclidean real vector spaces of a finite dimension 

Definition 3.6. Given 2ω∈n , if n normal orthogonal vectors  ,..., e en1  of a Euclidean 

real vector space Ê  span the space then the ordered n-tuple of those vectors is, in accordance 
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with Definition 2.16(a), a basis of Ê . This basis is said to be a normal orthogonal, or 

orthonormal, basis (briefly NOB or ONB) of Ê , – in agreement with Definition 3.5. It goes 

without saying that such a Euclidean space is an n-dimensional one, and hence a finite-

dimensional one, – in accordance with Definition 2.16(c).• 

Theorem 3.6: The Gram-Schmidt orthogonalization theorem. Given 2ω∈n , given 

nm ,1ω∈ , let  ,..., x xm1  be a sequence of linearly independent vectors in a Euclidean vector 

space Ê . Then there exists a sequence of m  orthogonal non-zero vectors  ,..., y ym1  which 

span the same subspace of Ê  as that spanned by the vectors  ,..., x xm1 , i.e. 

( ) ( ) ELL ˆˆ,...,ˆˆˆ,...,ˆˆ
11 ⊆= mm xxyy .                                        (3.11) 

A sequence  ,..., y ym1  having the above property can be written as 

 y x1 1
= ,                                                            (3.12) 

jij

i

j
ii xaxy ˆˆˆˆˆ ˆ

1

1
⋅−= +

−

=

 for each mi ,2ω∈ ,                                     (3.13) 

where aij  with mi ,2ω∈  and 1,1 −∈ ij ω  are certain scalars in R. 

Proof: Given two linearly independent vectors x1  and x2  in Ê , let 

 

 

y x a x2 2 21 1= − ⋅                                                      (3.14) 

where  

11

12
21 ˆˆˆ

ˆˆˆ
xx
xxa

•
•

= .                                                        (3.15) 

In this case, 0ˆˆˆ 21 =• yy . Therefore, 1ŷ  and 2ŷ  are linearly independent by Corollary 3.2, and 

also 

( ) ( ) ELL ˆˆ,ˆˆˆ,ˆˆ
2121 ⊆= xxyy                                               (3.16) 

by Theorem 2.1. Hence, for m = 2  the theorem is true. As the induction hypothesis on ‘ m ’, 

let us therefore assume that for some ∞∈ ,2ωm : the scalars aij  with 1,1 −∈ mi ω  and 1,1 −∈ ij ω  

have already been constructed in such a way that m −1 vectors  ,..., y ym1 1−  of the form of 

(3.12) and (3.13) are mutually orthogonal non-zero vectors, which span the same subspace of 

Ê  as that spanned by the m −1 vectors 11 ˆ,...,ˆ −mxx . Thus, it is particularly assumed that 

( ) ijiiji yyyy δˆˆˆˆˆˆ •=•  for each 1,1 −∈ mi ω  and each 1,1 −∈ ij ω                     (3.17) 

(cf. (3.7)) and that 

( ) ( ) ELL ˆˆ,...,ˆˆˆ,...,ˆˆ
1111 ⊆= −− mm xxyy .                                      (3.18) 
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Let then 

imi

m

i
mm ybxy ˆˆˆˆˆ ˆ

1

1
⋅−= +

−

=

 ,                                                 (3.19) 

where  

ii

im
mi yy

yx
b

ˆˆˆ
ˆˆˆ

•
•

=  for each 1,1 −∈ mi ω .                                        (3.20) 

In this case, 

( )
( ) ,eachfor  0ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ

1,1

1

1

−

−

=

∈=•−•=





 •⋅−•=• +

mjjmjjm

jimj

m

i
jmjm

 jyybyx

yybyxyy

ω
                               (3.21) 

where use of (3.17) has been made. Thus, either the vector mŷ  is orthogonal to each one of the 

m −1 vectors  ,..., y ym1 1−  or 0̂ˆ =my . By (3.13) with 1,1 −∈ mi ω , which is true by the induction 

hypothesis, equation (3.19) becomes 









⋅⋅+⋅−= +++

−

=

−

=

−

=
jij

i

j
mi

m

i
imi

m

i
mm xabxbxy ˆˆˆˆˆˆˆˆˆ ˆˆˆ

1

1

1

2

1

1
.                                (3.22) 

Upon exchanging the indices ‘ i ’ and ‘ j ’, the last term in (3.22) can be developed thus: 

( ) ijimj

j

i

m

j
iji

j

i
mj

m

j
jij

i

j
mi

m

i
xabxabxab ˆˆˆˆˆˆˆˆ ˆˆˆˆˆˆ

1

1

1

2

1

1

1

2

1

1

1

2
⋅⋅=








⋅⋅=








⋅⋅ ++++++

−

=

−

=

−

=

−

=

−

=

−

=

.                (3.23) 

By the induction hypothesis, a ji  have so far been specified for each 1,2 −∈ mj ω  and each 

1,1 −∈ ji ω . Therefore, given 1,2 −∈ mj ω , one may, without loss of generality, set that 

a ji
= 0  for each 1, −∈ mji ω .                                             (3.24) 

In this case, equation (3.22) subject to (3.23) and (3.24) takes the form of (3.13) at i m= , 

provided that  

jimj

m

j
mimi abba ⋅+= +

−

=̂

1

2

 .                                                (3.25) 

Since xm  is independent of the vectors  ,..., x xm1 1− , therefore ( )



 ,..., x L x xm m∉ −1 1  and hence 



ym ≠ 0 . Thus, the m vectors  ,..., y ym1  are mutually orthogonal by the induction hypothesis 

and by (3.21), and hence they are linearly independent by Corollary 3.2. By Theorem 2.1, the 

vectors  ,..., y ym1  span the same subspace of as that spanned by the vectors  ,..., x xm1 , which 

proves (3.11). QED.• 
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Corollary 3.3. For each 2ω∈n , each n-dimensional Euclidean real vector space ( )REn
ˆ  

has a normal orthogonal basis 
×∈= n

nnn Eeee ˆˆ,...,ˆˆ 1],1[
                                                 (3.26) 

(cf. (2.50)) so that 

ijji ee δ=• ˆˆˆ  for each ni ,1ω∈  and for each nj ,1ω∈ .                          (3.27) 

Proof: In accordance with Definition 2.16(a), the ordered n-tuple  
×∈= n

nnn Exxx ˆˆ,...,ˆˆ 1],1[
  

of any n linearly independent vectors nxx ˆ,...,ˆ1  of an n-dimensional vector space ( )REn
ˆ  is a 

basis of the space. The ordered n-tuple  
×∈= n

nnn Eyyy ˆˆ,...,ˆˆ 1],1[
  

of the n mutually orthogonal vectors  ,..., y ym1 , which are constructed as linear superpositions 

of the vectors nxx ˆ,...,ˆ1  in accordance with the recursive Gram-Schmidt orthogonalization 

procedure of Theorem 3.6, is another, orthogonal, basis of { }E n , by Corollary 3.3. The n 

vectors nee ˆ,...,1̂ , defined as 

iii yye ˆˆˆˆ 1 ⋅= −
  for each ni ,1ω∈ ,                                          (3.28) 

satisfy (3.27), by the pertinent variants of (3.1) and (3.17). QED.• 

Corollary 3.4. Given 1ω∈n , given an n -dimensional Euclidean [real] vector space 

( )RE }{
ˆ

n  with a normal orthogonal basis (3.26) subject to (3.27), for each  

{ }x E n∈  as given 

relative to the basis by (2.52):  

ii exx ˆˆˆ •=  for each ni ,1ω∈ .                                             (3.29) 

Proof: Given nj ,1ω∈ , it follows from (2.47) by Definition 3.1 and Corollary 3.3 that 

( ) jiji

n

i
iji

n

i
ii

n

i
jj xxeexexexe =⋅=•⋅=








⋅•=• +++

===

δ
111

ˆˆˆˆˆˆˆˆˆˆ ˆ .                       (3.30) 

QED.• 

Corollary 3.5. Given 1ω∈n , given an n -dimensional Euclidean vector space ( )REn
ˆ  

with a normal orthogonal basis (3.26) subject to (3.27), for any two vectors x  and y  given 

relative to the basis by (2.52) and (2.58) respectively: 

ii

n

i
yxyx ⋅=• +

=1
ˆˆˆ .                                                      (3.31) 
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Proof: By (2.52), (2.58), and (3.27), it follows from Definition 3.1 that (cf. (3.30)) 

( ) ( )

( ) .

ˆˆˆˆˆˆˆˆˆˆˆˆ

111

1111
ˆˆ

ii

n

i
ijji

n

j

n

i

jiji

n

j

n

i
jj

n

j
ii

n

i

yxyx

eeyxeyexyx

⋅=⋅⋅=

•⋅⋅=







⋅•







 ⋅=•

Σ++

++++

===

====

δ
                       (3.32) 

QED.• 

3.3. Projective real arithmetical vector spaces 

Definition 3.7. 

{ } { }{ } RRxxRxxRE ≠∈=∈== ×
1111

1
1

 ,                                 (3.33) 



.each for  ]...]]][[...[

...

2
2

)1(

   times

ω∈×××××=

×=×××==

−

×−×

nRRRRR

RRRRRRE

n

n

Rn

n
n





((((



                              (3.34) 

Definition 3.8. For each 1ω∈n , for each nn Ex ∈],1[ , for each nn Ey ∈],1[ , for each Ra∈ : 

nnnnnn yxyxyxxyyx +++=+=+ ,...,, 2211],1[],1[],1[],1[
 ,                      (3.35) 

nn xxxx ---- ,...,, 21],1[ = ,                                               (3.36) 

axaxaxaxxaxaxaxa nnnn ⋅=⋅⋅⋅=⋅⋅⋅=⋅ ],1[2121],1[ ..., ,,..., ,,  ,               (3.37) 

where 

nn xxxx ,...,, 21],1[ = , nn yyyy ,...,, 21],1[ = ,                                 (3.38) 

in accordance with (2.20). Also,  

{ }000 ]1,1[ == ,                                                      (3.39) 



〉〉〉〉〈〈〈=〉〈=〉〈=
−

− 0,,...0,0,0...0,00 ..., ,00
1

]1,1[

zeros 

],1[
n

n
n

n




 ,                          (3.40) 

which are instances of (2.24) and (2.20) respectively.• 

Comment 3.2. The operations  

nnnnn EEEEE →→×+  : , : - ,                                           (3.41) 

( ) ( ) nnn EREER →××⋅  : ,                                            (3.42) 

as defined by (3.35)-(3.37) subject to (3.38), are distinct from the operations +, -, and ⋅ for 

scalars of R indicated in Definition 3.5 and they are also distinct from the operations +̂ ,  ˆ  - , 

and ⋅̂  defined in Definitions 2.4 and 2.6. Most mathematician denote the opetations + ,   - , 
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and   ⋅  equivocally (homonymously, homographically) with the operations +, -, and ⋅, in terms 

of which the former are defined. But I do not follow this practice for avoidance of confusion.• 

Corollary 3.6. 1) For each 1ω∈n , for each nn Ex ∈],1[ : 

],1[11],1[],1[],1[],1[ ,...,0000 nnnnnnn xxx,...,xxxx ==++=+=+ ,                 (3.43) 

( ) ],1[

 

11],1[],1[ 00..., ,0)()( n
n

nnnn x,...,xxxxx =〉〈=++=+


--- .                     (3.44) 

2) For each Ra∈ : 

],1[

  

],1[ 00..., ,00..., ,00 n
nn

n aaa =〉〈=〉⋅⋅〈=⋅


.                                  (3.45) 

Hence, the ordered n -tuple ],1[0 n  is the zero element of nE , whereas the element }{],1[ nn Ex ∈-  

is the additive inverse of the element nn Ex ∈],1[ . 

Proof: The corollary follows from Definition 3.8.• 

Definition 3.9. For each 1ω∈n , the algebraic system that, along with the field R, 

includes the set nE , defined by Definition 3.7, and the operations on nE , defined by 

Definition 3.8 and by Corollary 3.6, is a specific instance (concrete interpretation) of the n-

dimensional projective abstract linear (vector) space ( )RE pˆ
n  or briefly pˆ

nE , which has been 

defined by Definitions 2.6 and 2.7. This instance will denoted by ‘ ( )RE p
n ’ or briefly by ‘ p

nE ’ 

and be called an n-dimensional projective [real] arithmetical linear, or vector, space over the 

field R of real numbers¸ the understanding being that the prepositive adjectival qualifier “real” 

and the postpositive qualifier “over the field R of real numbers” are concurrent. Accordingly, 

an ordered n-tuple being an element of E n{ }  is called an n-dimensional real arithmetical 

vector or a real arithmetical n-vector. Some further distinguished attributes of ( )RE pˆ
n  as an n-

dimensional vector space are explicated below.• 

Definition 3.10. Given 1ω∈n , in accordance with (3.35) and (3.36), it follows that for 

each nnn EEyx ×∈ {],1[],1[ , : 

( ) ( )
.)()( 11

11],1[],1[],1[],1[

nn

nnnnnn

y,...,xyx

y,...,xyxyxyx

--

--

++=

--=+=- 

                          (3.46) 

Theorem 3.7. Given 1ω∈n , for each nn Ex ∈],1[ : 

],1[
1

],1[ nii

n

i
n exx ⋅= +

=

,                                                   (3.47) 
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where 

1,0,...,0,0 ..., ,0,...,0,1,0 ,0,...,0,0,1 ],1[],1[2],1[1 === 

nnnn eee                    (3.48) 

or equivalently  

ininie δδ ,...,1],1[ =δ  for each ni ,1ω∈ ;                                      (3.49) 

‘δij ’ is the Kronecker delta-symbol. In accordance with Definition 2.12 and Comment 2.3, the 

symbol ‘Σ ’ can be used interchangeably with ‘+ ’. 

Proof: Making use of the instance of (3.37) with ‘ ix ’ in place of ‘a’ and with ‘ ],1[ nie ’ in 

place of ‘ ],1[ nx ’, and then making use of n–1 pertinent instances of (3.35), one can develop 

equation (3.47) thus: 

.,...,,,0,...,0,0...0,0,..,0,,00,0,...,0,0,

,...,,...,

2121

1
1

1
1

],1[
1

],1[

nn

iniii

n

i
inii

n

i
nii

n

i
n

xxxxxx

xxxexx

=+++=

⋅⋅=⋅=⋅= +++
===

δδδδ
             (3.471) 

QED.• 

Comment 3.3. The equation (3.47) can be rewritten as  

],1[],1[
1

],1[ 0 nnii

n

i
n exx =⋅− +

=

,                                             (3.472) 

which means that the n +1 vectors x n[ . ]1 , e n1 1[ , ] , ...., en n[ , ]1  are linearly dependent.• 

Definition 3.11. 1) Given 1ω∈n , the ordered n-tuple ],1][,1[ nne  defined as  

×∈= n
nnnnnn Eeee }{],1[],1[1],1][,1[ ,...,                                         (3.50) 

subject to (3.48) or (3.49) is a basis of ( )RE p
n , which is specifically called a unit basis.• 

3.4. Euclidean real arithmetical vector spaces 

Definition 3.12. Given 1ω∈n , a vector space ( )REn  or briefly nE  over the field R of 

real numbers is called an n-dimensional Euclidean real arithmetical linear, or vector, space if 

and only if it is an n-dimensional projective real arithmetical linear, or vector, space ( )RE p
n  

together with is a real-valued binary function REE nn →×•  :  such that for each 

nnnn EEyx ×∈],1[],1[ , : 

ii

n

i
nn yxyx ⋅=• +

=1
],1[],1[
 ,                                                 (3.51) 
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in compliance with (3.32). The operation •  so defined is is called the inner, or scalar, 

multiplication function on }{nE , the understanding being that it satisfies the variants of IMA1–

IMA5 with ‘ • ’, ‘ nE ’, ‘ ],1[ nx ’, ‘ ],1[ ny ’, and ‘ ],1[ nz ’ in place of ‘ •̂ ’, ‘ Ê ’, ‘ x̂ ’, ‘ ŷ ’, and ‘ ẑ ’, 

respectively.• 

Corollary 3.8. Given 1ω∈n , the ordered n -tuple e n n[ , ][ , ]1 1  defined by (3.50) subject to 

(3.48) or (3.49) is a normal orthogonal, or orthonormal, basis of ( )REn , i.e.  

ijnjni ee δ=• ],1[],1[  for each ni ,1ω∈  and each nj ,1ω∈ .                        (3.52) 

Proof: Given ni ,1ω∈ , given nj ,1ω∈ , the instance of equation (3.51) with x en i n[ , ] [ , ]1 1=  

and y en j n[ , ] [ , ]1 1= , subject to (3.49), yields  

ijjkik

n

k
njni ee δδδ =⋅=• +

=1
],1[],1[ .                                           (3.53) 

QED.• 

Comment 3.4. Making use of (3.47) and of the similar relation: 

],1[
1

],1[ njj

n

j
n eyy ⋅= +

=

, 

the inner product ],1[],1[ nn yx •  can be developed with the help of (3.52) thus: 

( ) ( ) ( ) ,
111

],1[],1[
11

],1[
1

],1[
1

],1[],1[

ii

n

i
ijji

n

j

n

i
njniji

n

j

n

i

njj

n

j
nii

n

i
nn

yxyxeeyx

eyexyx

⋅=⋅⋅=•⋅⋅=









⋅•






 ⋅=•

+++++

++

=====

==

δ
                    (3.54) 

which is in agreement both with (3.51), as expected.• 

Corollary 3.9. Given 1ω∈n , for each x n[ , ]1  as given by (3.38) or (3.47): 

],1[],1[ nini exx •=  for each ni ,1ω∈ .                                        (3.55) 

Proof (mutatis mutandis, the same as that of Corollary 3.4): Given nj ,1ω∈ , it follows 

from (3.47) by Definition 3.12 and Corollary 3.8 that 

( )

.
1

],1[],1[
1

],1[
1

],1[],1[],1[

jiji

n

i

ninji

n

i
nii

n

i
njnnj

xx

eexexexe

=⋅=

•⋅=





 ⋅•=•

+

++

=

==

δ
                      (3.56) 

QED.• 
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Definition 3.13. Given 1ω∈n , given an n -dimensional Euclidean real abstract vector 

space Ê  defined by (2.18), given an orthonormal basis ],1[̂ ne , defined by (3.26) subject to 

(3.27), nÊ  and the respective n -dimensional Euclidean real arithmetical vector space nE  can 

formally be defined in analogy with (2.18) respectively thus: 

( ) •⋅== ˆˆˆˆˆˆ
],1[

g




nnn eREREE ,                                     (3.57) 

( ) •⋅== 

 REREE g
} nn ,                                                  (3.58) 

where g
nE  is a commutative additive (Abelian) group of ordered n-tuples of real numbers 

constituting the underlying set nE , which is formally defined in analogy with (2.12) as: 

-

 += \{
g

nn EE .                                                    (3.59) 

3.5. A coordinatization of ( )REn
ˆ  and a vectorization of ( )REn  

Theorem 3.8. Given 1ω∈n , given an n -dimensional Euclidean real abstract vector 

space nÊ , given an orthonormal basis ],1[̂ ne  in nÊ , defined by (3.26) subject to (3.27), let  

1

ˆ
1

ˆ
1

ˆˆˆˆ ],1[],1[],1[],1[],1[],1[
 , −+−−+ ==

nnnnnn eeeeee CCCC 





 µµ ,                              (3.60) 

where 

( )

( )

},each for   , and

 and

ˆˆˆˆˆ,ˆˆˆ

,1

],1[
1

],1[],1[

1
],1[],1[ˆ ˆ

],1[

njj

niii

n

i
nn

iii

n

i
nne

jRRyx

eyxyx

 eyxyxyxyxC
n

ω∈×∈

⋅+=+





⋅+=+++=

+

+

=

=

d

                          (3.61) 

( )

( )

},each for   , and

 and

ˆˆˆˆˆˆˆˆ,

,1

],1[
1

],1[],1[

1
],1[],1[

1
ˆ ˆ

],1[

njj

niii

n

i
nn

iii

n

i
nne

jRRyx

eyxyx

 eyxyxyxyxC
n

ω∈×∈

⋅+=+





⋅+=+++=

+

+

=

=

− d

                         (3.62) 

subject to (3.48) or (3.49), and  

{ } { }••=••=
−++ ˆ, ,,ˆ 1

ˆˆ ],1[],1[



nn ee CC .                                           (3.63) 

The function ( ) ( )RERE nne n
→ˆ:

],1[ˆ
µ  is the isomorphism from ( )REn

ˆ  to ( )REn , whereas the 

inverse function ( ) ( )RERE nne n

ˆ:1
ˆ ],1[

→−µ  is the isomorphism from ( )REn  to ( )REn
ˆ . That is 
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to say, the definitions (3.61) and (3.62) imply the following bijective (one-to-one) 

correspondences: 

( ) ],1[ˆ 00̂
],1[ ne n

C = , ( ) 0̂0 ],1[
1

ˆ ],1[
=−

ne n
C ,                                        (3.64) 

( ) ],1[ˆ ˆ
],1[ njje eeC

n
=  and ( ) jnje eeC

n
ˆ],1[

1
ˆ ],1[

=−  for each nj ,1ω∈ ,                     (3.65) 

( ) ],1[ˆ ˆ
],1[ ne xxC

n
= , ( ) xxC ne n

ˆ],1[
1

ˆ ],1[
=− ,                                        (3.66) 

( ) ( ) ( )

( ) ( ) ( ),ˆˆ

,ˆˆˆˆ

],1[
1

ˆ
1

ˆ],1[
1

ˆ

ˆˆ],1[ˆ

],1[],1[],1[

],1[],1[],1[

neene

eene

xCCxxC

xCCxxC

nnn

nnn

−−− ==

==

−−−

−−−
                                 (3.67) 

( ) ( )

( ) ( ),ˆˆˆ

,ˆˆˆ

],1[
1

ˆ],1[
1

ˆ

ˆ],1[ˆ

],1[],1[

],1[],1[

nene

ene

xCaxaxaC

xCaxaxaC

nn

nn

−− ⋅=⋅=⋅

⋅=⋅=⋅
                                  (3.68) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),ˆˆˆ

,ˆˆˆˆˆˆ

],1[
1

ˆ
1

ˆ],1[
1

ˆ],1[],1[
1

ˆ

ˆˆˆ],1[],1[ˆ

],1[],1[],1[],1[

],1[],1[],1[],1[

neenenne

eeenne

yCCxCyxyxC

yCCxCyxyxC

nnnn

nnnn

−−−− +=+=+

+=+=+
                (3.69) 

subject to (3.48) or (3.49) and also subject to 

( ) iii

n

i
eyxyx ˆˆˆˆˆ

1̂
⋅+=+ +

=

 and ( ) ],1[
1

],1[],1[ niii

n

i
nn eyxyx ⋅+=+ +

=

.                    (3.70) 

The relations (3.64)–(3.69) hold with ‘μ’ in place of ‘C’, and in addition 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ), 

 ˆˆˆ

,ˆˆˆ 

ˆˆˆ ˆˆˆ

1
],1[

1
ˆ

1

ˆ],1[
1

ˆ

],1[
1

ˆ
1

ˆ],1[
1

ˆ],1[],1[
1

ˆ

1
ˆˆˆ

ˆˆˆ],1[],1[ˆ

],1[],1[],1[

],1[],1[],1[],1[

],1[],1[],1[

],1[],1[],1[],1[

ii

n

i
neene

neenenne

ii

n

i
eee

eeenne

yxyCCxC

yxyxyx

yxyCCxC

yxyxyx

nnn

nnnn

nnn

nnnn

⋅=•=

•=•=•

⋅=•=

•=•=•

+

+

=

−−+−

−−−−

=

+

µµµµ

µµµµ

                 (3.71) 

whence 

( ) ( ) ( ) ( ) •=•=••=•=•
−+−+ ˆ  ,ˆˆ 1

ˆ
1

ˆˆˆ ],1[],1[],1[],1[ nnnn eeee CC µµ .                            (3.72) 

Accordingly, the functions 
],1[ˆ neC  and 1

ˆ ],1[

−

neC  are called projective isomorphisms, whereas the 

functions +

],1[ˆ neC  and 1

ˆ ],1[

−+

neC  are called metric, or inner product, isomorphisms. 

Proof: 1) Equations (3.70) reduce to: 

,each for  0 if
0 and 0̂ˆˆˆ

,1

],1[],1[],1[

nii

nnn

iyx
yxyx

ω∈==

=+=+
                                        (3.621) 
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,each for  0 and  if

 and ˆˆˆˆ

,1

],1[],1[],1[

niiji

njnnj

iyx
eyxeyx
ωd ∈==

=+=+
                                    (3.631) 

,each for  0 if
 and ˆˆˆˆ

,1

],1[],1[],1[

ni

nnn

iy
xyxxyx

ω∈=

=+=+
                                        (3.641) 

( ) ( )

,each for  0 and 

 and ˆˆˆˆˆˆˆ

,1

],1[
1

],1[],1[
1̂

niii

nii

n

i
nnii

n

i

iyzx

ezzyxezzyx

ω∈==

⋅==+⋅==+ ++
==

-

----
                  (3.651) 

.each for  0 and  if

 and ˆˆˆˆˆˆˆˆ

,1

],1[
1

],1[],1[
1̂

niii

nii

n

i
nnii

n

i

iyzax

ezazayxezazayx

ω∈=⋅=

⋅⋅=⋅=+⋅⋅=⋅=+ ++
==               (3.661) 

Hence, the ordered pairs ],1[0,0̂ n , ],1[, ˆ njj ee , ],1[,ˆ nxx , zz -- ,ˆˆ , and zaza ⋅⋅ ,ˆˆ , defined 

above, belong to 
],1[ˆ neC , while the reverse-ordered pairs belong to 1

ˆ ],1[

−

neC . At the same time, it 

immediately follows from definitions (3.61) and (3.62) that the ordered pair 

],1[],1[,ˆˆˆ nn yxyx ++ , defined by (3.70), belongs to 
],1[ˆ neC  and that the reverse-ordered pair 

belongs to 1
ˆ ],1[

−

neC . In developing the trains (3.69), use of equations (3.66) and of their variants 

with ‘y’ in place of ‘x’ has been made.  

2) The metric isomorphism +

],1[ˆ neC  affects neither any element of ( )REn
ˆ  nor any function 

of ( )REn
ˆ  other than •̂ . Likewise, the inverse metric isomorphism 1

ˆ ],1[

−+

neC  affects neither any 

element of ( )REn  nor any function of ( )REn  other than • . Therefore, replacement of ‘C’ 

with ‘μ’ in the relations (3.64)–(3.69) does not alter those relations semantically. 

3) It follows from (3.31) and (3.51) that  

( ) Ryxyxyx ii

n

i
nn ∈⋅=•=• +

=1
],1[],1[ˆˆˆ .                                      (3.73) 

This equality is in agreement with the fact that the isomorphisms 
],1[ˆ neµ  and 1

ˆ ],1[

−

neµ , and hence 

],1[ˆ neC  and 1
ˆ ],1[

−

neC , do not affect either scalars or functions of the field R, which is common to 

both Euclidean spaces ( )REn
ˆ  and ( )REn . At the same time, application of ‘

],1[ˆ neµ ’ to 

‘ yx ˆˆˆ • ’or of ‘ 1
ˆ ],1[

−

neµ ’ to ‘ ],1[],1[ nn yx • ’ yields (3.71). QED.• 

Comment 3.5. By (3.29) and (3.55), definitions (3.61) and (3.62) can be restated thus: 
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( )[ ]

},ˆˆˆ,ˆ and

ˆˆˆˆˆ,ˆˆˆ ],1[
1

],1[],1[],1[],1[ˆ ],1[

nn

nii

n

i
nnnne

EEyx

 eeyxyxyxyxC
n

×∈





⋅•+=+++= +
=

d

               (3.611) 

( )[ ]

}., and

ˆˆˆˆˆˆˆˆ,

],1[],1[

],1[],1[],1[
1

],1[],1[
1

ˆ ˆ
],1[

nnnn

ininn

n

i
nne

EEyx

eeyxyxyxyxC
n

×∈




⋅•+=+++= +
=

− d

               (3.621) 

Definition 3.14. Given 1ω∈n , given a Euclidean real abstract vector space ( )REn
ˆ , 

given a basis ×∈ n
nn Ee }{],1[

ˆˆ  in ( )REn
ˆ , defined by (3.26) subject to (3.27), the projective 

isomorphism 
],1[ˆ neC  is called the coordinatization of ( )REn

ˆ  relative to the basis [ , ]e n1  and the 

inverse projective isomorphism 1
ˆ ],1[

−

neC  is called an abstract vectorization of the Euclidean 

real arithmetical vector space ( )REn  relative to the same basis [ , ]e n1 .• 

Definition 3.15: Extensions of 
],1[ˆ neC and 1

ˆ ],1[

−

neC  to the power sets ( )nÊP  and ( )nEP . 

Given 1ω∈n , given a Euclidean real abstract vector space ( )REn
ˆ , given a basis ×∈ n

nn Ee }{],1[
ˆˆ  

in ( )REn
ˆ : 

( ) ( ){ }
,ˆˆeach for 

ˆˆ and ˆˆ
],1[],1[ ˆ],1[],1[ˆ

n

nenne

EX

EXxxCxxXC
nn

⊆

⊆∈==d
                          (3.74) 

( ) ( ){ }
.each for 

ˆ and ˆˆ ],1[],1[
1

ˆ
1

ˆ ],1[],1[

n

nnnee

EX

EXxxCxxXC
nn

⊆

⊆∈== −− d

                       (3.75) 

Hence particularly, 

( ) ( ) nnenne EECEEC
nn

ˆ ,ˆ 1
ˆˆ ],1[],1[

== − .                                         (3.76) 

Comment 3.6. By the conventional definition of a power set as (see, e.g., Halmos 

[1960, p. 19]), the power sets ( )nÊP  and ( )nEP  can contextually be defined as: 

nEX ˆˆ ⊆  if and only if ( )nEX ˆˆ P∈ ,                                        (3.77) 

nEX ⊆  if and only if ( )nEX P∈ .                                       (3.78) 

Therefore, the functions Ce n[ , ]1
 and Ce n[ , ]1

1− , which have originally been defined by (3.61) and 

(3.62) or (3.611) and (3.622), are extended by Definition 3.15 from the sets nÊ  and nE  to the 

power sets ( )nÊP  and ( )nEP  respectively. In accordance with the presently common practice, 
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the extensions are denoted by the same symbols as the original functions. By (3.70), the 

arithmetical vector set ( ) ne EXC
n

⊆ˆ
],1[ˆ

 is the image of the abstract vector set nn EX ˆˆ
}{ ⊆  in nE  

under the mapping Ce n[ , ]1
. Similarly, by (3.71), the abstract vector set ( ) nne EXC

n

ˆ
}{

1
ˆ ],1[

⊆−  is the 

image of the arithmetical vector set nn EX ⊆}{  in nÊ  under the mapping Ce n[ , ]1

1− .• 

3.6. Isomorphisms of Euclidean vector spaces 

Theorem 3.9. Given 1ω∈n , given two n -dimensional Euclidean abstract vector spaces 

( )REn
ˆ  and ( )REn′ˆ , given an orthonormal basis ×∈ n

nn Ee ˆˆ ],1[  in ( )REn
ˆ , defined by (3.26) 

subject to (3.27), given an orthonormal basis ×′∈′ n
nn Ee ˆˆ ],1[  in ( )REn′ˆ , defined by the variants 

(3.26) and (3.27) with ‘e´’ in place of ‘e’, let in analogy with (3.60)–(3.63): 
],1[],1[ ˆˆ nn eeC ′→
 and 

],1[],1[ ˆˆ nn eeC →′  

1
ˆˆ

1

ˆˆ
1

ˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

],1[],1[],1[],1[],1[],1[

],1[],1[],1[],1[],1[],1[

],1[],1[],1[],1[],1[],1[
,

−
′→

−+
′→

−
′→

+
→′→′→′

+
′→′→′→

==

=

=

nnnnnn

nnnnnn

nnnnnn

eeeeee

eeeeee

eeeeee

CC

CC

CC

µ

µ

µ

e













                                  (3.79) 

where 

( )

( )

},each for   , and

ˆˆˆˆ and

ˆˆˆˆˆˆˆˆ,ˆˆˆ

,1

1

1
ˆˆ

ˆ

ˆ
],1[],1[

njj

iii

n

i

iii

n

i
ee

jRRyx

eyxyx

 eyxyxyxyxC
nn

ω∈×∈

′⋅+=′+′′





⋅+=+′+′′+=

+′

+

=

=
′→

d

                          (3.80) 

( )

( )

} ,each for   , and

ˆˆˆˆ and

ˆˆˆˆˆ,ˆˆˆ,ˆˆˆ

1
ˆˆ,1

1

1
ˆˆ

],1[],1[

],1[],1[

ˆ

ˆ

−
′→

=

=
→′

=∈×∈

′⋅+=′+′′





⋅+=++′+′′=

+′

+

nn

nn

eenjj

iii

n

i

iii

n

i
ee

CjRRyx

eyxyx

 eyxyxyxyxC

e

d

ω

                         (3.81) 

{ } { } 1

ˆˆˆˆˆˆ ],1[],1[],1[],1[],1[],1[
ˆ,ˆ ,ˆ,ˆ −+

′→
+

→′
+

′→ =••′=•′•=
nnnnnn eeeeee CCC e .                         (3.82) 

The functions ( ) ( )RERE nnee nn
′→′→

ˆˆ:
],1[],1[ ˆˆµ  and ( ) ( )RERE nnee nn

ˆˆ:
],1[],1[ ˆˆ →′

→′µ  are is the 

isomorphism from ( )REn
ˆ  to ( )REn′ˆ  and from ( )REn′ˆ  to ( )REn

ˆ  respectively. That is to say, 
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the definitions (3.61) and (3.62) imply the bijective (one-to-one) correspondences, which are 

expressed by the pertinent variants of relations (3.64)–(3.72), namely by ones with  

],1[],1[ ˆˆ nn ee ′→µ , 
],1[],1[ ˆˆ nn eeC ′→
, +

′→ ],1[],1[ ˆˆ nn eeC , 0̂′ , je′ˆ ¸ x′ˆ , y′ˆ , z′ˆ , - ′ˆ , +′ˆ , •′ˆ  

in place of                                                          (3.83) 

],1[ˆ neµ , 
],1[ˆ neC , +

],1[ˆ neC , ],1[0 n , ],1[ nje , ],1[ nx , ],1[ ny , ],1[ nz , - , + , • , 

respectively. For instance, in this case, the relations 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ii

n

i
eeeeee

eeeeeeee

ii

n

i
eeeeee

eeeeeeee

yxyCCxC

yxyxyx

yxyCCxC

yxyxyx

nnnnnn

nnnnnnnn

nnnnnn

nnnnnnnn

⋅=′•′′=

′•′′=•=′•′′

⋅=•=

•=′•′′=•

+

+

=

−
′→

−+
′→

−
′→

−
′→

−
′→

−
′→

−
′→

=
′→

+
′→′→

′→′→′→′→

1

1
ˆˆ

1

ˆˆ
1

ˆˆ

1
ˆˆ

1
ˆˆ

1
ˆˆ

1
ˆˆ

1
ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆ

ˆˆˆ 

ˆˆˆ ˆˆˆˆˆˆ

,ˆˆˆ 

ˆˆˆ ˆˆˆˆˆˆ

],1[],1[],1[],1[],1[],1[

],1[],1[],1[],1[],1[],1[],1[],1[

],1[],1[],1[],1[],1[],1[

],1[],1[],1[],1[],1[],1[],1[],1[

µµµµ

µµµµ

         (3.84) 

and the relations 

( ) ( )

( ) ( ) ,ˆˆ ˆ

,ˆˆˆ
1

ˆˆ
1

ˆˆ

ˆˆˆˆ

],1[],1[],1[],1[

],1[],1[],1[],1[

•=•′=•′

•′=•=•
−+

′→
−

′→

+
′→′→

nnnn

nnnn

eeee

eeee

C

C

µ

µ
                                       (3.85) 

which follow from them, come in this case instead of relations (3.71) and (3.72) respectively.  

Proof: The proof of the theorem is, mutatis mutandis, word for word the same as that of 

Theorem 3.8. Particularly, one should make substitutions (3.83) and to use the pertinent 

primed variants of ( )REn
ˆ  instead of using relations of ( )REn . For instance, it follows from 

(3.31) and from the primed variant of (3.31) that  

( ) Ryxyxyx ii

n

i
∈⋅=′•′′=• +

=1
ˆˆˆˆˆˆ ,                                          (3.86) 

instead of (3.73). Application of ‘
],1[],1[ ˆˆ nn ee ′→µ ’ to ‘ yx ˆˆˆ • ’ or of ‘ 1

ˆˆ ],1[],1[

−
′→ nn eeµ ’ to ‘ yx ′•′′ ˆˆˆ ’ yields 

(3.84).• 

Comment 3.7 (Analogous to Comment 3.5). By (3.29) and by the variant of (3.29) with 

x′ˆ , •′ˆ , and ie′ˆ  in place of x̂ , •̂ , and iê , definitions (3.61) and (3.62) can be restated thus: 

( )[ ]

} ,ˆˆˆˆ,ˆ and

ˆˆˆˆˆˆˆˆˆˆ ˆˆˆ,ˆˆˆ

1
ˆˆ}{}{

1
ˆˆ

],1[],1[

],1[],1[
ˆ

−
→′

=
′→

=×∈





′⋅′•+=′+′′′+′′+= +′

nn

nn

eenn

ii

n

i
ee

CEEyx

eeyxyxyxyxC

e

d

                    (3.801) 
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( )[ ]

} .ˆˆˆ,ˆ and

ˆˆˆˆˆˆˆˆˆˆ,ˆˆˆ,ˆˆˆ

1
ˆˆ}{}{

1
ˆˆ

],1[],1[

],1[],1[
ˆ

−
′→

=
→′

=′×′∈′′




⋅′•′′+′′=++′+′′= +

nn

nn

eenn

ii

n

i
ee

CEEyx

 eeyxyxyxyxC

e

d

                    (3.811) 

Definition 3.16: Extensions of 
],1[],1[ ˆˆ nn eeC ′→′  and 

],1[],1[ ˆˆ nn eeC →′  to the power sets ( )nÊP  and 

( )nEP  (Analogous to Definition 3.15 subject to Comments 3.6). Given 1ω∈n , given a 

Euclidean real abstract vector space ( )REn
ˆ , given a basis ×∈ n

nn Ee }{],1[
ˆˆ  in ( )REn

ˆ : 

( ) ( ){ }
,ˆˆeach for 

ˆˆˆ and ˆˆˆˆ
],1[],1[],1[],1[ ˆˆˆˆ

n

neeee

EX

EXxxCxxXC
nnnn

⊆

′⊆∈=′′= ′→′→

d

                         (3.87) 

( ) ( ){ }
.ˆˆeach for 

ˆˆˆ and ˆˆˆˆ
],1[],1[],1[],1[ ˆˆˆˆ

n

neeee

EX

EXxxCxxXC
nnnn

′⊆′

⊆′∈′′==′ →′→′
d

                         (3.88) 

Hence particularly, 

( ) ( ) nneenee EECEEC
nnnn

ˆˆ ,ˆˆ
],1[],1[],1[],1[ ˆˆ{ˆˆ =′′= →′′→

.                                   (3.89) 

Comment 3.8. 1) The nomenclature of functions defined by (3.60)–(3.63) is 

incorporated into the nomenclature of functions defined by (3.79)–(3.82) thus: 

],1[],1][,1[],1][,1[],1[],1[],1][,1[],1[],1[ ˆ
1

ˆ
1

ˆˆˆ  ,
nnnnnnnnnnn eeeeeeee CCCCC →

−
→

−
→ === ,                    (3.90) 

where ×∈ n
nnn Ee ],1][,1[  is the orthonormal basis of ( )REn , which is given by (3.50) subject to 

(3.48) or (3.49). Hence,  

],1[],1][,1[],1][,1[],1[],1[],1][,1[],1[],1[ ˆ
1

ˆ
1

ˆˆˆ  ,
nnnnnnnnnnn eeeeeeee CCCCC ′→

−
→′

−
′→′′ === .                    (3.91) 

2) Given 1ω∈n , given two n-dimensional vector spaces ( )REn
ˆ  and ( )REn′ˆ , given bases 

×∈ n
nn Ee ˆˆ ],1[  and ×′∈′ n

nn Ee ˆˆ ],1[ , it is evident that  

.ˆ

,
1

ˆˆˆˆˆˆ

1
ˆˆˆˆˆˆ

],1[],1[],1[],1][,1[],1][,1[],1[],1[],1[

],1[],1[],1[],1][,1[],1][,1[],1[],1[],1[

−
′→→′→′

−
′′→→′→

==

==

nnnnnnnnnn

nnnnnnnnnn

eeeeeeee

eeeeeeee

CCCCC

CCCCC







                       (3.92) 

These relations imply that if  

  Rexxxx

exxexx

n
nii

n

i
nn

ii

n

i
ii

n

i

×

=

==

∈⋅==

′⋅′=′⋅=

+

+′+

],1[
1

1],1[

11

,...,each for 

ˆˆˆ and ˆˆˆ ˆˆ
d

                              (3.93) 

subject to (3.48) or (3.49) then 
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( ) ( )( )
( )( ) ( )( )

( ) ( )( )
( )( ) ( )( ),ˆˆ

ˆˆˆ

,ˆˆ

ˆˆˆ

1
ˆˆˆˆ

ˆˆˆˆ

1
ˆˆˆˆ

ˆˆˆˆ

],1[],1[],1[],1][,1[],1][,1[],1[

],1[],1][,1[],1][,1[],1[],1[],1[

],1[],1[],1[],1][,1[],1][,1[],1[

],1[],1][,1[],1][,1[],1[],1[],1[

xCCxCC

xCCxCx

xCCxCC

xCCxCx

nnnnnnnn

nnnnnnnn

nnnnnnnn

nnnnnnnn
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eeeeee

eeeeee

′=′=

′=′=

==

==′

−
′→→′

→→′→′

−
′′→→

′→→′→





                        (3.94) 

These relations illustrate the symmetric and transitive properties of isomorphisms of 

Euclidean real vector spaces of the same dimension.• 

3.7. The del-operator in a Euclidean vector space 

Definition 3.17. For each 1ω∈n , given n-dimensional Euclidean space ( )REn
ˆ , given 

an orthonormal basis (3.26) subject to (3.27) or (3.28) in ( )REn
ˆ :  

ii

n

i
e ∇⋅=∇ +

=
ˆˆˆ

1̂

 ,                                                       (3.95) 

where 

∇ =i
ix



∂
∂

 for each ni ,1ω∈ .                                             (3.96) 

In analogy with (3.29), it immediately follows from (3.95) that 

∇•=∇ ˆˆˆii e  for each ni ,1ω∈ .                                           (3.97) 

The differential operator ∇  is called the del-operator in ( )REn
ˆ .• 

Definition 3.18. For each 1ω∈n :  

∇ = ∇ ∇ = ⋅∇
=
∑[ , ] [ , ],...,1 1

1
n n n i n i

i

n

e                                        (3.98) 

subject to (3.48) or (3.49). In analogy with (3.55), it immediately follows from (3.98) that 

],1[],1[ nnii e ∇•=∇  for each ni ,1ω∈ .                                       (3.99) 

The differential operator ∇[ , ]1 n  is called the del-operator in ( )REn .• 

 

4. Affine additive groups 

4.1. Affine group point manifolds 

Definition 4.1. 1) Let gÊ  be a commutative additive group (CAG) defined by 

Definition 2.4 and let E  be as before the underlying set of its elements called vectors; E  may 

sometimes be identified with gÊ . In accordance with Definition 2.4, the binary composition 
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operation of addition and the singulary operation of additive inversion in gÊ  (or respectively 

on EE ˆˆ ×  and on E ) are denoted by ‘ + ’ and ‘ -̂ ’ respectively. The latter operation is defined 

relative the additive identity element of gÊ  (or of, and also in, E ) that is denoted by ‘ 0’ and 

is called the null vector. Elements (vectors) of E  are denoted by the variables ‘ x̂ ’, ‘ ŷ ’, and 

‘ ẑ ’, which can be furnished with some appropriate labels as Arabic numeral subscripts ‘1’, 

‘2’, etc or as primes.  

 

2) An affine additive group (AAG) gE  is an algebraic system that consists of a certain 

underlying set of points E , called its affine additive group manifold (AAGM), and of a certain 

vector group gÊ  whose underlying set E  of elements, called vectors, is related to E  by a 

binary surjection  

EEEV ˆ :ˆ →×  ,                                                        (4.1) 

which satisfies the following two AAGM axioms (AAGMA’s). 

AAGMA1: The law of composition of vectors from ordered pairs of points – The set of 

bijections between E  and E . For each EEyx 

 ×∈, , there is exactly one  z E∈  

such that 

( ) ( )yxVyVz x 







,ˆˆˆ ==                                                       (4.2) 

 and conversely for each EExz 

 ×∈ ˆ,ˆ , there is exactly one  y E∈  such that (4.2) 

holds, i.e. 

( )







y V zx= −1 .                                                           (4.3) 

 That is to say, given 

x E∈ , the singulary functions  :  



V E Ex  →  and 

 :  



V E Ex
− →1  , as defined in terms of the binary function (4.1) by (4.2) and (4.3), 

are two mutually inverse bijections.  

AAGMA2: The Chasle, or triangle, law. For each ×∈ 3,, Ezyx 

 , 

( ) ( ) ( ) 0̂,ˆˆ,ˆˆ,ˆ =++ xzVzyVyxV  .                                            (4.4) 

3) The commutative additive group (CAG) gE  and its underlying vector set Ê  are said 

to be adjoint of the AAG E  and of its underlying point set (AAGM) E  respectively. 

«Togetherness» of E , gÊ , and V̂  as constituent parts forming a single whole algebraic 

system gE  can be expressed by the following formal definition of the latter: 

( ) VEEVE ˆˆˆˆˆˆ gg










 -+== EE                                      (4.5) 
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subject to (2.12).• 

Comment 4.1: Definition 4.1 has been made with the purpose to introduce specifically 

the notions of an affine additive group and of an affine additive group manifold for 

convenience in further references. At the same time, Definition 4.1 can obviously be altered to 

introduce the like notions with “multiplicative” instead of “additive” or in general without 

either qualifier. With the help of the appropriate substitutions, all corollaries that are deduced 

below from Definition 4.1 can be restated so as to become corollaries of the respective 

modified definition.• 

Corollary 4.1: The identity law for V . For each  x E∈ : 

( )

,  V x x = 0                                                             (4.6) 

and hence 

( ) 0̂ˆ =xVx 

,                                                            (4.7) 

( ) xVx 



=− 0̂ˆ 1 .                                                           (4.8) 

Proof: (4.6) follows from (4.4) at xyz 







 == . (4.7) follows from (4.2) at xy 



 = , by (4.6). 

(4.8) follows from (4.3) at 0̂ˆ =z , by (4.7).• 

Corollary 4.2: The basic inversion law for V . For each EEyx 

 ×∈, : 

( ) ( )yxVxyV  ,ˆˆ,ˆ -= ,                                                     (4.9) 

where ( )yxV 



 ,-  is the additive inverse of ( )yxV 



, . That is to say, ( )xyV ,ˆ  and ( )yxV 



,  are the 

additive inverse of each other. 

Proof: By the variant of (4.6) with ‘ y ’ or ‘ z ’ in place of ‘ x ’, it follows from (4.4) at 

yz  =  that 

( ) ( ) 0,,














=+ xyVyxV  for each EEyx 

 ×∈, .                               (4.10) 

The corollary immediately follows from (4.10) by the item CAGA4 of Definition 2.4.• 

Corollary 4.3: A modified triangle law. For each ×∈ 3,, Ezyx 

 : 

( ) ( ) ( )zxVzyVyxV  ,ˆ,ˆˆ,ˆ =+ .                                             (4.11) 

Proof: By the equation ( ) ( )zxVxzV 



 ,ˆ-,ˆ = , which is the variant of (4.9) with ‘ z ’ in place 

of ‘ y ’, and also by the item CAGA4 of Definition 2.4, equation (4.11) is equivalent to (4.4).• 

Corollary 4.4. The binary surjection V̂ , (4.1), has the property that for each 

EEyx 

 ×∈, , there is exactly one  z E∈  such that 
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( ) ( ) ( ) ( )xVxyVyxVyVz yx 











ˆˆ,ˆˆ,ˆˆˆ -- ====                                     (4.12) 

and conversely for each EEyz 

 ×∈ ˆ,ˆ , there is exactly one Ex 

∈  such that both (4.12) and 

hence (4.3) hold and in addition  

( )zVx y ˆˆˆ 1 --=


 .                                                         (4.13) 

That is to say, in accordance with AAGMA1, relation (4.3) is the inverse of relation (4.12) at 

x  held constant, whereas relation (4.13) is the inverse of relation (4.12) at y  held constant. 

At the same time, relations (4.3) and (4.13) are mutually inverses at ẑ  held constant. 

Proof: The train of equations (4.12) is the train (4.1), which is developed by 

supplementing it by equation (4.9) and also by the variant with ‘ x ’ and ‘ y ’ exchanged of the 

definition occurring in (4.1). The train (4.12) is equivalent to this one: 

( ) ( ) ( ) ( )yVyxVxyVxVz xy 











ˆˆ,ˆˆ,ˆˆˆˆ --- ==== ,                                  (4.121) 

while (4.13) is equivalent to the first equation in (4.121). QED.• 

Comment 4.2. By Corollary 4.1, at 0̂ˆ =z  and yx 



 = , the conjunction of equations 

(4.12) and (4.13) reduces to the conjunction of the variants of equations (4.6)–(4.8) with ‘ y ’ 

in place of ‘ x ’.• 

Theorem 4.1. There is a binary composition surjection 

:  
P E E E × → ,                                                     (4.14) 

such that for each  z E∈ : (a) for each  x E∈ : there is exactly one  y E∈  such that 

( ) ( ) ( )







,  






y P x P x z V zz x= = = −  1 ,                                           (4.15) 

and conversely (b) for each  y E∈ : there is exactly one  x E∈  such that  

( ) ( ) ( )zVyPyPx yzz ˆˆˆ 1
ˆˆ

1
ˆ --

-- ===












 .                                          (4.16) 

By (4.16), for each  z E∈ : 

zz PP ˆˆ
1

ˆ -
 =- ,                                                          (4.17) 

the understanding being that the singular functions 
 :  



P E Ez  →  and  :  



P E Ez
− →1  ,                                          (4.18) 

which are defined in terms of the binary function (4.1) by (4.15) and (4.16), are two mutually 

inverse bijections. 

Proof: The final definientia of the trains of definitions (4.15) and (4.16) are given by 

equations (4.3) and (4.13) respectively, which are, by Corollary 4.4, mutually inverses at ẑ  

held constant. At the same time, the relation ‘ ( )yPx z 





1
ˆ
−= ’, occurring in (4.16), is the inverse 
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of the relation ‘ ( )xPy z 


 ˆ= ’, occurring in (4.15), while the definition ( ) ( )zVyP yz ˆˆˆ 1
ˆˆ --

-=






 , 

occurring in (4.16), is the variant of the definition ( ) ( )zVzxP x ˆˆˆ, 1−=






 , occurring in (4.15), with 

‘ y ’ in place of ‘ x ’ and ‘ ẑ-̂ ’ in place of ‘ ẑ ’.• 

Comment 4.3. It should be recalled that the function 


Vx
−1 , e.g., is the inverse of 



Vx  at 

x  held constant. At the same time, the function 


Pz
−1  is the inverse of 



Pz  at z  held constant. 

Therefore, the equations ‘ ( ) ( )










P x V zz x= −1 ’ and ( ) ( )zVyP yz ˆˆˆ 1
ˆˆ --

-=






 , e.g., which occur in (4.14) 

and (4.15), cannot be rewritten as ‘ ( ) ( )










P x V zz x
− =1 ’ and  ‘ ( ) ( )zVyP yz ˆˆˆ1

ˆˆ -- 





 =- ’ respectively. The 

former two equations are true by definition, whereas the latter two are false.• 

Definition 4.2. 1) The surjection (4.1) is called the first, or basic, surjection of the affine 

additive group manifold E  and also the vectorization of the set  E E× .  

2) The surjection (4.13) is called the second surjection of the affine additive group 

manifold E  and also the pointillage of the set  E E× . 

3) Given  x E∈ , the bijection 


Vx  as defined by (4.2) is called the vectorization of the 

point set E  relative to the point x , whereas the inverse bijection 


Vx
−1  is called the pointillage 

of the vector set E  relative to the point x . 

4) Given  z E∈ , the bijection 


Pz  as defined by (4.14) and having the property (4.16) is 

called the translation of the affine additive group manifold E  over the vector z . In this case, 

the inverse bijection 


Pz
−1  is, by (4.16), the translation of the affine additive group manifold 

E  over the vector ẑ-̂ .• 

Corollary 4.5. 

( ) ( ) ( ) ( ) xVxPxPxP x 



















==== −− 0̂ˆ,0̂ 1
0̂

1
0̂  for each  x E∈ ,                        (4.19) 

whence 

( ) EIPPP






 ===− 0̂0̂
1

0̂ ,                                                 (4.20) 

where I E  is the identity function from E  onto E . 

Proof: The corollary follows from (4.15)–(4.17) by (4.8).• 

Definition 4.3. 1) For each EEyx 

 ×∈, : the ordered pair yx , , or ( )yx , , is called the 

position group-vector of the point y  relative to the point x . The point x  is called the base, or 
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tail, of the position group-vector yx , , whereas the point y  is called the head, or terminal, 

of the position group-vector yx , . 

2) In contrast to a position group-vector, which belongs to the set EE  × , a group-

vector, which belongs to the set Ê  is called a free group-vector.• 

Comment 4.4. The term “position group-vector” (“of a point relative to a point”) as 

specified in Definition 4.3 should not be confused with the term ‘group-vector’ without the 

qualifier ‘position’. By AAGMA1, to each ordered pair of points x  and y  in E , different or 

not, there corresponds a unique group-vector ( )yxVz ,ˆˆ =  in E . Since V  is a surjection, 

therefore any group-vector  z E∈  is a class of equivalence of ordered pairs EEyx 

 ×∈,  of 

points relative to the surjection V . In this case, this class is a regular one, i.e. a set, so that 

( ){ }zyxVEEyxyxz ˆ,ˆ and ,,ˆ =×∈= 





d  for each  z E∈                      (4.21) 

and particularly 

( ){ } ExxVExxx ˆ0,ˆ and ,0 ∈=∈=










.                                     (4.22) 

These relations are of course tautologies, but they demonstrate that any attempt to treat the 

vector as an arrow that has certain end points, i.e. a certain tail (base) point and a certain head 

(terminal) point, is inconsistent. Therefore, the term “position group-vector” should not 

mislead the reader. Either of these terms is just a synonym of the term “ordered pair of 

points”. 

2) Incidentally, if a vector group gÊ  is treated as an autonomous algebraic system in no 

connection with any affine group gE  then a group-vector in gÊ  can be regarded as an 

insensible nonempty individual. A point of gE  is also an insensible nonempty individual. If, 

however, gÊ  is treated as the adjoint vector group of a certain affine group gE  then, a group-

vector of gÊ  including the null group-vector becomes, as explicated in the previous item, a 

set (regular class, small class) of equivalence of ordered pairs of points of gE  and therefore it 

ceases to be a nonempty individual. At the same time, a separate ordered pair EEyx 

 ×∈, , 

i.e. a separate position group-vector, is a set, namely { }{ }yxxyx  ,,, = , and therefore it is not 

a nonempty individual either.  

3) In the general case, a single point in E  is not a group-vector in E , except a certain 

special case to be explicated by Theorem 4.2 below in subsection 4.3.• 
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Definition 4.4. For each 1ω∈n : 
×∈= n

nn Exxx 





 ,...,1],1[ ,                                               (4.23) 

the understanding being that 

{ } ×∈== 1
11]1,1[ Exxx 





 .                                                (4.24) 

Corollary 4.6: The general contraction law for V  with respect to + . For each 3ω∈n , 

for each [ , ]x n1  satisfying (4.23): 

( ) ( ) ( ) ( ) ( )

 ,  



 ,   ...   ,  



 ,  

 , V x x V x x V x x V x x V x xn n n n n1 2 2 3 2 1 1 1+ + + + =− − − .                (4.25) 

Proof: The proof of the corollary is one by induction on ‘ n ’. Equation (4.25) at n = 3 is 

true by (4.11). Let us, therefore, assume that equation (4.25) is true. In this case, by the variant 

of (4.11) with ‘ x1 ’, ‘ xn ’, and ‘ xn+1 ’ in place of ‘ x ’, ‘ y ’, and ‘ z ’, respectively, it follows 

from (4.25) with n+1 in place of n that 

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( ),,ˆ,ˆˆ,ˆ

,ˆˆ,ˆˆ,ˆˆ...ˆ,ˆˆ,ˆ

1111

11123221

++

+−−−

=+=

+++++

nnnn

nnnnnn

xxVxxVxxV

xxVxxVxxVxxVxxV





              (4.26) 

where ‘ xn+1 ’ is, besides ‘ x1 ’, ..., ‘ xn ’, another variable with values in E . The pair of square 

parenthesis on the left-hand side of expression (4.26) indicates the way in which the 

corresponding parts of that expression should be associated with respect to the vary last 

occurrence of ‘ + ’. By the item CAGA2 of Definition 2.4, the pair of square parenthesis can 

be omitted, which proves that the variant of (4.25) with ‘ n +1’ in place of ‘ n ’ is true. QED.• 

Corollary 4.7: A polygon law or a generalized Chasle law. For each 2ω∈n , for each 
×∈ n

n Ex 

 ],1[ : 

( ) ( ) ( ) ( )

 ,  



 ,   ...   ,  



 ,  V x x V x x V x x V x xn n n1 2 2 3 2 1 1 1 0+ + + + =− − − .                      (4.27) 

Proof: (4.27) immediately follows from (4.25) at  x xn+ =1 1 , by (4.6).• 

Corollary 4.8: The general inversion law for V  with respect to + . For each 3ω∈n : 

for each ×∈ n
n Ex 

 ],1[ : 

( ) ( ) ( ) ( ) ( )[ ]
( )[ ] ( )[ ] ( )[ ] ( )[ ]

( ) ( ) ( ) ( ) ( ).,ˆ,ˆˆ,ˆˆ...ˆ,ˆˆ,ˆ
,ˆˆˆ,ˆˆˆ...ˆ,ˆˆˆ,ˆˆ

,ˆˆ,ˆˆ...ˆ,ˆˆ,ˆˆ,ˆˆ

11223211

2132121

11232211

xxVxxVxxVxxVxxV

xxVxxVxxVxxV

xxVxxVxxVxxVxxV

nnnnn

nnnn

nnnnn







=++++=

++++=

++++=

−−−

−−−

−−−

−−−−

−−

             (4.28) 

Proof: By the variant of (4.10) with ‘ x1 ’ and ‘ xn ’ in place of ‘ x ’ and ‘ y ’, respectively, 

it immediately follows from (4.25) that 
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( ) ( ) ( ) ( )[ ]
( ) ( )11

1123221

,ˆ,ˆˆ

,ˆˆ,ˆˆ...ˆ,ˆˆ,ˆˆ
xxVxxV

xxVxxVxxVxxV

nn

nnnn





==

++++ −−−

−

−
                       (4.29) 

At the same time, it is evident that 

( ) ( ) ( ) ( ) ( )

 ,  

 ,  



 ,   ...   ,  



 , V x x V x x V x x V x x V x xn n n n n1 1 1 3 2 2 1= + + + +− − ,                  (4.30) 

because this is the variant of (4.25) with ‘ n i− +1’ in place of ‘ i ’ for each ni ,1ω∈ . In this 

case, by (4.10),  

( ) ( )11 ,ˆˆ,ˆ
++ = iiii xxVxxV  -  for each 1,1 −∈ ni ω .                                (4.31) 

The conjunction of equations (4.29)-(4.31) is equivalent to (4.28). In the above proof, use of 

the item CAGA2 of Definition 2.4 has tacitly been made. At the same time, the item CAGA5 

of Definition 2.4 has not been. QED.• 

4.2. Extensions of the surjection V̂ and of the bijections 


Pz  and 1
ˆ
−

zP  to the 

power sets of their domains of definition 

Definition 4.5. 1) For each Ex 

∈ , for each EY  ⊆ : 

{ }( ) { }( )
( ) ( ) { }{ } .ˆ, and ˆ,ˆˆˆ

ˆ,ˆ

EYxyxyVyxVzz

YVYxV

x

x

⊆×∈===

=





d









                             (4.32) 

2) For each Ez ˆˆ∈ : 

( ) ( ) ( )
( ) ( ) ( ){ }

,each for 

and ˆˆˆ,

ˆˆˆ,
1

ˆ

1
ˆ

EX

EXx zVzxPxPyy

zVzXPXP

xz

Xz















d







⊆

⊆∈====

==
−

−

                            (4.33) 

( ) ( ) ( )
( ) ( ) ( ){ }

.each for 

 and ˆˆˆ
ˆˆˆ

1
ˆˆ

1
ˆ

1
ˆˆ

1
ˆ

EY

EYyzVyPyPxx

zVYPYP

yzz

Yzz















d







⊆

⊆∈====

==
−−

−−

−

−

−

−

                           (4.34) 

Hence particularly, 

{ }( ) { }( )
( ) ( ) ( )
( ) ( ) ( ) .ˆˆˆ

,ˆˆˆ,

 ,ˆˆ,ˆ

1
ˆˆ

1
ˆ

1
ˆ

EzVEPEP

EzVzEPEP

EEVExV

Ezz

Ez

x



















===

===

==

−−

−

−−

.                                         (4.35) 

Comment 4.5 (analogous to Comment 3.6): By the conventional definition of a power 

set (see, e.g., Halmos [1960, p. 19]), the power sets ( )EE  ×P  and ( )EP  can contextually be 

defined as:  
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( )EX EX  P∈⊆ ifonly  and if                                            (4.36) 

and similarly with ‘Y ’ in place of ‘ X ’. Therefore, definitions (4.32)–(4.34) extend the 

relations (4.2), (4.15), and (4.16) and the functions involved in them to the pertinent power 

sets. In accordance with the presently common practice, the extension of each one of the 

functions is denoted by the same symbol as that denoting the original function. By (4.32), the 

vector set { }( ) EYxV ˆ,ˆ ⊆  is the image of the set { } EEYx 

 ×⊆×  in the adjoint vector set Ê  

under the mapping V̂ . Similarly, the point set ( ) EXPz
 ⊆ˆ  is, by (4.33), the image (injection) 

of a certain subset X  of the underlying set E  in that same E  under the mapping zPˆ
 , whereas 

the point set ( ) EYPz
 ⊆

−1
ˆ  is, by (4.34), the image (injection) of a certain subset Y  of the 

underlying set E  in that same E  under the mapping 1
ˆ
−

zP . At the same time, the point set 

( ) EXPz
 ⊆ˆ  can alternatively be treated as the translation of X  in the result of translation of E  

over the vector Ez ˆˆ∈ , whereas the point set ( ) EYPz
 ⊆−1

ˆ  can alternatively be treated as the 

translation of Y  in the result of translation of E  over the vector Ez ˆˆˆ ∈- .• 

4.3. Self-adjoint affine additive group manifolds 

Theorem 4.2. A commutative additive group gÊ  and its underlying vector set E  are 

self-adjoint affine ones, denoted also by ‘ gE ’ and ‘ E ’ respectively, i.e.  
gg ÊE =  and EE ˆ= ,                                                 (4.37) 

if the surjection V̂ , (4.1), is defined as: 

( ) ( ) ExyxyyxV ˆˆˆˆˆˆˆˆˆ,ˆˆ ∈+=−= −  for each ,   x y E E∈ × .                       (4.38) 

Proof: In accordance with (4.37) and (4.38), let Exx ˆˆ∈=  and similarly for all other 

point-valued variables with an overdot. By (4.38), equation (4.2) becomes 

( ) ( )







,  







z V y V x y y xx= = = − .                                            (4.39) 

Solving equation (4.39) with respect to ‘ y ’ yields the pertinent specification of equation (4.3) 

in the form 

( )



 







y V z z xx= = +−1  .                                                   (4.40) 

By (4.38), equation (4.4) becomes 























y x z y x z− + − + − = 0 ,                                               (4.41) 

which is a tautology. Thus, under definitions (4.37) and (4.38), both axioms AAGMA1and 

AAGMA2 of Definition 4.1 are satisfied. QED.• 
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Comment 4.6. 1) By (4.38) or (4.39), equation (4.6) becomes 







x x− = 0 .                                                          (4.42) 

This equation is a tautology, i.e. it is always true, although it cannot be deduced from (4.41) as 

was done in the general case. Likewise, one can readily check the validity of all corollaries 

that have been deduced from Definition 4.1.• 

 

5. Affine spaces 

5.1. An affine space as an affine additive group 

Preliminary Remark 5.1. When gÊ  is successively supplemented by the appropriate 

additional attributes to become first a vector space ( )RÊ  and ultimately an n-dimensional 

Euclidean vector space ( )REn
ˆ , gE  is automatically self-adjusted to all current 

metamorphoses of its adjoint CAG gÊ  to become first an affine space ( )RE  and ultimately 

an n-dimensional Euclidean affine space ( )REn
 . The following definitions of this subsection 

are subject to the above way of development of gE .• 

Definition 5.1. 1) An affine additive group (AAG) gE  is called an affine space over the 

field R of real numbers and also a real affine space (RAS) and it is denoted by ‘ E ’ or ‘ ( )RE ’ 

if and only if the commutative additive group gÊ  adjoint of gE  is a vector (linear) space over 

R, i.e. a real vector (linear) space, denoted also by ‘ Ê ’ or ‘ ( )RÊ ’. 

2) A real vector space ( )RÊ  is a self-ajoint real affine space, which will alternatively be 

denoted by ‘ ( )RE ’ or briefly by ‘ E ’ if it is a self-ajoint real affine additive group as defined 

by Theorem 4.2.• 

Definition 5.2. Given 1ω∈n , an affine space E  over R is said to be n-dimensional and 

it will be denoted by ‘ nE ’ and also by ‘ ( )REn
 ’ if and only if the vector space Ê  adjoint of 

E  is an n-dimensional vector space over R, denoted by ‘ nÊ ’ or ‘ ( )REn
ˆ ’. Accordingly, 

besides the variables such as ‘ x ’ and ‘ x ’, which denote elements of the respective underlying 

sets E  and E  in general, the variables such as ‘ { }x n ’ and ‘ { }x n ’ will often be used to denote 

elements of the above underlying sets once they are specified as nE  and nÊ  respectively.• 
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Corollary 5.1. Given 1ω∈n , the n-dimensional real arithmetical vector space ( )REn  is 

an n-dimensional self-adjoint real affine space, provided that 

( ) ( )
,,...,

,...,,ˆ,ˆˆ

}{],1[],1[11

11],1[],1[],1[],1[

nnnnn

nnnnnn

Eyxyxyx

xyxyxyyxVyxV

∈+=++=

−−=−==

−−−



                     (5.1) 

in accordance with (3.16) and (4.39). 

Proof: The corollary is a specification of Theorem 4.2 in the particular case where 

nEEE == ˆ , nn Exxx ∈== ],1[ˆ .                                            (5.2) 

and similarly with any other pertinent letter, as ‘y’ or ‘z’, in place of ‘x’.• 

Definition 5.3. An affine space ( )RE  is called a Euclidean affine space over R and also 

a Euclidean real affine space if the vector space ( )RÊ  adjoint of ( )RE  is a Euclidean real 

one.• 

Definition 5.4. Given 1ω∈n , an n-dimensional real affine space ( )REn
  is called an n-

dimensional Euclidean real affine space if the vector space ( )REn
ˆ  adjoint of ( )REn

  is an n-

dimensional Euclidean real vector space.• 

5.2. A combined rectilinear coordinate system in an n-dimensional real affine 
space and a combined normal orthogonal rectilinear coordinate system in an n-

dimensional Euclidean real affine space 

Convention 5.1. For more clarity, the variables and constants that denote subsets (parts) 

of nE  or nÊ  will hereafter be provided with a subscript ‘n’, whereas the variables and 

constants that denote points in nE  or vectors in nÊ , will be provided with a subscript ‘{n}’. 

Thus, for instance, ‘ nX ’ or ‘ { }x n ’ will be used instead of or interchangeably with ‘ X ’ or ‘ x ’ 

for mentioning an arbitrary subset of nE  or an arbitrary point in nE  respectively. Likewise, 

‘ nX̂ ’ or ‘ { }x n ’ will be used instead of or interchangeably with ‘ X ’ or ‘ x ’ for mentioning an 

arbitrary subset of nÊ  or an arbitrary vector in nÊ  respectively. The letters ‘X’ and ‘x’ in the 

above examples can be replaced by any appropriate letters (as ‘Y’ and ‘y’ or ‘Z’ and ‘z’) of the 

same fonts of the Latin or Greek alphabet. Also, ‘ x ’ can be replaced by the digit ‘ 0 ’ with the 

understanding that 0 or  { }0 n  is an arbitrary given reference (origin) point in nE , whereas  { }0 n  

is the null vector in nÊ , which has previously been denoted by ‘ 0’.• 
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Definition 5.5. 1) Given 1ω∈n , given an n-dimensional real affine space ( )REn
 , given 

a point nn E ∈}{0 , given a basis ×∈ n
nn Ee ˆˆ ],1[  as defined by (2.50): the ordered pair }{nc , defined 

as: 
××∈= n

nnnnn EEec ˆˆ,0 ],1[}{}{


                                               (5.3) 

is called a combined rectilinear, or Cartesian, coordinate system in ( )RE n
  with the origin 



{ }0 n  in nE  and basis [ , ]e n1  in nÊ . 

2) If the space ( )REn
  is Euclidean and if its basis [ , ]e n1  is a normal orthogonal basis 

(NOB), defined by (3.26) subject to (3.27), then the coordinate system }{nc  is called a 

combined normal orthogonal (rectangular), or orthonormal, rectilinear coordinate system 

(CNORCS or CONRCS) in ( )REn
 .• 

Convention 5.2. Henceforth, the spaces ( )REn
 , ( )REn

ˆ ¸ and ( )REn  are assumed to be 

Euclidean and the coordinate system }{nc , which is defined by (5.3), is assumed to be a 

CNORCS (CONRCS).• 

Comment 5.1. 1) By the “only-if” part of the theorem of ordered pairs for sets, (2.22), 

the fact that a coordinate system c n{ }  as defined by (5.3) is given means that both the origin 

nn E ∈}{0  of c n{ }  and the basis ×∈ n
nn Ee ˆˆ ],1[  of c n{ }  are given. At the same time, by Theorem 3.8 

and Definition 3.14, given a basis ×∈ n
nn Ee ˆˆ ],1[ , there are two mutually inverse isomorphisms 

],1[̂ neC  and Ce n[ , ]1

1−  between the n-dimensional vector spaces ( )REn
ˆ  and ( )REn  with the 

property that for each nn Ex ˆˆ }{ ∈  there is exactly one nn Ex ∈],1[  such that 

( )}{ˆ],1[ ˆ
],1[ nen xCx

n
= ,                                                       (5.4) 

and conversely, for each nn Ex ∈],1[ : there is exactly one nn Ex ˆˆ }{ ∈  such that 

( ){ }


[ , ][ , ]
x C xn e nn

= −

1

1
1 ,                                                     (5.5) 

Also, by the item AAGMA1 of Definition 5.1, given a point nn E ∈}{0 , there are two mutually 

inverse bijections 


{ }
V

n0  and 


{ }
V

n0
1−  between the n-dimensional affine space ( )REn

  and its 

adjoint n -dimensional vector space ( )REn
ˆ  with the property that for each nn Ex 

 ∈}{ , there is 

exactly one nn Ex ˆˆ }{ ∈  such that 
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( ) ( )}{}{0}{0}{ ,0ˆˆˆ
}{}{ nnnn xVxVx

nn








== ,                                           (5.6) 

and conversely, for each nn Ex ˆˆ }{ ∈ : there is exactly one nn Ex 

 ∈}{  such that 

( )



{ }  { }{ }
x V xn nn

= −
0

1 .                                                      (5.7) 

2) In connection with the above said, it is worthy to recall that besides the isomorphisms 

Ce n[ , ]1
 and Ce n[ , ]1

1− , which depend on the choice of the basis ×∈ n
nn Ee ˆˆ ],1[ , and also besides the 

bijections 


{ }
V

n0  and 


{ }
V

n0
1− , which depend on the choice of the origin nn E ∈}{0 , there are in the 

affine space ( )REn
  two mutually inverse bijections, which do not depend on the choice of a 

coordinate system c n{ }  in ( )REn
 , but which do depend on the choice of a vector in nÊ , and 

hence in ( )REn
ˆ , as a parameter. Namely, according to Theorem 4.1, given nn Ez ˆˆ }{ ∈ , for each 

nn Ex 

 ∈}{  there is exactly one nn Ey 

 ∈}{  such that 

( ) ( ) ( )







 ,  

{ }  { } { } { }  { }{ } { }
y P x P x z V zn z n n n x nn n

= = = −  1 ,                                (5.8) 

and conversely, for each nn Ey 

 ∈}{  there is exactly one nn Ex 

 ∈}{  such that 

( ) ( ) ( )}{
1

}{ˆˆ}{
1

ˆ}{ ˆˆˆ
}{}{}{ nxnznzn zVyPyPx

nnn
--

-- ===














 .                               (5.9) 

In this case, according to the item 4 of Definition 4.2, the bijection 
{ }

Pz n
 is the translation of 

the affine space ( )REn
  over the vector { }z n , whereas the inverse bijection 

{ }
Pz n

−1  is the 

translation of ( )REn
  over the vector }{̂ˆ nz- .• 

Corollary 5.2. Given 1ω∈n , given a CNORCS c n{ } in ( )REn
  as defined by (5.3), there 

is a composite bijection 

nnec EEVCK
nnn

→= 







 :ˆ
}{],1[}{ 0ˆ ,                                           (5.10) 

with the property that for each nn Ex 

 ∈}{  there is exactly one nn Ex ∈],1[  such that 

( )x K xn c nn[ , ] { }{ }
1 =                                                      (5.11) 

and there is also the inverse composite bijection 

nnec EECVK
nnn









→= −−−  :ˆ 1
ˆ

1
0

1

],1[}{}{
                                        (5.12) 

with the property that for each nn Ex ∈],1[  there is exactly one nn Ex 

 ∈}{  such that 

( ){ } [ , ]{ }
x K xn c nn

= −1
1 .                                                   (5.13) 
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Proof: The corollary follows from Comment 5.1.• 

Definition 5.6. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3):  

1) For each  

{ } { }x En n∈ , the arithmetical vector (point) nn Ex ∈],1[  as given by (5.11) (see 

also (3.47) subject to (3.48) or (3.49)) is called the ordered n-tuple of coordinates of the point 

nn Ex 

 ∈}{  relative to the coordinate system c n{ } . 

2) For each nn Ex ∈],1[ , the point nn Ex 

 ∈}{  as given by (5.13) is called the point with the 

n-tuple nn Ex ∈],1[  of coordinates relative to the coordinate system c n{ } . 

3) The bijection (5.10) is called the coordinatization of the [abstract] affine space 

( )RnE  relative to the coordinate system c n{ } , whereas the inverse bijection (5.12) is called the 

[abstract] pointillage of the arithmetical vector space ( )RnE  relative to c n{ }  (cf. Definition 

3.14). 

Corollary 5.3. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3): 

nnce EEVKC
nnn

→= − ˆ :ˆ 1
0ˆ }{}{],1[


 ,                                          (5.14) 

nnce EEKVC
nnn

ˆ :ˆ 1
0

1
ˆ }{}{],1[

→= −−




,                                        (5.15) 

nnce EEKCV
nnn

ˆ :ˆ
}{],1[}{

1
ˆ0 →= −







,                                         (5.16) 

nnec EECKV
nnn







→= −− ˆ :ˆ
],1[}{}{ ˆ

11
0 .                                       (5.17) 

Proof: Multiplying (5.10) by ‘ 


{ }
V

n0
1− ’ from the right or by ‘ Ce n[ , ]1

1− ’ from the left yields 

(5.14) and (5.16) respectively. Equations (5.15) and (5.17) are deduced from (5.12) in the 

similar way. Alternatively, (5.15) and (5.17) can be obtained by forming the inverses of the 

expressions on both sides of each one of equations (5.14) and (5.16).• 

Corollary 5.4. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3), the 

ordered n -tuple nn Ex ∈],1[  of coordinates of a given point nn Ex 

 ∈}{  relative to the coordinate 

system c n{ }  coincides with the ordered n -tuple of coordinates of the vector nn Ex ˆˆ }{ ∈ , as 

defined by (5.6), relative to basis ×∈ n
nn Ee ˆˆ ],1[ . 

Proof: Substituting ‘ { }x n ’ as given by (5.6) into the expression on the right-hand side of 

equation (5.4), and then making use of (5.10) in the result, one obtains 

( )( ) ( )( ) ( )x C V x C V x K xn e n e n c nn n n n n[ , ]


 { }


 { } { }[ , ] { } [ , ] { } { }






 1 0 01 1
= = = ,                    (5.18) 
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in agreement with (5.11).• 

Corollary 5.5. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3): 

( ) ( )C Ce n n e n nn n

{ } [ , ]


[ , ] { }[ , ] [ , ]

 , 

1 1
0 0 0 01

1
1= =− ,                                    (5.19) 

( ) ( ) }{}{
1

0}{}{0 00̂ˆ ,0̂0ˆ
}{}{ nnnn nn

VV 



== − ,                                        (5.20) 

( ) ( )K Kc n n c n nn n{ } { }
 , 

{ } [ , ] [ , ] { }0 0 0 01
1

1= =− ,                                     (5.21) 

where  { }0 n  is the zero vector in nÊ  and 0 1[ , ]n  is the zero vector in nE  as defined by (3.39) and 

(3.40). 

Proof: The corollary follows from equation (3.64) (Theorem 3.8), Corollary 4.1, and 

Corollary 5.2, by Convention 5.1.• 

5.3. Extensions of the bijections 


V0 , 


V0
1− , 



Pz , 1
ˆ
−

zP , Kc n{ }
, and Kc n{ }

−1  to the power 

sets of their domains of definition 

Corollary 5.6. 1) Given 1ω∈n , given nn E ∈}{0 , for each nn EY  ⊆ : 

{ }( ) { }( )
( ) ( ) { }{ } .ˆ0, and ˆ,ˆˆˆ

ˆ,0ˆ

}{

0}{ }{

nnnx

nnn

EYyxyVyxVzz

YVYV
n

⊆×∈===

=





d







                         (5.22) 

2) Given 1ω∈n , for each nn Ez ˆˆ }{ ∈ : 

( ) ( ) ( )
( ) ( ) ( ){ }

,each for 

and ˆˆˆ,

ˆˆˆ,

}{}{
1

}{}{}{ˆ}{}{

}{
1

}{ˆ

}{

}{}{

nn

nnnnxnnnznn

nXnnnz

EX

EXx zVzxPxPyy

zVzXPXP

n

nn















d







⊆

⊆∈====

==

−

−

             (5.23) 

( ) ( ) ( )
( ) ( ) ( ){ }

.each for 

 and ˆˆˆ

ˆˆˆ

}{}{
1

}{ˆˆ}{
1

ˆ}{}{

}{
1

ˆˆ
1

ˆ

}{}{}{

}{}{

nn

nnnnynznznn

nYnznz

EY

EYyzVyPyPxx

zVYPYP

nnn

nnn















d







⊆

⊆∈====

==

−−

−−

−

−

−

−

           (5.24) 

Hence particularly, 

{ }( ) { }( )
( ) ( ) ( )
( ) ( ) ( ) .ˆˆˆ

,ˆˆˆ,

 ,ˆˆ,0ˆ

}{
1

ˆˆ
1

ˆ

}{
1

}{ˆ

0}{

}{}{

}{

}{

nnEnznz

nnEnnnz

nnnn

EzVEPEP

EzVzEPEP

EEVEV

nnn

nn

n

















===

===

==

−−

−

−−

                                (5.25) 

Proof: The corollary is a specification of Definition 4.5 subject to Convention 5.1 and 

particularly subject to equations (5.6), (5.8). and (5.9).• 
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Definition 5.7. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3): 

( ) ( ){ }
,each for 

 and 

}{

}{}{],1[],1[ }{}{

nn

nnnncnnnc

EX

EXxxKxxXK
nn







d



⊆

⊆∈==
                     (5.26) 

( ) ( ){ }
,each for 

 and 

}{

],1[],1[
1

}{}{
1

}{}{

nn

nnnncnnnc

EX

EXxxKxxXK
nn

⊆

⊆∈== −−




d

                  (5.27) 

whence 

( ) ( ) nncnnc EEKEEK
nn

 == −1
}{}{

 , .                                        (5.28) 

Comment 5.2 (analogous to Comments 3.6 and 4.5). By (4.36) and (3.78), definitions 

(5.26) and (5.27) extend the functions Kc n{ }
 and Kc n{ }

−1 , as defined originally by (5.10) and 

(5.12), from the sets nE  and nE  to the power sets ( )nEP  and ( )nEP  respectively. In 

accordance with the presently common practice, the extensions have been denoted by the 

same symbols as the original functions, – just as in Definitions 3.15 and 4.5. By (5.26), the 

arithmetical vector set ( ) nnc EXK
n

⊆

}{
 is the image of the point set nn EX  ⊆  in the 

arithmetical vector space nE  under the mapping Kc n{ }
. Similarly, by (5.27), the point set 

( ) nnc EXK
n

⊆−1
}{

 is the image of the arithmetical vector set nn EX ⊆}{  in the affine space }{nE  

under the mapping Kc n{ }

−1 .• 

Corollary 5.7. Given 1ω∈n , given a CNORCS c n{ }  in ( )REn
  as defined by (5.3): the 

[syntactical] variants of relations (5.10), (5.12), and (5.14)-(5.17) with ‘ ( )nEP ’, ‘ ( )nEP ’, and 

‘ ( )nÊP ’ in place of ‘ nE ’, ‘ nE ’, and ‘ nÊ ’ respectively are semantically sound; that is, 

( ) ( )nnec EEVCK
nnn

PP →= 







 :ˆ
}{],1[}{ 0ˆ ,                                      (5.29) 

( ) ( )nnec EECVK
nnn









PP →= −−−  :ˆ 1
ˆ

1
0

1

],1[}{}{
,                                  (5.30) 

( ) ( )nnce EEVKC
nnn

PP →= − ˆ :ˆ 1
0ˆ }{}{],1[


 ,                                     (5.31) 

( ) ( )nnce EEKVC
nnn

ˆ :ˆ 1
0

1
ˆ }{}{],1[

PP →= −−




,                                   (5.32) 

( ) ( )nnce EEKCV
nnn

ˆ :ˆ
}{],1[}{

1
ˆ0 PP →= −







,                                    (5.33) 

( ) ( )nnec EECKV
nnn







PP →= −− ˆ :ˆ
],1[}{}{ ˆ

11
0 .                                   (5.34) 

Proof: By (5.10) subject to (5.4) and (5.6), it follows from (5.26) that 
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( ) ( )( ){ }
( )( ){ }

( )( ) ,each for  ˆ

 and ˆ

 and ˆ

}{,1[

}{,1[

}{,1[}{

0ˆ

}{}{0ˆ],1[],1[

}{}{0ˆ],1[],1[

nnne

nnnenn

nnnennnc

EXXVC

XxxVCxx

XxxVCxxXK

nn

nn

nnn



a




a





d









⊆=

∈==

∈==

                      (5.35) 

which proves (5.29). Equation (5.30) is proved analogously from (5.27) by (5.12) subject to 

(5.5) and (5.7). Equations (5.30)–(5.34) are proved from (5.14)-(5.17) after the same manner 

by making use of (5.4)–(5.7), (5.11), and (5.13).• 

5.4. Simplest figures in an n-dimensional Euclidean real affine space ( )REn
  

Definition 5.8. 1) In the following definitions, it is assumed that ( )REn
  is a given n-

dimensional Euclidean real affine space, in which a CNORCS c n{ } , defined by (5.3). It is also 

assumed that nn Eaa 





 ∈= }{  and nn Ebb 




 ∈= }{  are arbitrary given points and that nn Exx 





 ∈= }{  is 

a current point – three points in ( )REn
 , the coordinates of which relative to c n{ }  are 

coordinates of the respective arithmetical vectors 

,,...,,

,,...,, ,,...,,

21],1[

21],1[21],1[

nnn

nnnnnn

Exxxx

EbbbbEaaaa

∈=

∈=∈=




                           (5.36) 

so that 

( ) ( ) ( ) ii

n

i
nnii

n

i
nnii

n

i
nn exxVebbVeaaV ˆˆ,0ˆ ,ˆˆ,0ˆ ,ˆˆ,0ˆ ˆˆˆ

1
}{}{

1
}{}{

1
}{}{ ⋅=⋅=⋅= +++

===







 .             (5.37) 

2) The point set ( ) nEbap 






⊂, , defined as:  

( ) ( ) ( ) [ ]








∈∈⋅−=→ +
=

njjjiii

n

i
jbaxeaxxaVxbap ,1

1
each for  , and  ˆˆ,ˆ, ˆ ω





d ,            (5.38) 

is called the [space] position vector, or [space] radius-vector, of the point b  relative to the 

point a . 

3) Particularly, 

( )

( ) [ ] ,each for  ,0 and ˆˆ,0ˆ

,0

,1
1

1

ˆ

ˆ









∈∈⋅=→

⋅→

+

+

=

=

njjii

n

i

ii

n

i

jaxexxVx

eaap

ω





d

d





d

                 (5.39) 
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( )

( ) [ ] ,each for  ,0 and ˆˆ,0ˆ

,0

,1
1

1

ˆ

ˆ









∈∈⋅=→

⋅→

+

+

=

=

njjii

n

i

ii

n

i

jbxexxVx

ebbp

ω





d

d



d

                 (5.40) 

the understanding being that  

( ) [ ]{ } nii ixexxVxe ,1each for  1,0 and ˆˆ,0ˆ ω∈∈⋅=→ 





d .                     (5.41) 

4) According to the above item 2, ( ) ( )nEbap 




 P∈, , where ( )nEP  is the power set of the 

set nE . Let ( )nc EP
n





P⊂
}{

 be the set of all position vectors of ( )REn
  relative to the origin }{0 n

  

of the given c n{ } . There is a real-valued binary function RPP
nn cc →×•

}{}{
 :



 , which is called the 

inner, or scalar, multiplication function on 
}{ncP



 and which is contextually defines as: 

ijjiji eeee δ=•→• ˆˆˆδδδ  for each ni ,1ω∈  and each nj ,1ω∈                        (5.42) 

subject to (3.27). Therefore, for each ( )
}{

,0
ncPap








∈  and each ( )
}{

,0
ncPbp






∈ , 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ).,0ˆˆ,0ˆˆˆˆˆˆˆˆˆ

,0,0

ˆˆˆˆ

ˆˆˆ

ˆˆˆˆ

1111

111

1111

bVaVebeaeeba

baba

eebaebeabpap

jj

n

j
ii

n

i
jiji

n

j

n

i

ii

n

i
ijji

n

j

n

i

jiji

n

j

n

i
jj

n

j
ii

n

i

























•=







⋅•







 ⋅=•⋅⋅=

⋅=⋅⋅=

•⋅⋅=







⋅•







 ⋅=•

++++

+++

++++

====

===

====

                (5.43) 

Consequently, in (5.39) and (5.40), the new binary function ( ) ( )
}{}{}{

: 
nnn ccc PRPPR






 →××⋅  of 

multiplication of each one of the orthonormal position vectors 1e , 2e ,    , ne , and hence of 

each one of the position vectors of the set by a scalar or R in either order has been defined 

contextually as a by-side product of explicit definitions of ( )ap 



 ,0  and ( )bp 

 ,0 .• 

5) The ordered pair }{nc , defined as: 

××∈= n
cnnnn n

PEec
}{],1[}{}{ ,0











                                            (5.44) 

subject to 
×∈→ n

cnn n
Peeee

}{
,...,, 11],1[



                                              (5.45) 

is called a uniform normal orthogonal (rectangular), or orthonormal, rectilinear coordinate 

system (UNORCS or UONRCS) in ( )REn
 . It is understood that the coordinates of any point of 
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nn Ex 

 ∈}{  relative to }{nc  are the same as the coordinates of that point relative to }{nc . However, 

a vector nn Ex ˆˆ }{ ∈  cannot be expanded into the basis (5.45). Therefore, }{nc  is unusable.• 

Definition 5.9. 1) Given 1ω∈n , given nn Ex ∈∗ ],1[ , given ),0( +∞∈r , 

( ) { }
( ) { }
( ) { }rxxExxxrB

rxxExxxrB

rxxExxxrB

nnnnnnn

nnnnnnn

nnnnnnn

=−∈=

≤−∈=

<−∈=

∗∗

∗∗

∗∗

],1[],1[],1[],1[],1[
b

],1[],1[],1[],1[],1[
c

],1[],1[],1[],1[],1[
o

 and ,

, and ,

, and ,

d

d

d

                         (5.46) 

subject to 

( ) 0
1

2
],1[],1[ ≥−=− ∑

=
∗∗

n

i
iinn xxxx  .                                       (5.47) 

The sets ( )],1[
o , nn xrB ∗ , ( )],1[

c , nn xrB ∗ , and ( )],1[
b , nn xrB ∗  are called respectively the open sphere (or 

the spherical neighborhood), the closed sphere, and the spherical surface, in nE  of radius r  

centered at the point x n∗[ , ]1 . The word “ball” can be used interchangeably with the word 

“sphere”. 

2) Given a CNORCS c n{ }  in ( )REn
 , relative to which the coordinates of a certain point 

nn Ex 

 ∈∗ }{  are coordinates of the arithmetical vector 

nnn Exxxx ∈= ∗∗∗∗ ,...,, 21],1[ ,                                            (5.48) 

so that 

( ) ii

n

i
nn exxV ˆˆ,0ˆ 

1̂
}{}{ ⋅= ∗

=
∗ +

 ,                                               (5.49) 

the sets ( )}{
o , nn xrB ∗
 , ( )}{

c , nn xrB ∗
 , and ( )}{

b , nn xrB ∗
 , defined as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,ˆˆ,ˆ and ,,

,ˆˆ,ˆ and ,,

,ˆˆ,ˆ and ,,

ˆ

ˆ

ˆ

1
}{],1[

b
],1[}{

b

1
}{],1[

c
],1[}{

c

1
}{],1[

o
],1[}{

o









⋅−=∈=









⋅−=∈=









⋅−=∈=

∗
=

∗∗∗

∗
=

∗∗∗

∗
=

∗∗∗

+

+

+

iii

n

i
nnnnnn

iii

n

i
nnnnnn

iii

n

i
nnnnnn

exxxxVxrBxxxrB

exxxxVxrBxxxrB

exxxxVxrBxxxrB



d







d







d





             (5.50) 

are called respectively the open sphere (or the spherical neighborhood), the closed sphere, 

and the spherical surface, in nE  of radius r  centered at the point }{nx∗ .• 

Comment 5.3. 1) At n = 1, definitions (5.44) become 
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( ) ( ) ( ) [ ]
( ) { },,,

,,, ,,,

11]1,1[
b

1

11]1,1[
c

111]1,1[
o

1

rxrxxrB

rxrxxrBrxrxxrB

+−=

+−=+−=

∗∗∗

∗∗∗∗∗∗                     (5.51) 

the understanding being that 

{ }11]1,1[ ∗∗∗ == xxx  .                                                   (5.52) 

2) Definitions (5.50) are evidently equivalent to 

( )

( ) ( )

( )

( ) ( )

( )

( ) ( ) .ˆˆ,ˆ and   and 

,

,ˆˆ,ˆ and  and 

,

,ˆˆ,ˆ and  and 

,

ˆ

ˆ

ˆ

1
}{],1[],1[],1[

}{
b

1
}{],1[],1[],1[

}{
c

1
}{],1[],1[],1[

}{
o









⋅−==−∈=









⋅−=≤−∈=









⋅−=<−∈=

∗
=

∗∗

∗

∗
=

∗∗

∗

∗
=

∗∗

∗

+

+

+

iii

n

i
nnnnn

nn

iii

n

i
nnnnn

nn

iii

n

i
nnnnn

nn

exxxxVrxxExx

xrB

exxxxVrxxExx

xrB

exxxxVrxxExx

xrB



d





d





d



          (5.50a) 

5.5. A real-valued function defined in nE  versus a real-valued function defined 

in nE  

Preliminary Remark 5.1. In what follows, it is shown that given a coordinate }{nc  in 

nE , a function 
nEΦ , defined on a certain set nn EX  ⊆  can be reduced to the respective real-

valued function 
nEΦ  defined on the respective set nn EX ⊆ .• 

Definition 5.10. Given a Euclidean real affine space ( )REn
  of a given dimension 

1ω∈n , let 
nEΦ  be a real-valued function from nn EX  ⊆ , to ( )∞∞−=⊆ ,RY , i.e. a function 

whose domain of departure (Ddp), domain of arrival (Da), domain of definition (Ddf), and 

domain of variation (Dv) are nE , R, nX , and Y  respectively. Thus, symbolically, 

YX nEn
→



 :Φ ,                                                       (5.53) 

so that 

( ) ( ) ( ) ( ) . , , , vdfadp RYDEXDRDED
nnnn EnnEEnE ⊆=⊆===


 ΦΦΦΦ              (5.54) 

Consequently, for each nn Xx 

 ∈}{  there is exactly one Yy∈  such that  

( )}{nE xy
n




Φ= .                                                      (5.55)• 
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Definition 5.11. By (5.13) and (5.27), it follows from Definition 5.10 that there is a 

composite function 

YX nEn
→ :Φ                                                        (5.56) 

subject to 
1

}{

−=
nnn cEE K



ΦΦ ,                                                   (5.57) 

so that 

( ) ( ) ( ) ( ) . , , , vdfadp RYDEXDRDED
nnnn EnnEEnE ⊆=⊆=== ΦΦΦΦ              (5.58) 

Consequently, for each nn Xx ∈],1[  there is exactly one Yy∈  such that  

( ) ( )( )],1[
1

],1[ }{ ncEnE xKxy
nnn

−==


ΦΦ                                       (5.59)• 

5.6. A real-valued function defined in nET  ×  versus a real-valued function 

defined in nET ×  or in nER×  

Preliminary Remark 5.2. If exists, a hypothetical measurable time-dependent physical 

field occurring in an n-dimensional Euclidean real affine space ( )REn
  should be described by 

one or more real-valued functions such as 
nET ×Ψ , which is defined on the direct product 

nXT  × , where nX  is a certain connected subset of nE . In what follows, it is shown that given 

coordinate systems ω in T  and }{nc  in nE , a function 
nET ×Ψ  can be reduced to a certain real-

valued function 
nE×ΤΨ  defined on the direct product nX×Τ , where nX  is the pertinent subset 

of nE .• 

Definition 5.12. Given a Euclidean real affine space ( )REn
  of a given dimension 

1ω∈n , let 
nE×ΤΨ  be a real-valued function from nn ETXT  ×⊆×  to ( )∞∞−=⊆ ,RY , i.e. a 

function whose domain of departure (Ddp), domain of arrival (Da), domain of definition (Ddf), 

and domain of variation (Dv) are nE ×Τ , R, nX ×Τ , and Y  respectively. Thus, symbolically, 

YX nEn
→××





ΤYΤ  : ,                                                 (5.60) 

so that 

( ) ( )
( ) ( ) . ,

, ,

vdf

adp

RYDETXTD

RDETD

nn

nn

ETnnET

ETnET

⊆=×⊆×=

=×=

××

××









YY

YY
                         (5.61) 

Consequently, for each nn Xx 



 ×∈Τx }{,  there is exactly one Yy∈  such that  
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( )}{, nE xy
n







xΨΤ ×= .                                                 (5.62) 

Definition 5.13. By (5.13) and (5.27), it follows from Definition 5.12 that there is a 

composite function 

YX nEn
→×× ΤYΤ  :                                                  (5.63) 

subject to 

( )11
}{

−−
×× ×=

nnn cEE KKωΤΤ ΨΨ 





,                                        (5.64) 

so that 

( ) ( )
( ) ( ) . ,

, ,

vdf

adp

RYDEXD

RDED

nn

nn

EnnE

EnE

⊆=×⊆×=

=×=

××

××

ΤΤ

ΤΤ

YΤΤY

YΤY
                         (5.65) 

Consequently, for each nn Xx ×∈Τx ],1[,  there is exactly one Yy∈  such that  

( ) ( )( )( )
( ) ( )( ).,

,,

],1[
11

],1[
11

],1[

}{

}{

ncET

ncETnET

xKK

xKKxy

nn

nnn

−−
×

−−
××

=

×==

xΨ

xΨxΨ

ω

ω





                       (5.66)• 

Definition 5.14. The mapping RT →:χ , under which, e.g., ( ) 00 xx =χ  for each 

Tx ∈0 , is a bijection. Hence, the mapping TR →− :1χ , under which ( ) 00
1 xx =−χ  for 

each Rx ∈0 , is the inverse of that bijection. Consequently, for each nn XRxx ×∈],1[0 , , i.e. 

for each Rx ∈0  and each nn Xx ∈],1[ , 

( ) ( ) ( )( ) ( )],1[0],1[0],1[0],1[0
,1 ,,,, nETnETnERn
n xxxxxxxx

nnn ××× === ΨχΨψψ  ,          (5.67) 

so that 

( ) ( )
( ) ( ) ; ,

, ,
,1

v
,1

df

,1
a

,1
dp

RYDERXRD

RDERD
n

nn
n

n
n

n

⊆=×⊆×=

=×=

ψψ

ψψ
                           (5.68) 

the superscript ‘〈1,n〉’ on ‘ψ’ stands for the combined weight of the function n,1ψ , i.e. it 

indicates that there is 1 independent real-valued time-like variable as ‘ 0x ’ and n independent 

real-valued spatial variables as  ‘ 1x ’, …, ‘ nx ’, to which the functional variable (operator) 

‘ n,1ψ ’ can apply with the understanding that the last n variables are components of an 

arithmetical vector. Consequently, for each nn XRxx ×∈],1[0 ,  there is exactly one RYy ⊆∈  

such that ( )],1[0
,1 , n
n xxy y= .• 
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5.7. An n-dimensional primitive (Bravais) affine lattice 

Preliminary Remark 5.3. This short subsection is a minor digression, which is 

designed to generalize the notion of a three-dimensional primitive (Bravais) crystal lattice 

(see, e.g., Landau & Lifshitz [1980, chapter XIII, §129, pp. 403–404]) in the three-

dimensional Euclidean real affine space ( )RE3
  to the case of any dimension 1ω∈n  and to 

demonstrate that an n-dimensional primitive lattice can formally be defined as an n-

dimensional affine additive group g
nE  in an n-dimensional Euclidean real affine space 

( )REn
 .• 

Theorem 5.1. Given 1ω∈n , given an n-dimensional Euclidean vector space ( )REn
ˆ , let 

a1 , ...., an  be n linearly independent vectors in nÊ . The set nΛ̂ , defined as 

nnjii

n

i
n E jImamzz ˆeachfor   and ˆˆˆˆˆ

,1,
1̂

⊆








∈∈⋅== ∞∞−
=
+ ωΛ d ,                 (5.69) 

is the underlying vector set, which together with the restricted binary addition function 

nnn ΛΛΛ ˆˆˆˆ →×+ :  and together with the restricted singulary additive inversion function 

nn ΛΛ ˆˆˆ →:-  relative to the null-vector }{0̂ n  forms a commutative additiver group in ( )REn
ˆ  to 

be denoted by ‘ nΛ̂ ’, so that formally 

-̂ˆˆˆ


 += nn ΛΛ .                                                     (5.70) 

The group nΛ̂  will be called an n-dimensional primitive (or Bravais) vector lattice. 

Accordingly, the vectors a1 , ...., an  will be called basis vectors of the vector lattice nΛ̂ , 

whereas the ordered n-tuple 
×× ⊂∈= n

n
n

nnn Eaaa ˆˆˆ,...,ˆˆ 1],1[ Λ                                          (5.71) 

is called a basis of the vector lattice nΛ̂ . Elements of nΛ̂  are called lattice vectors of nΛ̂  and 

therefore the underlying set nΛ̂  itself is called the set of lattice vectors. 

Proof: By (5.48), a common (general) element x  of the set nΛ̂  is given as 

ii

n

i
amz ˆˆˆ

1̂
⋅= +

=

, where m Ij ∈ −∞ ∞,  for each nj ,1ω∈ .                           (5.72) 

It can be verified by the corresponding straightforward computations that nΛ̂  satisfies all 

axioms of Definitions 2.4 and 4.1. QED.• 
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Definition 5.15. Given 1ω∈n , an n-dimensional primitive, or Bravais, affine lattice nΛ  

is a certain underlying set nΛ  of points, which is called the set of lattice points, together with 

the vector lattice nΛ̂  and also together with a surjective binary function  

nnnV ΛΛΛ ˆˆˆ:ˆ →× ,                                                    (5.73) 

which is the pertinent restriction of the function (4.1) and which satisfies two lattice point 

axioms (LPA’s), being the pertinent restrictions of AAGMA1 and AAGMA2. LPA1 and 

LPA2 are, mutatis mutandis, word for word the instances of AAGMA1 and AAGMA2, in 

which ‘E’ with an overdot or with a caret is replaced by ‘ nΛ ’ with the same overscript. The 

«togetherness» as stated above can be expressed by the following formal definition of nΛ : 

( ) VV nnnnn
ˆˆˆˆˆˆ











 -+== ΛΛΛ ΛΛ                                   (5.74) 

subject to (5.49). The vector lattice nΛ̂  and its underlying set nΛ̂  of lattice vectors are said to 

be adjoint of the affine lattice nΛ  and of its underlying set nΛ̂  of lattice points, respectively.• 
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