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1 Introduction.

The CHSH inequality is an important element in the discussion of the existence or nonex-

istence of additional local hidden parameters, i.e. the completeness of quantum mechanics,

[1] for entangled particle pairs. The CHSH inequality [3] is derived from Bells formula for

the correlation [2], E(a, b), between distant spin measurements with setting parameters a

and b. Generally, Bell wrote

E(a, b) =

∫
dλρλAλ(a)Bλ(b) (1.1)

In equation (1.1) we can identify the probability density of the hidden variables λ, as

ρλ ≥ 0. We have
∫
dλρλ = 1. In a local model, λ are introduced to explain the entangle-

ment (correlation) and must have a local effect. This can be accomplished if e.g. a λ1 is

assigned to the A measurement instrument and λ2 to the B instrument. Furthermore, the

measurement functions Aλ(a) and Bλ(b) both project in {−1, 1} to represent binairy spin

variables (e.g. up=1, down=-1). The a and b represent unit parameter vectors in R3. The

CHSH inequality is based on the following expression,

S = E(1, 1)− E(1, 2)− E(2, 1)− E(2, 2) (1.2)

The CHSH inequality |S| ≤ 2 was derived therof [3].
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2 Preliminaries in the design

Commonly it is believed that a computer violation of the CHSH inequality |S| ≤ 2, see (1.2),

with a local model is not possible. The program must mimic an important experiment in the

test of locality [4]. In this experiment strict locality conditions were closely approximated

and a violation |S| > 2 was observed for violating setting combinations of a and b with a

quantum correlation a · b. In [5], however, the present author already showed that there is

a nonzero probability that a local hidden model may violate the CHSH. Objections were

raised in [6] but were answered in [7]. The present paper completes the rejection of what

has been claimed in [6].

In the present paper, a local model is presented that can be implemented in a simple

computer program and leads to S ≈ 1 +
√

2 for the following violating settings. On the A

side Alice has 1 = 1√
2
(1, 0, 1) and 2 = (−12 ,

1√
2
, 12) at her disposal. On the B side, Bob has

1 = (1, 0, 0) and 2 = (0, 0,−1). For the ease of the argument we inspect, E(a, b) = a · b. A

simple computation then shows that for a quantum outcome we would see E(1, 1) = 1/
√

2,

E(1, 2) = −1/
√

2 while E(2, 1) = −1/2 and E(2, 2) = −1/2. Hence, looking at (1.2),

S = 1 +
√

2 > 2 is expected in an experiment. The setting parameters a and b are given

a value when the A- and B-wing particle leaves the source. In flight we allow B (Bob) to

change his setting. This surpasses discussions about design time information.

Needless to say that infromation hiding between Alice and Bob is the algorithmic

realization of strict locality. Furthermore, in the computer simulation A doesn’t know

anything about B and vice versa. All computations are ”encapsulated” i.e. local, despite

they occur in a single loop (Appendix A).

3 Design of the algorithm based on a local model

3.1 Random sources

In the first place let us assume random sources to represent random selection of setting.

We look at the randomness from the point of view of creating an algorithm. If there are

N trials, i.e particle pairs, in the experiment then e.g. two independent random sources

can be seen as two arrays with rank numbers from 1 to N . If NN = (1, 2, 3, ..., N), then

we define three random source arrays

RAS = sample(NN )

RB = sample(NN )

RC = sample(NN )

(3.1)

As an example, suppose we have N5 = (2, 3, 5, 1, 4) and so, N5,1 = 2. Then in the first trial

n = 1, the N5,n - th element of anoter array, e.g. q = (0.1, 0.4,−0.9, 1.2, 1.0) is randomly

seleceted, hence, q(n = 1) = 0.4. In the second trial, looking at N5, we see, N5,2 = 3 so

q(n = 2) = −0.9, etcetera. In this way a random source N can be employed in a program

and seen as a physical factor giving rise to randomness. The ”freely tossing of a coin” is

now replaced with ”freely randomizing” the RX by filling it with sample(NN ). There can

be no fundamental objection to this particular form of randomizing.
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3.2 Design time settings

Experimentalists may claim the construction of their measuring instruments. Hence,

servers in the experiment may be tuned in design time. There is no fundamental rea-

son to reject design time to the designer of a computer experiment.

Furthermore, the designer may assume that one random source is shared by A and

by S. This is the RAS . Because there is a flow of particles between the A and the S this

sharing, i.e. RA = RS = RAS , cannot be prevented at run time in a real experiment.

The an in the experiment are based on the a array. For instance a = (1, 2, 1, 2, 1, 2, ...).

In design time the designer is allowed to introduce a spin-like variable σ ∈ {−1, 1}. In

the sequence of trials, σn is selected from σ = (−1, 1,−1, 1,−1, 1, ...). We may note that,

because of RA = RS the relation an = 1 + 1
2(1 + σn) occurs. The setting an can be either

1 or 2 and is already presented in terms of selection unit paramter vectors in R3.

Note that the σn can be send to Bob and to Alice without any additional information

conveying its meaning. So, Bob cannot derive anything from σn even though the designer

knows the relation. This is because Bob is only active in run time, not in design time.

Finally, the source may also send a ζ ∈ {−1, 1} to both Alice and Bob. The ζn in the

experiment is based on the RC = sample(NN ) and derives from a ζ array.

The second random source, RB is used by B exclusively, the third random source, RC
is used by the source exclusively. There appears to be no physical arguments why this is a

violation of locality or cannot be found in nature.

3.3 Random sources R· and particles

The source sends a σ ∈ {−1, 1} and a ζ ∈ {−1, 1}. to both A and B. In a formal format,

[A(an)]← (σ, ζ)n ← [S]→ (σ, ζ)n → [B(bn)]

Here, [A(a)] represents the measuring instrument A where Alice has the a setting. This

setting ”runs synchronous” with σ in the source because of the ”shared” random source.

The particle pair source is represented by [S].

The σ and ζ going into the direction of A are equal to the σ and ζ going to B. Each

particle is, in the algorithm, a pair (σ, ζ). We note that ζ derives from the random source

RC .

3.4 A side processing of the (σ, ζ)

Firstly, let us for the ease of the presentation define a σA,n = 1+σn
2 . The σn at the n-th

trial from the source S is a result of the synchronous RAS .

The way the information is used remains hidden to B in order to maintain locality

in the model. So we have, the setting a=σA,n + 1. Furthermore, we define two functions

ϕ−A,n = σA,n and ϕ+
A,n = 1− σA,n. The two functions, together with ζn produce, in turn, a

function

fζn(an) = ζnϕ
+
A,n − ϕ

−
A,n

Note that fζn ∈ {−1, 1}. Hence, we can store the outcome of the computations on the A

side immediately in an N -size array SA,n for trial number n and n = 1, 2, 3, ....N .
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3.5 B side processing of the (σ, ζ)

In the first place, let us determine with the B associated die the setting bn. This results

from the hypothetical random source RB. Then, secondly and similar such as in the case

of A, but of course completely hidden from A, the (σ, ζ)n information from the source is

processed. We have, σB,n = 1+σn
2 , then ϕ−B,n = σB,n and ϕ+

B,n = σB,n+(δ1,b−δ2,b)(1−σB,n).

This leads to the function

gζ(b) = ζϕ+
B +

1− ζ√
2
ϕ−B

For gζn(bn) we may note that it projects in the real interval [−
√

2,
√

2]. If σB,n = 1 then

gζn(bn) = 1 for ζn = 1 and
√

2−1 for ζn = −1. If σB,n = 0, then ϕ−B,n = 0 and gζn(bn) = ±1.

Hence, in order to generate a response in {−1, 1}, a random λ2 from the real interval

[−
√

2,
√

2] is uniformly drawn and SB,n = sgn(gζ(b) − λ2) in the n-th trial. We note that

as long as Bob doesn’t know the meaning of σB, derived from σ and related to the RAS ,

locality is warranted. Bob doesn’t have access from the information of design time.

4 Correlation

After the final measurement, the correlation E(a, b) is computed from counting the number

of times SA(a),n = SB(b),n, i.e., N(a, b |SA(a),n = SB(b),n), and we count the number of times

SA(a),n = −SB(b),n, i.e. N(a, b |SA(a),n = −SB(b),n). Hence, the expression

E(a, b) =
N(a, b |SA(a),n = SB(b),n)−N(a, b |SA(a),n = −SB(b),n)

N(a, b |SA(a),n = SB(b),n) +N(a, b |SA(a),n = −SB(b),n)
(4.1)

This computation is also employed in the algorithm.

5 Conclusion & discussion

In the paper a simple design is given that is able to violate the CHSH inequality with

numerical values close to the expected quantum mechanics. Please note that no violation

of locality is employed. B doesn’t know the meaning of the A-S shared information send

to B. In fact, A and B process the common input (σ, ζ) differently at their side without

knowing of each other’s existence.

The reader kindly notes that the construction is directed to explain the outcome of

the A-S-B experiment such as in Weihs’s [4] and should not be confused with other locality

testing experiments or related experimental set ups unequal to the scheme A(a) ← S →
B(b). The present result supports the result given in [5].

In the appendix, the important loop in the R program over n = 1, 2, 3...N is presented.

In the explanation of entanglement with locality, three random sources RAS , RC and RB
are employed. We note that nobody knows whether or not the measuring instrument A

and the particle source, S, share a random source yes or no. Moreover information from

design time is not accisble in run time and there is a flow of particles between S and A.

The conceptual weakness of the computer simulation lies in the fact that, in real

experiment, both Alice and Bob may change their settings when the two particles (σ, ζ)
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are created and are in flight heading to their targets A and B. In our computer model, only

Bob may change his setting ”in flight”.

Changing ”in flight” setting at Bob together with no access to design time is a very

strong form of information hiding between Alice and Bob. Moreover, ”shared random

sources” together with ”meaning-hidden information transport” via the particles and ”syn-

chronized random clocks” cannot be rejected in nature beforehand, we provided another

way to look at the criticism raised by Einstein [1]. As required by the author of [6] a com-

puter simulation, be it a somewhat restricted in some details, rejects the criticism raised

in [6]. We may do this because our ”freezing the setting of a and b at particle creation” is

a valid CHSH type of experiment. It would be strange to say that locality and causality

cannot occur in an experiment where in flight changes are allowed whereas one must admit

that locality and causality occurs at a somewhat more restricted experiment. Moreover,

the σ in the computational model may act like a kind of clock σ(t). The synchronization

starts at creation of the particle in the source. Then the separate σ(t) may synchronously

change ”in flight” until (σ(t), ζ)n hits the measuring instrument.

We conclude that a local hidden variables explanation of this kind of ”freeze setting

at particle creation” type of experiment would not be possible if there is no probability

loophole in the CHSH [5].
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Appendix A: Here the nucleus of the algorithm is shown.

for (n in 1:N){

#Source section

zetah<-zeta[RC[n]]

sygma<-sigma[RAS[n]]

#A section

aSet<-a[RAS[n]]

aKeep[n]<-aSet

phiAmin<-((sygma+1)/2)

phiAplus<-1-((sygma+1)/2)

f<-zetah*phiAplus-phiAmin

scoreA[aSet,n]<-f

#B section

phiBmin<-((sygma+1)/2)

bSet<-b[RB[n]]

bKeep[n]<-bSet

if(((sygma+1)/2)==1){

phiBplus<-1

}else{

if(bSet==1){

phiBplus<-1

}

if(bSet==2){

phiBplus<-(-1)

}

}

g<-zetah*phiBplus

g<-g+((1-zetah)*phiBmin/sqrt(2))

lambda_2<-runif(1)*sqrt(2)

lambda_2<-sign(0.5 - runif(1))*lambda_2

scoreB[bSet,n]<-sign(g-lambda_2)

}
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