
A Monte Carlo scheme for node-specific inference
over wireless sensor networks

Luca Martino?, Jorge Plata-Chaves†, Francisco Louzada?

? Institute of Mathematical Sciences and Computing, Universidade de São Paulo (ICMC-USP), Brazil.
† Department of Electrical Engineering-ESAT, STADIUS, KU Leuven, B-3001 Leuven, Belgium

Abstract—In this work, we design an efficient Monte Carlo
scheme for a node-specific inference problem where a vector of
global parameters and multiple vectors of local parameters are
involved. This scenario often appears in inference problems over
heterogeneous wireless sensor networks where each node per-
forms observations dependent on a vector of global parameters
as well as a vector of local parameters. The proposed scheme uses
parallel local MCMC chains and then an importance sampling
(IS) fusion step that leverages all the observations of all the nodes
when estimating the global parameters. The resulting algorithm
is simple and flexible. It can be easily applied iteratively, or
extended in a sequential framework.
Keywords: Node-specific inference; Parallel MCMC; Importance
sampling; Wireless sensor networks.

I. INTRODUCTION

In the last decades, there has been a considerable research
effort in the field of inference over networks, e.g.,[1]-[10].
Furthermore, Bayesian methods have become very popular
in signal processing during the last years and, with them,
Monte Carlo (MC) techniques that are often necessary for
the implementation of optimal a posteriori estimators [11]-
[13]. Indeed, MC methods are powerful tools for numerical
inference and optimization [14]-[18]. They are very flexible
techniques. The only requirement needs for applying an MC
technique is to be able to evaluate point-wise the posterior
probability density function (pdf) [11]-[12].

More recently, motivated by different applications such as
cooperative spectrum sensing [19]-[20] or power system state
estimation [21], special attention is being paid to more general
inference problems in which the observation model of the
different nodes depend on different but overlapping vectors of
parameters. This kind of estimation problems, usually referred
to as Node-Specific Parameter Estimation (NSPE) problems,
has generally been addressed by distributed algorithms that
rely on low-complex linear estimation techniques, e.g.,[19]-
[25]. However, to the authors knowledge, very little is known
about the application of MC techniques to design algorithms
that can solve NSPE problems. To bridge this gap, we consider
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an inference problem where the measurements of each node
depend on a vector of local parameters and a vector global
parameters. To solve this problem, we propose a MC-based
method that simultaneously estimate both the vector of global
parameters as well as the different vectors of local parameters
observed by the different noes. The proposed solution employs
parallel MCMC algorithms for analyzing the local features of
the network and an importance sampling (IS) fusion for obtain-
ing complete estimators of the global parameters. Each MCMC
method addresses a different target posterior function, obtained
by considering a subset of observations. This approach also
presents several computational benefits from a Monte Carlo
point of view (as remarked exhaustively in Section III-A). For
instance, the mixing of the MCMC methods is facilitated by
the reduced number of measurements involved in the partial
posterior, since this partial posterior distribution is implicitly
tempered [26], [27]-[18]. Furthermore, several parallel or
related schemes, proposed in literature, could be adapted for
this framework [8]-[10] and [27]-[33]. Numerical simulations
show the advantages of the proposed approach.

II. PROBLEM STATEMENT

In this work, we are interested in making inference of the
following variable of interest,

Θ =

[
Θ(G)

Θ(L)

]
=


x

v1

...
vM

 ∈ A ⊆ RDθ , (1)

composed by the vector x = [x1, . . . , xdX ]> ∈ RdX of global
parameters and the vectors vm = [v1,m, . . . , vdm,m]> ∈ Rdm

of local parameters at node m, for m = 1, . . . ,M . The
vector Θ(G) = x gathers all the global parameters, whereas
Θ(L) = [v1, . . . ,vM ]> ∈ RL is formed by all the vectors
of local parameters. We receive a set of dY measurements,
Y = {z1, z2, . . . , zdY }, with each zj ∈ R (we assume zj be
scalar only for simplicity), related to the variable of interest
Θ. We consider M disjoint subset of Y , i.e., we can write
Y = y1:M =

⋃M
m=1 ym where ym ∩ yk = ∅ with m 6= k

and with ym denoting the observations performed by node m.
We assume that the observations performed by two different
nodes m and k depend on the same vector of global parameters
x. We also consider that the observations performed by each
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Figure 1. Wireless sensor network with node-specific observation models. In
this graphical examples, the network is composed by 8 nodes, dividing in 3
clusters and providing 3 different vectors of measurements y1, y2 and y3. In
this case, Y = y1 ∪y2 ∪y3, yj ∩yk 6= 0 for j 6= k (in this case, dY1 = 5,
dY2 = 3, dY3 = 2). Each sensor can provide more than one measurement.

node m, i.e., ym, depends on the vector of local parameters
vm. This setting appears naturally in several applications,
for instance in the so-called NSPE problem over a wireless
sensor network, e.g., ,[19]-[22] and [24]-[25] (see Figure 1).
Furthermore, in the considered setting we assume that the
observations performed by different nodes are conditionally
independent, i.e., the likelihood function can be factorized as

L(y1:M |Θ) =
M∏

m=1

`m(ym|x,vm). (2)

Considering a prior probability density function (pdf) p(Θ) =
p(x)

∏M
m=1 p(vm), the complete posterior pdf can written as

Ω(Θ|y1:M ) =
M∏

m=1

π̄m(x,vm|ym), (3)

where the partial posteriors are

π̄m(x,vm|ym) ∝ πm(x,vm|ym) where

πm(x,vm|ym) = `m(ym|x,vm) [p(x)]1/M
p(vm).

(4)

For the inference of x, an important role is played by the
marginal posterior density

G(x|y1:M ) =
∫

RL
Ω(Θ|y1:M )dv1 . . . dvM (5)

=
∫

RL

M∏
m=1

π̄m(x,vm|ym)dv1 . . . dvM (6)

=
M∏

m=1

gm(x|ym), (7)

where

gm(x|ym) =
∫

Rdm
π̄m(x,vm|ym)dvm. (8)

Note that the integrals above cannot be computed analytically,
in general. Furthermore, notice that a similar approach is
considered in the Big Data context, e.g., [8]-[10] and [33].

III. BAYESIAN INFERENCE

Our purpose is to infer Θ = [x,v1:M ] given Y = y1:M .
For instance, we desire to compute the Minimum Mean Square
Error (MMSE) estimators of x and v1:M , i.e.,

x̂ =
∫
A

x Ω(x,v1:M |y1:M )dxdv1:M , (9)

=
∫

RdX
x G(x|y1:M )dx, (10)

and

v̂m =
∫
A

vm Ω(x,v1:M |y1:M )dxdv1:M , (11)

for m = 1, . . . ,M . In general, we are not able to calculate
analytically the integrals above. Thus, we apply a Monte Carlo
(MC) approach for computing approximately x̂ and v̂1:M .

A. Benefits of the parallel MC implementation

The previous factorization of the posterior pdf suggests
the use of M parallel algorithms and then combine the
corresponding outputs. This is convenient from a Monte Carlo
point of view. Namely, the use of M parallel MC methods,
each one addressing one partial posterior π̄m, presents several
computational benefits:
a) Each partial posterior π̄m is embedded in a state space
of lower dimensionality, specifically, x,vm ∈ RdX×dm . This
clearly helps the exploration of the space by the MC algorithm.
b) Each partial posterior involves a smaller number of mea-
surements. This is an advantage since the mass of probability
is in general more disperse than when a big number of observa-
tions is jointly considered, producing a tempering effect (data-
tempering) [18], [26], [28]. This again helps the exploration
of the state space (as suggested, e.g., in [28]).
c) This scenario automatically allows a possible parallel im-
plementation over a wireless sensor network where each node
in the network undertakes one of the MC methods.

IV. MONTE CARLO NODE-SPECIFIC INFERENCE

Let us consider that we able to draw N samples θ
(n)
m =

[x(n),v(n)
m ], with n = 1, . . . , N , directly from each π̄m, i.e.,

θ(1)
m , . . . ,θ(N)

m ∼ π̄m(x,vm|ym),

with m = 1, . . . ,M . Due to the factorization of the complete
target pdf Ω(Θ|y1:M ), for inferring the local variable vm,
we use only the samples v(n)

m , n = 1, . . . , N , obtained from
π̄m. For the global variable x, we can build M different
partial Monte Carlo estimators. However, all the information
contained in the different partial posteriors should be employed
for providing a more efficient unique estimator of x. This can
be done by combining adequately the M partial Monte Carlo
estimators of x.

Let us consider that we are able to draw samples from each
marginal pdfs gm(x|ym) in Eq. (8) and also assume that we
are able to evaluate it. In this case, we can use the following
IS scheme:

1) Draw x(1)
m , . . . ,x(N)

m ∼ gm(x|ym).



2) Assign the weight

w(n)
m =

G(x(n)
m |y1:M )

gm(x(n)
m |ym)

=
M∏

k=1;k 6=m

gk(x(n)
k |yk), (12)

to each sample x(n)
m , for n = 1, . . . , N .

Then, the IS approximation of the MMSE estimator x̂ is

x̃ =
1∑M

m=1

∑N
n=1 w

(n)
m

M∑
m=1

N∑
n=1

w(n)
m x(n)

m (13)

However, the previous approach has two main problems:
• We are not able to draw from gm(x|ym) in Eq. (8).
• It is not possible to evaluate gm(x|ym) and G(xm|y1:M ).

Next, we will show how the previous problems can be over-
come.

A. Proposed Algorithm

A possible approximate solution consists in the follow-
ing procedure. First, we use parallel MCMC algorithms to
draw samples θ

(n)
m = [x(n),v(n)

m ] from each partial posterior
π̄m(x,vm|ym). Given an index m ∈ {1, . . . ,M}, once the
chain has converged, note that the samples x(n)

m are distributed
as gm(x|ym) whereas θ

(n)
m is distributed as π̄m(x,vm|ym).

Then, we build a Kernel Density Estimator (KDE) [34],

ĝm(x|ym) =
1
N

N∑
n=1

ϕ(x|x(n)
m ,C), (14)

for each m ∈ {1, . . . ,M}, using the generated samples x(n)
m ,

n = 1, . . . , N , as means of a kernel function ϕ with bandwidth
matrix C. In this way, we can compute an approximate weight

ŵ(n)
m =

M∏
k=1;k 6=m

ĝk(x(n)
k |yk), (15)

so that the IS estimator x̃ in Eq. (13) can be approximated
with

x̄ =
1∑M

m=1

∑N
n=1 ŵ

(n)
m

M∑
m=1

N∑
n=1

ŵ(n)
m x(n)

m . (16)

In this way, we obtain the Parallel Marginal Markov Impor-
tance Sampler (PMMIS) for node-specific inference summa-
rized in Table I and Figure 2. Moreover, Table II summarizes
the notation about the estimators of x.

Theoretical support. After a burn-in period, the MCMC
chains converges to the invariant target pdf (for N → ∞,
the convergence is ensured [11], [12]). Namely, after some
iterations, the MCMC methods yields samples {x(n)

m ,v(n)
m }

distributed according to π̄m, so that {x(n)
m } are distributed as

the marginal partial posteriors gm(x|ym) [11]. There exists an
optimal bandwidth C∗ [34] such that

ĝm(x|ym)→ gm(x|ym), for N →∞.

As a consequence, we have that ŵ(n)
m → w

(n)
m and x̄→ x̃, for

N →∞. Moreover, the IS estimator is consistent [11] so that
x̄ → x̃ → x̂, as N → ∞. In general, the optimal bandwidth

Table I
PARALLEL MARGINAL MARKOV IMPORTANCE SAMPLER (PMMIS).

1. Local MCMC samplers: Generate M chains of length N , i.e.,

θ
(1)
m = [x(1),v

(1)
m ], . . . ,θ

(N)
m = [x(N),v

(N)
m ],

with target pdf π̄m(x|ym) ∝ πm(x|ym), m = 1, . . . ,M .
2. Kernel density estimation: Build

bgm(x|ym) =
1

N

NX
n=1

ϕ(x|x(n)
m ,C), (17)

given a function ϕ and scale parameter C.
3. Global IS fusion: Compute the weights

bw(n)
m =

MY
k=1;k 6=m

bgk(x
(n)
k |yk), (18)

for m = 1, . . . ,M and n = 1, . . . , N .
4. Outputs: Return the Monte Carlo estimators

x̄ =
1PM

m=1

PN
n=1 bw(n)

m

MX
m=1

NX
n=1

bw(n)
m x

(n)
m , (19)

evm =
1

N

NX
n=1

v
(n)
m , m = 1, . . . ,M. (20)

x,v1 x,v2 x,vM
. . . . . .

y1 y2 yM

. . . . . .MCMC1 MCMC2 MCMCM

IS fusion

. . . . . .KDE1 KDE2 KDEM

Figure 2. Graphical representation of PMMIS scheme: M local MCMC
chains are run, each one addressing one partial posterior π̄m. A KDE for
approximating the marginal partial posteriors gm(x|ym) is performed locally.
Then, an IS fusion is employed to estimate the global parameter x.

Table II
NOTATION OF DIFFERENT ESTIMATORS OF x.

Notation Descriptionbx MMSE estimator in Eq. (9).ex Monte Carlo estimator (approximation of bx) in Eq. (13).

x̄
Approximate Monte Carlo estimator
(approximation of ex) in Eqs. (16)-(19).

C∗ is unknown. However, using a bandwidth C 6= C∗, Eq.
(14) provides an estimator of gm(x|ym) [34], in any case.

Alternative IS weights. Other proper IS weights can be em-
ployed in our framework, providing consistent estimators [35]-
[37]. For instance, a full deterministic mixture approach [36],
[38]-[39] for multiple importance sampling (MIS) schemes can
be used, i.e.,

w(n)
m =

G(x(n)
m |y1:M )

1
M

∑M
j=1 gj(x(n)

m |yj)
=

∏M
k=1 gk(x(n)

m |yk)
1
M

∑M
k=1 gk(x(n)

m |yk)
.

(21)



It is possible to show that the application of these DM-MIS
weights provides more efficient IS estimators [36], [37] (i.e.,
with smaller variance).

B. Parallel Metropolis-Hastings algorithms

For simplicity, we consider Metropolis-Hastings (MH)
methods in the first step of the novel scheme. However, more
sophisticated algorithms can be employed. More specifically,
starting with a randomly chosen θ

(0)
m , we perform the follow-

ing steps:
For m = 1, . . . ,M :

For n = 1, . . . , N :
1) Draw θ′ from a proposal pdf qm(θ′|θ(n−1)

m ).
2) Set θ

(n)
m = θ′, with probability

α = min

[
1,

πm(θ′|ym)qm(θ(n−1)
m |θ′)

πm(θ(n−1)
m |ym)qm(θ′|θ(n−1)

m )

]
, (22)

otherwise set θ
(n)
m = θ

(n−1)
m (with probability 1− α).

V. NUMERICAL SIMULATIONS

In order to test PMMIS, we consider a Gaussian likelihoods

fm(ym|x, vm) =
dYm∏
j=1

N (zj |x, vm,Σm), (23)

with ym = [z1, . . . , zdYm
]>, m = 1, . . . ,M , and where

zj , x, vm ∈ R. Note that dYm = |ym|. We consider flat
improper priors over x and vm, m = 1, . . . ,M . We set
M = 10, so that we have 10 different partial target pdfs
π̄m(x, vm|ym) ∝ fm(ym|x, vm). The covariance matrices are
Σm = [σ2

1,m ρm; ρm σ2
2,m] with ,

σ1,1:M =
[

1
2
,

3
2
, 4,

5
2
, 3,

7
2
, 3,

5
2
, 2,

1
2

]
,

σ2,1:M =
[

1
3
,

2
3
, 1,

4
3
,

5
3
, 2,

7
3
,

8
3
, 3,

10
3

]
,

ρ1:M =
[
0,

1
10
,

2
10
,

3
10
,

4
10
,

5
10
,

6
10
,

7
10
,

8
10
,

9
10

]
We set x = −1 and v1:M = [−5,−4,−3,−2,−1, 0, 1, 2, 3, 4]
as “true” values of the parameters. Then, given these values,
we generate (according to the model in Eq. (23)) different
numbers of measurements for each partial likelihood, specif-
ically, dY1:M = [2, 2, 50, 2, 5, 20, 5, 100, 2, 10]. Given a set
Y = y1:M of generated observations, in this toy example we
can compute the MMSE estimator x̂ = −0.911 by a costly
deterministic numerical procedure using a thin grid (for ap-
proximating the marginal posterior and then the corresponding
expected value). Thus, we apply PMMIS in 400 independent
runs and compare the obtained estimator x̄ with x̂ = −0.911,
computing the corresponding MSE.

We consider Gaussian functions ϕ for the KDE, with the op-
timal bandwidth suggested in [34]. For the proposal pdfs qm’s
of the MH algorithms, we employ standard Gaussian random
walk proposals (with identity covariance matrix [1 0; 0 1]). We
test PMMIS for different values of the length of the chains,

0 500 1000 1500 2000
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10−3

10−2

10−1

100

M
SE

N

 

 

MIS
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Trivial

Figure 3. MSE in the estimation of x̂ obtaining by the Monte Carlo
approximation x̄ by PMMIS using standard IS weights (dashed line), DM-
MIS weights (solid line) and the trivial weights 1

MN
(dotted-dashed line),

for the final fusion (semilog scale representation).

N , from N = 15 to N = 2000. Furthermore, at each run, we
also compute a trivial Monte Carlo approximation of x̂, given
by

x̄trivial =
1
M

M∑
m=1

x̃m =
1

MN

M∑
m=1

N∑
n=1

x(n)
m ,

where x̃m = 1
N

∑N
n=1 x

(n)
m is the Monte Carlo approximation

of x̂m, obtained using the samples of m-th chain. The results
are shown in Figure 3, in terms of MSE versus N (length
of the chains, i.e., number of MH iterations for each partial
target). Three curves are shown, corresponding to the use of
standard IS weights (dashed line), multiple IS weights (solid
line) and the trivial solution (dotted-dashed line). We can
observe that PMMIS provides good results outperforming the
trivial solution for N > 40. This means that, for N ≤ 40,
the samples generated by the MH methods still belong to the
“burn-in” period and the convergence to the invariant pdf is
not reached. However, with a adequate number of iterations
of the chains, PMMIS provides good results. In the example,
the standard IS and DM-MIS weights perform similarly (with
a slight advantages for the DM-MIS weights).

VI. CONCLUSIONS

In this work, we have introduced a novel Monte Carlo
scheme in order to obtain an efficient solution for a node-
specific inference problem. The new Bayesian method pro-
vides a simultaneous estimation of local and global parameters.
The estimation of the global parameters takes into account all
the possible statistical information. The proposed algorithm
is an importance sampler that assigns weights to the samples
obtained by the application of parallel MCMC methods. Each
MCMC addresses a different partial target distribution, con-
sidering only a subset of measurements. As future line, we
consider the possible design of an iterative implementation of
the proposed scheme, where the proposal pdfs employed by
the MCMC algorithms are adapted online, generating in this
way an interaction among the parallel chains.
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