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Abstract

The properties of what we call inverse-symmetric-matrices have helped
us for constructing a basis of C3×3 which satisfy four properties of the
Kronecker generalized Pauli matrices. In using some properties of the
Kronecker commutation matrices, bases of C5×5 and C6×6 which share
the same properties has also constructed. The Pauli groups of these bases
have been defined.

Keywords: Kronecker product, Pauli matrices, Kronecker commutation ma-
trices, Kronecker generalized Pauli matrices.

1 Introduction

In a few words this paper tries to solve a problem evoked in [1], of searching
nine 3 × 3-matrices satisfied a relation with the 3 ⊗ 3 Kronecker commutation
matrix.
The usefulness of the Kronecker permutation matrices, particularly the Kro-
necker commutation matrices (KCMs) in mathematical physics can be seen in
[2], [3], [4], [5]. In these papers the 2⊗2-Kronecker commutation matrix is writ-
ten in terms of the Pauli matrices, which are 2 × 2 matrices, by the following
way

K2⊗2 =
1

2

3∑
i=0

σi ⊗ σi (1)

The generalization of this formula in terms of generalized Gell-Mann matrices,
which are a generalization of the Pauli matrices, is the topic of [6]. But there
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are other generalization of the Pauli matrices in other sense than the general-
ized Gell-Mann matrices, among others the Kibler matrices [7], the Kronecker
generalization of the Pauli matrices, see for example [8]. The more generalized
relation giving the 2k ⊗ 2k-Kronecker commutation matrix in terms of this last
can be seen in [1]. That makes us still to search for the generalization of the
Pauli matrices in this sense, like the generalization of the Gell-Mann matrices to
the rectangle Gell-Mann matrices in [9] where the n⊗n-KCM Kn⊗n is expressed
in terms of the n× n-Gell-Mann matrices, for generalizing it to the expression
of n ⊗ p-KCM we have introduced the n × p-Gell-Mann matrices. That is we
search for 3× 3 matrices which have got some properties of the Kronecker gen-
eralization of the Pauli matrices, which are 2k × 2k-matrices. We will call these
matrices 3× 3-Kronecker Pauli matrices (KPMs).
These properties of n× n-KPM (Σi)0≤i≤(2k)2−1, with n = 2k are

• i) (Σi)0≤i≤n2−1 is a basis of Cn×n;

• ii)

Kn⊗n =
1

n

n2∑
i=1

Σi ⊗ Σi (2)

• iii)
Σ+
j = Σj (hermiticity) (3)

• iv)
Σ2
j = In (Square root of unity) (4)

• v)
Tr(Σ+

j Σk) = nδjk (Orthogonality) (5)

• vi)
Tr(Σj) = 0 (Tracelessness) (6)

However, there is no 3×3 matrix, formed by zeros in the diagonal which satisfy
both the relations (3) and (4) [1]. Thus, at a first time for the 3× 3-KPMs we
do not demand tracelessness. We would like to take this opportunity to point
out that the last sentence in [1] is wrong and beg the reader to not regard it.
For the 2k⊗2k-Kronecker matrices or Kronecker generalized Pauli matrices, we
give this calling by the fact that they are obtained by Kronecker product of the
Pauli Matrices. That is why we will call 3×3-Kronecker Pauli matrices (KPMs)
the set of 3 × 3-matrices which satisfy the five properties above, tracelessness
moved apart.
Thus, in this paper we will talk at first about Kronecker commutation matrices,
in the next section we will talk about what we call inverse-symmetric matrices.
These matrices have got interesting properties for constructing the 3×3-KPMs.
After, we will give the set of 3×3-KPMs, which are inverse-symmetric matrices,
and some of their properties. Finally, some way to the generalization will be
discussed.
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We know that the set of Kronecker generalized Pauli matrices is a group for the
usual matrix product. So, we will try to define the Pauli group of the 3 × 3-
KPMs.
Some calculations such as the expression of 3 × 3-KCMs request calculations
with software. We have used SCILAB for those calculations.

2 Kronecker Commutation matrices

The Kronecker product of matrices is not commutative, but there is a permu-
tation matrix which, in multiplying to the product, commutes the product. We
call such matrix Kronecker commutation matrix.

Definition 1 The permutation matrix Kn⊗p such that for any matrices a ∈
Cn×1, b ∈ Cp×1

Kn⊗p(a⊗ b) = b⊗ a
is called n⊗ p Kronecker commutation matrix.

K2⊗2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , K3⊗3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


Proposition 2 Suppose Kn⊗m =

s∑
i,j=1

Ai ⊗ Bj and Kp⊗q =

r∑
k,l=1

Ck ⊗ Dl.

Then, Knp⊗mq =

s∑
i,j=1

r∑
k,l=1

Ai ⊗ Ck ⊗Bj ⊗Dl.

Proof. Let (aα), (cβ), (bγ) and (dδ) be, respectively, bases of Cn×1, Cp×1,
Cm×1 and Cq×1. Then, (aα⊗ cβ ⊗ bγ ⊗dδ) is a basis of Cnpmq×1 It is enough to

prove that

s∑
i,j=1

r∑
k,l=1

Ai⊗Ck⊗Bj⊗Dl(aα⊗cβ⊗bγ⊗dδ) = bγ⊗dδ⊗aα⊗cβ . We

use the proposition 10.

s∑
i,j=1

Ai⊗Bj(aα⊗bγ) = bγ⊗aα. Thus,

r∑
k,l=1

s∑
i,j=1

Aiaα⊗

Ckcβ⊗Bjbγ⊗Dldδ =

r∑
k,l=1

bγ⊗Ckcβ⊗aα⊗Dldδ = bγ⊗
r∑

k,l=1

Ckcβ⊗aα⊗Dldδ.

However,

r∑
k,l=1

Ckcβ ⊗ aα ⊗ Dldδ = dδ ⊗ aα ⊗ cβ . Hence

s∑
i,j=1

r∑
k,l=1

Ai ⊗ Ck ⊗

Bj ⊗Dl(aα ⊗ cβ ⊗ bγ ⊗ dδ) = bγ ⊗ dδ ⊗ aα ⊗ cβ
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3 Inverse-symmetric matrices

In this section we introduce what we call inverse-symmetric matrices. We think
that this term will be useful for the continuation.

Definition 3 Let us call inverse-symmetric matrix an invertible complex matrix
A = (Aij) such that Aji = 1

Aij
if Aij 6= 0.

That is, in difference with an antisymmetric matrix, for the non-zero element
of the matrix its symmetric with respect to the diagonal is its inverse.

Example 4 The 2 × 2 unit matrix I2 = σ0 =

(
1 0
0 1

)
and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are inverse-symmetric matrices.

Proposition 5 Let A = (Aij) and B = (Bij) be inverse-symmetric matrices.
Then A⊗B is an inverse-symmetric matrix.

Proof. A ⊗ B is an invertible matrix. If Aij 6= 0 and Bkl 6= 0, (A ⊗ B)ikjl =

AijB
k
l 6= 0 is a non zero element of A ⊗ B, its symmetric with respect to the

diagonal (A⊗B)jlik = AjiB
l
k = 1

Aij

1
Bkl

= 1
(A⊗B)ikjl

.

Proposition 6 For any n ⊗ n-inverse-symmetric matrix A with only n non
zero elements, A2 = In.

Proof. Let A = (Aij)1≤i,j≤n and then A2 = (

n∑
k=1

AikA
k
j )1≤i,j≤n. In order that

A is invertible there must be only a non zero element in each row and in each
column. Let Aim be the non zero element in the row i and Apj the non zero

element in the column j, (A2)ij =

n∑
k=1

AikA
k
j = AimA

m
j +ApjA

i
p.

If i 6= j, Ami = 1
Aim
6= 0 thus Amj = 0. Apj 6= 0 thus Aip = 0. Hence, (A2)ij = 0

for i 6= j

If i = j, (A2)ij =

n∑
k=1

AikA
k
i = AimA

m
i = 1.

Therefore, let us take some inverse-symmetric matrices formed by only three
non zero elements for the nine 3 × 3 matrices we would like to search for, in
order that (4) is satisfied.
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4 Kronecker generalization of the Pauli matri-
ces

The Kronecker generalization of the Pauli matrices are the matrices (σi ⊗
σj)0≤i,j≤3 [10], [11] (σi⊗σj⊗σk)0≤i,j,k≤3, (σi1⊗σi2⊗ . . .⊗σin)0≤i1,i2,...,in≤3 [8]
obtained by Kronecker product of the Pauli matrices and the 2× 2 unit matrix.
According to the propositions above, They are inverse-symmetric matrices and
share many of the properties of the Pauli matrices: basis of Cn×n, (2), (3), (4),
(5) and (6), for n = 2k [8]. Denote the set of (σi1 ⊗σi2 ⊗ . . .⊗σin)0≤i1,i2,...,in≤3

by Kn.

Kn = {σ0, σ1, σ2, σ3}⊗n = {σi1 ⊗ σi2 ⊗ . . .⊗ σin \ 0 ≤ i1, i2, . . . , in ≤ 3} (7)

The set
Gn = Kn ⊗ {−1,+1,−i,+i} (8)

is a group called the Pauli group of (σi1 ⊗ σi2 ⊗ . . .⊗ σin)0≤i1,i2,...,in≤3 [8].

We can check easily, in using the relation σjσk = δjkσ0 + i

3∑
l=1

εjklσl, for

j, k ∈ {1, 2, 3} that Gn is equal to the set of the products of two elements of
Kn, up to multiplicative phases, which are elements of {−1,+1,−i,+i}

Gn = K2
n ⊗ {−1,+1,−i,+i} = KnKn ⊗ {−1,+1,−i,+i} (9)

where δjk is the Kronecker symbol, εjkl is totally antisymmetric, ε123 = +1
ε213 = −1.
It is normal to think that there should be nine 3×3 matrices which share many
of the properties of the Kronecker generalization of the Pauli matrices, which
are 2k × 2k matrices.

5 3× 3-Kronecker-Pauli Matrices

Now, we are going to construct the nine 3 × 3-matrices which satisfy the six
properties cited in the introduction, tracelessness moved apart. As we have said
above these matrices should be among the inverse-symmetric matrices formed
by only three non zero elements. In order that the hermiticity (3) to be verified,
let us take the 3 × 3-inverse-symmetric matrices formed by the cubic roots of
unit, 1, j = e

2iπ
3 and j2 = e

4iπ
3 . Our choice of the cubic roots of unit have been

inspired by [7], [12].

τ1 =

1 0 0
0 0 1
0 1 0

 , τ2 =

1 0 0
0 0 j
0 j2 0

 , τ3 =

1 0 0
0 0 j2

0 j 0


τ4 =

0 0 1
0 1 0
1 0 0

 , τ5 =

 0 0 j
0 1 0
j2 0 0

 , τ6 =

0 0 j2

0 1 0
j 0 0


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τ7 =

0 1 0
1 0 0
0 0 1

 , τ8 =

 0 j 0
j2 0 0
0 0 1

 , τ9 =

0 j2 0
j 0 0
0 0 1


The set K3 of them is a basis of C3×3. We can check easily that these

matrices satisfy the two other properties, orthogonality (5) and (2), for n = 3.
In contrast with the Kronecker generalized Pauli matrices the 3× 3-KPMs are
not traceless, but according to the orthogonality (5) and hermiticity (3) any
product of two different 3× 3-KPMs is traceless. Thus K3 up to multiplicative
phases can not be a group. However, according to the relation (9), for defining
the Pauli group G3 of the 3×3-KPMs we suggest to take the set of the products
of two elements of the 3 × 3-KPMs up to multiplicative phases. We have got
the following relations between these products

τ7τ3 = j2τ9τ2 = jτ8τ1 = τ6τ7 = jτ5τ8 = j2τ4τ9 = jτ3τ6 = j2τ2τ4 = τ1τ5 (10)

τ7τ6 = j2τ8τ5 = jτ9τ4 = τ6τ3 = jτ4τ2 = j2τ5τ1 = jτ2τ9 = j2τ1τ8 = τ3τ7 (11)

τ8τ3 = j2τ4τ8 = jτ7τ2 = τ9τ1 = jτ5τ7 = j2τ3τ4 = jτ1τ6 = j2τ2τ5 = τ6τ9 (12)

τ9τ3 = j2τ8τ2 = jτ7τ1 = τ5τ9 = jτ4τ7 = j2τ6τ8 = jτ1τ4 = j2τ2τ6 = τ3τ5 (13)

τ8τ6 = j2τ9τ5 = jτ7τ4 = τ2τ8 = jτ4τ1 = j2τ5τ3 = jτ1τ7 = j2τ3τ9 = τ6τ2 (14)

τ9τ6 = j2τ7τ5 = jτ8τ4 = τ6τ1 = jτ4τ3 = j2τ5τ2 = jτ3τ8 = j2τ2τ7 = τ1τ9 (15)

τ9τ7 = j2τ3τ1 = jτ6τ5 = τ8τ9 = jτ5τ4 = j2τ2τ3 = jτ4τ6 = j2τ1τ2 = τ7τ8 (16)

τ9τ8 = j2τ6τ4 = jτ3τ2 = τ8τ7 = jτ2τ1 = j2τ5τ6 = jτ1τ3 = j2τ4τ5 = τ7τ9 (17)

Therefore we can check easily that

G3 = K2
3 ⊗ {1, j, j2} = K3K3 ⊗ {1, j, j2} (18)

is a group, the Pauli group of the 3× 3-KPMs.

6 Roads to generalization

We talk here two roads to generalization, the first one is by Kronecker product,
which do not include the case of prime number, thus the second one is the case
of prime number.

6.1 Kronecker generalization

In this subsection, we give two examples of 6×6-KPMs, obtained by Kronecker
product. The first one is (τj ⊗ σk)1≤j≤9,0≤k≤3 and the second one is (σj ⊗
τk)0≤j≤3,1≤k≤9
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6.2 prime number × prime number-KPMs

The case of 3× 3-KPMs suggests us how to construct a 5× 5-KPMs.
For starting, let us take 5 × 5 ones matrices, all elements are equals to +1.
Decompose this matrices as a sum of five inverse-symmetric matrices the only
five non zero elements are equals to +1,

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

+


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

+


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

+


0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

+


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

.

For each of these five inverse-symmetric matrices replace the +1s by the five
fifth roots of unity 1, u, u2, u3, u4. But we arrange them in order that the
orthogonality (5) is satisfied and they are inverse-symmetric matrices. Then, we
have got the following twenty five inverse-symmetric matrices, which are 5× 5-
KPMs. That is they share also the five properties of the Kronecker generalized
Pauli matrices.

Q1 =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

, Q2 =


1 0 0 0 0
0 0 0 0 u4

0 0 0 u3 0
0 0 u2 0 0
0 u 0 0 0

, Q3 =


1 0 0 0 0
0 0 0 0 u2

0 0 0 u4 0
0 0 u 0 0
0 u3 0 0 0

,

Q4 =


1 0 0 0 0
0 0 0 0 u3

0 0 0 u 0
0 0 u4 0 0
0 u2 0 0 0

, Q5 =


1 0 0 0 0
0 0 0 0 u
0 0 0 u2 0
0 0 u3 0 0
0 u4 0 0 0



Q6 =


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

, Q7 =


0 0 u 0 0
0 1 0 0 0
u4 0 0 0 0
0 0 0 0 u2

0 0 0 u3 0

, Q8 =


0 0 u3 0 0
0 1 0 0 0
u2 0 0 0 0
0 0 0 0 u4

0 0 0 u 0

,

Q9 =


0 0 u2 0 0
0 1 0 0 0
u3 0 0 0 0
0 0 0 0 u
0 0 O u4 0

, Q10 =


0 0 u4 0 0
0 1 0 0 0
u 0 0 0 0
0 0 0 0 u3

0 0 0 u2 0


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Q11 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

, Q12 =


0 0 0 0 u
0 0 0 u2 0
0 0 1 0 0
0 u3 0 0 0
u4 0 0 0 0

, Q13 =


0 0 0 0 u
0 0 0 u2 0
0 0 1 0 0
0 u3 0 0 0
u4 0 0 0 0

,

Q14 =


0 0 0 0 u2

0 0 0 u4 0
0 0 1 0 0
0 u 0 0 0
u3 0 0 0 0

, Q15 =


0 0 0 0 u4

0 0 0 u3 0
0 0 1 0 0
0 u2 0 0 0
u 0 0 0 0



Q16 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

, Q17 =


0 u 0 0 0
u4 0 0 0 0
0 0 0 0 u2

0 0 0 1 0
0 0 u3 0 0

, Q18 =


0 u3 0 0 0
u2 0 0 0 0
0 0 0 0 u
0 0 0 1 0
0 0 u4 0 0

,

Q19 =


0 u2 0 0 0
u3 0 0 0 0
0 0 0 0 u4

0 0 0 1 0
0 0 u 0 0

, Q20 =


0 u4 0 0 0
u 0 0 0 0
0 0 0 0 u3

0 0 0 1 0
0 0 u2 0 0



Q21 =


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

, Q22 =


0 0 0 u 0
0 0 u2 0 0
0 u3 0 0 0
u4 0 0 0 0
0 0 0 0 1

, Q23 =


0 0 0 u2 0
0 0 u4 0 0
0 u 0 0 0
u3 0 0 0 0
0 0 0 0 1

,

Q24 =


0 0 0 u3 0
0 0 u 0 0
0 u4 0 0 0
u2 0 0 0 0
0 0 0 0 1

, Q25 =


0 0 0 u4 0
0 0 u3 0 0
0 u2 0 0 0
u 0 0 0 0
0 0 0 0 1


The decomposition of 5 × 5 ones matrices as a sum of five inverse-symmetric
matrices the only five non zero elements are equals to +1 is not unique, thus we
can construct other 5× 5-KPMs than above.

Conclusion

For concluding, we think having given solution to the problem evoked of search-
ing 3 × 3 matrices sharing five properties of the Kronecker generalized Pauli
matrices, tracelessness moved apart. We call these matrices 3 × 3-Kronecker-
Pauli matrices. For the definition of the Pauli group we would prefer to call
Pauli group of the generalized Pauli matrices the group of the set of the prod-
ucts of two elements up to multiplicative phases in order that it can be extended
to the 3× 3-KPMs.
The 3× 3-KPMs we have obtained suggest us how to construct 5× 5-KPMs.
We have introduced what we call inverse-symmetric matrices. Their properties
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and those of Kronecker matrices have made more obvious the construction of
the 3× 3-KPMs and some ways to generalization.
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A Kronecker Product

Definition 7 For any matrices A =
(
Aij
)
1≤i≤n,1≤j≤p ∈ Cn×p, B =

(
Bij
)
1≤i≤m,1≤j≤q ∈

Cm×q the Kronecker product of the matrix A by the matrix B is the matrix
A⊗B ∈ Cnm×pq

A⊗B =


A1

1B A1
2B · · · A1

pB
A2

1B A2
2B · · · A2

pB
...

... · · ·
...

Am1 B Am2 B · · · Amp B


Properties 8 .

• i) ⊗ is associative.

• ii) ⊗ is distributive with respect to the addition.

• iii) For any matrices A, B, C and D

(A⊗B)(C ⊗D) = AC ⊗BD

• iv) For any invertible matrices A and B

(A⊗B)−1 = A−1 ⊗B−1

• v)
(A⊗B)+ = A+ ⊗B+

• vi)
Tr(A⊗B) = Tr(A)Tr(B)

Proposition 9 Let (Ai)1≤i≤np and (Bj)1≤j≤mq respectively be some bases of
Cn×p and Cm×q. Then, (Ai ⊗Bj)1≤i≤np,1≤j≤mq is a basis of Cnm×pq.

Proposition 10 .

If

m∑
j=1

Mj ⊗ Nj =

n∑
i=1

Ai ⊗ Bi then,

m∑
j=1

Mj ⊗ K ⊗ Nj =

n∑
i=1

Ai ⊗ K ⊗ Bi,

for any matrix K.
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