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1. Introduction 
In [1] presents a noncontradictory solution of Maxwell equations 

for vacuum. Here we offer a similar solution of Maxwell equations for an 
alternating current wire.  

The Maxwell equations in general in GHS system have the 
following form [2]: 
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where 

EHJ ,,  - conduction current, magnetic and electric intensity 

accordingly , 
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 ,,  - dielectric permittivity, permeability, specific resistance of 

the wire's material 
Further these equations are used for analyzing the structure of 

Alternating Current in a wire. For sinusoidal current in a wire with 

specific inductance L  and specific resistance   intensity and current are 

related in the following way: 
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Hence for L   we find: 
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Therefore for analyzing the structure of sinusoidal current in the 
wire for a sufficiently high frequency the condition (5) can be neglected. 
При этом is necessary to solve the equation system (1-4), where the 

known value is the current 
zJ  flowing among the wire, i.e. the projection 

of vector J  on axis oz . 

 
2. Solution of Maxwell's equations  
Let us consider the solution of Maxwell equations system (1.1-1.4) 

for the wire. In cylindrical coordinates system zr ,,   these equations 

look as follows [3]: 
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where 
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Further we shall consider only monochromatic solution. For the 
sake of brevity further we shall use the following notations: 

)cos( tzco   ,     (11) 

)sin( tzsi   ,     (12) 

where  ,,  – are certain constants. Let us present the unknown 

functions in the following form: 

 corhH rr . ,      (13) 

sirhH )(.   ,      (14) 

sirhH zz )(.  ,      (15) 

 sireE rr . ,      (16) 

coreE )(.   ,      (17) 

coreE zz )(.  ,      (18) 

 corjJ rr . ,       (19) 

sirjJ )(.   ,      (20) 

sirjJ zz )(. ,       (21) 

where )(),(),( rjrerh  - certain function of the coordinate r .  

By direct substitution we can verify that the functions (13-21) 

transform the equations system (1-8) with four arguments tzr ,,,   

into equations system with one argument r  and unknown 

functions )(),(),( rjrerh . 

Further it will be assumed that there exists only the current (21), 

directed along the axis z . This current is created by an external source. 
It is shown that the presence of this current is the cause for the existence 
of electromagnetic wave in the wire. 

In Appendix 1 it is shown that for system (1.1-1.4) at the 
conditions (13-21) there exists a solution of the following form: 
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where  ,,,cA  – constants. 

Let us compare this solution to the solution obtained in [1] for 
vacuum – see Table 1. Evidently (despite the identity of equations) these 
solutions differ greatly. These differences are caused by the presence of 

external electromotive force with 0)( rez . It causes a longitudinal 

displacement current which changes drastically the structure of 
electromagnetic wave.  
 

Table 1. 
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3. Intensities and currents in the wire 
Further we shall consider only the functions ),(rjz  

)(),(),( rerere zr  , )(),(),( rhrhrh zr  . Fig. 1 shows, for example, the 
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graphs of these functions for 300,1,1,3,1  A . The 

value )(rjz  is shown in units of (A/mm^2) - in contrast to all the other 

values shown in system SI. The increase of function )(rjz  at the radius 

increase explains the skin-effect.  
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The energy density of electromagnetic wave is determines as the 

sum of modules of vectors HE, from (2.13, 2.14, 2.16, 2.17, 2.23, 2.24) 

and is equal to 

           222222 corhcorhsiresireHEW rr    

or 

     22
rereW r       (1) 

- see also Fig. 1. Thus, the density of electromagnetic wave energy is 
constant in all points of a circle of this radius. 

To demonstrate that the components of the wave are shifted in 
phase, in Fig. 2 shows the functions 

)cos( tzco   , )sin( tzsi    
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At 1.0/2,0  c  these functions take the form  zco cos , 

 zsi sin  and shown in Fig. 2. 
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Let us find the average value of current amplitude density in a wire 
of radius R: 
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Fig. 3 shows the function )(zJ  (6, 10) for 1A . On this Figure 

the dotted and solid lines are related accordingly to 2R  and 75.1R . 
From (6, 8) and Fig. 3 it follows that for a certain distribution of the 

value  rjz  the average value of the  amplitude of current density zJ  

depends significantly of  . 
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The current is determined as 
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or, taking into account (2.13-2.21): 
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You can talk about the lines of these currents. Thus, for instance, 

the current .zJ  flows along the straight lines parallel to the wire axis. We 

shall look now on the line of summary current.  
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It can be assumed that the speed of displacement current 
propagation does not depend on the current direction. In particular, for a 
fixed radius the path traversed by the current along a circle, and the path 
traversed by it along a vertical, would be equal. Consequently, for a fixed 
radius we can assume that  

 z        (13) 

where   is a constant. Based on this assumption we can convert the 

functions (4b) into 

  2cos co ,   2sin si   (14) 

and build an appropriate trajectory for the current. Fig. 4 shows two 
spiral lines of summary current described by the functions of the form 

  )2(cos co ,    2sin si . 

On Fig. 4 the thick line is built for 8.1 and a thin line for 5.2 .  
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From (2.19-2.21, 14) follows that the currents will keep their values 

for given ,r  (independently of z ) if only the following value is 

constant 

  2 .      (15) 

Further, based on (14, 15) we shall be using the formula  

 cosco ,  sinsi .    (16) 

 

4. Energy Flows 
The density of electromagnetic flow is Pointing vector  
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In cylindrical coordinates zr ,,   the density flow of 

electromagnetic energy has three components zr SSS ,,  , directed along 

вдоль the axis accordingly. They are determined by the formula 
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From (2.13-2.18) follows that the flow passing through a given section of 
the wave in a given moment, is: 
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It is values density of the energy flux at a predetermined radius 

which extends radially, circumferentially along, the axis oz respectively. 

Fig. 5 shows the graphs of these functions depending on the radius at 

300,1,1,3,1  A . 
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The flow of energy along the axis oz is 
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We shall find zs . From (6, 2.22, 2.23, 2.26), we obtain: 
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In Appendix 2 of article [1] shows that from (7) implies that 
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Let R  be the radius of the circular front of the wave. Then from (12) we 
obtain, as in [1], 
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Combining formulas (11-15), we get: 
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This energy flow does not depend on the coordinates, and so it 
keeps its value along all the length of wire. 

Fig. 7 shows the function )(S  (15) for 1Q . On Fig. 7 the 

dotted and the solid lines refer respectively to 2R  and 8.1R .  
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Since the energy flow and the energy are related by the 

expression cWS  , then from (15) we can find the energy of a 
wavelength unit:  
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It follows from (7, 3.16), the energy flux density on the 
circumference of the radius defined function of the form 

 2sinzrz sS  .     (18) 
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Fig. 8 shows this function (18) for 6.1,4.1,1,1  A  

and for two values of radius: 1r  and 2r . На рис. 8 показана 

функция (18) at 22  rsz  - see (10). Shows two curves for two values 

at 4.1  and at two values of radius 1r  (thick line) and 2r  (thin 
line).  

 
 

Fig. 9 shows the function S  (18) on the whole plane of wire 

section for 19,6.1,4.1,1,1  RA  . Fig. 9 shows the 

function S  (18) on the entire section plane of wire at 22  rsz  and at 

4.1 .The upper window shows the part of function  S  graph for 

which 0S  - called plusS , and the lower window shows the part S  

graph for which 0S  - called minusS , and this part for clarity is shown 
with the opposite sign. This figure shows that 

0minusplus  SSS , 

i.e. the summary vector of flow density is directed toward the increase of 
z  - toward the load. However there are two components of this vector: 

the plusS  component, directed toward the load, and minusS  

component, directed toward the source of current. These components of 
the flow transfer the active and reactive energies accordingly. 
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It follows that 

 flux density is unevenly distributed over the flow cross section – 
there is a picture of the distribution of flow density by the cross 
section of the wave 

 this picture is rotated while moving on the axis oz; 

 the flow of energy (15), passing through the cross-sectional area, not 
depend on zt, ; the main thing is that the value does not change 

with time, and this complies with the Law of energy conservation. 

 the energy flow has two opposite directed components, which 
transfer the active and reactive energies; thus, there is no need  in the 
presentation of an imaginary Pointing vector. 

 

5. Current and energy flow in the wire  
One can say that the flow of mass particles (mass current) "bears" 

a flow of kinetic energy that is released in a collision with an obstacle. 

Just so the electric current "bears" a flow of electromagnetic energy 

released in the load. This assertion is discussed and substantiated in [4-9]. 
The difference between these two cases is in the fact that value of mass 
current fully determines the value of kinetic energy. But in the second 
case value of electrical current DOES NOT determine the value of 
electromagnetic energy released in the load. Therefore the transferred 
quantity of electromagnetic energy – the energy flow, - is being 
determined by the current structure. Let us show this fact. 

As follows from (3.10), the average value of amplitude density of 

current zJ  in a wire of radius R depends on two parameters:   and A . 

For a given density one can find the dependence between these 
parameters, as it follows from (3.10): 

 
zrJRA 112 

 




.     (1) 

As follow from (4.16), the energy flow density along the wire also 

depends on two parameters:  and A . Fig. 10 shows the dependencies 

(1) and (4.16) for given 2,2  RJ z . Here the straight line depicts the 

constant current density (in scale 1000), solid line – the flow density, 

dotted line – parameter А in scale (in scale 1000). Here A  calculated 

according to (1), the energy flux density - to (4.16) for a given A  One 
can see that for the same current density the flow density can take 
absolutely different values.  
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6. Discussion 
It was shown that an electromagnetic wave is propagating in an 

alternating current wire, and the mathematic description of this wave is 
given by the solution of Maxwell equations.  

This solution largely coincides with the solution found before for 
an electromagnetic wave propagating in vacuum [1]. 

It appears that the current propagates in the wire along a spiral 
trajectory, and the density of the spiral depends on the flow density of 
electromagnetic energy transferred along the wire to the load, i.e. on the 
transferred power. And the main flow of energy is propagated along and 
inside the wire.   
 

Appendix 1 
Let us consider the solution of equations (2.1-2.10) in the form of 

(2.13-2.23). Further the derivatives of r  will be designated by strokes. We 
write the equations (2.1-2.10) in view of (2.11, 2.12) in the form 

0)(
)(

)(
)(

 re
r

re
re

r

re
zr

r 


,    (1) 

,0)()(
1

 rz h
c

rere
r


 

    (2) 

  ,0)(  


 h

c
rere zr     (3) 
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r h
cr

re
re

r

re 



   (4) 

 
  0)(

)(
 rh

r

rh
rh

r

rh
zr

r 


,   (5) 

,0)()(
1

 rz e
c

rhrh
r


 

    (6) 

  ,0)(  


 e

c
rhrh zr

    (7) 

 
),(

4
)()(

)(
rj

c
re

cr

rh
rh

r

rh
zz

r 



   (8) 

We multiply (8) on    and take into account (9). Then we get: 

We multiply (5) on 













c
. Then we get: 

 
  0)(

)(
 rh

cr
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c
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c
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r 












 
. (9) 

Comparing (4) and (9), we see that they are the same, if 
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  
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







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0
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c

h
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r
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





      (9а) 

or, if  
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
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
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



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M
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r

r

z











      (9в) 

where M  - constant. Next, we use formulas 

 rerh
c

M r


 )(



,     (10) 

  )(rerh
c

M r 






,     (11) 

where 1M  in the case of (9a). Rewrite (2, 3, 6, 7) in the form: 
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 ,)()( rh
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r
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r
re rz






      (12) 

  ),()( rh
c

rere rz 


      (13) 

 ,)()( re
c

r
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r
rh rz









     (14) 

  )()( re
c

rhrh rz 





 ,    (15) 

Substituting (10, 11) in these equations (12, 13), we get: 

 
 
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r

M

M
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r

M
rez 


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









 ,  (16) 

 
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M
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


1
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
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






 .   (17) 

Substituting (10, 11) in these equations (14, 15), we get: 

  ),()()( 222

2
rhMc

c

r
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r

cc
Mrhz  
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Mrh rrz

222

2

1
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








 
 . (19) 

Differentiating (16) and comparing with (17), we find: 

   )(
)1()1(

re
M

M
rre

M

M
r







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
  

or 

   )(rerre r 


  

or 

     )(rererre r  .     (20) 

From (1, 16), we find: 

  0
)1()(

)(
)( 2 


 re

r

M

M

r

re
re

r

re
r

r





   (23) 

From physical considerations we must assume that 

0)( rhz .        (24) 

Then from (18) we find  

  0222 c  

or 

1ˆ,ˆ  


 M
c

.     (25) 

From (16, 25), we find: 
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
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
                (25а) 

For c  from (25) we find that 

1 .        (26) 

Then in the equation (23) we can neglect the value 2  and obtain an 

equation of the form 

)()()( rerrere rr
  .    (27) 

From (27, 20) due to the symmetry we find: 

)()( rerer  ,      (28) 

   rerrere   )( .     (29) 

The solution of this equation is as follows:   

  1 
 Arre ,      (30) 

which can be checked by substitution of (30) into (29). From (11, 25), we 
find 
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and from (10, 28), we find 

)()( rhrh r .      (32) 

Finally, from (8, 32), we find 
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Taking into account (30.31), we note that the sum of the first three terms 
is equal to zero, and then 

)(
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)( rerj zz



 .      (34) 

So, we finally obtain: 
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)()( rhrh r .      (32) 

0)( rhz .        (24) 

)(
4

)( rerj zz



 .      (34) 

 

The accuracy of the solution 
To analyze the accuracy of the solution may be for given values of 

all constants to find the residual equation (1-7). Fig. 0 shows the 
logarithm of the mean square residual of the parameter   - 

)(ln fN  ,  when 1,1,300,1  A . 
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