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Abstract

A concise rigorous axiomatic algebraico-functional theory (AAFT) of a real affine
Euclidean space of any given dimension n>1 (nDRAfES), En(R), is developed from an
algebraic system E?¢, called an affine additive group (AAG). The latter consists of a certain
underlying set of points E , called an affine additive group manifold (AAGM), and of a certain
commutative [abstract] additive group (CAG) E?, called the adjoint group of E?, whose
underlying set E of elements, called vectors, is related to E by a binary surjection
V :ExE — E, satisfying the appropriate version of the Chasle, or triangle, law, according to
which any three points X,y, and z of E (the apices of a triangle) satisfy the equality
V(x,y)+V(y,2)3V(2,%)=0, where 0 is the null-vector of E. The prepositive qualifier
“real” to “space” is concurrent to the postpositive qualifier “over the field of real numbers R”.
When E? is successively supplemented by the appropriate additional attributes to become

first a real abstract vector (linear) space (RAbVS) E(R) and ultimately an n-dimensional

(nD) real abstract vector Euclidean space (nDRADBVES) EH(R), EY is automatically self-
adjusted to all current metamorphoses of its adjoint group to become first a real affine space
(RAFS) E(R) and ultimately an nDRAFES E, (R), of which the above E(R) and E,(R) are
adjoint. A new consistent method of logographically denoting various algebraic systems is

suggested. Relative to its any orthonormal basis, E, (R), adjoint of E, (R), is isomorphic to
the nD real arithmetical vector Euclidean space (nDRArVES) EH(R), whose underlying set
E, consists of ordered n-tuples of real numbers, being coordinates of the respective abstract

vectors of the underlying vector set E of én(R). A hypothetical time continuum that is
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associated with E,(R) or by analogy with any E, (R) is a special interpretation of E,(R),
which is denoted by “T(R)’, so that the pertinent interpretations of él, E,, E, él, E, are
denoted respectively by “T> T’ T, T’ ‘T . In the framework of the AAFT, a real-
valued functional form that is initially defined on a certain region of E, or T xE, can
rigorously be transduced into (mapped onto) a certain real-valued functional form defined on
a certain region of E_ or T xE, and vice versa. Therefore, the AAFT can serve as an
underlying discipline of differential and integral calculi and hence it is a formal interface
between any hypothetical physical processes in T(R)xE,(R) and their mathematical
descriptions in T(R)x E,(R). Particularly, the AAFT is the underlying discipline of the

theory that has been developed in losilevskii [2015]. By way of an example of AAG’s, an n-

dimensional primitive (Bravais) affine lattice in E, (R) is discussed in subsection 5.7.

1. Introduction
1) In a cosmologically small spatial scale as a linear size of the solar planetary system
during a cosmologically small span of time as that of the life time of the Earth, the receptacle
of Nature, i.e. the receptacle of matter along all metamorphoses, which occur to matter in time

and which are called physical, chemical, biological, etc processes, is commonly regarded as a
certain 3-dimensional affine Euclidean space E,(R) (briefly E,) over the field R of real

numbers, called also an affine real Euclidean 3-space. Time is a hypothetical non-spatial 1-
dimensional continuum that can be regarded as a special version (interpretation) of a 1-

dimensional affine Euclidean space E,(R) (briefly E,) over R, to be denoted by ‘T(R)’
(briefly “T ), in which the above processes go on in the irreversible direction from past
through present to future. It is postulated that, via those processes, E,(R) is united with T(R)

to form a 4-dimensional pseudo-Euclidean real affine space of index 1 — the space-time of
special theory of relativity, which is called the Minkowski space and which will be denoted by

“M,(R)’. The presence of gravitating masses in the hypothetic E,(R), along with the
inseparable gravitational processes going on in and expanded across T(R), change the known
metric properties of M,(R), so that it is replaced by, i.e. as if turns into, the Riemannian

space R of general theory of relativity.



2) A physical process occurs in a certain region of the direct product T(R)x E4(R),

while both E,(R) and T(R) comprise points and not vectors or numbers. Therefore, when
appropriate, a physical process should be described by a certain real-valued or complex-
valued functional form defined in T(R)x E,(R). At the same time, a presently common way

to treat physical processes theoretically with the purpose to create their concise rigorous

concepts is to describe them by certain real-valued or complex-valued functional forms
defined on appropriate regions of the direct product 'T(R)x E(R) of a 1-dimensional real
arithmetical vector Euclidean space T(R) and a 3-dimensional real arithmetical vector
Euclidean space ES(R), i.e. actually by functional forms depending on four independent real-
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valued variables, e.g. *X,’, ‘X, “x,”, and “ x,’. In this case, the latter functional forms are
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treated in the framework of modern differential and integral calculus.

3) A theoretical physicist usually metamorphoses a functional form, which is

supposedly defined in T(R)xE,(R), into the respective functional form, defined in
T(R)x E,4(R), by choosing, actually or imaginarily (mentally), the appropriate laboratory
coordinate systems ¢, and ¢y, in E;(R) and T(R) respectively, relative to which a point of
Es(R) is characterized by the corresponding ordered triple (xl, xz,x3> of real numbers, being
a vector in E,(R), and a point of T(R) is characterized by the corresponding ordered single
(%) of a real number, being a vector in T(R); (x,X,,%;) is the repeated ordered pair

<<xl, X, ), x3> subject to

(%) = {0 f 1 % 1} (L.1)

(see, e.g., Halmos [1960, pp. 22-25]), so that
<<Xl’ X2>’ X3> = {{<X1’ X2>}v {<X1,X2>,X3}}, (1.2)
whereas (x,) is the singleton {x,}, i.. (X)={x}. It is understood that ¢, is a Galilelian

orthonormal, i.e. normal orthogonal (rectangular), rectilinear or curvilinear, coordinate

system, whose origin 0{3} is a certain fixed point of the underlying set E, of ES(R) and
whose basis is an ordered triple of orthonormal position vectors €, €,, and &,, which are the
bijective images in the power set P(Ea) of orthonormal free basis vectors €, €,, and &,

belonging to the underlying set E3 of a certain 3-dimensional real abstract vector Euclidean



space ES(R) that is called the abstract vector space adjoint of E,(R). Therefore, besides Crzp
there is a much simpler and much more effective coordinate system c,,,, which consists of the

same origin 0,, belonging to E, and of the ordered triple of the vectors &, &,, and &,

G
belonging to ES. The system c, has the properties that the coordinates of any point of E,

relative to it are the same as the coordinates of that point relative to ¢, and that, in addition,

a vector of E, is expandable into the basis vectors of Cg» While it is not expandable into the
basis vectors of ¢, , Therefore, in fact, a certain c,, and not and ¢, is used. At the same
time, ¢y, is a «clock» whose origin (initial instant of time) O{l}, denoted also by ‘6°, is a
certain fixed point of the underlying set T of T(R) and whose basis is the unit position vector
7, directed from past to future, which is the bijective image in the power set P(T) of the unit
free basis vector 7 belonging to the underlying set T of a certain 1-dimensional real abstract
vector Euclidean space T(R) that is called the abstract vector space adjoint of T(R).
Therefore, besides ¢, there is a much simpler and much more effective coordinate system

Cyy» Which consists of the same origin 0{1}, or 0, belonging to T and of the vector 7

belonging to T, and which has the properties that the coordinate of any point of T relative to

Cyy IS the same as the coordinate of that point relative to ¢, and that, in addition, any vector

of T is expandable into 7, while it is not expandable into 7. Therefore, Cy» @and not ¢y, is,
in fact, used. The «clocks» ¢, and c, are alternatively denoted by ‘@’ and ‘@’ respectively,

the understanding being that mnemonically ‘@’ is the first letter of the Greek noun
‘wpoldyrov’ \orologion\ meaning a clock. A global coordinate system in T(R) is called a
system of chronology or briefly chronology.

4) In order to continue this discussion conveniently, | shall summarize and generalize
the above notation as follows.

i)  Risthe field of real numbers.

ii)  Ris the underlying set of R, so that R = (—o0,0).

i) E,(R), or briefly E,, is an n-dimensional Euclidean affine (point) space over R,

called also a Euclidean real affine n-space.

iv)  E, is the underlying set of points of E,(R).



v)  E,(R), or briefly E,, is an n-dimensional Euclidean abstract linear, or abstract

n?
vector, space over R, adjoint of E,(R), called also a Euclidean real abstract
linear, or abstract vector, n-space.

vi) En is the underlying set of real abstract vectors of EH(R).

vii) E,(R), or briefly E,, is an n-dimensional Euclidean arithmetical vector space

n?
over R, isomorphic to EH(R), called also a Euclidean real arithmetical vector n-
space.

viii) E, is the underlying set of real arithmetical vectors of EH(R).

ix) T(R), T(R), T(R), T, T,and T are time-relevant interpretations of E,(R),
E,(R), E/(R), E,, E,, and E, respectively.

5) As far as modern mathematical analysis, including differential and integral calculi, is

concerned, this is from the very beginning developed for real-valued or complex-valued

functional forms or, in other words, for the associated functions of such forms, while the real-

valued functional forms, e.g., are defined in E, with various natural n>1. In this case,

rigorous relations between E, and E, are not, as a rule, explicated. Moreover, | dare suggest

that the book Analyse mathtématipue by Laurent Schwartz [1967, Part |, chapter 1111, 81] is
the only exposition, in which the necessity of developing differential and integral calculi from
Euclidean affine spaces at scratch was made explicit by the very fact of including a theory of
affine spaces under the heading «Differential calculus» of chapter Il of Part I. There is a
translation of this book into Russian, but it has not, likely, been translated into English. As
follows from its subtitle and also from the fact that all its formulas are handwritten,
Schwartz’s book is a collection of handouts of his lectures, which leaves its mark of
sloppiness in the interpretation of some relevant notations and in the organization of the
pertinent subject matter of the book. Still, broadly speaking and putting aside some minor
inconsistencies, Schwartz employs a system of conventional geometric notations to develop
an original algebraic theory of Euclidean affine spaces along with some functional relations
relevant to differential calculus. At the same time, the conventional geometric notations
employed and extended by Schwartz are visual and in their most part they are nearly
iconographic (pictographic) and not pure symbolic (ideographic) that should be associated
with the pertinent denotata by abstract association. Although some elements of his system of

notation are unavoidably equivocal, the notation as a whole is convenient and mnemonically



justified. In fact, however, the conventional visual geometric notations can be employed only
if they are used for construction of a pure algebraic theory of affine spaces. In developing a
rigorous functional theory of affine spaces, these notations turn out to be cumbersome and
inflexible and therefore inappropriate. This is likely the reason that has prevented Schwartz

from explicating certain fundamental functional relations between, say, a function that is

defined in E, orin T xE, and its successive predecessors that are defined first in E, or in

T xE, and then in E, orin T xE, — the relations, which should turn a theory of Euclidean

affine spaces into an underlying discipline of differential and integral calculus. Some
peculiarities of Schwartz’s theory and his system of notation, which illustrate the above said,
are explicated below with the help of the pertinent symbolic notation of this exposition.

6) Schwartz defines an affine space by two axioms in that order: 1°) the Chasle law and

29) the law of a bijection {a}x E, — E,, where a is a fixed point of E, . In this case, the vector

of En, being the result of the concrete act of the bijection from the ordered pair of points a
and x of E, into E, is denoted in the book by ‘ax’, so that the overarrow is tacitly turned out

to be the functional constant that denotes the bijection itself, i.e. :{a}xE, — E, Atthe same

time, the bijection f{a}xE, —E, is a restriction of the surjection E,xE, —»E, and

conversely the latter is the ultimate extension (continuation) of the former. Accordingly, the
surjection can, more naturally, be postulated instead of the bijction. In agreement with this

fact but without mentioning it and without mentioning the fact of the very existence of the
surjection, the Chasle law is written in the Schwartz book as ab+bc+ca =0, where a, b, and

c are assumed to be arbitrary points of E,, whereas ab, bc, ca, and O are stated to be

arbitrary vectors of én and O to be the null-vector of én. Hence, in these occurrences an

-

overarrow equivocally denotes the above surjection, ie. :E, xE, — En. The two different
functions, which are thus equivocally denoted by * ’, are syntactically indistinguishable. In

N
addition, Schwartz equivocally interprets ab (e.g.) as the vector with the initial point a and

terminal point b, i.e. as the position vector of the point b relative to the point a. Therefore, he

alternatively denotes ab by ‘b—a’. However, elements of én are free and only free vectors,



being translations of E,, whereas a position vector is an element of the power set P(En), i.e.

-

an unmovable manifold (subset) of the set E,. The surjection :{a}xE, — E, implies the
inverse bijectiion {a}x én — E,, which Schwartz equivocally denotes by the sign ‘+’, the

same that he uses for denoting the binary composition operation én X én - én of vectors in

én. That is to say, if a is a given point of E, and h is a vector of En then a+h is a point of

E.. To compare, in accordance with the system of symbolic (ideographic) notation that | use

—

in this exposition, the surjection :E xE,—E, is denoted by ‘V’, the bijection

N

{a}xE, - E, by *V,’, and its inverse by V,™".
7) Schwartz is not the only mathematician who treats the bijection {a}x E, — E, as the

addition of a vector in én to a point in E, that results in another point in E, . For instance,

Mac Lane and Birkhoff [1967, p. 420] employ a like notation to suggest the following
essentially different definition of an affine space.

«DEFINITION. An affine space P over F is a non-void set for which there exists a

finite-dimensional vector space V and a function V xP — P, written as

(v, p) v+ p, such that

(i) For all vectors v,w eV and all points pe P,

0+p=p, (V+w)+p=v+(w+p).
(i) For any two points p,q e P there is exactly one vector veV with
vV+g=1p.

The dimension of P is the vector space dimension of V.»
The surjection +:E, x En — E, that is implicitly defined by axiom (ii) is the extension of
analogous to the extension of Schwartz’s axiom 2°), but axiom (i) is completely different from
Schwartz’s axiom 1°). In the first identity of axiom (i), O is evidently the null-vector of V. The
second identity of axiom (i) is a peculiar associative law for the sign ‘+ with the proviso that
the function denoted by the first occurrence of ‘+’ on the left-hand side of this identity is
completely different from the function denoted by the first occurrence of ‘+’ on the right-hand
side of this identity.

8) In this exposition, a system of the appropriate symbolic (ideographic, not

iconographic, pure abstract) notation is employed for developing a rigorous an algebraico-



functional theory (AAFT) of an n-dimensional real affine Euclidean space E,(R) is developed
from an affine additive group (AAG) as has been described in Abstract.
9) An affine space E(R) is one of the most complex algebraic systems, which involves

a few simpler algebraic systems. In this exposition, | suggest and employ a consistent method
of naming algebraic systems instead of the two presently common ones, because these are
inconsistent as explicated below. In order to maintain distinction between an algebraic system
and its underlying set formally, many writers on mathematics construe the former as an
ordered multiple, the first coordinate of which is the underlying set of the system and the other
coordinates are some or all other attributes of the system. Accordingly, the symbol of the
ordered multiple is used as a name of the algebraic system (see, e.g., MacLane and Birkhoff
[1967, pp. 61, 63, 118, etc]). This method of naming algebraic systems is, however, never
used systematically, because it leads to insuperable notational conflicts and turns out to be
paradoxical after all. Indeed, an ordered n-tuple with n>2 is an (n-1)-fold reiterated ordered

pair defined as

<X1! Xy yeees X Xn> = &.._{Xl, X2>’ X3>""’ Xn—1>’ Xn> (13)

subject to (1.1) (cf. (1.2)) and therefore it is a complicated composite set whose complexity
rapidly increases with n. Therefore, even most basic and simplest set theoretic relations such
as a relation of belonging an element (as a vector) to a given algebraic system (as a vector
space) or a relation of inclusion between an algebraic system and its subsystem (as that
between a vector space and some one of its subspaces) are inexpressible in terms of ordered

multiple names as names of algebraic systems. Following the above method, the vector space

E(R) should have been denoted, for instance, by the ordered quadruple name ‘(é, R, +2%)7,
or <‘I§’, ‘R, “F7, “27, “2’), that contains as its constituents the name ‘E’ of the
underlying set of E(R), the name ‘R’ of the field of real numbers, and the names * 3, * =,

and “ =’ of three operations, of which + is the binary operation of addition of vectors of E,

A

= the singulary operation of additive inversion of a vector of E, and

N

is the binary

operation of multiplication of a scalar of R and a vector of E in either order. In this case, in
order to be consistent in denoting algebraic systems by using ordered multiple names, R
should in turn be denoted by the ordered multiple name, whose coordinates are the name ‘R’
of the underlying set of R and also the logographic names of all algebraic operations on R. By
(1.3),



(E,R, 27 Z((((E,R), $),9,%),

and therefore ‘<I§, R, +,2°) " is actually a name of an extremely complicated set, which has
nothing to do with a vector space. This is why | do not use ordered multiple names as names
of algebraic systems and prefer to indicate «togetherness» of the sets (including both the
underlying sets and the functions), forming an algebraic system, as the union of those sets,
provided of course that they do not mutually intersect. For the same reason, | do not follow
the popular method, according to which a relation in general and a function, i.e. a functional
(single-valued) relation, in particular is considered as the ordered triple of the graph, domain
of definition, and domain of variation (or domain of arrival) of the relation and is denoted
accordingly (see, e.g., Bourbaki [1960, chapter I, §3]).

10) Use of names of ordered multiples as names of algebraic systems or of relations is

not only inconsistent logically, but it is also paradoxical psychologically. For instance, if

‘(é, R, +,2°)” is used as a name of an n-dimensional real vector space then the underlying set

E of vectors, the field R, and the operations (functions) +, =, and = of the vector space are
simultaneous denotata of the constituent names ‘ E °, “+’, *-*, *-* of the above ordered multiple
name, i.e. they are simultaneous objects of an interpreter of that name, while the field R and
the operations +, =, and *are in fact conceptual properties of elements of E with respect to

the interpreter rather than to be his objects simultaneous with E . Therefore, there is in use an
alternative method of naming an algebraic system, according to which the name of the
dominant underlying set of that system is equivocally used as a name of the system itself,
while properties of elements of the underlying set, — such properties, e.g., as functions, — are
hided as connotata (connotations values) of that name. For instance, MacLane and Birkhoff
[1967] say: «Hence a group G is a set G together with the binary operation GxG—G, written
(a,b) > ab, such that ...» (ibid. p. 71) and also «A ring R=(R,+,1) is a set R with two
binary operations, addition and multiplication, and a nullary operation, “select 1”, such that ...
» (ibid. p. 118). According to this onomatological method, a logographic symbol such as * E’,
which is initially is introduced, e.g., as a name of the underlying set of a commutative abstract

additive group E¢, becomes after all a homograph (homographonym, homonym) of the

group. Consequently, if EY is developed so as to become an abstract vector space E(R) then

“E* becomes after all a homonym of E(R). Such equivocality of * E * is confusing and hence

inacceptable. Therefore, the latter onomatological method is not used in this treatise either.



2. Linear (vector) spaces

2.1. Underlying meta-definitions

For convenience in the subsequent discussion, | begin from restating Definitions 2.1,
2.4, and 2.5 and Comment 2.1 of losilevskii [2015] as the following Definitions 2.1-2.3 and
Comment 2.1 respectively.

Definition 2.1. 1) The signs = and = are indiscriminately called the asymmetric, or
one-sided, equality signs by definition or, discriminately, the rightward equality sign by
definition and the leftward equality sign by definition respectively. A binary figure, in which
either sign = or = is used assertively, is called a formal binary asymmetric synonymic
definition (FBASD). In making a FBASD, at the head of an arrow | shall write the material
definiens — the substantive (substance-valued expression), which is already known either from
a previous definition or from another source; at the base of the arrow | shall write the material
definiendum — the new substantive, which is being introduced by the definition and which is
designed to be used instead of or interchangeably with the definiens in the scope of the
FBASD. Therefore, the sign = is rendered into ordinary language thus: “is to stand as a
synonym for” or straightforwardly “is the synonymous definiendum of”, and = thus: “can be
used instead of interchangeably with” or straightforwardly “is the synonymous definiens of”.
The [material] definiendum and [material] definiens of a FBASD are indiscriminately called
the terms of the definition. Neither the definiendum nor the definiens of an FBASD should
involve any function symbols, particularly any outermost (enclosing) quotation marks, that are
not their constituent parts and that are therefore used but not mentioned with the following
proviso. If it is necessary to indicate the integrity of the definiendum or of the definiens then
that term of the definition can be enclosed in square brackets as metalinguistic punctuation
marks, which do not, by definition, belong to the enclosed term and which are therefore used
but not mentioned. In the scope of a FBASD, which does not include the FBASD itself,
tokens of the terms of the FBASD can be related by the ordinary reflexive, symmetric, and
transitive sign of equality =. In contrast to =, either sign = or = is transitive, but not reflexive
and not symmetric.

2) In order to state formally that two old or two new substantives are to be used
interchangeably (synonymously), I shall write the substantives, without any quotation marks
that are not their constituent parts, in either order on both sides of the two-sided sign =. Such

a relation is called a formal binary symmetric synonymic definition (FBSSD), whereas the sign

10



= is called the symmetric, or two-sided, equality sign by definition. In this case, = is read as
“is to be concurrent to” or, alternatively, “—= ...” is read as “— and ... are to be
concurrent” or as “— and ... are to be synonyms”, where alike ellipses should be replaced
alike. In the scope of an FBSSD, tokens of the terms of the FBSSD can be related by the
ordinary sign of equality =.

3) In stating synonymic definitions of substantives, the arrows —, «—, and <> can be
used instead of =, =, and = respectively, the understanding being that the arrows are general
definition signs, which can apply to relations and not only to subctantives.e

Definition 2.2. 1) ‘w,’ denotes, i.e. @, is, the set of all natural numbers from 0 to
infinity.

2) Given n € w,,

o, = fifi € @, andi > n}, 2.1)
lLe. ‘@, ‘w,’, etc denote the sets of natural numbers from 1, 2, etc respectively to infinity.

3) Given me @w,, given n€ a,,,

Oy = {i|i cwyandn>izmf, (2.2)

i.e. ‘@, ,” denotes the set of natural numbers from a given number m to another given number

n subject to n>m. It is understood that

O ={m}, O =0, O =D if m>n. (2.3)e

Definition 2.3. 1) “I_, .’ denotes, i.e. | is, the set of all natural integers (natural

integral numbers) — strictly positive, strictly negative, and zero.

2)Givennel_,,

. =1, =fliel_, andizn}, (2.4)

—oo,N

|, =1, =fliel_ adis<n}, 2.5)

ie |

n,oo

or 1, isthe set of all natural integers greater than or equal ton,and 1__  or I _ is

00

the set of all natural integers less than or equal to n.
3)Givenmel_  :givennel .
.= fliel, andnzizmf, (2.6)
i.e. 1_ . is the set of all natural integers that are greater than or equal to m and less than or

m,n

equal to n.e
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Comment 2.1. Definitions 2.1(1) and 2.2(1) are explicative ones. A theory of natural
integers in particular, and a theory of any numbers (as rational, real, or complex ones) in
general can consistently be deduced from the five Peano axioms, which are, in turn, theorems
of an axiomatic set theory (see, e.g., Halmos [1960, pp. 46-53], Burrill [1967], Feferman
[1964]).e

2.2. An n-dimensional Euclidean linear (vector) space via its underlying

algebraic systems
Definition 2.4. 1) A commutative (or Abelian) additive vector (or linear) group
(CAVG), or briefly commutative additive group (CAG) EY is an underlying set E of its

elements, which may sometimes be identified with EY, together with two primary

(postulated) functions: a surjective commutative (symmetrical) and associative binary
addition function $:ExE —E and a bijective singulary additive inversion function

2 E > E with respect to the null (additive identity) element 0cE. Elements of E, called
vectors, are denoted by the variables ‘X’, * ¥, and “Z’, any of which can be furnished with

an Arabic numeral subscript “1’, “2’, etc or with any other label (as an asterisk or any number

of primes) or with both, thus becoming another variable with the same range. The primary
functions of E° satisfy the following axioms, called the Commutative Additive Group Axioms
(CAGA’s):

CAGAL: The closure law. For each (%, §)e E x E : there is exactly one 7 € E such that

+>

I=X+Y.
CAGA2: The associative law. For each ((%,¥),2)e [E x EJx E:
X+(J+D=(X+9)+7Z. (2.7)
CAGAS3: The identity law. There exists a unique element 0 e E, which is called the null,
or additive identity, element of E, such that for X e E :
05 %=%+0=X. (2.8)
CAGA4: The additive inverse law. For each X E: there is exactly one element

2% e E, which is called the additive inverse, or additive reciprocal, or opposite of

X, such that

A

R3(ER)=(%)+%=0. (2.9)

CAGAGS: The commutative (symmetrical) law. For each (%, §)e E x E :

12



X+y=y+X. (2.10)
2) Besides the above primary functions, there is in E9a secondary (defined, composite)
surjective binary subtraction function =: E x E — E such that for each (>“< 9) cExE:
£=§= 2+ (9); (211)
i.e. 2= %02, where ‘ o’ denotes the operation of composition of functions.
3) Here, and generally in what follows, «togetherness» as stated in the item 1 is

understood as the union of the pertinent sets (regular classes, small classes), so that E9 can
formally be defined as:
E9=EU+Us. (2.12)e
Definition 2.5. The field R of real numbers is the underlying set R of real numbers,
which may sometimes be identified with R. together with the following primary (postulated)
functions: a surjective commutative and associative binary addition function +:RxR >R, a
surjective commutative and associative binary multiplication function -:RxR — R that is
distributive over + relative to =, a bijective singulary additive inversion function -:R — R
with respect to the null (additive identity) element O0e R, and a bijective singulary
multiplicative inversion function ™R - {0} — R-{0} with respect to the unity (multiplicative
identity) element 1eR. In addition, there are in R two secondary (defined, composite)
functions, namely a surjective binary subtraction function —:RxR — R, defined as:
—=+0-, and a binary division function /:Rx|[R-{0}] > R, defined as: /=-o . Elements of
R, called scalars, are denoted by small italic letters of the Latin alphabet without any

overscript, as ‘a’, ‘b’, ‘c’, etc, any of which can be furnished with an Arabic numeral subscript

€I

1, “2°, etc or with any other label (as an asterisk or any number of primes) or with both, thus

becoming another variable with the same range.e

Definition 2.6. 1) An abstract (not arithmetical) linear, or vector, space é(R) or

briefly E over the field R of real numbers, called also a real abstract linear (vector) space, is
a commutative (Abelian) additive group E¢ of elements, which are comprised in its

underlying set E and which are called vectors, together with R and also together with an

additional surjective commutative and associative binary function (operation)
2 [R x E]U [E x R]—> E of multiplication of a scalar by a vector or of a vector by a scalar.

The latter function is interrelated with the functions +, +, and - by the following axioms that

are called the Vector Space Supplementary Axioms (VSSA’s):
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VSSA1: The closure and symmetry (commutative) law. For each (i,a)e E xR, there is
exactly one § € E such that
J=a“K=%"a. (2.13)
VSSA2: The distributive laws over + and +. For each (% §)eExE, for each
(a,b)e RxR:
°y, (2.14)
%, (2.15)
VSSA3: The combined associative law. For each % € E , for each (a,b)e RxR:
(a-b)*k=a>(b>X). (2.16)

VSSA4: The identity law for scalar multiplication. For each X e E:

A A

17 X=X. (2.17)
2) In analogy with (2.12), «togetherness» as stated in the item 1 means that E can
formally be defined as:
E=E(R)zE‘URU". (2.18)
subject to VSSA1-VSSA4. The set E is called the principal, or major, underlying set of E,
while the set R is called the minor underlying set of E.o
Definition 2.7. Given ne w,, an n-dimensional projective (not metric, not Euclidean)

abstract (not arithmetical) linear (vector) space éﬁ(R) or briefly é,ﬁ’ over the field R is an

abstract linear space E(R) or E together with an additional axiom of the dimension of E(R).

~

According to this axiom, E(R) and hence its underlying set E has at most n linearly
independent vectors (to be explicated in the subsection 2.5 below), in terms of which any
other vector of E(R) can be expressed.e

Definition 2.8. A metric (inner product, Euclidean) abstract (not arithmetical) linear
(vector) space E™(R) or briefly E™ over the field R is an abstract linear space E(R) or E
together with an additional axiom inner product of vectors of E(R). According to this axiom,
there is in E(R) a commutative (symmetrical) and associative (distributive) binary function of
inner multiplication of vectors e: ExE — R, which is positively definite in the sense that for

each R eE:
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Re X >0 if R0 or %eX=0if x=0. (2.19)e
Definition 2.9. Given ne®,, an n-dimensional abstract (not arithmetical) linear

(vector) Euclidean (metric, inner product) space E,,(R) or briefly E,, over the field R is an

{n}
abstract linear (or vector) space E(R) or briefly E over the field R together with both the

axiom of the dimension of E(R) and the axiom inner product of vectors of E(R). Thus,

A

equivalently, E,(R) is EP(R) together with the later axiom or E™(R) together with the
former axiom. For more clarity, the underlying set of vectors of EH(R) will be denoted by

“E,” so that E, may sometimes be identified with E, (R).e

Comment 2.2. Conventional definitions of all algebraic systems that has been

mentioned above in this subsection can be found, e.g., in Birkhoff and Mac Lane [1965].e

2.3. Ordered n-tuples

2.3.1. General remarks

1) Besides the sets of natural, integer (integral), rational, real, and complex numbers,
which are denoted by ‘N’, “I’, “‘Q’, ‘R, and ‘C’ in that order and which are called scalars, and
also besides various algebraic systems as those mentioned in the previous subsection,
mathematics and physics (especially theoretical physics) deal with hypernumbers of various
kinds (classes) such as quaternions, tensors of various valences, and matrices. A hypernumber
is synecdochically called a holor (from the Greek adjective “6Aog” \6los\ meaning all or the
whole), the understanding being that a holor is generally a conceptual object that consists of
several elements of a certain class (set) or certain classes (sets), which are called the merates
(from the Greek noun “pépoc” \meros\ meaning a part), and also coordinates or components,
of the holor (see, e.g. Moon and Spencer [1965, pp. 1, 14]). In this case, a hypernumber is a
holor whose merates are numbers of a certain set and therefore it can alternatively
(synonymously) be called a numeric holor. Particularly, a complex number is in fact a two-
component holor of real numbers. However, besides numbers, merates of a holor can, e.g., be
points, vectors, or other holors. A holor is said to be univalent, bivalent, trivalent,
quadrivalent, etc if its merates are labeled respectively with one, two, three, four, etc,
subscripts or superscripts. A scalar is alternatively called a nilvalent holor. In any

conventional set theory, an n-component univalent holor x, ., of elements x,,X,,...,x, of a
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given set X in that order is called an ordered n-tuple of those elements and it is defined as a
repeated, (n—1)-fold ordered pair such as
X = <xi>iewm = (X, Xgreeer X1 %)

= (X X ) = 000 XD K 1)y X ). (2.20)

More specifically, an ordered n-tuple that is defined by the formula (2.20) is called the left-
associated repeated (or reiterative) (n—1)-fold (or (n—1)-ary) ordered pair of X, X,, ..., X, in

that order.

2) In the general case, a single (simple) ordered pair (xl,x2> of elements x, andx, of
any given sets X, and X, in that order is by definition the set {{x },{x,x,}}, i.e.
Koo = (%0 %) = (B (2:21)

(see, e.g., Halmos [1960, pp. 22-25]). Ordered pairs satisfy the theorem (ibid.) such that for

any elements x,, x,,x;,and x;:

(%, %) =(x,x;) if and only if x, =x and X, =X;. (2.22)
Accordingly, for any n elements x,, X,,..., x, and for any n elements x;, X, ..., X :
(X Xg oo X ) = (X0, X5 oo g ) iF @D ONlY i X, = X[, X, = X5, 0y X, =X (2.23)

Also, it is useful for making some general statements to introduce a one-component univalent

holor — a conceptual object, which is denoted by *x;,,,” or ‘<x1>’ and which can therefore be

also called an ordered one-tuple, or ordered single, the understanding being that such an

object is distinct from a scalar (nilvalent holor) and that it can have a scalar as its only

component. For instance, an element of a one-dimensional arithmetical vector space E(R) or
E(R) over the field R of real numbers (scalars) is a one-component univalent holor (ordered
one-tuple) <x> of a real number (scalar) x, which is not the real number itself. Without loss of
generality, X;,, or <x1> can be identified with the singleton {x,} —the set having x, as its only
member (element), so that

Ko = (%) = {x}. (2.24)
At the same time, a set of n elements with n e @, can alternatively be called an unordered n-
tuple. Therefore, <x1> as defined by (2.24) can be regarded as an ordered one-tuple and as an

unordered one-tuple simultaneously. An ordered n-tuple with any n e @, is indiscriminately
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called an ordered multiple. Thus, for any ne®, an ordered n-tuple, i.e. an n-component
univalent holor, is a nonempty set and is not a nonempty individual. It is worthy of recalling
that, in contrast to an ordered multiple, an ordered set is a set that serves as a domain of

definition of the liner order relation (predicate) <.

3) An ordered pair {xl,x2> is conventionally denoted as ‘(xl,xz)’ and accordingly an

' Mn-11 n 'nl’n

ordered n-tuple (X, X,,....X,,,X,) is denoted as *(x,X,.. X,)’. Particularly, in the

Clairaut-Euler placeholders * f(x,,x,)” and * f (X, X,,..., X, 1, %,)"s (%, %,) is a placeholder for

' =11 "n

an ordered pair, whereas ‘(xl,xz,... X 1y X ) is a placeholder for an ordered n-tuple. However,

1 n-11n
if x, and x, are real numbers then the symbol “(x,,x,) is ambiguous, for it may stand either
for the ordered pair of those numbers in that order or for the open interval (x,,x, ). Therefore,

in denoting ordered pairs and ordered multiples, | shall use angle brackets and round brackets
interchangeably, while in most general conceptual statements preference will be given to the
former without any comments.

2.3.2. Definitions

Definition 2.10. Given ne @, given n sets X,, X,,..., X, the set of ordered n-tuples

defined as:

n

XX XIEuX*XxXx XX x X, =

n

[><.e.l 1X] X, *[[ [X X X Ix X< Jx X 4]x X, (2.25)

{(xl,xz, WX n>|xieX1,x € Xy Xy 1 € Xp 0, X € X, )

n-11"*n

I

subject to (2.20) is called the left-associated repeated (or reiterative) (n—1)-fold (or (n-1)-ary)

direct (or Cartesian) product of X,, X,,..., X, inthat order.e

Definition 2.11. Given nea,, given a set X, if X, =X, =..=X, =X, the set of
ordered n-tuples defined as:

X=X x X x..xXxX

ntimes X

= X O X Z[LX x X]x X]x..]x X]x X (2.26)
ey
E{(xl,xz,...,xnfl,xn>|x e X, %, € X, X, 1 € X, X, € X
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subject to (2.20), i.e. the left-associated repeated (or reiterative) (n-1)-fold (or (n-1)-ary)
direct (or Cartesian) product of X by itself, is called the left-associated nth direct (or

Cartesian) power of X, the understanding being that

X = {x ) e X = {xx e X J= X . (2.27)e

2.4. Repeated binary operations
Definition 2.12. 1) Given me o, let &, ..., & be any m objects, to which a binary

operation *, denoted by the placeholder ‘=, applies repeatedly (iteratively) m—1 times in the

successive order starting from & and &,. Then

#Gobornbnn) = KE 2GR E 32 e[m* é}fm

=1 (2.28)
EL’_[J[gl*éjz]*é:S]** m—Z]*‘):m—l]*ém
and in general
*(fjusz'---'fjmfuéjm)5 ;’zégji =G, K, KRG L S, {m’:éi}*éﬂm
=t =1 (2.29)

=[S * &, 1 1 x 5 T% 85 1% g5

where the sequence (j;, j,...., s Jn) IS any permutation of the sequence (1,2,...,m—1,m).

2) If the operation * is associative and commutative then

*(511’512’-'-’5Jm4’§jm)=_>n;< i, TG, Ky, K kG KG
= ) (2.30)
Sl A PR AR L TR L R

3) The symbols * % * and *:j ’, e.g., can be used interchangeably.
i=1

4) “x” and ‘s ’ is a pair of proportional (homolographic) placeholders, which should

be replaced by a pair of proportional tokens of the respective sizes of any desired binary

functional constant as ‘+’, ¢, ‘x’, ‘", “U’, etc and also as ‘+'7, F+, ‘37, ‘+7, . , ,

etc. Thus, if an initial binary functional constant “*” is furnished with some labels then “ s

should be furnished with the same labels.e
Comment 2.3. 1) In accordance with Definition 2.12, if the symbol ‘+’, e.g., is provided

with some labels (as one or more primes, a caret, an overbar, a tilde, etc) then the symbol
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‘4 7 is provided with the same labels. It is therefore understood that if the convention of

equivocal use of the sign ‘+’ instead of each one of the plus signs such as ‘+", +, *+'’, etc is

adopted, tacitly or explicitly, then the sign * 4 ” should be used instead of any one of the signs
4 _'[_ 7, ‘_T_' ’, etc. In this case, the denotatum of the operator * 1 * depends on the type

of its summand (operatum). It is also understood that if the conventional symbol “ * is
employed instead of ‘4 ’ then the symbols i , Y, and ‘i' should be employed
instead of 3 *, “ 4/ *, “ 3’ respectively; and similarly with ‘[T" and “. * in place of * ¥ °
and ‘ 4 . Thus, Definition 2.12 makes obvious that the conventional symbol *3 *, or ‘[T, is

equivocal and that for avoidance of confusion it should be provided with additional labels to
connote the functional constant, which denotes the binary addition, or multiplication,

operation, underlying the sequence of repeated binary addition, or multiplication, operations

equivocally denoted by “ > *, or ‘I T, respectively.
2) In the sequel, the ‘4 ’-symbols and the respective *>’ ’-symbols will be used

interchangeably.e

2.5. Linear superpositions of vectors and dimensions of real vector spaces
Definition 2.13. A subspace E'(R) of a vector space E(R) is a subset E' of E, which

contains the null-vector 0 and which together with the field R and together with the pertinent
restrictions
ey (E’x é')—> E',~:E'>E.": (é'x R)U(Rx E’)—) E' (2.31)
of the functions
1:(I§><I§)—>I§, ?E—)é,ﬁ(éxR)U(Rxé)—)é (2.32)
of E(R) is itself a vector space over the field R. If E'(R) is a subspace of E(R) then the
latter is called a superspace of the former and vice versa. If the relations
é'cé, Yci, dce, Y (2.33)

definitely hold rather than their variants with ‘<’ in place of ‘c’ then E'(R) is called a strict

subspace of E(R), while the latter is called a strict superspace of the former and vice versa.
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The operations of a subspace are conventionally denoted by the same signs as those denoting

the operations of its superspace.e

Definition 2.14. Given a vector space E(R), given m e @;, given m non-zero vectors

a R - i
%, .., %, in E, given m scalars a,, ..., a, in R, the vector J(a; = %), defined by
i=1

Fatx)=(a, %)+ (a7 %)% .. 7 (2,7 %) (2.34)

in accordance with Definitions 2.4-2.6, is said to be a linear combination, or linear
superposition, of the vectors X, ..., X,.®

m

Theorem 2.1. Under Definition 2.14, let
L% %) 2 LRy & ) RF27)2 LRy Ry ) URU[FURUA] (2.35)

(cf. Definition 2.6), where

L(R,0mnn %)= {_’[_ai 2 ii‘for each jew,, a, R} cE, (2.36)
i=1
ie. I:(Xl,...,im) is the set of all linear combinations of the vectors X, ..., X, of the space

E(R). Then the set L(%,,...,% ) is the smallest subspace of E(R) that contains all the vectors

Xy - X, Accordingly, Ii()“(l,.. X ) is said to be the space generated, or spanned, by the

AN

A

vectors X,, ..., X, or the linear shell of the vectors X, ..., X,. It is understood that it can

particularly happen that L(%,....,%, )= E(R).

m m m
Proof: Let 1 &%, & *X and Ja'*X be linear combinations of the vectors X, ...,
i=1 i=1 i=1

X,,,» While b is any element in R. Then, by the pertinent rules established earlier, it follows

that

= (2.37)
(2.38)
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3025 =30=0, (2.39)
i=1 i=1
i=1 i i=1 |r:1 ) i=1 (240)
-t +(a)lg =078 =300
i=1 i=1 i=1
b-(__'néai f)?ijzjl_l(b-ai)f R =__'r|n‘_1(ai -b)?i:(;?_lai ?iij-b. (2.41)
For b=1, equation (2.41) yields
1(_$_ai ?iijﬂm-(l-ai)fii =_$_ai K. (2.42)
i=1 i=1 i=1

Equations (2.37)-(2.42) are the pertinent variants of the defining axioms of a vector space

over the field R and therefore they prove that the set I:(f(l,..., )“(m) as defined by (2.35) subject

to (2.36) is a vector space. By Definition 2.13, this vector space is a subspace of E(R).
QED.e

Definition 2.15. Given a vector space E(R), given me @,, given m non-zero vectors
%, .., X_in E, given m scalars a,, ..., a, in R, the vectors %,, ..., X are said to be linearly

independent if and only if
Za,°% =0 onlyif a, =0 foreach jeaw,,. (2.43)

If the vectors X;, .., X, are not linearly independent then they are said to be linearly
dependent.e
Theorem 2.2. Given a vector space E(R), given m e @, any m given non-zero vectors

A

Xy, .., X, in E are linearly dependent if and only if some one of the vectors is a linear

m

combination of the preceding ones.

Proof: Assume, first, that for some j € @, , : there are non-zero scalars a,, ..., a;, in S

such that
X,=%a°%. (2.44)
Hence,

Fa % +(-1)7% =0. (2.45)



This equation can be rewritten as

+>3
o
P
1l
(e})

(2.46)

1]
aN

where

eithera, =-landa.,,=a. ,=..=a,=0ifj<m
: e . (2.47)

ora,=a; =-lifj=m.
Thus, the ‘if’’-part of the theorem is proved. In order to prove the ‘only-if’-part of the
theorem, let us assume that the vectors X, ..., X, are linearly dependent. Thus, by Definition
2.15, we assume that there are m scalars a,, ..., a,, in R such that at least one of them does

m

not equal zero but (2.46) holds. Consequently, there is a unique number j € m, , such that

eithera; #0anda;,=a;,,=..=a,=0ifj<m
o (2.48)
ora;=a,=0if j=m.

If j=1 then, by (2.48), equation (2.46) reduces to a, * X, = 0, whence X, =0 because a #0.
However, the above result contradicts the hypothesis of the theorem that none of the vectors

X,, .., X, equals zero. Hence, j>2. Therefore, under either one of two alternative

conditions (2.48), equation (2.46) can be solved with respect to * X; * so that

X, =i'|:_1(-aj'1-ai)?>2.. (2.49)

i
i=1

This equation expresses X; as a linear combination of the preceding vectors (cf. (2.44).

QED.e
Definition 2.16. Given a vector space E over a field R, let for some new,:
{él,...,én}c E be a set of n linearly independent vectors that generate (‘span) the whole
space E ; thatis, L(6,,...8 )=E where L(&,,...,8 ) is defined by the variants of (2.35) and
(2.36) with ‘n” in place of ‘m” and ‘e’ in place of ‘x’.
a) The ordered n -tuple E[l,n] , defined as
& = (6,6, ) € E™, (2.50)

is said to be a basis of the vector space E.
b) The number n of the basis vectors is said to be the dimension of the vector space E.

Accordingly, the latter vector space is denoted by * én " and is called an n-dimensional one,

while the underlying set of En is denoted by “E, .
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c) A vector space E is said to be finite-dimensional if and only if it has a finite basis.
Otherwise, E is said to be infinite-dimensional. In other words, if there exists in E a set of as
many linearly independent vectors as one pleases then the vector space E is an infinite-
dimensional one, denoted by Ew )

Corollary 2.1. Given ne w,, let én be an n-dimensional vector space with a basis
eT[m given by (2.50). Then for each En : there is a unique ordered n -tuple

XKooy = (X Xy ) € R™ (2.51)

such that the vector X is given by the equation
N A ~
X=Xy = 4+% 6. (2.52)
i=1

Conversely, for each X, ., satisfying (2.51): there is exactly one vector Xe én given by

(2.52). The ordered n-tuple x, ,, defined by (2.51), is said to be the ordered n-tuple of the
coordinates of the vector X, defined by (2.52), relative to the basis E[m.

Proof: Given a vector X e én, the existence of at least one linear combination of the
vectors é,,...,6,, which represents X in accordance with (2.52), immediately follows from
Definition 2.15 by Theorem 2.1. Suppose that, besides X, ,, given by (2.51), there is another
n -tuple

Xy = (X0 X ) € R™, (2.53)

such that

(2.54)

Subtraction of the last equation from (2.52) yields

n ~

)A([l,n] - )A([Il,n] = -T—(Xi - Xi,)’: éi =0. (2-55)

i=1

A

By Definition 2.16, the vectors é,,...,€, are linearly independent. Hence, by Definition 2.15,

n
it follows from the pertinent variant of (2.43) that x/=x; for each iew,,, so that
Xan = Xunp- Conversely, by (2.23), the equation X, = X;;,; implies that x{ = x; for each

A

i € m,,. At the same time, it is evident that given X, satisfying (2.51): the vector X is

uniquely determined by equation (2.52). QED.e
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Corollary 2.2. Given ne @,, given an n-dimensional vector space E, with a basis

E[lvn] given by (2.50), for each X e En , foreach X e En ,foreach aeR:
ﬂ9=(;xnéiji[;yiféij=;(xi+yi)?éi, (2.56)
i=1 i

asx=1(a-x)8, (2.57)
subject to (2.52) and also subject to
Y =Yum = +Yi *é . (2.58)

Proof: The corollary follows from Definition 2.14 by Theorem 2.1 (cf. (2.37)) or
Corollary 2.1.e

Comment 2.4. According to Corollary 2.2, given a basis of a vector space én , both the
binary operations of addition of vectors of E{n} and the binary operation of multiplication of a

vector of En by a scalar of R, which are initially defined in abstract form, reduce to the

corresponding operations on the scalars of R, which are coordinates of the vectors relative to
the basis. In most cases occurring in practice, R is either the field of real numbers or the field
of complex numbers, so that use of a basis becomes especially effective.e

Corollary 2.3. Given ne @, : any n+1 vectors X, ..., X,,, of an n-dimensional vector

space én are linearly dependent.

A

Proof: According to Definition 2.16, the vectors X,, ..., X,,, are linearly dependent if

n+1

and only if there are n+1 scalars a,, .., a,,, in R such that some of them do not equal zero,

n+1

while
n’tl ~
18 °%=0. (2.59)
i=1
At the same time, by Corollary 2.1, there are n+1 n-tuples:
Xitw] E<xi1,...,xm> eR™ withieawm,,,, (2.60)
such that
% =Rpm =% %6 foreach icam,,,. (2.61)

=1

Substitution of (2.61) into (2.59) yields
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1b 8 =0, (2.62)

where

n+1
b, = .__|_1ai -x; foreach jew,,. (2.63)

A A

However, by Definition 2.16, the vectors é,,...,€, are linearly independent. Therefore, by

Definition 2.15, equation (2.62) holds if and only if b, =0 for each jem,,. Hence, by
(2.63),

n+l
+38-%;=0foreach jeaw,,. (2.64)

i=1
Relation (2.64) can be regarded as a set of n homogeneous linear algebraic equations with

respect to n+1 unknowns “a;” with i € @, , . It is known from algebra that such a set always

has a nontrivial solution for the ordered (n+1) -tuple (*a,’, ..., “a,,, ") of variables. QED.e

3. Real Euclidean vector spaces

3.1. Real Euclidean abstract vector spaces

Definition 3.1. A real abstract vector space E(R), i.e. an abstract vector space E over
the field R of real numbers, is called a Euclidean one if and only if there is a real-valued
binary function e: E xE — R, which is called the inner, or scalar, multiplication function on

E and which satisfies the following axioms (“IMA” is an abbreviation for *Inner
Multiplication Axiom”).

IMA1: The functionality law. For each <>2 9>e ExE, there is a unique real number
denoted by “ Xe § °, which is called the inner, or scalar, product of X and .

IMA2: The commutative, or symmetrical, law. For each (X, §) € E x E:

Xe § =YeX.

<
>
»
—
=
@D
(@)
(@)
3
=3
>
D
o
QD
7]
1%:]
o
o,
=3
<
D
o
=
T
(@]
=
D
QD
O
=
—_
x>
<>
~—
m
M
X
M
—
(@]
=
D
fo))
(@]
-
QD
m
Py
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IMAS: The positive definiteness law. For each R € E :
%6 X >0 if x#0 or %e%x=0if x=0.
According IMA1-IMAS, the inner product of two vectors in E is given by a symmetric,

positive definite, homogeneous, bilinear functional form, and conversely, any functional form

possessing the above properties can be selected to represent the inner product of two vectors
in E .o
Definition 3.2. For each % € E , the real number |%| defined as

%= (x8%) =/%e% >0 (3.1)

A

X 7

is called the length of the vector X. The associated function of the functional form * is said
to be the length function on E .e

Theorem 3.1. In any Euclidean space E(R), the length function has the following
properties (“LFT” is an abbreviation for “Length Function Theorem”).

LFT1: The positive definiteness law. ‘6‘ =0 and for each X € E -{0}: |%| > 0.

LFT2: The homogeneity law. For each % € E and for each acR: [a* % =[a|-|¥|.

A

y
Proof: The theorem follows from Definition 3.1 by Definition 3.2. Indeed, LFT1 is an

249 <|%+

LFT4: The triangle inequality. For each (X,§) cE x E :

immediate corollary of IMA5. In accordance with IMA4, |(a %) (a=%)]=a?-|%*, which

yields LFT2 by Definition 3.2. By Definition 3.2, it also follows that for each

(2,9)e|E- 0f|<|E- f] and each (a,b) < [R- {0}]x [R- {0}]:
0<(a*%2b*§)s(a~r=2b=§)=a |z 22a-b-(xe§)+b>-[j".

At a=|9| and b =%/, this relation reduces to (X §)<|[%[-|9|. On the other hand, if X =0 or

9:(), then LFT3 reduces to 0<0, which is also true. Thus, LFT3 is established. LFT4
follows from LFT3, for

%% 9 = (%7 9)3 (%5 9) =% + 2R3 9)+[3[° <[R° + 2%-[5] +[3F = (% +[3IF
where use of LFT3 has been made. QED.e
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is called the distance

y

Definition 3.3. For each (%, §) e ExE, the real number |%=

between the vectors X and ¥ in E The associated function of the functional form

called the distance function in E .e
Theorem 3.2. In any Euclidean space E(R), the distance function has the following

properties (“DFT” is an abbreviation for “Distance Function Theorem”):

>0 if X= ¥ or(ii) [R2 % =|0=0if X=Y.

0

DFT1. For each (%, §) e ExE:(i)[R2y

DFT2. For each (%,§) e ExE:

DFT3. For each (%,9,2) e E*: R §|+|§ 2 2| >[% 2 4.

Proof: The theorem follows from Definition 3.3 by Definition 3.2 and by Theorem 3.1.

Specifically, DFT1 immediately follows from LFT1. Then, by LFT2,
je=i=F (7= D)= 115 =g 4,
which proves DFT2. Lastly, DFT3 follows from LFT4, for

A

y=il>

=9+

QED.e
Theorem 3.3. For each >2,§/ [E {}J [E {}J there is exactly one real number

a €0, 7] such that

cosa = é ;g, , (3.2)
whence
a=/(%7Y)= arccosg. (3.3)
%-[3]

The number 4()2, 9) is called the angle between the vectors X and .

Proof: The theorem immediately follows from item LFT3 of Theorem 3.1.e

Definition 3.4. For each(X, §)e [é- {6}Jx[|§- {6} the vectors ® and ¥ are said to be
orthogonal, which is expressed logographically either as “*X Ly’ or as “ y1X’, if and only if

Z£(%,9)=2Z orequivalently %s§=0; thatis, if X=0 and §=0 then
uy@(z(i,y):fj@(%y:o), (3.4)

where, and generally in what follows, ‘<’ means if and only if.
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Comment 3.1. The relation 29 lE {}Jx[é{ﬁﬂ means that =0 and §=0.
Therefore, under the above condition, the equations * (&, 9):% and ‘Xey=0" are

equivalent, by (3.3). Still, the equation ‘X §=0" also holds if =0 or §=0. Therefore,
some writers extend the notion of orthogonal vectors to the last case as well. As a

consequence, 0 becomes the only vector that is orthogonal to any vector in E including
itself. Also, in this case, the expression on the right-hand side of equation (3.2) becomes an

indeterminate functional form of the type *0/0°, so that equation (3.3) is also meaningless.
Thus, there are forcible arguments for excluding the case where £ =0 or 9:6 from the
definition of orthogonal vectors.e
Corollary 3.1: For each (%, §) e [E - {G}Jx lé - {6} and for each (a,b) € [R-{0f]x[R- {0}]:
%Ly ifand only if (a=%) L (b~ ). (3.5)
Proof: By IMA3 of Definition 3.1, it follows that
(a°%)s(b*§)=(a-b)*(x39). (3.6)
The corollary follows from (3.6) by (3.4) because a=0, b=0, %=0, and 9¢6, by the
hypothesis of the corollary.e

Lemma 3.1. Given m € w,, given m non-zero mutually orthogonal vectors X,,...,X,, in

m>

A

% e% =% % =[&[s, foreach i e w,, andeach jea,,, (3.7)
where “ ;" is the Kronecker delta-symbol.

Proof: The lemma follows from Definitions 3.2 and 3.4.e

Theorem 3.4: A generalized Pythagorean theorem. Given m € w,, given m non-zero

A

mutually orthogonal vectors X,,...,X, in E:

_|_|x| : (3.8)

+>3
>

Il
[N

Proof: By (2.28), IMA3, and (3.7), it follows from the variant of (3.1) with ‘_'|‘_>“<i " in

i=1

place of “ X * that

i=1j=1 i=1j=1

2 m m m
- =(3r1>“<ij{+l } T4 (R 5%)= 4+ (5 5%)5, +|X|2
i= j=
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QED.e

Theorem 3.5. Given me w,, if a vector ye E - {6} is orthogonal to each one of m

given non-zero vectors X,,...,X, in E then it is orthogonal to each non-zero vector in the

space L(X,,..,% ) spanned by %,,...,%, .

Proof: In compliance with (2.36), let

a % =0, (3.9)

X =

s

I
JuN

where a,,...,a, are m arbitrary scalars in R. In this case, by items IMA2 and IMA3 of

Definition 3.1, it follows from the hypothesis of the theorem that
yeX= 9;(—?—@ ?)A(ij:-i-yA(ai ?)’zi):‘l‘ai '(ysﬁi):-l—ai -0=0.
i i=1 i

This equation proves the theorem by Definition 3.4.e

Definition 3.5. Given me w,, m non-zero vectors X,,...,X, in a Euclidean vector

m

space E are said to be normal orthogonal or orthonormal if and only if

% e%, =0, foreach iew, andeach jea,, (3.10)

(cf. (3.7)).e

Corollary 3.2. For each m € w,, m non-zero mutually orthogonal vectors X,,...,X, in a

Euclidean vector space E are linearly independent.

Proof: Assume that there are some m scalars a,,...,a, in R, not all equal zero, such

m

that:

a*X =0.

ane

1

Hence, by Definitions 3.1, 3.4, and 3.5, it follows that

~ m . Mmoo
OzxjoO:xjo(_|_ai -xiJ=_|_xjo(ai %)
i=1 i=1
m A m B
=13 -(xj . xi):_|_ai5ij =a, foreachje o, .
i=1 i=1

This relation proves the corollary by Definition 2.15.e

3.2. Euclidean real vector spaces of a finite dimension
Definition 3.6. Given n e w,, if n normal orthogonal vectors €,,...,€,  of a Euclidean

real vector space E span the space then the ordered n-tuple of those vectors is, in accordance
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with Definition 2.16(a), a basis of E. This basis is said to be a normal orthogonal, or

orthonormal, basis (briefly NOB or ONB) of E,—in agreement with Definition 3.5. It goes
without saying that such a Euclidean space is an n-dimensional one, and hence a finite-
dimensional one, — in accordance with Definition 2.16(c).e

Theorem 3.6: The Gram-Schmidt orthogonalization theorem. Given ne w,, given

mea,,, let X,,...,X, be a sequence of linearly independent vectors in a Euclidean vector

space E . Then there exists a sequence of m orthogonal non-zero vectors Y,,...,¥, which
span the same subspace of E as that spanned by the vectors X,,..., X, i.e.
L(Y,,... ¥, )= L(%,... X, ) E. (3.11)
A sequence Y,,..., Y, having the above property can be written as
J, = %, (3.12)
i;l
Vi=X>48 "X foreachicw,,, (3.13)
j=1
where a; with i€, and j e w,;, are certain scalars in R.
Proof: Given two linearly independent vectors X, and X, in E, let
Yo =X, 28y 7 X (3.14)
where
X, X
8, =2t (3.15)
X, ® X,

In this case, y, ey, =0. Therefore, y, and ¥, are linearly independent by Corollary 3.2, and
also

L(9,,9,) = L(%,%,)< E (3.16)
by Theorem 2.1. Hence, for m =2 the theorem is true. As the induction hypothesis on ‘m’,
let us therefore assume that for some me w, ,: the scalars a; with iew,, , and jea,;,
have already been constructed in such a way that m—1 vectors §,,...,¥, , of the form of
(3.12) and (3.13) are mutually orthogonal non-zero vectors, which span the same subspace of

E as that spanned by the m—1 vectors X,,ee Xy g - THus, it is particularly assumed that
oy, =(y,9y,)5, foreach icw,, , andeach jew,, (3.17)
(cf. (3.7)) and that

I:(S\,l"'"ym—l): L(Xl""’)zm—l)g E. (3.18)



Let then

m-1
o =% = 1 by 25, (3.19)
i=1
where
b, = XA :Y foreachiew, . (3.20)
yi i yl
In this case,

5y =503, 0 (3,59,

=>“(m39j b Y, oyj)—OforeachJ EW 4,

'~<>
®>

(3.21)

where use of (3.17) has been made. Thus, either the vector y_ is orthogonal to each one of the
m-1 vectors §,,...,¥,, or ¥, =0. By (3.13) with i € @, , ,, which is true by the induction

hypothesis, equation (3.19) becomes

m-1 m-1 i—1
9m = )2m = -’|\— bmi R ii -T_ -’|\— (-'—au J (322)
i=1 i=2
Upon exchanging the indices “i ” and * j °, the last term in (3.22) can be developed thus:
m’:l i-1 m— -1 j-1 m;lj;l .
+ Db, [+ 8;* ] + O * (+ a;* iJ 3 lby-ay)7 % (3.23)
i=2 j=2i=1

By the induction hypothesis, a; have so far been specified for each jew,, , and each
i € @ ;. Therefore, given je w,, ,, one may, without loss of generality, set that
a; =0 foreachicw,, ;. (3.24)

In this case, equation (3.22) subject to (3.23) and (3.24) takes the form of (3.13) at i =m
provided that

L+ 1A (3.25)

A

Since X, is independent of the vectors X,..

A

therefore %, & L(%,,...,%,,) and hence

" m -1
Vi #0. Thus, the m vectors ¥.,..., ¥, are mutually orthogonal by the induction hypothesis
and by (3.21), and hence they are linearly independent by Corollary 3.2. By Theorem 2.1, the

vectors Y,,...,¥, span the same subspace of as that spanned by the vectors X,,.. which

LR} m H

proves (3.11). QED.e
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Corollary 3.3. For each n e w,, each n-dimensional Euclidean real vector space E,(R)
has a normal orthogonal basis
Eum =(6,...6)eE™ (3.26)
(cf. (2.50)) so that

A

€ o€ =0, foreach icw  andforeach jeaw,,. (3.27)

Proof: In accordance with Definition 2.16(a), the ordered n-tuple
Ry = (R ) € B,
of any n linearly independent vectors X,,...,X, of an n-dimensional vector space EH(R) is a
basis of the space. The ordered n-tuple
§[1,n] = <371""’ 9n> cE,™
of the n mutually orthogonal vectors V,,...,Y.,, which are constructed as linear superpositions

of the vectors X,,..,X, in accordance with the recursive Gram-Schmidt orthogonalization

n

procedure of Theorem 3.6, is another, orthogonal, basis of E, ., by Corollary 3.3. The n

{n}
vectors €,,...,€, , defined as
8 2|9, 79, foreach icw,,, (3.28)
satisfy (3.27), by the pertinent variants of (3.1) and (3.17). QED.e
Corollary 3.4. Given new,, given an n-dimensional Euclidean [real] vector space
E{n}(R) with a normal orthogonal basis (3.26) subject to (3.27), for each X e é{n} as given
relative to the basis by (2.52):

X, =Xe§é foreachicaw,,. (3.29)

Proof: Given j e @, ,, it follows from (2.47) by Definition 3.1 and Corollary 3.3 that

+

éjaizéj:( xi?éi]:__hxi-(éjCéi):__{_xi-éij:xj. (3.30)

1

QED.e
Corollary 3.5. Given ne @, given an n-dimensional Euclidean vector space EH(R)

with a normal orthogonal basis (3.26) subject to (3.27), for any two vectors X and § given

relative to the basis by (2.52) and (2.58) respectively:

Xey=_4X-Y. (3.31)

i=1
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Proof: By (2.52), (2.58), and (3.27), it follows from Definition 3.1 that (cf. (3.30))

f9-(face e fnce fonrese

= (3.32)
+06Y,)- 8, =Xy
i=1j=1 i=1

QED.e
3.3. Projective real arithmetical vector spaces
Definition 3.7.
E =R"= {<x1>|x1 eR}= {{x1}|xl eR}#R, (3.33)
E,=R™=RxRx..xR=R"Y* xR
%/—/
ntimes R (3'34)
=[[...[Rx R]x R]x...]x R]x R for each n € w,.
ey

Definition 3.8. For each ne o, for each X, , € E,, foreach y, , € E,, for each aeR:

Kooy T Vi = Yion F King = (X Y0 X0 + Yoree Xy + Yo ) (3.35)
= Xy = (- XXX ) (3.36)
a7 Xy =(a-%,8 Xy, @ X, )= (X -8, %, 08, X, rA) =X - A, (3.37)
where

Rz = (0 X0 X0) s Vg = (Yar Yareens Yo o (3.38)

in accordance with (2.20). Also,
6[1,1] = <0> = {0} (3.39)
Oy =40, 0 = (O 00 = {(..£0,0),0),..,0), (3.40)

s ey

which are instances of (2.24) and (2.20) respectively.e
Comment 3.2. The operations
+:E,xE, »E,,=:E, > E,, (3.41)
=:(RxE,)U(E,xR)>E,, (3.42)
as defined by (3.35)-(3.37) subject to (3.38), are distinct from the operations +, -, and - for

scalars of R indicated in Definition 3.5 and they are also distinct from the operations +, =,

and * defined in Definitions 2.4 and 2.6. Most mathematician denote the opetations +, =,
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and = equivocally (homonymously, homographically) with the operations +, -, and -, in terms

of which the former are defined. But I do not follow this practice for avoidance of confusion.e

Corollary 3.6. 1) For each ne w,, for each X, ,, € E,:
X1 T Ong = Oy F Xug = (X4 00Xy +0) = (X000 X ) = Xy 1 (3.43)
X + (: 7[1,n]): <x1 +(-X) X, + (-xn)> = (w> = 6[l,n] _ (3.44)

n

2) Foreach aeR:

a 0y, =(a-0,..,a-0)=(0,...,.0) =0 ;- (3.45)

n n
Hence, the ordered n-tuple O is the zero element of E,, whereas the element =X, , € E;
is the additive inverse of the element X, , € E,.

Proof: The corollary follows from Definition 3.8.e

Definition 3.9. For each ne @, the algebraic system that, along with the field R,
includes the set E,, defined by Definition 3.7, and the operations on E,, defined by
Definition 3.8 and by Corollary 3.6, is a specific instance (concrete interpretation) of the n-
dimensional projective abstract linear (vector) space Eﬁ(R) or briefly Eﬁ, which has been
defined by Definitions 2.6 and 2.7. This instance will denoted by * E”(R)’ or briefly by * E?’
and be called an n-dimensional projective [real] arithmetical linear, or vector, space over the
field R of real numbers, the understanding being that the prepositive adjectival qualifier “real”
and the postpositive qualifier “over the field R of real numbers” are concurrent. Accordingly,
an ordered n-tuple being an element of E{n} is called an n-dimensional real arithmetical

vector or a real arithmetical n-vector. Some further distinguished attributes of EP(R) as an n-

dimensional vector space are explicated below.e

Definition 3.10. Given n € @, in accordance with (3.35) and (3.36), it follows that for

each <7[l,n]’ y[m> e E xE,:

Y[l,n] :(= y[l,n])E )_([l,n] $ (= y[l,n]): <X1 - yl""'Xn - yn>

(3.46)
= (% + (Y1) ey + (-Y0))-
Theorem 3.7. Given n e w,, for each X, , € E,:
Xy = Exi iy (3.47)
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where
& =(100.,...,0), & ; =(010,...,0), ..., € ,; =(0,0,...,01) (3.48)
or equivalently
€ = (041 0y ) foreach ic o, ; (3.49)
‘0 is the Kronecker delta-symbol. In accordance with Definition 2.12 and Comment 2.3, the
symbol f * can be used interchangeably with “ 4 °
Proof: Making use of the instance of (3.37) with “ x;” in place of ‘a’ and with g, ;" in
place of “x;, ,,’, and then making use of n-1 pertinent instances of (3.35), one can develop

equation (3.47) thus:

Xin = Exi “Ciny = Exi T<5i1’---’5in> = £<Xi Oy X 5m> (3.47,)
=(%,0,0....,0,0) ¥(0,%,,0,..,0,0) ¥ ... % (0,0,...,0, X, ) = (X, X510, X, )-

QED.e

Comment 3.3. The equation (3.47) can be rewritten as

n

Y[l,n] = 1Xi B éi[l,n] = O[1,n]’ (3472)
i=1
which means that the n+1 vectors X, ,;, &y, -+ €1y @re linearly dependent.e

Definition 3.11. 1) Given n € w, , the ordered n-tuple &, ,,,; defined as

e[l nLn] — <e1[1 npre € n]> € E{n} (3.50)

subject to (3.48) or (3.49) is a basis of Enp(R), which is specifically called a unit basis.e

3.4. Euclidean real arithmetical vector spaces
Definition 3.12. Given ne o,, a vector space E,(R) or briefly E, over the field R of
real numbers is called an n-dimensional Euclidean real arithmetical linear, or vector, space if

and only if it is an n-dimensional projective real arithmetical linear, or vector, space Ef’(R)

together with is a real-valued binary function ®:E xE, —R such that for each

<i[l,n]’ y[l,n]> € En X En :

_|_x Y, (3.51)

<I

X101 ® Yoo
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in compliance with (3.32). The operation & so defined is is called the inner, or scalar,

multiplication function on E,

- the understanding being that it satisfies the variants of IMA1-

IMA5 with “®°, “E ", “X; ") “ Yy » @nd “Z, " in place of ‘e, ‘E’, %", ‘9’ and 3’

respectively.e

Corollary 3.8. Given n e m,, the ordered n-tuple e:[m[lyn] defined by (3.50) subject to

(3.48) or (3.49) is a normal orthogonal, or orthonormal, basis of E,(R), i.e.
€y ® €jny =0, foreach iem , andeach jeaw, . (3.52)
Proof: Given iew,,, given jeaw,,, the instance of equation (3.51) with X, ;.= &,

and Y, ;= €. SUbject to (3.49), yields
€wn ® Cipny = +5ik '5jk = é‘ij . (3.53)
k=1

QED.e

Comment 3.4. Making use of (3.47) and of the similar relation:
Yoo = + Yi "€y

the inner product X, ,;® ¥, can be developed with the help of (3.52) thus:

Xin ® Yin = (_Ixi Téi[l,n]j (—F Yi € n]]

n n (3.54)
._—|_1,_|—_1(X Yi ) (u[ln] J[ln]) .+1,+1(X Yi ) 9 zi-lxi'yi’
which is in agreement both with (3.51), as expected.e
Corollary 3.9. Given n e w,, for each X, ,, as given by (3.38) or (3.47):
X; =Xy ® €y fOreachicea,,. (3.55)

Proof (mutatis mutandis, the same as that of Corollary 3.4): Given jew,, it follows

from (3.47) by Definition 3.12 and Corollary 3.8 that

n n
Citnr ® *wny = Cjpny (_—i—xi 'ei[l,n]j =+% '(ejll n ® €, n])
= (3.56)

QED.e
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Definition 3.13. Given ne @, given an n-dimensional Euclidean real abstract vector
space E defined by (2.18), given an orthonormal basis g[m, defined by (3.26) subject to
(3.27), E and the respective n -dimensional Euclidean real arithmetical vector space E, can
formally be defined in analogy with (2.18) respectively thus:

E,=E,(R)2E°URU*U&,, Us, (3.57)

E =E.(R)ZESURU-Us, (3.58)

where E? is a commutative additive (Abelian) group of ordered n-tuples of real numbers
constituting the underlying set E,, which is formally defined in analogy with (2.12) as:

ES=E, UTU-. (359)

3.5. A coordinatization of E,(R) and a vectorization of E,(R)

Theorem 3.8. Given new,, given an n-dimensional Euclidean real abstract vector

space én , given an orthonormal basis EM in én , defined by (3.26) subject to (3.27), let

— .~ =~ _ -1 .~ -1 =+ 1
,ué[m Ce?[m U Ce?[m ' ,ug[m B Cg[m U Cé{l‘nl ' (3.60)
where
Cé[m 5{<X+y Xin + Yo >X+y —:|-1(Xi+yi)?e|
and Xi1.n) + Yin = —I—(X +Yi ) Cin (3.61)

i=1

and <xj,yj>e Rx R foreach j ea)l,n}’

. A A
Cg[m] {< [1n] + Yiwnp X + Y>

X+ :I;\‘(Xi_'_yi)?éi

n

and X, ; F Y = .+1(X +¥,) 8 (3.62)
and <xj , yj> € RxR foreach je a)lln},
subject to (3.48) or (3.49), and
G, =leaic = {Ea) (3:63)
The function 7z, :E,(R)—> E,(R) is the isomorphism from E, (R) to E (R), whereas the

inverse function z :E,(R)—> E,(R) is the isomorphism from E,(R) to E,(R). That is
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to say, the definitions (3.61) and (3.62) imply the following bijective (one-to-one)

correspondences:
C_:é[m (0) = Oy (Té[l‘n]_l(a[l,n]): 0, (3.64)
C_:?[m (é.) 81 and Cem‘l(éj[lln])=éj foreach jeaw,, (3.65)
Ca R =%uny G, ]71(’_([1,n]): X, (3.66)
— o (3.67)
Ca (S X[l,n])::x =G, 1S )Ce[l ) (Xu n])
Q{l,nl (a : )A() =as i[l'”] =as Cg[m ()2)’ (3 68)
65[1‘”] (a- Xym) =27 K= a?C_ié[l ]_1()_([1,n])’ |
(_:é[ln] ()2 _T_ 9) )_([1 n] 1 y[l n] e[ln] E[ln] (+)Ce[1n]
) : (3.69)
Cen Mo + Yo 2 RF 9 = Cs.. (X )Ce[l ’ e[l . (Y
subject to (3.48) or (3.49) and also subject to
X+ 9: -T—(Xi + yi)?éi and 7[1,n] + y[l,n] -|—(X + yu) |[1 n] (3-70)
i=1 i=1
The relations (3.64)—(3.69) hold with ‘«’ in place of ‘C’, and in addition
'L_léu,]( £89)= %01 ® Viumy l_‘g[”( )z 5 ]( ) B ](Y)
= 65[1“] ()A()(Té;n] (;)C_:é[1 ](9): '|‘1(Xi Yi )7
_ o ' (3.71)
M, ()iln] * Vum)=Xoy =15 J()hn]) e, |\, J(y[m])
=Ce[1] ([1H]X:e[1] ; e[1] J(y[lnl) (X y)
i 1
whence
g, (3)=C; ()=sm Te)=C; 15)=s. (3.72)

Accordingly, the functions C_Ié[l ] and 55[1 ]'1 are called projective isomorphisms, whereas the

. —~ - -1 . . . .
functions C.” and Cg[+ | are called metric, or inner product, isomorphisms.
1n

[1.n]

Proof: 1) Equations (3.70) reduce to:

%+ ¢ =0and Xnr ¥ Yiong = Oppng (3.621)
if x, =y, =0foreachiew,,
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X+y=¢€andX; 1 F Y = € (3.63)
if x; =6, and y; =0foreachie w,,
R+ §=%and %y F Vo = X (3.64,)
if y,=0foreachieam,,, o
X+y=27= n -7,)7 € and X; . F Vi —s7=7 " Z;)" €
y I—Zl—l( ) o) * Yiun) i‘l( )" (3.651)
x,=-z;and y, =0foreachie o, ,
Rig=a‘i=a‘;2°8and%,, TV, —a-Z=a:§z g
y V. SARLL 1_1 . (3.661)

if x, =a-z;andy, =0foreachie o, .
Hence, the ordered pairs <(A),5[1’n]>, <éj 'gj[l,n]>! <)2’Y[l,n]>' (*2,-z), and (a*Z,a~z), defined
above, belong to C_:éu . while the reverse-ordered pairs belong to 66[1 ]‘l. At the same time, it

immediately follows from definitions (3.61) and (3.62) that the ordered pair

A

<x5r Y. Xy T [1,n]>’ defined by (3.70), belongs to 6% and that the reverse-ordered pair

belongs to 55[1 ]’l. In developing the trains (3.69), use of equations (3.66) and of their variants

with “y” in place of *x” has been made.

2) The metric isomorphism (Tg; ] affects neither any element of én(R) nor any function

of EH(R) other than e. Likewise, the inverse metric isomorphism (Tg; ]_1 affects neither any

element of E,(R) nor any function of E,(R) other than . Therefore, replacement of ‘C’

with ‘4 in the relations (3.64)—(3.69) does not alter those relations semantically.
3) It follows from (3.31) and (3.51) that

£8 9 =% ® Vum =+(X-y)eR. (3.73)
This equality is in agreement with the fact that the isomorphisms /75[1.”] and /75[1‘“]'1, and hence
6%] and (_:g[m‘l, do not affect either scalars or functions of the field R, which is common to
both Euclidean spaces E (R) and E,(R). At the same time, application of ‘B o
‘Reyorof ‘z, 10Xy, V. Vields (3.71). QED.e

€

Comment 3.5. By (3.29) and (3.55), definitions (3.61) and (3.62) can be restated thus:
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i 18 (3.611)

=] — ST ONMS T O A x 8
C, = {<)_([l,n] + y[l,n]’X + y>X ty= ,_|_[()_([1,n] + V[Ln]);gi[m]]"\ei

i=1
and <x[1 " y[ln]> E, x En}.

(3.621)

Definition 3.14. Given ne e, given a Euclidean real abstract vector space E,(R),
given a basis &, <E," in E,(R), defined by (3.26) subject to (3.27), the projective

isomorphism C. s called the coordinatization of EH(R) relative to the basis er[lvn] and the

€lin)

inverse projective isomorphism 55[1 ]‘1 is called an abstract vectorization of the Euclidean
real arithmetical vector space E,(R) relative to the same basis €, ;.
Definition 3.15: Extensions of C. and (_3é ' to the power sets P( ) and P( )

[L.n]

i 1 1 = H L A = nx
Given n e w,, given a Euclidean real abstract vector space E,(R), given a basis €un € Em

Xuny =

éé[m ( )5 {th ]

’ (3.74)
foreach X c E,,
— = R A 3 R
. X E{xx:C: and X X} E
€ ( ) € ( 1”]) wm € 2= (3.75)
foreach X c E,.
Hence particularly,
¢, [E)=E.c. "(E)=E. (3.76)

Comment 3.6. By the conventional definition of a power set as (see, e.g., Halmos

[1960, p. 19]), the power sets P( ) and P( ) can contextually be defined as:
X €, ifandonly if X <P(E, ), (3.77)

X c E, ifand only if X eP(E,). (3.78)

Therefore, the functions (_:g and C ', which have originally been defined by (3.61) and

{1.n]

(3.62) or (3.61;) and (3.62,), are extended by Definition 3.15 from the sets En and E, to the

power sets P( ) and P( ) respectively. In accordance with the presently common practice,
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the extensions are denoted by the same symbols as the original functions. By (3.70), the

arithmetical vector set C_:éu ](X)g E, is the image of the abstract vector set X m S E, in E

under the mapping C_:ej[l g Similarly, by (3.71), the abstract vector set C. ’1(>T{n})

[L.n]

E, isthe

image of the arithmetical vector set X{n} cE, in E under the mapping Cé[ ]‘l.o

3.6. Isomorphisms of Euclidean vector spaces

Theorem 3.9. Given n e @, given two n -dimensional Euclidean abstract vector spaces

E.(R) and E/(R), given an orthonormal basis &, ,€E,"™ in E,(R), defined by (3.26)

subject to (3.27), given an orthonormal basis &, € E," in E;(R), defined by the variants

(3.26) and (3.27) with “e”” in place of ‘e’, let in analogy with (3.60)—(3.63): C;

and
€~ §in
&1 8w
_ =C. +
CER R () €101 = &1n) €a.n1 = &1’
=C. . LA
M8 Céﬂ.nl—’éu.n] U Céﬁ,nl—’é[ml (3.79)
- -1 + 1. -1
C Eum o & & 'ué[lnl—’eun]
where
n
ST GO N ~ ~A
C; Lz = (RFJRF YTy _!_(xi +y, )8
~ A
and X'+ 9 =3"(x +y;) € (3.80)
i=1
and <xj,yj> e RxR foreach je a)l,n}’
n
- SrTror ot G e ~ ~A
Co Lo EUXF YR )REY= I__|_l(xi +v,)° €
~ A
and X'+ §' =3/ (x +y,) €& (3.81)
i=1
. - -1
and(x;,y;)e RxR foreach je a’l,n}— C: .
A A PPN -1
+ - ’ + - l - ~+
oo = (O oo = (G ">}—Cé[1,w§;,n] - (3.82)
. E = . - ;
The functions sy o E.(R)— E/(R) and Hg g E'(R) > E,(R) are is the

isomorphism from E,(R) to E/(R) and from E/(R) to E,(R) respectively. That is to say
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the definitions (3.61) and (3.62) imply the bijective (one-to-one) correspondences, which are
expressed by the pertinent variants of relations (3.64)—(3.72), namely by ones with

+ !

Al ! ! 57

= ar ) = ar ) 3 ar ) ) e X ) ) ) :,! +'l ;’
€101 §1n) €10y = &g €10y~ &g )
in place of (3.83)
= S
He o Cs o Co O Ciens Xy Yonys Zungs 55 00 0

respectively. For instance, in this case, the relations

ﬂg[ln]_’e[ln] (X;y) X'e Y’ 'u‘g[lnl—’e[ln]( )’ugunl—’e[ln]( ) g[1n1—’e[1n1()7)

- Cé{l,n]”%n] ()A()Cél,n]*%n] (;)Ceiu,n]ﬁ%n] (9) - +(Xi Vi )’

i=1

o (3.84)
e[lnl—’eun] ](X ) Xe y:’uétl,n]—’?ln] J( ) &1 &1 J( ) e[ln]—”*(ln] J(y)
=C &= &1 J(A’)Ce[ln]*etln] J( )Ce[ln]*etln] ](y) (X y')
and the relations
ﬂa{ln]*etln] (.): Cgu,nﬁ?l,n] (.): ¢ (3.85)

M >80 3(3')=C§[mﬁglyn] _1(;’): .,

which follow from them, come in this case instead of relations (3.71) and (3.72) respectively.
Proof: The proof of the theorem is, mutatis mutandis, word for word the same as that of
Theorem 3.8. Particularly, one should make substitutions (3.83) and to use the pertinent

primed variants of E,(R) instead of using relations of E,(R). For instance, it follows from

(3.31) and from the primed variant of (3.31) that

R §=147 =45 -y)eR (3.86)

A A~

instead of (3.73). Application of * z. "to ‘Xe Y’ orof ‘. to ‘X'e'§'’ yields

&un1 = &un) &u — &
(3.84).0
Comment 3.7 (Analogous to Comment 3.5). By (3.29) and by the variant of (3.29) with

X', o, and €& inplace of X, e, and &, definitions (3.61) and (3.62) can be restated thus:

C. . =lxigxiy)xiy=4rxiy)elve
€1.n1 ™ f1n) {< y y > y -i|:_1 [( y) ] (3801)

and (%,9) € Egy x Egy = Cs -’

&L~y
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Coyriny = (X F TR 905§ = fr[(ﬁ'?)‘ e

&1m 8wy {< > io1 (3.81y)
and (R, §') < By x Bpy2C; o

Definition 3.16: Extensions of C; . ~and Cqmby 1O the power sets P( ) and

P(En) (Analogous to Definition 3.15 subject to Comments 3.6). Given new,, given a

Euclidean real abstract vector space E, (R), given a basis &, , € E,," in E (R):

c. . (R)=klxr=c, . ReandxeX|cE
€111 = G1n) €11 = G1n) (3.87)
foreach X c E,,
c. . (X)=Rx=c. . (®andxeX'|cE,
€101 ™ €[1n] e[l n]—>9[1 nl (388)
for each X’ c E;.
Hence particularly,
Cer[l,n]ﬁgl,n] (E{): En’ C?l,n]_)er[l,n] (En): En ' (389)

Comment 3.8. 1) The nomenclature of functions defined by (3.60)—(3.63)

incorporated into the nomenclature of functions defined by (3.79)—(3.82) thus:

C. =C. C. '=C. . *=cC. _ (3.90)

€[1,n] a1 ~>Cunmn) | S 1,01 2 €[1,n110] Ernytn] —>€n)
where &, € E," is the orthonormal basis of E,(R), which is given by (3.50) subject to

(3.48) or (3.49). Hence,
-c. . ,C, '=Cc, . “t=cC - (3.91)

él,n] 810~y G 81,01 > ELn)Ln] ElLniLn] = G1n)

2) Given n e w,, given two n-dimensional vector spaces E,(R) and E/(R), given bases

&,y €E, " and &, € E,™, itis evident that

-1

-C. _ oC. _ =C. oC. *

&1 = &1 €101 €0 8Lt = &Ly €1 &)

~ _ = -
CT, = = CT, = o C: = = C* ) Ci .
&1,0] > €[1n] 81,01 2 €[1,n]10] €[1,n]11,0] > €[1n] 81n) €[1,n]

(3.92)

These relations imply that if

=t (3.93)

subject to (3.48) or (3.49) then
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~ ~ ~
=C, . (®=c. _ [c. . (%)
€11, €[] a2 Cwngin] N Eniite) = S

A ~ -  1VA
= ( = = o — = X) = CT o CT, X),
€1,n] 2 €Ln][Ln] €r1,n1,n1 > G1n] €r1,n] &1,n]

i:cawﬁmﬁjzc @ &ﬂ

&l = Bnn N Gt €

)=, -c. %)

= = o} — = =
( G1,n] €[ n]ien) €Ln)itn] €] 1] Ci1n)

(3.94)

These relations illustrate the symmetric and transitive properties of isomorphisms of

Euclidean real vector spaces of the same dimension.e

3.7. The del-operator in a Euclidean vector space
Definition 3.17. For each ne @, given n-dimensional Euclidean space En(R), given

an orthonormal basis (3.26) subject to (3.27) or (3.28) in E,(R):

n

vVz18°v, (3.95)

i=1

where

V. =

0
= foreachiewm,,. (3.96)

In analogy with (3.29), it immediately follows from (3.95) that
V, =8 eV foreach ie @, (3.97)
The differential operator V is called the del-operator in EH(R).o

Definition 3.18. For each ne o, :

Vit E<Vn'---’vn>:Z:€i[1,n] Vi (3.98)
i=1

subject to (3.48) or (3.49). In analogy with (3.55), it immediately follows from (3.98) that

V=8, ® Vy, foreachica,. (3.99)

The differential operator Vv, is called the del-operator in E,(R).e

4. Affine additive groups

4.1. Affine group point manifolds

Definition 4.1. 1) Let E9 be a commutative additive group (CAG) defined by
Definition 2.4 and let E be as before the underlying set of its elements called vectors; E may

sometimes be identified with E®. In accordance with Definition 2.4, the binary composition
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operation of addition and the singulary operation of additive inversion in ES (or respectively
on ExE andon E ) are denoted by ‘ +” and ¢ =’ respectively. The latter operation is defined
relative the additive identity element of = (or of, and also in, E ) that is denoted by “0” and
is called the null vector. Elements (vectors) of E are denoted by the variables “%’, < §°, and

2, which can be furnished with some appropriate labels as Arabic numeral subscripts *;’,

‘,’, etc or as primes.

2) An affine additive group (AAG) E? is an algebraic system that consists of a certain
underlying set of points E , called its affine additive group manifold (AAGM), and of a certain

vector group E¢ whose underlying set E of elements, called vectors, is related to E by a
binary surjection

V:ExE >E, (4.1)
which satisfies the following two AAGM axioms (AAGMA’s).

AAGMAL: The law of composition of vectors from ordered pairs of points — The set of

bijections between E and E . For each (x,y) e Ex E, there is exactly one 2 € E
such that

2=V,(y)=V(%y) (42)
and conversely for each (Z,X) e E x E , there is exactly one y € E such that (4.2)

holds, i.e.
y=V,(2). (4.3)
That is to say, given xeE, the singulary functions V,:E —>E and
V. E — E, as defined in terms of the binary function (4.1) by (4.2) and (4.3),
are two mutually inverse bijections.
AAGMA2: The Chasle, or triangle, law. For each (x,y,7) e E*,
V(% y)+V(y,2)+V(2,%)=0. (4.4)
3) The commutative additive group (CAG) E? and its underlying vector set E are said
to be adjoint of the AAG E and of its underlying point set (AAGM) E respectively.

«Togetherness» of E, EY, and V as constituent parts forming a single whole algebraic

system E° can be expressed by the following formal definition of the latter:
EC=EUEUV =EU(EUTUs)UV (4.5)
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subject to (2.12).e

Comment 4.1: Definition 4.1 has been made with the purpose to introduce specifically
the notions of an affine additive group and of an affine additive group manifold for
convenience in further references. At the same time, Definition 4.1 can obviously be altered to
introduce the like notions with “multiplicative” instead of “additive” or in general without
either qualifier. With the help of the appropriate substitutions, all corollaries that are deduced
below from Definition 4.1 can be restated so as to become corollaries of the respective

modified definition.e

Corollary 4.1: The identity law for V . For each x E :

V(x,%x)=0 (4.6)
and hence

V,(x)=0, (4.7)

v, (0)=x. (4.8)

Proof: (4.6) follows from (4.4) at z=y = X. (4.7) follows from (4.2) at y = X, by (4.6).
(4.8) follows from (4.3)at 7= 0, by (4.7).e
Corollary 4.2: The basic inversion law for V. For each (%, y) e ExE:
V(y, %)= (%), (4.9)
where =V (x,y) is the additive inverse of V(x,y). That is to say, V(y,x) and V (%, y) are the

additive inverse of each other.

Proof: By the variant of (4.6) with “y” or “z” in place of * X, it follows from (4.4) at
7=y that
V(%,y)+V(y,%)=0 for each (%,y)e ExE. (4.10)
The corollary immediately follows from (4.10) by the item CAGA4 of Definition 2.4.e
Corollary 4.3: A modified triangle law. For each (,y,2) e E*:
V(% y)+V(y,2)=V(x,2). (4.11)
Proof: By the equation V(2,%)==V (X, 2), which is the variant of (4.9) with * 2" in place
of * y’, and also by the item CAGAA4 of Definition 2.4, equation (4.11) is equivalent to (4.4).e

Corollary 4.4. The binary surjection Vv, (4.1), has the property that for each

(%,y) e ExE, there is exactly one 2 € E such that
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A

2=V, (¥)2V (%)= (y.%) 2%, (x) (4.12)
and conversely for each (Z,y)e E x E, there is exactly one x € E such that both (4.12) and
hence (4.3) hold and in addition

x=V,*(=2). (4.13)
That is to say, in accordance with AAGMAL, relation (4.3) is the inverse of relation (4.12) at
X held constant, whereas relation (4.13) is the inverse of relation (4.12) at y held constant.

At the same time, relations (4.3) and (4.13) are mutually inverses at Z held constant.
Proof: The train of equations (4.12) is the train (4.1), which is developed by

supplementing it by equation (4.9) and also by the variant with * X and * y” exchanged of the
definition occurring in (4.1). The train (4.12) is equivalent to this one:
22 =V, (X)=V(y,%) = (%) =, (y), (4.121)
while (4.13) is equivalent to the first equation in (4.12;). QED.e
Comment 4.2. By Corollary 4.1, at 720 and x= y, the conjunction of equations
(4.12) and (4.13) reduces to the conjunction of the variants of equations (4.6)—(4.8) with *y’
in place of “ X ’.e
Theorem 4.1. There is a binary composition surjection
PPExXxE—E, (4.14)
such that for each 2 € E : (a) for each x e E : there is exactly one y € E such that
y=P,(x)= P(x,2)=V,(2), (4.15)
and conversely (b) for each y € E : there is exactly one x € E such that
=P, (¥)=Ps(y)=V, (7). (4.16)
By (4.16), for each 2 € E :
P =P, (4.17)
the understanding being that the singular functions
P.E—>Eand P, “E—E, (4.18)
which are defined in terms of the binary function (4.1) by (4.15) and (4.16), are two mutually
inverse bijections.

Proof: The final definientia of the trains of definitions (4.15) and (4.16) are given by

equations (4.3) and (4.13) respectively, which are, by Corollary 4.4, mutually inverses at Z

held constant. At the same time, the relation * x = P, (y)’, occurring in (4.16), is the inverse
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of the relation “y=P,(x)’, occurring in (4.15), while the definition P,(y)=V, (1),

occurring in (4.16), is the variant of the definition P(x,2)=V, (), occurring in (4.15), with
“y’inplace of “x”and “=Z” inplace of “Z ".e

Comment 4.3. It should be recalled that the function V, ™, e.g., is the inverse of V, at
% held constant. At the same time, the function P, is the inverse of P, at Z held constant.

Therefore, the equations * P,(x) =V, *(2)" and P,(y)=V, (=), e.g., which occur in (4.14)

y
and (4.15), cannot be rewritten as * P,™(x) =V, (Z) " and ° P:{l(y)z\@(: 7)’ respectively. The
former two equations are true by definition, whereas the latter two are false.e

Definition 4.2. 1) The surjection (4.1) is called the first, or basic, surjection of the affine
additive group manifold E and also the vectorization of the set E x E .

2) The surjection (4.13) is called the second surjection of the affine additive group
manifold E and also the pointillage of the set E x E .

3) Given x € E, the bijection \7X. as defined by (4.2) is called the vectorization of the

point set E relative to the point x, whereas the inverse bijection \7{1

is called the pointillage
of the vector set E relative to the point x.
4) Given 7 e E, the bijection P, as defined by (4.14) and having the property (4.16) is

called the translation of the affine additive group manifold E over the vector 7. In this case,

the inverse bijection P, is, by (4.16), the translation of the affine additive group manifold

E over the vector =7 .e

Corollary 4.5.
B.(%)= P,(%) = P(0,%)=V, *(0)=x for each x E, (4.19)
whence
piop =p0)=1,, (4.20)

where 1. is the identity function from E onto E .

Proof: The corollary follows from (4.15)—(4.17) by (4.8).e
Definition 4.3. 1) For each (X, y) e E x E : the ordered pair (X, y), or (,y), is called the

position group-vector of the point y relative to the point X. The point x is called the base, or
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tail, of the position group-vector <x y), whereas the point y is called the head, or terminal,
of the position group-vector (%, ).

2) In contrast to a position group-vector, which belongs to the set ExE, a group-

vector, which belongs to the set E is called a free group-vector.e
Comment 4.4. The term “position group-vector” (“of a point relative to a point”) as

specified in Definition 4.3 should not be confused with the term ‘group-vector’ without the

qualifier ‘position’. By AAGMAL, to each ordered pair of points x and y in E, different or
not, there corresponds a unique group-vector 2=\7(>‘<, y) in E. Since V is a surjection,

therefore any group-vector Z € E is a class of equivalence of ordered pairs (x,y)e ExE of

points relative to the surjection V . In this case, this class is a regular one, i.e. a set, so that

7= {(x y>‘<x y)e ExEandV(xy)= 2} for each 2 e E (4.21)
and particularly

0={x, X)e B andV (% X) = 0fcE. (4.22)

These relations are of course tautologies, but they demonstrate that any attempt to treat the
vector as an arrow that has certain end points, i.e. a certain tail (base) point and a certain head
(terminal) point, is inconsistent. Therefore, the term “position group-vector” should not
mislead the reader. Either of these terms is just a synonym of the term “ordered pair of
points”.

2) Incidentally, if a vector group E¢ is treated as an autonomous algebraic system in no
connection with any affine group E° then a group-vector in E9 can be regarded as an
insensible nonempty individual. A point of E° is also an insensible nonempty individual. If,
however, EY is treated as the adjoint vector group of a certain affine group E® then, a group-
vector of E? including the null group-vector becomes, as explicated in the previous item, a
set (regular class, small class) of equivalence of ordered pairs of points of E¢ and therefore it

ceases to be a nonempty individual. At the same time, a separate ordered pair <x y) eExE,
i.e. a separate position group-vector, is a set, namely <x y) = {X{X y}} and therefore it is not

a nonempty individual either.

3) In the general case, a single point in E is not a group-vector in E, except a certain

special case to be explicated by Theorem 4.2 below in subsection 4.3.e
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Definition 4.4. For each ne
X = (X %) € E™, (4.23)
the understanding being that
Koy = (%) ={% e B, (4.24)
Corollary 4.6: The general contraction law for V with respect to 4. For each n e @5,

for each x , satisfying (4.23):

V(% %, ) V(% % )3 AV (%, %00 ) 3V (%, 40 %, ) = V(% %, ). (4.25)

Proof: The proof of the corollary is one by induction on “n’. Equation (4.25) at n =3 is

true by (4.11). Let us, therefore, assume that equation (4.25) is true. In this case, by the variant

of (4.11) with *x,’, “*X,’, and “X,,,” in place of *X’, “y’, and “z’, respectively, it follows
from (4.25) with n+1 in place of n that

|}7(X1’X2)$\7(X21X3); ;\7( n 21 n l)+V n -1 n J+V n’ n+1)
=V (4, %, )V (%, %) =V (3, %),

n?! n+l

(4.26)

where “x_,’ is, besides ‘ X,’, ..., “ X_’, another variable with values in E . The pair of square

n+1
parenthesis on the left-hand side of expression (4.26) indicates the way in which the
corresponding parts of that expression should be associated with respect to the vary last
occurrence of ‘4. By the item CAGA2 of Definition 2.4, the pair of square parenthesis can
be omitted, which proves that the variant of (4.25) with ‘n+1" in place of ‘n’ is true. QED.e

Corollary 4.7: A polygon law or a generalized Chasle law. For each n e w,, for each
XT[1an cE™:

V (%, %, ) 3V (X5, % )3 AV (X, %0 ) FV (X0, %, ) = 0. (4.27)
Proof: (4.27) immediately follows from (4.25) at X, ., = X,, by (4.6).e
Corollary 4.8: The general inversion law for V with respect to +. For each ne w,:

v = nx .
for each %, ,, € E™:

VG, ) =0 (6 2) TV 1) - PV (%) V3, )
_[ X, %) ]+[ V (X, 5 X, l)]fr J—[ V(%,,%,) ]+[ V (%, xz)] (4.28)
_V(xn,xn DFV(%, % ) F o FV (%, %, ) RV (%, %) =V (X, %, )

Proof: By the variant of (4.10) with “ x,” and “ X, ” in place of “* x> and *y’, respectively,

it immediately follows from (4.25) that
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(4.29)

At the same time, it is evident that

V(% %) =V (X, %00 ) FV (X gs X0 )3 AV (%g, %, ) FV (%, %), (4.30)
because this is the variant of (4.25) with ‘n—i+1" in place of ‘i’ for each i€ w,,. In this
case, by (4.10),

V (%1, %)=V (%,%.,) foreach ica,, ,. (4.31)

i+10 N

The conjunction of equations (4.29)-(4.31) is equivalent to (4.28). In the above proof, use of
the item CAGAZ2 of Definition 2.4 has tacitly been made. At the same time, the item CAGA5
of Definition 2.4 has not been. QED.e

4.2. Extensions of the surjection V and of the bijections P, and P, to the

power sets of their domains of definition

Definition 4.5. 1) For each x € E , foreach Y c E :

A

V({x}Y )=V (¥)

= bz =V (x,y)=V,(y)and (x ) < K}x¥ |< E (4:32)
2) Foreach 7 e E:
B,(X)=P(X,2)=V, (2
= {Y‘y = P,(x)=P(x,7)=V, *(2)and x e X }g E (4.33)
foreach X c E,
B )=Pu()=V,"C2)
= {x‘x =P, (y)=P;(y)=V, (2)and y eY}g E (4.34)

Hence particularly,
B,(E)=P(E,2)=V."(2)=E, . (4.35)
1 A
Z

Comment 4.5 (analogous to Comment 3.6): By the conventional definition of a power
set (see, e.g., Halmos [1960, p. 19]), the power sets P(Ex E) and P(E) can contextually be

defined as:

o1



X c Eif andonly if X eP(E) (4.36)

and similarly with *Y * in place of X ’. Therefore, definitions (4.32)—(4.34) extend the
relations (4.2), (4.15), and (4.16) and the functions involved in them to the pertinent power
sets. In accordance with the presently common practice, the extension of each one of the

functions is denoted by the same symbol as that denoting the original function. By (4.32), the
vector set V({x},Y)< E is the image of the set {x}xY c ExE in the adjoint vector set E
under the mapping V . Similarly, the point set F”z()'()g E is, by (4.33), the image (injection)
of a certain subset X of the underlying set E in that same E under the mapping P, whereas
the point set F'{l(Y')g E is, by (4.34), the image (injection) of a certain subset Y of the
underlying set E in that same E under the mapping P,™*. At the same time, the point set
P,(X )< E can alternatively be treated as the translation of X in the result of translation of E
over the vector 7 e E, whereas the point set F’{l(Y')g E can alternatively be treated as the

translation of Y in the result of translation of E over the vector 27 c E .o

4.3. Self-adjoint affine additive group manifolds

Theorem 4.2. A commutative additive group EY and its underlying vector set E are
self-adjoint affine ones, denoted also by “ E¢” and * E * respectively, i.e.
EY=E’and E=E, (4.37)
if the surjection Vv, (4.1), is defined as:
V(%,§)=922=93(:%)eE foreach (%,9) cE x E. (4.38)
Proof: In accordance with (4.37) and (4.38), let x=Xe E and similarly for all other

point-valued variables with an overdot. By (4.38), equation (4.2) becomes

2=V, (9)=V(&,9)=9=%. (4.39)
Solving equation (4.39) with respect to “ y’ yields the pertinent specification of equation (4.3)
in the form

Y=V, ()= 2+%. (4.40)

By (4.38), equation (4.4) becomes
yaR3iayirai=0, (4.41)
which is a tautology. Thus, under definitions (4.37) and (4.38), both axioms AAGMAland
AAGMAZ2 of Definition 4.1 are satisfied. QED.e
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Comment 4.6. 1) By (4.38) or (4.39), equation (4.6) becomes

A

X2X=0. (4.42)
This equation is a tautology, i.e. it is always true, although it cannot be deduced from (4.41) as
was done in the general case. Likewise, one can readily check the validity of all corollaries

that have been deduced from Definition 4.1.e

5. Affine spaces

5.1. An affine space as an affine additive group
Preliminary Remark 5.1. When EY is successively supplemented by the appropriate
additional attributes to become first a vector space é(R) and ultimately an n-dimensional
Euclidean vector space EH(R), E° is automatically self-adjusted to all current
metamorphoses of its adjoint CAG E° to become first an affine space E(R) and ultimately
an n-dimensional Euclidean affine space E, (R). The following definitions of this subsection

are subject to the above way of development of E9.e
Definition 5.1. 1) An affine additive group (AAG) E¢ is called an affine space over the

field R of real numbers and also a real affine space (RAS) and it is denoted by * E * or E(R)’
if and only if the commutative additive group = adjoint of E° is a vector (linear) space over
R, i.e. a real vector (linear) space, denoted also by E’or* E(R)’.

2) A real vector space E(R) is a self-ajoint real affine space, which will alternatively be
denoted by * E(R) or briefly by * E * if it is a self-ajoint real affine additive group as defined
by Theorem 4.2.¢

Definition 5.2. Given n € @, an affine space E over R is said to be n-dimensional and
it will be denoted by “ E, * and also by ° En(R)’ if and only if the vector space E adjoint of

E is an n-dimensional vector space over R, denoted by ‘En’ or ‘EH(R)’. Accordingly,
besides the variables such as “ x* and * X ’, which denote elements of the respective underlying

sets E and E in general, the variables such as ‘X" and ‘X, " will often be used to denote

elements of the above underlying sets once they are specified as E, and én respectively.e
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Corollary 5.1. Given n € @, , the n-dimensional real arithmetical vector space E, (R) is
an n-dimensional self-adjoint real affine space, provided that
V()A(v 9):\7(7[1,n]v 7[1,n])E Yin = X = <y1 — Xy Yo — Xn>
- < X+ Y X, + yn> =X + Ym € E{n}’
in accordance with (3.16) and (4.39).

Proof: The corollary is a specification of Theorem 4.2 in the particular case where

(5.1)

E=E=E, Xx=%X=%,,€E,. (5.2)
and similarly with any other pertinent letter, as ‘y’ or ‘z’, in place of ‘x’.e

Definition 5.3. An affine space E(R) is called a Euclidean affine space over R and also
a Euclidean real affine space if the vector space E(R) adjoint of E(R) is a Euclidean real

one.e

Definition 5.4. Given n e @, an n-dimensional real affine space E, (R) is called an n-

dimensional Euclidean real affine space if the vector space E,(R) adjoint of E,(R) is an n-

dimensional Euclidean real vector space.e

5.2. A combined rectilinear coordinate system in an n-dimensional real affine
space and a combined normal orthogonal rectilinear coordinate system in an n-

dimensional Euclidean real affine space
Convention 5.1. For more clarity, the variables and constants that denote subsets (parts)

of E, or én will hereafter be provided with a subscript ‘,’, whereas the variables and
constants that denote points in E, or vectors in én, will be provided with a subscript “fny’.
Thus, for instance, * X’ or * Xqy~ Will be used instead of or interchangeably with * X or‘x’
for mentioning an arbitrary subset of E, or an arbitrary point in E, respectively. Likewise,

‘ )Zn’ or ‘X, will be used instead of or interchangeably with X * or “ % for mentioning an

A

arbitrary subset of En or an arbitrary vector in E_ respectively. The letters ‘X’ and ‘X’ in the

above examples can be replaced by any appropriate letters (as ‘Y’ and ‘y’ or ‘Z” and ‘z’) of the

same fonts of the Latin or Greek alphabet. Also, ‘ x’ can be replaced by the digit ‘0’ with the

understanding that 0 or O, is an arbitrary given reference (origin) point in E,, whereas 0,

is the null vector in én, which has previously been denoted by “0°.e
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Definition 5.5. 1) Given n e o, given an n-dimensional real affine space E,(R), given
a point O{n} e E,, given a basis er[lvn] € én”x as defined by (2.50): the ordered pair c, , defined

as:

C{n} = <0{n}:é[1,n]> € En X EnnX (53)
is called a combined rectilinear, or Cartesian, coordinate system in En(R) with the origin
O,y in E, and basis €, in E,.

2) If the space E,(R) is Euclidean and if its basis &, is a normal orthogonal basis

(NOB), defined by (3.26) subject to (3.27), then the coordinate system c., is called a

combined normal orthogonal (rectangular), or orthonormal, rectilinear coordinate system

(CNORCS or CONRCS) inE, (R).e
Convention 5.2. Henceforth, the spaces E,(R), E,(R), and E,(R) are assumed to be
Euclidean and the coordinate system c,,, which is defined by (5.3), is assumed to be a

CNORCS (CONRCS).e
Comment 5.1. 1) By the “only-if” part of the theorem of ordered pairs for sets, (2.22),

the fact that a coordinate system c, as defined by (5.3) is given means that both the origin
O{H} cE, of C,y and the basis 5[1,n] € én”X of c,, are given. At the same time, by Theorem 3.8
and Definition 3.14, given a basis E[m € én”X, there are two mutually inverse isomorphisms

C, and C. ™ between the n-dimensional vector spaces E,(R) and E,(R) with the

€[1,n] [1,n]

property that for each X, e En there is exactly one X, ,, € E, such that

X1 =C: (), (5.4)

i

and conversely, for each X, , € E, : there is exactly one X, € E, such that

A = 1 =
Ry = Cef[m (x[m), (5.5)
Also, by the item AAGMAL of Definition 5.1, given a point O{H} e E, , there are two mutually
inverse bijections \70{} and \70{}‘1 between the n-dimensional affine space E,(R) and its

adjoint n-dimensional vector space én(R) with the property that for each %, € E., there is

exactly one X, € E. such that
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Xery =V, (X{n}) = \70{“} (O{nr X{n})' (5.6)

Ogny

and conversely, for each X, € E, : there is exactly one X, € E, such that

Xy =V (R )- (5.7)

Ogny

2) In connection with the above said, it is worthy to recall that besides the isomorphisms

C. and C_:g[1 ]‘1, which depend on the choice of the basis E[lln] € én”x, and also besides the

S

bijections VA% and \/Ao{n} 1, which depend on the choice of the origin O{n} e E, , there are in the
affine space E,(R) two mutually inverse bijections, which do not depend on the choice of a
coordinate system c, in E.(R), but which do depend on the choice of a vector in E,, and
hence in EH(R), as a parameter. Namely, according to Theorem 4.1, given 7, € En, for each

X € E, there is exactly one y,,, € E, such that

. : . - A —\7 1(a
Yoy = Pz}n}(x{n}) = P(x{n},z{n}) Vi (Z{n})’ (5.8)
and conversely, for each y,, € E, there is exactly one Xy € E, such that
5 s 1. o . 7 Af. A
X{”} = Pi{n} (y{n}): P:f{n} (y{n}):VX{n} (- Z{n})' (59)

In this case, according to the item 4 of Definition 4.2, the bijection F’f{n} is the translation of

-1

the affine space E,(R) over the vector 7 is the

m» Whereas the inverse bijection P,
{n}

translation of E, (R) over the vector =7, .e

Corollary 5.2. Given n e e, given a CNORCS c,,in E, (R) as defined by (5.3), there

IS a composite bijection

A

=C. oV, :E >E, (5.10)

Ceny é[1,n] O{n} n n

with the property that for each x, E, there is exactly one Xin) € E, such that

X = Ko, (%) (5.11)
and there is also the inverse composite bijection
K, '=v. 'C. ":E,>E, (5.12)

Cy Oy €1n)

with the property that for each X, ,, € E, there is exactly one X, e E. such that

Xy = K, _1(7[1,n])- (5.13)

Ciny
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Proof: The corollary follows from Comment 5.1.e

Definition 5.6. Given n € e, given a CNORCS ¢, in E,(R) as defined by (5.3):

1) For each x., € E,.., the arithmetical vector (point) Xn] € E, as given by (5.11) (see

{n}
also (3.47) subject to (3.48) or (3.49)) is called the ordered n-tuple of coordinates of the point

Xy € E, relative to the coordinate system Cny -

2) For each x, ,, € E,, the point Xy € E, as given by (5.13) is called the point with the
n-tuple X, ., € E, of coordinates relative to the coordinate system c,, .

3) The bijection (5.10) is called the coordinatization of the [abstract] affine space
En(R) relative to the coordinate system c, , whereas the inverse bijection (5.12) is called the
[abstract] pointillage of the arithmetical vector space En(R) relative to c, (cf. Definition

3.14).
Corollary 5.3. Given ne ,, given a CNORCS c,, in E (R) as defined by (5.3):

~

C. =K, oV, “E —>E, (5.14)
€[1,n] {n} {n}

=~ 1. e g = R

Cg[l,n] o O{n} Kc{n} TN - En ' (515)
- _ — 71 o — . . ~

Vo{n} - C§[1,n] Kc{n} ) Eﬂ - En ' (516)

\7 _1:K _10(_: :é _)E . (517)

Ony Ciny & n n

Proof: Multiplying (5.10) by ‘\/Ao{n}’l’ from the right or by ‘C_:g“ ]‘l’ from the left yields

(5.14) and (5.16) respectively. Equations (5.15) and (5.17) are deduced from (5.12) in the
similar way. Alternatively, (5.15) and (5.17) can be obtained by forming the inverses of the

expressions on both sides of each one of equations (5.14) and (5.16).e

Corollary 5.4. Given ne w,, given a CNORCS ¢, in E (R) as defined by (5.3), the
ordered n-tuple X, € E, of coordinates of a given point X, € E. relative to the coordinate
system cg, coincides with the ordered n-tuple of coordinates of the vector X, e én, as

defined by (5.6), relative to basis &, ,; € E,"”".
Proof: Substituting ‘X, * as given by (5.6) into the expression on the right-hand side of

equation (5.4), and then making use of (5.10) in the result, one obtains
X = Cy (v% (% )) = (Cé[m oV, )(x{n}) =K., (%), (5.18)
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in agreement with (5.11).e

Corollary 5.5. Given n e e, given a CNORCS ¢, in E,(R) as defined by (5.3):

C.. (04y)=0ury: Co, (0ns) = Oy (5.19)
\70{“} (O{n}): 6{n}'\70{n}71(6{n}): Ogry (5.20)
Km (O{n}) - ﬁ[m’ Kc{n} _l(ﬁtl,n]) = O{n}1 (5.21)

where O{H} is the zero vector in E, and 0.y s the zero vector in E, as defined by (3.39) and

(3.40).
Proof: The corollary follows from equation (3.64) (Theorem 3.8), Corollary 4.1, and
Corollary 5.2, by Convention 5.1.e

5.3. Extensions of the bijections V,, V,*, B,, B, K. ,and K, ~ to the power
sets of their domains of definition
Corollary 5.6. 1) Given ne @, given O, € E,, for each Y, c E,
v ({O{n} } Y, ) - V{o{n} }(Yn )
= {12 =V (x,9) =V, (y)and (x.) & O, }xV, |< E,.

2) Given ne @, , foreach Z,, e E :

(5.22)

~

pzm (Xn ) = F"(Xn' 2{n})= Vx{n}_l(i{n})
Yoy = P (%03)= Pl 20y )=V (g Jand 5, € X, | E, (5.23)
foreach X, c E,,
pz{n}_l(Yn ) - p:f{n} (Yn ) = \7Y‘n N (: 2{n})
Xy = Pay (y{n}) P <y{n}):\7y{n}_l(: i{n})and Yim EYn}g E, (5.24)
foreachY, c E,.

= {y{n}

= {X{n}

Hence particularly,

\7({0{,1}}, 'n)=\7 ( )
z{}( ) (En,z{n}) A'n (2{n}) E,, (5.25)
P (E ) Pz{}(En)E\isn_l( {n}) =
Proof: The corollary is a specification of Definition 4.5 subject to Convention 5.1 and

particularly subject to equations (5.6), (5.8). and (5.9).e
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Definition 5.7. Given n € e, given a CNORCS ¢, in E,(R) as defined by (5.3):

l?c{"} (Xn)E {)_([1,n] Y[l,n] = l?c{n} (X{n})and X{n} € Xn }g En

o (5.26)
foreach X, c E,
Kc{n}il(fn)g {X{n} Xy = Kcm_ l(i[mzand Ko € X n} cE, (5.27)
foreach X, c E,,
whence
K., (E)=E.K_"(E)=E,. (5.28)

Comment 5.2 (analogous to Comments 3.6 and 4.5). By (4.36) and (3.78), definitions
(5.26) and (5.27) extend the functions Kc{n} and Kc{n}‘l, as defined originally by (5.10) and

(5.12), from the sets E, and E, to the power sets P(En) and P(En) respectively. In

accordance with the presently common practice, the extensions have been denoted by the
same symbols as the original functions, — just as in Definitions 3.15 and 4.5. By (5.26), the

arithmetical vector set Kc{n}(Xn)g E, is the image of the point set X cE, in the
arithmetical vector space E, under the mapping K{n}. Similarly, by (5.27), the point set

I?c{n}’l(f )< E, is the image of the arithmetical vector set X, o S E, in the affine space E,

under the mapping K,

Corollary 5.7. Given ne @, given a CNORCS ¢, in E,(R) as defined by (5.3): the
[syntactical] variants of relations (5.10), (5.12), and (5.14)-(5.17) with ‘P(En)’, ‘P(En)’, and

‘P(En)’ in place of ‘E,”, *E,’, and * én’ respectively are semantically sound; that is,

K 2Cs,, Vo, -P(E,)>P(E,), (5.29)
K., "=V, toC, ":P(E,)->PE,), (5.30)
Cav = Koy Vi, P(E,)>P(E,). (5.31)
o =V, oK PE ) > PE,). (5.32)
V,, =C, oK, :PE,)-P(E,), (5.33)
Voo, =K, 0Co :P(E,) - P(E,) (5.34)

Proof: By (5.10) subject to (5.4) and (5.6), it follows from (5.26) that

59



Ko (Xn): {x[m Xiynp = 6/0{“} x{n} )and Xy € X }

= {Y[Ln] Xun = ( 5 Voo, Xx{n} )and Xy € X } (5.35)
=(C oV, X n)foreach X cE,

eun Oy

which proves (5.29). Equation (5.30) is proved analogously from (5.27) by (5.12) subject to
(5.5) and (5.7). Equations (5.30)—(5.34) are proved from (5.14)-(5.17) after the same manner
by making use of (5.4)-(5.7), (5.11), and (5.13).e

5.4. Simplest figures in an n-dimensional Euclidean real affine space E,(R)

Definition 5.8. 1) In the following definitions, it is assumed that En(R) is a given n-

dimensional Euclidean real affine space, in which a CNORCS c,,, , defined by (5.3). It is also

assumed that 4 =4, € E, and b=b

iy € E are arbitrary given points and that X = X, € E IS

a current point — three points in E, (R), the coordinates of which relative to Cqy are

coordinates of the respective arithmetical vectors

By = (81,80 2y) € By by = (B, D ! b,) € E, (5.36)
Xnp = (X0 Xgrenms >eE
so that
V(O{n},a{n}) —E (O{n}’b{n}) -il\-b V(O{n},x{n}) _E X "€ (5.37)
2) The point set p(a,b)c E, , defined as:
p(a b) { '\/(a X)= _";‘_(xi ~a)%¢ andx, e [aj,bj]for each j Ea)l,n}’ (5.38)
i=1

is called the [space] position vector, or [space] radius-vector, of the point b relative to the
point a.
3) Particularly,
pl0.4) > 1o e
n - (5.39)
— {X'\;(O, X): Fx76andx, e [O,aj]for each j e a)lyn},
i=1
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5(0.6) > b ¢
i=1

n (5.40)
- {X’VA(O, X): Fx78andx; e [O,bj]for each j e a)l’n},
i=1
the understanding being that
€ — { MO X)=x26 and x e [O,l]}for eachicaw,,. (5.41)

4) According to the above item 2, r)(a,b)e P(En), where P(En) is the power set of the

set E,. Let P cP( )be the set of all position vectors of E,(R) relative to the origin 0,

of the given c, . There is a real-valued binary function e: F3C X PC“ — R, which is called the
inner, or scalar, multiplication function on '3%} and which is contextually defines as:

¢€, > e¢ =7 foreachicw , andeach jew,, (5.42)
subject to (3.27). Therefore, for each ﬁ(Q a)e P, and each r)(O, b)e P,

faa)s o) (£ 763 30,6 |- 3 ha v ese)

i=1

.+>:

1]
U

[N

~3 5@ b)6=3(a-b) (5.43)
i=1j=1 i=1
~Hn)6se)-( Faca o 40,26 |00 06s)
i=1j= i= j=

Consequently, in (5.39) and (5.40), the new binary function =: (R x P )U (|5Cm X R)—> f’c{n} of

Cgny
multiplication of each one of the orthonormal position vectors €, €, , €, , and hence of
each one of the position vectors of the set by a scalar or R in either order has been defined
contextually as a by-side product of explicit definitions of [3(0, a) and E(Q b).o
5) The ordered pair ¢, , defined as:
Coy = <O{n}'e[1 n]> € E,x Pc{n}nx (5.44)
subject to

€1 > (6,6,..,6)eP, ™ (5.45)

Cny
is called a uniform normal orthogonal (rectangular), or orthonormal, rectilinear coordinate

system (UNORCS or UONRCS) in En(R). It is understood that the coordinates of any point of
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Xeny € E, relative to ¢,y are the same as the coordinates of that point relative to c,,,. However,
a vector X, € En cannot be expanded into the basis (5.45). Therefore, ¢, is unusable.e
Definition 5.9. 1) Given ne w,, given X,; ., € E,, given r e (0,+x),

<r

<r (5.46)

o

N _ o
B, (r, X*[l,n])= {X[Ln] X1.n € E, and ‘X[Ln] = Xn
N

Bn (r’ X*[l,n]): {X[l,n]

nb (r, Xuwn ) = {)_([1,n]

Y[1,n] € En and ‘)_([1,n] = Y*[l,n]

Y[1,n] € En and ‘Y[l,n] = )_(*[1,n]

o

subject to

= I3 (x = x,F 0. (5.47)

i=1

‘Ytl,n] = X

The sets By (r,i*[lvn]), Be(r,X,u)s and BP(r, X, ) are called respectively the open sphere (or
the spherical neighborhood), the closed sphere, and the spherical surface, in E, of radius r
centered at the pointx,;, .. The word “ball” can be used interchangeably with the word

“sphere”.

2) Given a CNORCS cg, in E,(R), relative to which the coordinates of a certain point

Xy € E. are coordinates of the arithmetical vector

Kqin = (X Xogreor Xop ) € By (5.48)

so that

V(00 %)= 1,76, (5.49)

=1

the sets B;’(r,x*{n}), Bﬁ(r,x*{n}), and B:(r,x*{n}), defined as:

Be(r, X*{n})E {X Xin € By (r 7*[1,n]>a“d\7(x*{n}’ X)= ;I\—I(Xi ~%;)* éi}’

Bﬁ(r, X*{n})z {x X1n € By (r, Xk[l’n])andV(x*{n}, X): _'|rl_(xi -x,)? éi}, (5.50)
i=1

Br?(r’ X*{n})z {X X[l,n] € gnb (I’, Y>|<[1,n])and\i()‘(*{n}’ X): -,T\-(Xi - X*i )"\ éi}
i=1

are called respectively the open sphere (or the spherical neighborhood), the closed sphere,

and the spherical surface, in E, of radius r centered at the point Xty -

Comment 5.3. 1) At n =1, definitions (5.44) become
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B/ (r’ Kﬂ[l,l]): (X*l X+ r)’ B (I’, Kﬂ[l,l]): [X*l —NnLXa+ r]’

o (5.51)
B’ (r’ X*[l,l]): {X*l X, + r},
the understanding being that
Ky = (Xa) = X - (5.52)
2) Definitions (5.50) are evidently equivalent to
B (1, X.)
= {x X, € E, and ‘7[1,,1] =Kpm|<r and\?(x*{n}, X)= _';\_(xi -x,)? éi},
i=1
B, (r, X*{n})
_ R o 5.50a
= {x X0 € E, and ‘Y[l,n] =Xpm| ST andV(X*{n}, x): _|_(xi -x,)* éi}, ( )
i=1

By (r, X*{n})

=r and\?(x*{n}, X): i(xi - X*i)?é\i }

;{X

5.5. A real-valued function defined in E, versus a real-valued function defined

Y[1,n] € En and ‘Y[l,n] = )_(*[1,n]

in E,
Preliminary Remark 5.1. In what follows, it is shown that given a coordinate ¢, in
E., a function @, , defined on a certain set X < E, can be reduced to the respective real-
valued function @, defined on the respective set X, c E, .

Definition 5.10. Given a Euclidean real affine space E, (R) of a given dimension
new, let @, be areal-valued function from X, c E,, to Y € R=(~o,), i.e. a function

whose domain of departure (Dgy), domain of arrival (D,), domain of definition (Dgf), and

domain of variation (D,) are En, R, Xn ,and Y respectively. Thus, symbolically,
D, X, >Y, (5.53)

so that
D, (. )=E,.D,(®. )=R.D,(0, )=X, cE, Do, )=Y R (5.54)

Consequently, for each %, € X, there is exactly one y €Y such that

y=® (X ). (5.55)e
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Definition 5.11. By (5.13) and (5.27), it follows from Definition 5.10 that there is a

composite function

D, X, Y (5.56)
subject to
A Y (5.57)
so that
D@ )=E, D,(®; )=R.D,(®; =X, cE, D& )=Y cR. (5.58)

Consequently, for each X, ,, € X, there is exactly one y eY such that

y= CDEH (Y[l,n]): @En (Kc{n}il(i[l,n])) (559)0

5.6. A real-valued function defined in T xE, versus a real-valued function
defined in T xE, orin RxE,
Preliminary Remark 5.2. If exists, a hypothetical measurable time-dependent physical
field occurring in an n-dimensional Euclidean real affine space E,(R) should be described by

one or more real-valued functions such as Y.

e, which is defined on the direct product

T x X, , where X, is a certain connected subset of E, . In what follows, it is shown that given

coordinate systems w in T and c; in E,, a function ¥, . can be reduced to a certain real-

n

valued function ¥ . defined on the direct product 7" x X, where X, is the pertinent subset
of E, .e

Definition 5.12. Given a Euclidean real affine space E (R) of a given dimension
new, let ¥, . be a real-valued function from T x X, T xE, to Y cR=(-o0,), ie. a

function whose domain of departure (Dgp), domain of arrival (D,), domain of definition (Dgr),

and domain of variation (D,) are 7xE,, R, 7x X_,and Y respectively. Thus, symbolically,

. An:TxXn—>Y, (5.60)

TxE
so that
de(ijxEn):T xE,, Da(l‘”‘xe‘ ): R,

T n
):TXX"QTXEH'DV(SUT‘XEH):YQR. (5.61)

D, (¥

TxE,

Consequently, for each <§ x{n}> e T'x X, there is exactly one y €Y such that
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V=¥ (é %), (5.62)
Definition 5.13. By (5.13) and (5.27), it follows from Definition 5.12 that there is a

composite function

Ve T X, —>Y (5.63)
subject to
i =¥, © (Kw_l x Kcm_l)’ (5.64)
so that
Dy, (?’T_x c )_: T x_En, D% )=R 559
Dy (foﬁn):T xX, T xE,, Dv(ylfxE ):Y cR
Consequently, for each <E 7[1,n]> e T x X, there is exactly one y e Y such that
y= l}/fxﬁn (6? ' )T[l,n])= ijxE'n ((Kufl x Kc{n[l)(e? ' 7[1,n])) (5.66)e

= YITxEn (Kw_l(g)' Kc{n}_l()_([l,n] ))
Definition 5.14. The mapping y:T — R, under which, e.g., Z({x())):xo for each
(x,) €T, is a bijection. Hence, the mapping z:R—T, under which »7(x))=(x,) for

each x, € R, is the inverse of that bijection. Consequently, for each <x0,7[l’n]> eRx X, ie.

for each x, € R and each X, , € X,

l//<lyn>(xo’ )_([l,n])é Vr«E, (Xo')_([l,n])E YITXE (Z(Xo)' X[l,n])é TfXEn (<X0>’ x[1vn])’ (5'67)

n

so that

de(l//<1’">)= RxE,, Da(y/<l'n>)= R,

D (‘//<l'n>)= Rx X, cRxE,, Dv(,/,<1'” ):Y cR: (5.68)

=

“WM* on <y’ stands for the combined weight of the function ™", i.e. it

the superscript
indicates that there is 1 independent real-valued time-like variable as ‘ x,” and n independent

real-valued spatial variables as “x’°, ..., *X,’, to which the functional variable (operator)

1//<1’”>’ can apply with the understanding that the last n variables are components of an

arithmetical vector. Consequently, for each <XO’Y[1,n]> e Rx X, there is exactly one yeY <R

such that y = ™" (x, %, ,, )¢
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5.7. An n-dimensional primitive (Bravais) affine lattice

Preliminary Remark 5.3. This short subsection is a minor digression, which is
designed to generalize the notion of a three-dimensional primitive (Bravais) crystal lattice
(see, e.g., Landau & Lifshitz [1980, chapter XIII, 8129, pp. 403-404]) in the three-

dimensional Euclidean real affine space E,(R) to the case of any dimension ne e, and to

demonstrate that an n-dimensional primitive lattice can formally be defined as an n-

dimensional affine additive group E? in an n-dimensional Euclidean real affine space
E,(R).
Theorem 5.1. Given n € @, given an n-dimensional Euclidean vector space én(R), let

a,, ..., 4, ben linearly independent vectors in En. The set /]n defined as

Azz{z

is the underlying vector set, which together with the restricted binary addition function

= _'|\_mi *a andm;el_,  foreachje a)lvn} - én, (5.69)
i=1

A

J?:Anx/Aln —>/A1n and together with the restricted singulary additive inversion function

f:flﬂ —>flﬂ relative to the null-vector 0 ,, forms a commutative additiver group in én(R) to

{n}
be denoted by “ A_’, so that formally

4,2 4,UFUz. (5.70)
The group /in will be called an n-dimensional primitive (or Bravais) vector lattice.

~

Accordingly, the vectors &, ..., 4, will be called basis vectors of the vector lattice A,

whereas the ordered n-tuple

8y = (88, e A" CE (5.71)
is called a basis of the vector lattice /in . Elements of /]n are called lattice vectors of /in and
therefore the underlying set /Aln itself is called the set of lattice vectors.

Proof: By (5.48), a common (general) element X of the set /1n IS given as
i=1m"4, wherem el_,  foreach jew,. (5.72)
i=1

It can be verified by the corresponding straightforward computations that fln satisfies all

axioms of Definitions 2.4 and 4.1. QED.e
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Definition 5.15. Given n e @, an n-dimensional primitive, or Bravais, affine lattice A,
is a certain underlying set A_ of points, which is called the set of lattice points, together with

the vector lattice /]n and also together with a surjective binary function

ViAdxA > A (5.73)
which is the pertinent restriction of the function (4.1) and which satisfies two lattice point
axioms (LPA’s), being the pertinent restrictions of AAGMAL1 and AAGMA2. LPAl and
LPA2 are, mutatis mutandis, word for word the instances of AAGMAL and AAGMA2, in

which ‘E’ with an overdot or with a caret is replaced by “ A, with the same overscript. The

«togetherness» as stated above can be expressed by the following formal definition of A :
A=A UA, UV =4 U(4, UTU=)UV (5.74)

subject to (5.49). The vector lattice /]n and its underlying set fln of lattice vectors are said to

be adjoint of the affine lattice A, and of its underlying set fln of lattice points, respectively.e
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