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ABSTRACT. Is proved that P ≠ NP, showing 2 problems that are 

executed in constant complexity time O(1) in a nondeterministic 

algorithm, but in exponential complexity time related to the length of the 

input (input size) in a deterministic algorithm. These algorithms are 

essentially simple, so they can not have a significant reduction in its 

complexity, what could cause the proofs shown here to become invalid.    
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INTRODUCTION 

P ≠ NP, like many computer scientists think. 

P x NP is the most important problem of the Computer Science that is not 
yet solved. It was created in 1971, based on the work of Cook[2], although 
Karp[14], Edmonds[6,7,8], Hartmanis and Stearns[10], Cobbam[1], von 
Neumann[15] and others also participated in the elaboration of this 
question. For a most exact history of this problem, it is suggested to look 
at [9], [11] and [16]. 
 

The P x NP problem intend to determine whether every language L 

accepted by some nondeterministic algorithm in polynomial time (L NP) 

is also accepted by some deterministic algorithm in polynomial time (L 

P) [3]. 
 

If P = NP, then every problem solved in polynomial time (related to the 

input size) by a nondeterministic algorithm, it will also be solved in 

polynomial time (related to the input size) by a deterministic algorithm. 

If P ≠ NP, there will be at least one problem belonging to NP which will 
not have a deterministic algorithm with polynomial complexity related to 
the input size for its solution. 
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The NP class owns a great number of important problems, which the 
solution in polynomial time it’s only possible when in approached ways, or 
in particular cases (even if there are infinites particular cases), like the 
problems of satisfiability (SAT), subset sum, knapsack, travelling 
salesman, quadratic diophantine equations, quadratic congruences, etc. 
 
As until today there is not a “perfect and fast” algorithm (in polynomial 
time related to the input size) to solve these problems in NP, so the 
opinion of the specialists is that P ≠ NP [4]. 
 
In this article, there will be shown 2 simple problems, which the solution is 
in polynomial time in a nondeterministic algorithm, but in non-polynomial 
time in a deterministic algorithm, proving that P ≠ NP. 
 
Although it is not fundamental, we will adopt the perspective that a 
nondeterministic Turing Machine working in polynomial time has the 
ability of predefine a exponential number of possible solutions and verify 
each one in polynomial time, “in parallel” [12]. We will adopt this notion of 
parallelism, according to other authors too, for example, Diverio and 
Menezes [5]. In particular, we will be despising the idea that the Turing 
Machines “guesses” a correct solution, or always hit on the “first attempt”, 
like defends Papadimitriou et al  in [4].  
 
 
PROBLEM 1 
 
Our first problem (p1), it’s a searching problem, with the special feature 
that, instead find an element in a list of numbers input by an user (what 
will increase our input size), will search directly on the computer’s 
memory, in the state it be. 
 
p1 = “Read 2 memory addresses (pointers) n1 and n2, and a character x 
verifies if, from the memory position n1 to n2, the x element exists.” 
 
Suppose that each pointer has a maximum of c characters, the input size 
will have a maximum of LEN = 2c + 3 (pointers in the hexadecimal base) 
and its complexity in a deterministic algorithm will be of the order O(n2) = 
O(16LEN/2), i.e., a complexity of exponential order related to the input size. 
As we can not guarantee that the memory is ordered, that will able us to 
execute a binary search, or that it contains only spaces, zeros, etc., it is 
not possible to do any reduction important in the algorithm, meaning that 
the problem do not belongs to P.  
 
The deterministic algorithm is as following: 
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void p1D (char *n1, *n2, x) 
{ char *i; 
  for (i = n1; i  n2; i++) 
      if (*i == x) 
         {printf(“Yes.\n”); 
          return; 
         } 
  printf(“No.\n”); 
  return; 
}               
 
The corresponding nondeterministic algorithm, following the style of Nivio 
Ziviani [17], which based himself in E. Horowitz e S. Sahni [13], is as 
following: 
 
void p1ND (char *n1, *n2, x) 
{ char *i; 
  i = CHOICE(n1 .. n2); 
  if (*i == x) 
      SUCCESS;  
  else 
      FAILURE; 
}               
 

This algorithm is of complexity O(1), then p1 NP, and obviously uses the 

unique power of a nondeterministic  Turing Machine: the capacity of being 
called simultaneously for various times, until there is success. In the case of x is 
not found in the memory positions n1 to n2, the operation will not enter in infinite 
loop and will stop.  
 

As p1 NP,  but p1  P, so P ≠ NP. 

 
 
PROBLEM 2 
 
Our second problem (p2), although at first glance does not seems to have 
any practice utility, it clearly demonstrates that P ≠ NP. 
 
It is about the generation of random numbers y until the generated 
number be equal to a given parameter x. It is read as input two integer 
numbers n and x, with 1 x n and 1  y  n. 
 
In the deterministic version (p2D), the probability of obtaining the valor of x it is 
equal to 1/n, assuming uniform distribution in the generation of numbers, and,  
on average, you should expect n repetitions until the generated number y be 
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equal to x, a number of repetitions that is of exponential order related to the 

input size. Then, p2 P. 

 
void p2D (int n, x) 
{int y; 
 srand(time(NULL)); 
 do 
    y = rand()%n + 1; 
 while (y != x); 
 printf(“Success.\n”); 
 return; 

} 
 
On the nondeterministic version (p2ND), the time of execution is of order 

O(1). Then p2 NP. 

 

As p2 NP, but p2 P, so P ≠ NP. 

 
void p2ND (int n, x) 
{int y; 
 y = CHOICE(1 .. n);  
 if (y == x) 
    SUCCESS; 
 else 
    FAILURE; 

} 
 
In this second algorithm, the function CHOICE takes place of the 
generator function of random numbers, what is totally compatible with the 
feature of a nondeterministic algorithm. This same function also could 
have taken place of the expression that generates these random numbers  
in the deterministic version, and be defined, for example, this way: 
 
int CHOICE(int y1, y2) 
{int y; 
 y = y1 + rand()%(y2 – y1 + 1); 
 return y; 

} 
 
 
CONCLUSION 
 
We shown two simple problems and your respective solution algorithms. 
Both are solved with polynomial complexity related to the input size, more 
exactly, with constant complexity O(1), by a nondeterministic algorithm, 
characterizing that both belongs to NP. 
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The solutions by the respective deterministic algorithm requires light 
modifications, but the “time” of execution raises in exponential form, 
characterizing that these problems does not belong to P, and that P ≠ NP. 
 
The nondeterministic algorithms has the advantage that for each call, it 
chooses a alternative and tests it, and when the solution it is the right 
one, the processing ends with success. In the other hand, if there is no 
correct solution, some of the set of possibilities chosen, the processing 
ends with no success, and, in theory, in finite time, without infinite loop, 
demanding the same time as if there were a valid solution.  
 
If a problem assumes, for example, 2n alternatives for a correct solution, 
like the SAT, a nondeterministic algorithm would have the capacity of 
testing “simultaneously” the 2n alternatives, while a deterministic 
algorithm, following the same strategy, should test each alternative, 
successively (and not simultaneously), and yet would have to control the 
moment of the stop. This is a fundamental difference between these two 
types of algorithms, and for that, it will be extremely improbable that P = 
NP. 
 
Of course, an algorithm of exponential order complexity could eventually 
be optimized to an algorithm of polynomial order complexity, for example, 
the sum of an arithmetic progression. The sum  

S = n
ak = n

a1 + (k-1)r 

is of exponential complexity related to the length of the input (a1, r, n), while  

S = (a1 + an) n / 2 = n (a1 + (n-1)r/2) 

is of constant complexity O(1), although both brings you to the same solution. 
 
The algorithms p1D and p2D presented, however, are already “simple enough” 
for that they can have a exponential reduction in its complexity, and would have 

invalidated our proof that P ≠ NP. 
 
p1D, for example, if not used with the instruction for, a similar structure of the 
type while, repeat or until, or even the lousy algorithm that contains n2 or more 
successives conditions if, all resulting in exponential complexity, should use a 

instruction “supposedly” O(1), like TEST(*n1, *n2, x), but that will hide in itself 
the real exponential complexity of the problem. 
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