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Abstract

Based on the non-equilibrium thermodynamics point of view that a biological system is sustained
by a local potential provided by stable entropy production, we construct a mathematical model to
describe the metabolism of human body system. According to the stable and periodic property of
human body system, the embryonic form of the model is constructed by dimensional analysis. Based
on the mathematical model, stability analysis is used to discuss the response to perturbation which
corresponds to the influence on human health. With the help of physiology and medical science, the
parameters in the model are determined by empirical formulas in physiology. The correspondence
of parameters and the observable variables such as body temperature, body weight, heart rate etc is
found out. As an example, an interesting result obtained from our model is that overweight adults,
even though healthy in the medical examination reports, faces the risk of being sick, because over-
weight decreases the metabolic frequency, however, it drives the human body system ”farther” from
equilibrium (death). This result shows that the body weight of over weighted ones will gradually
increase rather than staying at a stable interval. Our method provides a new approach of predicting
human health according to the observable vital signs.
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1 Introduction

Vital signs are important to clinic doctors[1]. Heart rate, respiration, blood pressure often changes

when one is doing physical exercise, while body temperature is relatively stable. If one’s body tem-

perature is not normal, it is no doubt that this one is sick[2, 3]. In medical science, vital signs have

already been used to estimate whether patients are critical condition. But seldom doctors pay atten-

tion to the vital signs of healthy individuals. Physiological variables, including vital signs are some

index which reflects the property of an non-equilibrium system. Only physicists or mathematicians

take non-equilibrium thermodynamics into consideration while studying the biological system[4–7]. In

view of non-equilibrium thermodynamics, a live human body is a system far from equilibrium, with

stable entropy production which serves as a local potential, that sustains life[8–13]. While hardly any

physicists study human body system by vital signs. It may stem from the reason that human body

system is too complex to study by using thermodynamics. In this paper we tried a way to construct a

mathematical model to describe the metabolism of human body system, according to the feature that

this kind of system has stable entropy production.
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Human body can be regarded as a complex network consists of several subnetworks. All of these

networks are in fact based on chemical reactions. If we exactly divide the complex network into limited

subnetworks, each of the complex network represents a function of the system[14–17].

In this paper we just divide the system into 2 subnetworks to study the metabolism of the human

body by mathematical model with the help of medical science and physiology. In section 2 the

metabolism of human body is regarded as the decomposition of macro molecules and reconstruction

of new macro molecules process. The mathematical model is constructed according to the process. In

section 3 we give the exact mathematical model of human body according to the analysis in section 2.

In section 3.2, we use the mathematical model obtained in section 3.1 to discuss the stability of human

body system from the aspect of physics. In section 4, we use the empirical formulas constructed by

physiologists to evaluate the parameters in the model we constructed in section 3, to find out the

relation between the the vital signs and the parameters.

2 Phenomenological picture of energy-material metabolism

Even though energy metabolism is very complicated, still there is some way to understand this process.

Physiology shows that human body system take materials from the outside. Some of the material is

changed into energy and some of the material is changed into the substances which is used to construct

the organs of the human body[4]. This phenomenon gives the clue that human body at least has 2

subsystems, the function of one system is to obtain materials from outside, the function of the other

is to construct the organs by using the materials obtained from outside[18].

The other phenomenon from physiology is that the human body system is a periodic system and

it is stable to the perturbation from outside[4], because of the fact that the total number of the cells

in any time interval does not have significant difference. From the knowledge of physiology that the

cells which construct our organs dies every day, and new cells will be produced to supplement the cells

died. From our deduction of the clue, we define the 2 labels to represent the human body subsystem:

q1: obtain the materials from outside, i.e. change macromolecules materials into molecules. For

instance, starch is changed into glucose and protein is changed into amino acid.

macro molecules
q1−→ micro molecules (1)

q′2: change the molecules into organs which sustain our lives. i.e. construct the 2 subsystems q1

and q′2.

micro molecules
q′2−→ organs (q1 and q′2) (2)

From the above phenomenon, a schematic map is described below:

At certain time t, q1(t) maps macromolecules into molecules, and it dies out after this process. At

this time we can only observe q′2(t), then q′2(t) maps the molecules into new q1(t′) and q′2(t′), and q′2(t)

dies out during this process.
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q1(t)
∆t−→ q′2(t+ ∆t) (3)

q′2(t+ ∆t)
∆t−→ q1(t+ 2∆t), q′2(t+ 2∆t)

Phenomenologically speaking under the time translation operation subsystem q1 is changes into

q′2, and the following time translation operation maps q′2 into q1 and q′2. One may notice that the time

scale of the function of q1 and q′2 are different. For instance, the recovery of a hurt lasts for several

days while feeling not hungry lasts for several minutes. In section 3, we will solve this flaw.

3 Mathematical model of metabolism based of healthy individuals

We will finish constructing of the mathematical model by 2 steps. The first step follows the phe-

nomenon and the logic of physics. The second step follows the knowledge from medical science and

physiology.

3.1 Construction of model by physics picture

Time translation operation is the difference of time. From the periodic phenomenon, we can deduce

that the model is like this

q̇1 = −q′2 (4)

q̇′2 = ω2q1 + f(q1, q
′
2)

in which ω is the angular frequency of the system. When f(q1, q
′
2) = 0, (4) is a harmonic oscillator,

which satisfies the periodic condition. But it is obvious that f(q1, q
′
2) 6= 0, because harmonic oscillator

describes a conservative system, while human body is a dissipative system. By dimensional analysis,

the dimension of ω is [t]−1, and [f(q1, q
′
2)] must have the same dimension as [q̇′2]. In order to determine

the exact information of [f(q1, q
′
2)], we have to turn to the function of the network q1 and q′2. One

of these 2 networks maps macro molecules into micro molecules, and the other maps micro molecules

into organs. This means that both of the networks have the dimension which equals to 0. The 1st

equation in (4) means that the dimension of q1 and q′2 are different, which means that (4) is not the

model which we are looking for. Because of this, we have to return to the picture of the 2 networks’

function.

We know that q′2 maps the molecules into a higher level (organs rather than macro molecules) than

the reverse process of q1 (if q1 had the function of mapping micro molecules into macro molecules).

The fact is that the time scale of changing food into energy and amino acid is much more shorter

than the time scale of changing amino acid into some organ. For instance, the recovery of a hurt lasts

for several days while feeling not hungry lasts for several minutes. One can easily imagine that the

oscillation frequency tends to 0, if we set the model like (4). This means that in model (4), it is almost
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impossible to observe the oscillation between q1 and q′2. This picture does not satisfy the phenomenon

that the oscillation frequency of q1 and q′2 is able to be observed, which stems from the knowledge of

physiology that the cells which consists our organs dies every day, while new cells will be produced to

supplement those died. As the time scale of function q′2 is much larger than that of q1, rescale q′2 i.e.

q2 ≡
q′2
ω . Rewrite the model (4) we get:

q̇1 = −ωq
′
2

ω
(5)

q̇′2
ω

= ωq1 + f(q1,
q′2
ω

)

or more exactly:

q̇1 = −ωq2 (6)

q̇2 = ωq1 + f(q1, q2)

Our rescaling guarantees q1 and q2 ≡
q′2
ω have the same dimension. This information shows that what

we macroscopically observe is the network q2 though we intuitively imagine the network is q′2. The

next step is to determine f(q1, q2) which has the dimension [t]−1. Since q1 and q2 are dimensionless,

there must be some coefficient which has the dimension [t]−1 in f(q1, q2).

Try the simplest case: f(q1, q2) ≡ µ in which µ 6= 0 is the coefficient with the dimension [t]−1.

Plug µ into f(q1, q2), one can immediately find that (6) is periodic however it is still conservative.

Try the second simplest case: f(q1, q2) ≡ µq1 or f(q1, q2) ≡ µq2. The former leads to the same

result as f(q1, q2) = µ, the latter leads to the result that the system is not periodic. This way of

finding f(q1, q2) does not work. We must turn to other ways.

Notice that network q1 only change some number of macro molecules to other number of micro

molecules, that is why q1 is dimensionless. However q̇1 has the dimension of [t]−1, which is exactly

the dimension of energy. This means that the tangent space of the solution of (6) in the phase space

consists of q1 and q2 carries energy. As (6) describes a dissipative system, at almost all the tangent

space of the solution, there is energy absorbing or releasing. So the divergence of (6) in phase space

(q1, q2), div is defined as

div ≡ ∂f(q1, q2)

∂q2
(7)

Along the solution orbit of (6) if div ≡ 0 then (6) describes a conservative system, with closed orbit.

We need the solution orbit to be closed, and div 6= 0 at most of the orbit. To guarantee the condition

that the solution orbit is close and at most of the orbit div 6= 0, div must satisfy that along part of the

solution orbit of (6) div ≤ 0 and part of the orbit div ≥ 0, and at some points on the orbit div = 0[19].

This leads to the result that the power of div consists of polynomials of q1 and q2 at least have the

power of 2, and there must be some dimensionless number a added in div like a + q2
1 or a + q2

2 (the
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form like a+ q1q2 is not welcome, because it leads to the linear dependence of the 2 variables), so as

to guarantee the condition above. So the result below gives us the general idea of div and f(q1, q2)

div ∝ µ(a+ q2
1) (8)

or

div ∝ µ(a+ q2
2) (9)

integrate div by q2, we get f(q1, q2). One can try very limited times to find that f(q1, q2) = −µ(q2
1−a)q2

with µ > 0, so as to guarantee the solution of (6) is a closed orbit in phase space of (q1, q2) with

div 6= 0 at most of the orbit. By physics and mathematics, the simplest model of the material-energy

metabolism we can get is:

q̇1 = −ωq2 (10)

q̇2 = ωq1 + µ(a− q2
1)q2

surprisingly what we construct (10) is in fact the famous Van der Pol model[20]. When the parameters

in Van der Pol model satisfies µ > 0,ω > 0, a > 0 and a >> µ
ω , the its solution is a limit cycle. Its

limit cycle solution satisfies periodicity and stability which are the conditions we need. µ
ω describes

the ”distance” to equilibrium. Because when µ
ω = 0, the system returns to equilibrium. Once the

parameters are set, they reflect the intrinsic property of the system.

3.2 Information from non-equilibrium thermodynamics and medical science

In section 3.1, we get a general picture of what this model looks like, however, there still remains some

problems to be solved which can not be answered by physics: what do those coefficients in (10) mean?

and what do they numerically equal to?

Let us first rescale the parameter t→ t′ ≡ tω. This rescaling makes the parameter t′ dimensionless.

Rewrite (10) in the dimensionless form:

d

dt′
q1 = −q2 (11)

d

dt′
q2 = q1 +

µ

ω
(a− q2

1)q2

The approximate solution of (11) to the order of µ
ω is[21, 22]:√

q2
1 + q2

2 = 2a− 8
µ

ω
cos θ sin3 θ (12)

in which q1 ≡
√
q2

1 + q2
2 cos θ and q2 ≡

√
q2

1 + q2
2 sin θ. This solution is a limit cycle represented by

polar coordinates in phase space.

We have already mentioned in section3.1 that the divergence at most points of the orbit are non-

zero. This means that at most of the points on the solution in phase space, there is energy absorbing
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or releasing. Summing up div at each point on the orbit, the result is negative. Mathematically it

confirms that system (10) or (11) is stable. In physiology, it is the steady energy divergence div in

each period that sustains life. div < 0 corresponds to energy absorbing and div > 0 corresponds to

energy releasing.

Define 2 symbols div+ and div− which are corresponds to energy absorbing and releasing in an

oscillation period, i.e. summing up all the div > 0 terms in an oscillation period we get div+, so on

and so forth.

div+ = 2

∫ q1=
√
a,q2(q1=

√
a)

q1=−
√
a,q2(q1=−

√
a)
ds div(s) (13)

div− = 2(

∫ q1=
√
a,q2(q1=

√
a)

q2=0,q1(q2=0)>0
ds div(s) +

∫ q2=0,q1(q2=0)<0

q1=−
√
a,q2(q1=−

√
a)
ds div(s)) (14)

the integration ranges are on the limit cycle solution (12). It is not difficult to figure out when

q1 = ±
√
a, div = 0. This ”stable energy dissipation” in an oscillation period τ exactly corresponds to

the ”negative entropy” that sustains life. We define it by ED which is proportional to:

ED ∝
1

τ
(|div−| − |div+|) =

π

2τ
[3(

µ

ω
)2 + 8a2 − 4a]

µ

ω
(15)

ED is intrinsic and stable as long as the parameters µ, ω, a are given. The given parameters corresponds

to a definitely given individual. The oscillation period is relevant to the angular frequency ω, i.e.

τω = 2π. (10) or (11) describes the energy metabolism in molecular reaction level, which is much

faster than that in macroscopic level. So τ goes to 0 in macroscopic world. And these 2 models have

already reduced the dimension, so

ED =
kB < Tb >

τ
(|div−| − |div+|) =

kB < Tb > ω

2π
(|div−| − |div+|) (16)

=
kB < Tb > µ

4
[3(

µ

ω
)2 + 8a2 − 4a]

in which kB is the Boltzmann constant, and < Tb > is the average body temperature. Since the

time scale is on the molecular level i.e. τ → 0 on macroscopic level, ED is the macroscopic minimum

energy dissipation rate of the system, which is proportional to the ”negative” entropy that sustains

life. Because of the stability property of the system, the parameters must satisfy:

3(
µ

ω
)2 + 8a2 − 4a > 0 (17)

The parameters satisfy:

a >
1

4
+

1

4

√
1− 6

µ2

ω2

and √
1

6
>
µ

ω
> 0

7



Macroscopically, the minimum dissipation of energy can be observed either by body temperature

or basal metabolic rate. Both of them are intrinsic for a definitely given individual. That is why most

of the times body temperature at the same place of the body remains the same. The former directly

related to entropy production rate:

ED = β
∑
Tb

Tb
dis

dt
σ(Tb) (18)

= −β
∑
Tb

Tb
Ten − Tb
TenTb

κ
Tb − Ten

∆r
σ(Tb)

In which β is a dimensionless parameter which builds the bridge between microscopic world and

macroscopic world. σ(Tb) is the body surface area where the temperature is Tb. This term is added

because the body temperature is different at different part of the body. Ten is the temperature of

the enviroment at the distance ∆r from the surface of body in which ∆r → 0, and dis is the inertial

entropy. κ > 0 is thermal conductivity constant. In differential form, the entropy production rate is

dis

dt
= −κ5 T (T−1

b − T−1
en ) (19)

It is hard to collect the body temperature at every point of the body surface. σ directly multiplied

by energy dissipation at certain part of body is not accurate. Summing up each part of body area

with different temperature is more accurate but more difficult. Moreover, Ten is hard to get to some

extent. To get the intrinsic energy dissipation of an individual, we can turn to the basal metabolic rate,

which is estimated by empirical formulas from the medical science. This index exactly corresponds to

the minimum entropy production of the system[11]. We estimate the basal metabolic rate of healthy

individuals suggested by [23]. For males the basal metabolic rate Bm

Bm =
10.0m

1kg
+

6.25h

1cm
− 5.0ag

1year
+ 5 (20)

Bf =
10.0m

1kg
+

6.25h

1cm
− 5.0ag

1year
− 161

The subscript m denotes males and f denotes females. m is the mass with dimension kg. h is the

height with dimension cm and ag is the age with dimension year. The basal metabolic rate has

the dimension kcal.day−1.m−2, that is, 4.2×103

24×3600J.s
−1.m−2. According to the literature report[23], the

healthy individuals’ basal metabolic rate do not have significant difference. This implies that 2 healthy

individuals with the same gender, at the same age, with similar height have similar weight. That is

why their body surface area are the same.

The definition of basal metabolic rate is the thermal energy detected at unit time at unit body

usrface area. This is in fact the energy dissipation at unit time at unit body surface area. So total

energy dissipation of human body ED and basal metabolic rate have the relation below:
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ED
σ

= βBm(f) (21)

in which σ is the body surface area with dimension m2 calculated by the formula give below[24]

σ = 0.007184m0.425h0.725 (22)

m and h have the same meaning as in (20). Plug (16) into (21), we get:

kB < Tb > µ

4
[3(

µ

ω
)2 + 8a2 − 4a] = βBm(f)σ (23)

equation (23) gives constraint for the parameters which reflects the intrinsic state of the energy-

material metabolism. The solution of (11) is at the lowest ”energy level”, which corresponds to the

basal metabolism.

Daily exercise or physical exercises can not last for infinite long time. Anyone feels tired after long

time exercises, and needs rest. During this process, one can observe the thermal energy increases at

unit area of body surface at unit time, but when he or she is at rest at 293K (20 centigrade), the

thermal energy at unit area of body surface at unit time returns to basal metabolic rate Bm(f). This

means that daily exercise is just the perturbation to the basal metabolism, in language of physics,

basal metabolic rate is a potential well in phase space (q1, q2).

To demonstrate our proposal, rewrite (11) in polar coordinate:

d

dt′
r =

µ

ω
(a− r2 cos2 θ)r sin2 θ (24)

d

dt′
θ = 1− µ

ω
(a− r2 cos2 θ) sin θ cos θ

where q1 =
√
q2

1 + q2
2 cos θ ≡ r cos θ, similarly, q2 = r sin θ. The angular speed does not contribute to

radial direction, which corresponds to energy level in phase space. So suffice it to focus on the first

equation (24). if there is a small deviation δr from the limit cycle solution (12) r0:

d

dt′
(r0 + δr) =

µ

ω
[a− (r0 + δr)2 cos2 θ](r0 + δr) sin2 θ (25)

Because r0 is the limit cycle solution of (11), to the first order approximation, (25) becomes:

d

dt′
δr =

µ

ω
(a− 3r2

0 cos2 θ) sin2 θδr +O(δr2) (26)

the solution of (25) is:

δr = e
1
8
µ
ω

[(4a−3r20−4a cos 2θ+3r20 cos 4θ)t′−(4a−3r20−4a cos 2θ+3r20 cos 4θ)t′0] (27)

where t′0 is the initial time. The leading term in the equation a− 3r2
0 cos2 θ is negative definite[21, 22].

In its solution 4a− 3r2
0 is negative definite, and e−4a cos 2θ+3r20 cos 4θ is bounded i.e. it does not change

the result that δr goes to 0 when t goes to infinity. This result shows that the perturbation changes

div, but at last div will tend to the relation (23).
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4 Energy metabolism with daily exercise for healthy individuals and
the determination of the parameters in mathematical model

Last section 3, we have already discussed the approach of constructing mathematical model describing

the basal metabolic rate which is intrinsic for human body. In this subsection, we discuss the energy

metabolism of healthy individuals when daily exercise is taken into consideration.

From the mathematic point of view, perturbation to the intrinsic state leads to the deviation of

energy metabolism. In practice what we can detect is the perturbation to ED, the ”negative energy

dissipation”:

∆ED = kB < Tb > {−
1

τ

∫ 2π

0
dθ
µ

ω
[a− (2a− 8

µ

ω
cos θ sin3 θ + δr)2 cos2 θ] (28)

+
1

τ

∫ 2π

0
dθ
µ

ω
[a− (2a− 8

µ

ω
cos θ sin3 θ)2 cos2 θ]}

= kB < Tb > {
µ

4
[3(

µ

ω
)2 + 8a2 − 4a]− µ

2
(2aδr + δr2)− µ

4
[3(

µ

ω
)2 + 8a2 − 4a]}

= −kB < Tb >
µ

2
(2aδr + δr2)

in which δr is the deviation from limit cycle solution. The deviation from the limit cycle solution

changes the intrinsic dissipation, the ”negative energy dissipation”. If δr > 0, (28) shows that the

intrinsic dissipation is decreased, but this decrease leads to the system nearer to equilibrium, because
dis
dt = 0 corresponds to equilibrium[11]. As is known to all that the equilibrium means the end of

life. This result implies that endless exercising (improper exercise) without rest leads to death. If

−2a < δr < 0, (28) shows that the intrinsic dissipation is increased, which drives the system farther

from equilibrium. No matter (28) is positive or negative, it will go to 0, when t′ goes to infinity.

Because δr → 0 , when t′ →∞.

If we return to the way of understanding the energy metabolism of human body in section 3.2,

one can notice that the activity like daily exercise is in fact perturbation to basal metabolism. The

observable fact that one’s energy expenditure always returns to the basal metabolic level and the result

of (27) are one-to-one correspondent. (27) describes the phenomenon that the energy expenditure

(dissipation rate) of a healthy individual who is at rest after some exercise will return to its basal

metabolic rate i.e. the intrinsic energy metabolism. Take the result of (28) into consideration, which

shows that positive perturbation to the human body is harmful, because it leads the system nearer

to equilibrium, we can deduce that the types of unhealthy lifestyle (corresponding to (28) negative) is

much more than that of healthy lifestyle, because the interval of δr that makes (28) to be positive is

narrower than that makes (28) to be negative. No wonder healthy lifestyle is not easy to keep.

Daily exercises increases the energy expenditure of human body[25], and it is widely accepted that

proper daily exercises does no harm to our health. From the view in our paper, continuous physical

exercise gives initial condition of δr, the evolution of δr following (27) begins when the physical

exercise stops. And the increase of energy expenditure means that (28) is positive. So we are to
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discuss the relation between daily exercises that increases energy expenditure and the perturbation to

our mathematical model which makes ∆ED > 0.

The prediction of energy expenditure in physical exercises has been studied since 1970s [26, 27].

Here we focus on walking which is the most general physical exercise that we face very day. The

energy expenditure is related to oxygen uptake converted to energy used in metabolism. The formula

of estimating energy expenditure is given in [25].

The metabolic equivalent task (MET ) is related to basal metabolic rate, with the dimension

1MET = 1kcal.kg−1.h−1 = 4.2×103

3600 J.kg−1.s−1. Converting to the oxygen demand of at unit time

is 1MET = 3.5V̇O2 , in which V̇O2 is the oxygen demand unit mass unit time, with dimension

ml.kg−1.min−1[25]. According to [25] the total energy expenditure measured in V̇O2 is:

V̇O2(ml.kg−1.min−1) = 3.5(ml.kg−1.min−1)+0.1(ml.kg−1.min−1.(m.min−1)−1)×v(m.min−1) (29)

in which v is the speed of walking. Here we do not take graded walk into consideration, because we

just consider the case of daily exercise. 3.5ml.kg−1.min−1 is just the basal metabolic rate per unit

mass. The energy expenditure apart from basal metabolic rate is:

∆ED =
0.1v

3.5

4.2× 103

3600
m (30)

in which m is just the mass in (20). The perturbation to ED is explicitly related to the energy

expenditure:

− kB < Tb >
µ

2
(2aδr + δr2) = β

0.1v

3.5

4.2× 103

3600
m (31)

When v = 0, δr = 0. If v is some nonzero number, when it suddenly equals to 0, the response to the

perturbation will last for some time. So this equation is only valid for the case when the individual is

walking. The walking speed v gives initial condition of δr. The initial state of δr = δr(t′0) are

δr(t′0) = −a±

√
a2 − 1

60

mvβ

µkB < Tb >
(32)

consider the condition: if v = 0 then δr = 0, so we can only take the root with +:

δr(t′0) = −a+

√
a2 − 1

60

mvβ

µkB < Tb >
(33)

It is known to all that anyone’s walking speed is limited. Physiologist have already explained the

reason: it is limited by our heart rate[28]. During physical exercise, heart rate, respiration and blood

pressure will adjust to adapt to the oxygen demand of human body. 3 of the vital signs are changing

except body temperature, which is relatively stable. So these 3 vital signs interdependent from one

another. The maximum of the physical exercise is related to the cardiorespiratory fitness, suffice it
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to say that focus on the heart rate, as long as the individual is healthy. [28] gives the maximum of

oxygen demand estimation V̇O2max during physical exercise:

V̇O2max = 111.33− (0.42× hear beat min−1) (male) (34)

V̇O2max = 65.81− (0.1847× hear beat min−1) (female) (35)

The term hear beat min−1 is the heart rate observed at the time that one is exhausted, rather

than the rest heart rate. Convert the equation into energy-heart rate relation:

∆EDmax =
V̇O2max − 3.5

3.5

4.2× 103

3600
m (36)

V̇O2max is a function of heart rate and gender. Plug ∆EDmax into the formula of δr(t′0), it turns out

to be

δr(t′0) = −a+

√
a2 − V̇O2max − 3.5

3.5

4.2× 103

3600

mβ

µkB < Tb >
(37)

δr(t′0) must be real number, so when one’s physical exercise reaches its limit, ∆ED reaches its maxi-

mum, and δr(t′0) = −a, which implies:

a =

√
V̇O2max − 3.5

3.5

4.2× 103

3600

mβ

µkB < Tb >
(38)

a in model (10) is a parameter concerned with the hear rate, gender and weight of a definite indi-

vidual, with dependence on µ. In (23) the 3 parameters have only 1 constraint, now take (38) into

consideration, we get the relation of µ and ω:

µ

4
[3(

µ

ω
)2 + 8a(µ)2 − 4a(µ)] =

β

kB < Tb >
Bm(f)σ (39)

From (38), a(µ) ∼ 1√
µ , ω is implicitly written as

ω−2 =
1

3µ2
(

4β

µkB < Tb >
Bm(f)σ + 4a(µ)− 8a(µ)2) (40)

Notice that 0 < µ2

ω2 <
1
6 we get

0 <
4β

µkB < Tb >
Bm(f)σ + 4a(µ)− 8a(µ)2 <

1

2
(41)

For a given individual, if we know the age, gender, and height, it is not difficult to estimate the interval

of µ. Here, lack of detailed document of some healthy adult, we generally estimate an interval of µ,

neglecting the age, gender and height, using 3.5V̇O2m = 7
6m J.s−1 at rest state to substitute Bm(f)σ,

the heart rate 170 per minute to substitute the maximum heart rate. Plug the maximum heart rate

into (34) we get:
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a =

√
39.93− 3.5

3.5

4.2× 103

3600

mβ

µkB < Tb >
≈

√
70

6

mβ

µkB < Tb >
(42)

after some calculation we get the interval of µ:

0 <
√
µ <

76
√

7
6

mβ
kB<Tb>

2
√

10 +
√

2
(43)

or

√
µ >

76
√

7
6

mβ
kB<Tb>

2
√

10−
√

2
(44)

We take the former condition and drop the latter, because in Van der Pol model, µω is a small parameter.

Even though we can not get the explicit value of µ, we find out that µ is related to body weight and

body temperature. Most of the time, the body temperature is stable, so µ will change after m. If

some one suffers fever, µ will decrease.

The last task is to estimate the parameter ω. Use the relation (18):

kB < Tb > µ

4
(3
µ2

ω2
+ 8a2 − 4a) = β

∑
Tb

Tb
dis

dt
σ(Tb) (45)

Take the largest µ:

µ =
762 7

6
mβ

kB<Tb>

(2
√

10 +
√

2)2
(46)

Still we use the relation 3.5V̇O2m = 7
6m J.s−1 to substitute the entropy production rate on the right

hand side of (45). Then the average entropy production is:

β
7
6m

< Tb >
J.K−1.s−1 (47)

plug it into (45) we get:

ω−2 =
4
√

70
6

mβ
µkB<Tb>

− 870
6

mβ
µkB<Tb>

+
7
6
mβ

kB<Tb>

3µ2
(48)

So ω−2 ∝ (kB<Tb>mβ )3 + const (kB<Tb>mβ )2, this means that the ”distance” to equilibrium µ
ω is related

to the order like:

µ

ω
∼

√
mβ

kB < Tb >
+ const (49)
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const is some constant. For the qualitative estimation, we do not care the exact number of the

constant. µ
ω in our model is related to body temperature. So the increase of body temperature drives

the system ”nearer” from equilibrium.

This interesting result shows that the ”distance” from equilibrium is related to body temperature

and body weight. However, body temperature is stable quite often, so body weight is an important

index. As we can see, µ
ω is in roughly proportion to body weight. This means that the increasing of

body weight drives the system ”farther” from equilibrium. ω is reverse proportion to m. This means

that overweight decreases the frequency of metabolism. So the cost of sustaining life when someone

is overweight is established on decreasing the metabolism frequency. Low frequency of metabolism is

harmful to our health. Surely high frequency of metabolism is also harmful, but in this paper we just

discuss the case of healthy adults. The unhealthy case is to discuss in other paper.

5 Conclusion and remarks

So far we have established the mathematical model of healthy adults’ energy metabolism. The param-

eter a in the model corresponds to the cardiorespiratory, which gives the limit of one’s physical ability.

µ and ω are mainly related to body temperature and body weight, which are important criterion to

confirm whether the life will sustain or end. What is more, a depends on µ and ω which are all related

to body temperature, body weight and heart rate etc, even though we have already used the simplest

case to estimate these parameters. From this result , we have to conclude that every organ in human

body is related to each other.

The parameters estimated in our model are all based on the healthy adults, so if the body weight

is too light, it will of course cause some other illness. This needs discussing by the clinical data of

from the patients.
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