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Abstract. 
A special class of quantum recurrent nets (QRNs) simulating Markov chains with absorbing 
states is introduced. The absorbing states are exploited for pattern recognition: each class of 
patterns is attracted to a unique absorbing state. Due to quantum interference of patterns, each 
combination of patterns acquires its own meaning: it is attracted to a certain combination of 
absorbing states which is di�erent from those of individual attractions. This fundamentally new 
e�ect can be interpreted as formation of a grammar, i.e., a set of rules assigning certain meaning 
to di�erent combinations of patterns. It appears that there exists a class of unitary operators in 
which each member gives rise to a di�erent arti®cial language with associated grammar. 

1. Introduction. 
One of the oldest and most challenging problems is to understand the process of language 
formation. In this section we will introduce a model of grammar formation based upon a 
unique property of QRN: the pattern interference. Let us assume that we store letters of 
the alphabet in the form of the corresponding stochastic attractors ηξ .  Then if some of 
these letters, say 

lηη ξξ ...
1

 ., are presented to the QRN simultaneously, their processing will 
be accompanied by quantum interference in such a way that they will converge to a new 
attractor, say l,...2,1ξ .  This new attractor preserves the identities of the letters

lηη ξξ ...
1

, but at 
the same time, it is not a simple sum of these letters.  Moreover, any additonal letter 

1+lη
ξ may create a totally different new attractor 1,,...2,1 +llξ .  Actually this phenomenon is 
similar to formation of words from letters, sentences from words, etc.  In other words, the 
pattern interference creates a grammar by giving different meaning to different 
combinations of letters.  However, although this grammar is imposed by natural laws of 
quantum mechanics, it can be changed.  Indeed, by changing phases of the components 
ijH  of the Hamiltonian, one changes the way in which the patterns interfere and therefore, 

the “English” grammar can be transformed into “French” grammar etc. 
 It should be recalled that the ability to create and understand language is the fundamental 
property of intelligence that distinguishes human from other livings. At this stage, we do 
not have any evidence that Nature exploits this particular quantum phenomenon for 
emerging grammars, but we do not yet observe any alternative ways either. Therefore it is 
safe to apply QRN for modeling artificial intelligent agents like robots rather than human.   
In this section, based upon a concept of QRN, a new phenomenological formalism for 
pattern recognition and grammar formation is described. 
 2. Emerging grammar formalism. 
We will start with a QRN that augmented with a classical measurement and quantum 
reset operation. The design of the one-dimensional version of this network is shown in 
Fig.1 
 
 



 
Fig. 1. A one-dimensional quantum recurrent network. 
 
An initial state, >)0(|ψ , is fed into the network, transformed under the action of a unitary 
operator, U, subjected to a measurement indicated by the measurement operator M{ }, 
and the result of the measurement is used to control the new state fed back into the 
network at the next iteration. One is free to record, duplicate or even monitor the 
sequence of measurement outcomes, as they are all merely bits and hence constitute 
classical information. Moreover, one is free to choose the function used during the reset 
phase, including the possibility of adding no offset state whatsoever. Such flexibility 
makes the QRN architecture remarkably versatile. To simulate a Markov process, it is 
sufficient to return just the last output state to the next input at each iteration. For a proof-
of-concept, we will start with the following unitary N-dimensional operator  
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that maps the thi  eigenvector into a thj   eigenvector  
}0...010...00{}0...010...00{ →                     (2) 

             i↑                           j↑  
with the probability 

2|| jiij Up =          (3) 
(See Eq. (1.7.12)) 
Eq. (3) is modified to the following  
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if each result of the measurement is combined with an arbitrary offset vector 
}...{| 1 naa>=ʹ′ψ         (5) 

It should be emphasized that the sum of the output vector in (2) and the offset vector (5) 
is first calculated, normalized, and then the corresponding quantum re-entering state is 
prepared. 
For the purpose of pattern recognition, the offset vector will be chosen as follows: 
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where i is defned by Eq. (2). 



Now the probability of the mapping (2) performed by the unitary operator U and the 
offset vector (6) can be obtained by combining Eqs. (3) and (4), and the transition matrix 
for the corresponding Markov chain is 
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  (I.2.2.7) 

This chain has n transient states  ),...2.1( nqTq =  and N-n absorbing states 
),...2,1( NnnA ++=γγ and therefore, regardless of an initial state, the stochastic process 

eventually will be trapped in one of the absorbing states kA   . However, the probability 
that it will be a prescribed state γA depends upon the initial state. Indeed, as follows from 
theory of Markov chains, the probability k

qf  of absorption into kA   from qT satisfies the 
system of equations, Feller, W., 1957, 
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Consequently, by appropriate choice of U and >ʹ′0|ψ  in Eqs. (1) and (6), one can divide all 
the initial states into N-n groups such that each state of the group is absorbed (with a 
sufficiently high probability) into the same prescribed state. Such a performance can be 
interpreted as pattern classification if each eigenvector introduced to the QRN is 
associated with the corresponding patterns. 
We will not go into more mathematical details here in order to focus attention upon 
formation of an artificial language instead. For that purpose, suppose that each run of the 
quantum device is repeated l times while nl ≤  independent measurements are collected 
and fed back into QRN. Then, instead of mapping (2), one arrives at the following: 
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1i

↑    
li

↑                      
1j

↑    
mj

↑  
This corresponds to evolution of k different patterns introduced to QRN simultaneously. 
One can generalize Eq. (4) to the following 
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by considering how each of the recurrent states combined with the offset vector (5) 
evolves under the action of the unitary operator U . Eq. (10) defines the probability of 



transition from the set of inputs lii ...1  to the set of outputs mjj ...1 .  If m=l, and the offset 
vector is expressed by Eq. (6), the transition probability matrix lp  can be presented in the 
form similar to 1p  in Eq.(7) 
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This means that the corresponding l-variate stochastic process has ln  transient states  
),...2,1( l

q nqT =  and ll nN −  absorbing states γA , and therefore,  
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Now the performance of the QRN can be given the following interpretation. As soon as 
the unitary matrix U and the offset vector >ʹ′ψ|  are chosen (see Eqs. (1) and (6)), all the 
transition matrices ),...2,1( lkpk = are uniquely defined (see Eqs. (4), (7), (10) and (11)). It 
should be noticed that these matrices do not have to be implemented: they exist in an 
abstract mathematical space being induced by the operator U and offset vector >ʹ′ψ| . 
If the only one measurement is fed back (l=1), then the transition matrix (7) manipulates 
by basic patterns-eigenstates that can be identified with ``letters'' of an alphabet: by 
mapping each eigenvector into a corresponding class, it assigns a certain meaning to the 
letter. If l independent measurements are fed back, )1( nl ≤< then the transition matrix 
(11) assigns certain meanings to combinations of letters, i.e., to l-letter ``words''. In order 
to understand the rules of these assignments, i.e., the ``grammar'', let us turn to Eq. (10). 
As follows from there, in general 
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i.e., an l-variate stochastic process is not simply the product of  l underlying one-
dimensional stochastic processes, and the difference 
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expresses the amount of ``novelty'', or new information created by interaction between 
different patterns via quantum interference. Formally Eq. (14) resembles quantum 
entanglement that is also responsible for creation of new information; however, actually 
this entanglement is not quantum: it is a correlation between several classical stochastic 
processes generated by quantum interference. It should be recalled that classical neural 
nets where patterns are stored at dynamical attractors, do not have a grammar: any 



combination of patterns is meaningless unless their storage is specially arranged, and that 
would require actual implementation of an exponential number of new attractors (see Eq. 
(12)). 
3. Dynamical Complexity. 
In this section, we will discuss Shannon and algorithmic complexity of QRN for 
emerging grammars. Although the concept of complexity is well understood intuitively, 
its strict definition remains an enigma since there are many different aspects which can be 
associated with complexity (the number of interacting variables, the degree of instability, 
the degree of determinism, etc.).  Here we will associate dynamical complexity with the 
degree of unpredictability of the underlying motion.  Then the Shannon entropy becomes 
the most natural measure of dynamical complexity of QRNs: 
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Let us assume now that the unitary matrix in Eq. (1) is composed of a direct product of n  
22× unitary matrices: 

4/
21 22,... qn

n NUUUU ==⊗⊗⊗=                   (I.2.3.2)  (16) 
where the number of independent components in iU  
q = 4n                                                                                                       I.2.3.3  (17) 
       
Then the dynamical complexity of QRN becomes exponentially larger (see Eq. (2): 

nnH ∝∝ 2max log        (I.2.3.4)      (18) 
although the algorithmic complexity is still expressed by Eq. (17). Thus, QRNs based 
upon representation (15) generate “complexity” in an exponential rate, and therefore the 
underlying stochastic processes attain structure of fractals.  Indeed, as shown in Shroeder, 
M, 1991, a continuous version of a Markov process exhibits self-similar structure down 
to infinitesimal scales of observation.  Although the Markov processes generated by 
QRNs are finite-dimensional, their scales approaches zero exponentially fast when the 
number of the variables n grows only linearly.  This means that QRN generate “quantum 
fractals” which can be applied to image compression, animation, or for a finite-
dimensional representation of Weierstrass-type functions which are continuous, but non-
differentiable.  In contradistinction to classical fractals, quantum fractals are more 
controllable since their probabilistic structure can be prescribed. 
 Now suppose that we are interested in generating a stochastic process with 
prescribed probability distribution.  Then the algorithmic complexity becomes important:  
it will allow us to preserve only q=4n (out of nN 2= ) independent characteristics of the 
distribution (although the stochastic process will be still N-dimensional, and its Shannon 
complexity will be of order of n). 
 The difference between the Shannon and the algorithmic complexities affects the 
design of the l measurements architecture in the following way. Indeed, the input-output 
relationships require the number of mapping (i.e., quantum circuits) which is polynomial 
in N, i.e., exponential in n. However, if the unitary matrix U has a direct-product 
representation (4) then, as follows from the identity: 

UaaUaUaaUU =⊗=⊗⊗ )()())(( 22112121                                                   (I.1.2.3.5)     (19) 
i.e.,    21 aaa ⊗=                                                                                      (I.2.3.6)       (20) 
 



and therefore, not only the size of the unitary matrix U and the state vector a, but also the 
number of mapping circuits for l-measurement architectures become polynomial in n as 
far as their actual implementation is concerned.  In addition to that, in the case (18), n out 
of l measurements can be performed in parallel. 
Eq. (18) is not the only representation of a unitary matrix which preserves its exponential 
size while utilizing only polynomial resources.  Indeed, consider the following 
combination of matrix products: 
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Here the number of independent components is: 
mnq 4=               (I.2.3.8)    (22) 

while the dimensionality 
mqnN 4/22 ==               (I.2.3.9)     (23) 

In Eq. (23), N and q are associated with the Shannon and the algorithmic complexity, 
respectively. 
Thus, each unitary operator having the structure (15) and supplied with an offset vector 
of the type (20) generates a new grammar. Since the structure (15) is preserved under 
matrix products, new operators of the type (23) represent new grammar. In particular, if 
the time period of each run of the QRN is increased in q times, then the effective unitary 
operator will be different from the original one and thereby a set of new languages can be 
generated by the same quantum ``hardware''.  In addition to that, Eq. (21) opens up a 
possibility to build a high-dimensional operator U from low-dimensional components of 
the same structure. It is worth mentioning that not every language of the possible set of 
languages is useful. Indeed, the performance of the QRN, and in particular, the 
assignments of pattern combinations to specific absorbing states is probabilistic. It is 
reasonable to require that for each selected patterns combination, the corresponding 
absorbing probability distribution over all possible states has a well-pronounced 
preference for a certain state; otherwise a word would lose its stable meaning. (It should 
be noticed that small overlapping of absorbing states is acceptable: it makes the language 
more colorful by incorporating double-meaning to some words.) As mentioned earlier, 
stability of the meaning of the basic patterns, i.e., letters, can be achieved by an 
appropriate choice of the unitary operator (15) and the offset vector based upon solutions 
of Eq. (22). However, as soon as U and >ʹ′0|ψ are fixed, there is no further control over 
stability of words' meaning since all the transition matrices ip  are already predetermined. 
In this situation, one can characterize the effectiveness of the language by the ratio ζ  of 
the number W of useful words to the total number of words S 

)2(, nOS
S
W

≈=ζ  (24)        

Hence, in order to maximizeζ , one has to identify such a solution to Eq. (8) which 
simultaneously stabilizes the meanings of all the letters as well as most of the words. 
Obviously, in general, this problem is hard. 
4. Examples. 
 In order to demonstrate the existence of effective emerging grammars, consider the 
following example. 
Suppose that in Eqs. (1) and (6) are chosen as follows 
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where 43,, aaϕ  are real. 
Then, applying Eq. (4) one finds the elements of the transition matrix p : 
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As follows from Eq. (26), there are two transient states 1T  and 2T , and two absorbing 
states, 3A  and 4A . 
Introducing four input patterns 

}0001{|},0010{|},0100{|},1000{| 4321 >=>=>=>= ψψψψ                  (I.2.4.4)   (27) 
as well as their images in the probabilistic space 

}0001{|},0010{},0100{},1000{| 4321 ==== ππππ                             (I.2.4.5)  (28) 
first one can write down trivial mapping    
   ,1,| 3

3333 =→>→ fAπψ and ,1,| 4
4444 =→>→ fAπψ     (I.2.4.6)  (29) 

Other transitions 
,| 311 A→>→πψ ,| 441 A→>→πψ                             (I.2.4.7)   (30) 
,| 322 A→>→πψ and ,| 422 A→>→πψ             (I.2.4.8)         (31) 

are more complex, and they can be found from Eq. (2.8): 
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Similarly one finds 
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Thus, if  
43 aa ≅        (I.2.4.12)  (35) 

the patterns >1|ψ and >2|ψ do not have any meaning; with the same probability they can 
be absorbed by the states 3A  or 4A  . However, if 

43 aa >> or 43 aa <<       (I.2.4.13)  (36) 
the same patterns are absorbed by only one state 3A , 4A  and that assigns certain meaning 
to each of them. 
For mapping combinations of patterns (27), one has to repeat twice each measurement 
before feeding it back. Now the input pattern's combinations will be the following: 

}1010{
2
1||},1100{

2
1|| 31132112 >=>=>=>= ψψψψ  (I.2.4.14)  (37) 

but their image in the probabilistic space will be di€erent from (4) 



2112 πππ ⊗=      3113 πππ ⊗=       (I.2.4.15) (38) 
Instead of listing all the 64 elements of the matrix 2p  (see Eqs. (3.11) and (3.12)), we 
will concentrate upon those that will be used in our analysis. First of all 

4,3,0 =≠= iiifpii βααβ     
1=αβ

iip   otherwise. 
4,3,0 =≠= iiifpij βααβ            (I.2.4.16) (39) 

1=αβ
ijp otherwise. 

This means that there are four absorbing states: 433433 ,, AAA and 44A  ; the rest 12 states 
( 1312,TT , etc.) are transient. Here we will be interested only in the evolution of the pattern's 
combination >12|ψ  (see Eq. (37)) since it is the only one which entangles the patterns 

>1|ψ and >2|ψ  (see Eq. (27)). (Other combinations: >13|ψ >23|ψ etc. are not entangled, 
and therefore, their evolution can be predicted from the previous analysis as a direct 
products ⊗>13|ψ >13|ψ , ⊗>13|ψ >13|ψ , i.e., it does not have any novelty element.) 
Thus, one obtains 
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As follows from the last four equations in (40), there are direct transitions from the 
pattern combination >12|ψ  to the absorbing states. However, in addition to that, there 
exist many indirect transitions to the same states, for instance, 

,331312 TTT →→ 441412 TTT →→  , and these transitions include the entanglement effect that 

has maxima at 
2
1

±=ϕ . 

As a result, the pattern combination >12|ψ  acquires a new meaning since it cannot be 
reduced to the direct product of the patterns >1|ψ and >2|ψ . 
The performance of this simple QRN becomes more sophisticated if the elements of the 
unitary matrix U and the component of the offset vector a in Eq. (15) are complex 
numbers. Utilizing the properties (21), one can represent a unitary operator U in a 
compressed form gaining exponential dimensionality of U with linear resources. 
I.2.5. Summary. 
Thus, it has been demonstrated that QRN is capable of creating emerging grammars by 
assigning different meanings to different combinations of letters. The paradigm is based 
upon quantum interference of patterns, which entangles the corresponding Markov 
processes, and thereby, creates a new meaning depending upon how different patterns 
interact. The capacity of the language, i.e., the total number of words in it is exponential 



in n where n is dimensionality of the basic unitary operator. However, if this operator is 
presented as a direct product, then the number of words can be made double-exponential 
in the dimensionality. 
 


