
 1 

Title :DARK MATTER AND DARK ENERGY OF THE UNIVERSE 

INRIA-SACLAYS 

Version 4 

Date: 2
nd

 March 2016  

Email :tdelort@yahoo.fr 

 

Abstract: 

 In this article, we  propose a new model of dark matter. According to this new model, 

dark matter is a substance, that is a new physical element not constituted of classical particles, 

called dark substance and filling the Universe. Assuming some very simple physical 

properties to this dark substance, we  theoretically justify the flat rotation curve of galaxies 

and the baryonic Tully-Fisher’s law. Then using the new model of dark matter we are 

naturally led to propose a new geometrical model of Universe, finite, that is different from all 

geometrical models proposed by the Standard Cosmological Model (SCM). We  then study 

according to our theory of dark matter and dark energy the different possible distributions of 

dark matter around galaxies and in galaxy clusters, and the velocities of galaxies in galaxy 

clusters. Then we expose a new model of expansion of the Universe based on the new 

geometrical form of the Universe and on the interpretation of the CMB Rest Frame (CRF), 

that has not physical interpretation on the SCM. We then propose 2 possible mathematical 

models of expansion inside the new model of expansion. The 1
st
 proposed mathematical 

model is based on General Relativity as the SCM and gives the same theoretical predictions of 

distances and of the Hubble’s constant as the SCM. The 2
nd

 proposed mathematical model is 

mathematically much simpler than the mathematical model used in the SCM, but we will see 

that its theoretical predictions are in agreement with astronomical observations. Moreover, 

this 2
nd

 mathematical model of expansion does not need to introduce the existence of a dark 

energy contrary to the mathematical model of expansion of the SCM. To end we study the 

evolution of the temperature of dark substance in the Universe and we make appear the 

existence of a dark energy, due to our model of dark matter.  

  

Key words: Tully-Fisher’s law, dark matter, dark halo, CMB, galaxy clusters, gravitational 

lensing, galaxy rotation curve, velocity of galaxies, dark energy. 

 

1.INTRODUCTION 

 

 In the first part of the article, we expose a theory of dark matter. In this part, we 

propose that a new physical element, called dark substance, constitutes the dark matter. 

According to the proposed model of dark matter, this dark substance fills all the Universe and 

has physical properties close to the physical properties of an ideal gas. We then show that it is 

possible, using those properties, to justify theoretically the flat rotation curve that is observed 

for some galaxies. If moreover we assume simple thermal properties to this dark substance, 

we see that we can justify theoretically the baryonic Tully-Fisher’s law. We remind that up to 

date, neither the flat rotation curve of galaxies nor the baryonic Tully-Fisher law have been 

justified theoretically in a satisfying way. A simple mathematical expression of the density of 

dark matter (in 1/r
2
) permitting to obtain this flat rotation curve has already been proposed, 

but it has not been proposed a model of dark matter permitting to justify theoretically this 

mathematical expression (in 1/r
2
). The theory called MOND theory 

(1)
 proposes also a 

theoretical justification of the flat rotation curve of some galaxies, but this theory is contrary 

to Newton’s attraction law and moreover it is contradicted by some astronomical 

observations. We see that our new model of dark matter leads to propose according to our 

theory of dark matter a new geometrical model of Universe, finite, that is not proposed by the 
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Standard Cosmological Model. We then study according to our theory of dark matter the 

different models of distribution of dark matter in galaxies. We see that this theory gives 

theoretical predictions concerning the velocities of galaxies inside clusters and the masses of 

clusters that are in agreement with astronomical observations. Then we see that this theory 

permits also theoretical predictions of the dark radius of galaxies, in agreement with 

observations, and also of the mean density of dark matter in the Universe, that is the origin of 

some anisotropies of the CMB.     

 

 Concerning the theory called MOND 
(1)

, (proposed by Milgrom) we remind that 

according to this theory, it only exists ordinary matter constituted of baryonic and leptonic 

particles, and we must replace the fundamental law of Newtonian dynamics F=ma (a 

acceleration of a particle with a mass m) by the law: 

 

aF )(
0a

a
mµ=   (0a) 

With µ(x)=1 if x>>1 and µ(x)=x if x<<1. 

 

 We then obtain easily with the preceding law, for a star of a spiral galaxy situated at 

the distance r from the centre of the galaxy, with the conditions on the variable r a/a0<<1 and 

M(r)
1/2
≈M

1/2
, M(r) being the mass inside the sphere with the radius r and  centre O centre of 

the galaxy and M being the total mass of the galaxy, modeling M(r) as a punctual mass in O: 

 

r

GMa
a

0
=   (0b) 

Therefore we obtain, with a=v
2
/r, v orbital velocity of the considered star and with the 

conditions on r a/a0<<1 and M(r)
1/4
≈M

1/4
: 

 

v=(GMa0)
1/4

  (0c) 

 

 The theory of dark matter exposed in this article is very different from the MOND 

theory because according to the former theory, it exists a kind of dark matter different from 

ordinary matter. As the MOND theory, we will see that it also gives a very simple model of 

galaxies with a flat rotation curve. But in the theory MOND, the equation (0c) is valid only 

with the conditions on the variable r a/a0<<1 and M(r)
1/4
≈M

1/4
 . In the model of galaxies with 

a flat rotation curve proposed by the new theory of dark matter, we find a constant orbital 

velocity whatever be r, if we neglect the ordinary matter. Moreover, the fundamental law of 

MOND theory (0a) is very artificial, whereas the model proposed by the new theory of dark 

matter is compatible and uses the fundamental law of Newtonian dynamics F=ma. 

 In the same way both theories permit to obtain the baryonic Tully-Fisher’s law 

observed by S. Mc Gaugh 
(2)

 (M=Kv
4
, M baryonic mass of the galaxy, v orbital velocity of 

stars in this galaxy, K constant). But those theories use completely different hypothesis in 

order to obtain this law. Moreover in the MOND theory in order to obtain this law we use the 

equation (0c), which as we saw previously requires some conditions on the variable r in order 

to be valid.    

 Concerning galaxy clusters, the theory of dark matter exposed in this article is 

compatible with the observed properties of clusters, which is not the case of the MOND 

theory. For instance, the new theory predicts some relations between the velocities of galaxies 

of a cluster and its mass in agreement with astronomical observations which is not the case of 

the MOND theory. Moreover in the new theory the effect called gravitational lensing exists 



 3 

and is interpreted in a very simple way which it is not the case of the MOND theory. Indeed, 

MOND theory needs another theory (much more complicated than the interpretation of 

gravitational lensing by the new theory of dark matter), called TeVeS 
(3) 

in order to interpret 

gravitational lensing observed for clusters. But this theory TeVeS meets important problems 

of instability 
(4)

 and needs the existence of neutrinos in the galaxy cluster with important 

masses 
(5)

.    

  

 Moreover the new theory of dark matter predicts the existence of a density of dark 

matter in the Universe that could be the origin of some anisotropies of the CMB, which is not 

the case of the MOND theory. To end the new theory proposes a very attractive Cosmological 

model based on the new theory of dark matter (2
nd

 part of the theory) whereas it does not exist 

any Cosmological model built on the MOND theory. 

 

 In the 2
nd

 part of the article, we will see that our theory of dark matter and dark energy 

proposes a model of expansion of the Universe that is based on the new geometrical form of 

the Universe introduced in the 1
st
 part of the article, and also on the physical interpretation of 

the CMB Rest Frame (CRF), that has not physical interpretation in the SCM. We will see that 

the model of expansion proposed by our theory permits to define distances in Cosmology that 

are completely analogous to distances in Cosmology defined by the SCM. As the SCM, we  

see that our theory of dark matter and of dark energy is compatible with Special Relativity 

and General Relativity (locally) because according to this new theory the CRF cannot be 

detected using usual laboratory experiments but only observing the CMB. We will see that 

our new theory of dark matter and dark energy proposes 2 possible mathematical models of 

expansion of the Universe. The 1
st
 mathematical model of expansion is based as the SCM on 

the equations of General Relativity. We  see that this 1
st
 model gives theoretical predictions of 

distances used in Cosmology, of the Cosmological redshift and of the Hubble Constant that 

are identical to their theoretical predictions by the SCM. 

 The 2
nd

 proposed mathematical model of expansion is not based on General Relativity 

but is mathematically much simpler. Nonetheless its theoretical predictions, in particular 

predictions of Hubble’s Constant and of distances used in Cosmology, are in agreement with 

astronomical observations. Moreover, this 2
nd

 model does not need the existence of a dark 

energy (contrary to the 1
st
 mathematical model and to the SCM), and consequently brings a 

solution to the enigma of dark matter.  

 To end we  study according to our theory of dark matter and dark energy the evolution 

of the temperature of dark substance in the Universe and we see that according to this theory 

it exists a dark energy in the Universe, that is the internal energy of the dark substance 

modeled as an ideal gas.     

 We remind that for many astrophysicists and physicists, the enigmas in the SCM, in 

particular the enigmas concerning dark matter and dark energy, make necessary a new 

paradigm for the SCM 
(6)

. Our article proposes such a new paradigm. 

  

 We will see that the theory of dark matter and dark energy exposed in this article 

remains compatible with the SCM 
(7)(8)(9)

 in order to interpret most astronomical observations 

not directly linked to dark matter or dark energy, for instance primordial elements abundance, 

the apparition of baryonic particles (for the same Cosmological redshift z as in the SCM), 

formation and apparition of stars and galaxies (for the same z as in the SCM), apparition of 

the CMB (for the same z as in the SCM), evolution of the temperature of the CMB (in 

1/(1+z)), anisotropies of the CMB….     

 

2. DARK MATTER 
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2.1 Physical properties of the dark substance. 
 

 As we have seen in 1.INTRODUCTION, we admit the Postulate 1 expressing the 

physical properties of the dark substance: 

 

Postulate 1: 

 

a)A substance, called dark substance, fills all the Universe. 

 

b)This substance does not interact with photons crossing it. 

 

c)This substance owns a mass and obeys to the Boyle’s law (called also Mariotte’s law), to 

the Charles’law (called also Gay-Lussac’s law), and to the following law that is their 

synthesis: 

An element of dark substance with a mass m, a volume V, a pressure P and a temperature T 

verifies, k0 being a constant: 

PV=k0mT 

 

The preceding law is valid for a given ideal gas G0, replacing k0 by a constant k(G0), 

and this is a consequence of the universal gas equation, which is also obtained using Boyle 

and Charles’laws. For this reason we will call it the Boyle-Charles’law. 

 

We have 2 remarks consequences of this Postulate1: 

 

-Firstly despite of its name, the dark substance is not really dark but translucent. Indeed, 

because of the preceding Postulate 1b) it does not interact with photons crossing it. 

 

-Secondly because of the Postulate 1a), what is usually called “emptiness” is not empty in 

reality: It is filled with dark substance.   

 

2.2 Flat rotation curves of galaxies.  

 

 Using the fact that the dark substance behaves as an ideal gas (Postulate 1c), we are 

going to show that a spherical concentration of dark substance in gravitational equilibrium can 

constitute the dark matter in a galaxy with a flat rotation curve. 

  

According to Postulate 1c) an element of dark substance with a mass m, a volume V, a 

pressure P and a temperature T verifies the law, k0 being a constant:   

 

 PV=k0mT (1) 

 

Which means, setting k1=k0T : 

 

 PV=k1m (2) 

 

Or equivalently, ρ being the mass density of the element: 

 

 P=k1ρ  (3a) 
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We then emit the natural hypothesis that a galaxy can be modeled as a concentration of 

dark substance with a spherical symmetry, at an homogeneous temperature T, in gravitational 

equilibrium. 

We consider the spherical surface S(r) (resp. the spherical surface S(r+dr)) that is the 

spherical surface with a radius r (resp. r+dr) and whose the centre is the center O of the 

galaxy. S(O,r) is the sphere filled with dark substance with a radius r and the centre O. 
 

 

 
Figure 1:The spherical concentration of dark substance 

 

The mass M(r) of the sphere S(O,r)is given by: 

 

∫=
r

dxxxrM
0

24)()( πρ       (3b) 

 

 

Assuming a spherical symmetry for the density of dark substance, using Newton’s law (ΣF=0 

for a material element in equilibrium with a mass m, FG(r)=mG(r), FG(r) gravitational force 

acting on the element, G(r) gravitational field defined by Newton’s universal law of 

gravitation) and Gauss theorem in order to obtain G(r), we obtain the following equation (4) 

of equilibrium of forces on an element dark substance with a surface dS, a width dr, situated 

between S(O,r) and S(r+dr): 

 

∫ =−++
r

rdSPdxxxdSdrr
r

G
drrdSP

0

2

2
0)()4)()()(()( πρρ   (4) 

Eliminating dS, we obtain the equation: 

∫−=
r

dxxxr
r

G

dr

dP

0

2

2
)4)())((( πρρ      (5) 

And using the equation (3) obtained using the Boyle-Charles’law assumed in the Postulate 1, 

we obtain the equation: 

 

 

 

 

 

                                  r 

                O 

 

                              

S(O,r) (full sphere) 

S (r+dr) 
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∫−=
r

dxxxr
r

G

dr

d
k

0

2

21 )4)())((( πρρ
ρ

     (6) 

 

We then verify that the density of the dark substance ρ(r) satisfying the preceding 

equation of equilibrium is the evident solution:  

 

2

2

4
)(

r

k
r

π
ρ =        (7) 

 

(A density of dark matter expressed as in Equation (7) has already been proposed in 

order to explain the flat rotation curve of spiral galaxies, but it has not been proposed a model 

of dark matter permitting to justify theoretically this density in 1/r
2
 or to obtain the constant 

k2. Here we give a theoretical justification of this density in 1/r
2
 and we are going to give the 

expression of the constant k2 (Equation (8)). This is the consequence of the model of dark 

substance as an ideal gas, Postulate 1)  

  

In order to obtain k2 , we replace ρ(r) given by the expression (7) inside the equation 

(6), and we obtain immediately that this equation is verified for the following expression of 

k2:  

 

 
G

Tk

G

k
k 01

2

22
==        (8) 

 

Using the preceding equation (7), we obtain that the mass M(r) of the sphere S(O,r) is 

given by the expression:  

rkdxxxrM

r

2

0

2
)(4)( == ∫ ρπ  (9) 

 

 We then obtain, neglecting the mass of stars in the galaxy, that the velocity v(r) of a 

star of a galaxy situated at a distance r from the center O of the galaxy is given by 

v(r)
2
/r=GM(r)/r

2  
and consequently : 

 

 v(r)
2
=Gk2=2k1=2k0T  (10) 

 

So we obtain in the previous equality (10) that the velocity of a star in a galaxy is 

independent of its distance to the centre O of the galaxy. 

 

 2.3 Baryonic Tully-Fisher’s law. 
 

2.3.1 Recall. 

 

Tully and Fisher realized some observations on spiral galaxies with a flat rotation 

curve. They obtained that the luminosity L of such a spiral galaxy is proportional to the 4
th

 

power of the velocity v of stars in this galaxy. So we have the Tully-Fisher’s law for spiral 

galaxies, K1 being a constant: 

 

 L=K1v
4
  (11) 
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But in the cases studied by Tully and Fisher, the baryonic mass M of a spiral galaxy is 

usually proportional to its luminosity L. So we have also the law for such a spiral galaxy, K2 

being a constant: 

 

 M=K2v
4
 (12) 

 

This 2
nd

 form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law. 

 

The more recent observations of Mc Gaugh 
(2)

 show that the baryonic Tully-Fisher’s 

law (equation (12)) seems to be true for all galaxies with a flat rotation curve, including the 

galaxies with a luminosity not proportional to their baryonic mass.  

We are going to show that using the Postulate 1 and a Postulate 2 expressing very 

simple thermal properties of the dark substance, (in particular its thermal interaction with 

baryonic particles), we can justify this baryonic law of Tully-Fisher. 

 

2.3.2 Theory of quantified loss of calorific energy (by nuclei). 

 

 We saw in the previous equation (10) that according to our model of dark substance 

the square of the velocity of stars in a galaxy with a flat rotation curve is proportional to the 

temperature of the concentration of dark substance constituting this galaxy. So we need to 

determinate T: 

-A first possible idea is that the temperature T is the temperature of the CMB. But this is 

impossible because it would imply that all stars of all galaxies with a flat rotation curve be 

driven with the same velocity and we know that it is not the case. 

 

-A second possible idea is that in the considered galaxy, each baryon interacts with the dark 

substance constituting the galaxy, transmitting to it a thermal energy. We can expect that this 

thermal energy is very low, but because of the expected very low density of the dark 

substance and of the considered times (we remind that the baryonic diameter of galaxies can 

reach 100000 light-years), it can lead to appreciable temperatures of dark substance.  A priori 

we could expect that this loss of thermal energy for each baryon (transmitted to the dark 

substance) depends on the temperature of this baryon and of the temperature T of the dark 

substance in which the baryon is immerged, but if it was the case, the total lost thermal energy 

by all the baryons would be extremely difficult to calculate and moreover it should be very 

probable that we would then be unable to obtain the very simple baryonic Tully-Fisher’s law. 

  

We are then led to make the simplest hypothesis defining the thermal transfer between 

dark substance and baryons, expressed in the following Postulate 2a) (Postulate 2 gives the 

thermal properties of the dark substance): 

 

Postulate 2a): 

 

-Each nucleus of atom in a galaxy is submitted to a loss of thermal energy, transmitted to the 

dark substance in which it is immerged. 

 

-This thermal transfer depends only on the number n of nucleons constituting the nucleus (So 

it is independent of the temperature of the nucleus). So if p is the thermal power dissipated by 

the nucleus, it exists a constant p0 (thermal power dissipated by nucleon) such that: 

 

 p=np0    (13)         
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According to the equation (13), the total thermal power transmitted by all the atoms of 

a galaxy towards the spherical concentration of dark matter constituting the galaxy is 

proportional to the total number of nucleons of the galaxy and consequently to the baryonic 

mass of this galaxy. So if m0 is the mass of one nucleon, M being the baryonic mass of the 

galaxy, we obtain according to the equation (13) that the total thermal power Pr received by 

the spherical concentration of dark substance constituting the galaxy from all the atoms is 

given by the following equation, K3 being the constant p0/m0: 

 

Pr=(M/m0)p0=K3M  (14) 

 

Concerning the preceding Postulate 2a): 

 

-It is possible (but not compulsory) that it be true only for atoms whose temperature is 

superior to the temperature T of the concentration of dark substance.  

 

-It permits to obtain the very simple Equation (14). We will see that this equation is essential 

in order to obtain the baryonic Tully-Fisher’s law. 

 

2.3.3 Obtainment of the baryonic Tully-Fisher’s law. 

 

 In agreement with the previous model of galaxy (Section 2.2), we model a galaxy with 

a flat rotation curve as a spherical concentration of dark substance, at a temperature T and 

surrounded itself by a medium constituted of dark substance (called “intergalactic dark 

substance”) with a temperature T0  and a density ρ0. 

 In order to obtain the radius R of the concentration of dark substance constituting the 

galaxy, it is natural to make the hypothesis of the continuity of ρ(r): R is the radius for which 

the density ρ(r) of the concentration of dark substance is equal to ρ0. We will call R the dark 

radius of the galaxy. So we have the equation: 

 

ρ(R)=ρ0   (15) 

 

Consequently we have according to the equations (7) and (8): 

  

02

2

4
ρ

π
=

R

k
   (16) 

 

02

0

4

12
ρ

π
=×

RG

Tk
  (17) 

 

So we obtain that the radius R of the concentration of dark substance constituting the 

galaxy is given approximately by the equation: 

 

2/1

4

2/1

0

0 )
4

2
( TK

G

Tk
R ==

ρπ
 (18) 

 

The constant K4 being given by : 
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2/1

0

0
4 )

4

2
(

ρπG

k
K =   (19) 

 

We can then consider that the sphere with a radius R of dark substance at the 

temperature T is in thermal interaction with the medium constituted of intergalactic dark 

substance at the temperature T0 surrounding this sphere. The simplest and most natural 

thermal transfer is the convective transfer. We admit this in the Postulate 2b): 

 

Postulate 2b): 

 

The thermal interaction between the spherical concentration of dark substance 

constituting the galaxy (with a density of dark substance in 1/r
2
 and a homogeneous 

temperature T) and the surrounding intergalactic dark substance (at the temperature T0) can be 

modeled as a convective thermal transfer. 

 

We know that if φ is the thermal flow of thermal energy on the borders of the spherical 

concentration of dark substance with a radius R, Pl being the total power lost by the spherical 

concentration of dark substance constituting the galaxy is given by the equation:    

 

Pl=4πR
2
φ    (20) 

 

But we know that according to the definition a convective thermal transfer between a 

medium at a temperature T and a medium at a temperature T0 and according to the previous 

Postulate 2b) the flow φ between the 2 media is  given by the expression, h being a constant 

depending only on ρ0: 

 

φ=h(T-T0)   (21)   

 

Consequently the total power lost by the concentration of dark substance is: 

 

Pl=4πR
2
h(T-T0)  (22)  

 

We can consider that at the equilibrium, the total thermal power Pr received by the 

spherical concentration of dark substance constituting the galaxy is equal to the thermal power 

Pl lost by this spherical concentration. Consequently according to the equations (14) and (22), 

(M being the baryonic mass of the galaxy), we have: 

 

K3M=4πR
2
h(T-T0)  (23)  

 

Using then the equation (18) : 

 

K3M=4πK4
2
hT(T-T0)  (24) 

 

Making the approximation T0<<T  : 

 

2

3

2

44 hT
K

K
M π=   (25) 

 

Consequently we obtain the expression of T, defining the constant K5 :  
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2/1

5

2/12/1

2

4

3 )
4

( MKM
hK

K
T ==

π
 (26) 

 

And then according to the equation (10) : 

 

v
2
=2k0T=2k0K5M

1/2
  (27) 

 

So : 

 

42

50

)
2

1
( v

Kk
M =   (28) 

So we finally obtain : 

 

M=K6v
4
   (29) 

     

 The constant K6 being defined by: 

 

3

2

0

2

42

50

6
4

4
)

2

1
(

Kk

hK

Kk
K

π
==  (30) 

 

0

0

3

2

0

6
4

2

4

4

ρπ

π

G

k

Kk

h
K ×=  (31) 

 

000

0
6

2 pGk

hm
K

ρ
=   (32) 

 

So we obtain the baryonic Tully-Fisher’s law (12), with K2=K6. It is natural to assume 

that h depends on ρ0. The simplest expression of h is h=C1ρ0, C1 being a constant. With this 

relation, K6 is independent of ρ0, and we can use the baryonic Tully-Fisher’s law in order to 

define candles used to evaluate distances in the Universe.  

 

2.4 Temperature of the intergalactic dark substance. 
 

 We introduced the temperature T0 of the intergalactic dark substance. We could make 

the hypothesis that this temperature is the temperature of the CMB but we remind that in 

order to get the baryonic Tully-Fisher’s law we supposed T0<<T (T temperature of the 

spherical concentration of dark substance in a galaxy). Consequently the previous hypothesis 

would lead to very high temperatures of spherical concentrations of dark substance 

constituting galaxies. We will see further that according to the theory of dark matter exposed 

here, the temperature T0 of the intergalactic dark substance is not equal to the temperature of 

the CMB, except for a particular cosmological redshift z. 

  

 We could be in the following cases: 

 

a)The temperature T0 of the intergalactic dark substance at the present age of the Universe 

(equation (21)) is far less than the temperature of the CMB. (If the temperature of the dark 

halos of galaxies with a density of dark matter in 1/r
2
 is inferior to 300°K.)  
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b)Baryons can emit thermal power towards dark substance as assumed in the Postulate 2a) 

even if their temperature is inferior to the one of dark substance. (We remind that dark 

substance being not ordinary baryonic matter, it can own very special thermal properties. 

Moreover we will see in the Part 3 of the article that the energy transmitted by baryonic 

particles to dark substance could be not thermal energy) 

  

 We remind that according to the Postulate 1b), the dark substance does not interact 

with photons and in particular with the photons of the CMB. Consequently dark substance 

does not receive radiated energy.   

 

2.5 Form of the Universe 

 

If the Universe was completely isotropic, we could expect by symmetry that the 

thermal flow through a great surface be nil. Consequently the temperature of the dark 

substance inside a great sphere S of the Universe (For instance with a radius of 1 billion 

years) should increase and probably tend to a uniform temperature of dark substance inside 

the sphere S, because the thermal flow through S would be nil. We know that it is not possible 

because we assumed that the temperature T0 of the intergalactic dark substance surrounding 

galaxies is much lower than the temperature T of the concentrations of dark substance 

constituting galaxies with a flat rotation curve. So it seems that according to our model of 

dark substance it cannot exist an infinite or finite isotropic Universe. 

Nonetheless with our model of dark matter, it is much easier to define a finite 

Universe than in the SCM. Indeed we can consider that the Universe is a sphere (We could 

have chosen any other finite convex volume, but the spherical volume is by far the most 

attractive) constituted of dark substance surrounded by a medium called “nothingness” that is 

not constituted of dark substance. This was not possible in the SCM that admitted the 

Cosmological Principle according to which the Universe was isotropic observed from any 

point. Moreover the SCM did not assume the existence of the concept of a dark substance 

filling all the Universe and it is precisely this concept that permitted us to define this new 

finite model of Universe with borders. 

Nonetheless with this spherical model of Universe, we must admit in our theory of 

dark matter and dark energy that our galaxy is sufficiently far from the borders of the 

spherical Universe in order that this Universe appears to be isotropic observed from our 

planet. We also remark that the existence of a medium called “nothingness” is not 

incompatible with the SCM: We can consider that it was the medium before the Big-Bang. 

 

Despite of the finite and spherical form of the Universe, it is possible to keep a model 

of expansion of the Universe, that is quasi identical to the model of expansion of the Universe 

proposed by the SCM. Indeed, we can keep all the equations of the SCM permitting to give 

the Cosmological redshift z, the distances used in Cosmology, the Hubble constant. In this 1
st
 

part of the article, we will keep the model of expansion of the Universe of the SCM, with only 

the geometrical form of the Universe modified. So with this model of expansion, we obtain as 

in the SCM that the factor of expansion of the Universe can be expressed as f=1+z, z being 

the Cosmological redshift, and we obtain z with the same equations as in the SCM, according 

to which the densities of dark matter, of baryonic matter and of dark energy are homogeneous 

in the Universe, and we keep the values admitted by the SCM for those different densities. 

But we can expect, if t1 and t2 are 2 ages of the Universe and 1+z is the factor of expansion of 

the Universe between t1 and t2, RU(t1) and RU(t2) being the radius of the spherical Universe 

between t1 and t2: 



 12 

 

RU(t2)=(1+z)RU(t1)  (33) 

  

We will propose in the 2
nd

 part of our theory concerning dark energy a new model of 

expansion of the Universe based on the spherical form of the Universe obtained in this 1
st
 part 

of the theory concerning dark matter and on the physical interpretation of the CMB rest 

frame. But we will see that also with this new model of expansion RU(t2)=(1+z)RU(t1). 

 

Concerning the CMB, we can admit as in the SCM that it appeared for a Cosmological 

redshift z of the order of 1500. Keeping the model of expansion of the Universe of the CMB, 

we also obtain as in the CMB that the temperature of the CMB evolves in 1/(1+z). The 

hypothesis according to which at the age of the Universe corresponding to this redshift z the 

temperature of dark substance and the temperature of the CMB were equal, is very attractive. 

Indeed with this hypothesis, assuming that the dark substance was homogeneous in 

temperature when the CMB appeared (for z of the order of 1500), we obtain that the 

temperature TaCMB of the CMB when it appeared was homogeneous in the Universe, and 

consequently the temperature of the CMB at the present age of the Universe (approximately 

TaCMB/1500) is homogeneous in the Universe, and consequently the temperature of the CMB 

appears to be isotropic observed presently. We will see that what precedes remains valid in 

the model of expansion of the Universe proposed by our theory of dark matter and dark 

energy. So our theory of dark matter proposes a new phenomenon, different from the 

phenomenon called inflation, in order to explain the quasi isotropy of the CMB observed at 

the present age of the Universe.      

 

In the case in which Universe is a sphere (or any finite convex volume with a finite 

surface) constituted of dark substance, we avoid the previous problem concerning the 

temperature of the intergalactic dark substance. Indeed, we can assume, generalizing the 

Postulate 2b), that at the borders of the Universe, there is a convective thermal transfer. This 

new kind of thermal transfer is modeled as a convective transfer between a medium 

constituted of intergalactic dark substance at a temperature T0 and a medium at a temperature 

equal to 0 (The nothingness). Then the thermal flow lost by the Universe is, h2 being a 

variable or a constant:  

 

φ=h2(T0-0)=h2T0    (34) 

 

M being the baryonic mass of the Universe assumed to remain approximately 

constant, we obtain from equation (14) that the equation of thermal equilibrium is, RU(t) étant 

le rayon de l’Univers à l’âge t de l’Univers: 

 

K3M = 4πRU(t)
2
 φ =4πRU(t)

2
 h2T0(t)   (35) 

  

 So we see that if the Universe increases from a factor 1+z, according to the equations 

(33)(35), if h2 is a constant (independent of the density of the intergalactic dark substance), 

then the temperature T0(t) of the intergalactic dark substance decreases from a factor (1+z)
2
. 

(If we had supposed that h2=C2ρ0, ρ0 being the mass density of the intergalactic dark 

substance and C2 being a constant, we would have obtained that if the Universe increases 

from a factor 1+z, then T(t) also increases by a factor 1+z which is impossible).   

With the hypothesis of the equality between the temperature of the CMB and the 

temperature of the dark substance filling the Universe when the CMB appeared, we obtain 
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that presently the temperature of the dark substance (evolving in 1/(1+z)
2
) is approximately 

1500 times lower than the present temperature of the CMB (evolving in 1/(1+z)).  

  

 We remark that the geometrical model of the Universe proposed by our theory of dark 

matter, finite and spherical, can easily be conceived by the human mind, contrary to the 

geometrical models of the Universe proposed by the SCM that are either infinite either finite 

but without borders. 

 

 

2.6 Displacement of a galaxy inside the intergalactic dark substance. 
 

 Let us consider a spherical concentration of dark substance with a density in 1/r
2
 

moving in the space. We could expect that its velocity or its mass be modified because of its 

motion, because of the Archimedes’s force or because of the absorption or of the loss of dark 

substance by the moving concentration of dark substance. This effect could be negligible, but 

we have a justification that it is nil much more interesting. 

 Indeed according to this theory the dark matter has 2 possible behaviors: It can behave 

as a substance owning a mass or as absolute emptiness. For baryonic particles immerged 

inside dark substance, it always behaves as it was absolute emptiness and consequently the 

velocity of baryonic particles is never modified due to an Archimedes’s force generated by 

the motion of baryonic particles through the dark substance. According to our theory of dark 

matter, the intergalactic dark substance in which the spherical concentration of dark substance 

is immerged also behaves as it was absolute emptiness concerning the displacement of this 

spherical concentration of dark substance, and consequently, neither the velocity nor the mass 

of the spherical concentration of dark substance are modified by its motion through the 

intergalactic dark substance. In order to interpret this phenomenon, we will say that the 

spherical concentration of dark substance is a superposed sphere on the intergalactic dark 

substance surrounding it. We will see in the study of galaxy clusters, that this new concept is 

very important in our theory of dark matter.  

 

 We know that in the Newton’s theory of gravitation, it is assumed that only baryonic 

density exists, which is not the case in our theory of dark matter, and also that the Universe is 

static, which is also not the case in our theory of dark matter. Consequently the equations of 

the Newtonian mechanics must be adapted to our theory of dark matter, and we are going to 

see 3 very simple examples of adaptation of those equations to this theory of dark matter. 

 In section 2.2, in order to obtain our model of a superposed sphere with a density in 

1/r
2
, we assumed that we had a spherical symmetry around the centre of the galaxy OGA. But 

we will see that usually it is not the case if the galaxy is inside a cluster. It is possible that 

applying the equations of Newtonian mechanics, our model remains valid with a good 

approximation. But it is also possible that in this case the equations of Newtonian mechanics 

must be adapted to our theory of dark matter, taking into account the fact that the dark 

substance in which the superposed sphere is immerged can also behave as absolute emptiness. 

 

The rule of adaptation is the following: 

 

 In the case of a galaxy GA constituted of a superposed sphere with a centre OGA and a 

radius RGA: 

a)In order to obtain the velocities and trajectories of the stars inside the superposed sphere in 

the frame whose the origin is OGA, in order to obtain the gravitational field GGA and the 
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gravitational potential UGA permitting to obtain those velocities and trajectories, we take 

ρ(r)=0 in the equations of Newtonian mechanics if r>RGA. 

 

b)OGA is accelerated by an acceleration G(OGA), G(OGA) being approximately equal to the 

gravitational field generated in OGA by the dark substance in which GA is immerged. (G(OGA) 

is defined by FG(GA)=m(GA)G(OGA), with FG(GA) is the gravitational force generated on GA 

by the dark substance in which GA is immerged, m(GA) mass of GA. So the dark substance in 

which GA is immerged acts on GA as if GA was a solid). 

 

 We remark that the preceding rule of a adaptation of the equations of Newtonian 

mechanics is equivalent to say that the dark substance in which GA is immerged generates a 

field uniform and equal to G(OGA) defined previously in all the galaxy. The preceding rule of 

adaptation involves that the model that we used in order to obtain a superposed sphere with a 

density of dark substance in 1/r
2
 is always valid. 

 So this is a possible 1
st
 example of adaptation of the equations of Newtonian dynamics 

to our theory of dark matter, that is very simple as will be all examples, and also involving 

great simplifications, as also will be all our examples. We remind nonetheless that it is 

possible that the preceding rule of adaptation be useless and that applying the classical 

equations of the Newtonian mechanics, we obtain that the model that we used remains valid 

with a good approximation.   

       

2.7 Baryonic and dark radius of a galaxy. 
 

We saw in the Section 2.1 that if r is the distance to the centre O of a spherical 

concentration of dark substance constituting a galaxy, then the expression of the density of 

dark substance ρ(r) is given by, k3 being a constant (See section 2.2, equation (7) k3=k2/4π):     

2

3)(
r

k
r =ρ   (36) 

So we obtain, M(r) being the mass of the sphere having its center in O and a radius r 

(See equation (9)): 

 

M(r)=4πk3r  (37) 

 

Consequently, v being the velocity of a star at a distance r of O (see equation (10)): 

Gk
r

GM
v 3

2 4π==  (38) 

Consequently: 

G

v
k

π4

2

3 =   (39) 

We know also that if ρ0 is the local density of the intergalactic dark substance 

surrounding the spherical concentration of dark substance constituting the galaxy, then the 

radius R of this concentration of dark substance is given by the expression (See equation 

(15)): 

02

3)( ρρ ==
R

k
R  (40) 

Consequently: 
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In a previous section, we called R the dark radius of the considered galaxy. 

So in a galaxy for which it exists a spherical concentration of dark substance with a 

density in 1/r
2
, we have 2 different kinds of radius: 

The 1
st
 kind of radius, called dark radius, is the radius of the spherical concentration 

of dark substance. The 2
nd

 kind of radius is the radius of the smallest sphere containing all the 

stars of the galaxy. We will call baryonic radius this second kind of radius. We remark that at 

a given time, the dark radius must be greater than the baryonic radius. 

 

2.8 Other models of distribution of dark matter in galaxies. 
 

In addition to the 1
st
 model exposed in the section 2.2 of distribution of dark substance 

with a density in 1/r
2
, obtained for galaxies with a flat rotation curve, we must also consider a 

2
nd

 model of distribution of dark substance with a constant density ρ(r)=ρ0, ρ0 density of dark 

substance in which the galaxy is immerged. Generally, ρ0 is the density of the intergalactic 

dark substance that we assumed to be homogeneous in temperature and in density in section 

2.2. 

This 2
nd

 model of distribution of dark substance is the consequence of an important 

property of the dark substance that is a tendency to be homogeneous in temperature and in 

density. This property justifies our assumption that the intergalactic dark substance was 

homogeneous in temperature and in density. This property could be an effect of the expansion 

of the Universe that would cancel in some cases the effect of gravitation on the dark 

substance. Nonetheless it is more likely that this property be an intrinsic property of the dark 

substance, that consists in a 2
nd

 example of adaptation of the equations of the Newtonian 

mechanics to our theory of dark matter. (A first example has been proposed in section 2.6). 

This rule of adaptation is the following: 

 

If we have a spherical celestial object C, constituted of baryonic matter and dark 

substance, with a radius RC, surrounded with dark substance with a constant density ρ0, then 

we cannot have ρDM(r)<ρ0, (ρDM(r) density of dark substance), and therefore we have: 

 

a)If applying the equations of Newtonian mechanics without taking into account the condition 

ρDM(r)=ρ0 for r>RC, we find a solution for the density of dark substance ρ(r) such that: 

If r<RC, ρ(r)≥ρ0 

If r=RC, ρ(r)=ρ0 

If r>RC, ρ(r)≤ρ0 

 

Then according to the properties of dark substance, a solution is ρDM(r) with: 

If r<RC ρDM(r)=ρ(r) 

If r≥RC ρDM(r)=ρ0     

 

b) If applying the equations of Newtonian mechanics without taking into account the 

condition ρDM(r)=ρ0 for r>RC, we find a solution for the density of dark substance ρ(r) such 

that whatever be r, ρ(r)<ρ0, then according to the properties of dark substance, a solution is 

ρDM(r) with: 

Whatever be r: ρDM(r)=ρ0. 
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It is clear that the point a) involves the validity of the model of a superposed sphere 

with a density of dark matter in 1/r
2
 surrounded by dark substance with a density constant and 

equal to ρ0, meaning our model of distribution of dark substance for galaxies with a flat 

rotation curve. 

The point b) involves the validity of a distribution of dark substance with a density 

constant and equal to ρ0, for galaxies, but also stars and planets. 

It must exist other models of distribution of dark matter, for instance in the case in 

which 2 galaxies with a flat rotation curve collide. Nonetheless, this latter case must be very 

rare. In what follows, we will consider only those 2 models of distribution of dark substance, 

and we will see that it will lead to theoretical predictions in agreement with astronomical 

observations in the case of clusters. For the same reason, we will consider that for planets and 

stars, we have the 2
nd

 model of distribution of dark matter (constant density).     

  

2.9 Other observations of dark matter. 

 

We are now going to interpret using our new theory of dark matter experimental data 

linked to the velocities of galaxies in clusters. 

According to what precedes, the velocity of a galaxy in a cluster is determined by: 

 

-The baryonic mass inside the cluster (stars, gas..) 

-The mass of the dark halos of galaxies. 

-The mass of the intergalactic dark substance. 

 

 We admit using the preceding section that the galaxy cluster contains only either 

galaxies with a density of dark substance in 1/r
2
 as defined in the section 2.1 (1

st
 model of 

distribution of dark matter around galaxy) or galaxies with a homogeneous density of dark 

matter equal to ρ0, density of the intergalactic dark substance (2
nd

 model of distribution of 

dark matter around galaxy). 

 

 We obtain a very interesting result concerning the mean density of galaxies 

corresponding to the 1
st
 model of distribution (density of dark substance in 1/r

2
): 

 Indeed, according to the equation (18), for those galaxies the dark radius is: 

 

RS=(2k0T/4πGρ0)
1/2

  (42) 

 

According to the equation (8) : 

 

k2=2k0T/G   (43) 

  

Consequently : 

 

RS=(k2/4πρ0)
1/2

  (44) 

 

So according to the equation (9) the total mass of the dark halo is: 

 

2/1

0

2/3

2

)4(
)(

πρ

k
RM SS =   (45) 

Let us now calculate the mass of a sphere with the same radius RS and a density equal 

to the density of the intergalactic dark substance ρ0 : 
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Consequently : 

 

MI(RS)=MS(RS)/3  (47) 

 

So the mean density of the halos of galaxies belonging to the 1
st
 model of distribution 

of dark matter  is equal to 3ρ0, whatever be the radius and the temperature of the considered 

halo, and consequently whatever be the orbital velocity of stars in the considered galaxy. 

 

According to the previous equation (47) we can expect that the dark mass of a cluster 

be much greater than the baryonic matter in the galaxies of this cluster. Indeed we have seen 

that according to the theory of dark matter exposed here, for a galaxy corresponding to the 1
st
 

model of distribution of dark substance, RB being the baryonic radius of the galaxy, then the 

mass MB(RB) of baryonic matter contained in the sphere with a radius RB (centre O, centre of 

the galaxy) was much lower than the mass MS(RB) of the dark substance contained in the 

same sphere. And consequently, because RB<RS, the total mass of the dark halo MS(RS) is 

much greater than the total mass of baryonic matter contained by the galaxy . But according to 

the equation (47), the mean density of the halo is only 3 times of the minimum density of dark 

matter inside the cluster. (Because we supposed that only the 1
st
 and the 2

nd
  model of 

distribution of dark matter existed for galaxies). Consequently we can expect that the dark 

mass of clusters be much greater than the baryonic mass of the galaxies belonging to this 

cluster. 

  So for a cluster A with a mean density ρmA, we obtain if we neglect the baryonic 

density : 

 

ρ0<ρmA<3ρ0   (48) 

 

Consequently the mean densities of clusters permit to obtain an estimation of the 

density ρ0 of the intergalactic dark substance. Moreover if A1 and A2 are 2 clusters with mean 

densities ρmA1 and ρmA2 with for instance ρmA1<ρmA2, then according to the previous relation : 

 

ρmA2<3ρmA1   (49) 

 

We will see that the preceding theoretical prediction is in agreement with astronomical 

observations. 

It is interesting to introduce the mean volume of dark halo corresponding to the 1
st
 

model of distribution of dark substance per galaxy VolSG. Then if clusters contain the same 

kind of galaxies in the same proportions (which is not always the case), we can express the 

mean density of dark substance ρmA as a function of NA the number of galaxies inside the 

cluster A, and VolSG. Indeed we immediately obtain, using that the mean density of dark halos 

corresponding to the 1
st
 model of distribution of dark substance is equal to 3ρ0 (Equation (47)) 

and that elsewhere the density of dark substance is equal to ρ0 ,VolA being the volume of the 

cluster:  

 

)](3[
1

00 SGAASGA

A

mA VolNVolVolN
Vol

−+= ρρρ  (50) 
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So we obtain, ρmAG being the mean density of the number of galaxies in the cluster, 

ρmAG=NA/VolA: 

 

ρmA=ρmAG(2ρ0VolSG)+ρ0    (51) 

 

Moreover, VolA(H) being the volume of dark halo of galaxies belonging to the 1
st
 

model in the cluster A, we have always, still using that the mean density of dark halos 

corresponding to the 1
st
 model of distribution of dark substance is equal to 3ρ0 (Equation (47)) 

and that elsewhere the density of dark substance is equal to ρ0: 

 

)](()(3[
1

00 HVolVolHVol
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mA −+= ρρρ     (52) 
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An important particular case is the case in which we have VolA(H)/VolA<<1 for all 

clusters. Then we have for all clusters ρmA very close to ρ0 for all clusters. This implies, ρ0 

depending on the Cosmological redshift z, that clusters corresponding to the same z have 

approximately the same mean density ρmA very close to ρ0(z).  

 

We remind that we assumed that we could neglect the contribution of baryonic matter 

in order to obtain the mean density of the cluster ρmA. In what follows we will assume that we 

have generally for clusters VolA(H)/VolA<<1 and consequently ρmA≈ρ0. We remind that ρ0 

depends on t, age of the Universe. We will see further that the previous assumption is in 

agreement with astronomical observations. 

 

Now we are going to study 3 dynamical models of clusters permitting to obtain some 

relations between the mass of clusters and the velocities of galaxies belonging to those 

clusters. Only the 3
rd

 model is new and the 2
nd

 model is generally admitted in the SCM, but 

without model of dark matter. We will see that the 3 models have theoretical predictions that 

are close one another concerning the relations for a given cluster A between the mass of this 

cluster, its radius, and the dispersion velocity of the galaxies or the maximal recession 

velocity of galaxies of this cluster A. Nonetheless, we will see that the 1
st
 model is not 

compatible with astronomical observations, and the 3
rd

 model is based on our model of dark 

matter and moreover permits to interpret some astronomical observations not interpreted by 

the 2
nd

 model.   

 

According to a 1
st
 dynamical model of clusters, galaxies turn around the centre of a 

cluster the same way planets turn around the sun or stars turn around the centre of the Milky 

Way. So we will call the planetary dynamical model of clusters this 1
st
 model.  

RA being the radius of a cluster A, VMA being the orbital velocity of a galaxy at a 

distance RA from the centre OA of A (We will obtain that VMA is also the maximal orbital 

velocity of galaxies according to this 1
st
 dynamical model), MA being the mass of the cluster 

A, we obtain assuming a spherical symmetry of the distribution of the dark substance and 

neglecting the baryonic matter, using as in the previous sections the Newton’s Universal law 

of attraction, the Gauss theorem and the classical Newton’s dynamic law FG=mγ : 
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Nonetheless, some astronomical observations that are very important in order to study 

the validity of our different dynamical models of clusters have been realized concerning the 

Coma cluster that we will name A4 
(10)

. Using some astronomical observations of the Coma 

cluster, some astrophysicists realized a graph giving for some galaxies G belonging to the 

Coma cluster the recession velocity VR(G) observed from a point OT close to the earth and 

being the origin of an inertial frame RT in which the velocity of the earth is small relative to c, 

as a function of the angle a(G) between the lines (OT,O4) and (OT,OG), with O4 the centre of 

the Coma cluster and OG the centre of the galaxy G. 

According to this graph, the gap between the maximal recession velocity and the 

minimal recession velocity is maximal for an angle a(G)=0 (5000 km/s). Then it decreases. 

And this contradicts the 1
st
 planetary dynamical model of clusters because according 

to this model for a galaxy with a(G)=0 the velocity of G (as a vector) is perpendicular to the 

line (OT,OG) and consequently the recession velocity v(G) should be close to 0 for a(G)=0. 

And also according to this model the gap between the maximal recession velocity and the 

minimal recession velocity should increase with a(G). So the previous astronomical 

observations concerning the Coma cluster contradict the 1
st
 planetary dynamical model of 

clusters. 

   

A 2
nd

 possible dynamical model of clusters is the model generally used in the Standard 

Cosmological Model (SCM)
(8) 

based on the Virial’s theorem. So we will name this model the 

Virial’s dynamical model of clusters. 

According to this model, if σA is the velocity dispersion inside a cluster A, MA being 

the mass of the cluster and RA its radius:  

 

2

AA

A

A

R

GM
σα≈  (56) 

 

In the previous expression, αA is of the order of the unity and depends on the cluster A. 

Very often we take it equal to 1 or 2. We can also replace in the preceding expression RA by 

the Abel radius 
(7)

. 

We remind that the equation (56) obtained by the Virial’s model seem to be 

approximately in agreement with astronomical observations. We will see that it will be also 

the case for the 3
rd

 dynamical model of cluster.  

 

 We are now going to propose a 3
rd

 dynamical model of clusters based on our model of 

dark matter. In this model, GA being a galaxy of a cluster A situated at a point P of the cluster,  

we consider only the gravitational potential generated in P by the dark substance.  So we will 

name this 3
rd

 model the dynamical model of the dark potential of clusters. 

 

 In order to obtain in this 3
rd

 model the gravitational potential generated by the dark 

substance at any point of the cluster, it is necessary to expose the elements of our theory of 

dark matter permitting to calculate the gravitational field G and the gravitational potential U 

at any point of the Universe. We have already seen 2 examples of adaptation of the equations 
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of Newtonian mechanics to our theory of dark matter (Section 2.6 and 2.8). We have seen that 

those adaptations are necessary because in the Newton’s Theory of Gravitation, only baryonic 

matter exists and moreover, there is no expansion, which is not the case in our theory of dark 

matter. In order to obtain G(Q) and U(Q) at a point Q of the Universe using the equations of 

Newtonian mechanics, in order to take into account the density of dark substance at a point P, 

we must distinguish the cases in which P is inside a concentration of baryonic matter or if it is 

not the case: 

 

a)Let us suppose that P is a point of the Universe belonging to none concentration of baryonic 

matter, but belonging to the intergalactic dark substance. We know that the density of dark 

substance in P is equal to ρ0 (Section 2.3 and 2.8). Because of the expansion of the Universe, 

we will admit in our theory of dark matter that there is a symmetry for all points P with the 

preceding properties, involving that we must take ρ(P)=0 in the equations of Newtonian 

mechanics in order to obtain G(Q) and U(Q) at a point Q. This means that dark substance 

behaves as it was absolute emptiness in P, the same way as in Section 2.8. 

 

 So the previous rule a) justifies that between clusters, dark matter behaves as absolute 

emptiness, in agreement with astronomical observations. 

 

b)If P belongs to an important concentration of baryonic matter (cluster, galaxy, star..), then 

the symmetry in P is broken: We must take ρ(P)=ρ0 (or ρ(P) is equal to the density of dark 

substance in P) in the equations of Newtonian mechanics in order to obtain G(Q) and U(Q). 

 

 So we have a 3
rd

 example of adaptation of the equations of Newtonian mechanics to 

our theory of dark matter that is due to the expansion of the Universe, that did not exist in the 

Newton’s Theory of Gravitation.       

 

 In this 3
rd

 dynamical model of cluster, we model a cluster as a system (ideal cluster) 

with the following properties: 

 

a)The cluster is a sphere with a radius RA, containing galaxies and dark substance, presenting 

a spherical symmetry. 

 

b)In order to obtain G and U in the cluster, permitting to obtain the velocities, accelerations 

and energies of the galaxies of the cluster, those galaxies being modeled as punctual masses 

(coinciding with their centre of mass), we can consider that inside the cluster, the density is 

homogeneous and equal to ρmA. (Because of the equation (53), assuming VolA(H)/VolA<<1 

and neglecting the baryonic matter of the cluster). 

 

 Concerning the galaxies of the cluster, the velocities and energies are calculated in the 

frame whose the origin is OA centre of the cluster. Galaxies of the cluster are modeled the 

following way : 

 

c)We define for a galaxy GA the ratio r(GA) defined by r(GA)=ET(GA)/m(GA) (ET(GA) total 

energy of the galaxy GA and m(GA) mass of GA)  and  rAMax as being the maximal value of this 

ratio. Then according to our model of galaxy cluster: 

(i)The radius RA of the cluster is the maximal possible distance between a galaxy GA of the 

cluster and OA centre of the cluster (with the condition r(GA)≤rAMax). 
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(ii)The galaxies GA with r(GA)=rAMax have a great density in the cluster (not compulsory 

homogeneous). This means that at any point Q of the cluster, it exists a galaxy GA close to Q 

such that r(GA)=rAMax. Moreover in the case in which Q=OA centre of the cluster, because of 

the spherical symmetry if u is any unitary vector, it exists a galaxy GA0 close to OA with 

r(GA0)=rAMax such that, V(GA0) being the vector velocity of GA0: V(GA0).u ≈V(GA0), with 

V(GA0) norm of V(GA0). (This means that the vector V(GA0) is approximately collinear to u). 

 

d)The galaxies GA such that r(GA)=rAMax keep their energy and their mass, and consequently 

rAMax is constant. 

 

 Therefore we obtain according to the preceding property a) of our model of cluster and 

also to our adaptation of the equations of the Newtonian mechanics (Preceding example):   

 

U(RA)=-GMA/RA  (57a) 

 

G(RA)=-GMA/RA
2
 u  (57b) 

 

Moreover, GA being a galaxy situated at a distance r from OA, m(GA) and V(GA) being the 

mass and the velocity of GA the total energy ET(GA) of GA is therefore, U(r) being the 

gravitational potential at a distance r from OA:   

  

ET(GA)=(1/2)m(GA)V(GA)
2
+m(GA)U(r)   (58)        

 

Using the spherical symmetry of our model of cluster, applying the Gauss theorem, 

M(r) being the mass of the sphere with the centre OA and the radius r, the gravitational field 

G(r) is then:    

   

uG
2r

M(r)
-Gr)( =     (59) 

According to the property b) of our model of cluster, M(r)=(4/3)πr3ρmA and consequently : 

uG mArGr ρπ
3

4
)( −=    (60) 

By definition G=-Grad(U), so we obtain, CAU being a positive constant at a given age of the 

Universe: 

 

 

U(r)=G(4/6)πr
2
ρmA-CAU  (61) 

 

This equation can also be written, in the approximation that the density of dark matter in the 

cluster is approximately constant an equal to ρmA, M(r) being the mass of the sphere with the 

centre OA and a radius r : 

 

U(r)=GM(r)/2r-CAU   (62) 

 

Consequently we have, MA=M(RA) being the mass of the cluster, using the equation 

(57a) : 
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So we finally obtain, with MA and RA depending a priori on t, age of the Universe: 
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Therefore, using the equation (58), for a galaxy at a distance r from OA : 

 

AUAATAAA CGmGE
r

rM
GGmGVGm )()(

2

)(
)()()(

2

1 2 +=+  (65a) 

 

Moreover we have defined, in the property c) of our model of cluster, rAMax as being 

the maximal value of r(GA)=ET(GA)/m(GA). So we have for any galaxy GA: 
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 We are now going to consider a galaxy GAl at the limits of the cluster (r=RA) and a 

galaxy GA0 in OA (r=0). 

 

 According to the property c)(i) of our model of cluster, the radius RA of the cluster is 

the maximal possible distance between a galaxy GA of the cluster and OA the centre of the 

cluster with the condition r(GA)≤rAMax. Considering the previous inequality (65b) we have 

therefore for a galaxy GAl at the limit of the cluster, V(GAl)=0 and: 
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 For a galaxy GA0 situated at the centre of the cluster (r=0), such that r(GA0)=rAMax, 

according to the equation (65a): 

 

AUAMaxA CrGV +=2

0 )(
2

1
   (67) 

 

 Therefore, because of the equation (65b), V(GA0) is equal to the maximal velocity of 

the galaxies in the cluster VMA. Consequently, using the equations (66) (67) we obtain: 

 

A
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     (68a) 

 

 Moreover according to the property c) of our model of cluster, u being any unitary 

vector, it exists a galaxy GA0 close to OA such that r(GA0)=rAMax and V(GA0).u≈V(GA0) 

(V(GA0) vector velocity of GA0 and V(GA0) its norm). Consequently if we define VMA(u) as 

the maximal value of V(GA).u, considering all galaxies GA of the cluster, then VMA(u)≈VMA. 
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 In the astronomical observations, GA being a galaxy of the cluster, u being the unitary 

vector of the direction of observation, we measure VT(GA)(u)= VT(GA).u, component on u of 

the vector velocity VT(GA), velocity of GA in an inertial frame RT whose the origin is a point 

OT close to the earth, and in which the velocity of the earth is small relative to c. We then 

obtain VMA(u) by the following expression, with evident notations: 

 

VMA(u)=(1/2)[MaxA(VT(GA)(u))-minA(VT(GA)(u))] (68b) 

 

 Considering that the validity of our model of cluster described by the properties 

a)b)c)d) is only an approximation, we introduce a constant βA, depending on the cluster and 

on the vector u, such that, VMA(u) being defined by the previous expression (68b): 

 

    

A

A

AMA
R

GM
V β=2u)(             (69) 

 

 So we obtain in our 3
rd

 model of the dark potential an equation analogous to the 

equations (55)(56). Nonetheless, this 3
rd

 model predicts that the velocity of galaxies is 

maximal for galaxies close to the centre of the cluster, in agreement with astronomical 

observations 
(7)

,  which is not the case for the 2
nd

 Virial’s model. 

  

 Moreover, Ai and Aj being 2 clusters, using MAi=(4/3)πρmAiRAi
3
, we obtain 

immediately, using the equation (68a) : 
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  But we have seen in the equation (53) that if Ai and Aj are 2 galaxy clusters 

corresponding to the same Cosmological redshift z, if moreover VolAi(H)/VolAi<<1 and 

VolAj(H)/VolAj<<1, then ρmAj/ρmAi should be close to the unity. 

 Let us consider for instance the Virgo cluster A2 (z2<0,01) and the Coma cluster A4 

(z4=0,03). According to astronomical observations considering the galaxies NGC4388 and 

IC3258 we obtain VMA2(u2)=1500 km/s 
(11)

. Moreover we can take RA2=2,2 Mpc 
(12)

. For the 

Coma cluster, we can take VMA4=2500 km/s 
(10) 

and RA4=12,5 million l.y=3,8 Mpc 
(13)

 . (We 

took a median value among values given by scientific literature). Then we obtain using the 

previous experimental data and the equation (70a) ρmA4/ρmA2=0,93. The agreement between 

this value and the theoretical prediction (ρmA4/ρmA2 close to 1) is good because an error of 

only 10% on one of the parameters involves an error of 20% on the final result. 

     

 In order to obtain the evolution of the mass and of the radius of a galaxy cluster, we 

use that according to the property d) of our model of cluster, rAMax keeps itself. According to 

the equation (64), replacing the Cosmological time t by the corresponding Cosmological 

redshift z, CAU(z)=(3/2)GMA(z)/RA(z). So using the equation (66) we obtain: 
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Therefore, because according to the property d) of our model of galaxy cluster rAMax 

keeps itself, MA(z)/RA(z) also keeps itself. Moreover MA(z)=(4/3)πRA(z)
3
ρmA(z), and 

according to the equation (53), with VolA(H)/VolA<<1, ρmA(z)≈ρ0(z), ρ0(z) being the density 

of the intergalactic dark substance for the Universe corresponding to a Cosmological redshift 

z. Therefore, according to the previous equation (70b), the evolution of MA(z) and RA(z) is in 

1/ρ0(z)
1/2

. But we will see further in this section that ρ0(z)≈ρ0(0)(1+z)
3
. Consequently we 

have: 

 

MA(z)≈MA(0)/(1+z)
3/2

 

 

RA(z)≈RA(0)/(1+z)
3/2

  (70c) 

 

 For instance we obtain MA(2)≈MA(0)/5, MA(1)≈MA(0)/3. Which means that for 

instance the Coma cluster was approximately 5 times less massive for an Universe 

corresponding to a Cosmological redshift z=2. 

 

 The fact that it seems that there is more dark matter close to the centre of clusters 

could be explained by the fact that the most massive galaxies with a flat rotation curve are 

close to the centre of clusters.  

  

The density of the intergalactic dark substance depends on the age of the Universe. We 

will use as previously the notation ρ0(0) in order to represent the density of dark matter at the 

present age of the Universe (z=0) and ρ0(z) in order to represent the density of the 

intergalactic dark substance at the age of the Universe corresponding to a cosmological 

redshift z. The estimation of the intergalactic density ρ0(0) obtained using the previous 3
rd

 

dynamical models of clusters permits other theoretical predictions confirming the validity of 

our model of dark matter. 

 

Indeed, according to the equation (18), for a galaxy corresponding to the 1
st
 model 

(density of dark substance in 1/r
2
) immerged in the intergalactic dark substance, the radius RS 

of this galaxy is given by, at the present age of the Universe: 
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Therefore, v being the orbital velocity of stars in this galaxy, according to the equation 

(10): 
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RS =   (70e) 

 

But the dynamical model of the dark potential exposed previously permits to obtain an 

estimation of ρ0(0). Let us for instance consider the case of the Milky Way. In order to get 

ρ0(0), we apply the dynamical model of the dark potential to the Virgo cluster A2(zA2<0,01). 

According to the equation (68) we obtain, ρmA being the mean density of the cluster A, and 

using MA=ρmA(4/3)πRA
3
: 
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If A is a cluster with zA very close to 0, and assuming VolA(H)<<VolA in the equation 

(53), then ρmA≈ρ0(0). Therefore we obtain, replacing ρ0(0) in the equation (70e) by ρmA given 

by the equation (70f): 
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Taking as the cluster A the Virgo cluster A2, with the preceding experimental data , 

zA2<0,01,  R2=2,2 Mpc=7,3 million l.y, VM2≈1500 km/s and v≈210 km/s, we find the dark 

radius of the Milky Way RSM.W≈550000 l.y. This result is not only coherent, but it gives also a 

dark radius of the Milky Way superior to the distance between the centre of the Milky Way 

and the Magellanic clouds (approximately 250000 l.y) 
(14)

. So this is also a new and 

remarkable prediction of our model of dark matter. 

 

We know that we observe an effect called gravitational lensing, predicted by General 

Relativity, that consists in a deviation of luminous rays due to the mass of clusters. We have 

seen, according to the 3
rd

 example of adaptation of the equations of Newtonian mechanics, 

that the dark substance between clusters behaved as it was absolute vacuum in the equations 

of Newtonian mechanics. Consequently, generalizing this to the equations of General 

Relativity, in order to obtain the deviation of a luminous ray by a cluster, we can apply the 

equations of General Relativity as if the cluster was surrounded by absolute vacuum. It would 

be interesting to compare the mass of a cluster obtained by gravitational lensing with the mass 

obtained using the previous 3
rd

 dynamical model of cluster.   

 

Moreover we know that the study of the CMB shows the existence of anisotropies due 

to the density of dark substance in the Universe. We can distinguish 2 kinds of density of dark 

matter: The 1
st
 kind of density is the density of dark matter with a gravitational effect. Then in 

order to obtain the mean density of dark matter in the Universe corresponding to this 1
st
 kind 

of density, we must only take into account the dark matter inside clusters. We easily obtain 

this density ρmUG(z) as a function of the volume of the Universe VolU(z), of the total volume 

of clusters VolU(A)(z) and of the intergalactic density ρ0(z) (corresponding to a Cosmological 

redshift z). We assume that the mean densities of clusters is approximately equal to the 

intergalactic density ρ0(z): 

 

)(

))((
)()( 0

zVol

zAVol
zz

U

U

mUG ρρ =    (70h) 

 

  The 2
nd

 kind of density of dark matter takes into account all the dark substance in the 

Universe. We are now going to obtain this last density ρmU(z).  

 

As in the case of clusters, it is interesting to introduce VolU(z) volume of the Universe 

corresponding to a Cosmological redshift z and VolU(H)(z) the volume of dark halos 

corresponding to distributions of dark substance with a density in 1/r
2
 in this Universe. We 

then obtain the same way we obtained the equation (53), neglecting baryonic matter, ρmU(z) 

being the mean density of dark substance in a Universe corresponding to a Cosmological 

redshift z: 

 

ρmU(z)=2ρ0(z)(VolU(H)(z)/VolU(z))+ρ0(z)  (70i) 
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 (If we take into account the dark substance on which are superposed the dark halos, we 

must replace in the previous equation the factor 2 by the factor 3). 

 

 With the approximation VolU(H)(z)/VolU(z)<<1 we obtain: 

 

ρmU(z)=ρ0(z)      (70j) 

 

 

We also remark that if we assume that the dark mass of the Universe keeps itself, 1+z 

being the factor of expansion of the Universe between the age of the Universe corresponding 

to the redshift z and the present age of the Universe:   

 

ρmU(z)=ρmU(0)(1+z)
3
     (70k)  

 

Therefore, according to the equation (70j): 

 

ρ0(z)=ρ0(0)(1+z)
3
 
     

(70l) 

 

We have seen that we could obtain an estimation of ρ0(0), consequently we can obtain 

a prediction of ρ0(z), that we used previously in the study of the evolution of clusters.  

 

3.DARK ENERGY IN THE UNIVERSE 

 

3.1 Introduction 

 

 In the preceding Part 2. we exposed a theory interpreting the whole of astronomical 

observations linked to dark matter. We have seen that the concept of dark substance filling all 

the Universe led to propose a spherical geometrical form for the Universe. In this Part 3. 

concerning dark energy we are going to propose a new model of expansion of the Universe 

based on the spherical form of the Universe introduced previously in our theory of dark matter 

and also on the physical interpretation of the CMB Rest Frame (CRF). We will see that in this 

new model of expansion we can define distances that are completely analogous to distances 

used in Cosmology in the Standard Cosmological Model (SCM), (angular distance, 

luminosity distance, commoving distance, light-travel distance) and also a Hubble constant 

analogous to the Hubble constant defined in the SCM. We will see that the model of 

expansion of the Universe proposed by our theory of dark matter and of dark energy is 

physically much simpler and more understandable than the model of expansion of the 

Universe proposed by the SCM. We are going then to propose inside the new model of 

expansion 2 possible mathematical models of expansion (permitting to obtain the factor of 

expansion 1+z and the Cosmological redshift z). The 1
st
 mathematical model of expansion is 

based as the model of expansion of The Universe of the SCM on the equations of General 

Relativity. As the SCM it needs the existence of a dark energy, and it predicts the same values 

as the SCM for the Cosmological distances used in Cosmology and the Hubble’s constant. 

The 2
nd

 mathematical model of expansion is much simpler but despite of its simplicity, it 

predicts values of the Hubble’s constant and of Cosmological distances that are in excellent 

agreement with astronomical observations. Moreover this 2
nd

 mathematical model of 

expansion has the remarkable property of not needing the existence of dark energy, contrary 

to the 1
st
 mathematical model of expansion and to the mathematical model of expansion of the 

SCM. Nonetheless we will see that our theory of dark matter and of dark energy predicts the 

existence in all the Universe of a dark energy that is the internal energy of the dark substance 
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that we modeled as an ideal gas in this theory. It will appear in this Part 3. as in the Part 2. of 

this article that our theory of dark matter and of dark energy is compatible with Special 

Relativity and General Relativity, because according to this theory the CMB Rest Referential  

cannot be detected by usual physical experiments in laboratory but only by the observation of 

the CMB. So we will admit (locally) in this Part 3. as in Part 2. the validity of Special 

Relativity and General Relativity even if its is not the only possibility 
(15)(16)

.  

 As in the Part 2., we will see in this Part 3. that our theory of dark matter and of dark 

energy remains compatible with the SCM 
(3)(4)(5)

, in order to interpret most Cosmological 

phenomena that are not directly linked to dark matter or dark energy, for instance primordial 

elements abundance, apparition of baryonic particles (for the same z as in the SCM), 

formation and apparition of stars and galaxies (for the same z as in the SCM), apparition of 

the CMB (For the same z as in the SCM), evolution of the CMB (in 1/(1+z) as in the SCM, 

anisotropies of the CMB… 

   

3.2 Physical Interpretation of the CRF. Local and Universal Cosmological frames. 
  

 

We remind that the CMB presents a Doppler effect that is canceled in a frame called 

for this reason the CMB Rest Frame (CRF). But this CRF has none physical interpretation in 

the SCM. We are going to give in our theory of dark matter and dark energy a physical 

interpretation of this frame, which will permit to define a new model of expansion of the 

Universe that is also based on the geometrical model of the Universe  (spherical), admitted in 

our theory. This new model of expansion of the Universe permits to define Cosmological 

variables (Cosmological time, distances used in Cosmology, Hubble Constant) completely 

analogous to their definition in the SCM. In order to obtain the Cosmological redshift z, 

which is fundamental in the new model of expansion of the Universe as it was in the SCM, 

our theory of dark matter and of dark energy  proposes 2 mathematical models of expansion. 

The 1
st
 mathematical model is based on the equations of General Relativity as the SCM. 

According to this 1
st
 mathematical model of expansion, Cosmological variables, and in 

particular the Cosmological redshift z, are given by the same mathematical expressions as in 

the SCM, but for a flat Universe because according to the new model of expansion of the 

Universe, the Universe is flat. The 2
nd

 mathematical model of expansion of the Universe is 

much simpler. Despite of this its theoretical predictions are in excellent agreement with 

astronomical observations. 

 

Concerning the physical interpretation of the CRF: 

 

-Firstly it is natural that in each point of the Universe (and not only on the earth), we can 

define a CRF. We then can suppose that all CRF have parallel corresponding axis. 

 

-Secondly we can think that the CRF permits to define very easily the Cosmological time, 

identified to the age of the Universe. The simplest definition of the Cosmological time would 

be that the time of the CRF (meaning the time given by the clocks at rest in the CRF) be 

precisely the Cosmological time. And we will see that this hypothesis is in agreement with  

astronomical observations. Indeed this hypothesis implies that the Cosmological time is also 

with a very good approximation the time of our earth. Indeed let us suppose that the 

Cosmological time is the time of the CRF. We then will call the CRF local Cosmological 

frame, and we will designate it as RLC. Let HS be a clock linked to the sun and giving the time 

of the inertial frame RS linked to the sun, and VS the velocity of RS relative to RLC. According 

to Special Relativity the transformations between RS and RLC are Lorentz transformations, and 
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consequently  if TS is a time measured by HS corresponding to a Cosmological time TC of 

RLC, then: TS=TC(1-VS
2
/c

2
)
1/2

. Consequently if VS<<c, which is the case (VS is the velocity of 

the sun relative to the local CMB rest frame and observation of the CMB gives VS≈ 300km/s) 

we get TS≈TC. We remark that it is completely impossible that locally all the inertial frames 

(with Lorentz transformations between themselves) give the Cosmological time (Age of the 

Universe) and consequently it was not at all evident that the time of our sun be approximately 

the Cosmological time.    

 

-Thirdly we know that according to Special Relativity (We remind that we admit it as in the 

SCM) the velocity of a photon relative to the CRF in which it is situated keeps itself, as a 

vector or as a norm. We will call local velocity this velocity c. The problem is the evolution of 

this local velocity, the photon traveling in the Universe. It is clear that the simplest hypothesis   

would be that the local velocity of the photon keeps itself the photon traveling in all the 

Universe, and consequently being situated in many different CRF. Here also we will see that 

this simple hypothesis involves theoretical predictions that are in agreement with observation. 

In particular we will see that it permits to justify very simply the effect of the expansion of the 

Universe on the lengths of wave of photons and on the distances between 2 photons following 

one another. (This effect is also predicted by the SCM).          

  

So we express the preceding hypothesis in the following Postulate 3: 

 

Postulate 3: 

 

a)At each point of the Universe, we can define a CRF. We will assume that all CRF have 

parallel corresponding axis. 

 

b)The Cosmological time (identified with the age of the Universe) is the time of all the CRF, 

meaning given by clocks at rest in any CRF. 

 

c)The local velocity of a photon, meaning measured in the CRF in which it is situated, keeps 

itself, the photon traveling in all the Universe.  

 

 

 Considering its important in Cosmology, according to our theory of dark matter and 

dark energy, we will also call the CRF local Cosmological frame. 

 

 We remind that because of the Postulate 3b), and since we know that the inertial frame 

RS linked to the sun is driven with a velocity vS<<c relative to the local CRF, the time of this 

frame RS is very close to the time of the CRF, that is the Cosmological time, which is an 

agreement with observation. So the Postulate 3b) justifies that the time of RS can be identified 

to the Cosmological time which was not at all evident. We remark that according to 

astronomical observations, locally (meaning close to the Milky Way) all galaxies have a local 

velocity (meaning relative to the local CRF) very small relative to c. Consequently, according 

to the Postulate 3b) the time of any star of any galaxy close to the Milky Way is very close to 

the Cosmological time.       

 It is natural to assume that the previous property can be generalized to all the 

Universe, then we obtain that the time of any star (and consequently of any planet) of the 

Universe is approximately the Cosmological time. 
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 We know need to define completely all the CRF. We have seen previously that 

according to our theory of dark matter the Universe was finite with borders and we will 

assume that it is spherical, with a centre O. We remind that it is possible to generalize what 

follows for many other geometrical models of finite Universes, with borders. So we assume 

that the Universe is modeled as a sphere in expansion with a centre O, and with a radius RE(t), 

t being the Cosmological time. We have seen in Section 2.5 that RE(t)=RE(t0)(1+z), t and t0 

being any Cosmological times (t>t0), with 1+z factor of expansion of the Universe between t 

and t0. We will see further how we can get 1+z, using mathematical models of expansion. 

 

 

 

  
Figure 2:The spherical model of the Universe in expansion. 

 

 

 

  In order to define completely the CRF (or equivalently the local Cosmological frames) 

we introduce a new kind of frame RC, called Universal Cosmological frame, whose the origin 

is O centre of the Universe. The time of the Universal Cosmological frame RC is defined as 

being the Cosmological time of the CRF (See Postulate 3b)). Moreover the axis of RC are 

defined as being parallel to the corresponding axis of the RRC (Postulate 3a)), and as giving 

locally the same distances as the RRC.  

The Universal Cosmological frame RC permits to define distances between any couple 

of points (A,B) of the Universe, contrary to local Cosmological frames (RRC) that give only 

local distances. We will see that we can express all the classical Cosmological distances used 

in the SCM (luminosity distance, angular distance, commoving distance and light-travel 

distance) as functions of the distances measured in RC, of the Cosmological time and of the 

Cosmological redshift z. 

 

We are now going to define very important points of the Universal Cosmological 

frame RC, called commoving points of the sphere in expansion.  

   

RE(t)=RE(t0)(1+z) 



 30 

We assume that P(t) is any point belonging to the border of the sphere in expansion, t 

being the Cosmological time, with OP(t) (O is the centre of the sphere in expansion) 

remaining in the same direction u, fixed vector of RC. 

 

A commoving point A(t) of the sphere in expansion is defined by : 

 

-A(t) remains on the segment [O,P(t)] 

-OA(t)=aOP(t), a being a constant belonging to [0,1]. (71) 

 

So O and P(t) are particular commoving points of the sphere in expansion. Moreover if 

A(t) and B(t) are 2 commoving points of the sphere in expansion, belonging both to a radius 

[O,P(t)], and if t1 and t2 are 2 ages of the Universe, if 1+z=OP(t2)/OP(t1), (Here 1+z is the 

factor of expansion of the Universe between t1 and t2) then we have the 2 relations: 

  

A(t2)B(t2)=(1+z)A(t1)B(t1)  (72)  

 

And : 

 

 [A(t2),B(t2)]//[A(t1),B(t1)]  (73) 

 

(We classically note, P,Q being 2 points of RC, PQ is the distance between P and Q 

measured in RC, [P,Q] is the segment with extremities P and Q, (P,Q) is the straight line 

containing P and Q) 

 

We are going to show using Thales Theorem that the previous relations (72)(73) 

remain valid, A(t), B(t) being any couple of commoving points of the sphere in expansion 

(defined by relations (71)), not compulsory belonging to the same segment [O,P(t)]. 

 

Let us consider any 2 commoving points (different from O) A(t1) and B(t1) at a 

Cosmological time t1. We assume that A(t) belongs to the segment [O,P(t)], P(t) point 

belonging to the border of the sphere in expansion, and in the same way B(t) belongs to the 

segment [O,Q(t)]. 

t2 being a Cosmological time strictly superior to t1, according to the  relations (71), 

O,B(t1) and B(t2) belong to the same straight line, and it is also the case for O,A(t1),A(t2). We 

then consider the triangle (O,A(t2),B(t2)). In this triangle, according to the relations (71), 1+z 

being the factor of expansion of the Universe between t1 and t2: 

 

OA(t2)/OA(t1)=OP(t2)/OP(t1)=1+z  (74) 

 

And in the same way: 

 

OB(t2)/OB(t1)=1+z    (75) 

 

Therefore: 

 

OA(t2)/OA(t1)=OB(t2)/OB(t1)=1+z  (76) 

 

Consequently applying the converse of Thales Theorem to the triangle (O,A(t2),B(t2)) 

we obtain the same relations as the relations (72)(73): 
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A(t2)B(t2)=(1+z)A(t1)B(t1)   (77)  

 

And : 

 

 [A(t2),B(t2)]//[A(t1),B(t1)]    (78) 

 

The preceding properties, valid A(t), B(t) being any couple of commoving points, are 

very remarkable and very important in the model of expansion of the Universe proposed by 

our theory of dark matter and dark energy. 

 

We remark that if A(t) is a commoving point of a segment [O,P(t)], according to the 

relations (71), if VP(t) and VA(t) are respectively the velocities of P(t) and A(t)  measured in 

the Universal Cosmological frame RC, we obtain, a being a constant: 

 

VA(t)=aVP(t)     (79a) 

 

The previous definition of the commoving points of the sphere in expansion permits us 

to complete the definition of the local Cosmological frames (CRF), in the following Postulate 

4: 

Postulate 4: 

 

a)The Universe is a sphere in expansion. 

 

b) The origins of the local Cosmological frames (CRF) are the comoving points of this sphere 

in expansion. 

 

 Now we need to express the factor of expansion 1+z in our new model of expansion of 

the Universe. We propose are going to propose 2 possible mathematical models of expansion 

inside our new model of expansion of the Universe, permitting to obtain 1+z. Both 

mathematical models are not equivalent and do not give the same expression of 1+z. 

Nonetheless we will see that both models give theoretical predictions in good agreement with 

astronomical observations. Determining the mathematical model which has the best 

theoretical predictions should be an important element in order to know which is the best 

model.    

 According to the 1
st
 mathematical model of expansion, 1+z is obtained as it is obtained 

in the SCM, with a flat Universe: We apply locally the equations of General Relativity, 

assuming the same values as in the SCM for the densities of dark substance, baryonic matter 

and dark energy and assuming that those densities and that the Universe is flat. And 

consequently in this 1
st
 mathematical model, the factor of expansion 1+z can be 

mathematically expressed the same way as in the SCM for a flat Universe. We will see that a 

consequence of this is that the 1
st
 mathematical model of expansion predicts distances used in 

Cosmology and a Hubble constant that have the same mathematical expression as their 

expression in the SCM, for an observer sufficiently far from the borders of the Universe.  

 

 Nonetheless, a priori, it is possible that the factor of expansion 1+z be not obtained by 

the equations of General Relativity. It is possible that as the local velocity of light, the  

velocity VE(t) of the borders of the Universe measured in RC (defined by VE(t)=d(RE(t))/dt, t 

Cosmological time) be equal to a constant C. There is no reason for which C should be equal  

to the local velocity of light c. So in our 2
nd

 mathematical model of expansion, we assume that 

the velocity of the borders of the spherical Universe measured in the Universal Cosmological 
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frame RC is equal to a constant C. We will see further that it is possible to obtain an inferior 

limit to this constant C. And we will also see that despite of this great simplicity, the 

theoretical predictions of this 2
nd

 mathematical model are in agreement with all astronomical 

observations. Then if P(t) is a point belonging to the border of the sphere OP(t)=Ct. And we 

have a very simple expression of the factor of expansion 1+z: Between t and t0 (t0>t), the 

factor of expansion 1+z is given by: 

 

1+z=(Ct0)/(Ct)=t0/t    (79b) 

  

 We saw that the model of expansion of the Universe proposed by the SCM needed the 

existence of an enigmatic dark energy, and it is also the case for our 1
st
 mathematical model 

of expansion of the Universe. In the 2
nd

 mathematical model of expansion of our theory of 

dark matter and dark energy, this enigma is solved because this 2
nd

 mathematical model does 

not need the existence of a dark energy. And this is an important and attractive advantage of 

this 2
nd

 mathematical model. But nonetheless, we will see further that according to our theory 

of dark matter and dark energy, it exists a dark energy in the Universe.  

 

 In our model of expansion of the Universe we can prove that as in the model of 

expansion of the SCM, if 2 photons move on the same straight line towards the origin O of 

RC, then between t1 and t2 2 cosmological times (with t2>t1), then the distance between the 2 

photons and the lengths of wave of the 2 photons are increased by the factor of expansion of 

the Universe between t1 and t2 1+z .This is true for both mathematical models of expansion. 

We will see further that it is possible to replace O by any commoving point O’ of the sphere 

in expansion. 

  

 Indeed let us consider 2 photons ph1 and ph2. We take the following notations: At the 

Cosmological time t ph1 is situated at the point ph1(t) of RC, and ph2 is situated in the point 

ph2(t) of RC. Let us suppose that at a given Cosmological time t1, ph1(t1) coincides with a 

commoving point A1(t1) and ph2(t1) with a commoving point A2(t1). We also assume that it 

exists a unitary vector u of RC, such that A1(t1),A2(t1) belong to the same segment [O,P(t1)], 

with (O,P(t)) parallel to u, and that the local velocities of ph1 and ph2 are identical and equal 

to c=cu. We remind that according to the Postulate 3, those local velocities keep themselves.   

Let 1+dz the factor of expansion of the Universe between t1 and t1+dt. Then we have 

according to the properties (77) of commoving points: 

 

A1(t1+dt)A2(t1+dt)=(1+dz)A1(t1)A2(t1)=(1+dz)ph1(t1)ph2(t1) (79c) 

 

Moreover, the local velocity of photons being equal to c: 

 

A1(t1+dt)ph1(t1+dt)=A2(t1+dt)ph2(t1+dt)=cdt   (79d) 

 

According to properties (relations (77)) of commoving points, and the local velocities of ph1 

and ph2 being parallel to u, O, A1(t1+dt), ph1(t1+dt),A2(t1+dt),ph2(t1+dt) are aligned on the 

same straight line as O, A1(t1) and A2(t1) (with the direction u) and moreover we assume that 

they are ranked in this order. Therefore: 

 

ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)ph2(t1+dt)-A1(t1+dt)ph1(t1+dt) (79e) 

 

ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)A2(t1+dt)+ A2(t1+dt)ph2(t1+dt)-A1(t1+dt)ph1(t1+dt) 
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Consequently according to the equation (79d) : 

 

ph1(t1+dt)ph2(t1+dt)=A1(t1+dt)A2(t1+dt)    (79f) 

 

Therefore, according to the equation (79c) : 

 

 

ph1(t1+dt)ph2(t1+dt)=(1+dz)ph1(t1)ph2(t1)    (80a) 

 

 So between t1 and t1+dt, the distance between ph1(t1) and ph2(t1) is increased by the 

factor of expansion between t1 and t1+dt 1+dz. Consequently between t1 and t2 the distance 

between ph1(t1) and ph2(t2) is increased by the factor of expansion of the Universe between t1 

and t2 1+z : 

 

ph1(t2)ph2(t2)=(1+z)ph1(t1)ph2(t1)     (80b)  

 

 In order to show the previous effect on the lengths of wave of ph1 and ph2, we 

proceed as previously : We model the photon ph1 as a system whose extremities are 2 mobile 

points a(t) and b(t), the length a(t)b(t) being the length of wave of the photon. ph1(t) belongs 

as previously to a segment [O,P(t)], with (O,P(t) parallel to the unitary vector u and ph1(t) 

driven with a local velocity c=cu. We assume that for any photon ph1(t) a(t) and b(t) are 

driven with the same local velocity c, and that a(t),b(t) belong also to [O,P(t)]. We proceed 

then with a(t) and b(t) exactly the same way we proceeded with ph1(t) and ph2(t). So we 

obtain in our new model of expansion of the Universe, λ(t) being the length of wave of a 

photon, a relation analogous to (80b):  

 

λ(t2)=λ(t1)(1+z)       (80c) 

 

 We remind that the relations (80b)(80c) were also valid in the model of expansion of 

the SCM. It is because of the previous relation (80c), valid for any photon according to our 

theory of dark matter and dark energy as it was in the SCM, that we use the notation 1+z in 

order to represent the factor of expansion in the Universe. We remind that in the previous 

relation (80c), λ(t1) and λ(t2) must be measured in the local Cosmological frame (CMB rest 

frame) in which is situated the photon, that also gives the distances measured in the Universal 

Cosmological frame RC according to the definition of RC.  

We can show more generally using an analogous way that if we only suppose that ph1 

and ph2 own the same local velocity (ph1(t), ph2(t) not compulsory belonging to the same 

straight line containing O), then between 2 Cosmological times t1 and t2 the distance measured 

in RC between ph1 and ph2 increases by the factor of expansion of the Universe between t1 

and t2 1+z (as in the equation (80b)), and moreover we have the relation 

(ph1(t2),ph2(t2))//(ph1(t1),ph2(t1)).  

  

 We remark that for any commoving point of the swelling sphere O’(t) we can define a  

Cosmological frame RC’ whose the origin is O’(t), the time is the Cosmological time (time of 

RC), the axis are parallel to the corresponding axis of RC and defining the same distances 

between 2 points, at a given Cosmological time t, as the distances defined by RC.  We will call 

RC’ secondary Universal Cosmological frame. 

 Then if A(t) is any commoving point of the swelling sphere defined previously, t1 and 

t2 being 2 Cosmological times, according to the properties of commoving points (72)(73), if 

1+z is the factor of expansion of the Universe between t1 and t2: 
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O’(t2)A(t2)=(1+z)O’(t1)A(t1) 

(O’(t2),A(t2))//(O’(t1),A(t1))   (81) 

 

And consequently (O’(t1),A(t1)) et (O’(t2),A(t2) ) are in the same direction u. of RC’. 

 

 Consequently the relations (71)(72)(73) remain valid, replacing RC by RC’and O by 

O’. P(t) is still defined as a point belonging to the borders of the sphere in expansion, but we 

have no more OP(t)=RE(t), RE(t) radius of the sphere in expansion at a Cosmological time t. 

 

 Therefore it should have been possible to define commoving points in RC’ the same 

way we defined them in RC. Consequently the expressions of the distances used in Cosmology 

and of the Hubble constant obtained in RC are also valid in RC’. 

 We will see that generally it is not possible to observe all the Universe from any 

commoving point O’( Which was also the case in the SCM: According to SCM it is not 

possible to observe all the Universe from our planet), but if O’ is sufficiently far from the 

borders of the Universe, then the Universe observed from O’ is approximately identical to the 

Universe observed from O.  

 

 The spherical form of the Universe could be confirmed if some celestial bodies would 

not own a homogeneous distribution in the Universe, but a distribution presenting a spherical 

symmetry relative to a point O. According to our models, O would be then the centre of the 

spherical Universe. 

  

3.3 Hubble’s law-Distances used in Cosmology. 
 

 We keep the notations of the previous section, RC is the Universal Cosmological 

frame, O is the origin of RC centre of the Universe. (We remind that we can generalize what 

follows replacing O by any commoving point O’ (sufficiently far from the borders of the 

Universe, and RC by a secondary Universal Cosmological frame RC’, with O’ as origin).  Let 

us suppose that a photon is emitted from a star S at a point Q(tE) of RC (Q(t) being 

commoving point of the sphere in expansion) at a Cosmological time tE towards O. We 

assume that the photon reaches O at the present Cosmological time t0. We assume that 

between tE and t0 the factor of expansion of the Universe is 1+z0. 

  

Between t and t+dt, we know that the photon covers the local distance cdt. 

Consequently between tE and t0 the sum of the local distances covered by the photon will be : 

 

DT=c(t0-tE)    (82) 

 

 We will call this distance, which is completely identical to the light- travel distance in 

the SCM, by the same name. We can also call it time-back distance because it permits to 

obtain the Cosmological time between the emission of the photon at the point Q(tE) and the 

reception of the photon in O, at the Cosmological time t0. 

  

 According to the 1
st
 mathematical model of expansion of the Universe, the theoretical 

prediction of the distance DT, given by the equation (82), as a function of Cosmological 

variables z0, t0…, is identical to the theoretical prediction of the SCM, because the equations 

giving DT are identical in those both models (equations of the General Relativity). 
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  But in the 2
nd

 mathematical model of expansion of the Universe, we obtain very easily 

the Hubble’s Constant using the light-travel distance defined previously: 

 Indeed according to this 2
nd

 mathematical model and the equation (79b), 1+z0 being 

the factor of expansion of the Universe between tE and t0: 

 

1+z0=(Ct0)/(CtE)=t0/(t0-DT/c)  (83a) 

 

When DT/ct0<<1 we obtain z0≈DT/ct0 and consequently the Hubble’s constant is equal 

to 1/t0. The preceding equation (83a) is very simple and can easily be verified. For instance 

taking t0=15 billion years, for z0=0.5,we obtain DT=5 billion light years and for z0=9 we 

obtain DT=13.5 billion years. These predicted values are in agreement with the usual admitted 

experimental values for the light-travel distance DT. 

We took for the previous examples of obtainment of DT according to our 2
nd

 

mathematical model of expansion a present Cosmological time (present age of the Universe) 

equal to 15 billion years corresponding to a Hubble’s constant H=1/t0 approximately equal to 

65 km/sMpc
-1

 despite that it is often taken for the Hubble’s constant H a value of 72km/sMpc
-

1
 corresponding to a time t0=1/H approximately equal to 13,5 billion years.  

Nonetheless many astrophysicists disagree with a Hubble’s constant approximately 

equal to 72 km/s Mpc
-1

 and find a Hubble’s constant approximately equal to 65km/sMpc
-1

, for 

instance Tammann and Reindl 
(17)

 in a very recent article (October 2012).  

 

 So it is very remarkable that according to the 2
nd

 mathematical model of expansion of 

our theory of dark matter and dark energy, the value of Hubble’s constant is very easily 

obtained and is equal to 1/t0, t0 present age of the Universe, in agreement with the observation. 

In the SCM (and in the 1
st
 model), the obtainment of Hubble’s constant was much more 

complicated and moreover it was not exactly equal to 1/t0.   

 

We still assume that a photon is emitted by a star S at a commoving point Q(tE), tE age 

of the Universe when the photon is emitted, and reaches the origin O of the Universal 

Cosmological frame RC at the present age of the Universe t0. We have seen in section 3.2 that 

we could assume that the local velocity of S is small relative to c, the same way local 

velocities of stars close to our Milky Way (measured in the local CMB Rest frame) are small 

relative to c. Consequently if the photon emitted by S at a Cosmological time tE owns the 

length of wave λ0 measured in the inertial frame linked to S, if it reaches at time t0 a planet T 

very close to O, with a local velocity very small relative to c, then if λT(t0) is the length of 

wave of the photon measured in the inertial frame linked to the planet T (at t0), according to 

the equation (80c), 1+z0 being the factor of expansion of the Universe between tE and t0: 

 

 λT(t0)≈(1+z0)λ0  (83b)   

 

We then can define in our model of spherical Universe in expansion other kinds of 

distances used in Cosmology in a completely analogous way to their definition in the SCM: 

We have seen (Equation (82)) that we can express the light-travel distance as: 

∫=
0t

tE

T cdtD       (84) 

The local distance covered by the photon between t and t+dt is, according to the 

Postulate 3 equal to cdt. This local distance, considered  as a distance between 2 commoving 

points of the sphere in expansion, is increased by the factor of expansion of the Universe 

1+z=t0/t between t and t0 (See equation (79b)).  
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In complete analogy with the SCM, we will call commoving distance between O and S 

the distance between Q(t0) and O(t0) measured in the Universal Cosmological frame RC, 

which is the sum of all the local distances cdt covered by the photon, increased by the factor 

1+z. Let DC be this distance:  

 

∫ +=
0

)1(

t

tE

C dtzcD      (85) 

 

From this expression we define the luminosity-distance DL between O and S (at the 

Cosmological time t0) and the angular-distance DA between O and S in complete analogy 

with their definition in the SCM: 

 

DL=(1+z0)DC   (86a) 

 

DA=DC/(1+z0)   (86b)  

 

The distance DA appears to be the distance measured in RC between Q(tE) and O. In 

complete analogy with the SCM it permits to obtain some angles with a summit O in RC. 

 

The distance DL, in complete analogy with its definition in the SCM, appears to be 

obtained measuring the luminous flow of a supernova taking into account the effect of the 

expansion of the Universe on the lengths of wave of the photons and on the distances between 

2 photons (moving on the same axis). We saw in the section 3.2 (Equations (80b)(80c)) that 

this effect, predicted by the SCM, was also true in the model of expansion of the Universe 

proposed by our theory of dark matter and of dark energy. 

The mathematical expressions of the different kinds of distances used in Cosmology 

(85)(86a)(86b) are in agreement with their mathematical expression in the SCM, in which the 

commoving distance DC is usually expressed as a function of the variable z, for a flat 

Universe. 

 

In the 1
st
 mathematical model of expansion, since 1+z has the same mathematical 

expression as in the SCM the mathematical expression of those distances used in Cosmology 

as a function of z0 is identical to their mathematical expression in the SCM. Consequently we 

also obtain an identical Hubble’s constant. 

 

In the 2
nd

 model, the expressions of distances used in Cosmology are much simpler. 

Using 1+z=t0/t we obtain (Equation (79b) and (85)): 

 

∫ ∫=+=
0 0

0 )/()1(

t

tE

t

tE

C dtttcdtzcD  (87) 

 

So we obtain finally the mathematical expression of the commoving distance, using 

1+z0=t0/tE: 

  

DC=ct0Log(t0/tE)=ct0Log(1+z0)    (88a) 

 

Here also this simple expression is in good agreement with the usual admitted 

experimental values for the commoving distance. We deduce very easily from this expression 
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the expression of the luminosity distance and of the angular distance (86a)(86b). We remark 

that in this 2
nd

 model, according with the previous equations we have as in the SCM for 

z0<<1: 

 

 DT≈DC≈DA≈DL≈ct0z0  (88b)  

 

We know that according to the 2
nd

 mathematical model, the velocity measured in RC 

of any commoving point Q(t) is constant. (According to the equation (79a) with VP(t)=C 

according to the definition of the 2
nd

 mathematical model of expansion of the Universe.) Let 

VQ be this velocity. Then the distance in RC between O and Q(t0), that we called also the 

commoving distance DC is also equal to VQt0. Therefore, according to the equation (88a): 

 

VQ=cLog(1+z0)   (89) 

 

We can interpret in our new model of expansion of the Universe the observation of the 

explosion of a supernova the same way as in the SCM, taking into account the effect of the 

expansion of the Universe on the lengths of wave of photons and on the distances between 

photons moving on the same axis (Equations (80b)(80c)). So our new model of expansion of 

the Universe can interpret the astronomical observations concerning the explosion of a 

supernova 
(18)

 the same was as the model of expansion of the SCM.   

 

3.4 Cosmological limits of the observable Universe. 
 

In our model of finite Universe in expansion we cannot, as it was also the case in the 

SCM, observe the Universe (through the observation of galaxies) before a given time tOU. 

This implies that observing the Universe from a commoving point O’(t0) (t0 present 

Cosmological time) sufficiently far from the borders of the Universe, the observable Universe 

is isotropic and also that in many cases, the borders of the Universe cannot be observed from 

O’(t0). In this section we are going to see how we can obtain this time tOU according to our 

model of finite Universe in expansion, and more precisely according to the 2
nd

 mathematical 

model of expansion of the Universe, that is much simpler than the mathematical model of the 

SCM. We must proceed the same way, just modifying mathematical expressions, in order to 

obtain tOU according to the 1
st
 mathematical model of expansion of our theory of dark matter 

and dark energy. 

 

We keep in our theory the hypothesis admitted in the SCM of the existence of a dark 

age in the Universe during which light cannot propagate in the Universe. Let tD be the end of 

this dark age. It is evident that tOU must be superior to tD. Moreover, galaxies cannot be 

observed before the Cosmological time tG, that is the time of the apparitions of the first 

galaxies. It exist another limit according to our model of spherical Universe in expansion. 

This is very clear in our 2
nd

 model: 

According to the equation (89), VQ being compulsory inferior to C, we have: 

 

C≥cLog(1+z0)   (90) 

 

 Consequently, with the notations of the previous section: 

 

 t0/tE=1+z0=≤exp(C/c)  (91) 
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Which implies that the Universe cannot be observed in O(t0) (We remind that t0 is the 

present age of the Universe) before the time tI defined by: 

  

tI=t0exp(-C/c)   (92) 

 

 So according to our theory of dark matter and of dark energy, tOU, minimal 

Cosmological time for which the Universe can be observed is the is the greatest time between 

tI, tG and tD. Moreover if tOU>tI, we cannot observe the borders of the Universe from O.  

 We remark that the equation (90) permits to give an inferior limit to the constant C of 

the 2
nd

 model: The fact that we have observed some redshift z equal to 10 implies that 

C>2,3c. If we take C=10c, we obtain tI of the order of 1million years. 

  

 We must use analogous methods if our galaxy is situated not in O but in another 

commoving point O’(t). Then only tI is modified, depending of the distance between O’(t0) 

and the borders of the spherical Universe. 

  

3.5 The Cosmic Microwave Background. 
      

 As in the SCM, we admit the apparition of a CMB at a Cosmological time very close 

to the Big-Bang (We admit as in the SCM that the Big Bang occurs at a Cosmological time 

equal to 0). Proceeding exactly as in the SCM, taking into account the effect of the expansion 

of the Universe on the lengths of wave of photons and on photons moving on the same axis 

(effect obtained in section 3.2 (Equations (80b)(80c)) , we obtain in our theory of dark matter 

and dark energy that if the CMB appears at a Cosmological time tiCMB corresponding to a 

temperature TiCMB, then at a Cosmological time t superior to tiCMB, if the factor of expansion 

between tiCMB and t is 1+z, then the CMB at a Cosmological time t corresponds to a 

temperature TCMB(t)=TiCMB/(1+z). (This is obtained exactly the same way as in SCM, because 

we have in both Cosmological models that with the same notations the density of photons is 

divided by (1+z)
3
 (Because the radius of the Universe RE(t) increases by a factor 1+z) and the 

lengths of wave of photons are increased by a factor (1+z)(Equation (80c)). Therefore, our 

new model of expansion of the Universe is in agreement with the observation of the CMB 

corresponding to a great redshift z0 
(3)

 . 

 We remind that we saw in section 2.5 Form of the Universe that with the hypothesis 

of an initial equality of the temperature of the CMB and the temperature of the homogeneous 

dark substance filling the Universe, taking a thermal model similar to the convective thermal 

model used in order to obtain the baryonic Tully-Fisher’s law (Section 2.3), then we obtained 

that at the present age of the Universe the temperature of the intergalactic dark substance 

(evolving in 1/(1+z)
2
) is approximately 1500 times less than the temperature of the CMB 

(evolving in 1/(1+z)).      

 

But now we have given a very complete physical interpretation of the CMB Rest 

Frame that did not exist in the SCM, permitting to define completely the CMB rest frame 

(Postulate 4) at any point of the Universe, and giving also fundamental physical properties of 

the CMB Rest Frame (Postulate 3. As we have seen in our 1.INTRODUCTION, our theory of 

dark matter and dark energy remains compatible with the SCM in order to interpret the 

anisotropies of the CMB . 

     

It is important to know what happens to a photon reaching the borders of the spherical 

Universe. It could be absorbed but it is not the only possible hypothesis. The simplest 
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hypothesis would be that the photon is reflected, taking exactly as new local velocity after 

reflection the opposite of its local velocity before reflection (as a vector).  

 

3.6 Dipole contribution of the CMB. 

 

 We know that according to the SCM we have the following fluctuations of 

temperature of the CMB 
(3)

:  
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  (93) 

 

We will keep this expression in our theory of dark matter and dark energy. But 

according to the preceding theory, l=1 is the dipole contribution, corresponding as in the SCM 

to the motion of the earth relative to the CRF (CMB Rest Frame). So this dipole contribution 

is completely interpreted by our theory of dark matter and dark energy, which was not the 

case in the SCM, in which the CMB rest frame has non physical interpretation.  

 

 

3.7 Link between the CMB and the temperature of the intergalactic dark substance. 
 

 In the Sections 2.5 and 2.6 , we have seen that in our theory of dark matter and dark 

energy, the Universe was a sphere filled with dark substance, surrounded by a medium called 

“nothingness”. We saw in the Section 2.5 that we could model a convective thermal transfer 

between this spherical Universe and this nothingness. The convective flow F was then in 

given by the expression F=hnT0(t), T0(t) being the temperature of the intergalactic dark 

substance at a Cosmological time t. It is easy to verify that it is impossible that we have a 

constant C2 such than hn=C2ρ0(t) contrary to the case in which we had also a convective 

transfer but between 2 mediums constituted  of dark substance in section 2.3. (Indeed in this 

case we would obtain that T0(t) increases). We saw in Section 2.5 that it is nonetheless 

possible that hn be constant, independent of the density of the intergalactic dark substance. 

Indeed in this case, because of the Postulate 2a), we have the equation of thermal equilibrium 

with K3 constant (K3 given by the Equation (14)) , MB baryonic mass of the Universe, RE(t) 

radius of the Universe at a Cosmological time t:  

 

K3MB=4πRE(t)
2
(hnT0(t))   (94a) 

 

  So we obtain that T0(t) evolves in 1/(1+z)
2
, 1+z factor of expansion of the Universe. In 

our theory of dark matter and dark energy, we admit as in the SCM that the apparition of the 

CMB in the Universe corresponds to a redshift z approximately equal to 1500. If we assume 

that for this value of z, the temperature of the intergalactic dark substance was equal to the 

temperature of the CMB, we obtain that presently (with an age of the Universe of 15 billion 

years), the temperature of the intergalactic dark substance is 1500 times lower than the 

temperature of the CMB, which is an acceptable value, justifying our approximation in 

Section 2.3 expressing that the temperature of the intergalactic dark substance can be 

neglected in comparison with the temperature of spherical concentrations of dark substance 

corresponding to galaxies with flat rotation curve, (see Section 2.1). 

 Moreover the hypothesis of the initial temperature of the CMB and the temperature of 

the intergalactic dark substance implies, because we assumed that the latter was homogeneous 

in all the Universe, that the initial temperature of the CMB was also homogeneous in all the 

Universe. And so the previous hypothesis justifies the isotropy of the CMB relative to the 
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CRF at the present age of the Universe (and at any age), without needing to introduce the 

phenomenon of inflation, as it was the case in the SCM.   

 

3.8 Dark energy in the Universe. 

 

 We saw in the first part of our theory (2.Dark matter in the Universe) that according 

to this theory, the Universe was filled with a dark substance that could be modeled as an ideal 

gas (Section 2.1). So it is natural to assume that as an ideal gas this dark substance owns an 

internal energy, that can be identified with a dark energy, existing in all the Universe. 

 Nonetheless, in order to obtain the evolution of the temperature of the dark substance 

in 1/(1+z)
2
, we used the equation (94a), that we remind here, RU(t) being the radius of the 

Universe at a Cosmological time t, T0(t) temperature of the intergalactic dark substance at the 

Cosmological time t,  K3 being a constant defined by the equation (14), MB baryonic mass of 

the Universe: 

 

K3MB=4πRU(t)
2
(hnT0(t))    (94b) 

 

 In order to obtain T0(t) in the previous equation, and we did not take into account the 

evolution of the internal energy of the dark substance nor the internal energy lost because of 

the dilatation of the volume of the intergalactic dark substance, modeled as an ideal gas. We 

will call 1
st
 model of the evolution of the temperature of the intergalactic dark substance the 

preceding model. We remark that in the preceding section 3.7 we assumed its validity only for 

z<1500. 

 

 Let us consider a 2
nd

 model of the evolution of the temperature of the intergalactic 

dark substance in which on the contrary we neglect the energy transferred from the baryons 

towards the dark substance (energy that is obviously nil before the apparition of baryons) and 

also the energy lost by the intergalactic dark substance at the borders of the Universe through  

the convective transfer defined previously in comparison with the variation of the internal 

energy of the intergalactic dark substance and also with the energy lost because of the 

variation of the volume of the intergalactic dark substance (modeled as an ideal gas). We 

assume that in this 2
nd

 model, the dark substance is homogeneous in all the Universe, because 

we consider its validity only for z>1500, and for this cosmological redshift z the galaxies did 

not exist. Consequently the dark substance obeys to the Boyle-Charles law (Postulate 1) and 

moreover we assume that it also obeys to Joule’s law for ideal gas: It exists a constant KES 

such that T(t) being the temperature of the dark substance, MS being the total mass of the dark 

substance and U(T(t)) being the total internal energy of the dark substance for an age of the 

Universe t: 

 

U(T(t))=KESMST(t)  (95).     

 

Moreover the energy lost that is the work corresponding to a variation of the volume 

of the dark substance dV under the pressure P is equal to: 

 

W=-PdV   (96) 

 

We assume in this 2
nd

 model of the evolution of the temperature of the dark substance 

that the transformation is adiabatic reversible. Consequently we can apply the Laplace’s law: 

It exists a constant γ such that, V being the volume of the Universe for a temperature T at an 

age of the Universe t, and V1 its volume for a temperature T1 at an age t1: 



 41 

 

TV
γ-1

=T1V1
γ-1

   (97) 

 

Consequently if 1+z is the factor of expansion of the Universe between t1 and t, 

V(t)=V(t1)(1+z)
3
 and: 

 

T(t)=T(t1)/(1+z)
3(γ-1)

  (98) 

 

In a 3
rd

 model of evolution of the temperature of the intergalactic dark substance we 

take into account every kind of energy received or lost by the dark substance. Nonetheless, we 

consider in this model that the dark substance is homogeneous in density and temperature in 

all the Universe, without taking into account the dark halos of galaxies with a flat rotation 

curve, and we have seen that this was justified because the total volume of those dark halos 

was very small relative to the total volume of the Universe. We will take the following 

notations: 

 

dW(t,t+dt) is the energy received by the dark substance as a work (negative) due to the 

variation of volume of the dark substance between the ages of the Universe t and t+dt. 

 

dETF(t,t+dt) is the energy received by the dark substance (negative) due to the thermal transfer 

between the dark substance and the medium that we called “nothingness” between t and t+dt. 

RU(t) being the radius of the Universe at the age of the Universe t, we have seen (equation 

(94b)): 

 

dETF(t,t+dt)=(-hnT(t))(4πRU(t)
2
)dt  (99) 

 

dETB(t,t+dt) is the energy received by the dark substance (positive) received from the baryons 

, (Equation (14) and Equation (94b)) between t and t+dt. MB(t) being the mass of the baryons 

at the age t of the Universe we have: 

 

dETB(t,t+dt)=K3MB(t)dt   (100) 

 

Then the equation of equilibrium of the energy received and lost by the intergalactic dark 

substance between t and t+dt is: 

 

dU(t,t+dt)=dW(t,t+dt) + dETF(t,t+dt) + dETB(t,t+dt)  (101)  

 

We remind that according to the Boyle-Charles law, MS being the total mass of the dark 

substance (assumed to be constant):  

 

P(t)V(t)=k0MST(t)    (102) 

 

And, RU(t) being the radius of the Universe, V(t)=(4/3)πRU(t)
3
 and d(RU(t))=dzRU(t) (1+dz 

being the factor of expansion of the Universe between t and t+dt), 

dV(t)=4πRU(t)
2
dRU(t)=4πRU(t)

3
dz and consequently dV(t)/V(t)=3dz. So we have: 

 

dW(t,t+dt)=-PdV(t)=-k0MST(t)(dV(t)/V(t))   (103a) 

 

dW(t,t+dt)=-3k0MST(t)dz     (103b) 

 



 42 

So we obtain the following differential equation in T(t), because dz and RU(t) can be 

expressed as a function of t: 

 

d(KESMST(t))=-3k0T(t)dz-hnT(t)(4πRU(t)
2
)dt+K3MB(t)dt  (104a) 

 

KESMS(dT(t)/dt)=-3k0MST(t)(dz/dt)-hn(4πRU(t)
2
)T(t)+K3MB(t) (104b)) 

 

We can easily prove that with the previous notations, the parameter γ used in 

Laplace’s equation (97) can be expressed by: 

 

γ=1+k0/KES 

 

Consequently in analogy with existing gas modeled as ideal gas,  k0 should be of the 

order of KES. Using the previous equation (104b) we can express the conditions of validity of 

the 1
st
 model of the evolution of the temperature of the dark substance, in which we neglected 

the variation of internal energy and the work received by the dark matter due to the variation 

of its volume. Those conditions are: 

 

-KESMS(dT(t)/dt)<< K3MB(t) 

 

-KESMS(dT(t)/dt)<< hn(4πRU(t)
2
)T(t)  

 

3k0MST(t)(dz/dt)<< K3MB(t) 

 

3k0MST(t)(dz/dt)<< hn(4πRU(t)
2
)T(t)  (106) 

 

The conditions for which the 2
nd

 model of the evolution of the temperature of dark 

substance be valid are the inverse conditions (replacing “<<” by “>>”) 

 

3.9 Evolution of the temperature of dark substance- 2
nd

 model of expansion. 
 

 We are going to consider the application of the preceding section 3.8 in the case of the 

2
nd

 mathematical model of expansion of the Universe, meaning with RU(t)=Ct, (C constant, 

see Section 3.2), and consequently between t and t+dt, 1+dz=(t+dt)/t, so dz=dt/t. 

 We remark that in the 1
st
 model of evolution of the temperature T(t) evolves in 

1/(1+z)
2
, consequently for this 2

nd
 model of expansion in 1/t

2
.  In the 2

nd
 model of the 

evolution of the temperature, T(t) evolves in 1/(1+z)
3(γ-1)

 with γ>1, consequently in this 2
nd

 

model of expansion in 1/t
3(γ-1) 

. So in both cases T(t) evolves in 1/t
p
, with p>0. For such a 

function T(t), we obtain that for t tending towards the infinite both functions T(t) and 

(dT(t)/dt)/T(t) tend towards 0. So for t sufficiently great the relations (106) are valid and the 

1
st
 model of evolution of the temperature of dark substance is also valid. 

On the contrary for t tending towards 0, the functions (dT(t)/dt)/T(t) and T(t) tend towards the 

infinite and consequently for t sufficiently small (for instance just after the Big-Bang), the 

inverse of the relations (106) are valid and consequently the 2
nd

 model of the evolution of the 

temperature of dark substance is also valid.   

 

3.10 Dark energy of baryonic particles. 
 

 We have seen in Section 3.8 that according to our theory of dark matter and dark 

energy it existed in all the Universe a dark energy that could be identified with the internal 
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energy of the dark substance. We are going to see in this section that it is also possible that 

baryonic particles also contain a dark energy, meaning an energy that cannot be detected 

using classical laboratory experiments. Nonetheless, this hypothesis, even if it is interesting 

and must be considered, is not necessary to our theory. 

 

 We defined in the Postulate 1 the Boyle-Charles’law for an element of dark substance 

with a pressure P, a volume V, a temperature T and a mass m, k0 being a constant: 

  

 PV=k0mT   (107) 

 

 Using the previous law and the Newton’s Universal law of gravitation, we obtained 

the equation (10), valid for all galaxies with a flat rotation curve. For instance for the Milky 

Way, TMW being the temperature of the dark halo of the Milky Way and vMW being the orbital 

velocity of stars in Milky Way, we have the equation: 

 

vMW
2
≈2k0TMW   (108) 

 

Consequently taking vMW≈2. 10
5
m/s we obtain k0TMW≈2. 10

10
 U.S.I .  

Let us compare the equation (108) with the analogous equation valid for hydrogen 

modeled as an ideal gas. We know that it exists a constant  kH such that for a hydrogen 

element with a mass mH, a volume V, at a temperature T and a pressure P:   

 

PV=kHmHT   (109) 

 

We know that for a mole of hydrogen, for T=TK=273°K, V=20. 10
-3

, P=10
5
 Pa, 

mH=10
-3

 kg, we have: 

 

kHTK≈PV/mH=10
5
×20. 10

-3
×10

3
= 2. 10

6
 U.S.I  (110) 

 

If we assume that dark substance and hydrogen obeys to Joule’s law, we therefore 

obtain that the internal energy of a kg of hydrogen at the temperature TK is of the order of 

kHTK meaning 2. 10
6
 Joules despite that the internal energy of a kg of dark substance 

belonging to the halo of the Milky Way is of the order of k0TMW meaning 2. 10
10

 Joules, and 

therefore the latter energy is by far superior to the former (We use the equation (105), 

assuming that as for all existing gas modeled as ideal gas, k0/KES is of the order of the unity). 

Considering this important difference of energy, we must consider a 2
nd

 possible model of 

energetic transfer from baryons towards the dark substance, permitting a transmitted power 

much greater than a power corresponding to a diminution quasi imperceptible of the 

temperature of the baryonic matter. In this 2
nd

 model of energetic transfer, the transferred 

energy is dark energy. In this 2
nd

 model, baryonic particles contain a very important quantity 

of dark energy, but this dark energy must not be taken into account in the mass appearing in 

the classical equations E=mc
2
 or Ep=mU. Consequently we cannot detect this dark energy 

using classical laboratory experiments. According to our theory of dark matter and dark 

energy, in order that the results of section 2.3 remain valid (permitting to obtain the baryonic 

Tully-Fisher’s law), the power of dark energy transmitted from baryons towards dark 

substance has the same expression as in the 1
st
 model of energetic transfer (thermal power):         

 

 

Pr=K3SM    (111) 
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With M the mass of the considered baryonic particles and K3S constant. p0S being the 

power of dark energy lost by nucleus and m0 being the mass of a nucleus we obtain 

K3S=p0S/m0.  

 

 

 The hypothesis of a dark energy for baryonic particles is very attractive because not 

only it permits the transmission of an energy from baryonic particles to dark substance that  

could be much greater than thermal energy, but also because it justifies that this transmitted 

energy is independent of the temperature of those baryons and the temperature of this dark 

substance. 

Nonetheless, the hypothesis of a dark energy for baryonic particles is not a hypothesis 

that is necessary to our theory of dark matter. Indeed according to our model of evolution of 

the temperature of dark matter (Section 2.8), we can expect that the initial temperature of the 

concentrations of dark substance be very high, equal to the temperature of the intergalactic 

dark substance, and then decreases till it reaches its final temperature. Consequently the 

variation of the internal energy of a spherical concentration of dark substance as defined in 

this article is very slow, and is therefore compatible with a very low thermal power emitted by 

baryonic particles towards the dark substance. 

 

  

4.CONCLUSION  

 

 In the theory of dark matter and dark energy exposed in this article, we have modeled 

dark matter as a dark substance whose the physical properties, and in particular the fact that it 

can be modeled as an ideal gas, permitted to interpret all the astronomical observations linked  

to dark matter. For instance, those physical properties permitted us to justify theoretically the 

flat rotation curve of galaxies and the baryonic Tully-Fisher’s law. In order to obtain this, we 

interpreted galaxies with flat rotation curve as spherical concentrations of dark substance in 

gravitational equilibrium. We have also seen that our concept of dark substance led naturally 

to propose a new geometrical form of the Universe, flat, finite and spherical. 

 We have studied according to our theory of dark matter the effects of the displacement 

of a concentration of dark substance on its mass and its velocity. We saw that this theory 

permitted to define, in agreement with astronomical observations 2 kinds of radius for 

galaxies: The baryonic radius and the dark radius. We then exposed according to this theory 

the different models of distribution of dark matter in galaxies. Then we have seen that this 

theory predicted important relations between the masses of clusters and the velocities of 

galaxies in those clusters, and also relations between the mean densities of some clusters 

corresponding to the same Cosmological redshift. Finally we saw that our theory of dark 

matter permitted to give an estimation of the dark radius of galaxies, and we gave this 

estimation for the Milky Way, and also the mean density of the Universe and the density of 

the intergalactic dark substance. 

 

 In the 2
nd

 Part of our article (3.DARK ENERGY IN THE UNIVERSE), we have 

proposed a new model of expansion of the Universe based on the geometrical form of the 

Universe obtained in the 1
st
 Part (spherical), and also on the Physical Interpretation of the 

CMB Rest Frame (CRF) that we also called the local Cosmological frame. We remarked that 

this physical interpretation remained compatible with Special Relativity because according to 

this physical interpretation, the CRF could not be detected using classical laboratory 

experiments, but only observing the CMB. So we assumed the validity of Special Relativity 

and of General Relativity (locally) in all the article. This Physical Interpretation of the CRF 
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permitted us to give a simple interpretation of the Cosmological time, in agreement with all 

astronomical observations. Our new model of expansion of the Universe led us to define a 

new and fundamental frame, called Universal Cosmological frame. Then we defined inside 

our new model of expansion of the Universe a 1
st
 mathematical model of expansion of the 

Universe ,based as the SCM on General Relativity with most theoretical predictions identical 

to the predictions of the SCM. We also have seen that a 2
nd

 mathematical model of expansion, 

much simpler than the 1
st
 one, led despite its great simplicity to theoretical predictions in 

agreement with astrophysical observations, for instance the theoretical predictions of 

luminosity distance, angular distance, light-travel distance, commoving distance and Hubble’s 

constant. Moreover this 2
nd

 mathematical model of expansion of the Universe did not need a 

dark energy, contrary to the SCM and to the 1
st
 mathematical of expansion of the Universe, 

and consequently brought a solution to the enigma of dark energy. It should be possible to 

compare the agreement with the theoretical predictions and the astronomical observations for 

the model of expansion of the SCM and for the 2
nd

 mathematical model of expansion, even 

they both have theoretical predictions that are approximately in agreement with astronomical 

observations. For instance we have seen that according to the 2
nd

 mathematical model of our 

theory, the value of the Hubble’s constant was exactly equal to 1/t0, t0 present age of the 

Universe, which was not the case according to the SCM (And according to the 1
st
 

mathematical model of expansion whose theoretical predictions are identical to those of the 

SCM). Finally we studied according to our theory of dark matter and dark energy the 

evolution of the temperature of the dark substance from the Big-Bang till the present age of 

the Universe, and we have seen the existence in all the Universe of a dark energy that could 

be identified with the internal energy of our model of dark matter, the dark substance, 

identified with an ideal gas.   

   

 We remarked that a very attractive element in favor of the geometrical model of the 

Universe proposed by our theory of dark matter and dark energy is that this geometrical 

model of Universe, finite, spherical and with borders, can be easily conceived by the human 

mind, which was not the case for models of Universe proposed by the SCM that were either 

infinite or finite but without borders.  It is our model of dark substance that permitted to us to 

define easily such a Universe, flat and finite.  
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