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1 – Introduction 

 

 The reading the last pages of chapter 10 of the book by Ian Stewart, 

"Seventeen Equations that Changed the World" [1], reminded me once again of the 

importance of the Navier-Stokes equations, especially of its solutions. A sense of 

urgency proved necessary for this issue. It is not equal to seek proof of the 

Riemann hypothesis, which although it is one of the most difficult problems of 

mathematics does not seem to bring greater immediate consequences to the world. 

 The problem of the Navier-Stokes equations described in the Millennium 

problems[2] is solved by the case (C), the breakdown of the solutions[3], [4], although 

I recognize that the cases more interesting and useful to solve would be the cases 

(A) and (B), the proof of existence and smoothness of their solutions for all initial 

velocity 𝑢0(𝑥) obeying determinate conditions. 

 The world is running a serious heating problem, either by natural or human 

causes. The more likely they are combined causes, of course. The northern 

hemisphere is heating up more (much more...) that the southern hemisphere, so 

we cannot rule out the human influence in this heat. Evidently the northern 

hemisphere is the most industrialized hemisphere of the world, which produces 

more heat due to their machines, and thus would be more likely to contribute to 

this warming. 

 The problem of global warming is not only the increase in temperature, the 

feeling of discomfort, but also in the disasters that it is able to produce, as the 

melting ice of the poles, the corresponding increase in sea levels, as well as 

torrential rains, storms, fires and the most destructive hurricanes. 

 According Ian Stewart in the mencioned book, two climate vital aspects are 

the atmosphere and the oceans. Both are fluid, and both can be treated using the 
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Navier-Stokes equation. The secrets of the climate system are closed in the Navier-

Stokes equation. He said, referring to a research council document in physical 

sciences and engineering (EPSRC – Engineering & Physical Sciences Research 

Council, from United Kingdom), published in 2010: "The secrets of the climate 

system are closed in the Navier-Stokes equation, but it is too complex to be solved 

directly". Instead, researchers of climate models are using numerical methods to 

calculate the fluid flow at the point of a three-dimensional grid covering the globe 

from the depths of the oceans to the highest points of the atmosphere. The 

horizontal grid spacing is 100 km; anything less makes your computation 

impractical. Faster computers will not serve much, then the best way forward is to 

think harder. Mathematicians are developing more efficient means to numerically 

solve the Navier-Stokes equation. 

 Then that's it. The purpose of this paper is to find a solution to the system of 

Navier-Stokes equations, given the initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ𝑛, 𝑛 = 2 

and 𝑛 = 3, for both the cases that must be obeyed the equation of 

incompressibility, ∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0, as also for the general case, any values of  ∇ ∙ 𝑢 

and ∇ ∙ 𝑢0. Obviously this method can be used for the numerical solution of that 

equations, which I hope to have your accuracy greatly increased (1 m or less 

instead of 100 km would be excellent). A grid with width cell 100 km is absolutely 

unreliable. 

 

2 – Solution for 𝒏 = 𝟐 

 The system of Navier-Stokes equations in spatial dimension 𝑛 = 2 is 

(2.1)  {

𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
= 𝜈∇2𝑢1 + 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
= 𝜈∇2𝑢2 + 𝑓2

 

or in vectorial form 

(2.2)  ∇𝑝 +
𝜕𝑢

𝜕𝑡
+ (𝑢 ∙ ∇)𝑢 =  ∇2𝑢 + 𝑓, 

where 𝑢(𝑥, 𝑦, 𝑡) = (𝑢1(𝑥, 𝑦, 𝑡), 𝑢2(𝑥, 𝑦, 𝑡)), 𝑢: ℝ
2 × [0,∞) → ℝ2, is the velocity of 

the fluid, of components 𝑢1, 𝑢2, 𝑝 is the pressure, 𝑝: ℝ2 × [0,∞) → ℝ, and 

𝑓(𝑥, 𝑦, 𝑡) = (𝑓1(𝑥, 𝑦, 𝑡), 𝑓2(𝑥, 𝑦, 𝑡)), 𝑓: ℝ
2 × [0,∞) → ℝ2, is the density of external 

force applied in the fluid in point (𝑥, 𝑦) and at the instant of time 𝑡, for example, 

gravity force per mass unity, with 𝑥, 𝑦, 𝑡 ∈ ℝ, 𝑡 ≥ 0.  The coefficient  ≥ 0 is the 

viscosity coefficient, and in the special case that  = 0 we have the Euler equations. 

∇ ≡ (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
) is the nabla operator and ∇2 = ∇ ∙ ∇ =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
≡ ∆ is the Laplacian 

operator. 
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 If 𝑢1 and 𝑢2 are solutions of system (1) then are valid the following 

equalities: 

(2.3)  𝑢2 =
𝜈∇2𝑢1 + 𝑓1 − (

𝜕𝑝

𝜕𝑥
 + 

𝜕𝑢1
𝜕𝑡
 + 𝑢1

𝜕𝑢1
𝜕𝑥
)

𝜕𝑢1
𝜕𝑦

, if  
𝜕𝑢1

𝜕𝑦
≠ 0, 

and 

(2.4)  𝑢1 =
𝜈∇2𝑢2 + 𝑓2 − (

𝜕𝑝

𝜕𝑦
 + 

𝜕𝑢2
𝜕𝑡
 + 𝑢2

𝜕𝑢2
𝜕𝑦
)

𝜕𝑢2
𝜕𝑥

, if  
𝜕𝑢2

𝜕𝑥
≠ 0. 

 The equation (2.3) says that 𝑢2 is a function of 𝑢1, as well as the equation 

(2.4) says that 𝑢1 is a function of 𝑢2. Therefore, if we have the correct value of 𝑢1 

we can get the value of 𝑢2, and vice versa, need for this too that the pressure can be 

obtained. The equations (2.3) and (2.4) can not contradict each other, i.e., the 

obtaining 𝑢2 given 𝑢1 in (2.3) must be verified next by the use of the equation 

(2.4), confirming it, and vice versa. If the pressure 𝑝 is not a given function for the 

problem, both equations (2.3) and (2.4) need be solved to the complete 

obtainment of 𝑝. Thus, in principle, the velocity and pressure can be obtained 

completely following this method, since that 
𝜕𝑢1

𝜕𝑦
 
𝜕𝑢2

𝜕𝑥
≠ 0. In this case, the systems 

(2.3)-(2.4) and (2.1) are equivalent. 

 The solutions (2.3) and (2.4) are valid for all 𝑡 ≥ 0 on condition that 
𝜕𝑢1

𝜕𝑦
 
𝜕𝑢2

𝜕𝑥
≠ 0, and in this case, in 𝑡 = 0, defining 𝑓(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦) and 

𝑝(𝑥, 𝑦, 0) = 𝑝0(𝑥, 𝑦), we come to 

(2.5)  𝑢2
0 =

𝜈∇2𝑢1
0 + 𝑓1

0 − (
𝜕𝑝0

𝜕𝑥
 + 

𝜕𝑢1
𝜕𝑡
|𝑡=0 + 𝑢1

0 
𝜕𝑢1

0

𝜕𝑥
)

𝜕𝑢1
0

𝜕𝑦

, if  
𝜕𝑢1

0

𝜕𝑦
≠ 0, 

and 

(2.6)  𝑢1
0 =

𝜈∇2𝑢2
0 + 𝑓2

0  − (
𝜕𝑝0

𝜕𝑦
 + 

𝜕𝑢2
𝜕𝑡
|𝑡=0 + 𝑢2

0𝜕𝑢2
0

𝜕𝑦
)

𝜕𝑢2
0

𝜕𝑥

, if  
𝜕𝑢2

0

𝜕𝑥
≠ 0, 

i.e., 𝑢1
0 and 𝑢2

0 are related by (2.5) and (2.6), beyond the incompressibility 

condition, ∇ ∙ 𝑢0 = 0, if this is a condition imposed. 

 The equations (2.5) and (2.6) can be used to calculate 
𝜕𝑢1

𝜕𝑡
|𝑡=0 and 

 
𝜕𝑢2

𝜕𝑡
|𝑡=0, supposing that the pressure or its respective spatial derivatives are 

provided at least at time 𝑡 = 0. 
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 For other values of 𝑡, 𝑡 > 0, through the value of 
𝜕𝑢

𝜕𝑡
, held fixed position 

(𝑥, 𝑦), it is possible to calculate the value of 𝑢(𝑥, 𝑦, 𝑡), obviously by integrating with 

respect to time the local acceleration 
𝜕𝑢

𝜕𝑡
, i.e.,  

(2.7)   𝑢 = ∫
𝜕𝑢

𝜕𝑡
𝑑𝑡 + 𝑣(𝑥, 𝑦), 

where 𝑣(𝑥, 𝑦) may be encountered by given initial conditions.    

 Numerically, we have 

(2.8)  𝑢𝑇+∆𝑇 = 𝑢𝑇 +
𝜕𝑢

𝜕𝑡
|𝑡=𝑇  ∆𝑇, 

where 𝑢𝑇 is the fluid velocity in the position (𝑥, 𝑦) at time 𝑡 = 𝑇. ∆𝑇 is a positive 

not null  small constant, the increment in time to each step calculation for 𝑢𝑇 .  

 Using (2.1) in (2.8) comes 

(2.9)  𝑢1
𝑇+∆𝑇 = 𝑢1

𝑇 + ( ∇2𝑢1
𝑇 + 𝑓1

𝑇 −
𝜕𝑝𝑇

𝜕𝑥
− 𝑢1

𝑇 𝜕𝑢1
𝑇

𝜕𝑥
− 𝑢2

𝑇 𝜕𝑢1
𝑇

𝜕𝑦
) ∆𝑇, 

(2.10)  𝑢2
𝑇+∆𝑇 = 𝑢2

𝑇 + ( ∇2𝑢2
𝑇 + 𝑓2

𝑇 −
𝜕𝑝𝑇

𝜕𝑦
− 𝑢1

𝑇 𝜕𝑢2
𝑇

𝜕𝑥
− 𝑢2

𝑇 𝜕𝑢2
𝑇

𝜕𝑦
) ∆𝑇, 

where 𝑓𝑇 and 𝑝𝑇 are the external force and pressure, respectively, in the position 

(𝑥, 𝑦) at time 𝑡 = 𝑇, supposing given 𝑝𝑇 ≡ 𝑝(𝑥, 𝑦, 𝑇). Numerically and 

algorithmically, we need to use the approximations (among other that knows in 

the literature about numerical methods[6])    

(2.11)  
𝜕𝑢1

𝑇

𝜕𝑥
≈

𝑢1
𝑇(𝑥+∆𝑥,𝑦,𝑇) − 𝑢1

𝑇(𝑥,𝑦,𝑇)

∆𝑥
, 

(2.12)  
𝜕𝑢1

𝑇

𝜕𝑦
≈

𝑢1
𝑇(𝑥,𝑦+∆𝑦,𝑇) − 𝑢1

𝑇(𝑥,𝑦,𝑇)

∆𝑦
, 

(2.13)  
𝜕𝑢2

𝑇

𝜕𝑥
≈

𝑢2
𝑇(𝑥+∆𝑥,𝑦,𝑇) − 𝑢2

𝑇(𝑥,𝑦,𝑇)

∆𝑥
, 

(2.12)  
𝜕𝑢2

𝑇

𝜕𝑦
≈

𝑢2
𝑇(𝑥,𝑦+∆𝑦,𝑇) − 𝑢2

𝑇(𝑥,𝑦,𝑇)

∆𝑦
, 

(2.13)  ∇2𝑢1
𝑇 ≈

𝑢1
𝑇(𝑥+2∆𝑥,𝑦,𝑇)−2𝑢1

𝑇(𝑥+∆𝑥,𝑦,𝑇)+𝑢1
𝑇(𝑥,𝑦,𝑇)

(∆𝑥)2
+ 

   +
𝑢1
𝑇(𝑥,𝑦+2∆𝑦,𝑇)−2𝑢1

𝑇(𝑥,𝑦+∆𝑦,𝑇)+𝑢1
𝑇(𝑥,𝑦,𝑇)

(∆𝑦)2
, 
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(2.14)  ∇2𝑢2
𝑇 ≈

𝑢2
𝑇(𝑥+2∆𝑥,𝑦,𝑇)−2𝑢2

𝑇(𝑥+∆𝑥,𝑦,𝑇)+𝑢2
𝑇(𝑥,𝑦,𝑇)

(∆𝑥)2
+ 

   +
𝑢2
𝑇(𝑥,𝑦+2∆𝑦,𝑇)−2𝑢2

𝑇(𝑥,𝑦+∆𝑦,𝑇)+𝑢2
𝑇(𝑥,𝑦,𝑇)

(∆𝑦)2
, 

where ∆𝑥 × ∆𝑦 is the grid cell size. 

 This numerical-algorithmic approach, which resulted in the equations (2.9) 

to (2.14), it shows that we can calculate approximately the system solution (2.1) 

from 𝑡 = 0 up to any 𝑡 = 𝑇𝑚𝑎𝑥, and the same method can be used in 𝑛 = 3. When 

greater 𝑇𝑚𝑎𝑥 value, however, the greater the accumulation of numerical errors to 

the correct result. It will be very convenient if it is possible to obtain an exact 

solution (the great dream) to this problem, at least in certain situations, 

eliminating thus to the maximum the occurrence of numerical errors. Our naive 

solution, or better, our first naive attempt solution, will be described to follow. 

 The smaller the value of 𝑇, the closest correct value of 𝑢 are the results 

obtained with (2.9) and (2.10). Therefore, considering 𝑡 a small value, in the first 

order approximation in time the solution to the 𝑢 components will be 

(2.15)  𝑢1 = 𝑢1
0 + ( ∇2𝑢1

0 + 𝑓1 −
𝜕𝑝

𝜕𝑥
− 𝑢1

0 𝜕𝑢1
0

𝜕𝑥
− 𝑢2

0 𝜕𝑢1
0

𝜕𝑦
) 𝑡, 

(2.16)  𝑢2 = 𝑢2
0 + ( ∇2𝑢2

0 + 𝑓2 −
𝜕𝑝

𝜕𝑦
− 𝑢1

0 𝜕𝑢2
0

𝜕𝑥
− 𝑢2

0 𝜕𝑢2
0

𝜕𝑦
) 𝑡, 

which shows the possibility of infinite solutions to velocity, given only the initial 

velocity, since each different pressure can, in principle, imply a different velocity. 

Unfortunately, in general the above solution is not limited to the increased time, 

and therefore in general there is not here a case of velocity belonging to Schwartz 

space, space of fast decreasing functions. This time 𝑡 in (2.15) and (2.16) 

corresponds exactly to the ∆𝑇 value that appears in (2.9) and (2.10). 

 Defining 𝑥1 ∶= 𝑥, 𝑥2 ∶= 𝑦, for an arbitrary value of 𝑡, we can try a solution to 

the system (2.1) in the form 

(2.17)  𝑢𝑖 = 𝑢𝑖
0 + 𝑋𝑖 (𝑢1

0, 𝑢2
0, 𝑓𝑖 ,

𝜕𝑝

𝜕𝑥𝑖
)𝑇𝑖(𝑡), 

with 

(2.18)  𝑇𝑖(0) = 0, 𝑇𝑖′(0) = 1,  

in special 

(2.19)  𝑋𝑖 =  ∇2𝑢𝑖
0 + 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
− 𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
− 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
,  
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or else, for example,  

 

(2.20)  𝑢𝑖 = 𝑢𝑖
0 + 𝑋𝑖(𝑢1

0, 𝑢2
0)𝑡 + ∫ (𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
) 𝑑𝑡 + 𝑣𝑖(𝑥, 𝑦),   

(2.21)  𝑋𝑖 =  ∇2𝑢𝑖
0 − 𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
− 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
,  

solutions based on (2.15) and (2.16), with 

(2.22)  ∫ (𝑓𝑖 −
𝜕𝑝

𝜕𝑥𝑖
) 𝑑𝑡|𝑡=0 + 𝑣𝑖(𝑥, 𝑦) = 0. 

 Differentiating (2.20) in relation to time, obviously, we obtain 

(2.23)  
𝜕𝑢𝑖

𝜕𝑡
= 𝑋𝑖(𝑢1

0, 𝑢2
0) + 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
, 

or, using (2.21), 

(2.24)  
𝜕𝑢𝑖

𝜕𝑡
=  ∇2𝑢𝑖

0 − 𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
− 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
+ 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
. 

 To the equation (2.24) to be equivalent to the system (2.1) for all 𝑢𝑖  we 

need to have 

(2.25)   ∇2𝑢𝑖 − 𝑢1
𝜕𝑢𝑖

𝜕𝑥
− 𝑢2

𝜕𝑢𝑖

𝜕𝑦
=  ∇2𝑢𝑖

0 − 𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
− 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
, 

therefore 

(2.26)  𝑢𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖
0(𝑥, 𝑦) + 𝑤𝑖(𝑡), 𝑤𝑖(0) = 0, 

and, substituting (2.26) in (2.25), it is necessary that 

(2.27)  𝑤1(𝑡)
𝜕𝑢𝑖

0

𝜕𝑥
+𝑤2(𝑡)

𝜕𝑢𝑖
0

𝜕𝑦
= 0.  

 The trivial solutions of (2.27) are 𝑤1(𝑡) = 𝑤2(𝑡) = 0 and 𝑢𝑖
0 = 𝑐𝑡𝑒. A more 

general condition is 

(2.28)  
𝑤1(𝑡)

𝑤2(𝑡)
= −

𝜕𝑢𝑖
0 𝜕𝑦⁄

𝜕𝑢𝑖
0 𝜕𝑥⁄

= 𝑐𝑡𝑒. , 𝑖 = 1, 2.  

 Well, the solution (2.26) there is not the same form that (2.20)–(2.21), 

except if  
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(2.29)  

{
 
 

 
 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
= 𝑣𝑖(𝑥, 𝑦) = 0

𝑤1(𝑡) = 𝑤2(𝑡) = 𝑡

𝑋𝑖 =  ∇2𝑢𝑖
0 − 𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
− 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
= 1

 

and, according (2.28), 

(2.30)  
𝜕𝑢𝑖

0

𝜕𝑦
= −

𝜕𝑢𝑖
0

𝜕𝑥
. 

 For this reason, the attempt solution (2.20)–(2.21) correctly solved the 

system (2.1) for some initial velocities, in special when (2.29) and (2.30) are 

obeyed. Another case of solution when (2.20)–(2.21) is valid, using trivial solution 

of (2.27), is  

(2.31)  {
𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
= 𝑣𝑖(𝑥, 𝑦) = 0

𝑢𝑖
0 = 𝑢 = 𝑐𝑡𝑒.

 

 The dependence of 𝑓 in relation to 𝑝, related in (2.29) and (2.31), or 

(2.32)  ∇𝑝 = 𝑓, 

shows that it’s necessary 𝑓 be a gradient function, and 𝑝 is a potential function for 

𝑓 (see, for example, [5]). An example for 𝑓 is a constant gravity acceleration, like 

𝑓 = (0,−𝑔), assuming a two-dimensional world, and in this case we have 𝑝 = −𝑔𝑦. 

 For more generic initial velocity, the form given by (2.26) is our next 

attempt solution, 

(2.33)  𝑢𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖
0(𝑥, 𝑦) + 𝑤𝑖(𝑡), 𝑤𝑖(0) = 0. 

 Applying (2.33) in (2.1) comes 

(2.34)  
𝜕𝑝

𝜕𝑥𝑖
+

𝑑

𝑑𝑡
𝑤𝑖(𝑡) + 𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
=  ∇2𝑢𝑖

0 + 𝑓𝑖 , 

using 𝑥1 ∶= 𝑥, 𝑥2 ∶= 𝑦. 

 A consistent initial velocity also needs to be (2.1) solution, for 𝑡 = 0. In 

𝑡 = 0 the equation (2.34) is equivalent to 

(2.35)  
𝜕𝑝0

𝜕𝑥𝑖
+𝑤𝑖′(0) + 𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
=  ∇2𝑢𝑖

0 + 𝑓𝑖
0, 

so 
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(2.36)  𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
−  ∇2𝑢𝑖

0 = 𝑓𝑖
0 −

𝜕𝑝0

𝜕𝑥𝑖
−𝑤𝑖′(0),  

the superior symbol 0 meaning the respective function value at time 𝑡 = 0.  

 Substituting (2.36) in (2.34) we obtain 

(2.37)  (
𝜕𝑝

𝜕𝑥𝑖
−

𝜕𝑝0

𝜕𝑥𝑖
) + (𝑤𝑖

′(𝑡) − 𝑤𝑖
′(0)) = 𝑓𝑖(𝑥, 𝑦, 𝑡) − 𝑓𝑖

0(𝑥, 𝑦), 

a beautiful equality that allow us to solve the system (2.1) in many situations, for 

any 𝑢0 (or better, ∀𝑢0 ∈ 𝐶(ℝ2)), according (2.33). But for this reason we cannot to 

accept any external force and pressure in the system, or model, except when (2.37) 

is true and the pressure can be calculated.   

 The next and last attempt solution is 

(2.38)  𝑢𝑖(𝑥, 𝑦, 𝑡) = 𝑢𝑖
0(𝑥, 𝑦) 𝑤𝑖(𝑡), 𝑤𝑖(0) = 1, 

where 𝑢𝑖: ℝ
2 × [0,∞) → ℝ,  𝑢𝑖

0: ℝ2 → ℝ, 𝑤𝑖: [0,∞) → ℝ. 

 Repeating the steps from (2.33) to (2.37) with (2.38), applying (2.38) in 

(2.1) comes 

(2.39)  
𝜕𝑝

𝜕𝑥𝑖
+ 𝑢𝑖

0 𝑑

𝑑𝑡
𝑤𝑖 +𝑤1𝑤𝑖𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
+𝑤2𝑤𝑖𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
= 

  =
𝜕𝑝

𝜕𝑥𝑖
+ 𝑢𝑖

0𝑤𝑖
′ +𝑤𝑖 [𝑤1𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
+𝑤2𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
] =  𝑤𝑖∇

2𝑢𝑖
0 + 𝑓𝑖 . 

 As we have said, a consistent initial velocity also needs to be (2.1) solution, 

for 𝑡 = 0. In 𝑡 = 0 the equation (2.39) is equivalent to 

(2.40)  
𝜕𝑝0

𝜕𝑥𝑖
+ 𝑢𝑖

0𝑤𝑖
′0 +𝑤1

0𝑤𝑖
0𝑢1

0 𝜕𝑢𝑖
0

𝜕𝑥
+𝑤2

0𝑤𝑖
0𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
= 

  =  𝑤𝑖
0∇2𝑢𝑖

0+𝑓
𝑖
0
, 

defining 𝑤𝑖
′0 =

𝑑𝑤𝑖

𝑑𝑡
|𝑡=0 and 𝑤𝑖

0 = 𝑤𝑖(0) = 1, so 

(2.41)  𝑤1
0𝑤𝑖

0𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+𝑤2

0𝑤𝑖
0𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
−  𝑤𝑖

0∇2𝑢𝑖
0 = 

  = [𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
−  ∇2𝑢𝑖

0] =  

  = 𝑓
𝑖
0
−
𝜕𝑝0

𝜕𝑥𝑖
−𝑢𝑖

0𝑤𝑖
′0. 

 Supposing 𝑤1 = 𝑤2 = 𝑤 and therefore 𝑤1
0 = 𝑤2

0 = 𝑤0 = 1, 𝑤1
′ = 𝑤2

′ = 𝑤′,

𝑤1
′0 = 𝑤2

′0 = 𝑤′0, we have from (2.39) and (2.41), respectively, 
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(2.42)  
𝜕𝑝

𝜕𝑥𝑖
+ 𝑢𝑖

0 𝑤′ + 𝑤2 [𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
] =  𝑤∇2𝑢𝑖

0 + 𝑓𝑖  

and 

(2.43)  [𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
] =  ∇2𝑢𝑖

0 + 𝑓𝑖
0 −

𝜕𝑝0

𝜕𝑥𝑖
− 𝑢𝑖

0𝑤′0.  

 Taking the factor [𝑢1
0 𝜕𝑢𝑖

0

𝜕𝑥
+ 𝑢2

0 𝜕𝑢𝑖
0

𝜕𝑦
] in (2.43) and leading it in (2.42) we 

obtain  

(2.44)  (
𝜕𝑝

𝜕𝑥𝑖
− 𝛼

𝜕𝑝0

𝜕𝑥𝑖
) = (𝜈 ∇2𝑢𝑖

0 − 𝑢𝑖
0)(𝑤′ − 𝛼𝑤′0) + (𝑓𝑖 − 𝛼𝑓𝑖

0), 

with 𝛼 = 𝑤2 ≠ 0. This relation (2.44) shows us that there are many possibilities 

to solve the system of Navier-Stokes equations, for an infinite set of initial 

velocities, external forces and pressure. 

 The integration of (2.44), again a beautiful equality, like (2.37), is 

(2.45)  𝑝 − 𝛼𝑝0 = ∫ [(𝜈 ∇2𝑢𝑖
0 − 𝑢𝑖

0)(𝑤′ − 𝛼𝑤′0) + (𝑓𝑖 − 𝛼𝑓𝑖
0)] ∙ 𝑑𝑙

𝐿
  

where 𝐿 is any path linking a point (𝑥0, 𝑦0) to (𝑥, 𝑦), supposing that the integrand is 

a gradient field[5], without singularities.   

 

3 – Solution for 𝒏 = 𝟑 

 Similar to what we saw in section 2 for 𝑛 = 2, now we solve the Navier-

Stokes equations for spatial dimension 𝑛 = 3. As we know, it can be put in the form 

of a system of three nonlinear partial differential equations, as follows: 

(3.1)  

{
 
 

 
 
𝜕𝑝

𝜕𝑥
+
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝜈∇2𝑢1 + 𝑓1

𝜕𝑝

𝜕𝑦
+
𝜕𝑢2

𝜕𝑡
+ 𝑢1

𝜕𝑢2

𝜕𝑥
+ 𝑢2

𝜕𝑢2

𝜕𝑦
+ 𝑢3

𝜕𝑢2

𝜕𝑧
= 𝜈∇2𝑢2 + 𝑓2

𝜕𝑝

𝜕𝑧
+

𝜕𝑢3

𝜕𝑡
+ 𝑢1

𝜕𝑢3

𝜕𝑥
+ 𝑢2

𝜕𝑢3

𝜕𝑦
+ 𝑢3

𝜕𝑢3

𝜕𝑧
= 𝜈∇2𝑢3 + 𝑓3

 

where 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢1(𝑥, 𝑦, 𝑧, 𝑡), 𝑢2(𝑥, 𝑦, 𝑧, 𝑡), 𝑢3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑢: ℝ
3 × [0,∞) → ℝ3, 

is the velocity of the fluid, of components 𝑢1, 𝑢2, 𝑢3, 𝑝 is the pressure, 𝑝: ℝ3 ×

[0,∞) → ℝ, and 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = (𝑓1(𝑥, 𝑦, 𝑧, 𝑡), 𝑓2(𝑥, 𝑦, 𝑧, 𝑡), 𝑓3(𝑥, 𝑦, 𝑧, 𝑡)), 𝑓: ℝ
3 ×

[0,∞) → ℝ3, is the density of external force applied in the fluid in point (𝑥, 𝑦, 𝑧) 

and at the instant of time 𝑡, for example, gravity force per mass unity, with 

𝑥, 𝑦, 𝑧, 𝑡 ∈ ℝ, 𝑡 ≥ 0.  The coefficient  ≥ 0 is the viscosity coefficient, and in the 
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special case that  = 0 we have the Euler equations. ∇ ≡ (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
) is the nabla 

operator and ∇2 = ∇ ∙ ∇ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
≡ ∆ is the Laplacian operator. 

 Writing 𝑢1 as a function of 𝑢2 and 𝑢3 we have by the system (3.1) above,  

(3.2)  𝑢1 =
𝜈∇2𝑢2 + 𝑓2 − (

𝜕𝑝

𝜕𝑦
 + 

𝜕𝑢2
𝜕𝑡
 + 𝑢2

𝜕𝑢2
𝜕𝑦
 + 𝑢3

𝜕𝑢2
𝜕𝑧
)

𝜕𝑢2
𝜕𝑥

,  if  
𝜕𝑢2

𝜕𝑥
≠ 0, 

(3.3)  𝑢1 =
𝜈∇2𝑢3 + 𝑓3 – (

𝜕𝑝

𝜕𝑧
 + 

𝜕𝑢3
𝜕𝑡
 + 𝑢2

𝜕𝑢3
𝜕𝑦
 + 𝑢3

𝜕𝑢3
𝜕𝑧
)

𝜕𝑢3
𝜕𝑥

,  if  
𝜕𝑢3

𝜕𝑥
≠ 0, 

(3.4)  
𝜕𝑢1

𝜕𝑡
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢1

𝜕𝑦
+ 𝑢3

𝜕𝑢1

𝜕𝑧
= 𝜈∇2𝑢1 + 𝑓1 −

𝜕𝑝

𝜕𝑥
, 

therefore valid system when 
𝜕𝑢2

𝜕𝑥

𝜕𝑢3

𝜕𝑥
≠ 0.   

 Similarly to 𝑢1, we obtain the following equations for 𝑢2 and 𝑢3, in index 

notation, defining 𝑥1 ≔ 𝑥,  𝑥2 ≔ 𝑦, 𝑥3 ≔ 𝑧, and index 4 = index 1, index 5 = index  

2, with 1 ≤ 𝑗 ≤ 3, 

(3.5)  𝑢𝑖 =
𝜈∇2𝑢𝑗 + 𝑓𝑗 − (

𝜕𝑝

𝜕𝑥𝑗
 + 

𝜕𝑢𝑗

𝜕𝑡
 + 𝑢𝑖+1

𝜕𝑢𝑗

𝜕𝑥𝑖+1
 + 𝑢𝑖+2

𝜕𝑢𝑗

𝜕𝑥𝑖+2
)

𝜕𝑢𝑗

𝜕𝑥𝑖

,  if  
𝜕𝑢𝑗

𝜕𝑥𝑖
≠ 0, 

(3.6)  
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢1

𝜕𝑢𝑖

𝜕𝑥
+ 𝑢2

𝜕𝑢𝑖

𝜕𝑦
+ 𝑢3

𝜕𝑢𝑖

𝜕𝑧
= 𝜈∇2𝑢𝑖 + 𝑓𝑖 −

𝜕𝑝

𝜕𝑥𝑖
, 

therefore valid systems when 
𝜕𝑢𝑖+1

𝜕𝑥𝑖

𝜕𝑢𝑖+2

𝜕𝑥𝑖
≠ 0, for 1 ≤ 𝑖 ≤ 3.   

 All solutions obtained in (3.5) can not contradict each other, as well as (3.6) 

must be true for each 𝑖. 

 The solutions (3.5) are valid for all 𝑡 ≥ 0 on condition that 
𝜕𝑢𝑖+1

𝜕𝑥𝑖

𝜕𝑢𝑖+2

𝜕𝑥𝑖
≠ 0, 

for 1 ≤ 𝑖 ≤ 3, and in this case, in 𝑡 = 0, defining 𝑓(𝑥, 𝑦, 𝑧, 0) = 𝑓0(𝑥, 𝑦, 𝑧) and 

𝑝(𝑥, 𝑦, 𝑧, 0) = 𝑝0(𝑥, 𝑦, 𝑧) and using index notation, we come to 

(3.7)  𝑢𝑖
0 =

𝜈∇2𝑢𝑗
0 +𝑓𝑗

0 − (
𝜕𝑝0

𝜕𝑥𝑗
 + 

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0 + 𝑢𝑖+1

0
𝜕𝑢𝑗

0

𝜕𝑥𝑖+1
 +𝑢𝑖+2

0  
𝜕𝑢𝑗

0

𝜕𝑥𝑖+2
)

𝜕𝑢𝑗
0

𝜕𝑥𝑖

, 1 ≤ 𝑗 ≤ 3, 
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where the superior index 0 means the respective value function at time 𝑡 = 0. The 

equation (3.7) shows that the sum 
𝜕𝑝0

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0 cannot have any arbitrary 

value, independently of 𝑢𝑖
0 relation (3.7), contradicting it.    

 Numerically we can solve (3.1) through following iteration algorithm, just 

like we do for 𝑛 = 2, for each natural 𝑖 in 1 ≤ 𝑖 ≤ 3: 

(3.8)  𝑢𝑖
𝑇+∆𝑇 = 𝑢𝑖

𝑇 + ( ∇2𝑢𝑖
𝑇 + 𝑓𝑖

𝑇 −
𝜕𝑝𝑇

𝜕𝑥
− ∑ 𝑢𝑗

𝑇 𝜕𝑢𝑖
𝑇

𝜕𝑥𝑗

𝑛
𝑗=1 ) ∆𝑇, 

where 𝑢𝑇 , 𝑓𝑇 and 𝑝𝑇 are the velocity, external force and pressure, respectively, in 

the position (𝑥, 𝑦, 𝑧) at time 𝑡 = 𝑇, supposing given 𝑝𝑇 ≡ 𝑝(𝑥, 𝑦, 𝑧, 𝑇). ∆𝑇 is a 

positive not null  small constant, the increment in time to each step calculation for 

𝑢𝑇 .  

 Again, we need to use the approximations (among other that knows in the 

literature containing numerical methods[6])    

(3.9)  
𝜕𝑢1

𝑇

𝜕𝑥
≈

𝑢1
𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇) − 𝑢1

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑥
, 

(3.10)  
𝜕𝑢1

𝑇

𝜕𝑦
≈

𝑢1
𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇) − 𝑢1

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑦
, 

(3.11)  
𝜕𝑢1

𝑇

𝜕𝑧
≈

𝑢1
𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇) − 𝑢1

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑧
, 

(3.11)  
𝜕𝑢2

𝑇

𝜕𝑥
≈

𝑢2
𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇) − 𝑢2

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑥
, 

(3.12)  
𝜕𝑢2

𝑇

𝜕𝑦
≈

𝑢2
𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇) − 𝑢2

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑦
, 

(3.13)  
𝜕𝑢2

𝑇

𝜕𝑧
≈

𝑢2
𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇) − 𝑢2

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑧
, 

(3.14)  
𝜕𝑢3

𝑇

𝜕𝑥
≈

𝑢3
𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇) − 𝑢3

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑥
, 

(3.15)  
𝜕𝑢3

𝑇

𝜕𝑦
≈

𝑢3
𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇) − 𝑢3

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑦
, 

(3.16)  
𝜕𝑢3

𝑇

𝜕𝑧
≈

𝑢3
𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇) − 𝑢3

𝑇(𝑥,𝑦,𝑧,𝑇)

∆𝑧
, 

(3.17)  ∇2𝑢1
𝑇 ≈

𝑢1
𝑇(𝑥+2∆𝑥,𝑦,𝑧,𝑇)−2𝑢1

𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇)+𝑢1
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑥)2
+ 
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   +
𝑢1
𝑇(𝑥,𝑦+2∆𝑦,𝑧,𝑇)−2𝑢1

𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇)+𝑢1
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑦)2
 + 

   +
𝑢1
𝑇(𝑥,𝑦,𝑧+2∆𝑧,𝑇)−2𝑢1

𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇)+𝑢1
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑧)2
, 

(3.18)  ∇2𝑢2
𝑇 ≈

𝑢2
𝑇(𝑥+2∆𝑥,𝑦,𝑧,𝑇)−2𝑢2

𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇)+𝑢2
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑥)2
+ 

   +
𝑢2
𝑇(𝑥,𝑦+2∆𝑦,𝑧,𝑇)−2𝑢2

𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇)+𝑢2
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑦)2
+ 

   +
𝑢2
𝑇(𝑥,𝑦,𝑧+2∆𝑧,𝑇)−2𝑢2

𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇)+𝑢2
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑧)2
, 

(3.19)  ∇2𝑢3
𝑇 ≈

𝑢3
𝑇(𝑥+2∆𝑥,𝑦,𝑧,𝑇)−2𝑢3

𝑇(𝑥+∆𝑥,𝑦,𝑧,𝑇)+𝑢3
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑥)2
+ 

   +
𝑢3
𝑇(𝑥,𝑦+2∆𝑦,𝑧,𝑇)−2𝑢3

𝑇(𝑥,𝑦+∆𝑦,𝑧,𝑇)+𝑢3
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑦)2
+ 

   +
𝑢3
𝑇(𝑥,𝑦,𝑧+2∆𝑧,𝑇)−2𝑢3

𝑇(𝑥,𝑦,𝑧+∆𝑧,𝑇)+𝑢3
𝑇(𝑥,𝑦,𝑧,𝑇)

(∆𝑧)2
, 

where ∆𝑥 × ∆𝑦 × ∆𝑧 is the three-dimensional grid cell size. 

 The greater the value of 𝑇, the greater the number of times that need to 

iterate the solution given in (3.8), more numeric errors are added to the correct 

solution of system (3.1), is therefore highly desirable to find an exact solution for 

(3.1). 

 All attempt solutions seen for the case 𝑛 = 2 can be used for 𝑛 = 3, with 

obviously adaptations. The simplest (and naive) of these solutions is the similar 

one to (2.33), with 𝑤𝑖(𝑡) = 𝑤(𝑡), 

(3.20)  𝑢𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑖
0(𝑥, 𝑦, 𝑧) + 𝑤(𝑡), 𝑤(0) = 0, 

or 

(3.21)  𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑧) + 𝑤(𝑡)𝐼, 𝑤(0) = 0, 𝐼 = (1,1,1), 

whose direct application in (3.1) and more the correspondent use for 𝑡 = 0 leads 

to the similar condition (2.37) seen previously, i.e.,  

(3.22)  (
𝜕𝑝

𝜕𝑥𝑖
−

𝜕𝑝0

𝜕𝑥𝑖
) + (𝑤′(𝑡) − 𝑤′(0)) = 𝑓𝑖(𝑥, 𝑦, 𝑧, 𝑡) − 𝑓𝑖

0(𝑥, 𝑦, 𝑧). 

As we have said for two dimensions, this equality allow us to solve the system 

(3.1) in many situations, for any 𝑢0 (say, ∀𝑢0 ∈ 𝐶(ℝ3)), according (3.20). For this 
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reason we cannot to accept any external force and pressure in the system, or 

model, except when (3.22) is true and the pressure can be calculated.   

 Making 𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑡)(𝑥 + 𝑦 + 𝑧), 𝑝0(𝑥, 𝑦, 𝑧) = 𝑞(0)(𝑥 + 𝑦 + 𝑧) and 

supposing that 𝑓 is only a time function, no spatial dependence, all its three 

components equals each other, 𝑓𝑖(𝑡) = 𝑔(𝑡) and 𝑓𝑖
0 = 𝑓𝑖(0) = 𝑔

0 is a constant, as 

well as 𝑞(0) is a constant, then from (3.22), we obtain 

(3.23)  𝑞(𝑡) − 𝑞(0) + (𝑤′(𝑡) − 𝑤′(0)) = 𝑔(𝑡) − 𝑔0, 

and so 

(3.24)  𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑡)(𝑥 + 𝑦 + 𝑧), 

with 

(3.25)  𝑞(𝑡) = 𝑞(0) − (𝑤′(𝑡) − 𝑤′(0)) + (𝑔(𝑡) − 𝑔0). 

 The solution (3.21)-(3.24) is not unique, due to infinities different 

possibilities of construct 𝑤(𝑡), 𝑤(0) = 0. Beyond this, the pressure may be 

unlimited, due linear term (𝑥 + 𝑦 + 𝑧), although we can choose 𝑢0(𝑥) and 𝑤(𝑡) 

that limit the velocity.      

 Fortunately, instead of this being a naive solution, this is really a wonderful, 

unforgettable and memorable solution, because when 𝑢0(𝑥) ∈ 𝑆(ℝ3), the 3-D 

functions Schwartz space, we choose 𝑤(𝑡) ∈ 𝐶∞([0 ×∞), a continuous function 

infinitely differentiable as continuous in all derivative orders, 𝑤(𝑡) finite for all 

𝑡 ≥ 0, and the external force is null by definition, 𝑓 = 0, then we come to the case 

(A) of the said Millenium Problem[2]. The demonstration is very easy, practically 

immediate. Based on our surprising discovery, the third example given in [4] needs 

correction (today's date is 05-Apr-2016), although the first and second examples 

keeps. Thus, both cases (A) and (C) in [2] are true: (A) when 𝑓 = 0 and (C) when 

𝑓 ≠ 0 and are obeyed some appropriate conditions. Cases spatial periodicity (B) 

and (D) have not been studied in depth due to possible discontinuities of solutions 

and derivatives in the boundary regions 𝑥 = 1, 𝑦 = 1, 𝑧 = 1 and integer periods.   

 

4 – Conclusion 

 To initiate this paper, really, we don’t thinking to achieve to the case (A) of 

the Millenium Problem relative to Navier-Stokes equations. Initially wanted a 

much more modest solution, in the first order of approximation or numerical. The 

possibility of infinite solutions, however, even for cases in which all terms are 

present, leads us to conclude on the need to provide more equations to models that 

claim to accurately simulate the atmospheric or general fluid conditions, cases 
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simplest to the most complex one, or else build more complete Navier-Stokes 

equations, containing more variable, initial and boundary conditions. 

 I think that, in practical terms, the external force can act as a pressure or 

velocity controller, since it is not only due to the uncontrollable nature, but can 

also be conveniently constructed by engineering. This is a clear example of Applied 

Mathematical. 

         To world stability… 
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