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                                                                Abstract 

We show that the classical random pinning model, if simulated numerically 

using a phase evolution scheme pioneered by Littlewood, gives dispersion 

relationships that are inconsistent with experimental values near threshold. These 

results suggest the need for a revision of contemporary classical models of charge 

density wave transport phenomena. Classical phase evolution equations have the 

same form as driven harmonic oscillators. We provide a different formulation of 

charge density transport using a tunneling Hamiltonian, motivated by Sidney 

Colemans’s false vacuum hypothesis, to model solition anti-soliton pair transport 

through a pinning gap. We thereby derive an analytical expression for charge density 

wave transport that agrees with experimental data both above and below the threshold 

field.  
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                                                                 Introduction 

 

In 1986, Littlewood [1] presented an innovative scheme to model charge 

density waves which incorporates the classical phase pinning model of Fukuyama, 

Lee, and Rice [2,3] for the interaction of impurities on a one dimensional lattice. We 

note that this numerical scheme employs a discretized Sine- Gordon equation [4] for 

the phase evolution along a one-dimensional crystal. With the impurity sites 

randomly distributed, the interaction potential is written as Vj  
jj RxVRx  )(  

for short-range interaction between the phase )(x and impurity site jR  where V is 

the interaction strength at the impurity sites. The variable jR (denoting the impurity 

position) is randomly chosen with jj RR 1 . A first order, overdamped equation for 

the phase jjx  )( is solved on this lattice where jj cRx  and c is the impurity 

concentration. Assuming a correlation length L, 1dcL  for weak pinning where d is 

the dimensionality of the spatial integration (set equal to 1.0 in our simulation). 

Conductivity and dielectric values are obtained from the Discrete Fourier Transform 

DFT of the CDW current   )(ttJ


   as a function of the excitation frequency  . 

In the classical model demonstrated next, the CDW current is calculated from the 

time derivative of the phase averaged over the one-dimensional lattice. In the 

quantum tunneling section, we derive a formula for the CDW current that agrees with 

experimental I-E measurements above and below threshold by considering soliton 
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anti-soltiton pair tunneling through a pinning gap. Furthermore, the quantum model 

eliminates singular behavior evident in the classical model near threshold.  

                                  [ insert  figure 1  about here ] 

II. Classical Random Pinning Model: Numerical Simulation  

We took care to avoid positioning impurity sites too close to the origin which 

could result in spurious numerical values for the phase time derivative leading to non 

physical results for physical quantities such as conductivity even when the applied E 

field is < Eth. A stable average phase is observed in Figure 1 for E < E th whereas a 

continuously increasing phase value is observed if E > Eth. Diverging values of the ac 

conductivity can result above threshold, however.  

In equation one the applied field E has both constant dc and oscillatory ac 

contributions [5]. The term i
2  represents the CDW phase interaction between 

adjacent impurity sites randomly located at ii cRX   with 1 ii RR . 



i  = 
2 )sin()(

2

1
1 iiiii VXXE         (1) 

In this equation the inertial term proportional to 


  is set equal to zero. i  represents a 

randomized force which varies between zero and 2 . The second derivative is 

discretized on interior lattice sites following [6,7,8]  
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Periodic boundary conditions are applied by writing the Laplacian as [9]  
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as well as 
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where L is the grid length. 

 

III. Electromagnetic Properties Near Threshold 

 

The real part of the ac conductivity is obtained from a DFT of equation (1) 

according to 

Re 1)( g  tt
n

n

n




)cos( ,     (5) 

while the imaginary part is given by 

Im 1)( g  tt
n

n

n




)sin( .     (6)  

We note that  t


  is calculated via 2nd order Runge Kutta procedure. To avoid first 

order round off and truncation, the DFT is performed inside the same Runge-Kutta 

subroutine. Here, n is the discrete time index where tn = nt. 

Including in both DC  and AC  contributions to an electric field, we set  

E = Edc  + Eacsin( )        (7) 

When these electric field values are put into both Equation 1 and either equations 5 

and 6 of the conductivity equations, we get striking conductivity graphs for both real  

                                              [ insert  figure 2  about here ] 
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and imaginary parts with the following qualitative features. When the electric field 

applied to a sample is defined by equation 7, and we look at the conductivity, we have 

that there is a critical value 
c  for frequency in which the imaginary conductivity 

goes through an inflection point and decreases, provided that we are setting E = Edc in 

equations 5 and 6 above which can be seen in figure 2. Here, 
c is this critical value 

for frequency, which presupposes that the modulus of the applied electric field is 

below a threshold value, Eth.We should note that 
c varies for different materials. 

Furthermore, we also have dielectric plots which are plotted against increasing 

frequency according to: 

Re 














)(Im
4)(       (8) 

as well as  

Im 














)(Re
4)(       (9) 

We find that if we re-scale dielectric measurements versus an applied electric 

field by resetting initial /  in place of just   versus E field (applied to an 

experimental sample ) that as the frequency  gets much smaller than c we observe 

increasingly non linear dielectric behavior as the E field approaches Eth. We observe 

an almost linear line plot dependence of dielectric values on the E field if c   

almost up to where the applied electric field has a magnitude E Eth . This is striking, 

because when we have an applied electric field with a magnitude at or just above Eth 

we observe the dielectric value with singular behavior. This is shown in the almost 

flat graph of when the frequency divided by c  is either 0.75 or one in figure 3.  
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                                    [   insert figure 3 about here ] 

On the other hand, figure 4 has wildly divergent plots as frequency drops to 

0.3 
c . Figure 4 compares several dielectric plot results. Even when an electric field  

                                 [  insert  figure 4 about here  ] 

being applied to a quasi one dimensional material (e.g.NbSe3) has a modulus value 

below a threshold field value, the results shown in the following dielectric plots do 

not have experimental verification.  

What is not shown in these figures is the singularity blow up in dielectric 

response as the applied electric field reaches the so called threshold value. 

Interestingly enough, Figures 3, and 4 say that the non linearity in the response 

actually increases as 1
c


. By this, as c we observe that there is a flattening 

of the dielectric response of the material so long as thEE  .The abrupt transition to 

an ‘infinite’ dielectric value actually becomes more pronounced as 1
c


. In 

addition, we have in Figure 2 a demonstration of what we can simulate for 

conductivity when simulating results with applied electric fields that are below a 

threshold value. Below a threshold electric field value (which is the modulus of the 

applied electric field to a sample) the agreement with classical results is adequate. 

This abruptly changes as one passes the applied electric field value. So why does a 

classical model of conductivity perform well when an electric field is applied to, say, 

an NbSe3 crystal in low temperatures, and then perform so poorly in regions in which 

we pass a threshold value for the applied electric field to the NbSe3 sample? An 
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obvious answer is to consider dissipative effects, or lack thereof, as contributing to 

unwanted surge in calculated conductivity values when EEth and appearing to 

signify almost discontinuous behavior in the conductivity and dielectric calculations 

when EEth. This is similar to a damped driven harmonic oscillator giving marked 

divergent behavior if the amount of energy put into the system exceeds what is 

dissipated out.  

IV Quantum Version of CDW Conductivity 

 

Let us now present the quantum version of the conductivity measurements.  

To do this, we should consider, as was not done before, what happens to quasi one 

dimensional metals which are exposed to electric fields above a threshold value, ET, 

which also are below the Perils temperature, signifying the onset of  CDW. To do 

this, we shall set a constant electric field above the requisite electric field strength ET  

partly because we do not have a corresponding theory for alternating fields. In the 

appendix, I make reference to a functional form of the current which is proportional 

to: 

 
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where the wave functionals mentioned above were thin wall approximations to the 

soliton-anti soliton pair which was written by having: 

 
2

,
,, exp(

finalinitial
classicalfinalinitialfinalinitial dxc      (11) 

with  
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  







 


)(

1
, n

n

xik

finalinitialclassical ke
L

in       (12) 

This finalinitial,  wavefunctional is very similar to being a Gaussian functional with a 

given covariance   of the sort one can use to represent a ‘Fock’ vacuum space [21] , 

as we mention in appendix A. In addition, we should note that the   expression is a 

way of denoting a functional integral over varying  x  path. Also, the thin wall 

approximation is used via a Fourier transform of a square pulse we set up via: 

 
n

n

n
k

Lk

k
)

2
sin(2



       (13) 

The upshot is that we obtained a current calculation which, unlike the Zener tunneling 

expression we will refer to later has a zero value for direct current applied field values 

below a given threshold value down to when the applied electric field is zero valued. 

By way of comparison, we should note that the Zener expression for current becomes 

negative valued whenever an applied constant electric field is below a threshold 

value. This shows up in figure seven of this paper.  

In addition, our attention will be focused upon  the differential conductivity 

which is : 

 
dE

jd
dDC          (14) 

which has unique properties when TEE  . In the classical model as given by 

Gruner [11] during the 1980s we may write: 
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The singularity which results when we have an applied field achieve a threshold value 

is, in this case a consequence of resonance behavior of  CDW occurring when the 

deep damping condition for the evolution of phase   break down , i.e. when 0


 , 

indicating a situation characterized by rapidly increasing energy to  CDW trapped 

within a potential barrier region. There exists classical models of CDW which avoid 

this singular behavior by treating the threshold field as a dynamical critical 

phenomon. Our objection to these models is in the highly arbitrary conditions placed 

upon the potentials used for the quasi one dimensional lattice, which are in many 

ways without the innate simplicity given by the overdamped driven oscillator model 

for phase evolution. 

          We can note something about the quantum model pertinent to this transport 

problem if we state that the initially classical treatment of CDW transport  has been 

reformulated in terms of a tunneling Hamiltonian to avoid having to work with hard 

to visualize and possibly very  non intuitive potentials [24].  We started with John 

Bardeens  pioneering work in 1960-61 [16]  which was considering transport of 

single electrons through a barrier with wave functions put into a  quasi particle 

representation. Unlike Bardeen, who incorrectly assumed that a Cooper pair could not 

penetrate through a potential barrier, we used  soliton- anti soliton pairs traversing a 

pinning gap  for representing charge density wave transport, thereby managing to 
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formulate a tunneling Hamiltonian proportional to current. This derived current is 

shown later to be very much in sync with experimental measurements. 

           In addition, we have that we found it most useful to use wave functionals  in 

order to give a momentum based representation of a soliton – anti solition pair.  We 

actually started with equation 11   and took a discrete Fourier transform presentation 

of  a solition – anti solition pair in order to write: 

  







 


)(

1
, n

n

xik

finalinitialclassical ke
L

in                                          

where  L is the distance between a S-S’ ,and )( nk  Fourier representation of a S-S’ 

pair in kn space. As mentioned beforehand, we used what is known as a thin wall 

approximation to the S-S’ pair which happens to be a square pulse of height 2   and 

width  L. Furthermore, we also managed to take a  re do of the Bardeen  presentation  

of a tunneling Hamiltonian as given by Tekeman [20] : 

   dST mnmnmn

*

0

*

0

2

2




h
                                                       (16) 

which  in functional formulation we re wrote as:  
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This has some  similarity to a formulation written by David Soper in a write up of 

how he uses a Lagrangian density to form a current [26]  as part of a derivation of 

Noether’s theorem .  We then proceeded to a 2nd variational derivative formulation of 

equation 19 which we recast into: 
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   
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Once we have current in this sort of representation we are ready to address how to get 

conductivity behavior at the threshold which no longer has the singularity which 

made equation 15 so non physical. We should take note though that in transforming 

equation 18 to an overall current we can evaluate that we are actually starting off with 

wave functionals  for equation 17 which   are   akin to what was done by Froreeani  et  

al with quasi Gaussian wave functionals similar to Fock vacuum spaces[ 21] . We 

should also note that the 2nd functional derivative notation used in equation 20 is akin 

to what was done by Boyanovsky et al [ 25]  and helps us to eliminate cross terms in 

the current expression above, once we transform into  k ( momentum space ). This 

allows us to avoid totally non physical conductivity behavior  for conductivity at a 

threshold applied electric field value as equation 15 gives us without appealing to non 

physical potentials as has been done in prior publications [24] . Therefore we can say  

that when CDW scatters off impurities in the quasi one dimensional metallic lattice 

that we will see   valuefinite
TEEdDC  


  and we will use this observation as 

part of what we will refer to as a quantum model due to the appearance of soliton-

antisoliton pairs appearing when the applied electric field  TEE  . The soliton- 

antisoliton pairs will form a current, and this will occur when we have condensed 

electrons  tunneling through a pinning gap at the Fermi surface in order to accelerate 

the CDW with an electric field. 

Figure 5 captures the essence of this current behavior. We do not have a AC  
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                                   [  insert figure 5  about here ] 

electric field graph for  
dAC  when max

TAC EE  , mainly because we have only 

modeled a non zero current composed of solition-antisoliton pairs when TDC EE  . 

Note that the Bloch bands are tilted by an applied electric field when we have 

TDC EE   leading to a soliton-antisoliton pair as shown in Figure 6. The slope of the  

                                                    [  insert  figure 6 about here ] 

tilted band structure is given by Ee   and the separation between the soliton-

antisoliton pair is given by: 

Ee
L s 12








 



                      (18)                                          

So, that, then we have 1 EL . If we consider a Zener diagram of CDW electrons 

with tunneling only happening when GLEe   where e  is the effective charge 

of each condensed electron and G  being a pinning gap energy, we have that figure 6 

permits us to write :   

E

E
c

x

L

x

L T
v          (19) 

Here, vc  is a proportionality factor included to accommodate the physics we obtain 

via a given spatial (for a CDW ‘chain’) harmonic approximation of 

 
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




e

ee m
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Realistically, we have that xL  , where we assume that x  is an assumed reference 

point an observer picks to measure where a soliton-antisoliton pair is on an assumed 

‘one dimensional’ chain of impurity sites. Then, in a proceedure explained in 
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appendix A, we have that there exists a soliton-antisoliton current due to a field 

theoretic modification of a tunneling Hamiltonian, to get: 
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where the magnitude of IFT  is directly proportional to a current formed of solition-

anti soliton pairs, which is further approximated to be  
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where we have 
SolitonantiSoliton

jI


 . So, using this model of soliton-antisoltion 

current we get: 

  
 TEE

dDC
dE

dI
                     (22) 

instead of the infinite value for conductivity the purely classical model for direct 

current conductivity gives us when the applied electric field is at a threshold value as 

seen in equation 15. Equation 21 is very  important since the current so obtained is 

zero for electric field values 0   E < ET and does not have the forced cut off given by 

the Zener expression given below for E < ET: 

  









E

E
EEGI T

TP exp  if E > ET     (23) 

0 Otherwise 

Equation 21 thereby avoids the absurd situation given by equation 23 in figure seven  

                                               [  insert  figure  7  about here  ] 
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where we have a negative value for current given by the top expression of equation 

23  if we do not impose the zero value for current if E < ET. Equation 21 thereby 

indicates that the thin wall approximation to a soliton-antisoliton pair fits observed 

known experimental conditions in a way equation 23 only gives us by a non physical 

assumption put in to match known experimental data. 

V. Conclusions 

We included our classical simulation to show that additional deviations from known 

experimental results occur than just the well known singularity in differential 

conductivity if we use the washboard potential for how phase evolves in CDW 

transport. Our quantum mechanical tunneling expression removes the absurd 

singularity classically obtained by differential conductivity as an applied electric field 

reaches a known threshold value. This is in tandem with reconstructing an applied 

current versus an applied electric field graph matching experimental data taken in 

charge density wave experiments with NbSe3  taken in 1985. Our DC conductivity 

result is inherently quantum mechanical and is from a current expression which 

avoids having negative current values if the electric field is below a threshold value. 

We find that our derivation permits a rigorous derivation of what was previously a 

Zener current expression with an arbitrary cut off put in for electric fields below a 

given threshold value. 

 

       We also have shown that the  classical  washboard potential model performs 

adequately for an AC electric field simulation of both conductivity and dielectric 

response values when the maximum value of the electric field is below a critical 
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threshold value. As discussed in the first part of our article, our simulation blew up at 

the threshold value of an applied electric field which we showed is linked to the 

production of soliton- antisoliton pairs in the DC case. In both cases, DC and AC 

electric fields, the classical model proved problematic in the region E = ET. We 

believe that our interpretation is leading to a different procedure for analyzing CDW 

dynamics which more closely matches known experimental conditions than the non-

quantum models have in the past. Furthermore, this tunneling Hamiltonian approach 

for obtaining current should prove useful for other weakly coupled matter fields 

which show up frequently in many physical systems than just the one we have 

analyzed above. 
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           Appendix: A 

 Tunneling Hamiltonian Calculation of Soliton-antiSoliton ‘Current’ 

The quantum decay of the false vacuum [12] has been of broad scientific interest 

for overtwo decades. Several approaches have been proposed to treat quantum 

tunneling. One approach [12] is to use functional integrals to compute the Euclidean 

action, or “bounce” in imaginary time. In condensed matter, this method has been 

employed [13] to describe nucleation of cigar-shaped regions of true vacuum, with 

soliton-like domain walls at the boundaries, in a charge density wave. Another 

technique, the Schwinger proper time method [14], has been used to calculate the 

rates of particle-antiparticle pair creation in an electric field [15]. 

 The tunneling Hamiltonian [16,17] involves matrix elements for the transfer of 

particles between initial and final wave functions. Josephson [18] employed the 

tunneling Hamiltonian in his theory of phase-coherent tunneling of Cooper pairs 

through an insulating barrier. However, this method has not been developed thus far 

for quantum field theory. The potential utility of the tunneling Hamiltonian is 

especially apparent when one considers systems of many weakly coupled fields. For 

example, Hawking et al.[19] point out that a universe can be nucleated by a 

cosmological instanton that is much larger than the Planck scale, provided there are 

sufficiently many matter fields. Moreover, a number of experiments on charge 

density waves and other condensed matter systems suggest quantum decay of the 

false vacuum, accompanied by the nucleation of soliton domain walls, even when the 

total action is large .Let us now construct a tunneling Hamiltonian explicitly, and 
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show that the corresponding expression we derive via an action principle is , indeed, 

intellectually the direct result of least action which has its intellectual genesis in the 

decay of the false vacuum Sidney Coleman [12] presented in 1977. To do this, we 

shall start with a method which on the surface appears to have little in common with 

least action principles. 

Bardeen in 1960 [16] put forward an innovative thought experiment where he 

analyzed how a net flux of particles could penetrate a potential barrier set between 

two metallic regions. Here, unlike what Josephon did, Bardeen restricted himself to a 

specific line of inquiry which we can formulate as as follows. Mainly, how does one 

interpret the transition probability of an electron to penetrate a barrier from points 

ax to 
bx ? Bardeen in the end in his 1960 article managed to derive a ‘matrix of 

transition’ we shall call 1(xJiTif   where ''a metal to the left of position ax , 

and that ''b metal  to the right of position bx where each of the wave functions 

should be interpreted in terms of ‘quasi-particle occupation numbers’  

(I.): Beyond grid point bx we have any electron in a state m smoothly drops to zero. 

Therefore implying that “ 0 is a solution for a Schrodinger equation with energy 

0W if bxx  ” but that “there is a region to the right of bx where it is not a good 

solution”. 

(II.)”Similarly we assume that mn with energy mnW is a good solution for a wave 

function for axx  , but not for the region to the left of ax where the wave function 

for quasi-particle n drops to zero.” 
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(III): However, for regions inside the barrier, we have that “Both 
0 and 

mn are good 

solutions in the barrier region 
ba xxx  ” . Given all of this we can write, assuming 

0W is 
mnW . 

Now, let us follow the notation of E. Tekman [20] who has a reasonable 

upgrade of Bardeens notation. 

   dST mnmnmn

*

0

*

0

2

2




h
      (1) 

where any current taken outside the range of  ba xtox set equal to zero . In this 

situation, we have that 0 is modified in the ‘Transfer Hamiltonian ‘notation to be the 

wave function for a left hand side left electrode which is specified to be an ‘infinite’ 

(large) distance from the wave function designating a right hand side electrode mn . 

Furthermore, the integration is changed, subsequently, to be over the ‘area’ of a 

tunneling barrier, 0S  which if we make a transformation based upon changing to a 

‘functional basis’ leads to  

 
     

      xxx
xx

c
T initial

final

final

initial

real

functionalIF 


































 


0

*

*1

2
  (2) 

Here, we are assuming that dxndS  where n  is the ‘height’ of the barrier between 

the two ‘half’ regions. Also,  

 x
x

dx 



         (3) 

and  
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0

,

1

,,






























fi

fifi

x

x
       (4) 

where  0

0

1

0





























xx
 leads to , after  initial0  and 

finalmn   are put into equation (1) , equation (2) above  x  may be chosen in 

whatever base we find convenient for this problem. In our applications, we used a 

D.F.T. ( discrete fourier transform ) which changes the value of  equations (1) and (2) 

above. We will briefly allude to this later. But, we should for now discuss how we 

can modify these two equations via use of variational calculus . 

What we should take into consideration is that one should try to set up the 

initial and final wave functions initial  and/or final  as equal to ic    dLiexp  

and/ or    dLc ff exp . In our condensed matter applications, we followed a 

convention which paralleled using a Gaussian functionals with ‘specific covariance’ 

  leading to wave functions very close to a ‘Fock Vacuum [21] 

finalinitial

R

finalinitialfinalinitial

,

4/1

,,
2

1
expdet 

















  


  (5) 

This is elaborated ,later. But, the idea is to define a space of functionals of a scalar 

field  x and to define wave functionals for which we have an inner product space 

with      finalinitialfinalinitial  
* , where one has complex valued 

functionals with    and  * . In a generic sense, we identify 

these wave functionals mentioned above with a least action formulation which is 
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shown below.One can look at either 
 x

initial



 
, or 

 x

final



 
, which is actually saying 

that we have to look at  
 

  0

'0'

, 




riginx

fi dL
x





. It is useful to note that this is the 

beginning of  how people derive Noethers theorem in Classical and Quantum Field 

theory. Meaning in this situation one has that the net ‘current’ vanishes at the ‘origin’ 

(or at least is minimized at the origin!). Physically, one can interpret this, as we did in 

the case of soliton anti soliton pairs tunneling through a pinning gap, as indicating an 

approximation’ in which one has a net cancellation of ‘positive direction’ and 

negative direction ’ current values at the ‘origin’. Presumably, away from the ‘origin’ 

, we can assume  0(  xJiTif . 

For explicit calculations of the current, J, let us now start with looking at, 

then, what happens when we look at: 

 
 

   
0

0

0































 











xxx

i
f

f

ifinalinitial    (6)  

leading to, then 
   

00 

















xx

i

f

f

i which  then will lead to a ‘current’ of 

the form 

 
   

       0
2 '0'0

1

0

 












 






 riginx

initial
final

real

functionalIF xxx
x

c
T 








(7) 
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Equation six means that as we evaluate a net ‘current’ at the ‘origin’, we are 

minimizing this current as it approaches the mid point of a ‘sample space’ of objects 

measured .Conversely, having a non zero value for this ‘current’ when we set  x not 

equal to this ‘origin value’  reinforces a multipole expansion interpretation of our 

problem, which we find conceptually elegant and useful. 

As an actual application which started this research, we can observe soliton-

anti soliton pairs tunneling through a ‘pinning gap’ of a ‘chain’ of a quasi one 

dimensional metal. In looking at this problem, we will write the wave functions as a 

one dimensional discrete Fourier transform by setting ,here, that (as mentioned 

above) 

 
2

,
,, exp(

finalinitial
classicalfinalinitialfinalinitial dxc    )  

so 

  







 


)(

1
, n

n

xik

finalinitialclassical ke
L

in                 (8 ) 

where L is the distance between a S-S’ ,and )( nk  Fourier representation of a S-S’ 

pair in kn space. In this model situation, we used what is known as a thin wall 

approximation to the S-S’ pair which happens to be a square pulse of height 2   and 

width  L. We centered this pulse as being from + L/2 to - L/2  spatially in order to 

take advantage of symmetry arguments which greatly simplified calculation of TI F 

which will be shown later in this  manuscript. We set that 

 
n

n

n
k

Lk

k
)

2
sin(2



                   (9 ) 
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where kn has dimensions equal to 1/length. So, equation (8) is dimensionless. Which 

is exactly what we want here. Furthermore,  
L

1  so we can set 

  
2

, finalinitialclassicaldx  as a dimensionless quantity, which we also need here. 

Furthermore, this integral above will be evaluated as a DFT. Before we do, let us say 

more about the   situation represented by the integrand above in the initial and final 

states of a S – S’ pair. Here, 1L  varies between 
0L (=minimal distance permitted 

between S – S’ ) and L . Furthermore,   1,01n . This being the case, we have  that : 

initial cIexp(-     )2
22










n

nk
L




      (10 )  

In addition, we have 

 final cfexp(       )

2
sin

2
1

sin

11(2
2

2

22

 















































n

n

n

n

k
Lk

Lk

n
L


 ,   (11) 

We obtained a IFT expression for  a pinning gap problem of ( when x >> L  ): 

   
 









































































x

L

L

L
nL

fiIF ec
x

L

L

x
cnT

2
112

23

2

12

22
2cosh12



 (12)  

where we are explicitly using that we have set : 

0E  ( 0E )init(2–(n1)2  2
1 LL (1 )

2
1

2










x

L
i

x

L
)                                    (13) 

where  

 

E

E
L init0
                                                                                                  (14)  
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Here, n1 is between zero and one, and represents how a soliton – anti soliton pair 

evolves in height over a period of time. Furthermore, L1 is how the soliton and the 

anti soliton vary in distance from each other.We can argue here that we actually have 

a linkage to a Langrangian based ‘least action’ argument due to equations 12,13,and 

14 as well as   






 


E

E
c oexp2  being equivalent  with the ‘False vacuum’ formulation 

of the ‘decay rates’  of both Coleman and Maki [17,22] . Making this final linkage, 

however, requires that we make explicit how we can connect 

  )exp(
2

,
,,

fi
classicalfifi dxc     and fic , 








   dL fi ,exp . To start 

this, note that if  







 dx

d

dxm
L

eff

fi

2

,
2 

 and that 







v

d

dx


 constant velocity, and 

that  classicalclassical
dx

d
x   , then one can inter exchange the dx  and d   

integration order in  dL fi,
. Doing so permits us to write 

dx
dx

d
xdxv

m
dxv

m
dL classical

effeff

fi

2

22

,
22   








 





  which 

then leads to 2

2

v
dx

d
x classical 













 

2

effm

 







 


 2
2

2

2

x

m
v

eff

classical  

when we are in the region  where a S – S’ pair is, and zero otherwise. Usually, 

cv 310 , where c is the speed of light. This will necessitate very short transition 

times. 

We are restricting ourselves to ultra fast transitions of CDW which is realistic 

and which reflects the fact that the CDW moves very infrequently, with sudden 
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abrupt transitions. However, our method for forming this matrix of transition is much 

more general than this and it should be understood that whatever  IFT  is derived is 

heavily dependent upon the dimensionality of the ‘basis’ chosen to evaluate our 

‘current’ expression. 

 How we construct IFT  is a far-reaching problem, which could impact many 

areas of physics.  For example, topological defects, such as flux vortices, play an 

important role in the cuprates and other type-II superconductors.  Magnetic relaxation 

rates that depend weakly on temperature up to 20 K [23], or even decrease with 

temperature, suggest that Abrikosov vortices may tunnel over a wide temperature 

range. Moreover, the consistently low IcRn products of cuprate Josephson devices 

suggest that Josephson vortex-antivortex pair creation may occur when the current is 

much smaller than the “classical” critical current I0 ~ /RNe. In cosmology, the 

existence of many matter fields may facilitate quantum nucleation of a universe even 

when the total action is large, as suggested by Hawking et al [19].  Finally, the 

extraordinary rapidity of first-order phase transitions, such as the palpably visible 

nucleation of ice in supercooled water, suggest a possible similarity to the decay of 

the false vacuum. 
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                                    Figure captions 

FIG 1 Average phase   plotted against time (for E dc) with   stabilizing  if   Edc  <  

Eth  and   monotonically  increasing if  Edc  >  Eth . 

 

FIG 2 This is conductivity in the case when one has only an electric field Edc with a 

magnitude less than Eth  

 

FIG 3 Comparison of scaled dielectric values when one has signal frequency c   

i.e. near a critical value c  .  

 

FIG 4 This, above , is a direct comparison of plots, which does 

highlights the divergence from linearity occurring as frequency drops. The dielectric 

is infinite valued when E=Eth 

 

FIG 5 The above figures represents the formation of  soliton-anti soliton pairs  along 

a ‘chain’ . The evolution of  phase  is  spatially  given  by  x   =  [tanh b(x-xa) + 

tanh b(xb - x)] 

 

FIG 6 This is a representation of ‘Zener’ tunneling through pinning 

gap with band structure tilted by applied E field. 

 

FIG 7 Experimental and theoretical predictions of  current values 
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