
 

1 
 

Thompson’s Approach and Quantum Mechanics: The Harmonic 

Oscillator  

 

P. R. Silva – Retired associate professor – Departamento de Física – ICEx 

– Universidade Federal de Minas Gerais (UFMG) – email: 

prsilvafis@gmail.com 

  

Abstract- Thompson’s Method is applied to a variational principle in order to treat the 

harmonic oscillator in one dimension. It is also used to link the de Broglie frequency to 

a harmonic oscillator model. 

 

1 – Introduction 

 

   As can be found in Landau and Lifchitz [1], the Schroedinger’s equation 

can be deduced from the variational principle  

 

                                      δ ∫ d
d
x Ψ

*
(Hop – ε)Ψ = 0.                                       (1) 

 

In (1) Hop is the Hamiltonian operator, Ψ is the wave function and ε the 

energy. For our proposal and in the case of the time-independent equation,   

we can write the action 

 

              A = ∫d
d
x [(- ½ ħ

2
 ∕ m) (∂Ψ ∕ ∂x)

2
 – V(x) Ψ

*
Ψ + ε Ψ

*
Ψ].                (2) 

 

Imposing the stationary condition over A, namely taking δA = 0, we get 

 

                                (- ½ ħ
2
 ∕ m) ∆Ψ + V(x) Ψ = ε Ψ.                                 (3) 
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Naturally, we got in (3) the time-independent Schroedinger equation. 

   Thompson [2] has proposed formalism as a means to describe the critical 

behavior of cooperative systems. The main hypothesis is that in 

neighborhood of the critical point each term of certain action must be of the 

same order of magnitude. Making the requirement for this action keeps 

stationary, leads to a non-linear Schroedinger equation which occurs in the 

study of  solitons [3], for instance. A φ4 field theory, within the same 

universality class of the Ising model, was used by Thompson [2] to develop 

his formalism. The same lagrangian was also used by Wilson [4] to 

illustrate the renormalization group (RG) approach. It seems that both 

quantum mechanics and critical phenomena are theories where fluctuations 

play an important role. This gives an indication that Thompson’s 

formalism, can be an alternative tool to deal with Quantum Mechanics. 

Next we use Thompson’s approach to treat the harmonic oscillator in one-

dimension. A connection will also be made with the de Broglie frequency.  

 

2 – Application to the harmonic oscillator 

 

  Let us consider the action given by 

 

            A = ∫d
d
x [(- ½ ħ

2
 ∕ m) (∂Ψ ∕ ∂x)

2
 – (½ k x

2
) Ψ

*
Ψ + ε Ψ

*
Ψ].            (4) 

 

In (4), V(x) = ½ k x
2
, being k the spring constant. 

  Now we apply Thompson’s recipe which says: the absolute value of each 

term of the action given by (4) is separately of the order of the unity. We 

have 

 

                  ∫(½ ħ
2
 ∕ m) ( ∂Ψ∕∂x)

2
 d

d
x = (½ ħ

2
 ∕ m) <Ψ

2
> ℓ

d – 2
 = 1.               (5) 
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In (5), ℓ is a characteristic length, d the dimension and <Ψ
2
> is the average 

of the wave function, here taken as a real quantity. Solving for <Ψ
2
>, we 

obtain 

 

                                             <Ψ
2
> = 2m ℓ

2 – d
 ∕ ħ

2
.                                      (6) 

 

Applying the Tompson’s recipe to the second term of (4), we get 

 

                             ∫½ k x
2
 Ψ

2
 d

d
x = ½ k <x

2
> <Ψ

2
> ℓ

d
 = 1.                        (7) 

 

Taken <x
2
> = ℓ

2
, using the result of (6) into (7), and solving for ℓ, we find 

 

                                          ℓ = k
 -1 ∕ 4

 (m ∕ ħ
2
) 

-1 ∕ 4
.                                        (8) 

 

The equality between the second and the third terms of (4) leads to 

 

                   ∫½ k x
2
 Ψ

2
 d

d
x = ½ k ℓ

2
 ∫ Ψ

2
 d

d
x = ε ∫ Ψ

2
 d

d
x.                          (9) 

 

Relation (9) implies 

 

                   ε = ½ k k
-1∕ 2

 (ħ
2
 ∕ m)

1 ∕ 2
 = ½ (k ∕ m)

1 ∕ 2
 ħ = ½ ħ ω.                  (10) 

 

In obtaining (10), we also have used (8). We notice that ε corresponds to 

the ground state energy of the one-dimensional harmonic oscillator. 

   Taking in account that the first and the second terms of the action (4) are 

separately equal to the unity, we can write 
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                       ∫(½ ħ
2
 ∕ m) (∂Ψ∕∂x)

2
 dx = ∫½ k x

2
 Ψ

2
 dx.                            (11) 

 

Relation (11) implies that 

 

                           (½ ħ
2
 ∕ m) (dΨ∕dx)

2
  = ½ k x

2
 Ψ

2
.                                   (12) 

 

Extracting the square root of (12) and choosing the signal which leads the 

wave function make sense, namely, the squared wave function gives an 

integral finite. Doing this we obtain 

 

                                (ħ ∕ m
1 ∕ 2

) (dΨ∕dx) = - k
1 ∕ 2

 x Ψ.                                 (13) 

 

Performing the integration of (13), we find 

 

                            Ψ = Ψ0 exp[ - (km)
1 ∕ 2

 x
2
 ∕ (2ħ)].                                   (14) 

 

The wave function we just have obtained corresponds to that of the ground-

state of the one-dimensional harmonic oscillator. 

 

3 – The de Broglie frequency 

 

Let us take the characteristic length ℓ as the reduced Compton length (λC) 

of a particle of mass m. From relation (8) and from the definition of the 

Compton length we can write 

 

                                  ℓ
4
 = ħ

2
 ∕ (mk) = ħ

4
 ∕ (m

4
 c

4
).                                     (15) 
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Solving (15) for k, we find 

 

                                              k = (m
3
 c

4
) ∕ ħ

2
.                                            (16) 

 

                                ω = (k ∕ m)
1 ∕ 2

 = m c
2
 ∕ ħ ≡ ωdB.                                  (17) 

 

Therefore the choice of the characteristic length as the Compton length, 

leads to a harmonic oscillator model for the de Broglie frequency. 
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