

1

TWO PROBLEMS PROVING P ≠ NP
Valdir Monteiro dos Santos Godoi

valdir.msgodoi@gmail.com

ABSTRACT. Is proved that P ≠ NP, showing 2 problems that are

executed in constant complexity time O(1) in a nondeterministic

algorithm, but in exponential complexity time related to the length of the

input (input size) in a deterministic algorithm. These algorithms are

essentially simple, so they can not have a significant reduction in its

complexity, what could cause the proofs shown here to become invalid.

Mathematical subject classification: 68Q10, 68Q15, 68Q17.

Keywords: P x NP, P versus NP, P ≠ NP, P Class, NP Class,
deterministic algorithm, nondeterministic algorithm.

INTRODUCTION

P ≠ NP, like many computer scientists think.

P x NP is the most important problem of the Computer Science that is not
yet solved. It was created in 1971, based on the work of Cook[2], although
Karp[14], Edmonds[6,7,8], Hartmanis and Stearns[10], Cobbam[1], von
Neumann[15] and others also participated in the elaboration of this
question. For a most exact history of this problem, it is suggested to look
at [9], [11] and [16].

The P x NP problem intend to determine whether every language L

accepted by some nondeterministic algorithm in polynomial time (L NP)

is also accepted by some deterministic algorithm in polynomial time (L

P) [3].

If P = NP, then every problem solved in polynomial time (related to the

input size) by a nondeterministic algorithm, it will also be solved in

polynomial time (related to the input size) by a deterministic algorithm.

If P ≠ NP, there will be at least one problem belonging to NP which will
not have a deterministic algorithm with polynomial complexity related to
the input size for its solution.

mailto:valdir.msgodoi@gmail.com

2

The NP class owns a great number of important problems, which the
solution in polynomial time it’s only possible when in approached ways, or
in particular cases (even if there are infinites particular cases), like the
problems of satisfiability (SAT), subset sum, knapsack, travelling
salesman, quadratic diophantine equations, quadratic congruences, etc.

As until today there is not a “perfect and fast” algorithm (in polynomial
time related to the input size) to solve these problems in NP, so the
opinion of the specialists is that P ≠ NP [4].

In this article, there will be shown 2 simple problems, which the solution is
in polynomial time in a nondeterministic algorithm, but in non-polynomial
time in a deterministic algorithm, proving that P ≠ NP.

Although it is not fundamental, we will adopt the perspective that a
nondeterministic Turing Machine working in polynomial time has the
ability of predefine a exponential number of possible solutions and verify
each one in polynomial time, “in parallel” [12]. We will adopt this notion of
parallelism, according to other authors too, for example, Diverio and
Menezes [5]. In particular, we will be despising the idea that the Turing
Machines “guesses” a correct solution, or always hit on the “first attempt”,
like defends Papadimitriou et al in [4].

PROBLEM 1

Our first problem (p1), it’s a searching problem, with the special feature
that, instead find an element in a list of numbers input by an user (what
will increase our input size), will search directly on the computer’s
memory, in the state it be.

p1 = “Read 2 memory addresses (pointers) n1 and n2, and a character x
verifies if, from the memory position n1 to n2, the x element exists.”

Suppose that each pointer has a maximum of c characters, the input size
will have a maximum of LEN = 2c + 3 (pointers in the hexadecimal base)
and its complexity in a deterministic algorithm will be of the order O(n2) =
O(16LEN/2), i.e., a complexity of exponential order related to the input size.
As we can not guarantee that the memory is ordered, that will able us to
execute a binary search, or that it contains only spaces, zeros, etc., it is
not possible to do any reduction important in the algorithm, meaning that
the problem do not belongs to P.

The deterministic algorithm is as following:

3

void p1D (char *n1, *n2, x)
{ char *i;
 for (i = n1; i  n2; i++)
 if (*i == x)
 {printf(“Yes.\n”);
 return;
 }
 printf(“No.\n”);
 return;
}

The corresponding nondeterministic algorithm, following the style of Nivio
Ziviani [17], which based himself in E. Horowitz e S. Sahni [13], is as
following:

void p1ND (char *n1, *n2, x)
{ char *i;
 i = CHOICE(n1 .. n2);
 if (*i == x)
 SUCCESS;
 else
 FAILURE;
}

This algorithm is of complexity O(1), then p1 NP, and obviously uses the

unique power of a nondeterministic Turing Machine: the capacity of being
called simultaneously for various times, until there is success. In the case of x is
not found in the memory positions n1 to n2, the operation will not enter in infinite
loop and will stop.

As p1 NP, but p1  P, so P ≠ NP.

PROBLEM 2

Our second problem (p2), although at first glance does not seems to have
any practice utility, it clearly demonstrates that P ≠ NP.

It is about the generation of random numbers y until the generated
number be equal to a given parameter x. It is read as input two integer
numbers n and x, with 1 x n and 1  y  n.

In the deterministic version (p2D), the probability of obtaining the valor of x it is
equal to 1/n, assuming uniform distribution in the generation of numbers, and,
on average, you should expect n repetitions until the generated number y be

4

equal to x, a number of repetitions that is of exponential order related to the

input size. Then, p2 P.

void p2D (int n, x)
{int y;
 srand(time(NULL));
 do
 y = rand()%n + 1;
 while (y != x);
 printf(“Success.\n”);
 return;

}

On the nondeterministic version (p2ND), the time of execution is of order

O(1). Then p2 NP.

As p2 NP, but p2 P, so P ≠ NP.

void p2ND (int n, x)
{int y;
 y = CHOICE(1 .. n);
 if (y == x)
 SUCCESS;
 else
 FAILURE;

}

In this second algorithm, the function CHOICE takes place of the
generator function of random numbers, what is totally compatible with the
feature of a nondeterministic algorithm. This same function also could
have taken place of the expression that generates these random numbers
in the deterministic version, and be defined, for example, this way:

int CHOICE(int y1, y2)
{int y;
 y = y1 + rand()%(y2 – y1 + 1);
 return y;

}

CONCLUSION

We shown two simple problems and your respective solution algorithms.
Both are solved with polynomial complexity related to the input size, more
exactly, with constant complexity O(1), by a nondeterministic algorithm,
characterizing that both belongs to NP.

5

The solutions by the respective deterministic algorithm requires light
modifications, but the “time” of execution raises in exponential form,
characterizing that these problems does not belong to P, and that P ≠ NP.

The nondeterministic algorithms has the advantage that for each call, it
chooses a alternative and tests it, and when the solution it is the right
one, the processing ends with success. In the other hand, if there is no
correct solution, some of the set of possibilities chosen, the processing
ends with no success, and, in theory, in finite time, without infinite loop,
demanding the same time as if there were a valid solution.

If a problem assumes, for example, 2n alternatives for a correct solution,
like the SAT, a nondeterministic algorithm would have the capacity of
testing “simultaneously” the 2n alternatives, while a deterministic
algorithm, following the same strategy, should test each alternative,
successively (and not simultaneously), and yet would have to control the
moment of the stop. This is a fundamental difference between these two
types of algorithms, and for that, it will be extremely improbable that P =
NP.

Of course, an algorithm of exponential order complexity could eventually
be optimized to an algorithm of polynomial order complexity, for example,
the sum of an arithmetic progression. The sum

S = n
ak = n

a1 + (k-1)r

is of exponential complexity related to the length of the input (a1, r, n), while

S = (a1 + an) n / 2 = n (a1 + (n-1)r/2)

is of constant complexity O(1), although both brings you to the same solution.

The algorithms p1D and p2D presented, however, are already “simple enough”
for that they can have a exponential reduction in its complexity, and would have

invalidated our proof that P ≠ NP.

p1D, for example, if not used with the instruction for, a similar structure of the
type while, repeat or until, or even the lousy algorithm that contains n2 or more
successives conditions if, all resulting in exponential complexity, should use a

instruction “supposedly” O(1), like TEST(*n1, *n2, x), but that will hide in itself
the real exponential complexity of the problem.

REFERENCES

[1] A. Cobham, The intrinsic computational difficulty of functions, in Proceedings
of the 1964 International Congress for Logic, Methodology, and Philosophy of
Science, Y. Bar-Hille, ed., Elsevier/North-Holland, Amsterdam (1964), 24–30.

6

[2] S. Cook, The complexity of theorem-proving procedures, in Conference
Record of Third Annual ACM Symposium on Theory of Computing, ACM, New
York (1971), 151–158.

[3] Stephen Cook, The P versus NP Problem, available at

http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf, accessed in

02/22/2011.

[4] S. Dasgupta, C. Papadimitriou and U. Vazirani, Algoritmos, McGraw-Hill
Interamericana do Brasil Ltda., São Paulo (2009), 244.

[5] T.A. Diverio and P.M Menezes, Teoria da Computação – Máquinas
Universais e Computabilidade, Sagra Luzzatto, Porto Alegre (2004), 122-124.

[6] J. Edmonds, Maximum matchings and a polyhedron with 0,1-vertices,
Journal of Research at the National Bureau of Standards, Section B, 69 (1965),
125-130.

[7] J. Edmonds, Minimum partition of a matroid into independent subsets, J.
Res. Nat. Bur. Standards, Section B, 69 (1965), 67–72.

[8] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics, 17
(1965), 449-467.

[9] L. Fortnow and S. Homer, A Short History of Computational Complexity,
available at http://people.cs.uchicago.edu/~fortnow/beatcs/column80.pdf,
accessed in 02/22/2011.

[10] J. Hartmanis and R.E. Stearns, On the computational complexity of
algorithms, Transactions of the AMS 117 (1965), 285-306.

[11] R. Herken, ed., The Universal Turing Machine – A Half-Century Survey,
Verlag Kammerer & Unverzagt, Hamburg-Berlin (1988).

[12] J.E. Hopcraft, J.D. Ullman and R. Motwani, Introdução à Teoria dos
Autômatos, Linguagens e Computação, Elsevier e Campus, Rio de Janeiro
(2003), 452.

[13] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press (1984), 501-510.

[14] R.M. Karp, Reducibility among combinatorial problems, in Complexity of
Computer Computations, R.E. Miller and J.W. Thatcher, eds., Plenum Press,
New York (1972), 85–103

[15] J. von Neumann, A certain zero-sum two-person game equivalent to the
optimal assignment problem, in Contributions to the Theory of Games II, H.W.
Kahn and A.W. Tucker, eds., Princeton Univ. Press, Princeton, NJ (1953), 5–
12.

http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf
http://people.cs.uchicago.edu/~fortnow/beatcs/column80.pdf

7

[16] M. Sipser, The History and Status of the P versus NP question,
Proceedings of the 24th Annual ACM Symposium on the Theory of Computing
(1992), 603-619, available at http://www.win.tue.nl/~gwoegi/P-versus-

NP/sipser.pdf, accessed in 02/22/2011.

[17] N. Ziviani, Projeto de Algoritmos com Implementações em Java e C++,
Thomson Learning, São Paulo, Brasil, (2007), 381-383, 388, 551.

http://www.win.tue.nl/~gwoegi/P-versus-NP/sipser.pdf
http://www.win.tue.nl/~gwoegi/P-versus-NP/sipser.pdf

