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Abstract

The Hilbert book test model is a purely mathematical test model that starts from a solid foundation
from which the whole model can be derived by using trustworthy mathematical methods. What is
known about physical reality is used as a guidance, but the model is not claimed to be a proper
reflection of physical reality. The mathematical toolkit still contains holes. These holes will be
encountered during the development of the model and suggestions are made how those gaps can be
filled. Some new insights are obtained and some new mathematical methods are introduced. The
selected foundation is interpreted as part of a recipe for modular construction and that recipe is
applied throughout the development of the model. This development is an ongoing project. The
main law of physics appears to be a commandment: “Thou shalt construct in a modular way”. The
paper reveals the possible origin of several physical concepts.
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4  Foreword of the author

The “Hilbert Book Model” is the name of my personal research project. My interest in the structure
and phenomena of physical reality started in the third year of my physics study when | was first
confronted with how quantum mechanics was configured. | was quite astonished by the fact that its
methodology differed fundamentally from the way that classical mechanics was done. So | asked my
very wise lecturer on what origin this difference is based. His answer was that this difference was
caused by the superposition principle. | was not very happy with this answer, because the
superposition principle was indeed part of the methodology of quantum mechanics, but in those
days | did not comprehend how that could present the main cause of the difference between the two
methodologies. | decided to dive into literature and after some search | encountered the booklet of
Peter Mittelsteadt, “ Philosophische Probleme der Modernen Physik” (1963). This booklet contained
a chapter about quantum logic and that appeared to me a more appropriate answer. Garret Birkhoff
and John von Neumann published in 1936 a paper that published their discovery of what they called
“quantum logic”. Quantum logic is since then in mathematical terminology known as an
orthomodular lattice. The relational structure of this lattice is quite similar to the relational structure
of classical logic. That is why the duo gave their discovery the name “quantum logic”. This was an
unlucky choice, because no good reason exist to consider the orthomodular lattice as a system of
logical propositions. In the same paper, the duo indicated that the set of closed subspaces of a
separable Hilbert space has exactly the relational structure of an orthomodular lattice. That appears
to be the reason why quantum physicists prefer Hilbert spaces as a realm in which they do their
modeling of quantum physical systems. Another habit of quantum physicists also intrigued me. My
lecturer thought me that all observable quantum physical quantities are eigenvalues of Hermitian
operators. When | looked around | saw a world that had a structure that was configured from a three
dimensional spatial domain and a one dimensional time domain. In the quantum physics of that time,
no operator represents the time domain and no operator was used to deliver the spatial domainin a
compact fashion. After some research | discovered a four dimensional number system that could
provide an appropriate normal operator with an eigenspace that represented the full four
dimensional representation of my living environment. At that moment | had not yet heard from
guaternions, but an assistant professor quickly told me about the discovery of Rowan Hamilton that
happened more than a century earlier. My university, the TUE, targeted applied physics and there
was not much time nor support for diving deep into the fundamentals of quantum physics. After my
study | started a career in high-tech industry where | joined the development of image intensifier
devices. There followed my confrontation with optics and with the actual behavior of elementary
particles. See: http://www.e-physics.eu/# What _image intensifiers reveal.

Only after my retirement | got sufficient time to dive deep into the foundations of physical reality. In
2009 | started my personal research project that in 2011 got its current name “The Hilbert Book
Model”. The author takes the freedom to upgrade the papers in a steady rate.

| use vixra.org as my personal e-print archive: http://vixra.org/author/j a j van leunen . Vixra
provides full two sided open access and has a flexible revision service, which | use extensively. | put
preliminary papers on my website http://www.e-physics.eu . There my papers are available in .pdf
and also in .docx format. | do not request copyright on these documents. | try to avoid the burden of
peer review publishing. Instead | try to keep the quality of my papers at a high standard. The most
recent versions of the author’s papers will appear on his website. Most of the older papers are
superseded by newer ones that got different names. Older papers started with knowledge that was
lectured in universities and or could be found in literature. Newer papers also contain corrections
and discoveries that are made by the author.
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5 Introduction

The Hilbert Book Test Model M is based on a foundation that has the relational structure of an
orthomodular lattice [1] [2]. Nearly a century ago, the discovery of this lattice was published by the
duo Garret Birkhoff and John von Neumann in a paper in which they also explained its relation to the
notion of a separable Hilbert space [3] [4]. The orthonormal lattice does not contain the notion of
number systems. Thus, this foundation cannot represent the concepts that define dynamic geometric
data, such as time and location. These notions emerge by extending this foundation in the direction
of the separable Hilbert space. By selecting this extension of the foundation, the freedom of the
selection of the derived concepts is restricted. The separable Hilbert space provides operators that
have countable eigenspaces that are filled with eigenvalues that must be members of division rings
[5]. Only three suitable division rings exist. These are the real numbers, the complex numbers and
the quaternions. The separable Hilbert space can only cope with the rational versions of these
number systems. These restrictions appear very favorable for the pursued model building process. It
strongly limits the range of choices. Still the resulting possibilities appear to be flexible enough to
generate a powerful base model.

M interprets the orthomodular lattice as part of a recipe for modular construction. Modular
construction represents a very beneficial strategy that strongly reduces relational complexity of
the target system. For very complex systems the modular construction strategy is orders of
magnitude more efficient than a monolithic approach. Modular construction uses its resources in
an optimally economic fashion. Reality offers huge resources in available time and in numbers of
building components. In this way even stochastic design as is applied by nature can reach high
levels of complexity. M applies modular construction as a general strategy.

In advance the model will apply a stochastic design and generation strategy. This will change
when the model has achieved a level in which intelligent species appear. From that instant on
the efficiency of the modular construction strategy will increase significantly. Intelligent design
and construction will use far less design and generation time and other required resources. This
will clearly affect the evolution of the model. Due to limited speed of information spread, these
effects will appear at isolated locations.

M applies the fact that the set of closed subspaces of a separable Hilbert space has the relational
structure of an orthomodular lattice. Not all closed subspaces of a separable Hilbert space
represent modules or modular systems, thus the notion of a module must be further restricted.

M applies the fact that separable Hilbert spaces can only cope with number systems that are division
rings. We use the most elaborate category of these division rings. That category is formed by the
guaternionic number systems [6]. Quaternionic number systems exist in multiple versions, that differ
in the way that they are ordered. This ordering may influence the arithmetic properties of the
number system. For example right handed multiplying quaternions and left handed multiplying
guaternions exist. Further, as will be shown in this paper, it appears that ordering influences the
behavior of quaternionic functions under integration. This fact has astonishing consequences.

Another important fact is that every infinite dimensional separable Hilbert system owns a companion
Gelfand triple, which is a non-separable Hilbert space [7]. M uses both kinds of Hilbert spaces as
structured storage media, in which discrete quaternionic data and quaternionic manifolds can be
archived. By applying Hilbert spaces M accepts that the model uses a storage medium in which all of
its activities are precisely archived.

M uses a separable Hilbert space $ in order to archive countable sets of discrete quaternionic
data and M uses the companion Gelfand triple # in order to archive continuous quaternionic
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manifolds. H also contains an image of the content of $. M Uses this fact in order to describe the
embedding of the separable Hilbert space into its Gelfand companion. M considers the embedding
as an ongoing process. In taking this view M selects between two possible views. The view taken
classifies the model as a dynamic model. The alternative view accepts that besides the historic data
the Hilbert spaces already contains the future data. In this alternative view a boundary splits the
Hilbert space into three parts:

e The past history part of the model
e The current static status quo, which is represented by the boundary
o The future part of the model

This second view treats these three parts as sections of a model that is created as one whole system.

M introduces the reverse bra-ket method and uses this method in order to relate operators and
their eigenspaces to pairs of functions and their parameter spaces [8]. In this way, subspaces act as
Hilbert space domains in relation to which manifolds are defined.

In the first view, the base version M of M consists of the foundation, a quaternionic separable
Hilbert space, its companion Gelfand triple and a set of mechanisms {3} that control the dynamic
split of this base version M in a historic part, a part that represents the present static status quo and
a part that represents the future.

The first view shifts the equivalent of the mystery of the origin of the dynamics of physical reality to
the mysteries of a set of mechanisms that control the coherence of the dynamics of the model.

M applies an extended version of the generalized Stokes theorem in order to describe the split of
the Hilbert space into the mentioned three parts [9] [10]. The generalized Stokes theorem enforces
the encapsulation of artifacts that disrupt the continuity of the manifolds. This introduces an extra
splitting of the base model in which elementary artifacts and domain cavities are set apart from the
domains of the continuous parts of the manifolds.

Via the reverse bra-ket method smoothing operators are introduced that convolute the defining
function of a primary operator with a blurring function. With an appropriate selection of the blurring
function, the eigenspace of the smoothing operator will represent the “observable” version of the
primary manifold. Here “observable” means the way that discrete objects sense the influence of the
local disruptions of the continuity of the primary manifold that are caused by other discrete objects.

In this way M introduces notions such as the wave function, the uncertainty principle and the
equivalent of the gravitation potential.

The fact that M steps with model wide steps in the separable Hilbert space $ and flows in the
companion Gelfand triple H is the reason to use the name Hilbert Book Modelfor M. In order to
warn that M is not meant to be a physical model, but instead M is a pure mathematical test
model that is used to investigate the mathematical tools and methods that can be use in order to
describe a physical model, the name of M is extended to Hilbert Book Test Model.



6 The orthomodular lattice

In this paper lattices are the most primitive structures that exist in the pursued model. Lattices are
sets of relations and the lattice describes which kind of relations belong to the lattice and how they
are mutually related. In short a lattice is a relational structure. The foundation of the model is an
orthomodular lattice. This is a short name for a weak modular orthocomplemented lattice. Lattices
are treated in detail in the appendix.

The orthocomplemented lattice was discovered by Garret Birkhoff and John von Neumann. Due
to the strong similarity to the lattice that describes classical logic the duo gave it in their
introductory paper the name “quantum logic”. This was the reason that since its introduction many
scientists since this introduction have investigated the value of this structure as a logic system.
For comprehensible reasons this was not very successful. In the same introductory paper the duo
proved that the set of closed subspaces of a separable Hilbert space has exactly the relational
structure of the orthocomplemented lattice. The closed subspaces have little in common with
logical propositions. That is why this paper prefers a different interpretation of the orthomodular
lattice. This paper sees the orthomodular lattice as part of a recipe for modular construction. In
fact the particular relational structure stimulates modular construction of the systems that occur in
the pursued model.

The effect of the orthomodular lattice can be expressed in the most basic and therefore most
important law:

“Thou shalt construct in a modular way”.

This law is intentionally expressed in the form of a commandment. It is not possible to express this
law in the form of a formula, suchas K = ma or E = m c?. The impact of the commandment is far
more influential, than the impact of these famous formulas.

The orthomodaular lattice does not yet cover number systems. Thus this structure cannot implement
notions such as space and time. These concepts emerge with the extension of this foundation to the
separable Hilbert space. The separable Hilbert space can only cope with numbers that are elements
of a division ring. Together with its stimulation of modular construction this restriction of the
tolerable number systems has a healthy influence on the simplicity and the efficiency of model that
will be designed.



7 Modular construction of dynamical systems

7.1  Modular construction
Modular construction is a very beneficial construction design method.

e |t can reduce relational complexity with orders of magnitude.
o It standardizes module access.
o It standardizes information transfer between modules.
o It encapsulates relations that are only used inside the module, such that they are not
disturbing information exchange outside the module.
e It uses its resources in a very economical way.
o It promotes reuse.
o It uses standard module types.
e |t makes system configuration very simple.

Most importantly, dynamic modular system construction enables stochastic modular system
generation. This is what drives model evolution in the first phase of the generation of modules and
modular systems. In a later phase intelligent design and intelligent construction and configuration
can take over at isolated regions.

7.2 Binding

Modules are bounded together in higher level modules.

e Inloose binding each constituent module keeps its own encapsulation.
e In strong binding the modules join their encapsulations.
e Hybrid binding is a combination of loose and strong binding.

Elementary modules are not constructed from lower order modules.

7.3 Relation to a separable Hilbert space
The Hilbert space distinguishes modules in a restricted set of categories. Differentiation based on
ordering of content is used to distinguish between elementary module types. Configuration of
modular subsystems is used as another criterion for grouping into categories.

e Each closed subspace of the considered separable Hilbert space is a potential module or a
potential modular system.

e The orthomodular lattice restricts the relational structure of the set of potential modules.

o Not every closed subspace of this Hilbert space is an actual module or an actual modular
system.

e Actual modules are encapsulated and contain discrete content.

Hilbert spaces can house several parameter spaces that are represented by eigenspaces of normal
operators and are spanned by a version of the quaternionic number system. Elementary modules
feature their own private parameter space. Types of elementary modules correspond to types of
parameter spaces. These private parameter spaces are categorized as symmetry centers.

7.4 Dynamics
The modular systems are controlled by mechanisms that regulate information transfer such that no
blockings, such as dead locks or race conditions obstruct the dynamic behavior of the modular
system. This means that the model applies a stochastic real time operating system (RTOS) for
controlling the activity of its lowest level modules.
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7.5 Implementation
The describing data of both the discrete modules and the fields are stored in the Hilbert spaces. The
modules are embedded in one or more basic fields. Basic fields are generated by the influences of
mechanisms that are not part of the Hilbert spaces £ and . Other fields are derived from data that
are already stored in the combined Hilbert spaces. Often fields are functional parts of other more
basic fields. The Hilbert spaces own some model-wide basic fields. Part of this set represent
parameter spaces. Symmetry centers are directly coupled to a set of basic fields that are private to
corresponding modules.

Encapsulation is implemented by a closed skin that acts as a boundary, which corresponds to a form
that can be described using a parameter space that has one dimension less than the space that it
encapsulates. The skin has no fixed form or size. Its main characteristic is that it is defined in a region
where the considered field is continuous. This enables the application of the generalized Stokes
theorem. This theorem defines integral balance equations. These integral balance equations
correspond to differential continuity equations.

Two different views of the model are possible. The first view is a creation based view. In this view
mechanisms create new data at the rim between history and future. This new data is then stored in
the Hilbert spaces £ and H . The second view is a panning view in which the splitting boundary is
panning over existing data without changing these data. In this view the only dynamic object in the
model is the panning boundary.

The model is not touched by these views. However, each of the views corresponds to a different
interpretation of the model. We take the first view as the main description of the model, because it
conforms better with the current physical models.

In the selected view, dynamics is implemented by a boundary that splits the Hilbert spaces into three
parts:

e Afixed and precisely defined history that is archived in the eigenspaces of operators that
reside in the involved Hilbert spaces.

e A present status quo whose description exist of the data that are delivered by controlling
stochastic mechanisms and are archived in the eigenspaces that are archived in the
eigenspaces of operators that reside in the separable Hilbert space.

o This part represents the splitting boundary.

o The mechanisms that provide new data have a stochastic nature and in that way they
prevent blockings, such as dead locks and race conditions.

o This stochastic nature also provides the stochastic nature of the RTOS that schedules
the activity of the lower level modules.

o Afuture that is inaccessible to the objects that are archived in the previous parts.

o No information leaks from the future part to the boundary or to the historic part.

o However, when the boundary proceeds, information and objects may enter and pass
through the boundary from the future part of the model to the historic part of the
model. This restriction is in correspondence with the panning view.

e Creation and annihilation processes take place in the direct surround of the part that
represents the static status quo. These processes take a standard number of progression
steps. This assumption means that the panning boundary travels with constant or very slowly
varying number of participating progression steps.
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The creation based view involves stochastic mechanisms that provide new data. In the panning view
the future part already contains these data but these data cannot be accessed until it is reached by
the moving boundary. The model is not affected by these interpretations. However, the description
of the model is certainly affected by the selected interpretation.

The combination of both views resolves Einstein’s dilemma that it is unbelievable that the creator
throws dices in order to generate his elementary modules. In the first view the creation is a
stochastic process that occurs in in huge number of subsequent steps . In the second view the
creation of the model took a single step, but still the modules are created in a stochastic way.

Information transfer occurs via ripples in the field that pass the panning boundary. Information
carrying messengers transport information in the form of quantized packages of energy. These
messengers are solutions of homogeneous second order differential equations. Thus information
transfer is restricted by the properties and capabilities of the involved fields. The capabilities are
described by the integral and differential field equations.

Observation by information receivers is blurred by the blurring, which is caused by the structure of
objects that emit and absorb the information messengers.
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8 Quaternion geometry and arithmetic

Quaternions and quaternionic functions offer the advantage of a very compact notation of items that
belong together [11].

Quaternions can be considered as the combination of a real scalar and a 3D vector that has real
coefficients. The vector forms the imaginary part of the quaternion. Quaternionic number systems
are division rings. Other division rings are real numbers and complex numbers. The separable Hilbert
space only uses the rational subsets of these number systems.

Bi-quaternions exist whose parts exist of a complex scalar and a 3D vector that has complex
coefficients. Octonions and bi-quaternions do not form division rings. This paper does not use them.
However, one exception is tolerated, in considering the Dirac equation, bi-quaternionic functions and
bi-quaternionic differential operators are used. The Dirac equation is treated in the appendix.

8.1 Notation
We indicate the real part of quaternion a by the suffix a,.

We indicate the imaginary part of quaternion a by bold face a.

a=ay+a (1)

We indicate the quaternionic conjugate by a superscript in the form of a star.

a*=ay—a (2)

We introduce the complex base number i via

i-i= -1 (3)

i commutes with all quaternions.

ira=a-1i (4)

However, the product is no longer a quaternion. Instead, it is a bi-quaternion. Bi-quaternions are
indicated by a beret.

T=a+1i-b (5)

Here a and b are both regular quaternions. Complex conjugation is acting as:
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i"= —1i (6)

Complex conjugation is indicated with a superscript in the form of a filled circle.

T=a-1i-b (7)

Here we see bi-quaternions as hyper-complex numbers with quaternionic coefficients. These
numbers do not form a division ring. These numbers are not equivalent to octonions. This paper does
not apply Clifford algebra, Jordan algebra or other than the pure division ring algebra’s, because the
author considers them to conceal more than they elucidate.

8.2 Quaternionic sum

c=cp+c=a+b (1)
C0:a0+b0 (2)
c=a+b (3)

8.3 Quaternionic product

f=fotf=d-e @)
fo=do ey —(d,e) (2)
f=dy-ete,-d+tdxe (3)

Thus the product contains five parts. The + sign indicates the influence of right or left handedness of
the number system.

(d, e) is the inner product of d and e.
d X e is the outer product of d and e.
We usually omit the multiplication sign -.

8.3.1 Handedness
We introduce by superscript ? a switch in handedness of the quaternion. This does not touch the real
part.
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f°=d°'e°=d0'eo—(do,e°)+d0'e°+eo'd°$d°Xe° (1)
d'xel=—-dxe (2)

d-e'and d*-e areundefined!

Thus a right handed quaternion cannot be multiplied with a left handed quaternion. Quaternionic
conjugation switches the handedness. In addition:

(a'b) =b*-a* (3)

A continuous quaternionic function does not switch its handedness. Embedding a conflicting quaternion in the target space
of a function produces a local artifact that produces a local discontinuity. This also holds for other aspects of the quaternion
symmetries.

8.4 Norm
la| =\ agay + {(a,a) =+a-a* (1)

8.5 Norm of quaternionic functions
Square-integrable functions are normalizable. The norm is defined by:

M =f|¢|2 av M
%4

=j{|¢0|2+ W12 Yav
74

= IlPoll* + llpll?

8.6 Quaternionic rotation

In multiplication quaternions do not commute. Thus, in general a b/a # b. In this multiplication
the imaginary part of b that is perpendicular to the imaginary part of a is rotated over an angle ¢
that is twice the complex phase of a.

15



a = |alexp(i .
lalexp(ie) The transform aba1 rotates the

imaginary part b of b around an axis
along the imaginary part a of a over
an angle 2o that is twice the
argument ¢ of a in the complex field
spanned by a and 1

1 means perpendicular
|| means parallel

This means that if ¢ = /4, then the rotation ¢ = a b/a shifts b, to another dimension. This fact
puts quaternions that feature the same size of the real part as the size of the imaginary partis in
a special category. They can switch states of tri-state systems. In addition, they can switch the
color charge of quarks.
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9 Quaternionic Hilbert spaces
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner
product relates each pair of Hilbert vectors. The value of that inner product must be a member of a
division ring [5]. Suitable division rings are real numbers, complex numbers and quaternions. Model
M uses quaternionic Hilbert spaces.

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [8].

(xly) = (ylx) (1)
(x +ylz) = (x|z) + (y|2) (2)
(ax|y) = a (x|y) (3)
(xlay) = (x|y) a” (4)

(x| is a bra vector. |y) is a ket vector. a and (x|y) are quaternions.

This paper considers Hilbert spaces as no more and no less than structured storage media for
dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the
storage of such data. Quaternionic Hilbert spaces are more extensively described in the appendix. Of
course, the quaternions may also have other meanings than the representation of geometric data.
But representing geometric data will cover the majority of the application of the quaternionic data in
model M.

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional
separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space
and offers as an extra service operators that feature continuums as eigenspaces. In the
corresponding subspaces and child subspaces the definition of dimension loses its sense.

9.1 Representing operators and their eigenspaces by continuous functions
Operators map Hilbert vectors onto other Hilbert vectors. For all Hilbert vectors |y) holds

(Tx|y) = (z|y) = (Tx| = (z] (1)
Via the inner product, the operator T may be linked to an adjoint operator T'7.

(Tx|y) & (x|TTy) (2)

(Tx|y) = (y|Tx)" = (Tylx)* (3)
A linear quaternionic operator T, which owns an adjoint operator T is normal when

YT = TTT (4)

If T is a normal operator, then T, = (T + TT)/Z is a self adjoint operatorand T = (T - TT)/Z isan
imaginary normal operator. Self adjoint operators are also Hermitian operators. Imaginary normal
operators are also anti-Hermitian operators.

By using what we will call reverse bra-ket notation, special types of operators that reside in the
Hilbert space and correspond to continuous functions, can easily be defined by starting from an
orthonormal base of vectors. In this base the vectors are normalized and are mutually orthogonal.
The vectors span a subspace of the Hilbert space. We will attach eigenvalues to these base vectors
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via the reverse bra-ket notation. In this way the base vectors become eigenvectors of the target
operator. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.

The reverse bracket method is discovered by the author. It appears to be a very powerful tool that couples a category of
operators to corresponding defining functions and couples operators in the separable Hilbert space to corresponding
operators in the non-separable Hilbert space.

We start with a very simple defining function R(q) = q and the corresponding operator R.

Let {g;} be the set of rational quaternions in a selected quaternionic number system and let {|q;)} be
the set of corresponding base vectors. They are the eigenvectors of a normal operator R. Here we
enumerate the base vectors with index i.

R = 19:qqil = 19)%R(q:){q:] ;

R is the configuration parameter space operator. R(q) is a quaternionic function, whose target
equals its parameter space. The definition (5) also covers the situation where the dimension of the
(sub) space is infinite.

This reverse bra-ket notation must not be interpreted as a simple outer product between a ket
vector |g;), a quaternion g; and a bra vector {q;|. Actually, it involves a complete set of eigenvalues
{qi} and a complete orthomodular set of Hilbert vectors {|g;)}. It implies a summation over these
constituents, such that for all bra’s (x| and all ket’s |y):

(x|Ry) = Z(x|Qi>Qi<Qi|Y> (6)

Thus formula (6) represents the full definition for the shorthand (5). R is a special operator. It can be
considered as a property of the combination of the separable Hilbert space $ and one of the existing
versions of the quaternionic number system.

Ry = (73 + R‘L)/Z is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the
eigenvectors by enumerating them with the real eigenvalues. The ordered eigenvalues can be
interpreted as progression values.

R= (R — RT)/Z is an imaginary operator. Its eigenvalues can also be used to order the
eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several
ways. For example eight independent ways exist to order the 3D spatial domain by using Cartesian
coordinates.

Let £ (q) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines
operator f as:

f = lapnf(@){ql (7)

f defines a new operator that is based on function f(q). Here we suppose that the target values of f
belong to the same version of the quaternionic number system as its parameter space does.

Operator f has a countable set of discrete quaternionic eigenvalues.

For this operator the reverse bra-ket notation (7) is a shorthand for

(If y) = ) txladf (a)aily) 8
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Alternative formulations for the reverse bra-ket definition are:

€ ladf @)l = laXfa)ai) = la){fail = If*(@daXa:) = |fTa)ai(a] (9)

Here we used the same symbol for the operator f and the function f(q;). For this operator the
eigenvalues of the Hermitian part f, = (f + fT)/Z are not interpreted as progression values.
Often (not always!), these values can be interpreted as dynamic location density descriptors.

The left side of (8) only equals the right side when domain over which the summation is taken is
restricted to the region of the parameter space R where f(q) is sufficiently continuous.

9.2 Symmetry centers
We can define a category of anti-Hermitian operators {&3 }that have no Hermitian part and that are
distinguished by the way that their eigenspace is ordered by applying a polar coordinate system. \We
call them symmetry centers &%. A polar ordering always start with a selected Cartesian ordering. The
geometric center of the eigenspace of the symmetry center floats on a background parameter space
of the normal reference operator R, whose eigenspace defines a full quaternionic parameter space.
The eigenspace of the symmetry center &% acts as a three dimensional spatial parameter space. The
super script * refers to the symmetry flavor of &%. The subscript ,enumerates the symmetry
centers. Sometimes we omit the subscript.

©* = |s{)si (57 | (1)

exT = & (2)

It must be noticed that the eigenvalues of the symmetry center operator have no real part! However,
when mapped to another parameter space, the center location of the symmetry center eigenvalues
can be a function of progression.

9.3 Continuum eigenspaces
In a non-separable Hilbert space, such as the Gelfand triple, the continuous function F(q) can be
used to define an operator, which features a continuum eigenspace. We start with defining a
continuum parameter space.

R = |g)q{q| = |9)R(q){q] (1)

The next definition relates the separable Hilbert space and its companion Gelfand triple.

F = |a)F(@){ql (2)

Via the continuous quaternionic function F(q), the operator F defines a curved continuum F. This
operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space.
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The function F(q) uses the eigenspace of the reference operator R as a flat parameter space that is
spanned by a quaternionic number system {q}. The continuum F represents the target space of
function F(q).

Here we no longer enumerate the base vectors with index i. We just use the name of the parameter.
If no conflict arises, then we will use the same symbol for the defining function, the defined operator
and the continuum that is represented by the eigenspace.

For the shorthand of the reverse bra-ket notation of operator F the integral over g replaces the
summation over q;.

i=co (3)
@IF ) = Y xladF@aly) = [ wlaF@ialy) dg
i q

=0

The integral only equals the sum sufficiently close when the function F(q) is sufficiently continuous
in the domain over which the integration takes place. Otherwise the left side only equals the right
side when domain is restricted to the region of the parameter space R where F(q) is sufficiently
continuous. The section that treats the generalized Stokes theorem explains the consequences of
existing discontinuities. The parameter space operator R does not encounter these discontinuities.
The section that treats the generalized Stokes theorem also reveals the consequences of ordering of
the used number systems.

An important fact is that R can be split into a retarded (historic) part R_ and an advanced (future)
part R,. The region between these two parts forms a boundary (rim) in which the parameter
space(s) change the sign of their real parts. Domains that feature further differences in their
parameter spaces must also be encapsulated and form floating islands. Within these islands
integration makes no sense. Inside those regions only summation is acceptable. Elementary islands
form modules that will be called symmetry centers. Symmetry centers have a fixed type of parameter
space ordering. These symmetry centers will be later treated in more detail. An extended version of
the Stokes theorem can properly describe the situation.

Smoothed versions of operators can use defining functions that are integrable over most regions
where the original operator cannot be represented by the original defining function. The defining
function of the smoothed operator equals the convolution of the original defining function and a
suitable blurring function.

The blur is picked such that it represents the fundamental observation blur that is sensed by discrete
objects.

Remember that quaternionic number systems exist in several versions, thus also the operators f and
F exist in these versions. The same holds for the parameter space operators. When relevant, we will
use superscripts in order to differentiate between these versions.

Thus, operator f* = |g¥)f*(g7){(q;‘| is a specific version of operator f. Function f*(gq{) uses
parameter space R*.

Similarly, F* = |q*)F*(q*){(q*| is a specific version of operator F. Function F*(g*) and continuum
F* use parameter space R*. If the operator F* that resides in the Gelfand triple /£ uses the same
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defining function as the operator F* that resides in the separable Hilbert space, then both operators
belong to the same quaternionic ordering version.

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.

The continuums that appear as eigenspaces in the non-separable Hilbert space H can be considered
as quaternionic functions that also have a representation in the corresponding infinite dimensional
separable Hilbert space $. Both representations use a flat parameter space R* or R* that is
spanned by quaternions. R* is spanned by rational quaternions.

The parameter space operators will be treated as reference operators. The rational quaternionic
eigenvalues {g;'} that occur as eigenvalues of the reference operator R* in the separable Hilbert
space map onto the rational quaternionic eigenvalues {g;} that occur as subset of the quaternionic
eigenvalues {g*} of the reference operator R* in the Gelfand triple. In this way the reference
operator R* in the infinite dimensional separable Hilbert space $ relates directly to the reference
operator R*, which resides in the Gelfand triple . This renders the reverse bra-ket method to an
ideal tool in the coupling of the separable Hilbert space $ to its non-separable companion H.

All operators that reside in the Gelfand triple and are defined via a mostly continuous quaternionic
function have a representation in the separable Hilbert space.

In the sketched way the reverse bra-ket method and the extended generalized Stokes theorem
complement each other in the description of the base model.

9.4 Types of operators
Only a special category of operators can directly be handled by the reverse bra-ket method. In that
case the defining function must be available within the realm of the Hilbert space. All operators that
are defined in the separable Hilbert space and that can be represented by a sufficiently continuous
function, possess a smoothing companion in the non-separable Hilbert space. The integration
process that is used by the reverse bra-ket method can handle point-like discontinuities and closed
cavities in the parameter space of the defining function, where the defining function does not exist.
These artifacts are handled by separating them from the validity domain.

Other types of operators are:

e Stochastic operators
o These operators get their eigenvalues via mechanisms that reside outside of the
realm of the Hilbert space and use stochastic processes in order to generate the
eigenvalues.
e Density operators
o If astochastic operator generates a coherent swarm of eigenvalues that can be
characterized by a continuous location density distribution, then the reverse bra-ket
method can be used to define the corresponding density operator.
e Function operators
o Function operators act on functions and in that way they produce new functions that
can be used as defining functions of the corresponding operator.
e Partial differential operators
o These are special kinds of function operators.
o The existence of partial differentials of quaternionic functions create the existence of
partial differential operators that work in combination with the operators that define
the function of the related operator.
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e Smoothing operators

o The existence of the convolution of a mostly continuous quaternionic function with a
continuous blurring function can be used to define a smoothed version of the mostly
continuous quaternionic function that is everywhere continuous or that at least has a
far greater validity domain.

o Smoothing operators do not extend the validity domain over space cavities.

o Density operators are extreme cases of smoothing operators.

o Smoothing operators are the reason of existence of the wave function and of the
uncertainty principle.

o Potentials are represented by smoothing operators.

In quaternionic differential calculus the differential operators work as multipliers.

If D is a partial differential operator and G = DF for a category of functions {F}, where G is
sufficiently continuous, then for all bra’s (x| and all ket’s |y) hold:

(xI6 y) = (x|DF y) ~ j

(xla)YDF(@)qly) dg = f xla)G(@ialy) dg @
q q

Differential operators work on the category of operators that can be represented by defining
functions, which can be differentiated. Especially the Hermitian kind of these operators appear to be
of interest for application in physical theories.

Some Hermitian partial differential operators do not mix scalar and vector parts of functions. These
are:

Vo
VoVo
\AY
These operators can be combined in additions as well as in products. Two particular operators are:
VW= V'V =V,V,+(V,V)
D =-V,Vy +(V,V)

The last one is the quaternionic version of d’Alembert’s operator. The first one can be split into V and
V*. The second one cannot be split into quaternionic first order partial differential operators.
However, a biquaternionic split is possible. The biquaternionic differential operators will be treated
in the appendix.

The field & is considered to be regular in spatial regions where the defining function &(q) obeys
(V)& =0 (2)

Similar considerations hold for regions where:
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VW'E = (VoVo +(V,V)F =10 (3)
OF = (=VoVo +(V,VNF =0 (4)

The quaternionic differential operators will be treated in dedicated chapters.
Smoothing operators are defined by a convolution.

The defining function U(q) of operator U is defined by the convolution of blurring function ¥ (q)
with function A(q):

U(g) = X(q) > A(q) (5)

In that way we can write for the corresponding operators:

U=XU (6)
It will be clear that equation (5) and thus equation (6) involves an integration operation.

9.5 Tensor products
The tensor product of two quaternionic Hilbert spaces is a real Hilbert space [5]. For that reason the
quaternion based model cannot apply tensor products. As a consequence Fock spaces are not
applied in this paper.

Instead the paper represents the whole model by a single infinite dimensional separable
quaternionic Hilbert space and its companion Gelfand triple. Elementary objects and their
composites will be represented by subspaces of the separable Hilbert space. Their local living spaces
coexist as eigenspaces of dedicated operators. These have been introduced as symmetry centers.

9.6 Change of base

In quaternionic Hilbert space a change of base can be achieved by:

w7 = x |q>{ [@ar@am dq} (ly) da @
q q

- [ =lF@aly) da
q
F(@q) = j @la)F @)ald) dg 2)
q

%) = f @a)atald) dq 3)
q
@)
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%) = | cdpR@)aly) dg
q

R = 1§9)q(ql (5)

However, as we see in the formulas this method merely achieves a rotation of parameter spaces and
functions. In the complex number based Hilbert space it would achieve no change at all.

9.7 Fourier transform

A Fourier transform uses a different approach. It is not a direct transform between parameter
spaces, but instead it is a transform between sets of mutually orthogonal functions, which are
formed by inner products, which are related to different parameter spaces. In quaternionic space,
the (quaternionic) Fourier transform exists in three versions. The first two versions have a reverse
Fourier transform.

The left oriented Fourier transform is defined by:

FL(4) = f (Gula) F(@) dg (1)
q

Like the functions {(q|q’) and (g |§}), the functions (g, |q) and (q|g,) form sets of mutually
orthogonal functions, as will be clear from:

(qlg")=6(q—1q") (2)
(G.1q.) = 6(G, —q.) (3)
| @i da, =56 - o) )
qL
[ @ilaxala dg = 6@ - ap )
q
The reverse transform is:
F@ = [ @aF@ da = [ @aXale) @) da,de )
qL qLvq
-| { [ @aaley dfh}?(q’) dq' = [ ot -a"F@) dq
q' g, q’
The reverse bra-ket form of the operator F, equals:
Fr, = 1G.)FL(3.)(q, ] (7)

Operator R, provides the parameter space for the left oriented Fourier transform ¥, (§,) of function
F(q) in equations (1) and (6).

R = 13.)3.(d. (8)
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Similarly the right oriented Fourier transform can be defined.

Fo@) = f F@NG'1a) dq’ (9)
q

The reverse transform is:

7 ~ ~ ~ I I~ ~ I J~ 10
F@ = | Fa@alan dae = | | F@)a1a)axl0) da’ dag (10
q dr’q’
- [ 7@ { | @i daR}dq' - [ F@)o@-ardq
q 4r q’

Also here the functions {q|q"), {Gr|Gr), (Grlq) and {(q|Gg) form sets of mutually orthogonal
functions.
The reverse bra-ket form of the operator ifR equals:

Fr = 1Gr)Fr(Gr){(Gr| (11)

Operator §)~%R provides the parameter space for the right oriented Fourier transform F(Gg) of
function F(q) in equations (9) and (10).

Rr = 13r)r(dr| (12)

The third version of the Fourier transform is:

Fr(qL) + Fr(Gr) _
2

(13)

F (L Gr) = % f {@lO)F (@) + F@)qldn)} dg
q

In contrast to the right and left version, the third version has no reverse.
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10 Domains and parameter spaces

The quaternionic domain ( is supposed to be defined as part of the domain ‘R of a reference
operator R that resides in the non-separable quaternionic Hilbert space . The reverse bra-ket
method relates the eigenspace {q} of reference operator R to a flat quaternionic function R(q). The
target of function R(q) is its own parameter space {q}. Here we explicitly use the same symbol R for
all directly related objects. In M , R(q) is always and everywhere continuous.

R = |9)R(@){ql = |9)a{q] (1)

The domain R is spanned by the eigenvectors {|q)} of operator R.

The reverse bra-ket method also relates the eigenspace R to an equivalent eigenspace R of a
reference operator R, which resides in the infinite dimensional separable Hilbert space $. Both
eigenspaces are related to the same version of the quaternionic number system. However, the
second eigenspace R only uses rational quaternions g;.

R = q)R(q){q;| = |q;)qi{q;l (2)

Quaternionic number systems can be ordered in several ways. Operator R corresponds with one of
these orderings. R is supposed to be Cartesian-ordered. R is a normal operator and its eigenspace is
countable. Cartesian ordering means that the set of eigenvectors of R can be enumerated by the
separate eigenvalues of R. The eigenspace is the Cartesian product of four partially ordered sets in
which the set, which represents the real part takes a special role. The eigenspace of the Hermitian
part Ry = 1/2(72 + R*) of normal operator R can be used to enumerate a division of § into a
countable number of disjunctive subspaces, which are spanned by eigenvectors of R. Cartesian
ordering means partial ordering of the eigenvalues of R, and additional ordering of the eigenvalues
of the anti-Hermitian operator R = 1/2(91 - ‘RT) by selecting a Cartesian coordinate system. Eight
mutually independent Cartesian coordinate systems exist. Ry = (R + R*)/Z is a self-adjoint
operator. The ordered eigenvalues of R, can be interpreted as progression values. The eigenvalues
of R can be interpreted as spatial values. This differs from the physical notions of time and space.
Here we are talking about a mathematical test model.

In this way, parameter spaces as well as domains correspond to closed subspaces of the Hilbert
spaces. The domain subspaces are subspaces of the domains of the corresponding reference
operators. The parameter spaces are ordered by a selected coordinate system. The (L domain is
represented by a part of the eigenspace of reference operator R. The flat quaternionic function R(q)
defines the parameter space fR. It installs an ordering by selecting a Cartesian coordinate system for
the eigenspace of its anti-Hermitian part R = 1/2(91 - ERJF). Several mutually independent selections
are possible. The chosen selection attaches a corresponding symmetry flavor to this parameter
space. In the mathematical test model, this symmetry flavor will become the reference symmetry

flavor. Thus, the symmetry flavor of parameter space R© may be distinguished by its superscript ©

The manifold w is also defined as the continuum eigenspace of a dedicated normal operator w which

is related to domain {2 and to parameter space RO via function &. Within this parameter space §
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may have discontinuities, but these must be excluded from the domain over which integration takes
place. This exclusion will be treated below.

Symmetry centers are described by anti-Hermitian operators and their geometric center can float on
another parameter space as a function of progression. At every progression step only one location of
the symmetry center is used. In combination this produces a well ordered operator where a single
progression value corresponds with a single spatial location. The spatial location is determined by a
stochastic mechanism. This mechanism produces coherent location swarms. The swarm can be
described by a continuous location density distribution. Further, all swarm elements can be
enumerated by a progression value and thus form a hopping path.
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11 Stokes theorem without discontinuities

The conventional generalized Stokes theorem is in fact a combination of two versions. One is the
using the divergence part of the exterior derivative dw. It is also known as the generalized
divergence theorem. The other version uses the curl part of the exterior derivative. For quaternionic
manifolds the two versions can be combined in one formula. The domains typically cover a static
status quo. The static status quo is characterized by three changes, a divergence, a gradient and a
curl. The other two changes concern what disappears into history and what comes in from the
future. These part concerns the change of the scalar and vector density distributions.

Without discontinuities in the manifold w the conventional generalized Stokes theorem is
represented by a simple formula [9].

The theorem can be applied when everywhere in ) the derivative dw exists and when everywhere in
0Q the manifold w is continuous and integrable. The domain Q is encapsulated by a boundary dQ.

Qcan (2)

In this paper, the manifolds w and dw represent quaternionic fields & and d{, while inside Q) the
manifold w represents the quaternionic boundary of the quaternionic field §. These fields and
manifolds correspond to defining functions &(q) and d&(q).

dw is the exterior derivative of w.

This view is focusing onto the spatial part R of the quaternionic parameter space fR. It uses only the
spatial parts (V, f) and V X f of the first order differential equation.

VE=Vofo—(V,)+Vof +Vfo +VXf (3)

Apparently in the conventional Stokes theorem the gradient Vfj is neglected. In quaternionic space
all five terms contribute to the balance and continuity equations. If both the historic and the future
parts are taken into the view then a new extended Stokes theorem emerges.

In particular formula (1) does not pay any attention to the what exists outside of the splitting
boundary. If the parameter space R is an eigenspace of a reference operator in a quaternionic
Hilbert space then the ignored region concerns the other part of the Hilbert space. A proper balance
equation must consider all participating parts. We will extend the Stokes equation in that direction.

11.1 Interpreting the exterior derivative
Via quaternionic defining functions, the reverse bra-ket method couples the separable Hilbert space
to its non-separable companion.
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The defining function F(q) links the integral over the full quaternionic g numbers to the
summation over the rational g;numbers.

(IF ) = ) (cladFadaly) ~ [ loyF@aly dg W
i q

This corresponds to:

jﬂﬂ? = fa e Zi<x|qi>f<qi)<qi|y> (2)

j iF = j xla)F@ialy) dg )
) q

This divides the region over which the equation works into two parts. One in which summation
equals integration and a region or a set of regions where integration does not work properly due to
the existence of discontinuities of F(q) in those sub-regions. Exchanging F (q) against a smoothed
version can completely or partly cure this problem.

Another possibility is the split of the parameter space R of F(q) into the parts R_ and R_.. This splits
the parameter space in two parts that have different ordering of the real part of the parameter
space. This split is treated later. If the two splits are combined, then the split between summation
and integration can be interpreted as a leakage of the second split in which discrete objects pass
though the sieve that splits R_ and R,.. A similar interpretation can be given to larger regions in
which F(q) is not defined.

Thus, the quaternionic extension of the Stokes theorem involves multiple splits:

e The split between R_ and a history-side static status quo.

e The slit between the future-side static status quo and R,..

e The split around point-like artifacts.

e The split around other regions where the defining function is not integrable.

The region between the two static status quos is not integrable. However, properly smoothed fields
pass straight through this region.

The conventional generalized Stokes theorem exists in the form of a divergence based version and in
the form of a curl based version [10]. However, for quaternionic manifolds the definition of the
exterior derivative requests extra attention. In this section we assume that the quaternionic manifold
w is represented by the target of a quaternionic function §(q). Function (q) has a flat parameter
space ‘R.

R is a flat quaternionic manifold, which is represented by the target of function R(q) ¥ q.

We presume that the exterior derivative d of & can be interpreted by the following equations:
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3 a% 3 3 a% (4)
d?&=Ze“adx#=Ze“dx”ZeVa—xv=e‘“’ u%v
u=0

D# e dx# E

Thus d{ is represented by a tensor. This is not a very attractive presentation. It is more convenient to
treat the change along the directions in which change takes place according to the first order partial
differential equations.

The exterior derivative differs from the partial differentials that appear in partial differential
equations.

3
® = Z es®, = e G,
¢=0

3 3 3
a d
= V‘i} = eﬂ_% — ell eV gv
Z d0x 2 Z 0x,
u=0 u=0 v=0

U

= eHeV ygv = euva,ugv

In the right parts of the above formulas, the summation rules for subscripts and superscripts are
applied.

We use the fact that quaternions can be considered as a combination of a real scalar and an
imaginary vector. Further, we apply the fact that quaternionic partial differential operators act as
multipliers.

=T+ & (4)
G=VF=6y+6 =+ G+ (5)
Gy = VoS0 — (V. &) (6)
® = VoF + V¥ + VX § (7)

For some fields, some parts of ® may get special symbols. This is applied in Maxwell-like equations.
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€ =-V& -V (8)

B=VxXF (9)

Similar definitions are applied in Maxwell equations. However, despite these similarities, the derived
fields € and B are not equivalent to the Maxwell fields E and B. The Maxwell equations are treated
in the appendix.

In general, there is no guarantee that € and B are perpendicular. Thus in general:

(€,B)+0 (10)

However, a third vector P is perpendicular to both € and B.

P=ExB (11)

Equation (6) is not part of the Maxwell set of partial differential equations. However, the terms V&,
and (V, §) are used in gauge equations.

We may conclude that change covers five terms that do not represent four independent directions as
is suggested by the conventional Maxwell differential equations.

Please note that

VE =Vo—-V@&—F) =6 —VoF —VF LV XF (12)

(V) = 6" =V'F FUX § (13)

Thus the partial differential of a curl free function connects to a Hermitian operator!

The = sign indicates the fact that quaternionic parameter spaces and quaternionic functions exist in
versions that differ in the handedness of their external vector product.

In the integrals below some terms of V& are combined.

VF=—(V.&HLVXE (14)
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VEF=VE —(V.&F LV XF (15)
Vo = Voo + Vo & (16)
It must be noticed that

> (17)
dF = ) et6,dx,

u=0

This is the reason that the generalized Stokes integral uses the wedge product dx A dy A dz A dr.
These wedge products are merely a warning that a tensor is active. In the quaternionic version of the
Stokes theorem, it is not a clear exposure of the mechanism.

The Maxwell-like partial quaternionic differential equations differ from the Maxwell equations that
are used in current physical theories. Thus, great care must be applied in comparing the two sets of
partial differential equations. Especially equations (6) and (10) signal alarming differences.

11.2 A special domain split
In the special splitting case that is investigated here, the extended generalized Stokes theorem
constructs a rim &(x, 7) between the past history of the field [F(x, t)];<; and the future [F(x, t)];>¢
of that field. It means that the boundary &(x, 7) of field [&(x, t)];<, represents a universe wide
static status quo of that field.

More specifically, the form of the generalized Stokes theorem for the sketched situation runs as:

(1)

[[[faveo= [ [ o3 e s d[ﬂ stwud

t=0 Vv t=0 t=t1

xX=x+7 (2)

Here [§(x, t)].=; represents the static status quo of a quaternionic field at instance 7. V represents
the spatial part of the quaternionic domain of &, but it may represent only a restricted part of that
parameter space. This last situation corresponds to the usual form of the divergence theorem.

As mentioned above great care must be taken by interpreting the wedge product in

d¥(x) = V& (x) dx Ady Adz A dr. (3)
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Due to the danger of misinterpretation, we will avoid the wedge products that appear in the middle
part of equation (1). In the right part of the equation only the divergence, the curl and a gradient play
a role. The split that has been selected, sets a category of operators apart that are all Cartesian-
ordered in the same way as operator R is. It enables a space-progression model in which progression
steps in the separable Hilbert space $ and flows in its non-separable companion H. Via the reverse
bra-ket method the Cartesian-ordering of R can be transferred to ‘R.

11.2.1 Interpretation of the selected encapsulation

The boundary dQ is selected between the real part and the imaginary part of domain ‘R. But it also
excludes part of the real part. That part is the range of the real part from 7 to infinity. 7 is interpreted
as the current progression value.

The boundary 912 has one dimension less than the domain Q. The failing dimension is taken by the
form of the partition. In the special case the boundary is formed by most of the three dimensional
spatial part of the parameter space. The theorem does not specify the form of the partition, but
requires that the partition form does not traverse discontinuities or regions in which the defining
function is not defined. Thus, if the partition wipes through the parameter space and encounters
discontinuities or regions in which the defining function is not defined, then the partition must
encapsulate these objects while it passes them. These encapsulating partitions become part of the
boundary. In this way these objects stay outside of the boundary d(). Symmetry centers and space
cavities become objects that float as encapsulated modules over the domain Q. If they enter the
partition, then they can be considered to be created. If they keep floating with the partition, then
these objects are alive. If they have completely passed the partition, then they can be considered to
have been annihilated. A long lifetime will correspond to a tube-like history and a corresponding
tube-like future.

The future R — Q is kept on the outside of the boundary Q. As a consequence, the mechanisms that
generate new data, operate on the rim 9 between past Q and future R — Q. Two interpretations
are possible. Either, the mechanisms generate data that was not yet present in the Hilbert spaces, or
the mechanisms represent the data that are encountered during the passage of the partition. The
observers cannot decide which of the two interpretations is correct. It is merely a question of what
you want to belief. For 9t this interpretation does not matter. This paper describes the model in
accordance to the first interpretation. This avoids deliberation about why and how the creator of the
model generated the data that are archived in 3t‘s Hilbert spaces. In Mt the relevant observers live
inside the wiping boundary. In the selected interpretation the creator of the model is throwing dices!

The described split of quaternionic space results in a space-progression model that is to a significant
extent similar to the way that physical theories describe their space time models. However, the
physical theories apply a spacetime model that has a Minkowski signature. The quaternionic model,
which is represented here, is strictly Euclidean.

The paper does not claim that this quaternionic space-progression model reflects the structure and
the habits of physical reality. The quaternionic space-progression model is merely promoted as a
mathematical test model.

What according to the selected interpretation happens in the mathematical test model can be seen
as an ongoing process that embeds the subsequent static status quo’s of the separable Hilbert space
into the Gelfand triple.

Controlling mechanisms act as a function of progression 7 in a stochastic and step-wise fashion in the
realm of the separable Hilbert space. The results of their actions are stored in eigenspaces of
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corresponding stochastic operators that reside in the separable Hilbert space. These stochastic
operators differ from the kind of operators that are handled by the reverse bra-ket method.
However, if the stochastic operators produce coherent swarms that feature a continuous density
distribution, then that distribution corresponds with an operator that is defined by this distribution.

The controlling mechanisms have no notion of the fields. They only work with discrete objects that
appear in swarms.

At the same instance this part of the separable Hilbert space is embedded into its companion
Gelfand triple. The controlling mechanisms will provide all generated data with a progression stamp
7. This progression stamp reflects the state of a model wide clock tick. The whole model, including its
“physical” fields will proceed with these progression steps. However, in the Gelfand triple this
progression can be considered to flow.

At the defined rim, any forecasting will be considered as mathematical cheating. Thus, at the rim, the
uncertainty principle does not work for the progression part of the parameter spaces. Differential
equations that offer advanced as well as retarded solutions must reinterpret the advanced solutions
and turn them in retarded solutions, which in that case represent another kind of object. If the
original object represents a particle, then the reversed particle is the anti-particle. Thus the tubes
that represent elementary modules will appear to reflect on the boundary in one interpretation and
will just pass the boundary in the other interpretation. In the panning view the tube just passes
undisturbed through the boundary.

As a consequence of the construct, the history, which is stored-free from any uncertainty-in the
already processed part of the eigenspaces of the physical operators, is no longer touched. Future is
unknown or at least it is inaccessible for observation.

11.2.2 Integrals over regular spatial domains
If in a spatial domain, function § obeys the homogeneous equation

VU =0 (1)

then the function & and the corresponding field & is considered to be regular in that domain. For
functions & that are this kind of regular in spatial domain V hold:

f[ -
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ﬂLng:#snxg (3)

11.2.3 Integrating irregular functions
We can use the gradient of the inverse of the spatial distance |q — c|.

1 q-c (1)
v =—
lq — cl lq — |3

The divergence of this gradient is a Dirac delta function.

.1 _1 (2)
(v,v ) = <KV”q—d

1
5(‘1_0)—__ ) |q—C| 4'7T

41
This means that:
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As alternative, we can also use the Green'’s function G(q) of the partial differential equation.
4
6@ = ||| ¢@éa-o @
14

For the Laplacian (V, V) this obviously means:

(v, = ¢(q) (5)

(=0 =14

However, when added to the Green’s function, every solution f of the homogeneous equation

(w,nf=0 (7)
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is also a solution of the Laplace equation.

N [F= ;

Function ¢ (c) can be interpreted as the potential that is raised by charge distribution ¢(q).

In pure spherical conditions the Laplacian reduces to:

aﬁ(r)) (9)

10/,
@050 = 55 (5,

For the following test function X(r) this means [12]:

ERF T'/ (10)
o2 ()

r? ) (11)
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Thus, for a Gaussian location distribution p(r) of point-like artifacts the corresponding contribution
to field T(r) equals an error function divided by its argument. At first sight this may look in
contradiction with equations (4) — (8), but here the distribution of artifacts extends over the
boundary of domain V.
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Figure 1. Close to the geometric center the singularities are converted in a smooth function. Further
from the center the form of the Green’s function (1/r) is retained.
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12 The detailed generalized Stokes theorem

We separate all point-like discontinuities from the domain £ by encapsulating them in an extra
boundary. Symmetry centers represent spherically ordered parameter spaces in regions H that float
on a background parameter space R. The boundaries dH; separate the regions H} from the domain
Q. The regions H} are platforms for local discontinuities in basic fields [2]. These fields are
continuous in domain  — H.

H=UH§ (1)

The symmetry centers &% are encapsulated in regions H; and the encapsulating boundary dH;: is

not part of the disconnected boundary which encapsulates all continuous parts of the quaternionic
manifold w that exist in the quaternionic model.

L_Hdw - fanuan - -[anw - zn: -LHﬁw ?

If we take the unit normal to point outward on all of the boundary, this reverses the direction of the
normal on dH%, which negates the integral. Thus, in this formula, the contributions of boundaries
{0HX} are subtracted from the contributions of boundary 9(). This means that 9 also surrounds
the regions {H}}. This fact renders the integration sensitive to the ordering of the participating
domains.

Domain ) corresponds to part of the reference parameter space R©. As mentioned before the

symmetry centers {&2} represent encapsulated regions {H; } that float on parameter space RO,

The geometric center of symmetry center &, is represented by a floating location on parameter
space RO,

The relation between the subspace S, that corresponds to the domain €0 and the subspace Sg; that

corresponds to the parameter space RO js given by:

= ER@ (3)

) ——
Sa Sg
Similarly:

(4)
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13 Symmetry flavors

13.1 Ordering
Quaternionic number systems exist in many versions that differ in the way that these number
systems are ordered. For example it is possible to order the real parts of the quaternions up or down.
A Cartesian coordinate system can be used to order the imaginary parts of the quaternions. If the
orientation of the coordinate axes is kept fixed, then this Cartesian ordering can be done in eight
mutually independent ways. It is also possible to apply spherical symmetric ordering by using a polar
coordinate system. This can be done by starting with the azimuth and order it up or down and then
order the polar angle and order it up or down. It is also possible to start with the polar angle. A
spherical coordinate system starts from a selected Cartesian coordinate system.

The reverse bra-ket method enables the attachment of these different symmetry flavors of the
guaternionic number system to dedicated operators that reside in an infinite dimensional separable
qguaternionic Hilbert space. Separable Hilbert spaces can only handle countable eigenspaces. Thus
the reverse bracket method can only use the rational subsets of the quaternionic number systems.

Each infinite dimensional separable Hilbert space owns a companion Gelfand triple, which is a non-
separable Hilbert space and which also supports operators that feature continuums as their
eigenspaces. The reverse bra-ket method relates operators in the separable Hilbert space o
operators in the Gelfand triple.

These representations of quaternionic number systems can act as parameter spaces of quaternionic
functions that can also be represented by operators and their eigenspaces. The reverse bra-ket
method establishes this link.

Together, this means that the two companion quaternionic Hilbert spaces can represent ordered
discrete sets and ordered fields via the eigenspaces of some of their operators and that these sets
and fields can also be represented by pairs of quaternionic functions and their parameter spaces.

The selection of a preferred Cartesian coordinate system sins against the cosmological principle.
Thus, with respect to the definition of symmetry flavors, Wt is in conflict with the cosmological
principle.

13.2 Defining symmetry flavors
Quaternions can be mapped to Cartesian coordinates along the orthonormal base vectors 1, i, j and
k; with ij = k

Due to the four dimensions of quaternions, quaternionic number systems exist in 16 well-ordered
versions {g*} that differ only in their discrete Cartesian symmetry set. The quaternionic number
systems {g*} correspond to 16 versions {g; '} of rational quaternions.

Half of these versions are right handed and the other half are left handed. Thus the handedness is
influenced by the symmetry flavor.

The superscript * can be @, ®, @, @, @, ®, @, ®, , @, , ®, @, ®, , or®,
This superscript represents the symmetry flavor of the superscripted subject. For the reference
operator we neglect the superscript ©

The reference operator R = |q;)q;{(q;| in separable Hilbert space £ maps into the reference operator
R = |q)q{q| in Gelfand triple H.

40



The symmetry flavor of the symmetry center &%, which is maintained by operator &* = |s})s¥(s7| is
determined by its Cartesian ordering and then compared with the reference symmetry flavor, which
is the symmetry flavor of the reference operator R.

LE N

Now the symmetry related charge follows in three steps.

1. Count the difference of the spatial part of the symmetry flavor of symmetry center &* with
the spatial part of the symmetry flavor of reference operator R.

2. If the handedness changes from R to L, then switch the sign of the count.

3. Switch the sign of the result for anti-particles.

We use the names of the corresponding particles that appear in the standard model in order to
distinguish the different symmetry flavor combinations. Elementary fermions relate to solutions of a
corresponding second order partial differential equation that describes the embedding of these
particles. Elementary bosons relate to solutions of a different second order partial differential
equation.

In a suggestive way, we use the names of the elementary fermions that appear in the standard
model in order to distinguish the possible combinations of symmetry flavors.

Fermion symmetry flavor
Ordering Super Handedness | Color Electric Symmetry center type.
X 'y z 71 | script Right/Left charge | charge *3 | Names are taken from the
standard model

ot © R N +0 neutrino
La B = JERO) L R -1 down quark
*+¥t O L G -1 down quark
3§t 0B L B -1 down quark
28T (@ R B +2 up quark
3280 6 R G +2 up quark
+$$1T R R +2 up quark
388 0O L N -3 electron
*o ¥ R N +3 positron
3228 0 L R -2 anti-up quark
L d B L G -2 anti-up quark
3448 O L B -2 anti-up quark
488 © R B +1 anti-down quark
3488 ® R R +1 anti-down quark
LA ool R G +1 anti-down quark
38488 © L N -0 anti-neutrino

Elementary fermions switch their handedness when the sign of the real part is switched. Spherical
ordering can be done by first starting with the azimuth and next proceeding by the polar angle. Both
can be done up or down. Fermions and bosons appear to differ in this choice.

Also continuous functions and continuums feature a symmetry flavor. Continuous quaternionic
functions 1*(g*) and corresponding continuums do not switch to other symmetry flavors Y.

The reference symmetry flavor 1Y (q¥) of a continuous function ¥*(g”) is the symmetry flavor of
the parameter space {q”'}.
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If the continuous quaternionic function describes the density distribution of a set {a;} of discrete
objects af, then this set must be attributed with the same symmetry flavor *. The real part
describes the location density distribution and the imaginary part describes the displacement density
distribution.

This section shows that ordering of an embedded (parameter) space can represent specific properties of that space that
distinguishes this embedded space from differently ordered embedded (parameter) spaces. This also hold for embedding
fields. The consequences comes to the front in situations where differences in ordering play an essential role. We will
encounter that situation where different parameter spaces are used in the integration procedure as occurs in the extended
Stokes theorem. This is treated in chapter 13. First we take a look at modules and especially the elementary modules will be
investigated. Elementary modules appear to possess their own private parameter space.

13.3 Color shift
Pairs of quaternions can shift other quaternions, sets of quaternions and complete quaternionic
functions to a different symmetry flavor. The operation

¢ =ab/a; wherea, = |a| (1)

rotates the imaginary part of b over /2 radians. The rotation axis is perpendicular to the imaginary
parts of a and b. The direction of the rotation depends on the handedness of the involved numbers.

Especially quaternions for which the size of the real part equals the size of the imaginary part can
perform this trick. In this way such quaternions can implement the behavior of gluons and quarks.

This capability also supports the manipulation of tri-states. These are states that exist in three
mutually independent versions. In fact the color charge of quarks is an example of a tri-state.
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14 Modules

Modules are represented by closed subspaces of the separable Hilbert space, but not every closed
subspace represents a module or modular system. In fact only a small minority of the closed
subspaces will act as actual modules. So, what renders a closed subspace into a module and what
combines modules into subsystems or systems? The answers to these questions can only be found by
investigating the contents of the closed subspaces.

A special category of modules are elementary modules. Elementary modules are not constituted of
other modules. They are the atoms of the orthomodular lattice, which describes the relations
between modules and modular systems. This indicates that at every progression instant the
elementary module is represented by a single Hilbert vector.

A single Hilbert vector spans the smallest possible type of subspace. Thus it is the proper candidate for representing an
elementary module, which forms an atom of the orthomodular lattice. This subspace cannot be split into smaller subspaces.
As eigenvector of a corresponding normal operator ¢ the vector can only accept a single quaternionic eigenvalue. If the real
value of that eigenvalue represents progression, then the Hilbert vector can only represent a single instant of the ‘life’ of
the elementary module. The imaginary part of the eigenvalue then represents the spatial location of the elementary
module at that instant. It is a precise (not blurred!) location. Each elementary particle owns a normal operator ¢ whose
eigenvalues describe the ‘life’ of the elementary module. The operator ¢ is a private descriptor of the elementary module.

At other instances another Hilbert vector represents the elementary module.

The eigenvectors of a normal operator are all mutually orthogonal. Within a set of mutually orthogonal Hilbert vectors
exists no notion of closest member. Only the corresponding eigenvalues may provide a notion of neighborhood. The normal
operator that represents the elementary module has no means for controlling the nearness of the subsequent eigenvalues.
The normal operator only acts as a descriptor. It does not act as a controller of the nearness of the eigenvalues!

Thus, the elementary module hops along a series of eigenvectors of which the real values can be ordered with respect to
increasing progression. Each of these values represent a location in an harmonica of sheets, that each represent a
progression instant. Each elementary module takes only one spatial location in such a sheet. The sheets form subspaces of
the separable Hilbert space that represent a static status quo. In that subspace the eigenvalues of the considered operators
all feature the same real part. In this view the model steps with model-wide steps through the full separable Hilbert space.

The quaternionic values that represent a single elementary module, all belong to Hilbert vectors that
together span a subspace of the Hilbert space that corresponds to a symmetry center. We will
indicate the operator that describes the symmetry center with symbol &.

A symmetry center is described by an anti-Hermitian operator. This anti-Hermitian operator & has only imaginary and thus
spatial eigenvalues. The eigenvalues of the operator that describes the symmetry center are ordered by a Cartesian
coordinate system. This means that in contrast to the operator ¢, which describes the ‘life’ of the elementary module, this
symmetry center operator & controls the nearness of its eigenvalues.

For the operator that describes via its eigenvalues the ‘life’ of the elementary module, each
subsequent real progression value is accompanied by an imaginary part and together these parts
form the eigenvalue that belongs to the Hilbert vector, which at this progression instant represents
the elementary module. This single value has not much to say about the owner of this eigenvalue.
Only a series of subsequent eigenvalues can do that job. A large series of these numbers can tell the
types of elementary modules apart. These subsequent quaternionic numbers form a dynamic
location swarm. At the same time these numbers form a hopping path. The spatial parts of these
numbers are taken from the eigenspace of the anti-Hermitian operator & that due to its role
determines part of the properties of the elementary module. This operator defines a symmetry
center. Thus, all elementary modules reside on a their own individual symmetry center. The
symmetry center covers a closed subspace and the module covers a subspace of that subspace. The
private symmetry center floats over a background space and its center location is a function of
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progression. In each sheet that belongs to a progression value the symmetry center can be
considered as an ordered region that acts as a “life space” for the elementary module.

The location of the geometric center of the floating symmetry center is not part of the eigenspace of
the anti-Hermitian operator &, which describes the symmetry center. This floating location is a
property of the elementary module and is formulated in terms of a value of another parameter
space. This parameter space is eigenspace of another reference operator ‘R. This second reference
operator is a normal operator and provides full quaternionic eigenvalues that can represent
progression values as well as spatial locations.

Thus, symmetry centers represent regional platforms that possess an ordered pure spatial parameter
space. We consider such operators as “physically relevant” when their eigenspaces are Cartesian-
ordered. Thus, closed subspaces of the Hilbert space can represent modules when they correspond
to eigenspaces of which the spatial part is ordered by a Cartesian coordinate system. This is a
narrower specification than the earlier specification that modules are represented by closed
subspaces of a separable Hilbert space.

14.1 Module content
In free translation, the spectral theorem for normal operators that reside in a separable Hilbert space
states: “If a normal operator maps a closed subspace onto itself, then the subspace is spanned by an
orthonormal base consisting of eigenvectors of the operator.” The corresponding eigenvalues
characterize this closed subspace.

Thus, it is possible to select a quaternionic normal operator ¢ for which a subset of the eigenvectors
span the closed subspace and the corresponding eigenvalues describe the dynamic geometric data of
this module. By ordering the real values of these eigenvalues, the geometric data become functions
of what we already have called progression. The selected operator describes the module content.

This operator only acts as a descriptor. The operator does not generate eigenvalues. It has eigenvalues that are generated
by a mechanism 9t, which is not part of the Hilbert space.

A companion reference operator T provides a Cartesian coordinate base for this subspace. Its
eigenspace corresponds to a subspace that encapsulates the eigenspace of the first operator. This
second operator corresponds to the symmetry center &. On the other hand it also covers the
progression window of the first operator. The symmetry center corresponds to an anti-Hermitian
operator. The second operator T is a normal operator. It can be considered as the capsule or the
encapsulating operator of the elementary module. Its eigenspace can be viewed as a tube in which
the elementary module travels.

The operator & that describes the symmetry center is only a descriptor. This also holds for the
operator ¢ that describes the content of the corresponding elementary module. The real actor is the
controlling mechanism It, which is responsible for establishing the characteristics that are typical for
the elementary module. These characteristics are the statistical characteristics and the symmetry of
the swarm and the dynamic characteristics of the corresponding hopping path. The mechanism 9t
takes care of the fact that the swarm is a coherent swarm and stays that way.

14.1.1 Progression window

Stochastic processes that are controlled by dedicated mechanisms provide the elementary modules
with dynamic geometric data. Here we only consider elementary modules for which the content is
well-ordered. This means that in the eigenspace of the selected operator every progression value is
only used once.
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For the most primitive modules the closed subspace may be reduced until it covers a generation
cycle in which the statistically averaged characteristics of the module mature to fixed values. The
resulting closed subspace acts as a sliding progression window. The sliding window covers a (large)
series of sheets.

The sliding window separates a deterministic history from a partly uncertain future. Inside the sliding
window a dedicated mechanism I, fills the eigenspace of stochastic operator o = |a;)a;{(a;|. The
mechanism is a function of progression. If it is a cyclic function of progression, then the module is
recurrently regenerated by its private mechanism.

The phrase “recurrently regenerated” is related to the interpretation of the model where mechanisms generate new
eigenvalues in contrast to the alternative interpretation where the boundary is passing over data that already exist as
eigenvalues in the Hilbert space. The model itself is not influenced by these interpretations. For describing the model, the
paper follows the first interpretation. However, it is also good to keep the second interpretation in mind. It throws a slightly
different light upon the model.

14.2 Symmetry center as platform
All elementary modules are supposed to reside in an individual symmetry center. However, at every
progression instant the elementary module occupies only one location of the symmetry center.
During the regeneration cycle of the module the occupied locations form a coherent location swarm
and at the same time the locations form a hopping path. In the model the hopping path is
represented by a hopping string that stays within its private tube. The hopping string passes through
the boundary that splits the model in past part and a future part. The view of the hopping path is
restricted to the spatial part of the corresponding eigenspace and uses a sliding window. The view of
the hopping string uses the full quaternionic eigenspace. The view of the swarm integrates over the
regeneration cycle. The swarm represents the projection of the hopping path onto the symmetry
center.

Symmetry centers float on a supporting medium. That supporting medium corresponds to a

Cartesian-ordered normal reference operator R@, whose eigenvectors span the whole infinite
dimensional separable Hilbert space.

14.3 Map into a continuum
By imaging the discrete eigenvalues into a reference space, the discrete eigenvalues form a swarm
{a}‘}, which is a subset of the rational quaternions {s7 } that form the symmetry center on which the
module resides. At the same time the discrete eigenvalues form a hopping path. With other words
the swarm forms a spatial map of the dynamic hopping of the point-like object. The swarm and the
hopping path conform to a stochastic operator ¢* that is well ordered with respect to its progression
values, but is not ordered in spatial sense like reference operators R or 3.

o* = |a]?‘)a]?‘(af|

This temporal ordering is installed via the quaternionic version of the screened Poisson equation. That equation involves a symmetry
center wide clock that can synchronize the location generation process with the model wide progression steps that are oppressed by

reference operator RO This will be explained later.
Our plan is to construct a map of the elements {af} of the swarm onto the deformable continuum €.

The continuum € deforms because this continuum is the result of a smoothing operation that is installed by a mathematical
convolution with blurring functions. That convolution involves integration and this integration appears to be sensitive to the
ordering of the involved integration domains. The tiniest blurring function is the Green’s function of the field €. This
corresponds to a single point-like disruption, which is due to the fact that the ordering of the parameter space of the
disruption differs from the ordering of the surrounding integration domains. A coherent swarm of point-like disruptions will
correspond to a much broader blurring function. The test function that was treated earlier is an example of broader blurring
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function. Thus, the deformation of € is due to the participation of non-conformant integration domains. For that reason we
will mark the parameter spaces that act as integration domains with a superscript * that identifies the type of ordering of
the parameter space. The parameter spaces are not deformed. Only the smoothed fields get deformed by the disruptive
embedding of artifacts. These artifacts represent local exceptions in an otherwise rather evenly distributed set of rational
quaternions that is described by the smoothed field.

We perform the construction of the map in a sequence of virtual steps. The first virtual step maps
the location a]?‘ in the symmetry center &} onto a virtual location b]-x in the reference parameter
space R*. The following step maps the location b]-x onto a virtual location ij in the continuum

parameter space R*. There it represents a rational number with corresponding symmetry flavor

The last step maps ij to an actual location d]?‘ in the deformable continuum €. Since the symmetry

X

flavor * of d]?‘ conflicts with the reference symmetry flavor © of ¢, the embedding process causes a
reaction of the embedding field €. In chapter 13 we will explain the reason of this conflict in more
detail. None of the eigenspaces of the parameter space operators are influenced by the mapping
process. Only this last step causes space curvature in the deformable target field. During this map the

©

swarm {aj‘} gets spatially reordered into the swarm {ej } The embedding of each of the elements

last only a short instant and is immediately released. What results is the impact on the smoothed
field €. Thus, field is not only smoothed in spatial sense. It is also averaged over the progression
window.

14.4 Coherent elementary modules
Coherent elementary modules are characterized by a coherent location swarm. The coherent
elementary modules are directly related to an individual symmetry center. The elements of the
coherent location swarm that characterizes the coherent elementary module are taken from this
symmetry center. These elements are ordered with respect to progression, but spatially they are
selected in a stochastic fashion. This selection is described by operator ¢-*. In the map onto the
reference continuum, coherent elementary modules feature a hopping path. Inside the symmetry
center the hopping path is closed. Further, for coherent elementary modules, the map of the location
swarm into the reference continuum corresponds to a density operator p that is defined by a
continuous function. That continuous function is a normalized location density distribution and it
has a Fourier transform. As a consequence the swarm owns a displacement generator and as a
further consequence in first approximation the swarm will move as one unit.

The operator that conforms to the continuous location density distribution has a different ordering
with respect to its spatial values. That new operator p has R and thus R as its parameter space. It
tends to describe the swarm as a whole unit. It no longer describes the hopping path. The
operator p is no more than a special descriptor. It does not affect the distribution of the density
of the locations that is described by this operator and its defining function.

The coherence is ensured by the private mechanism I, that selects the eigenvalues such that a
coherent swarm is generated.

This paper gives no explanation for this special habit of the mechanism. However, this habit is
essential for the coherence of the whole model.

Some guesses about the way that mechanism 9t,, works are possible. A combination of a Poisson process and a binomial
process that is implemented by a spatial spread function can establish a location density distribution, which approaches the
Gaussian distribution, which underlies the described test function. This might provide a partial indication of how the
mechanism works. A Poisson process that is combined with an attenuating binomial process can again be considered as a
Poisson process that has a lower efficiency. Thus, in this interpretation, the spread function defines the spatial spread of the
efficiency of the local Poisson processes.
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The notion of coherent swarm will later be defined in more detail. Coherent elementary modules are
also characterized by the symmetry flavor of their symmetry center &%. When mapped into a

reference continuum that is eigenspace of reference operator RO = |q@)q@(q@| the module is
characterized by a symmetry related charge, which is located at the center of symmetry. The
symmetry related charge is a property of the local symmetry center S3.

The size and the sign of the symmetry related charge depends on the difference of the symmetry
flavor of the local symmetry center with respect to the symmetry flavor of the surrounding reference
continuum R©. The coherent swarm {aj‘} inherits the symmetry flavor of the local symmetry center
&5%. However, the controlling mechanism 9t,, picks the elements of this set in a spatially stochastic
way instead of in a spatially ordered fashion. Thus the stochastic operator ¢-*that reflects the
stochastic selection by 9,,, corresponds with another operator, this time a density operator p* that
reflects the spatial ordering and characterizes the coherent stochastic mechanism 9t,, with respect
to its achievement to establish spatial coherence.

Symmetry related charges are the reason of existence of a symmetry related field 2. This field will be
treated later.

14.5 The function of coherence
Embedding of point-like objects into the affected embedding continuum spreads the reach of the
separate embedding locations and offers the possibility to bind modules. The spread of the
embedded point-like object is defined by the Green’s function of the non-homogeneous second
order partial differential equation. However, spurious embedding locations have not enough
strength and not enough reach to implement an efficient binding effect. In contrast, coherent
location swarms offer enough locality, enough spread and enough embedding strength in order to
bind two coherent swarms that are sufficiently close.

For example, a Gaussian distribution of the location swarm would turn the very peaky Green’s
functions into a rather broad spherical painting brush that can be described by the potential:

ERF
@(r) = ERA) W

This is a smooth function without a trace of a singularity. Thus the coherent swarm bends the
embedding field in a smooth fashion!. We will give this particular function a name and call it test
function. At the center location, the amplitude of the test function equals about 1,128379. The test
function has a standard spread. The standard deviation is about 0,598758. A graph of function ¢ (r)
was shown in figure 1.

The actual location density distribution may differ from the Gaussian distribution. The amplitude of the resulting function
will depend on the form of the density distribution will depend on the number of participating point-like obstructions. For
large numbers of participating point-like obstructions, the coherence of the swarm ensures that the smoothed embedding
field stays integrable, while each of the elements of the swarm would separately cause a singularity. The actual smoothness
of the affected field will depend on the number of participating obstructions. This plays a greater role in the outskirts of the
distribution. In that region the signal to noise ratio is much lower than in the center. This results in a larger local relative
variance. We assumed that all obstructions have similar impact on the affected field. However, the process that governs the
generation of the obstructions has a stochastic nature. The characteristics of this process depends on the properties of the
controlling mechanism. The number of elements in the coherent swarms that corresponds to actual elementary modules
depends on the type of the module. For most types this number is huge. If the generator of the obstructions is a Poisson
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process in combination with a binomial process that is implemented by a spatial spread function, then the local signal to
noise ratio can be calculated at any location where the number of participating obstructions is still large enough. This is due
to the fact that a Poisson process in combination with a binomial process is again a Poisson process with an attenuated
efficiency. An object that will approach these outskirts will sense the local relative variance of the field and may act
accordingly. As a consequence its behavior in response to the local field value may appear to show some turbulence. Closer
to the center of the swarm the signal to noise is much larger and the behavior of the respondent will become more
consistent.

If for some reason the generation process is halted, then the controlling mechanism changes to another control mode and
because of that the discrete nature of the swarm will becomes noticeable. In this case the last location in the location
swarm indicates the exact location where the generation process was disrupted. After this instance the location density
distribution has lost its validity and collapses. In physics the group of physicists that support the Copenhagen interpretation
named this phenomenon “the collapse of the wave function”.

Imaging of the location swarm onto the reference continuum is only used to define coherence and it
is used to indicate the influence of the symmetry related charges. The embedding onto the affected
continuum € is used to exploit the corresponding potential binding effect of the swarm. The
stochastic process that implements the stochastic location distribution under control of mechanism
M, is the de facto actuator in establishing the coherent swarm. The embedding field € is not
affected by symmetry differences. In contrast the symmetry related field 2 is caused by these
differences. Thus € and U differ fundamentally! For the elementary module the symmetry center
couples the two fields.

14.6 The effect of the blur
The coherent swarm represents an effective blur of every observation of the spatial location of the
corresponding object. All information about the swarm will be transmitted via the fields that are
influenced by the presence of the swarm. The model does not support other information carriers.

In this aspect the model differs from theories that postulate the existence of force carriers. This model does not support
force carriers. Nor does it support the corresponding force fields. However, the basic fields can cause acceleration of the
discrete objects that reside on symmetry centers.

It means that every object that must be informed about the properties of the observed object will
perceive this observed object with a blur that is defined by the actual location density distribution.
This is not the smooth density distribution p. However, for coherent swarms the actual location
density distribution will closely approach the smooth location density distribution p.

Due to the blur, no observer will directly perceive the difference between an object that is
constructed as a swarm of discrete elements and an object that has a more compact structure such
as a sphere. This fact is increased if the observer itself has a similar structure. The swarm contains a
huge number of elements. Only in this way the signal to noise ratio of the transferred information is
large enough in order to tolerate reliable reactions of the observer on the signal that it receives via
the surrounding fields.

Thus, every interaction is afflicted with a certain signal to noise ratio.

14.7 Modules and subspaces
Only a small fraction of the rational quaternions will represent a dynamic location of an elementary
module. Thus, a comparable number of Hilbert vectors will represent the state of an elementary
module. Each of these Hilbert vectors spans a closed subspace. With other words, the orthomodular
lattice that describes the relations between all modules will only sparsely cover the set of closed
subspace of the Hilbert space.
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At the next progression instant a new category of Hilbert vectors will represent the elementary
modules. In this way the model steps with model wide progression steps. The current state of the
model wipes through the model and divides the model in three parts: a historic part, a current part
and a future part. The separable Hilbert space exactly registers all of these states. Thus, the Hilbert
space is not confronted with any uncertainty. However, everything that travels with the separating
blade will be cut off from any information that is stored in the future part. For those participants
uncertainty exists about what the future will bring. The fact that the controlling mechanisms install
coherence will reduce the size of the uncertainty.

The elementary modules will follow hopping paths and controlling mechanisms take care that these
hopping paths stay within a tube. A map of the hopping path onto the cross section of the tube
results in a spatial location swarm. This swarm and the hopping path characterize the properties and
therefore the type of the elementary module.

This paper follows the view that is obtained by objects that travel with the separating blade.
However, it is also possible to take a view in which all eigenvalues that are stored in the Hilbert space
are known by the investigator. In that case the uncertainty of the blade traveler is changed into the
uncertainty of the process that filled the eigen values at the instance that the whole Hilbert space
was established.
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15 The dynamic orthomodular base model

We have achieved a level in which the major chain of mathematical structures does no longer offer
an inescapable self-evident extension. The model uses separable and non-separable Hilbert spaces in
order to store numeric data that can describe a series of discrete objects that are embedded in a
continuum. The real parts of the parameters can be used to order the parameters and the target
values of functions. If properly ordered these descriptions can represent a sequence of static status
quos. However, without controlling mechanisms this model features no dynamics and contains no
means to establish the coherence between the subsequent members of the sequence. This reflects
our earlier decision to pick the interpretation that new data are generated by these controlling
mechanisms. According to the other interpretation a virtual boundary travels over existing data and
represents a static status quo that is defined by a single and increasing progression value. In both
cases the boundary divides the model into a historic part and a future part. In both views the reason
of the existence of the coherence of swarms is not (yet) explained. In this paper that explanation is
not achieved. We just make use of the coherence that the mechanisms appear to establish. Thus,
according to the view that is selected by this paper, the origin of the dynamics of the model is
located in the mechanisms that generate the coherent swarms.

15.1 The model
In the selected view, the model describes the evolution of the embedding of a quaternionic infinite
dimensional separable Hilbert space into its companion Gelfand triple. This is achieved by applying
an extended version of the generalized Stokes theorem to an eigenspace of a normal operatorin a
non-separable quaternionic Hilbert space that embeds a separable Hilbert space. On the rim
between the history and the future operate controlling mechanisms that fill eigenspaces of
operators, which reside in the separable Hilbert space with new data, that subsequently will be
embedded into a deformable eigenspace of an operator that resides in the Gelfand triple. The history
is no longer touched and stays stored in eigenspaces of operators that reside in the separable Hilbert
space. That storage is no longer afflicted by noise. All dynamic data are precisely known and stored
as quaternionic values. In contrast, the future is not yet known and will be generated by the
stochastic processes, which are owned/controlled by dedicated mechanisms that act as functions of
progression. This description uses one of the possible interpretations of the base model.

We will call this stage of the model development “The dynamic orthomodular base model”. Any
further development of the model would involve the investigation of the mechanisms that ensure
the coherence between the subsequent members of the sequence of static status quos. This paper
will not perform that investigation. Instead, we use a detailed definition of what we mean by a
coherent swarm of point-like obstructions of the embedding field €.

The orthomodular base model describes the relational structure of modular systems. Via the
management mechanisms it can add characteristics to the modules. These characteristics are based
on eigenvalues of normal operators that reside in the separable Hilbert space and have eigenvectors
in the closed subspace that represents the module.

The elementary modules are based on a huge number of rational quaternionic numbers. This number is about 237. It
corresponds to a 37 dimensional binary valued space. The module does not use this huge amount of degrees of freedom.
Instead it is characterized by a few statistical and symmetry characteristics.

The Hilbert spaces only supports storage and description. Further, the Hilbert spaces restrict the type
of the data that can be stored. The management mechanisms represent the actual drivers of the
model. However, the Hilbert spaces pose restrictions on what the mechanisms can do.
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The numeric data that occur in the orthonormal base model must be taken from division rings. The
most elaborate choice for these data are quaternions.

Quaternions and Hilbert spaces can represent a wider usage than just the storage of dynamic
geometric data. Quaternions can implement rotations. In this way they can shift properties between
dimensions. This is shown the appendix; Tri-state spaces. (still to-do)

The peculiarities of these quaternions influence the features and the behavior of the discrete objects
and the fields that occur in the orthonormal model. Many of these peculiarities are hardly known by
scientists. As far as they apply to this paper these subjects are treated in the related sections.

Concepts such as symmetry centers and coherent location swarms are not part of the orthonormal
base model, but these features make use of the structure and the properties of the orthonormal
base model. The same holds for the symmetry related field 2 and the embedding continuum €.
However, the reference operators that can be applied as parameter spaces can be considered as
standard properties of quaternionic Hilbert spaces. They can be considered to belong to the
household of the orthomodular base model.

15.2 The rim
The past part of the model is fixed and is stored in exact values in the Hilbert spaces. The future part
is inaccessible by the past part and does not yet influence the current static status quo. In the
selected view of the model, all dynamics occurs in the direct vicinity of the splitting boundary. For
that reason, the rim is the most interesting part of the model. It is a region in the direct vicinity of the
splitting boundary and includes this boundary. The boundary itself concerns a static status quo of the
model. The rim is constituted of a harmonica of such static status quos. Each of the sheets of this
harmonica is represented by a Hilbert space in which the progression value is fixed. In fact these
Hilbert spaces are subspaces of the encapsulating separable Hilbert space. The harmonica covers the
regeneration cycle of the elementary modules. Within the harmonica each elementary module is
represented by a tube and a hopping string that stays inside this encapsulating tube. Inside each of
the sheets of the harmonica, each of the elementary modules has a different location. That location
is determined by a corresponding management mechanism that works in a stochastic fashion, such
that the subsequent locations form a coherent swarm. This means that the location swarm can be
described by a continuous location density distribution, which on its turn possesses a Fourier
transform. These conditions ensure that the swarm possesses a private displacement generator and
it also means that at first approximation, the swarm can be considered as to move as one unit. As a
consequence the module can be treated as an individual object that has its own kinematics. Despite
the fact that at each harmonica sheet the elementary module has only one (exact!) position, the
module can be characterized by its short term dynamic behavior. That behavior is obviously related
to the ordering inside the symmetry center on which the elementary module resides.

In comparison to string theory, which uses elastic strings, this model uses stochastic tubes that house hopping paths that
proceed in the direction from past to future. In projection onto a static status quo boundary the hopping path forms a
coherent swarm.

The fact that for every individual module each sheet of the harmonica contains only one location,
corresponds to the fact that all symmetry centers are enumerated with the separate progression
values of the sheets and at every progression instance one location on each symmetry center
represents only one location of the corresponding elementary module. The eigenspace of the
operator that describes these locations is well ordered with respect to progression and is stochastic
in the spatial domain.
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It is interesting to try to estimate the number of sheets in the harmonica. This number is related to
the inverse of Planck’s constant. With other words, it is a huge number. We already estimated it as
237, Reality appears to be wastefully with its progression ticks!

Apart from the obstructions, the rim also contains continuums. These continuums spread over the
spatial parts of the domains. In these regions differentiation and integration makes sense. In these
conditions the more conventional form of the Stokes theorem and the divergence theorem become
applicable.

Symmetry centers are defined by anti-Hermitian operators. This means that they fit inside the sheets
of the harmonica. In that sheet each symmetry center carries only one location of the represented
elementary module. That location does not coincide with the location of the geometric center of the
symmetry center.
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16 Symmetry centers as floating parameter spaces

If we tolerate discontinuities inside quaternionic manifolds, then these artifacts must be
encapsulated by boundaries dH; and in that way they are separated from the main domain Q.

In this case the model may apply different parameter spaces, which have their own private way of
ordering. A separable quaternionic Hilbert space can cope with series of coexisting parameter spaces
and these parameter spaces are served by dedicated operators. The reverse bra-ket method relates
the parameter space to a corresponding reference operator. Symmetry centers are examples of such
parameter spaces. Symmetry centers use a version of the quaternionic number system in order to
represent the ordering of the parameter space. This results in a parameter space that features a
Cartesian coordinate system. In addition the parameter space is ordered by a polarnate system. The
symmetry center uses only the rational quaternions. In this way the parameter space stays
countable.

16.1 Symmetry flavor and the origin of the symmetry related charge
The symmetry center &% is characterized by a private symmetry flavor. That symmetry flavor relates
to the Cartesian ordering of this parameter space. When the orientation of the coordinate axes is

fixed, then eight independent Cartesian orderings are possible. We use the Cartesian ordering of RO
as the reference for the orientation of the axes. R© has the same Cartesian ordering as RO has.

L_Hda) - Janw - Zn: -faHﬁw "

In this formula the boundaries 012 and dH}, are subtracted from each other. This subtraction is
controlled by the difference in ordering of the domains £ and H3.

Due to the smoothness of the embedding field, we have some freedom with the spatial placement of the encapsulating
boundaries. We exploit that freedom by selecting a cubic, rather than a spherical encapsulation of the point-like
discontinuities. This enables us to correctly determine the influence of the differences in ordering along the coordinate
axes.

The consequence of the differences of the symmetry flavor on the subtraction can best be
comprehended when the encapsulation dH3 is performed by a cubic space form that is aligned along
the Cartesian axes. Now the six sides of the cube contribute different to the effects of the
encapsulation when the ordering differs from the Cartesian ordering of the reference parameter

space RO Each discrepant axis ordering corresponds to one third of the surface of the cube. This
effect is represented by the symmetry related charge and the color charge of the symmetry center.
It is easily related to the algorithm which is introduced for the computation of the symmetry related
charge. Also the relation to the color charge will be clear. Thus, this effect couples the ordering of
the local parameter spaces to the symmetry related charge of the encapsulated elementary object.
The differences with the ordering of the surrounding space determines the value of the symmetry
related charge of the object that resides inside the encapsulation!

The symmetry related charge and the color charge of symmetry center &% are supposed to be
located at the geometric center of the symmetry center. A Green’s function together with these
charges can represent the local defining function ¢*(q) of the contribution ¢* to the symmetry
related field A* within and beyond the realm of the floating region Hy.
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Nothing else than the discrepancy of the ordering of symmetry center & with respect to the

ordering of the parameter spaces R@and RO causes the existence of the symmetry related charge,
which is related to the symmetry center. Anything that resides on this symmetry center will inherit
that symmetry related charge.

16.2 Spin
The extra spherical coordinate system is defined relative to the axes of the Cartesian coordinate
system. This extra ordering introduces extra symmetry characteristics that become important when
spherical integration is applied. These influence are related to the spin characteristics of the
elementary module.

16.3 Single symmetry center
HY is a spatial domain. The regions H; that are combined in H are excluded from domain Q. The
Stokes theorem does not hold for the separate regions H;:. Instead, the difference between the
integrals defines a potential. In case of isotropic symmetry flavor of the symmetry center &5 holds:

o =la-cil{[ - of W

c} is the geometric center of symmetry center &%. Q5 is the symmetry related charge. This
corresponds to the symmetry related potential ;' (q) that exists at the outskirts of the
encapsulation.

Qn f f (2)
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The potential @5 (q — c;) contributes to the symmetry related field A*.

16.4 Bounded center
A locally a spatially connected union H, of encapsulations Hy is defined by:

N (1)
H, = U HX
n=1
H, encapsulates multiple symmetry centers. In case that H, exists, we consider the objects that

reside within that encapsulation dH, as bounded by the symmetry related charges.

N x (2)
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At large enough distance from this bounded center, all charges can be considered to be merged in a
single charge with symmetry related potential function ¢ (q):

Y (3)
N
1 (4)
r=— Cn
NTLZl

16.5 Discrepant regions
The symmetry centers correspond to point-like discontinuities. However, also large connected
regions of RO may exist that disrupt the continuity of the manifold. For example a region that is
surrounded by a boundary where the deformation is so strong that information contained in w
cannot pass the boundary of this region. These regions must also be separated from domain €. In
this way these regions will correspond to cavities in the domain Q. The information contained in the
manifold cannot pass the surface of the cavity. The cavities act as information holes. Within the
cavity the manifold can be considered to be non-existent. Within that region it has no defining
function.

Current mathematical integration technology appears to lack proper solutions for this situation.

Discrepant regions cannot be hidden by applying a smoothing operator to the underlying field.

The discrepant regions are the “black holes” of the model.
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17 Fields

17.1 Fields in contrast to sets of discrete objects
Coherent sets of discrete quaternions have much in common with continuums that describe the
density of these location swarms. The set of rational quaternions is densely embedded in the
continuum of the corresponding quaternions. A continuous function can relate the coherent set that
corresponds to the target of the rational quaternionic function and the corresponding smooth
continuum. If you want to estimate the impact of point-like disruptions of the continuity, it makes
more sense to investigate the set of rational target values of the relating function, than to try
investigate the disrupted continuum. Putting the point-like disruptions in capsules will partly solve
integration and differentiation problems. In this way smoothed versions of the fields can be derived
that circumvent the problems that integration has with the existence of point-like disruptions.

17.2 Differentiable and integrable basic fields
By applying the reverse bra-ket method, a category of operators can represent quaternionic
functions. This is applicable both in the separable Hilbert space and in the Gelfand triple.

In this paper, fields are continuums that are target spaces of quaternionic functions that define
eigenspaces of operators, which reside in the Gelfand triple.

Quaternionic functions and their differentials can be split in real scalar functions and imaginary
vector functions. Here we will only consider the not too violent disruptions of the continuity of the
fields. We also restrict the validity range of the equations. With these restrictions the quaternionic
nabla can be applied and the discontinuities restrict to point-like artifacts. The quaternionic nabla
has the advantage that it works as a multiplying operator. It obeys quaternionic multiplication rules.

Quaternionic functions can represent fields and continuums, but they can also represent density
distributions of discrete dynamic locations. A point-like disruption then corresponds to a single
exception in a large assembly of nearly equal values. The vector field that goes together with the
scalar field may then represent the displacements of the discrete objects. Quaternionic
differentiation of such fields is treated in the next chapter.

Double differentiation of a basic field leads to a non-homogeneous second order partial differential
equation that relates the basic field to the corresponding density distributions of discrete dynamic
locations of the artifacts that cause the local discontinuities of the basic field. For quaternionic
functions two different second order partial differential equations exist. They offer different views of
the dynamic behavior of the same basic field and the two second order partial differential equations
can offer views on different behavior of the investigated field.

The symmetry related field 2 and the embedding continuum € are basic fields. This paper only
investigates these two basic fields. In this paper, all other fields are derived from these two basic
fields.

The symmetry related field 2 is based on the existence of symmetry centers. These symmetry
centers float over a reference parameter space that acts as a background in the whole model.

The embedding continuum € is based on the existence of a dynamic deformable function € that
describes the embedding of discrete artifacts, which reside on symmetry centers and are mapped
onto €. The artifacts are selected by mechanisms 9t,, that are dedicated to the symmetry center &3.
The results of the activity of these mechanisms can be described by a corresponding stochastic
operator ¢. All stochastic operators have countable eigenspaces and can be considered to reside in
the separable Hilbert space.
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17.3 Subspace maps
The orthomodular base model consist of two related Hilbert spaces.

o Aseparable Hilbert space £ that acts as a descriptor of the properties of all discrete objects.
e A non-separable Hilbert space H that acts as a descriptor of the properties of all continuums.

An ongoing process which is governed by dedicated mechanisms embeds a part of the separable
Hilbert space $ into its non-separable companion Hilbert space H . This ongoing process corresponds

to a partition that moves through the reference parameter spaces R©® and RO and splits them into
three parts: history, present static status quo and future. We already introduced the harmonica that
splits the vicinity of the boundary in a series of sheets. The middle sheet is the actual boundary. Thus.
in the neighborhood of the boundary we treat progression as a discrete parameter. Further away,
progression may be considered to flow. The mechanism It that governs the embedding of an
elementary module is active in the splitting boundary, but its control is influenced by historic and
future sheets that belong to the harmonica, which covers the regeneration cycle that produces the
coherent location swarm, which is characteristic for the elementary module. The behavior of the
mechanism is stochastic and only determined by statistical and symmetry related characteristics.
Nothing, not even the creator of the model, has deterministic insight in the decisions of the
mechanism.

This view corresponds to the interpretation of the model in which mechanisms generate new spatial data as a function of
the progression value. An alternative interpretation suspects that the future data are already present in the Hilbert space
and are encountered by the moving boundary. In that case the mechanisms must have been active as generators at the
instance of the formation of the whole Hilbert space. Also in that case the activity of the mechanisms is stochastic and is not
governed and deterministically determined by the creator of the model. The model itself is not affected by these different
interpretations.

The two Hilbert spaces are coupled by the Cartesian-ordered reference operator R© and the
corresponding reference operator R©. Both are defined by the quaternionic function R(q) ¥ q.

On the rim between history and future will controlling mechanisms {I,,} fill the module related
subspaces of separable Hilbert space $ with data and the new contents of these subspaces are
subsequently embedded into the non-separable Hilbert space H. The history stays untouched. The
fill of subspaces with data is described by dedicated stochastic operators. The mechanisms {0, }
use stochastic processes in order to generate these data.

A closed subspace in $ maps into a subspace of /. Only the countable subspaces of H have a
sensible dimension. By applying the reverse bra-ket method, defining functions can map
countable eigenspaces of operators that reside in the separable Hilbert space into continuum
eigenspaces in the Gelfand triple. Mapping does not influence the flat reference fields that are in
use as parameter spaces. However, the embedding process affects the deformable field €.
Indirectly, the embedding process affects the symmetry related field . In fact both fields
interact by affecting the location of the geometric center of the symmetry centers that
correspond to elementary modules.

17.4 Parameter spaces

The reference operator RO that resides in the Gelfand triple delivers a simple field that can act as a
flat parameter space. This field is not affected by the embedding map. Via its defining function

‘R@(q@) oof q@, it is a direct map of parameter space RO,

Symmetry centers are spanned by the eigenvectors {|s7)} of a compact symmetry center reference
operator &F. The superscript * distinguishes between properties such as symmetry flavors and spin.
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Symmetry centers are special forms of parameter spaces that reside in the separable Hilbert space $.
They also have a representation in the Gelfand triple. In the separable Hilbert space § they have a
fixed finite dimension, which is supposed to be the same for all symmetry centers. Or the dimension

is the same for all elementary modules that belong to the same type. Reference operator RO acts as
the playground of maps of symmetry centers that define local symmetry related charges. Symmetry
centers float over this background space. The reason for fixing the finite size of the dimension of the
symmetry centers will be explained later.

17.5 Embedding field

The elements of the eigenspace of the stochastic operator ¢, which is used by a controlling
mechanism t,, will be embedded in the eigenspace of operator €. A more smoothed version U
of this operator exists that mimics the view that observers get from the field €. For example € is
smoothed by its Green'’s function and U is smoothed by a blur that approaches the blur of the
test function. Observers are the receivers of information that is transported by messengers or by
other vibrations or deformations of the embedding field. The messengers are objects that use
the embedding field as their transport medium. Smoothing blurs the perception of the observer.
The smoothing implemented by U represents the minimal observation blur for elementary
modules.

With this interpretation the embedding process can be seen as the pursuit by the embedding field to follow the
density distribution of a set of rational and thus discrete quaternionic target values as close as it tolerated by a
selected blurring function. This process involves a convolution and this convolution involves an integration. The
target values are the targets of the defining function for a selected set of parameter values. € uses a narrower blurring

function than U does. € is interpreted as a field, while U is interpreted as a potential.

Operator € can be described by a quaternionic function (E(q@) that has a parameter space RO,

which is generated by the eigenspace of reference operator RO When applicable, we use the
same symbol for the parameter space, the defining function and the operator. With the installed
restrictions, the dynamics of the embedding process can be described by quaternionic
differential calculus.

If the discontinuities that are generated by local discontinuities are not too violent, then the
non-homogeneous second order partial differential equation will elucidate the embedding
process. This will be treated in detail in the next chapter.

In H'the operator € & q@)(Z(q@)(q@| is defined by function @(q@) and represents an
embedding continuum €. This continuum gets affected by the embedding process and thus
deforms dynamically.

We will show that two different non-homogeneous second order partial differential equations
exist that offer different views on the embedding process. The equation that is based upon the
double quaternionic nabla V'V* cannot show wave behavior. However, the equation that is based
on d’Alembert’s operator O acts as a wave equation, which offers waves as part of its set of
solutions.

VV* =W,V + (V,V) (1)

L Vo + (7, 7) (2)
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The embedding continuum € is always and (nearly) everywhere present. The space cavities form
an exception to this rule. € is deformed and vibrated by discrete artifacts that are embedded in
this field. In the considered domain, € may contain point-like artifacts and connected regions
where €(q) is not defined.

In H, the representations of symmetry centers float over the natural parameter space RO of the
embedding continuum. The symmetry related charges of the symmetry centers generate local
contributions ¢ to the symmetry related field 2. The location of the center of the symmetry

center &3, within parameter space RO is affected by the symmetry related field 2. The

symmetry related field U & q@)%(q@)(q@| uses the same natural parameter space RO as the
embedding field € does. This indicates that the fields 2 and € influence each other in an indirect
way via the symmetry centers.

The mechanism IMt,, that controls stochastic operator ¢ picks members of a symmetry center &3
and stores them in the eigenvalues of that operator. These eigenvalues are mapped to parameter
space R@ and in that way they become eigenvalues of a new operator 4. This map involves
relocation and re-ordering. This fact couples the location of the symmetry related charge of this
symmetry center with the locations that get embedded in the eigenspace of operator €.
However, the parameter location of the symmetry related charge does not coincide with the
parameter location of the eigenvalue of operator 4,that will be embedded in the eigenspace of
operator €. This embedding involves a map that is described by function €(q). The eigenvalues
of operator 4 will form a mapped swarm whose center will coincide with the mapped parameter
location of the symmetry related charge. That location also coincides with the location of the
mapped geometric center of the symmetry center. The images of eigenvalues of & onto €
correspond to point-like artifacts. However, the images of these eigenvalues on the smoothed
version U of € correspond with proper locations in .

¢ and U lay like snow blankets over the set of discrete rational quaternions. U represents a
thicker and thus smoother snow blanket than €.

17.6 Symmetry related fields
Due to their four dimensions, quaternionic number systems exist in sixteen versions that only differ
in their symmetry flavor. The elements of coherent sets of quaternions belong to the same symmetry
flavor. This is the symmetry flavor of the symmetry center &% that supports the original location
swarm. Differences between symmetry flavors of a symmetry center &3 and the symmetry flavor of

the eigenspace of the surrounding reference operator RO cause the presence of a symmetry related
charge at the center location of that symmetry center. The countable reference parameter space

R@in the separable Hilbert space $ maps onto the continuum parameter space ER@, which resides
in the Gelfand triple .

Symmetry related charges are point-like objects. These charges generate a field 2 that
fundamentally differs from the embedding continuum. This symmetry related field also plays a role in
the binding of modules, but that role differs significantly from the role of the embedding continuum
C. The defining function A(q) of field A and the defining function €(q) of field € use the same

parameter space RO,

Symmetry related charges are located at the geometric centers of local symmetry centers. The size
and the sign of the symmetry related charge depends on the difference of the symmetry flavor of the
symmetry center with respect to the symmetry flavor of the embedding continuum. Symmetry
centers that belong to different symmetry related charges appear to react on the symmetry
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differences. Equally signed charges repel and differently signed charges attract. The attached
coherent location sets that are attached to the symmetry centers will be affected by these effects.

The symmetry related charges do not directly affect the embedding continuum €. Their effects are

confined to the map of the symmetry center & to the parameter space RO, However, with their
action the symmetry related charges relocate the centers of the corresponding coherent swarms.
The elements of the swarms deform the embedding continuum.

The symmetry related charges are point charges. As a consequence the range of the field that is
generated by a single charge is rather limited. The corresponding Green’s function diminishes as 1/r
with distance r from the charge €.

Fields of point charges superpose. A wide spread uniform distribution of symmetry related point
charges can generate a corresponding wide spread symmetry related field 2. This works well if a
majority of the charges have the same sign. Still, relevant values of the symmetry related field 2
depend on the nearby existence of symmetry related charges.

Coherent swarms are recurrently regenerated on their symmetry centers. The symmetry centers are
not recurrently generated, but instead their geometric center can get relocated. Together with these
symmetry centers, the corresponding symmetry related charges and the residing swarms get
relocated.

The relative short range of relevant field values makes the symmetry related field a bad candidate for
the medium on which long range messengers can travel. For that purpose the embedding field € is a
much better candidate.

17.7 Free space

In the separable Hilbert space, the eigenvectors of the Cartesian-ordered reference operator RO
that do not belong to a module subspace together span free space. The elementary modules reside

on symmetry centers whose center locations float on the eigenspace of RO,

At every progression instant only one element of the swarm {af} is used. Thus “free space”
surrounds all elements of the swarm. It forms most of the continuum €, which is deformed by the
embedding of the currently selected swarm element.
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18 Field dynamics
With respect to quaternionic differential calculus the basic fields behave in a similar way. Thus we
will use a more general symbol for the investigated field in order to analyze behavior of the fields
under differentiation and integration. In the appendix we will describe the difference between
guaternionic differential calculus and Maxwell based differential calculus. In order to support that
comparison we will define the derived subfields € and B. Thus both € and 2 have such subfields!

18.1 Differentiation
In the model that we selected, the dynamics of the fields can be described by quaternionic
differential calculus. Apart from the eigenspaces of reference operators and the symmetry centers
we encountered two basic fields that are defined by quaternionic functions and corresponding
operators. One is the symmetry related field 2l and the other is the embedding field €.

A determines the dynamics of the symmetry centers. € gets deformed and vibrated by the recurrent
embedding of point-like elementary particles that each reside on an individual symmetry center.

Apart from the way that they are affected by point-like artifacts that disrupt the continuity of the
field, both fields obey, under not too violent conditions and over not too large ranges, the same
differential calculus.

Two quite similar, but still significantly different kinds of dynamic geometric differential calculus exist. One kind is the
genuine quaternionic differential calculus. The other kind is known as Maxwell based differential calculus. These two kinds
will appear to represent different views onto the basic fields. In order to perform the comparison we must extend the set of
Maxwell equations. In principle this means that the Maxwell based set of differential equations is incomplete. However, in
practice and in order to achieve certain goals the set of Maxwell equations is extended with gauge equations. In this
chapter only the quaternionic differential calculus will be treated. The Maxwell based differential equations and the
comparison of the two kinds are treated in the appendix.

18.2 Quaternionic differential calculus.
First we will investigate the validity range of our pack of pure quaternionic differential equations.

Under rather general conditions the change of a quaternionic function f(g) can be described by:

(1)
df(q) = ﬁ+ iﬁdq” dqt = c,(q)dq* + ¢, (@)dqHdq”
aq, dvaq, " Hv
u=0..3

Here the coefficients c#(q) and c,, (q) are full quaternionic functions. dq* are real numbers. e” are
guaternionic base vectors.

The conditions that are accepted by equation (1) do not require more than second order
differentiation. Thus, these conditions cannot be considered to be general conditions!

Under more moderate and sufficiently short range conditions the differential function is supposed to
behave more linearly.

(2)
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d
af (@) ~ Z %dq” = ¢, (q)dq"
n=0..3 #

Under even stricter conditions the partial differential functions become real functions cg(q) that are
attached to quaternionic base vectors:

df(Q) = CE)E dq; + C(J)C idqy, + C(j)lj de + Cg kdq, = CSL(CI) ey dqu (3)
3
3 of¢ ) 3 )
= ﬁec e, dqt = Z D.e,dq
g=0 H §=0..3
u=0
3
oFS afs F) (4)
b ot U, U, O

= e.= e. =
czoaqﬂ ¢ dq, ° 0q,

Thus, in a rather flat continuum we can use the quaternionic nabla V. This is the situation that we
want to explore with our set of pure quaternionic equations. The resulting conditions are very

restrictive! These conditions are far from general conditions. However, these restrictions tolerate
point-like disturbances of the continuity of the original function f.

v—{a 0.9 a}—a+'a+'a+ka—l7+l7 ©)
"o ax'ay’ad o tox Jay T ¥ez T 0
3
9 (6)
Vf = a—feﬂ
=00k

This form of the partial differential equation highlights the fact that in first order and second order

partial differential equations the nabla operator can be applied as a multiplier. This means that we
can apply the quaternionic multiplication rule.

Dy = Voo —(V, ) (7)

D =Vop+ Vo + VXY (8)
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The =+ sign indicates that the nabla operator is also afflicted by symmetry properties of the applied
guaternionic number system. The above equations represent only low order partial differential
equations. In this form the equations can still describe point-like disruptions of the continuity of the
field. We can take the conjugate:

Q= WyY) =y -2Vxy (9)
V(7Y =V = VT (10)

18.2.1 The second order quaternionic partial differential equation
This kind of double partial differentiation will then result in the following quaternionic non-
homogeneous second order partial differentiation equation:

§=&+E=VTp=0— NV + V(Ao +9P) (1)

0%y 0%y 0%y 9%y
=WVt WV =Ga+oat o3t

We can split the above equation in a real (scalar) part and an imaginary (vector) part.

Investigation of the details shows that the *V operator has a rather simple consequence that is
shown in formula (1)

$o = Voo +(V, ) (2)
= VoVopo — VoV, @) +(V, V)@ + Vo(V, @) £(V,V X @)
= VoVo +(V, V),

(=-Voo+Vop+Vx¢ (3)
= Voo +V{V, @)+ VoV, + VoVoe + V7,V X @
FUV XV +FVXVyp—VXVXe
= UV + VXV X @+ (V,0)p + VoV, + VoVop + VoV X @
FU XV TV XVyp—V XV X
=WV +(V, 7))o
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Here £ is a quaternionic function that for a part p describes the density distribution of a set of point-
like artifacts that disrupt the continuity of function ¥(q).

0% 9*p 9% (4)

§—p =WV (5)

In case of a single static point-like artifact, the solution i will describe the corresponding Green’s
function. Its actual form depends on the boundary conditions.

Function ¥/(q) describes the mostly continuous field .

The second order partial differential equation that is based on the double quaternionic nabla can be
split into two continuity equations, which are quaternionic first order partial differential equations:

¢ =V (6)

p=Ve (7)

If i and ® are normalizable functions and ||y|| = 1, then with real m and ||{|| = 1 follows:

Vip=m¢ (9)

18.2.2 The other second order partial differential equation

We will encounter another quaternionic second order partial differential equation, but that one
cannot be split into two first order quaternionic partial differential equations. It is based on
d’Alembert’s operator O=(—V,V, + (V,V)).

(=0 +{=D¢=90(py + @) ={-VV,+ (V,V)}e (1)

Dirac has shown that it can be split into two biquaternionic partial differential equations. This fact is
treated in the appendix.

In contrast to the first kind of second order quaternionic partial differential equation, the second
kind accepts waves as solutions of the homogeneous version of the equation. The waves are
eigenfunctions of differential operator O. All superpositions of such eigenfunctions are again
solutions of the homogeneous equation and can be added to the solutions of the inhomogeneous
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equation. These superpositions form so called wave packages. When they move, wave packages
tend to disperse.

VoVof = (V,V)f = —w?f (2)

f(t,x) = aexp(iw(ct — |x —x']));c = +1 (3)

This leads to a category of solutions that are known as solutions of the Helmholtz equation.

18.3 Fourier equivalents
In this quaternionic differential calculus, differentiation is implemented as multiplication.

This is revealed by the Fourier equivalents of the equations (4) through (10) in the previous
paragraph:

D=0 +P=pP=(po+ P)WPo+P) (1)

The nabla I is replaced by operator p. @ is the Fourier transform of .

@ = potho — (. P) (2)

® =poP +pPo P X P 3

The equivalent of the quaternionic second order partial differential equation is:

E=&+E=ppY ={popo + (PP} (4)

p=po+p= (0o (5)

The continuity equations result in:

d =py (6)

p=p® (7)
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18.4 Poisson equations
The screened Poisson equation is a special condition of the non-homogeneous second order partial
differential equation in which some terms are zero or have a special value.

VVY = VoV +(V, V) = & (1)
VoVo = =229 (2)
(V, V0 — 1%y =¢& (3)

The 3D solution of this equation is determined by the screened Green’s function G (7).

Green functions represent solutions for point sources. In spherical symmetric boundary conditions
the Green’s function becomes:

exp(—A4r) (4)

6(r) = ——

P = -Uj Gr—1")p") d3r’ (3)

G(r) has the shape of the Yukawa potential [12]
In case of A = 0 it resembles the Coulomb or gravitation potential of a point source.

If A # 0, then a solution of equation (3) is:
Y=ax)exp(tiwt)l=tiw (6)

These solutions concern a screened Poisson equation that is based on the first version of the second
order partial differential equation. The equation that is based on d’Alembert’s operator delivers:

D9 =0(po + @) ={-V Vo + (V,V)}o = (7)
9% 5
VoVoo W—A %
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0%¢p 0%¢p 0% (8)
_ 22 — — =
(v, V) —21%)e 922 + 3y? + 372 Ap=¢

¢ = a(x) exp(£Ar) (9)

The Green’s function is the same, but solution (9) differs significantly from solution (6). The
difference only concerns the temporal behavior of the field.

18.5 Special solutions of the homogeneous partial differential equations
Here we focus on special solutions of the quaternionic homogeneous second order partial
differential equations. These solutions are of special interest because for odd numbers of
participating dimensions these equations have solutions in the form of shape keeping fronts.

The homogeneous equations run as:

02y %Y %Y 92y 1.9/ oYy 9% (1)
+ =—— 2—) + =
dx? * y? * 0z2 — 0t? r?or (r

or) T2 =0

Here we treat the two kinds of homogeneous equations together.

First we focus on the solutions that vary in one dimension. Thus:

o @
d0z2 — at%

We try a solution in the form ¢ = f(az + f1):

S €
0 =5 T %,

of ,_azf_ of"
P e T

a’f" +pf" =0 (5)

— aZf//

(4)

This is solved when a? = 2.

For the first kind of the second order partial differential equation this means: § = +a i, whereiisa
normalized imaginary quaternion. With g(z) = f(f z) follows:

p=9zit1) (6)
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The function g represents a shape keeping front. It is not a wave.

The imaginary i represents the base vector in the x, y plane. Its orientation 8 may be a function of
Z.

That orientation determines the polarization of the one-dimensional shape keeping front. The
messengers that are mentioned earlier are constituted of strings of these one-dimensional shape
keeping fronts. Thus messengers travel with a fixed speed. They feature a fixed shape and a fixed
amplitude.

For the second kind of the second order partial differential equation this means: § = ta. With

g(2) = f(B z) follows:
p=9z 1) (7)

Next we focus on the three dimensional spherical symmetric condition. In that case the equations
can be separated by writing Y = r @(r, 1)

%¢ 26<p+62g0 (8)

or2 " ror— o2

|2

62
1220

RV

Q

With other words 1) fulfills the conditions of the one-dimensional case. Thus solutions in the form
@ = f(ar + pr)/r will fit.

For the first kind of the second order partial differential equation this means: § = ta i, whereiisa
normalized imaginary quaternion. With g(x) = f(f x) follows:

p=grito)/r (9)

i represents a base vector in radial direction.

For the second kind of the second order partial differential equation this means: f = +a. With
g(x) = f(p x) follows:

p=gkx x1)/r (10)

These solutions feature a fixed speed and a fixed shape. However, their amplitude diminishes as 1/r
with distance r from the sources. When integrated over a long enough period of progression the
result takes the form of the fields Green’s function.
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The shape keeping fronts are not waves and do not form wave packages. Instead the shape keeping
fronts occur in strings and do not disperse.

18.6 Special formulas
We list a series of interesting formulas that hold generally for the nabla operator V.

Vik x)=k (1)

k is constant.

(V,x) =3 (2)
Vxx=0 (3)
St (@)
V=14
1 x—x (5)
Ix—x'|  |x—x]?
v XX =(V,V t _ V.V 1 =47 8 ' (6)
<'W>—(' )m—(, m)— md(x—x')

Similar formulas apply to the quaternionic nabla and parameter values.

Vx=1-3;V*x=1+3; Vx*=1+3 (7)

V(ix*x) =x (8)
X

Vx| =V (x*x) = — (9)
| x|

1 x—x' 10

v __ (10)
|x — x'| |x —x'|3
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x—x' 1 d 0 (11)
V*—zVV*—:(——+(V,V)> + 47 §(x — x')

|x —x'|3 [x — x'| 0t 0t |x — x'|

Instead:
(Va¥o + (7, 7)) 1 32 1 312 6r*—|x|* 57%—|x|? (12)
"o B F I P N P E PR || |x|*
1 (13)
VoVo— (V7)) — = ——
1

(V,V)— = 47 5(x) (14)

| x|

. . . 1. , . .
Thus, with spherical boundary conditions, prr o is suitable as the Green’s function for the Poisson

equation, but does not represent a Green’s function for the quaternionic operator

41 |x—x'|

(VoVo +(V,V)) !

For a homogeneous second order partial differential equation a Green’s function is not required.
Thus, the deficit of a green’s function does not forbid the existence of a quaternionic homogeneous
second order partial differential equation. Still equation (6) forms the base of the Poisson equation.

18.7 Differential field equations
By introducing new symbols € and B we will keep the quaternionic differential equations closer to
the Maxwell differential equations. Still essential differences exist between these two sets of
differential equations. This will be elucidated in detail in the appendix.

Like the quaternions themselves the quaternionic nabla can be split in a scalar part and a vector part.
The quaternionic nabla acts as a multiplying operator and this means that the first order partial
differential equation splits in five terms. Part of these terms are scalars. The other terms are vectors.

The following formulas are not Maxwell equations. At the utmost the formulas are Maxwell-like.

d=Vo=(0"s+V)(po+ @)=V —(V,0)+ Vo + Vo, - VX ¢ (1)
=Vopo—(V,¢)— €+ B

C=-Vop—Vop, (2)

Vo€ = -V Vo — VP, (3)
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(V,€) = =Vo(V, ) —(V, V) (4)

B Y X (5)

These definitions imply:

(€,B)=0 (6)
VoB=-FxE (7)
(V,8)=10 (8)
VxB=VV,¢)—(V,V)e (9)

The Maxwell equations ignore the real part of ¢.

$o = Vodo = VoVo @0 — Vo(V, @) (10)
Voo = Vo Voo — V(V,0) =Vo Vo —V XV X @ — (7, V) @ (11)
(=3 +¢=(Vo+(V,V)o (12)
o = (VoVo +(V, VD)o = Vg ¢ — (V, E) (13)
7=V +(V,V)@ = —Vgy—V,E—V xB (14)

More in detail the equations mean:

$o = Voo +(V, ) (15)
= {VoVowo — Vo(V, @)} + {{V, V)@ + Vo(V, @) £(V,V X @)}
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= VoVo +(V, 7)),

{=-TVopo+VopF+V X (16)
={=VVopo + VXV X @ +(V, W)@} + {VoVp, + VoVoep + VoV X @}
{(FUVXVpy FVXVyp—V XV X}
=WVo+(V, V)@ +V XV X@p—-VXVX¢@

po = V,.V)po = o — VoVopo (17)
p=(VV)o=0-V,Vyo (18)

18.8 Quaternionic differential operators
When applied to quaternionic functions, quaternionic differential operators result in another
guaternionic function that uses the same parameter space.

The operators Vo V,V =V + V, V" =Vy =V (V,V),VV* = V'V = VyV, +(V,V)and

D = —V,V, + (V, V) are all quaternionic differential operators.
V is the quaternionic nabla operator.
V* is its quaternionic conjugate.

The Dirac nabla operators D =1V, + Vand D* = i V; — V convert quaternionic functions into
biquaternionic functions. The equation

DD f=0f=-Wlh+IV)f=g (19)

represents a wave equation and is a pure quaternionic equation! The Dirac operator and the Dirac
equation are treated in detail in the appendix.

18.9 Poynting vector
The definitions of € and B invite the definition of the Poynting vector S:

S=ECxB (1)
u= %€, E)+ (B, B)) (2)
ou (3)

Where p represents the presence of charges will J represent the flow of charges.
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19 Double differentiation
19.1 Right and left sided nabla

The quaternionic nabla can be split into a right sided version and a left sided version. Without further
indication we consider the right version as the current version. The version is determined by the
imaginary part and is linked with the handedness of the product rule.

of of,

VTf: eME: e“evTuz ete? ufv = Vf

Vi = ool = eVeh S = ool f, = (eHe)'V, fy = (V)" = (V)" =V ~ 20 x f
U U

V.(Vif) = ePe’etV,V,f,

19.2 Double partial differentiation
The partial differential equations hide that they are part of a differential equation.

2 (1)

19.3 Single difference
Single difference is defined by

3
3 afC 3 §
af(q) = Za_eueg dqt = Z pveydq
¢=0 q# v=0
©=0

(2)

[ of°  oft.  of*, 0f3k' (3)
i
a9y 99y a%] a9
af° . of! 0f2k af*
l — —
afce e — dq, dq, dq, aCh]
dq, “¢ 1of°, aflk af*? af? .
— i
an] 99, 99, 99,
af° of' . af? . of®
k j - i
1043 04 0q3 dq3
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2f° El Evi E k-
aqo xl y.] z
E,l or B, 1k ByoJ
_ xl aCI1 z1 y2]
EyJ B,k of Byl
y] z2 aqz x1l
. . Of°
_gzk _Bylj —B,,1 a—q3 ]

Here

By = Byx1 — Bx2; By = Byl - Byz; B, =B;1 — B,

3
. _df dq* :
f=a~ E buwgg = 2, uend
u=0

u=0

The scalar A is can be a linear function of t or a scalar function of g.

N
T=1= % gy ~

Double difference is defined by:

3
3

a2 (q) ) 2L g |egaq”
Q= e ———e,dqh |e
Y 9q,0q, * sed
v=0 #=0
3
3
. d*f(q) " 9%fs  dq*\ dq"
f =eof% = ey -ey ec
daz 9q,0q, * di dA

u=0

3

02f¢ , , 9
— l vy - 1 SV e ’ _

u=0
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9q,0q,

Yvu = qlv q*

If we apply ¢ = Vfas the first differential operation and § = V*¢ as the second differential
operation, then e = {1, +i,+j, +k}and e’ = {1 — i,—j,—k} and

+Yoo Yol +Ypof +Yosk (12)
Yol ®Y;; +Yiok +Yi3)

—Yo0f Yok ®Yy —Yisi
Y30k —Y31j +Yzi ® Y33

Yo =

Here the switch ® distinguishes between quaternionic differential calculus and Maxwell based
differential calculus. See the appendix.

19.4 Deformed space

If the investigated field represents deformed space €, then the field R, which represents the
parameter space of function €(q) represents the virgin state of that deformed space.

d*6(q)
daz
influences. Here A can be any linear combination of progression T or it can represent the equivalent

of local quaternionic distance:

Further, the equation = 0 represents a local condition in which € is not affected by external

A=aqy+b

or

1=lq|
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20 Actions of the fields

Apart from the symmetry related fields U* that are raised by the charges of the symmetry centers, at
least one other fields exists. That field is the embedding field €.

The origins of the two fields differ fundamentally. The embedding field smoothly follows a
distribution of discrete quaternionic values, which are eigenvalues of a series of operators. Some of
these values do not fit properly in the set of values that surrounds them. In the special condition that
these disparities appear in coherent swarms, we have indicated the swarm as the representative of
an elementary particle. The disparities are due to difference in the symmetries of the underlying
domains. These symmetries determine how the values cooperate in convolutions. If the disparities
were not present, then the embedding field would be equal to the parameter space R and that
continuum would follow parameter space ‘R.

The embedding field is not directly affected by the symmetry related charges of the symmetry
centers. It is indirectly affected, because the symmetry related fields affect the location of the
symmetry centers that house the objects that can deform the embedding field. In principle each
disruption of the continuity of the field, thus each element of the swarm that represents an
elementary particle affects the embedding field €. The smoothed version U of the embedding field is
far less vigilant. Also the symmetry related field 2,which is coupled to the geometric center of the
symmetry center reacts much less vigilant.

In this view, fields are more or less blurred representations of discrete distributions, where the elements of the distribution
are target values of a function that has rational quaternions as its parameter space. In some cases the discrete distribution
represents a dynamic location density distribution.

The embedding field € is affected by the embedding of artifacts that are picked by a dedicated
controlling mechanism that uses a symmetry center &3. as a resource. After selection of the location
of the artifact, the controlling mechanism embeds this artifact into the embedding continuum €. This
continuum is represented by the continuum eigenspace of operator €.

Each of these mechanisms operates in a cyclic and stochastic fashion. The embedding events occur in
the direct neighborhood of the geometric center of the corresponding symmetry center. The result is
a recurrently regenerated coherent location swarm that also represent a stochastic hopping path.
The swarm is centered around the geometric center of the symmetry center. Hopping means that
the controlling mechanism generates at the utmost one embedding location per progression step.
This means that the hopping object can be considered as a point-like artifact. At the embedding
instant the artifact actually resides at the location that is represented by an element of the location
swarm. Thus, the swarm represents the spatial map of a set of potential detection locations. The
swarm is generated within the symmetry center &3 and is encapsulated by dHY. The actions of the
mechanisms deform the field € inside the floating regions H;;. The deformation of € reaches
beyond the region Hj.

In this way, the mechanism creates an elementary object, which is able to deform the embedding
field € and inherits the symmetry related charge from the symmetry center. The deformation
represents the local contribution to the embedding field by the elementary object that owns the
swarm.

On the other hand the geometric center of the symmetry center houses the electric charge that
influences field 2. This view can be reversed. It is possible to consider the path that the
geometric center of the symmetry center takes under the influence of both fields. This view
requires an estimate of the results of the actions of these fields. This will be achieved via the path
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integral First we will investigate the influence of the embedding field €. In a later phase we will
add the results of the much less vigilant actions of the symmetry related field 2.

20.1 Path of the symmetry center
The symmetry center &% that conforms to encapsulated region H%, keeps its private symmetry
flavor. At the passage through the boundary the symmetry flavor of the background parameter space
RO flips from history to future. As a consequence the symmetry related charge of the symmetry
center will flip.

However, the passage of the symmetry center through the rim may also be interpreted as the
annihilation of the historic symmetry center and the creation of a new symmetry center with a
reverse symmetry flavor that will extend its live in the future.

The passage of the symmetry centers through the rim goes together with annihilation and creation
phenomena for the objects that reside on these platforms. Thus, this passage is related to the
annihilation and creation of elementary objects. However, most of these occurrences do not lead to
the complete conversion of the concerned object into another behavior mode. These exceptional
occurrences are known as pair production and pair annihilation. Thus, in most cases the behavior
mode of the module persists.

In the quaternionic space-progression model the existence of symmetry centers is independent of
progression. With other words the number of symmetry centers is a model constant. The passage

through the rim does not influence this number. Only the characteristics of the combination of the
symmetry center and the background parameter space are affected by the passage.

20.2 Path integral
In this primary investigation we ignore the actions of the symmetry related potential. They are far
less vigilant than the direct results of the embedding of individual locations.

Elementary objects reside on an individual symmetry center. A dedicated mechanism controls its
recurrent generation and embeds the object into the embedding field. The path of the symmetry
center is the averaged path of the embedded object. The embedded object is hopping along the
elements of the generated location swarm. The landing locations of the hops are generated by the
controlling mechanism in a stochastic fashion, but such that at first approximation the swarm as a
whole can be considered to be moving as one unit. This is possible when the swarm is characterized
by a continuous location density distribution, which owns a displacement generator. That is the case
when the location density distribution owns a Fourier transform. This fact enables the description of
the path of the swarm by a “path integral”. The hopping of the embedded object can be described by
a sequence of factors that after multiplication represent the whole path. Each factor represents
three sub-factors.

The procedure that underlies the path integral depends on the fact that the multiplication of factors that are all very close
to unity can be replaced by a summation.

The first sub-factor represents the jump from configuration space to momentum space. This sub-
factor is given by the inner product of the Hilbert vector that represents the current location and the
Hilbert vector that represents the momentum of the swarm. This second Hilbert vector is assumed to
be constant during the generation of the location swarm.

The second sub-factor represents the effect of the hop in momentum space.

The third sub-factor represents the jump back from momentum space to configuration space.
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In the sequence of factors the third sub-factor of the current term compensates the effect of the first
sub-factor of next term. Their product equals unity.

What results is a sequence of factors that are very close to unity and that represent the effects of the
hops in momentum space. Due to the fact that the momentum is considered to be constant, the
logarithms of the terms can be taken and added in an overall sum. In this way, the multiplication is
equal to the sum of the logarithms of the factors.

This summation approaches what is known as the “path integral”. In our interpretation it is not an
integral, but instead it is a finite summation. In more detail the procedure can be described as
follows.

We suppose that momentum p,, is constant during the particle generation cycle in which the
controlling mechanism produces the swarm {a;}. Every hop gives a contribution to the path.
These contributions can be divided into three steps per contributing hop:

1. Change to Fourier space. This involves as sub-factor the inner product (a;|p;)-
2. Evolve during an infinitesimal progression step into the future.
a. Multiply with the corresponding displacement generator p,,.
b. The generated step in configuration space is (a;,; — a;).
c. The action contribution factor in Fourier space is (p,, a;11 — a;).
3. Change back to configuration space. This involves as sub-factor the inner product

(Pnlais1)
4. The combined term contributes a factor (a;|p,)exp({Pn, Air1 — @;)){(PrlAis1)-

5. Two subsequent steps give:
(ailpn)exp((Pn, @ir1 — @) (Pnl Qi1 (141 |Pn)eXp((Pn, Aiv1 — A1) (Pnlais2) (1)

= (a;|pn)exp((Pn, Qivz — @) (Pnlais2)

The red terms in the middle turn into unity. The other terms also join.

Over a full particle generation cycle with N steps this results in:

N-1 (2)
| [t@lpwexpmn ais = aipalai)

i=1
N
= (a1 |pn)exp((Pn, ay — a1)){(pnlay) = (a1 |p,) exp (Z(pnr Aiq — ai)) (Pnlay)
i=2

= (a4 |py) exp(L) (pnlay)

N-1 (3)
Ldt =) (@i - @) = (pn da)
i=2

L= (Pn'il) (4)
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L is known as the Lagrangian.

Equation (4) holds for the special condition in which p,, is constant. If p,, is not constant, then
the Hamiltonian H varies with location. In the next equations we ignore subscript ,,.

oH ) (5)
EP = —Dbi

q;

0H ) 6
g (6)
op;

oL ) 7
9Ly (7)
aq;

oL 8
oL _ (8)
aq;

oH  0H (9)
ot ot

d oL _ 0L (10)
drdq; dq;

(11)

3
H+L= Z‘?ipi
i=1

Here we used proper time t rather than coordinate time t.

The effect of the hopping path is that the geometric center of the symmetry center is moved over a
small resulting distance ay — a;. Together with “charge” (N - Q,,) this move determines the next
version of momentum p,,.

The result is that both the symmetry related fields %* and the embedding field € influence the
location of the geometric center of the symmetry center .

In this investigation we ignored the influence of the symmetry related field 2. This field influences
momentum p,, and the corresponding eigenvector |p,,). This means that the product of the red
colored middle terms is no longer equal to unity. Instead the product differs slightly from unity and
the effect can be included in the path integral. In this way a small slowly varying extra contribution is
added to each subsequent term in the summation. This extra contribution is a smooth function of
progression and thus, it is a smooth function of the index of the term.
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1.1 Acceleration of the symmetry center
Due to their actions, the fields & and € may accelerate the location of the symmetry center on which
an elementary object resides. This occurs via the interaction of these fields with the contributions
that the symmetry center and the recurrently embedded elementary object add to the influences of
these fields.

The symmetry center and with it the residing elementary object float over the background parameter
space R. This means that these items also float over the fields 2 and €.

20.2.1 The symmetry related field
The symmetry related charge Q3 of the symmetry center &2 contributes the local scalar potential
®n, to the symmetry related field 2L.

0k (1)
(pno(q) - |q _ Cicll
On the other hand
Qn(q —cx) (2)
En(q) = Vop, = 2=
lq — cal

Another symmetry center &7, contributes potential ¢, , to the symmetry related field 2. The force
F ., between the two symmetry centers equals:

_ QnQm(en —cm) _

3)
Fom = E,Qf = x
e T T e = e

= —Fpyun = —EQ5

This need not correspond to an actual acceleration. On the other hand, if relative to the parameter
space R, the movement of the symmetry center &% is uniform with speed v,,, then the scalar
potential ¢, , corresponds to a vector potential ¢, = @, V5. If relative to the parameter space R,
the symmetry center actually accelerates, then this goes together with an extra field E,, = ¢, =
®n, Vn that represents the corresponding change of field 2. Thus. If the two forces F,, and F,,,
do not hold each other in equilibrium, then the field U will change dynamically with this extra
contribution.

20.2.2 The embedding field

The location swarms that are generated by dedicated controlling mechanisms produce a local
potential that also can accelerate the symmetry center on which the location swarm resides relative
to the parameter space R. We analyze the situation by assuming that the swarm is represented by a
Gaussian location distribution. Thus, we use the corresponding artifact as a test particle. The
corresponding local potential that contributes to field € equals
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0. % () N

Xn(r) = T

Here Q,, represents the strength of the local potential. At somewhat larger distances the potential
behaves as a single “charge” potential.

—Qn (2)

xn(q) = m

This virtual “charge” is located at the center of the symmetry center &3. The scalar potential y,,(q)
adds to the embedding field €. The result is that € gets deformed.

The local scalar potential y,,(q) corresponds to a derived field &€, (q).

Qulg—cd) 3)

(@) =Vx, =
T T T g

Another symmetry center &%, contributes potential y,,(q) to the embedding field €. The force F,,,,
between the two symmetry centers equals:

QnQm(cy — cx) (4)
nlcr)rcl _T:,x |3m =—Fpn=—-E,0,
n m

Fom =&.Qm=—

This need not correspond to an actual acceleration.

If the platform &%, on which the swarm resides moves with uniform speed v, then the local potential
corresponds to a local vector potential.

Xn = XnV (5)

If this platform accelerates, then this goes together with an extra contribution to field &, that
counteracts the acceleration.

En = Xn=XnV (6)

This effect is known as inertia.
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20.3 Grouped artifacts
Next we consider grouped artifacts that cause discontinuities in the realm of a symmetry center. The
concerned field is the embedding field. Since we do no longer focus on symmetry related charges, we
will omit the superscript *.

We consider the case that the locations of the artifacts form a coherent swarm {c,,} that can be
characterized by a continuous location density distribution p(q).

1 (1)

x@) = Z[ffvpm) 0x6(a ) = _%ZMV‘)(‘”Q"W'VW)

If we use the spherical symmetric Gaussian location distribution of artifacts p(r) that was
introduced earlier as test function,

) = (V, )T (r) ¢ . < r’ ) @)
= , = —— _ ex _—
P (a\/Z_n)3 P 202

then a potential in the form of

ERF 7/ (3)
o

results.

At somewhat larger distances the potential behaves like a single charge potential.

)~ 2 “

This gives an idea of what happens when a mechanism that acts within the realm of a symmetry
center produces a coherent swarm of artifacts that will be embedded into a field that gets deformed
by these artifacts.

Despite the fact that it is constituted from a myriad of singular contributions, the potential in
equation (3) is a continuous function and its gradient at the center point equals zero! Thus the
corresponding deformation has a “wide-spread” binding effect.
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20.4 The smoothed embedding field
The embedding field € is described by a mostly continuous function €(q). The convolution of
C(g) with a blurring function transforms this function in an everywhere* continuous function
U(q). Space cavities exist where both €(g) and U(q) are not defined. The blurring function
integrates over the regeneration cycle of elementary objects in the progression part of the
domain. If in the spatial domain the test function T(q) is used as the blurring function for
isolated discontinuities and a Gaussian distribution is used for coherent swarms of
discontinuities, then the function U(q) defines the smoothed embedding field U. This field takes
the role of a model-wide potential. In physics this is the role of the gravitation potential. In this
model we consider U to represent the equivalent of universe however it represents a blurred
universe.

The local contribution to the embedding field € by the elementary particle has a smoothed
versions which is the equivalent of its individual potential. It contributes to field L.

20.5 Spurious artifacts
Due to their minor effect, spurious artifacts will be hidden for observers due to the blanket that is
spread over the corresponding field by the smoothed version of this field that the observers will see.
Only recurrent regeneration of the artifact can generate a reasonable detection probability.
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21 Information transfer
In the model information transfer between discrete objects is implemented by the fields with which
they interact. Interaction means that the location of the object or the state of the object is affected
by the field and/or that the field is deformed by the presence of the object. The state of the object is
its assembly of discernable properties. These properties may depend on the mechanism that governs
the behavior and the existence of the object.

Solutions of the second order partial differential equation of the field play an important role in these
interactions. Especially the messengers play a major role in the transfer of information. In this model
photons are implemented by strings of messengers.

21.1 Messengers
Messengers are configured by solutions of the quaternionic second order partial differential
equation. For odd numbers of participating dimensions some of the solutions of the homogeneous
second order partial differential equation are combinations of shape keeping fronts. In three
dimensions the spherical shape keeping fronts diminish their amplitude as 1/r with distance r of the
trigger point. One-dimensional wave fronts keep their amplitude. As a consequence these shape
keeping fronts can travel huge distances through the field that supports them. Each shape keeping
front can carry a bit of information and/or energy. In order to reach these distances the carrying field
must exist long enough and it must reach far enough.

The symmetry related field 2 does not fulfil the requirements for long distance travel. It depends on
the nearby existence of symmetry related charges and its amplitude also diminishes as 1/r with
distance from the charge.

The embedding field € is a better candidate for long distance transfer of energy and information. €
exists always and everywhere. One-dimensional shape keeping fronts vibrate the € field, but do not
deform this field. They just follow existing deformations.

Creating a string of one-dimensional shape keeping fronts requires a recurrent shape keeping front
generation process. Such processes do not underlay the generation of symmetry related charges that
support the U field. However, such processes exist during the recurrent embedding of artifacts that
occurs in the € field.

Recurrent generation of spherical shape keeping fronts is capable to deform the corresponding field.
It has similar effects as a stationary deformation by a point-like artifact has.

21.2 Frenet Serret path
The fixed speed of the messengers represents an interesting case. The change of a field has five
components that cover four dimensions. However the path y(7) of an object in the spatial part of
that field can be characterized by three mutually independent figures.

The first figure is called the unit tangent vector e, (7). The vector is directed along the tangent that
departs at a selected location 7 on that path.

e, () =y @/Ily' @l (1)
The second figure is called the normal vector e, (7).
f@=7"@) - ("), e (1)) e;(v) (2)
_ @ (3)
2 =jr@
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The size || f(7)]| of vector f(7) is not equal to unity and the direction of f(7) is perpendicular to the
unit tangent vector. The inverse of the size is an indication of the local curvature of the field that acts
as the transport medium for the messenger. It is called the local curvature k of the path y (7).

1
“TU®, )

The third figure is called the bi-normal vector e; (7).
9@ =y"([@ - " (), e1(0) e1(v) — (¥ (1), €2(1)) €2(7)

g(0)
e;(t) =———=e,(1) X e,(1)
3 gl ?
The size ||g(7)|| of vector g(7) is not equal to unity and the direction of g(7) is perpendicular to
both the unit tangent vector and the normal vector. The size is an indication of the local curl of the

field that acts as the transport medium for the messenger. It is called the torque # of the path y (7).

Since the speed ||y’ (7)|| is constant the right-side term in equation (2) is zero. We take the speed
equal to unity. This reduces the path to a natural path, which is described by three orthonormal
frame vectors. T, N and B.

(D) =vy'(1)

T'(t) =k N(1)

N'(t) =—«kT()+ 1t B(1)
B'(1) = -t N(7)
B=TXN

Due to the curvature and the curl of the carrying field the path becomes a geodesic. Within the
geodesic and along the path the messenger travels with constant speed. It means that along the
geodesic the progression steps are equal to the spatial steps and the carrying field deforms in order
to support the sidesteps due to the non-zero curvature k and the non-zero torque £ of the path of
the messenger.

21.3 Photons
The fixed speed of shape keeping fronts translates in the same fixed speed for the messengers. A
string of one-dimensional shape keeping fronts can carry a quantized amount of energy. Photons
appear to be the physical realizations of the messengers. The relation E = h v and the fixed speed of
photons indicate that at least at relative short range the string of shape keeping fronts takes a fixed
amount of progression steps for its creation, for its passage and for its absorption.

However, observations of long range effects over cosmological distances reveal that these relations
do not hold over huge distances. Red-shift of patterns of “old” photons that are emitted by atoms
and arrive from distant galaxies indicate that the spatial part of field € is extending as a function of
progression.

With the interpretation of photons as strings of shape keeping fronts this means that the duration of
emission and the duration of absorption are also functions of progression. As a consequence, some
of the emitted wave fronts are “missed” at later absorption. The detected photon corresponds to a
lower energy and a lower frequency than the emitted photon has. According to relation E = h v that
holds locally, the detected photon appears to be red-shifted. The energy of the “missed” shape

86



keeping fronts is converted into other kinds of energy or the missed shape keeping fronts keep
proceeding as lower energy photons. Spurious shape keeping fronts may stay undetected.

21.4 Consequences for our model
Thus, the quaternionic second order partial differential equation may be valid in the vicinity of the
images of symmetry centers inside €, but does not properly describe the long range behavior of €.
Due to its restricted range and the non-recurrent generation of its charges, the U field does not show
the equivalents of photons and red-shift phenomena.

The long range phenomena of photons indicate that the parameter space RO of@ may actually own
an origin. For higher progression values and for most of the spatial reach of field €, that origin is
located at huge distances. Information coming from low progression values arrives with photons that
have travelled huge distances. They report about a situation in which symmetry centers were located
on average at much smaller inter-distances.

Instead of photons the U field may support waves, such as radio waves and microwaves. These
waves are solutions of the wave equation, which is part of Maxwell based differential calculus.

On the other hand the wave equation also has shape keeping fronts as its solutions.
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22 At the start of progression

At progression value T = 0, the mechanisms that generate the artifacts, which cause discontinuities
in the embedding manifold € have not yet done any work. It means that this manifold was flat and its
defining function equaled its parameter space at instance T = 0.

The model offers the possibility that the domain (2 expands as a function of 7. In that case it is
possible that domain € covers a growing amount of symmetry centers.
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23 Discussion

This paper only considers the divergence based version of the generalized Stokes theorem. The
consequences for the curl based version are not investigated in detail. From fluid dynamics it is
known that artifacts that are embedded in a fluid may suffer from the vorticity of the embedding
field [2].

This paper does not investigate the consequences of polar ordering. It probably relates to the spin
properties of elementary objects. In that case the polar ordering of symmetry centers regulates the
distinction between fermions and bosons. The half integer spin particles may use ordering of the
azimuth, where the integer spin particles use the ordering of the polar angle. However, this does not
explain the difference in behavior between these categories.

The concept of exterior derivative is carefully crafted by skillful mathematicians, such that it becomes
independent of the selection of parameter spaces. However, in a situation like the situation that is
investigated by the Hilbert Book Test Model in which several parameter spaces float on top of a
background parameter space, the selection of the ordering of the parameter spaces does matter. The
symmetry flavors of the coupled parameter spaces determine the values of the integrals that account
for the contributions of the artifacts. It is represented by the symmetry related charges of these
artifacts. These symmetry related charges are supposed to be located at the geometric centers of the
symmetry centers.

As happens so often, physical reality reveals facts (such as the symmetry related charges) that cannot
easily be discovered by skilled mathematicians. The standard model contains a short list of electric
charges that correspond to the symmetry related charges. The standard model does not give an
explanation for the existence of this short list. In the Hilbert Book Test Model it becomes clear that
the electric charge and the color charge are a properties of connected parameter spaces and not a
property of the objects that use these parameter spaces. Instead, these objects inherit the charge
properties from the platform on which they reside.

Both the symmetry related fields and the embedding continuum affect the geometric location of the
symmetry center. They do that in different ways.

If electric charges are properties of the connection between spaces, then the fields to which these
charges contribute implement the forces between these connections. No extra objects are needed
to implement these forces!

It is sensible to expect that depending on the type of their “charges” all basic fields are capable of
attracting or repelling the spaces on which these “charges” reside. This behavior is described by the
differential and integral equations that are obeyed by the considered field.

The model does not dive deep into the binding process. In that respect regular physical theories go
much further.

The Hilbert Book Test Model is no more and no less than a mathematical test case. The paper does
not pretend that physical reality behaves like this model. But the methods used and the results
obtained in this paper might learn more about how physical reality can be structured and how it can
behave.

24 Lessons

Some interesting lessons can be derived from the model. At the first place the model introduces a
commandment:
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“Thou shalt construct in a modular way”.

This commandment enforces the constructors to construct in a very economical way that applies as
littles resource as is possible. A problem occurs when the resources are limited.

In the beginning, the evolution is controlled by pure stochastic processes. In that evolution process
increasingly complicated modular systems will be generated. This process depends on the availability
of nearby resources. As soon as in a local environment the evolution reaches a level that intelligent
species (read types) are formed, these species can take active part in the evolution process. In that
environment the stochastic modular design method turns into an intelligent design method.

After investigation of the lifeforms that he discovered at the islands in the oceans and at the beaches
of southern continents, Darwin concluded that only the fittest species can reach a longer existence in
the evolution process. A similar rule exist for the modules and modular systems. However this rule
must be extended, because the survival struggle does not so much concern the individuals. Instead, it
concerns the survival of module types and that survival is supported when the type promotes the
survival of the community of the type to which the individual belongs. This often must include the
care of the survival of the types that are used by the considered type as a resource. If a community
grows so large that its resources become endangered, then the complete community is endangered.
Thus a second commandment follows the primal commandment:

“Each individual must take care of the resources of the
community of which that individual is a member”.
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Appendix



1 Lattices

A lattice is a set of elements a, b, ¢, ... that is closed for the connections N and U. These connections

obey:

The set is partially ordered.
o This means that with each pair of elements a, b belongs an element ¢, such that
a c candb C c.
The set is a N half lattice.
o This means that with each pair of elements a, b an element ¢ exists, such that
c =anhb.
The set is a U half lattice.
o This means that with each pair of elements a, b an element c exists, such that
c =aub.
The set is a lattice.
o This means that the set is both a N half lattice and a U half lattice.

The following relations hold in a lattice:

anb=bna
(anb)nc=an(bnc)

an(aub)=a

aub=D>bua
(aub)uc=auv((buc)

au(anb) =a

The lattice has a partial order inclusion c:

A complementary lattice contains two elements n and e with each element a a complementary

acbhSanb=a

element a’ such that:
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ane=a (10)

auva =e (11)
ave=e (12)
aun=a (13)

An orthocomplemented lattice contains two elements n and e and with each element a an element
a'’ such that:

avua =e (14)
ana =n

@n’'=a (15)
acheb ca (16)

e is the unity element; n is the null element of the lattice

A distributive lattice supports the distributive laws:

an(buc)=(anb)u(anc) (17)

au(bnc)=(aub)n(auc) (18)

A modular lattice supports:

(anb)u(anc)=an(bu(anc)) (19)

A weak modular lattice supports instead:

There exists an element d such that

acco (a@ub)nc=auvubnc)yuv(dnc) (20)
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where d obeys:

(aub)nd =d (21)
and=n (22)
bnd=n (23)
(acgland(bc g) & dcg (24)

In an atomic lattice holds

peLVyer{x € p = x = nj} (25)
VeerVeer{la < x <anp)=(x =aorx = an p)} (26)
p is an atom
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2 The quaternionic separable Hilbert space

We will specify the characteristics of a generalized quaternionic infinite dimensional separable
Hilbert space $. The adjective “quaternionic” indicates that the inner products of vectors and the
eigenvalues of operators are taken from the number system of the quaternions. Separable Hilbert
spaces can be using real numbers, complex numbers or quaternions. These three number systems
are division rings. In fact the quaternionic number system comprises all division rings.

2.1 Notations and naming conventions
{f}x means ordered set of f, . It is a way to define discrete functions.

The use of bras and kets differs slightly from the way Dirac uses them.

|f) is a ket vector.

(f| is a bra vector.

A'is an operator.
At is the adjoint operator of operator A.

| on its own, is a nil operator.

We will use capitals for operators and lower case Greek characters for quaternions and eigenvalues.
We use Latin characters for ket vectors, bra vectors and eigenvectors. Imaginary and anti-Hermitian
objects will be indicated in bold text. Real numbers get subscript .

Due to the non-commutative product of quaternions, special care must be paid to the ordering of
factors inside products. In this paper a particular ordering is selected. It is one out of a lager set of
possibilities.

2.2 Quaternionic Hilbert space
The Hilbert space $ is a linear space. That means for the elements |f), |g) and |h) of $ and
quaternionic numbers @ and § a linear space is defined. |f), |g) and |h) are ket vectors.

2.2.1 Ket vectors
For ket vectors hold

IfY +19) =lg) + If) = 1g +1) (1)
Ar) +1g) + 1= 1) + (g + |h) (2)
lafy = IfYa; |f)=laf)a™?! (3)

97



(e + B f) = 1fYa+ |f)B (4)

Y +lgha = If)a + |g)a (5)
If)0 = 10) (6)
1)1 = 1f) (7)

2.2.2 Bravectors
The bra vectors form the dual Hilbert space $T of § .

(fI + (gl = (gl + {fI = {f+4l (1)
{fI + (gD + (hl = (fl + (gl + (hD (2)
(af| = a*{fl; (fl= (@) {af] (3)
(f (@ + Bl = a*(f] + B (f] (4)

Notice the quaternionic conjugation that affects the coefficients of bra vectors.

{fl + (gha = (fla + (gl a (5)
0(fl = (0] (6)
LI = (S (7)

2.2.3  Scalar product
The scalar product couples Hilbert space $T to its dual $.

(flg) = glf) (1)
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(f + glh) = (f|h) + {(g|h) (2)
(aflg) = a*{flg) = a™(glf)" = (glaf)" (5)
(flag) ={flg) a ={g|f)" a =(ag|f)" (6)

(f| is a bra vector. |g) is a ket vector. «a is a quaternion. (f|g) is quaternion valued.

If the Hilbert space represents both dual spaces, then the scalar product is also called an inner
product.

2.2.4 Separable

In mathematics a topological space is called separable if it contains a countable dense subset; that is,
there exists a sequence {|x,)}n= of elements of the space such that every nonempty open subset of
the space contains at least one element of the sequence.

Every continuous function on the separable space $) is determined by its values on this countable
dense subset.

2.2.5 Base vectors
The Hilbert space $ is separable. That means that a countable row of elements {|f,,)} exists that
spans the whole space.

If {(fulfin) = 6(m,n) = [1whenn = m; 0 otherwise] then {|f,,)} forms an orthonormal base of
the Hilbert space.

A ket base {|k)} of $ is a minimal set of ket vectors |k) that together span the Hilbert space $.

Any ket vector |f) in $ can be written as a linear combination of elements of {|k)}.
) = D () kI @
k

A bra base {(b|} of $T is a minimal set of bra vectors (b| that together span the Hilbert space $.

Any bra vector (f] in $ can be written as a linear combination of elements of {(b|}.
(F1 = ) kIf) (bl) 2
k

Usually base vectors are taken such that their norm equals 1. Such a base is called an orthonormal
base.
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2.2.6 Operators
Operators act on a subset of the elements of the Hilbert space.

2.2.6.1 Linear operators
An operator Q is linear when for all vectors |f) and |g) for which Q is defined and for all quaternionic
numbers a and S:

Qaf) +1QBg)=1Qfla +1Qg)B = (1)
Qla f) +189) = QU +19)8)

Operator B is colinear when for all vectors |f) for which B is defined and for all quaternionic
numbers a there exists a quaternionic number y such that:

laBf) = |Bf)yay™ € |Byay™'f) (2)

If |f) is an eigenvector of operator A with quaternionic eigenvalue a,

Alf) = If)a

then |b f) is an eigenvector of A with quaternionic eigenvalue b~ 1a b.

Abfy=1Abf)=|Af)b=|f)ab= |bf)b~'ab

At is the adjoint of the normal operator A.

(f1Ag) = (f ATlg) = (g |AT f)’ (4)
AtT =4 (5)
(A+B)I = Bt + 4t (6)
(A-B)t = BTAf (7)
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If A = A%, then A is a self adjoint operator.
| is a nil operator.

2.2.6.2 Operator construction
The construct |f){(g| acts as a linear operator. |g){f] is its adjoint operator.

The reverse bra-ket method uses an orthonormal base {|g;)} that belongs to quaternionic
eigenvalues {q;} and a quaternionic function F(g) and in this way a linear operator F can be defined
such that for all vectors |g) and |h) holds:

(9IF by = > ({glaiF (@) (ailh} 7)

F e (anf @) )

If no confusion arises, then the same symbol is used for the function F(q), the operator F and the set
of eigenvalues F. For the orthonormal base {|g;)} holds:

(qjlak) = 6k (9)
We will use
F £ |q)F (q:){q;l (10)

as a shorthand for equations (7) and (8).
FT & q,)F (q:)"(q;] (11)
19:)F (q:){q:| = |q: F(q)Nq:| = |9:X(F (q:)" qil (12)

The eigenspace of reference operator R defined by

R= z{lqi)qi<qi|} (13)
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represents the countable parameter space of discrete function F(q;).
F and R are constructed operators.

If collection {q;} covers all rational members of a quaternionic number system then this definition
specifies a reference operator for which the eigenspace represents the parameter space of all
discrete functions that can be defined with this number system.

Quaternionic number systems exist in several versions that only differ in the way that the elements
are ordered. We will identify these different versions with special superscripts. When relevant, this
will also be done with the number systems, with the operators, with the eigenvectors and with the
eigenvalues.

RO Z{mi@mi@ @1} (1)

2

R© is a member of a set of reference operators {R*}. The superscript * specifies the symmetry
flavor of the number system {g*}.

The superscript * can be @, ®, @, ®, @, ®, @, ®, , @, , ®, @, ®, , or ®.

Often, we will use the same character for identifying eigenvectors, eigenvalues and the
corresponding operator.

Definition 8 specifies a normal operator. The set of eigenvectors of a normal operator form an
orthonormal base of the Hilbert space.

A self adjoint operator has real numbers as eigenvalues. If T is a normal operator, then T =

(T + T%)/2is a self adjoint operator and T = (T — T1)/2 is an imaginary normal operator. Self
adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-Hermitian
operators.

2.2.6.3 Normal operators
The most common definition of continuous operators is:

A continuous operator is an operator that creates images such that the inverse images of open sets
are open.

Similarly, a continuous operator creates images such that the inverse images of closed sets are
closed.

If |a) is an eigenvector of normal operator A with eigenvalue a then
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(alAla) = (alala) = (ala)a (1)

indicates that the eigenvalues are taken from the same number system as the inner products.

A normal operator is a continuous linear operator.

A normal operator in § creates an image of $ onto . It transfers closed subspaces of § into closed
subspaces of §.

The normal operators N have the following property.

N:H =9 (2)
Thus the normal operator N maps separable Hilbert space $ onto itself.

N commutes with its (Hermitian) adjoint N*:

NNt = NtN (2)

Normal operators are important because the spectral theorem holds for them.

Examples of normal operators are

e unitary operators: UT = U™, unitary operators are bounded;

e Hermitian operators (i.e., self-adjoint operators): Nt = N ;

e Anti-Hermitian or anti-self-adjoint operators: Nt = —N;

e Anti-unitary operators: UT = —U~1, anti-unitary operators are bounded;
e positive operators: N = MM

« orthogonal projection operators: PT = p = p2,

For normal operators hold:

AB = AyBy—(A,B)+ A;B+ABy + AX B (3)
No = %(N+NT) (4)
N = %(N-NT) (5)
NNt = NyNy + (N,N) = N} — N? (6)

2.2.6.4 Spectral theorem

For every compact self-adjoint operator T on a real, complex or quaternionic Hilbert space $, there
exists an orthonormal basis of § consisting of eigenvectors of T. More specifically, the orthogonal
complement of the kernel (null space) of T admits, either a finite orthonormal basis of eigenvectors
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of T, or a countable infinite orthonormal basis of eigenvectors of T, with corresponding eigenvalues
{1} © R,suchthatl, — 0.Due to the fact that ) is separable the set of eigenvectors of T can be
extended with a base of the kernel in order to form a complete orthonormal base of $.

If T is compact on an infinite dimensional Hilbert space £, then T is not invertible, hence a(T), the
spectrum of T, always contains 0. The spectral theorem shows that (T consists of the eigenvalues
{1} of T, and of O (if O is not already an eigenvalue). The set a(T) is a compact subset of the real
line, and the eigenvalues are dense in o (T).

A normal operator has a set of eigenvectors that spans the whole Hilbert space .

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues.

The set of eigenvalues of a normal operator is NOT compact. This is due to the fact that § is
separable. Therefore the set of eigenvectors is countable. As a consequence the set of eigenvalues is
countable. Further, in general the eigenspace of normal operators has no finite diameter.

A continuous bounded linear operator on $ has a compact eigenspace. The set of eigenvalues has a
closure and it has a finite diameter.

2.2.6.5 Eigenspace
The set of eigenvalues {q} of the operator Q form the eigenspace of Q.

2.2.6.6  Eigenvectors and eigenvalues
For the eigenvector |q) of normal operator Q holds

1@ a)=1q9)=lq)q (1)
(q Q" =(qql =q(ql (2)
Vines [(F1Q g = {fladadq = {(a @1F)), = ((a*(alf)Yq] 3)

The eigenvalues of 2"-on normal operator are 2"-ons. For Hilbert spaces the eigenvalues are
restricted to elements of a division ring.

(4)

Q= nil,-oi
j=0
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The Q; are self-adjoint operators.
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2.2.6.7 Unitary operators
For unitary operators holds:

ut=u-1 (1)

Thus

uut =utu =1 (2)

Suppose U = I + C where U is unitary and C is compact. The equations (2)and C = U — I show
that C is normal. The spectrum of C contains 0, and possibly, a finite set or a sequence tending to 0.
Since U = I + C, the spectrum of U is obtained by shifting the spectrum of C by 1.

The unitary transform can be expressed as:
U=exp(I®/h) (3)
h = h/(2m) (4)

@ is Hermitian. The constant h refers to the granularity of the eigenspace.
Unitary operators have eigenvalues that are located in the unity sphere of the 2"-ons field.

The eigenvalues have the form:

u = exp(ip/h) (5)

@ is real. i is a unit length imaginary number in 2"-on space. It represents a direction.
u spans a sphere in 2"-on space. For constant i, u spans a circle in a complex subspace.

2.2.6.7.1 Polar decomposition
Normal operators N can be split into a real operator A and a unitary operator U. U and A have the
same set of eigenvectors as N.

. D D (1)
N=|N||lU=AU=UA=Aexp IE = exp ¢r+1£

@, is a positive normal operator.
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2.2.6.8 Ladder operator

2.2.6.8.1 General formulation
Suppose that two operators X and N have the commutation relation:
[N.X]=cX (1)

for some scalar c. If |n) is an eigenstate of N with eigenvalue equation,

INn) = |n)n (2)

then the operator X acts on |n) in such a way as to shift the eigenvalue by c:

INXn)= |(XN + [N, XDn) =|(X N + cX)n) (3)
=|XNn)+|Xn)c=|Xn)yn+|Xn)c=|Xn)(n+c)

In other words, if |n) is an eigenstate of N with eigenvalue n then |X n) is an eigenstate of N with
eigenvalue n + c.

The operator X is a raising operator for N if c is real and positive, and a lowering operator for N if c is
real and negative.

If N is a Hermitian operator then ¢ must be real and the Hermitian adjoint of X obeys the
commutation relation:

[N, XT] = —c xt (4)

In particular, if X is a lowering operator for N then XTisa raising operator for N and vice-versa.

2.2.7 Unit sphere of $

The ket vectors in § that have their norm equal to one form together the unit sphere ® of $.
The orthonormal base vectors are all member of the unit sphere.

2.2.8 Bra-ket in four dimensional space
The Bra-ket formulation can also be used in transformations of the four dimensional curved spaces.

The bra (f] is then a covariant vector and the ket |g) is a contra-variant vector. The inner product
acts as a metric.

s ={flg) (1)
The effect of a linear transformation L is then given by
si = (fILg) (2)

The effect of a the transpose transformation L is then given by
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(fLt 19) = (fILg) (3)

For a unitary transformation U holds:

(NfINg) = (fINTNg) = (fINNTg) = (NNTf|g) = (NTNf|g) (4)

(UflUg) =(flg) (5)

(VfIVg) = (fIV'Vg) = (fIVV'g) = (VW f|g) = (VIVf]g) (6)
Notice that

VW= viv=v,V, + (V,V) = Vi — V2 (7)
2.2.9 Closure

The closure of $ means that converging rows of vectors converge to a vector of $.

In general converging rows of eigenvalues of @ do not converge to an eigenvalue of Q.
Thus, the set of eigenvalues of Q is open.

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2"-ons that
have rational numbers as coordinate values.

With other words, compared to the set of real numbers the eigenvalue spectrum of Q has holes.

The set of eigenvalues of operator @ includes 0. This means that Q does not have an inverse.

The rigged Hilbert space H can offer a solution, but then the direct relation with quantum logic is
lost.

2.2.10 Canonical conjugate operator P
The existence of a canonical conjugate represents a stronger requirement on the continuity of the
eigenvalues of canonical eigenvalues.

Q has eigenvectors {|q)}, and eigenvalues g;.
P has eigenvectors {|p)},, and eigenvalues p.

For each eigenvector |g) of Q we define an eigenvector |p) and eigenvalues p, of P such that:

(qlp) = (pla)" = exp (i ps qs/h) (1)
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h = h/(2m) is a scaling factor. (q|p) is a quaternion. i is a unit length imaginary quaternion. g5 and
ps are quaternionic (eigen)values corresponding to |q) and |p).

2.2.11 Displacement generators
Variance of the scalar product gives:

i h8(qlp) = —ps(qalp)dq (1)

i h8(plq) = —qs(pla)dp (2)

In the rigged Hilbert space H the variance can be replaced by differentiation.

Partial differentiation of the function {(g|p) gives:

K} @)

ih 34 (qlp) = —ps{qlp)

., 0 _ (4)
lha_ps<p|Q)_ qs{rlq)
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3 Gelfand triple

The separable Hilbert space only supports countable orthonormal bases and countable eigenspaces.
The rigged Hilbert space H that belongs to an infinite dimensional separable Hilbert space & is a
Gelfand triple. It supports non-countable orthonormal bases and continuum eigenspaces.

A rigged Hilbert space is a pair ($, @) with $ a Hilbert space, @ a dense subspace, such that @ is given a
topological vector space structure for which the inclusion map i is continuous.

Identifying § with its dual space $T, the adjoint to 7 is the map
i =5 ol (1)

The duality pairing between @ and @ has to be compatible with the inner product on £, in the sense
that:

('Ll., V)q:.xqfr = (‘Ll., v)sf) (2)

wheneveru € ® c Handv e H = T c ot

The specific triple (® c $ c ®T) is often named after the mathematician Israel Gelfand).

Note that even though @ is isomorphic to @7 if @ is a Hilbert space in its own right, this
isomorphism is not the same as the composition of the inclusion i with its adjoint i

iti:dcp=9"- of (3)

3.1 Understanding the Gelfand triple

The Gelfand triple of a real separable Hilbert space can be understood via the enumeration model of
the real separable Hilbert space. This enumeration is obtained by taking the set of eigenvectors of a
normal operator that has rational numbers as its eigenvalues. Let the smallest enumeration value of
the rational enumerators approach zero. Even when zero is reached, then still the set of enumerators
is countable. Now add all limits of converging rows of rational enumerators to the enumeration set.
After this operation the enumeration set has become a continuum and has the same cardinality as
the set of the real numbers. This operation converts the Hilbert space $ into its Gelfand triple H and
it converts the normal operator in a new operator that has the real numbers as its eigenspace. It
means that the orthonormal base of the Gelfand triple that is formed by the eigenvectors of the new
normal operator has the cardinality of the real numbers. It also means that linear operators in this
Gelfand triple have eigenspaces that are continuums and have the cardinality of the real numbers®.
The same reasoning holds for complex number based Hilbert spaces and quaternionic Hilbert spaces
and their respective Gelfand triples.

1 This story also applies to the complex and the quaternionic Hilbert spaces and their Gelfand
triples.
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A similar insight can be obtained via the reverse bra-ket method. The (mostly) continuous function
F(q) can relate a continuum parameter space {q} to a closed set {|q)} of Hilbert vectors that form an
orthonormal base of the rigged Hilbert space H . In this way a normal operator F is defined via:

(x|Fy) = f xla)E@)aly) dg (1)

q

The relation between the infinite dimensional separable Hilbert space and its non-separable
companion follows from:

= (2)
(x|Fy) = Z<x|Qi)F(Qi)<Qi|Y) ~ f<x|q>F(q)(q|y> dq
i=0 q

This can be interpreted by the view that the separable Hilbert space is embedded within its non-
separable companion.

Formula (2) also reveals how summation of sets {q;} is related to integration of corresponding
continuums {q}.
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4 Quaternionic and Maxwell field equations

In this section, we will compare two sets of differential equations. Both sets use pure space as part of
the parameter space.

e Quaternionic differential equations
o These equations use progression as one of its parameters.
o Maxwell based differential equations
o These equations use quaternionic distance as one of its parameters.

In this chapter we will use a switch & = =1 that selects between two different sets of differential
calculus. One set concerns low order quaternionic differential calculus. The other set concerns
Maxwell based differential calculus. The switch will be used to highlight the great similarity and the
significant differences between these sets.

By introducing new symbols € and B we will turn the quaternionic differential equations into
Maxwell-like quaternionic differential equations. We introduced a simple switch ®= +1 that apart
from the difference between the parameter spaces, will turn one set of equations into the other set.

Maxwell based differential calculus splits quaternionic functions into a scalar function and a vector
function. Instead of the quaternionic nabla V=V, + V the Maxwell based equations use the scalar

a . .
operator Vo= P and the vector nabla V as separate operators. Maxwell equations use a switch a

that controls the structure of a gauge equation.

0
%= az 9o+ (V,0)

For Maxwell based differential calculusis@ = +1 and V= %. The switch value is ® —1.

For quaternionic differential calculus is @ = —1 and Vo= %. The switch value is ®= +1.
In the book EMFT the scalar field » is taken as a gauge with

a = 1; Lorentz gauge

a = 0; Coulomb gauge

a = —1; Kirchhoff gauge.

We will use the definition of a scalar field »:

nZaVipy+(V, @) = ¢g= Voo —(V, @) (2)
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In Maxwell based differential calculus the scalar field 3 is ignored or it is taken equal to zero. As will
be shown, zeroing  is not necessary for the derivation of the Maxwell based wave equation [13].

Maxwell equations split the considered functions in scalar functions and vector functions. The
Maxwell differential operators are also split and as a consequence they cannot be treated as
multiplying operators. We keep them together with curly brackets.

¢ = {¢0' ¢} = {VOIV}{(/)O: ‘P} (3)
b0 =Vo po —®(V, @) (4)
P=Vop+Vp, £V Xx@ (5)

Equations (4) and (5) are not genuine Maxwell equations. We introduce them here as extra Maxwell
equations. Choice ®= —1 conforms to the Lorenz gauge. We define extra symbols € and B for
parts of the first order partial differential equation.

£ Voo — Vo, (6)
Vo€ = —V,Vo @ — VoV, (7)
(V,€) = —Vo(V,0) —(V, V), (8)
BLELY X (9)

These definitions imply:

(€,8B)=0 (10)
VeB=-VxE (11)
(V,8) =0 (12)
VxB=UVe) —(V,Ve (13)
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Also the following two equations are not genuine Maxwell equations, but they relate to the gauge
equation.

Voo = VoV 9o =@ Vo(V, @) (14)
Vo =" Vpo— @ V(V,0) =V Vo —@V XV X ¢p—®(V,V) @ (15)
¢ = Vo +®(V, V)¢ = {o +{ = {{0,{} = {Vo, =V}, ¢} (16)
o = (VoVo +®(V, V) 9o = Vo o —® (V, €) (17)
(= VoV +@(V, V) = -V, —VE-O V x B (18)

More in detail the equations mean:

{o = Voo +®(V, ) (19)
= {VoVopo —® VoV, @)} + {® (V,V)po +® Vo(V, @) £® (V,V X @)}
= VoV +® (V, 7))oy

$o =Vo g —®(V,E) (20)
={VoVo @0 —® Vo(V, )} +{® Vo(V, ) +® (V, V), }
= VoV +®(V,V)g,

{=-"TVopo+VopF+V X (21)
={-Vpo +® VXV X@+®(V,V)@}+ {VoVp,+ VoV + 7,V X @}
{(FV XV, FV X Vyp -V XV X @}
=V +® P,V +@V XV X@p—-VXVX¢@

{(=—-Vpy—VeE—®»V XB (22)
= (Vo +® VXV X +®(V,V)@} +{ViVy @+ V Ve —®V XV X @
= VoVo +®(V, V)@
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Equation (21) reveals why Maxwell based differential equations use the gauge i rather than accept
equation (4) as a genuine Maxwell equation.

po =® (Y, VYoo = {o — Vo Voo (23)
p=0(V,V)¢ ={-V,Vop (24)

Thus a simple change of a parameter and the control switch & turn quaternionic differential
equations into equivalent Maxwell differential equations and vice versa. This makes clear that both
sets represent two different views from the same subject, which is a field that can be stored in the
eigenspace of an operator that resides in the Gelfand triple.

Still the comparison shows an anomaly in equation (21) that represents a significant difference
between the two sets of differential equations that goes beyond the difference between the
parameter spaces. A possible clue will be given in the section on the Dirac equation. This clue comes
down to the conclusion that the Maxwell based equations do not lead via the coupling of two first
order quaternionic partial differential equations to a regular second order partial quaternionic
differential equation, but instead the wave equation represents a coupling between two solutions of
different first order biquaternionic differential equations that use different parameter spaces. In the
Dirac equation these solutions represent either particle behavior or antiparticle behavior.
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5 Genuine Maxwell wave equations

The scalar part of the genuine Maxwell based differential equals zero. This is oppressed by the Lorenz
gauge.

The genuine Maxwell differential equations deliver different inhomogeneous wave equations:

€= —Top—Voo (1)

B L P X (2)

The following definitions follow from the definitions of € and B.

Vo€ = —VoVo @ — VoV, (3)
(V,€) = —Vp(V, ) —(V,V)oy (4)
VB & 7 xE (5)
(V,B) 0 (6)
VXxBEVWV,@)—(V,V) (7)

The Lorenz gauge means:

Vo@o +(V, ) =0 (8)

The genuine Maxwell based wave equations are:

(VoVo =V, V)@ = po = (V, E) (9)

(VoVo =V, V) =] =V xB-V,E (10)
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6 Dirac equation

6.1 The Dirac equation in original format
In its original form the Dirac equation is a complex equation that uses spinors, matrices and partial
derivatives [14].

af .of .of
Instead of the usual {at 2l 3y’

d
ké} we want to use operators V = {V,, V}
The subscript o indicates the scalar part. Bold face indicates the vector part.

The operator I relates to the applied parameter space. This means that the parameter space is also
configured of combinations x = {x,, x } of a scalar x, and a vector x. Also the functions f = {f,, f }
can be split in scalar functions f;; and vector functions f.

The local parameter t = x, represents the scalar part of the applied parameter space.

Dirac was searching for a split of the Klein-Gordon equation into two first order differential
equations.

0*f 0*f 9*f 9*f _ _m2f (1)
at2  9x2 dy? 09z2

(VoVo —(V,V))f = Of = —m?f (2)
Here © = V,V, — (V, V) is the d’Alembert operator.

Dirac used a combination of matrices and spinors in order to reach this result. He applied the Pauli
matrices in order to simulate the behavior of vector functions under differentiation.

The unity matrix I and the Pauli matrices a4, g,, g5 are given by [15]:

P P PR PR PO PR S Y B

For one of the potential orderings of the quaternionic number system, the Pauli matrices together
with the unity matrix I relate to the quaternionic base vectors 1, i, j and k

1 =1, i— oy, jr— loy, k— io3 (4)

0,0, — 0,0, = 2103, 0,0 —030, =210; 030 —0,0; =210 5
102 201 35 0203 302 1, 0301 103 2

117



0101 = 0,05 = 0303 = | (6)

The different ordering possibilities of the quaternionic number system correspond to different

symmetry flavors. Half of these possibilities offer a right handed external vector product. The other
half offer a left handed external vector product.

We will regularly use:

(fo,V)=0;i=v-1 (7)
With

py = -1V, (8)
follow

Puoy = —te,V, (9)

(o,p) =1V (10)

6.2 Dirac’s approach
The original Dirac equation uses 4x4 matrices a and . [6]:

a and B are matrices that implement the quaternion arithmetic behavior including the possible
symmetry flavors of quaternionic number systems and continuums.

ay = [;)ﬂ Cgl W
b= [(1) —01] 2)
BB =1 (3)
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The interpretation of the Pauli matrices as representation of a special kind of angular momentum has
led to the half integer eigenvalue of the corresponding spin operator.

Dirac’s selection leads to

(po — (@ p) — pmc){p} =0 (4)

{¢} is a four component spinor.

Which splits into

(po — (o, p) —mc)p, =0 (5)

and
(po — (o, p) + mc)pp =0 (6)
@4 and @p are spinor components. Thus the original Dirac equation splits into:
(Vo =V —imc)p, =0 (7)
(Vo =V +imc)pg =0 (8)

This split does not lead easily to a second order partial differential equation that looks like the Klein
Gordon equation.

6.3 Relativistic formulation
Instead of Dirac’s original formulation, usually the relativistic formulation is used [16].

That formulation applies gamma matrices, instead of the alpha and beta matrices. This different
choice influences the form of the equations that result for the two spinor components.

0 o (1)
yuzlgauz[_o-u 0];ﬂ=1;2;3

(2)
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Vo=F= [(1) —01]
Ys = loYoV1V2V3 = [(1) (1)] (3)

The matrix y5 anti-commutes with all other gamma matrices.

Several different sets of gamma matrices are possible. The choice above leads to a “Dirac equation”
of the form

(By*7, —mc)p =0 (7)

More extended:

0
(oge + W) =2 ) ) = 0 ®)

4 0 (o,7) (9)
6 5t lom o 1-ilo Wlol=0

0
(il 25+l ol=7lo el =0 "

.0 m (11)
Il 5¢A+V¢B—ﬁm =0

.0 m (12)
—1 =95 — Vo, BT 0

Also this split does not easily lead to a second order partial differential equation that looks like the
Klein Gordon equation.

6.4 A better choice
Another interpretation of the Dirac approach replaces y, with y5 [17]:

( 0 0 7] 0 m){ 1= 0 (1)
Vsor Vo 25y ez T in Yi=

(2)
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(rome =)~ 5) W= 0

([(1) (1) %_ [—(2, 7) wb”] —£ (1, 2)[5;2] =0 (3)

This invites splitting of the four component spinor equation into two equations for the two
components Y4 and Pz of the spinor:

EVota + 100, Vs = = s (@)
1Vo05 — 140, V)5 = = U (5)
(170 + Vs = = s (6)
(170 = V) = = s (7)

This looks far more promising. We can insert the right part of the first equation into the left part of
the second equation.

({iVo —V)A Vo + WPy = (=VoVo = V)P = (V, V)=V Vp)a (8)

m _ m?
=7(HVO—V)¢B=F1/)A

m? (9)
(P, 7)=VoVo)hs = Iyl Ya

EVo + VYAV — Vg = (—VoVy — V)Y = (V, V)=V Vo) Yp (10)
m m?
=7(HVO+V)1/)A =F¢B
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2 11
(7, 7)=ToVo)bs =~ ¥ -

This is what Dirac wanted to achieve. The two first order differential equations couple into a second
order differential equation that is equivalent to a Klein Gordon equation. The homogeneous version
of this second order partial differential equation is a wave equation and offers solutions that are
waves.

The nabla operator acts differently onto the two component spinors ¥4 and Y¥3.

6.5 The quaternionic nabla and the Dirac nabla
The modified Pauli matrices together with a 2x2 identity matrix implement the equivalent of a
guaternionic number system with a selected symmetry flavor.

1=[10 (1)];ﬁ01=[?,j ‘é];ﬁ@:[_ol é];ﬁ%:[i _Oﬁ (1)

The modified Pauli matrices together with the I matrix implements another structure, which is not a
version of a quaternionic number system.

b=l 3l o=l ol im=[2 oty G ?

Both the quaternionic nabla and the Dirac nabla implement a way to let these differential operators
act as multipliers.

The quaternionic nabla is defined as
V=V,+V=e!l, =V, +i(oV) (3)
Vv =v,-v (4)
For scalar functions and for vector functions hold:
Vv=vvr=rv,+(V,V) (5)

The Dirac nabla is defined as
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6.5.1
We use

D=1V +V =1V, +1(a, V)

D =iV, -V

DD =DD* = —V,V, +(V, V)

Prove

VoVfo = VW fo

VoVf =VVof = =Vo(V.f) + ViV X f

VVfo = —(V.V)fo + VX Vfy=—(V.V)f,

VW) =-V(V,)+ VXV Xf=—VV)f=WVf

VXVXf=Vf)—(V,I)f

(ZVXf)=0

VxXVf,=0

This results in

123

(@Vy + V) fo = aVofo + Vi

(aVy = V) (aV, + V) fy

= (XZVOVO + 0(\70|7f0 - aVVOfO + (V, V)fo -V X Vfo

= (XZVOVO + (V, V)fo

(6)

7)

(8)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



@V +V)f =aVof —(V,f)+V XS

(aVo — aVof =(V,f) + VX f)(aV, + V)f

(aVy = V)(aV, + V) fy

= a?VyVof — aVo(V,f) + aVoV X f + aVy(V, f)

—aVUX f4+ VIV, )+ (VVUXf)—VXVXf

= a?VoVof +(V,V)f

6.5.2 Discussion
For @ = 1 the equations

VV fo=VV" fo =VoVo +(V,V)) fo

WVVf=Vrf=0V,+(V,V)f

work for both parts of a quaternionic function f = f, + f.

Fora =i the equations

(D™D fo =DD" fo = VoV +(V,V)) fo

DDf=DD°f = -VVo +(V, V) f

(10)

(11)

(1)

(2)

(3)

(4)

work separately for scalar function f;.and vector function f. The right sides of the equations work for

guaternionic functions. Thus

(g=0f ==VVo+(V.V) f
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is a valid equation for quaternionic functions f and g.
Thus the d’Alembert operator O = —V,V, + (V, V) is a valid quaternionic operator.

The nabla operators reflects the structure of the parameter space of the functions on which they
work. Thus the quaternionic nabla operator reflects a quaternionic number system. The Dirac nabla
operator reflects the structure of the parameters of the two component spinors that figure in the
modified Dirac equation.

Between the two spinor components 14 and 1, the scalar part of the parameter space appears to
change sign with respect to the vector part.

Applied to a quaternionic function, the quaternionic nabla results again in a quaternionic function.

d=pot =WV +M(fo+)=Vofo—V./l+Vfo+ Vo f+VXf (6)

Applied to a quaternionic function, the Dirac nabla results in a biquaternionic function.

GVo+M o+ )= Volfo—(V.H+Vfo+iVof+VXf (7)

Neither the Dirac nabla D nor its conjugate D* delivers quaternionic functions from quaternionic
functions. They are not proper quaternionic operators.

Thus, the d’Alembert operator cannot be split into two operators that map quaternionic functions
onto quaternionic functions.

In contrast the operators V*V, V7 and V* are all three proper quaternionic operators.

6.6 Quaternionic format of Dirac equation
The initial goal of Dirac was to split the Klein Gordon equation into two first order differential
equations. He tried to achieve this via the combination of matrices and spinors. This leads to a result
that does not lead to an actual second order differential equation, but instead it leads to two
different first order differential equations for two different spinors that can be coupled into a second
order partial differential equation that looks like a Klein Gordon equation. The homogeneous version
of the Klein Gordon equation is a wave equation. However, that equation misses an essential right
part of the Klein-Gordon equation.

Quaternionic differential calculus supports first order differential equations that in a natural way lead
to a second order partial differential equation that differs significantly from a wave equation.

The closest quaternionic equivalents of the first order Dirac equations for the electron and the
positron are:
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Vi = (Vo + V)W +¢) = me (1)

Vip = (Vo = V)(@o + @) = myp (2)
Vv = (Vo = V)(Vo + V) (Wpo + P) = m*P (3)
VY = V7Y = (Vo +(V, V) Y = m?y (4)
Ve =V'Ve = VoV +(V,V)) ¢ = m?p (5)

A similar equation exists for spherical coordinates.

These second order equations are not wave equations. Their set of solutions does not include waves.

6.7 Interpretation of the Dirac equation
The original Dirac equation can be split into two equations. One of them describes the behavior of
the electron. The other equation describes the behavior of the positron.

The positron is the anti-particle of the electron. These particles feature the same rest mass, but other
characteristics such as their electric charge differ in sign. The positron can be interpreted as an
electron that moves back in time. Sometimes the electron is interpreted as a hole in a sea of
positrons. These interpretations indicate that the functions that describe these particles feature
different parameter spaces that differ in the sign of the scalar part.

6.7.1 Particle fields

The fields that characterize different types of particles can be related to parameter spaces that
belong to different versions of the quaternionic number system. These fields are coupled to an
embedding field on which the particles and their private parameter spaces float.

The reverse bra-ket method shows how fields can on the one hand be coupled to eigenspaces and
eigenvectors of operators which reside in quaternionic non-separable Hilbert spaces and on the
other hand can be coupled to pairs of parameter spaces and quaternionic functions. Quaternionic
functions can be split into scalar functions and vector functions. In a quaternionic Hilbert space
several different natural parameter spaces can coexist. Natural parameter spaces are formed by
versions of the quaternionic number system. These versions differ in the way that these number
systems are ordered.

The original Dirac equations might represent this coupling between the particle field and the
embedding field.
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6.8 Alternatives

6.8.1 Minkowski parameter space

In quaternionic differential calculus the local quaternionic distance can represent a scalar that is
independent of the direction of progression. It corresponds to the notion of coordinate time t. This
means that a small coordinate time step At equals the sum of a small proper time step At and a
small pure space step Ax. In quaternionic format the step At is a real number. The space step Ax is
an imaginary quaternionic number. The original Dirac equation does not pay attention to the
difference between coordinate time and proper time, but the quaternionic presentation of these
equations show that a progression independent scalar can be useful as the scalar part of the
parameter space. This holds especially for solutions of the homogeneous wave equation.

In this way coordinate time is a function of proper time 7 and distance in pure space |Ax|.

|At|? = |At|? + |Ax|?

Together t and x deliver a spacetime model that has a Minkowski signature.

|Az|? = |At]? — |Ax|?

6.8.2 Other natural parameter spaces

The Dirac equation in quaternionic format treats a coupling of parameter spaces that are each
other’s quaternionic conjugate. The 8 matrix implements isotropic conjugation. An adapted
conjugation matrix can apply anisotropic conjugation. This concerns conjugations in which only one
or two dimensions get a reverse ordering. In that case the equations handle the dynamic behavior of
anisotropic particles such as quarks. Quarks correspond to solutions that have anisotropic parameter
spaces. Also for these quarks exist advanced particle solutions and retarded antiparticle solutions.
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7 Tensor differential calculus
We restrict to 3+1 D parameter spaces.

Parameter spaces can differ in the way they are ordered and in the way the scalar part relates to the
spatial part.

Fields are functions that have values, which are independent of the selected parameter space. Fields
exist in scalar fields, vector fields and combined scalar and vector fields.

Combined fields exist as continuum eigenspaces of normal operators that reside in quaternionic non-
separable Hilbert spaces. These combined fields can be represented by quaternionic functions of
guaternionic parameter spaces. However, the same field can also be interpreted as the eigenspaces
of the Hermitian and anti-Hermitian parts of the normal operator. The quaternionic parameter space
can be represented by a normal quaternionic reference operator that features a flat continuum
eigenspace. This reference operator can be split in a Hermitian and an anti-Hermitian part.

The eigenspace of a normal quaternionic number system corresponds to a quaternionic number
system. Due to the four dimensions of quaternions, the quaternionic number systems exist in 16
versions that differ in their Cartesian ordering. If spherical ordering is pursued, then for each
Cartesian start orderings two extra orderings are possible. All these choices correspond to different
parameter spaces.

Further it is possible to select a scalar part of the parameter space that is a scalar function of the
guaternionic scalar part and the quaternionic vector part. For example it is possible to use
guaternionic distance as the scalar part of the new parameter space.

Tensor differential calculus relates components of differentials with corresponding parameter
spaces.

Components of differentials are terms of the corresponding differential equation. These terms can be
split in scalar functions and in vector functions. Tensor differential calculus treats scalar functions
different from vector functions.

Quaternionic fields are special because the differential operators of their defining functions can be
treated as multipliers.

7.1 The metric tensor
The metric tensor determines the local “distance”.

Yoo YGo1 Yoz Yo3 (1)
_ Y910 Y11 Y1z Y13
9w = ga0 g21 G22 Y23
930 Y931 Y32 Y33

The consequences of coordinate transformations dx¥ = dXV define the elements g,,, as

dx+ (2)
Iuv = gxv

7.2 Geodesic equation
The geodesic equation describes the situation of a non-accelerated object. In terms of proper time
this means:

(1)
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02%xH u dx® dxP

=+ =
012 aB dr dr

In terms of coordinate time this means:
0% xH _ _w dx® dxP 10 dx® dxP dxt (2)
otz ~— @B gt dt % 4t dt dt
7.2.1 Derivation:
We start with the double differential. Let us investigate a function X that has a parameter space

existing of scalar 7 and a three dimensional vector x = {x, x2, x3}. The function X represents three
dimensional curved space. The geodesic conditions are:

62XA—O'/'I—123 )
0‘[2 - ’ - L~

First we derive the first order differential.

ax* (2)

We can use the summation convention for subscripts and superscripts. This avoids the requirement
for summation symbols.

dx* ox*dxP (3)
dt ~ 9xP dt
3 3
ax* 92x* (4)
2y — . VWY B "~ dx“
d2X Z(axﬁdx +dx axﬁaxadx)
B=1 a=1

Now we obtained the double differential equation.

d?x*  9X*d*xP N 92X" dx®dxF (5)
dt2  9xB dt?2 = 0xPox* dr dt

The geodesic requirement results in:

Xt d%xP 92X* dx® dxP (6)

axB dt2 ~  9xPox® dr dr

3
aZXﬂ. (7)
B T s,
Z <6x36x“ dx >>

a=1

If we use summation signs:

2 [ ox? [ axA 2 [axh < 3,/ a2x2 (&)
3 (20 (3 ) )3 3 (o3
Xk oxB ). OxBoxe
B=1 = a=1

We apply the fact:
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i oxtax?\
= = \=5
OXH OxP B

=1

This results into:

3

5 dx* < g SRS u p
— a — a
d?x* = E T BE dx (6xﬁax“ dx > = [ppdx®dx

=1 1

A=1 a=

Without summation signs:

Hu A\ def 0x* aZXA a . B
Faﬁdx dxP & WW dx%*dx
d?x* dxP dx®

-kt
dt? af dr dt

d?xt  (ox* 92Xt \dxP dx“
dr2 ~ \9X*0x%9xP) dr dr

d?xt  (ox* 9%x* dxﬁdx“+ 9x° 92x* \ dxP dx® dx*
dt?2 — \oX*9x%oxF) dt dt = \oX*9x%0xF) dt dt dt

7.3 Toolbox
Coordinate transformations:
' dxH 9xY 9xP

sH = 2T 9% gk
viet T 9xk gxv axP' TP

The Christoffel symbol plays an important role:

ag ag ag
5§ _ “YaB ay By
2 Yas Tpa = ax¥  90xPB = 0x“*
4 OXH 92x*

aB = 9x* dx®9xP

5 _ b
Tpa = Tap

Covariant derivative V, a and partial derivative d, & of scalars

!

OxH
a,a

J = ok K

u'

Covariant derivative ¥,V and partial derivative d, V" of vectors
— )
Vv =29,V"+ I‘ZAV
Vu‘pv = 0,9y — F[/}v(pl

Vibap =0
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7.9%F =0

gV#gvu = 6#

g= det(gw)

' ( det dxH'
g =\9¢ OxH*

) -

axt'\ . .
det (;;—”) is Jacobian

d*x < dx%dxldx?dx3

0x
d*x' = det(

!

u

OxH*

>d4x

(9)
(10)
(11)

(12)

(13)

(14)

(15)
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