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Abstract

This paper gives an overview of two different, but closely related, double conformal
geometric algebras. The first is the Gg o Double Conformal / Darboux Cyclide Geo-
metric Algebra (DCGA), and the second is the Gy g Double Conformal Space-Time
Algebra (DCSTA). DCSTA is a straightforward extension of DCGA. The double
conformal geometric algebras that are presented in this paper have a large set of
operations that are valid on general quadric surface entities. These operations include
rotation, translation, isotropic dilation, spacetime boost, anisotropic dilation, dif-
ferentiation, reflection in standard entities, projection onto standard entities, and
intersection with standard entities. However, the quadric surface entities and other
“non-standard entities” cannot be intersected with each other.
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1 Introduction

This paper! gives an overview of two different, but closely related, double conformal
geometric algebras. The first is the Gso Double Conformal / Darboux Cyclide Geo-
metric Algebra (DCGA) [5][3][4], and the second is the Gy s Double Conformal Space-
Time Algebra (DCSTA) [6]. DCSTA is a straightforward extension of DCGA.

2 G(8,2) Double Conformal Geometric Algebra

The Gs o Double Conformal / Darbouz Cyclide Geometric Algebra (DCGA) is a doubling
of the Gy 1 Conformal Geometric Algebra (CGA) [2][9][10][11][12]. The Gso Geometric
Algebra contains two subalgebras of the G4 CGA. The first CGA subalgebra, called
CGA1 and denoted C!, is the algebra of the vector elements

1 @ i=j,1<i<A4
€ -e; = -1 : ’L:j:5 (1)
0 : i#j.
The second CGA subalgebra, called CGA2 and denoted C?, is the algebra of the vector
elements
1 @ i=7,6<i<9
eire; = { —1: i=j=10 (2)

0 :i#j.

1. First version v1, February 20, 2016. Submitted to http://vixra.org/author/robert_b_easter.
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There are two subalgebras of the G3 Algebra of Physical Space (APS) in DCGA. The first
APS, called APS1 and denoted S', has the basis e;, ey, and e3. The second APS, called
APS2 and denoted S?, has the basis eg, e7, and eg.

2.1 CGA1 point embedding
The G417 CGAL null 1-vector point Per embedding of Gz APS1 vector pg: is defined as

1
Pei = C(ps)=ps + §p?51e001 +€o1. (3)
The CGA1 point at the origin is defined as
1
€1 = 5(—844-85)- (4)

The CGA1 point at infinity is defined as

€x1 = €4+tes. (5)

2.2 CGA2 point embedding
The G4 1 CGA2 null 1-vector point Pc2 embedding of G3 APS2 vector psq is defined as

1
Pc2 = C(p$2) =Pps2+ 5[)%28@@2 + €. (6)
The CGA2 point at the origin is defined as
1
€2 = 5(—894—810)- (7)
The CGA2 point at infinity is defined as

€2 = €9+ eq. (8)

2.3 DCGA point embedding
The Gg 2 DCGA null 2-vector point Pp embedding of a G3 APS vector ps is defined as

Pp = D(ps) =Pc: APc: (9)

where the APS vector ps is embedded into both CGA1 and CGA2 points as
Per = C(ps1) (10)
Pc2 = C(p32) (1].)

The vector pg is implicitly transformed into the spaces of APS1 and APS2, respectively.
The embedding function C is piecewise defined with a case for embedding an APS1 vector
pst and a case for embedding an APS2 vector psz2 that embeds vectors into CGA1 or
CGA2 points, respectively. The inverse embedding, or projection, C~'(Pp) can be defined
to return a vector ps: in APSI.

The DCGA point at the origin is defined as

e, = €, N\eyp. (12)
The DCGA point at infinity is defined as

€0 = €501 /\ €. (13>
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More information about point embeddings can be found in [7| and [5] by this author.

2.4 DCGA standard entities

The CGA geometric inner product null space (GIPNS) entities have doubled forms as
the DCGA GIPNS standard entities. The CGA GIPNS 1-vector sphere S¢, 1-vector
plane Il¢, 2-vector line L¢, 2-vector circle Ce, and 3-vector point pair 2 are doubled as
the corresponding DCGA standard entities. For example, the DCGA GIPNS 2-vector
standard sphere Sp is defined as

Sp = SciASee. (14)

The other DCGA GIPNS standard entities are defined similarly. The DCGA GIPNS
standard entities can be intersected with nearly all other DCGA GIPNS entities.

2.5 DCGA extraction elements

The embedding of an APS test vector t =ts =271 + yvy2 + 273, where the «; are defined
here as an APS vector basis, is the test point

Tp = D(ts)=C(ts1) AC(ts2). (15)

T$:%<el/\eoo2+eool/\e6) Ty:%(e2/\eoo2+eoo1/\e7) Tzzé(eg/\eoo2+eoo1/\es)
T.y=5(erAeitesAes) |T.=1(erNes+esAer) T..=3(esAei+egAes)
TIQZGG/\el Ty2:e7/\eg T22:eg/\e3
Tie=(e1N\en) + (e Neg) | Tyrz= (€2 €42) + (€01 Aer) T2 = (e3 N\ ey2)+ (€01 Aes)
Tl = _<eool A eooQ) = € T‘t2 = _(eool Ne€p2+ €51 N\ eooZ) T‘t‘l = —4(801 A e02) = —4e,

Table 1. DCGA 2-vector extraction elements

The DCGA 2-vector extraction elements Ty are defined in Table 1. The value s is
extracted from a DCGA point Tp as s =Ty - Tp. The extraction element T represents
the value s. Linear combinations of the extraction elements can represent implicit surface
functions as DCGA GIPNS 2-vector entities.

For example, a DCGA GIPNS 2-vector spherical quadric surface entity can be written

S:Tzz—l—TyQ—l—TZQ—TQTl. (16)
The DCGA point Tp is on the surface of S if Tp- S =0.

2.6 DCGA GIPNS 2-vector entities

The most general DCGA GIPNS 2-vector entity formed as a linear combination of DCGA
extraction elements is a Darboux cyclide entity €2, which is explained in much more detail
in [5]. DCGA also stands for Darboux Cyclide Geometric Algebra. Degenerate forms of the
Darboux cyclide include Dupin cyclides, parabolic cyclides, and general quadric surfaces.

All DCGA entities can be rotated, translated, and isotropically dilated using versor
operations. The general quadric surfaces can represent quadric surfaces that are arbi-
trarily rotated, translated, and anisotropically dilated, but the anisotropic dilation opera-
tion or versor has not been found in DCGA by this author.
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In the extension of DCGA, called the G, Double Conformal Space-Time Algebra
(DCSTA), an anisotropic dilator is found to be the boost operator with imaginary natural
speed [ or rapidity ¢. The introduction of imaginary or complex number scalars into
DCSTA may seem unfortunate, but there may be ways to reformulate to use only real
number scalars.

While the DCGA standard entities can be intersected with almost any other DCGA
entity to form a valid intersection entity, the DCGA GIPNS 2-vector entities formed as
linear combinations of the DCGA extraction elements, which can be called non-standard
entities, generally cannot be intersected with each other. In general, the wedge of two
non-standard entities forms an invalid or incorrect intersection entity.

2.7 DCGA differential elements
The DCGA 2-vector differential elements are defined as

D, = 21,75 (17)
D, = 2T, T (18)
D, = 2T.T5" (19)

With the commutator product x, a unit magnitude linear combination of the differential
elements forms an n-direction derivative operator as

0
On= I D,, x (20)
Any DCGA GIPNS 2-vector entity €2 can be differentiated as
a2 = Dpx Q. (21)

More information about the DCGA differential operators can be found in the paper [4].

2.8 DCGA versors

The CGA 2-versors, the rotor R, translator T', and isotropic dilator D, can each be doubled
into the corresponding DCGA 4-versor. For example, the DCGA 4-versor rotor Rp is
defined as

Rp = R A Ree. (22)
and the rotor versor operation on any DCGA entity A is
A" = RpARp. (23)

The notation R™ is the reverse, but the inverse R~! can also be used instead. More
information about the CGA versors can be found in numerous papers and books, including
[7] and [5] by this author.

2.9 DCGA conics

By intersecting any DCGA GIPNS 2-vector quadric surface Q with a DCGA 2-vector
standard plane 11, a DCGA 4-vector conic entity  is formed. The quadric surface Q
can be a cone K and conic sections can be formed. A conic entity « can be projected
orthographically or perspectively onto a DCGA 2-vector standard plane II.
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The orthographic projection Kopno of a DCGA GIPNS 4-vector conic entity kK =Q A
I1,. onto a DCGA GIPNS 2-vector standard plane II is defined as

Kortho = (K"H)H_l (24)

which is the algebraic projection of k onto II.

The perspective projection Kpersp 0f @ DCGA GIPNS 4-vector conic entity k onto
a DCGA GIPNS 2-vector standard plane I1 from the viewpoint p = ze; + yes + zes
represented by a DCGA GIPNS 2-vector standard sphere S with center Pp=D(p) and
radius r =1 can be defined as

Kpasp = (((£-8)S7)-S) ATI (25)
= ((SkS71)-S)AII (26)
= K AT

where K, is the DCGA 2-vector cone of the perspective projection with vertex or eye
point at p. The radius r of S is arbitrary, but r =1 is a good choice. More information
about conics in DCGA can be found in the paper [3] by this author.

3 G(4,8) Double Conformal Space-Time Algebra

The Gys Double Conformal Space-Time Algebra (DCSTA) [6] is a doubling of the G, 4
Conformal Space-Time Algebra (CSTA) [1]. The G4s Geometric Algebra contains two
subalgebras of the Gy 4 CSTA. The first CSTA subalgebra, called CSTA1 and denoted C?,
is the algebra of the vector elements

1 :i=j,ie{l,5}
e -e; = -1 Z:j,26{2,3,4,6} (27)
0 : i#j.

The second CSTA subalgebra, called CSTA2 and denoted C2, is the algebra of the vector
elements

1 i=j,ief{7, 11}
eire; = { —1 : i=7,ic{8,9,10,12} (28)
0 : i#j.

There are two subalgebras of the Gy 3 Space Algebra (SA) in DCSTA. The first SA, called
SA1 and denoted S*, has the basis e, e3, and e4. The second SA, called SA2 and denoted
82, has the basis eg, eg, and e;g A vector in SA is denoted pgs, in SA1 as pg1, and in SA2
as psa2.

There are two subalgebras of the Gy 3 Space-Time Algebra (STA) [8] in DCSTA. The
first STA, called STA1 and denoted M1, has the basis ey, e,, e, and e, The second STA,
called STA2 and denoted M?, has the basis er, eg, ey, and e;g. A vector in STA is denoted
Pa, in STAT as pag, and in STA2 as pae. A vector in STA can be denoted on the Dirac
gammas as

PM = DuwYo+ PaY1+ PyY2 + D23 = DuwYo + Ps- (29)
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An observer position in spacetime can be denoted as
ot = wyy=cly (30)

where c is the speed of light and ¢ is time.

3.1 CSTA1 point embedding
The Gy 4 CSTA1 null 1-vector point P embedding of Gy 3 STA1 vector pay: is defined as

1
FPer = C(pm1) :PM1+§P3\418001+801- (31)
The CSTAT1 point at the origin is defined as
1
€1 = 5(—e4+ €s). (32)

The CSTA1 point at infinity is defined as

€1l = €e4+tes. (33)

3.2 CSTA2 point embedding
The G 4 CSTA2 null 1-vector point Pe: embedding of Gy 3 STA2 vector ppy2 is defined as

1
Pe: = C(pm2)=pre+ 5173\429002 T €52 (34)
The CSTA2 point at the origin is defined as
1
€02 = 5(—8114—812)- (35)

The CSTAZ2 point at infinity is defined as

€x2 = €11+ €19 (36)

3.3 DCSTA point embedding
The G4 3 DCSTA null 2-vector point Pp embedding of a G; 3 STA vector ppy is defined as

pr = D(pM):PclAP62 (37)
where the STA vector pp, is embedded into both CSTA1 and CSTA2 points as

Pcl = C(le) (38>
PCQ = C(pMz). (39)

The vector ppq is implicitly transformed into the spaces of STA1 and STA2, respectively.
The embedding function C is piecewise defined with a case for embedding an STA1 vector
pre and a case for embedding an STA2 vector pa2 that embeds vectors into CSTA1 or
CSTA2 points, respectively. The inverse embedding, or projection, C~!( Pp) can be defined
to return a vector pya in STAL.

The DCSTA point at the origin is defined as

e, = €y ey (40)
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The DCSTA point at infinity is defined as
(41)

€ = €501 /\€xoa.

3.4 DCSTA standard entities

The CSTA geometric inner product null space (GIPNS) entities have doubled forms as
the DCSTA GIPNS standard entities. The CSTA GIPNS 1-vector hypercone Pr= K¢, 1-
vector hyperplane E¢, 1-vector hyperhyperboloid of one sheet ¢, 1-vector hyperhyperboloid
of two sheets B¢, 2-vector plane Il¢, 2-vector (imaginary) pseudosphere or sphere S¢, 3-
vector line L¢, 4-vector pseudocircle or circle Ce, 4-vector null line Lo, 4-vector point
pair 2¢, 4-vector flat point Pc, and 5-vector point PF are doubled as the corresponding
DCSTA standard entities. For example, the DCSTA GIPNS 4-vector standard plane I1p

is defined as
IIp, = Il ATlee. (42)

The other DCSTA GIPNS standard entities are defined similarly. The DCSTA GIPNS
standard entities can be intersected with nearly all other DCSTA GIPNS entities. The
CSTA GIPNS and GOPNS entities are explained some more in [6] by this author.

3.5 DCSTA extraction elements

The embedding of an STA test vector t =t = w~yy+ 71 + yy2 + 273, where the ~; are
defined here as an STA vector basis, is the test point

Tp = D(tm) =Cltrn) AC(Ers). (43)

The value w may be identified as the product of light speed ¢ and time ¢ as w=ct.

T, = %(eoog Neg+eg /A eool)

Ty = %(eoog Aes+eg eool)

1
T,= E(eoog Neg+epg eool)

T.,2=eg /ey

TyQ =eg/\es

Teo=ejgNey

Txy = %(eg A ez +eg 83)

Ty.= %(810 Nes+eg/ey)

Tza: = é(eS ANeg+ e eZ)

Tiz=epNey+egAey

Tth =epNest+egNey

T.2=ep/Nes+epgAey

Tl = —€x

T2 =exp N\ e+ €exa/\ €

Tt4 = —4eo

Tw - %(el N €xo2 + €501 N\ e7)

Tw2 =e;Ne;

Twz=ei1Negn+eAey

wa = %(el Aeg+ex A\ 87)

Twy = %(el A eg+esA 87)

Twz = %(81 A 810+e4/\e7)

T,=-T,

1
Tz =T

1
Ez = ETwz

1
,I;Ez = ZTwz

Table 2. DCSTA 2-vector extraction elements

The DCSTA 2-vector extraction elements T, are defined in Table 2. The value s is
extracted from a DCSTA point Tp as s =T, - Tp. The extraction element T} represents
the value s. Linear combinations of the extraction elements can represent implicit surface
functions as DCSTA GIPNS 2-vector entities.

For example, a DCSTA GIPNS 2-vector spherical quadric surface entity can be written

S=T,.+ Ty2 + T, — 7’2T1.

(44)



8 SECTION 3

The DCSTA point Tp is on the surface of S if Tp-S =0. It is possible to place an entity
at a time in spacetime by using the extractions containing w. The DCSTA extraction
elements can form all of the same 2-vector entities as in DCGA. General quadric surface
entities can be formed at w = 0 and then boosted into a constant velocity v using the
DCSTA boost Bp versor operation. A boosted quadric surface is also contracted in length
in the direction of boost velocity v by the factor 45 '=+/1 — By, which is consistent with
length contraction in the theory of special relativity.

3.6 DCGA GIPNS 2-vector entities

The most general DCSTA GIPNS 2-vector spatial geometric entity formed as a linear com-
bination of DCSTA extraction elements is a Darboux cyclide entity €2, which is explained
in much more detail in [5]. Degenerate forms of the Darboux cyclide include Dupin
cyclides, parabolic cyclides, and general quadric surfaces. In DCSTA, the general quadric
surface entities are of the most interest since they support boost and anisotropic dilation
operations, while the cyclide entities cannot properly support those operations.

All DCSTA entities can be rotated, translated, and isotropically dilated using versor
operations. Rotation is spatial rotation. Translation may include translation in spacetime
of the time w component. Isotropic dilation also dilates any non-zero time w component.

DCSTA includes a boost operation, which is a hyperbolic rotation in spacetime that
is valid on all of the quadric surface entities. The boost operation also implements
anisotropic dilation of the quadric surface entities. The anisotropic dilator is found to
be the boost operator with imaginary natural speed [ or rapidity (. The introduc-
tion of imaginary or complex number scalars into DCSTA may seem unfortunate, but
there may be ways to reformulate to use only real number scalars.

While the DCSTA standard entities can be intersected with almost any other DCSTA
entity to form a valid intersection entity, the DCSTA GIPNS 2-vector entities formed as
linear combinations of the DCSTA extraction elements, which can be called non-standard
entities, generally cannot be intersected with each other. In general, the wedge of two
non-standard entities forms an inwvalid or incorrect intersection entity.

3.7 DCSTA differential elements
The DCSTA 2-vector differential elements are defined as

D, = 2T,T (45)
D, = 2T,T:" (46)
D, = 2T, T3 (47)
D, = 2T,T;' (48)
D, = 2T.75" (49)

With the commutator product x, a unit magnitude linear combination of the differential
elements forms an n-direction derivative operator as

0
On=-— = DnXx (50)

= (nwDy+n:Dy+nyDy+n.D,) x .
Any DCSTA GIPNS 2-vector entity €2 can be differentiated as
a2 = Dpx Q. (51)
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The DCSTA time t derivative operator is

0
at:a = DtX. (52)
The time t derivative of any DCSTA GIPNS 2-vector spacetime entity €2 is
Q:atnz%g = D;xQ. (53)

The DCSTA 2-vector spacetime entity €2 is the most general DCSTA GIPNS 2-vector
non-standard surface entity that is formed as a linear combination of the DCSTA 2-vector
extraction elements T.

For example, a DCSTA quadric surface entity can be formed using the DCSTA extrac-
tion elements at w = 0 and centered at the origin of spacetime, then boosted into a
velocity v. The time ¢ derivative of the boosted quadric surface entity produces an entity
representing the velocity v.

3.8 DCSTA versors

The CSTA 2-versors, the rotor R, translator T', isotropic dilator D, and boost (hyperbolic
rotor) B can each be doubled into the corresponding DCSTA 4-versor. For example, the
DCSTA 4-versor rotor Rp is defined as

Rp = RN Ree. (54)
and the rotor versor operation on any DCSTA entity A is
A" = RpARSP. (55)

The notation R~ is the reverse, but the inverse R~! can also be used instead. The two-
sided versor operation, also called a versor “sandwich” operation, is used to apply the
operation of all versors.

3.8.1 DCSTA 4-versor spatial rotor

The CSTA1 2-versor spatial rotor Re1 for a spatial rotation around the unit norm SA1
vector ng: by an angle 6 is defined as

Rcl — 659n21 — COS(%G) + Sln(%e)nsl]:gl (56)
where Is: is the SA1 unit pseudoscalar

]:31 = e /Nes/\ey (57)

and the unit norm bivector ng: =ng:I351 is the SA1 dual of the axis ng:.
The CSTA2 2-versor spatial rotor Re2 for a spatial rotation around the unit norm SA2
vector ngz by an angle 6 is defined as

R = 659n§2 — cOS(%@) + sin(%@)nsnga (58)
where Is2 is the SA2 unit pseudoscalar

132 = eg/\eg/Aeq (59)
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and the unit norm bivector n§: = ng2132 is the SA2 dual of the axis nge.
The DCSTA 4-versor spatial rotor Rp for a spatial rotation around the unit norm SA
vector ng by an angle  is defined as

RD == Rcl/\RC2. (60)

The CSTA 2-versor line rotor that rotates directly around a CSTA GIPNS 3-vector line
can be doubled into a DCSTA 4-versor line rotor, which is discussed further in the paper
[6]

3.8.2 DCSTA 4-versor spacetime translator
The CSTA translator T¢ is defined as

_ld./\/leoo'y 1
Te = e 2 :1—§dM/\eoofy. (61)

The translation vector du is an STA spacetime displacement vector in STA1 or STA2.
The DCSTA 4-versor translator Tp is defined as

Tp = Ter ATee. (62)

3.8.3 DCSTA 4-versor isotropic dilator

The CSTA 2-versor isotropic dilator D¢ is defined as

1 1
DC = 5(1—|—d)+§(1—d)eoow/\ew (63)

The scalar d is the dilation factor. The ~ is either 1 or 2 for the dilator in CSTA1 or
CSTAZ2, respectively. The CSTA isotropic dilator D¢ is a spacetime dilator, which includes
the dilation of the time and space components of an entity by the factor d.

The DCSTA 4-versor isotropic dilator Dp is defined as

Dp = Dei A Deo. (64)

3.8.4 DCSTA 4-versor hyperbolic rotor (boost)

The CSTA 2-versor boost operator Be for a natural speed Sy in the SA unit direction vg
is defined as

Be = s (65)
= cosh(%cpv> —I—sinh(%cpv)ffg/\'yo (66)
where the boost velocity is
vs = |[[vs||[vs= fBvcvs (67)
and the rapidity is
oy = atanh(fy)= atanh(”v—;”). (68)

The SA velocity vs of the CSTA boost Be is relative to the STA observer velocity

oM = Yo (69)
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and has the STA velocity
VM = Opm -t Vs (70)

The boost and normalization of the STA observer velocity o, produces a particle velocity

BecomBe
ovy=vy = c 71
M M (BCOMBEZV) Yo ( )
= oM+ Vs=CYo+Vs (72)

moving relative to the same observer o.
The STA observer velocity oy = ¢yp embedded as CSTA velocity O¢ = C(on) is
boosted as

O; = BcO:Bg. (73)
Then Of can be projected and normalized as the STA particle velocity vy
(%)
oy = c5—nr—
M08
The DCSTA 4-versor boost operator Bp is defined as

Bp = BeiA Bee. (75)

=O0OM+VS=VM- (74)

By using the reverse of Bp, a change of observer or frame of reference can be made, which
is similar to rotating by the negative angle to change basis.

By using a natural speed 3, = V1 —d? for a dilation factor d, the boost of a DCSTA
GIPNS 2-vector quadric surface entity @ can implement an anisotropic dilation, which is
a directed scaling in the direction of the boost velocity vs. Dilations with 1 < d make f,
an imaginary number. After the anisotropic dilation, it may be necessary to project the
result into the purely spatial part of DCSTA as

Q' = ((Bp@B3) Ips)Ips (76)
where
Ips = Isieseglszeriers = esesesesegesegerperiers. (77)

The projection discards imaginary components of time. If Q' should be at some other
time than w =0, then a DCSTA translator operation can be used to translate Q’.

4 Conclusion

This paper has given a basic overview of two different, but related, double conformal
geometric algebras, Gg o DCGA and G4 g DCSTA. The reader is recommended to see the
other much longer papers on DCGA [5][3][4] and on DCSTA [6] for more details.

The double conformal geometric algebras that have been presented in this paper
have a large set of operations that are valid on general quadric surface entities. These
operations include rotation, translation, isotropic dilation, spacetime boost, anisotropic
dilation, differentiation, reflection in standard entities, projection onto standard entities,
and intersection with standard entities. However, intersection of the quadric surfaces or
other non-standard entities with each other is generally not valid and produces invalid
results.
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Admittedly, the double conformal geometric algebras are large and complicated and
their efficient implementation for applications may be difficult. Also due to the com-
plicated nature of these algebras, this paper and the others by this author may contain
some mistakes or may have ignored important issues or results that others may notice.
Nevertheless, it is hoped that this paper and the others cited provide useful ideas that
can be researched further for additional results and possible applications.
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