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Abstract. 

We present the axiomatization of quantum mechanics which does not contain axioms concerning 

the measurement. Instead of the concept of measurement this axiomatization uses the concept of 

the observation of the individual state of the measuring system after the run of the experiment. It 

is proved that the resulting theory is empirically equivalent to the standard quantum mechanics 

but it is also shown that these two theories are (theoretically) different. 

 

1. Introduction. 

The measurement problem exists from the beginning of quantum mechanics (QM). This problem 

has many facets: the superposition of measurement states, the von Neumann’s infinite chain of 

measuring instruments, the problem of definite values etc.  

The special problem is connected with the axiomatic description of QM: it is a problem that 

measurement makes a part of axioms. For example, John Bell has written an article named 

“Against measurement” (see [5]) and Mermin has required that “the concept of measurement 

should play no fundamental role” (see [6]). The Mermins’s requirements of the so-called  Ithaca 

interpretation of QM ([6])1 contains this requirement. We agree with both authors – measurement 

should be one of possible processes in QM and it should be considered at the same footing as 

other processes in QM. 

                                                           
1
Mermin’s requiremnts for the Ithaca interpretation of QM are: 

 (1) Is unambiguous about objective reality. 
 (2) Uses no prior concept of measurement. 
 (3) Applies to individual systems. 
 (4) Applies to (small) isolated systems. 
 (5) Satisfies generalized Einstein–locality. 
 (6) Rests on prior concept of objective probability. 
It is interesting that our reformulation of QM (the modified QM) satisfies requirements (1) – (5) but it surely does 
not satisfy the requirement (6). 
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In this paper we shall give the axiomatic reformulation of QM not containing the concept of a 

measurement. Then we shall show that the empirical predictions of a proposed reformulation of 

QM are identical to the empirical predictions of the standard QM. These two theories are 

empirically indistinguishable, but they are different as theories (see [4]). 

In fact, what we surely do in QM is the observation of the individual state of the measuring 

system in one run of the experiment. Thus instead of the observation of the value of some 

observable we use the concept of the observation of the individual state of the measuring system 

in one run of the experiment. 

The origin of the proposed reformulation of QM lies in the probabilistic approach to QM 

developed in [1], while the reformulation proposed here is only slightly different from the 

modified QM presented in [2] and [3]. 

In part 2 our reformulation of QM is given. In part 3 we rewrite our formulation into the operator 

language. In part 4 we describe the internal measurement process in the modified QM in all 

details. In part 5 we compare these two formulations and in part 6 we give conclusions. 

Acknowledgements I profited from many discussions with Miloslav Znojil (Czech Acad. Sci.). 

 

2. Axioms for quantum mechanics not using the measurement concept. 

We shall consider only systems with the finite-dimensional Hilbert spaces (for simplicity). 

Axiom 1. To each system S there is associated a finite set DS = {s1, … , sn},   n ≥ 2. These states 

s1, … , sn are considered as a set of possible individual states of the system S. It is assumed that at 

each time the system S is in some individual state 

 IndSt (S; t) ∈ DS .  

Definition. The ensemble of systems 

 E = {S1, …, SN} , N → ∞ . 

is the set of systems based on the same DS which is generated by some preparation procedure2. 

The possible states of ensembles are defined in the next axiom. 

Axiom 2. The state space St (DS) of possible states of an ensemble is the set of all functions   q : 

DS × DS → C satisfying3 

                                                           
2
 In the classical probability theory the concept of an ensemble is absolutely necessary. The individual state of an 

Brownian particle is the point in the space, but the prediction of the future state is the probability distribution over 
the space and it is associated with the ensemble of Brownian particles.   



(i) q (s’, s) = q (s, s’)* 

(ii) ∑ q (s, s’) ψ (s) ψ (s’)* ≥ 0 for each function ψ : DS → C 

(iii) ∑ { q (s, s) | s ∈ DS } = 1 

A state q is called a pure state if it can be written as q(s, s’) = ψ(s) ψ(s’)*  for some function         

ψ : DS → C . 

A state q is called a deterministic state if there exists r ∈ DS such that q has the form q(r, r) =1, q 

= 0 otherwise. 

Axiom 3. The time evolution of the state qt  (t = time), is given by the one-parameter group of 

unitary matrices { Ut
rs }, such that 

qt (r, r’) = ∑ Ut
rs  U

t*
r’s’  q

0 (s, s’) .4 

Axiom 4 . For the composed system T = M ⊕ S we have 

DT = DM × DS  . 

For independent systems we have 5 

 qT ((m, s), (m’, s’)) = qM (m, m’) qS (s, s’)  ,   m, m’ ∈ DM,       s, s’ ∈ DS . 

Axiom 5. Let the system S be at the time t in the state qt. Then the probability to find the system 

S in the individual state s ∈ DS  at the time t is given by 

 prob ( IndSt (S; t) = s | qt ) = qt (s, s) 6  . 

We simply obtain for A ⊂ DS that  

 prob ( IndSt (S; t) ∈ A | qt ) = ∑ { qt (s, s) | s ∈ A } . 

Axiom 6. Let us assume that we have obtained an information that the individual state of the 

system S is in the set A ⊂ DS . Then the state q of the system S has to be up-dated. The new state 

q’ of the system S will be given by the formula 7 

                                                                                                                                                                                            
3
 In the classical case, the probability distribution depends on one variable while in our case the probability 

distribution q depends on two variables – this is the essential difference between these two cases. The state q of an 
ensemble E should be considered as a generalized probability distribution (see [1]). 

4  The evolution is the evolution of the state of an ensemble, this is not the evolution of the individual state of an 
individual system. It is the same situation as for Brownian particle, where the evolution is the evolution of the state 
of an ensemble of Brownian particles. There is a fundamental difference between these two cases consisting in the 
fact that in our case the time evolution is time-reversible and it is fundamentally different from the classical 
(dissipative) evolution of the distribution function.  
5
 This is similar to the classical probability theory. 

6
 Thus the probability depends only on the diagonal part of q but in the evolution of q the main role is played by the 

non-diagonal part of q. 



q’(s, s’) = q (s, s’) χ (A; s) χ (A; s’) NA
-1 

where χ (A; s) denotes the characteristic function of the set A and NA denotes the normalization 

factor NA  = ∑ { q (s, s) | s ∈ A } . 

Axiom 7. For each n = 2, 3, … there exists at least one system M satisfying 

(i) The set DM contains n elements 

(ii) When experiment containing the system M is finished then the individual state of the 

system M can be observed. (Such systems will be called the observable systems.) 

 

3. The reformulation of our axioms in the operator language. 

Almost all content of these axioms can be reformulated using the language of Hilbert spaces and 

operators. 

We shall define the Hilbert space associated with the system S by  

 HS = { ψ | ψ : DS → C },   ⟨ψ, ψ’⟩ = ∑ { ψ(s) ψ’(s)* | s ∈ DS } . 

For each s, s’ ∈ DS  we set, as usual, δss’ = 1 if s = s’ and δss’ = 0 otherwise. 

Then we define the function δs ∈ HS , s ∈ DS ,  by δs (s’) = δss’. The equivalent notation for δs will 

be δ(s).  Evidently, the set { δ(s) | s ∈ DS } is the orthogonal base of the Hilbert space HS . 

For each r ∈ DS we shall define the state qr by 

 qr (s, s’) = δrs  δrs’  . 

For each state q : DS × DS → C we shall define the corresponding operator ρ : HS → HS by 

 ρ = ∑ q (s’, s) δs ⊗ δs’
*       or  equivalently as   q (s, s’) = ⟨ δs’, ρ (δs)⟩  . 

Using the group of unitary matrices { Ut
rs } it is possible to define the group of unitary 

operators { Ut
 } by 

 Ut  = ∑ Ut
rs  δr ⊗ δs

*  . 

One can represent states qt and q0 by operators ρt and ρ0 resp. and then we obtain that  

 ρt = Ut ρ0 Ut*  . 

For the pure state ρ0 = ψ0 ⊗ ψ0* we obtain   ρt = (Ut ψ0) ⊗ (Ut ψ0)*  = ψt ⊗ ψt* where ψt = Ut ψ0. 

                                                                                                                                                                                            
7 This updating formula is analogous to the updating formula in the classical probability theory. 



For the composition T = M ⊕ S of two systems we obtain   HT = HM ⊗ HS    and   ρT = ρM ⊗ ρS  . 

For the probability we have 

prob (s | ρ) = q (s, s) = ⟨δs, ρ(δs)⟩  

prob (s  ∈ A | ρ) = ∑ {⟨δs, ρ(δs)⟩ | δs ∈ [A]} = Tr[A] (ρ)   

where [A] is the subspace of  HS  generated by δs , s  ∈ A . 

Evidently we have the update rule for the density operator 

 ρ' = P [A] ρ P [A] NA
-1 . 

 

4. The intrinsic measurement process. 

The standard measurement is specified by the orthogonal base  { ϕi | i = 0, 1, …, n-1 } of the 

Hilbert space HS of the system S. 

We shall consider a measuring system M (it exists on the base of Axiom 7) satisfying dim HM = 

n. In the set DM we shall choose an element m0 which will be the initial state of the measuring 

system.  

We shall assume that the initial state of the measured system S will be 

 Φ = ∑ bi ϕi  ∈ HS,     i.e.  ρS =  Φ ⊗ Φ* . 

Then the state of the total system  T = M ⊕ S  will be  

Ψ = δ(m0) ⊗ Φ ,    i.e.  ρT = ρM ⊗ ρS ,  where  ρM  =  δ(m0) ⊗ δ(m0)
*  . 

The internal measurement process consists in two steps: 

(i) The unitary map U is applied to the state Ψ such that this map transforms the vector 

δ(m0) ⊗ ϕi  onto vector δ(mi) ⊗ ϕi , i = 0, 1, …, n-1  and then the state ρT will be 

transformed onto the state  ρT’ = U ρT U* . The detailed description of the map U will 

be given below.  

(ii) We observe the system T in the state ρT’ and we found that the individual state of the 

measuring system M is δ(mk) . We shall introduce the set  

Ak = { (m, s) ∈ DT | m = mk } = { mk }× DS  . 

We see that the observation of the system M in the state δ(mk) is equivalent to the 

observation stating that the individual state of the system T lies in the set Ak . 



Using Axiom 5 we can calculate the probability of an event that we observe the measuring 

system M in the individual state mk . Using then Axiom 6 we can calculate what it will be the 

new state of the system T: it has the form δ(mk) ⊗ ϕk . 

Now we shall describe the full definition of the map U. We can assume that the set DM can be 

written in the form  

 DM = { m0, m1, …, mn } . 

Then the unitary transformation U is defined by 

 U ( δ(mj) ⊗ ϕi ) = δ(mi⊕j) ⊗ ϕi ,    i, j = 0, …, n-1 

where i⊕j = i+j  if  i+j ≤ n-1  and  i⊕j = i+j–n  if i+j ≥ n. 

 

5. The comparison between the standard QM and the modified QM. 

We assert that the standard QM and the modified QM defined above produce the same empirical 

predictions. To prove this it is necessary to show that 

(i) The probability to obtain the output ak in the standard QM is equal to the probability 

of finding the measuring system in the individual state mk 

(ii) The new state of the measured system S obtained after the measurement is the same in 

both variants of QM 

Both these assertions are proved in the paper [3] by doing the explicit calculations. 

Thus both theories are empirically equivalent. But they are surely theoretically different (see [4]) 

since these theories contain different sets of theorems. 

We shall now describe the fundamental differences between these theories: 

(i) The main difference consists in the concept of the individual states. In the standard 

QM it is (automatically) assumed that each pure state describes the possible state of 

some individual system. This is not true in the modified QM since here individual 

states form only certain orthogonal base of the Hilbert space. As a consequence the 

superposition principle for individual states is true in the standard QM while it is false 

in the modified QM.  

(ii) In the standard QM the evolution of an individual state is deterministic, while in the 

modified QM the evolution of an individual state is non-deterministic, i.e. random. 

This is a consequence of the different concepts of an individual state in these theories. 



(iii) The origin of randomness in these two theories is different. In the modified QM the 

randomness is concentrated in the evolution (as in the Brownian motion), while in the 

standard QM the randomness is concentrated in the axiom of measurement. 

(iv) The basic difference is given by the definition: in the modified QM there is no 

measurement axiom. This means that there is also no concept of the observable. But 

there is a new concept of an individual state of the measuring system. The concept of 

the measurement is replaced by the concept of the observation of an individual state of 

the measuring system8.  

(v) The unitary transformation U (see the description of the internal measurement 

process) of the total system T changes the state of T and as a consequence the state of 

the measured system S is changed. This explains naturally the collapse of the state of 

the measured system S. 

(vi) The von Neumann’s infinite chain of measurements (M2 measures M+S, M3 measures 

M2+M+S, etc.) is cut by the observation of the individual state of the measuring 

system. 

(vii) The problem of the superposition of states of the measuring system is solved since in 

the modified QM the individual superposition principle is false9 - in fact, no nontrivial 

superposition of individual states is an individual state (see [2]). 

The difference between the above QM and the modified QM from [3] consists in Axiom 7 which 

is  weaker than the corresponding axiom in [3]. 

 

6. Conclusions.  

The axiomatization of QM which does not use the axioms on the measurement is presented. The 

concept of an observation of the individual state of a measuring apparatus replaces the concept of 

the measurement. It was proved that this new theory is empirically equivalent to the standard 

QM. The internal measurement process inside this new QM was described in all details. It was 

shown that the probabilities of outputs of the measurement are the same as in the standard QM.  
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