
LHC 750 GeV Diphoton Resonance and Flavor
Mixing from Majorana Higgs Bosons

Wei Lu ∗

February 17, 2016

Abstract

We propose a Clifford algebra based model, which includes local gauge symme-
tries SO(1, 3)⊗SUL(2)⊗UR(1)⊗U(1)⊗SU(3). There are two sectors of Higgs fields
as Majorana and electroweak Higgs bosons. The Majorana Higgs sector is responsible
for the 750 GeV diphoton resonance, flavor mixing, and right-handed neutrino Majo-
rana masses. The electroweak Higgs sector, which induces Dirac masses, is composed
of scalar, pseudoscalar, and antisymmetric tensor components.
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1 Introduction

The experiments at LHC recently indicated a diphoton resonance at about 750 Gev[1, 2],
in addition to the Higgs boson with mh = 125 Gev[3, 4]. Scenarios with either an isospin
singlet state or an isospin doublet state can not accommodate the observed signal and an
extended particle content is necessary[5, 6, 7, 8, 9, 10].

We propose a Clifford algebra based model which encompasses Yang-Mills interac-
tions as well as gravity. The 750 GeV diphoton resonance corresponds to Majorana Higgs
boson loops. No further extended particle content is needed. With the purpose of study-
ing 3 generations of Standard Model fermions, a ternary Clifford vector is introduced
alongside 6 binary Clifford vectors. The flavor projection operators facilitate flavor mix-
ing via Majorana Higgs bosons.

The current paper is a continuation of our previous work[11, 12], which is based on
three premises. Firstly, gauge gravity and Yang-Mills interactions should be integrated
in a single overarching framework. The key is to take a page from effective field the-
ory, where an infinite number of terms allowed by symmetry requirements should be
included in a generalized action. Only the first order terms of the action are relevant in
low-energy limit.

The second premise is that all idempotent projections of the original algebraic spinor
should be realized as fermions of physical world. In other words, no spinor projection
should be casually discarded. Hence, finding the right Clifford algebra turns out to be
a simple process of counting numbers of fermion species. There are 16 Weyl fermions
(including right-handed neutrino) with 16 × 4 = 64 real components in one generation.
Clifford algebra C`0,6, with 26 = 64 degrees of freedom, seems to be a natural choice.

The third premise is that rotations should be generalized. As well known in Clifford
algebra approaches, a rotation is realized by a rotor, which is an exponential of bivec-
tors. It rotates a vector into another vector. However, a rotor could be defined to be an
exponential of any multivectors. It could rotate a vector into a multivector, generaliz-
ing definition of rotations. Hence, one can entertain large symmetry groups with lower
dimensional Clifford algebras, whereas the same symmetry groups would otherwise re-
quire higher Clifford dimensions within the conventional framework. While the conven-
tional Dirac matrix operators γ1, γ2, γ3 correspond to vectors in C`0,6, the matrix operator
γ0 corresponds to a trivector. Lorentz boost rotations are represented as exponentials of
Clifford 4-vectors γ0γ1, γ0γ2, γ0γ3.

This paper is structured as follows: Section 2 introduces binary Clifford algebra, gauge
symmetries, and the action of the world. In section 3, an additional ternary Clifford al-
gebra is defined. The Majorana Higgs sector, flavor mixing, and 750 Gev diphoton res-
onance are discussed. In section 4, we study electroweak Higgs sector. In section 5, we
touch upon the topic of grand unification. In the last section we draw our conclusions.
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2 Action of the World

2.1 6D Clifford Algebra

We begin with a review of orthogonal Clifford algebra C`0,6. It is defined by anticommu-
tators of orthonormal vector basis (γj,Γj; j = 1, 2, 3)

[γj, γk] =
1

2
(γjγk + γkγj) = −δjk, (1)

[Γj,Γk] = −δjk, (2)
[γj,Γk] = 0, (3)

where j, k = 1, 2, 3. All basis vectors are space-like. There are
(

6
k

)
independent k-vectors.

The complete basis for C`0,6 is given by the set of all k-vectors. Any multivector can be
expressed as a linear combination of 26 = 64 basis elements.

Two trivectors

γ0 = Γ1Γ2Γ3, (4)
Γ0 = γ1γ2γ3 (5)

square to 1, so they are time-like. The orthonormal vector-trivector basis {γa, a = 0, 1, 2, 3}
defines space-time Clifford algebra C`1,3, with

ηab = 〈γaγb〉 =


+1, 0, 0, 0
0,−1, 0, 0
0, 0,−1, 0
0, 0, 0,−1

 , (6)

where 〈· · · 〉 means scalar part of enclosed expression. The reciprocal vectors {γa} are
defined by

γaηab = γb, (7)

thus
〈γaγb〉 = δab . (8)

Here we adopt the summation convention for repeated indices.
The unit pseudoscalar

i = Γ1Γ2Γ3γ1γ2γ3 = γ0γ1γ2γ3 = γ0Γ0 (9)

squares to −1, anticommutes with odd-grade elements, and commutes with even-grade
elements.

Reversion of a multivector M ∈ C`0,6, denoted M̃ , reverses the order in any product of
vectors. For any multivectors M and N , there are algebraic properties

(MN)˜ = ÑM̃, (10)
〈MN〉 = 〈NM〉 . (11)
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The magnitude of a multivector M is defined as

|M | =
√
〈M †M〉, (12)

where
M † = −iM̃i, (13)

is the Hermitian conjugate.

2.2 Algeraic Spinor

Algebraic spinor ψ ∈ C`0,6 is a multivector , which is expressed as a linear combination
(with Grassmann odd coefficients) of all 26 = 64 basis elements.

Spinors with left/right chirality correspond to odd/even multivectors

ψ = ψL + ψR, (14)

ψL =
1

2
(ψ + iψi) (15)

ψR =
1

2
(ψ − iψi). (16)

A projection operator squares to itself. Idempotents are a set of projection operators

P0 =
1

4
(1 + iJ1 + iJ2 + iJ3) =

1

4
(1 + iJ), (17)

P1 =
1

4
(1 + iJ1 − iJ2 − iJ3), (18)

P2 =
1

4
(1− iJ1 + iJ2 − iJ3), (19)

P3 =
1

4
(1− iJ1 − iJ2 + iJ3), (20)

Pq = P1 + P2 + P3 =
1

4
(3− iJ), (21)

P± =
1

2
(1± Γ0Γ3), (22)

where

J1 = γ1Γ1, J2 = γ2Γ2, J3 = γ3Γ3, (23)
J = J1 + J2 + J3, (24)
P0 + P1 + P2 + P3 = P0 + Pq = 1, (25)
PaPb = δab, (a, b = 0, 1, 2, 3), (26)
P+ + P− = 1. (27)
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Here P0 is lepton projection operator, Pq is quark projection operator, and Pj are color
projection operators. The bivectors Jj appearing in the color projectors Pj suggest an
interesting duality between 3 space dimensions and 3 colors of quarks.

Now we are ready to identify idempotent projections of spinor

ψ = (P+ + P−)(ψL + ψR)(P0 + P1 + P2 + P3) (28)

with left-handed leptons, red, green, and blue quarks
νL = P+ψLP0,
eL = P−ψLP0,
uL = P+ψLP1 + P+ψLP2 + P+ψLP3 = P+ψLPq,
dL = P−ψLP1 + P−ψLP2 + P−ψLP3 = P−ψLPq,

(29)

and right-handed leptons, red, green, and blue quarks
νR = P−ψRP0,
eR = P+ψRP0,
uR = P−ψRP1 + P−ψRP2 + P−ψRP3 = P−ψRPq,
dR = P+ψRP1 + P+ψRP2 + P+ψRP3 = P+ψRPq.

(30)

2.3 Symmetries

Spinors transformation as

ψL → eΘLOR+ΘWLψLe
ΘJ−ΘSTR ,

ψR → eΘLOR+ΘWRψRe
ΘJ−ΘSTR .

(31)

It worth noting that all gauge transformations are with Grassmann even rotation angles,
so that the transformed spinors remains to be Grassmann odd.

There are Lorentz SO(1, 3) gauge transformations

{γaγb} ∈ ΘLOR, (a, b = 0, 1, 2, 3, a 6= b), (32)

weak isospin SU(2)L gauge transformations acting on left-handed fermions

{1

2
Γ2Γ3,

1

2
Γ3Γ1,

1

2
Γ1Γ2} ∈ ΘWL, (33)

weak U(1)R gauge transformation acting on right-handed fermions

{1

2
Γ1Γ2} ∈ ΘWR, (34)

J U(1) gauge transformation

{1

6
J} ∈ ΘJ , (35)
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and strong SU(3) gauge transformations
T1, T2, T3,
T4, T5,
T6, T7,
T8

 =


1
4
(Γ1Γ2 + γ1γ2), 1

4
(Γ1γ2 − γ1Γ2), 1

4
(Γ1γ1 − Γ2γ2),

1
4
(Γ3Γ1 + γ3γ1), 1

4
(Γ3γ1 − γ3Γ1),

1
4
(Γ2Γ3 + γ2γ3), 1

4
(Γ2γ3 − γ2Γ3),

1
4
√

3
(Γ1γ1 + Γ2γ2 − 2Γ3γ3)

 ∈ ΘSTR.

(36)
It is remarkable that the gauge groups contain both gravitational (ΘLOR) and internal

gauge transformations.
After symmetry breaking of ΘWR, ΘWL, and ΘJ via Majorana and electroweak Higgs

bosons, which will be detailed in later sections, the remaining electromagnetic U(1) sym-
metry is a synchronized double-sided gauge transformations

ψ → e
1
2
εEΓ1Γ2ψe

1
6
εEJ . (37)

where a shared rotation angle εE synchronizes the double-sided gauge transformations.
Thanks to the properties

1

6
JP0 = −1

2
iP0,

1

6
JPj =

1

6
iPj,

1

2
Γ1Γ2P± = ∓1

2
iP±,

(38)

electric charges qk as
e

1
2

Γ1Γ2ψke
1
6
J = ψke

qki (39)

are calculated as qk = 0,−1, 2
3
, and−1

3
for neutrino, electron, up quarks, and down quarks,

respectively. Because the product of lepton projector P0 with any generator in color alge-
bra (36) is zero P0Tk = 0, leptons are invariant under color gauge transformations.
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2.4 Gauge Field 1-Forms, Gauge-Covariant Derivatives, and Curvature
2-Forms

Gauge fields are Clifford-valued 1-forms (Clifforms with Grassmann even coefficients) on
4-dimensional space-time manifold (xµ, µ = 0, 1, 2, 3)

e = eµdx
µ = eaµγadx

µ, (40)

ω = ωµdx
µ =

1

4
ωabµ γaγbdx

µ ∈ ΘLOR, (41)

WL = WLµdx
µ =

1

2
(W 1

LµΓ2Γ3 +W 2
LµΓ3Γ1 +W 3

LµΓ1Γ2)dxµ ∈ ΘWL, (42)

WR = WRµdx
µ =

1

2
W 3
RµΓ1Γ2dx

µ ∈ ΘWR, (43)

C = Cµdx
µ =

1

6
CJ
µJdx

µ ∈ ΘJ , (44)

G = Gµdx
µ = Gk

µTkdx
µ ∈ ΘSTR, (45)

where e is vierbein, ω is gravity spin connection, G is strong interaction, and the rest are
electroweak related interactions.

The vierbein field e acts like space-time frame field, which is essential in building all
actions as diffeomorphism-invariant integration of 4-forms on 4-dimensional space-time
manifold. The space-time manifold is initially without metric. It’s the vierbein field which
gives notion to metric

gµν = 〈eµeν〉 = eaµe
b
νηab. (46)

Local gauge transformations are coordinate-dependent gauge transformations. Gauge
fields obey local gauge transformation laws

e(x) → eΘLOR(x)e(x)e−ΘLOR(x), (47)

ω(x) → eΘLOR(x)ω(x)e−ΘLOR(x) − (deΘLOR(x))e−ΘLOR(x), (48)

WL(x) → eΘWL(x)WL(x)e−ΘWL(x) − (deΘWL(x))e−ΘWL(x), (49)

WR(x) → WR(x)− (deΘWR(x))e−ΘWR(x), (50)

C(x) → C(x)− e−ΘJ (x)(deΘJ (x)), (51)

G(x) → eΘSTR(x)G(x)e−ΘSTR(x) + eΘSTR(x)(de−ΘSTR(x)) (52)

where d = dxµ∂µ.
It’s worth emphasizing that gravity related fields e(x) and ω(x) are treated as gauge

fields with local gauge transformation properties, as the rest Yang-Mills gauge fields.
Gauge-covariant derivatives of spinor fields ψL/R(x) are defined by

DψL = (d+ ω +WL)ψL + ψL(C −G), (53)
DψR = (d+ ω +WR)ψR + ψR(C −G). (54)
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Here the connection fields are defined to absorb the coupling constants. The gravitational
spin connection ω is essential in maintaining local Lorentz covariance of DψL/R.

We introduce gauge curvature 2-forms by applying the covariant derivative to the
0-form spinor ψ and then to the 1-form spinor Dψ

D(DψL/R) = (d+ ω +WL/R)DψL/R −DψL/R(C −G)

= (R + FWL/WR)ψL/R(FJ − FSTR),
(55)

where gravity, left/right weak, J , and Strong force curvature 2-forms are

R = dω + ω2 =
1

2
Rµνdx

µdxν , (56)

FWL = dWL +W 2
L =

1

2
FWLµνdx

µdxν , (57)

FWR = dWR =
1

2
FWRµνdx

µdxν , (58)

FJ = dC =
1

2
FJµνdx

µdxν , (59)

FSTR = dG+G2 =
1

2
FSTRµνdx

µdxν . (60)

F µνk is defined by
F µνkηµαηνβ = F k

αβ, (61)

where k enumerates the Clifford components of each gauge field.

2.5 Gauge- and Diffeomorphism-Invariant Action of the World

The local gauge- and diffeomorphism-invariant action of the world is

SWorld =SSpinor−Kinetic

+SMajorana−Y ukawa + SMajorana−Higgs

+SElectroweak−Y ukawa + SElectroweak−Higgs

+SGravity + SY ang−Mills.

(62)

The spinor kinetic action is now written down as

SSpinor−Kinetic ∼
∫ 〈

ψ̄Lie
3DψL + ψ̄Rie

3DψR
〉
, (63)

where e3 is vierbein 3-form, and ψ̄L/R is defined as

ψ̄L/R = ψ†L/Rγ0 = −iψ̃L/Riγ0 = ∓ψ̃L/Rγ0. (64)

Here outer products between differential forms are implicitly assumed.
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One can write down the action for gravity as

SGravity ∼
∫ 〈

ie2(R +
Λ

24
e2)

〉
, (65)

where e2 is vierbein 2-form, R = dω + ω2 is spin connection curvature 2-form, and Λ is
cosmological constant.

The Yang-Mills action is written as

SY ang−Mills = SWL + SWR + SJ + SSTR,

SWL ∼
∫ 〈

(e2FWL)2
〉
/
〈
ie4
〉
,

SWR ∼
∫ 〈

(e2FWR)2
〉
/
〈
ie4
〉
,

SJ ∼
∫ 〈

(e2FJ)2
〉
/
〈
ie4
〉
,

SSTR ∼
∫ 〈

(e2FSTR)2
〉
/
〈
ie4
〉
,

(66)

where e4 is vierbein 4-form.
The Clifford algebra elements, which are related to left-(e, ω, WL, WR) and right-(C,

G)sided gauge fields, are formally assigned to two sets of Clifford algebras in Yang-Mills
action (and other actions without spinor fields). Elements from different sets formally
commute with each other. Here 〈· · · 〉means scalar part of both sets.

It’s understood that 4-form factor d4x in one of e2F in each Yang-Mills term should be
canceled out by 4-form factor d4x in the denominator before any further outer multiplica-
tion of differential forms as ∫ 〈

e2F

〈ie4〉
e2F

〉
, (67)

In this way, the Yang-Mills action is a diffeomorphism-invariant integration of 4-form on
4-dimensional space-time manifold.

There is no explicit Hodge dual in Yang-Mills action. Vierbein plays the role of Hodge
dual, when it acquires non-zero VEV in the case of flat space-time, which will be discussed
in next section.

Higgs field related portion of the actions will be subjects of later chapters.

2.6 Local Lorentz Symmetry Breaking and Minkowskian space-time

Up to this point, the action of the world is constructed in curved space-time, with space-
time dependent vierbein and spin connection. In a vacuum with zero cosmological con-
stant Λ = 0, vierbein field e acquires a non-zero Minkowskian flat space-time VEV

< 0|e|0 >= δaµγadx
µ, (68)
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while VEV of spin connection is zero

< 0|ω|0 >= 0. (69)

The soldering form δaµγadx
µ breaks local Lorentz gauge invariance and diffeomor-

phism invariance. The action of the world is left with a residual global Lorentz symmetry.
With the substitution of vierbein and spin connection with their VEVs, the spinor ki-

netic action(63) in flat Minkowskian space-time can be rewritten as

SSpinor−Kinetic =

∫ 〈
ψ̄Lγ

µDµψL + ψ̄Rγ
µDµψR

〉
d4x, (70)

where
DµψL/R = (∂µ +WL/Rµ)ψL/R + ψL/R(Cµ −Gµ). (71)

Similarly, the Yang-Mills action(66) can be rewritten as

SY ang−Mills =− 1

4g2
WL

∫
F k
WLµνF

µνk
WLd

4x

− 1

4g2
WR

∫
FWRµνF

µν
WRd

4x

− 1

4g2
J

∫
FJµνF

µν
J d4x

− 1

4g2
STR

∫
F k
STRµνF

µνk
STRd

4x,

(72)

where gWL, gWR, gJ , and gSTR are dimensionless gauge coupling constants.
In the following chapters, we will stay with local Lorentz gauge invariant curved

space-time formulation.

2.7 Relation to Conventional Matrix Formulation

A map [11] can be constructed by placing the Dirac column spinor ψ̂ in one-to-one corre-
spondence with the algebraic spinor. And the mappings for the operators are

γ̂µψ̂ ↔ γµψ, (µ = 0, 1, 2, 3) (73)

îψ̂ ↔ ψi, (74)

γ̂5ψ̂ ↔ −iψi (75)

where î is the conventional unit imaginary number, and γ̂µ and γ̂5 are the Dirac matrix
operators.

We will not go into the details of further mappings in this paper.
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3 Flavor Structure, Majorana Higgs, and 750 Gev Diphoton
Resonance

3.1 Ternary Clifford Algebra and Flavor Projection Operators

With the purpose of studying 3 generations of fermions, we turn to another kind of Clif-
ford algebra involving ternary communication relationships rather than the usual binary
ones. Let’s consider ternary C`T1, which is defined by

[ζ, ζ, ζ] = ζ3 = 1, (76)

with ζ commuting with C`0,6

ζγj − γjζ = 0, (77)
ζΓj − Γjζ = 0. (78)

Flavor projection operators are define by

PG1 =
1

3
(1 + eθ

′+θζ + e−θ
′−θζ2) (79)

=
1

3
P0(1 + ζ + ζ2) +

1

3
Pq(1 + e−θζ + eθζ2), (80)

PG2 =
1

3
(1 + eθ

′
ζ + e−θ

′
ζ2) (81)

=
1

3
P0(1 + e−θζ + eθζ2) +

1

3
Pq(1 + eθζ + e−θζ2), (82)

PG3 =
1

3
(1 + eθ

′−θζ + e−θ
′+θζ2) (83)

=
1

3
P0(1 + eθζ + e−θζ2) +

1

3
Pq(1 + ζ + ζ2), (84)

where

PG1 + PG2 + PG3 = 1, (85)
PGjPGk = δjk, (j, k = 1, 2, 3), (86)

θ =
2π

3
i, θ′ =

2π

3
I, (87)

I =
1

2
(i+ J), I2 = −1, (88)

and P0 and Pq are lepton and quark projection operators, respectively.
We label 3 generations of spinors as ψL/Rj valued in C`0,6. The spinor kinetic action

involves 3 families of fermions as

SSpinor−Kinetic ∼
∫ 〈

ψ̄Ljie
3DψLjPGj + ψ̄Rjie

3DψRjPGj
〉
, (89)
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without flavor-mixing cross terms. Here 〈· · · 〉means scalar part of both C`0,6 and C`T1.
Flavor-mixing is induced via Majorana Higgs fields, which is the subject of next sec-

tion.

3.2 Majorana Higgs, Majorana-Yukawa Action, and Flavor Mixing

We define Higgs fields in the general sense that they are 0-form (not gauge connection
1-form fields) boson fields with possible symmetry-breaking VEVs. They may or may not
be invariant under local Lorentz gauge transformations.

The isospin and Lorentz singlet Majorana Higgs field is

φMAJ = φ+ + φ−, (90)

and φ± are C`0,6 odd multivectors obeying gauge transformation rules

φ± → e∓Θ̌WR−ΘJ+ΘSTRφ±e
±Θ̌WR+ΘJ−ΘSTR , (91)

where

Θ̌WR =
1

2
εWRi (92)

shares rotation angle εWR with

ΘWR =
1

2
εWRΓ1Γ2. (93)

Each Majorana Higgs field can be broken down into two sectors as

φ+ = φν + φu, (94)

φ− = φe + φd, (95)

with color singlet φν and φe valued in Clifford space spanned by 2 trivectors

{γ0P0,Γ0P0}, (96)

and φu and φd valued in Clifford space spanned by 12 trivectors

{γ0Pq,Γ0Pq, γ0T2,Γ0T2, γ0T3,Γ0T3, γ0T5,Γ0T5, γ0T7,Γ0T7, γ0T8,Γ0T8}. (97)

The neutrino and electron Majorana Higgs fields φν and φe transform as

φν → e−Θ̌WR−ΘJφνeΘ̌WR+ΘJ , (98)

φe → e+Θ̌WR−ΘJφee−Θ̌WR+ΘJ , (99)
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while up quark and down quark Majorana Higgs fields φu and φd transform as

φu → e−Θ̌WR−ΘJ+ΘSTRφueΘ̌WR+ΘJ−ΘSTR , (100)

φd → e+Θ̌WR−ΘJ+ΘSTRφde−Θ̌WR+ΘJ−ΘSTR . (101)

We can write Majorana-Yukawa action of right-handed fermions as

SMajorana−Y ukawa ∼ yνMAJjk

∫ 〈
ν̄Rje

4Γ2Γ3νRkPGjφ
νPGk

〉
,

+yuMAJjk

∫ 〈
ūRje

4Γ2Γ3uRkPGjφ
uPGk

〉
,

+yeMAJjk

∫ 〈
ēRje

4Γ2Γ3eRkPGjφ
ePGk

〉
,

+ydMAJjk

∫ 〈
d̄Rje

4Γ2Γ3dRkPGjφ
dPGk

〉
,

(102)

where yνMAJjk, y
u
MAJjk, y

e
MAJjk, and ydMAJjk are Majorana-Yukawa coupling constants.

Since Majorana Higgs fields commute with P0/q and anticommute with i, there are
properties

PG1φ
ν/e = φν/ePG1,

PG2φ
ν/e = φν/ePG3,

PG3φ
ν/e = φν/ePG2,

PG1φ
u/d = φu/dPG2,

PG2φ
u/d = φu/dPG1,

PG3φ
u/d = φu/dPG3,

(103)

according to the definition of flavor projection operators (80, 82, 84). Therefore, there
are flavor-mixing terms in the Majorana-Yukawa action between 2nd and 3rd generation
right-handed leptons as well as between 1st and 2nd generation right-handed quarks.

As φν acquires a non-zero VEV, which will be investigated in next section, flavor mix-
ing between 2nd and 3rd generation right-handed neutrinos is more salient. Higher or-
der corrections can introduce further mixing between generations. One may potentially
couple above effects with appropriate choices of Majorana- and electroweak-Yukawa cou-
pling constants to explain the quite different patterns of CKM and PMNS matrices.

3.3 Majorana Higgs Action, Symmetry breaking, and Majorana Mass

Majorana Higgs action reads

SMajorana−Higgs = SMajorana−Higgs−Kenetic − VMajorana−Higgs, (104)

13



with
SMajorana−Higgs−Kenetic(φ

ν) ∼
∫ 〈

(e3Dφν)2
〉
/
〈
ie4
〉

VMajorana−Higgs(φ
ν ,−µ2

ν , λν) ∼
∫

(−µ2
ν |φν |2 + λν |φν |4)

〈
ie4
〉
,

(105)

and
SMajorana−Higgs−Kenetic(φ

u), VMajorana−Higgs(φ
u,+µ2

u, λu),

SMajorana−Higgs−Kenetic(φ
e), VMajorana−Higgs(φ

e,+µ2
e, λe),

SMajorana−Higgs−Kenetic(φ
d), VMajorana−Higgs(φ

d,+µ2
d, λd),

(106)

where

Dφν = (d− W̌R − C)φν + φν(W̌R + C), (107)

Dφu = (d− W̌R − C +G)φu + φu(W̌R + C −G), (108)

Dφe = (d+ W̌R − C)φe + φe(−W̌R + C), (109)

Dφd = (d+ W̌R − C +G)φd + φd(−W̌R + C −G), (110)

W̌R = W̌Rµdx
µ =

1

2
W 3
Rµidx

µ (111)

Notice that φν has negative−µ2
ν , while the rest have positive +µ2

u,+µ
2
e, and +µ2

d. It means
that φν acquires a non-zero VEV via spontaneous symmetry breaking

< 0|φν |0 >=
1√
2
υνe

αiΓ0P0 =
1√
2

µν√
λν
eαiΓ0P0, (112)

while there is no spontaneous symmetry breaking for φu, φe, and φd.
After replacing φν , φu, φe, and φd with their VEVs, the Majorana-Yukawa action re-

duces to
SMajorana−Y ukawa ∼

∫ 〈
ν̄Rje

4Γ2Γ3νRkPGjMjkΓ0P0PGk
〉
, (113)

with Majorana masses

Mjk = yνMAJjk

1√
2
υν , (114)

where the eαi phase factor is canceled out via a global rotation of spinor

ψ → ψe−
1
2
αi. (115)

Neutrino Majorana masses are much heavier than Neutrino Dirac masses, if we as-
sume

yνMAJυν >> yυ (116)

where constants y and υ are electroweak Higgs section counterparts, which will be de-
fined in later section. Because of the hierarchy, very small effective masses are generated
for neutrinos, known as seesaw mechanism.
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Now we express gauge fields W 3
R and CJ in terms of B and Z ′

W 3
Rµ = Bµ + (cosθ′W )2Z ′µ,

CJ
µ = Bµ − (sinθ′W )2Z ′µ,

(117)

where
cosθ′W =

gWR

gZ′
,

sinθ′W =
gJ
gZ′

.

gZ′ =
√
g2
WR + g2

J

(118)

Gauge field B remains massless with an effective coupling of

gB =
gWRgJ
gZ′

, (119)

while gauge field Z ′ acquires a mass from neutrino part of the Majorana Kinetic action

MZ′ =
1

2
υνgZ′ . (120)

3.4 LHC 750 Gev Diphoton Resonance as Majorana Higgs Loops

If we assume that υν >> υ, gauge boson Z ′ would be too heavy to be detected at elec-
troweak energy scale. The rest gauge fields interacting with Higgs fields (via 108, 109,
and 110) are B (interacting with φu, φe, and φd) and G (interacting with φu and φd).

The LHC 750 GeV diphoton resonance[1, 2] may be explained by Majorana Higgs bo-
son loops, with the involvement of φu or both φu and φd. Since φu and φd directly interact
with B and gluons G, no further extended intermediary particle content is needed. The
resonance is produced in gluons fusion, and then decays to two B bosons. There can
be numbers of internal B and G interaction lines within each loop and between loops.
Gauge field B contains massive gauge field Z (upon electroweak symmetry breaking)
and massless electromagnetic gauge field A. Thus we are expecting detection of reso-
nance decaying to Z bosons as well, in addition to decaying to photons.

Top quark is the heaviest quark, hence with the largest electroweak-Yukawa coupling
constant. If Majorana-Yukawa coupling constant of top quark yuMAJ33 is large as well, it
will enduce internal top quark loops (via yuMAJ33t̄RΓ2Γ3tRφ

u processes) for each of the two
lines of a given Majorana Higgs loop. Therefore the whole diphoton resonance involves
four underlying top quarks. A crude approximation suggests that the diphoton resonance
mass is 4 times the top quark mass 173 Gev, which is not far off. The Majorana Higgs
mass is roughly twice of top quark mass or half of the diphoton resonance mass, which is
estimated to be around 346-375 Gev.
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3.5 Composite Majorana Higgs and Dynamical Symmetry Breaking

The entire Higgs sector might be just an effective, Ginzbrug-Landay-type, description of
the low energy physics represented by composite Higgs fields. One approach is to as-
sume effective four-quark interactions strong enough to induce top quark-antiquark con-
densation into composite electroweak Higgs fields[13, 14, 15], via dynamical symmetry
breaking mechanism.

The Majorana Higgs fields might also be collective excitations of underlying compos-
ite spinors. For example, φ± could be effective representation of 4-form fields

φ̌+ =
√
yνMAJjkPGj ν̄Rje

4Γ2Γ3νRkPGk +
√
yuMAJjkPGjūRje

4Γ2Γ3uRkPGk,

φ̌− =
√
yeMAJjkPGj ēRje

4Γ2Γ3eRkPGk +
√
ydMAJjkPGj d̄Rje

4Γ2Γ3dRkPGk.
(121)

And four-spinor interactions are∫ 〈
(φ̌+)2

〉
/
〈
ie4
〉

+

∫ 〈
(φ̌−)2

〉
/
〈
ie4
〉
. (122)

4 Electroweak Higgs

4.1 Electroweak Higgs and Electroweak-Yukawa Action

Electroweak Higgs field φEW spans the whole 32 component C`0,6 even space. It obeys
gauge transformation rules

φEW → eΘLOR+ΘWLφEW e
−ΘLOR−ΘWR . (123)

Electroweak Higgs field can be broken down into three sectors as

φEW = φS + φP + φAT , (124)

with scalar φS valued in Clifford space spanned by 4 multivectors

{1,ΓjΓk; j, k = 1, 2, 3, j 6= k}, (125)

and pseudoscalar φP valued in Clifford space spanned by 4 multivectors

{i, iΓjΓk; j, k = 1, 2, 3, j 6= k}, (126)

and antisymmetric tensor φAT valued in Clifford space spanned by 4∗6 = 24 multivectors

{γaγb, γaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 0, 1, 2, 3, a 6= b}, (127)
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The scalar and pseudoscalar electroweak Higgs fields φS and φP transform as

φS/P → eΘWLφS/P e
−ΘWR , (128)

while up antisymmetric tensor electroweak Higgs field φAT transforms as

φAT → eΘLOR+ΘWLφAT e
−ΘLOR−ΘWR . (129)

Notice that φAT is not a Lorentz scalar, since it’s not invariant under local Lorentz gauge
transformations.

We can write electroweak-Yukawa action of fermions as

SElectroweak−Y ukawa ∼∫ 〈
ψ̄Ljie

4φEW (yνj νRj + yejeRj + yuj uRj + ydj dRj)iPGj
〉

+

∫ 〈
(yνj ν̄Rj + yej ēRj + yuj ūRj + ydj d̄Rj)ie

4φ̄EWψLjiPGj
〉
,

(130)

where
φ̄EW = γ0φ

†
EWγ0 = γ0φ̃EWγ0 (131)

and yνj , y
e
j , y

u
j , and ydj are electroweak-Yukawa coupling constants.

4.2 Electroweak Higgs Action, Symmetry breaking, and Dirac Mass

Electroweak Higgs action reads

SElectroweak−Higgs = SElectroweak−Higgs−Kenetic − VElectroweak−Higgs, (132)

with
SElectroweak−Higgs−Kenetic(φS) ∼

∫ 〈
(e3( ¯DφS))(e3DφS)

〉
/
〈
ie4
〉

VElectroweak−Higgs(φS,−µ2
S, λS) ∼

∫ 〈
(−µ2

S|φS|2 + λS|φS|4)ie4
〉
,

(133)

and

SElectroweak−Higgs−Kenetic(φP ), VElectroweak−Higgs(φP ,−µ2
P , λP ),

SElectroweak−Higgs−Kenetic(φAT ),

VElectroweak−Higgs(φAT ,+µ
2
AT , λAT ) ∼

∫
(µ2

AT

〈
φ̄ATφAT

〉
+ λAT

〈
φ̄ATφAT

〉2
)
〈
ie4
〉
,

(134)

where

DφP/S = (d+WL)φP/S − φP/S(WR), (135)
DφAT = (d+ ω +WL)φAT − φAT (ω +WR), (136)
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Notice that φS and φP have negative −µ2
S and −µ2

P . It means that φS and φP acquire
non-zero VEVs via spontaneous symmetry breaking

< 0|φS|0 >=
1√
2
υS =

1√
2

µS√
λS
, (137)

< 0|φP |0 >=
1√
2
υP i =

1√
2

µP√
λP
i. (138)

The situation of φAT is a bit complicated, and will be discussed in later section. Let’s for
the moment assume that its VEV is zero.

After replacing φS, φP , and φAT with their VEVs, the electroweak-Yukawa action gives
rise to complex Dirac masses

mj = yj
1√
2

(υS + υP i) = yj
1√
2
υeβi, (139)

with
υ =

√
υ2
S + υ2

P ,

tan(β) =
υP
υS
.

(140)

However the eβi phase factor can be canceled out via a global rotation of spinor

ψ → e−
1
2
βiψ, (141)

so that the fermion Dirac masses are real valued.
Since the experiments at LHC indicated only one Higgs boson with mh = 125 Gev[3,

4], there could be two scenarios. Case one is that both scalar and pseudoscalar Higgs
contributes to the electroweak symmetry breaking and their masses are degenerate

mh = mS = mP . (142)

Case two is that only one of them acquires a non-zero VEV (with negative −µ2), which is
the mh = 125 Gev Higgs. The other maintains a zero VEV (with positive µ2), which is still
waiting to be detected at LHC.

Now we express gauge fields W 3
L and B in terms of A and Z

W 3
Lµ = Aµ + (cosθW )2Zµ,

Bµ = Aµ − (sinθW )2Zµ,
(143)

where
cosθW =

gWL

gZ
,

sinθW =
gB
gZ
.

gZ =
√
g2
WL + g2

B

(144)
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Electromatic field A remains massless with an effective coupling of

gA =
gWLgB
gZ

=
gWLgWRgJ√

gWLgWR + gWLgJ + gWRgJ
, (145)

while gauge field Z acquires a mass

MZ =
1

2
υgZ . (146)

4.3 Antisymmetric Tensor Higgs and Dark Spin

As stated earlier, the antisymmetric tensor electroweak Higgs field φAT is not invariant
under local Lorentz gauge transformations. Hence, its Higgs potential should involve
Lorentz invariant 〈

φ̄ATφAT
〉

=
〈
γ0φ

†
ATγ0φAT

〉
, (147)

as opposed to
|φAT |2 = φ†ATφAT , (148)

which is not Lorentz invariant.
It’s easy to see that

〈
φ̄ATφAT

〉
is not a positive definite quantity. Components of

{γaγb, γaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 1, 2, 3, a 6= b}, (149)

have positive ’metric’ and components of

{iγaγb, iγaγbΓjΓk; j, k = 1, 2, 3, j 6= k, a, b = 1, 2, 3, a 6= b}, (150)

have negative ’metric’.
A zero VEV < 0|φAT |0 > is allowed only if µ2

AT = 0. On the other hand non-zero VEV
can be acquired for any value of µ2

AT , including µ2
AT = 0. Non-zero < 0|φAT |0 > endows

the action of the world with Lorentz symmetry breaking terms like

ω < 0|φAT |0 > − < 0|φAT |0 > ω. (151)

This spin connection ω related term can contribute to space-time torsion equation. We
call it ’dark spin’. It is a counterpart of dark energy, with the former affecting space-time
torsion and the later affecting space-time curvature.

Since we know that Lorentz symmetry breaking modifications to torsion could have
gravitational and cosmological consequences[16], it’s worth further research on the above
Higgs-induced scenarios.
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5 Possible Grand Unification Symmetries

Embolden by the power of Clifford algebra, we now explore more symmetries allowed
by an algebraic spinor. Let’s begin with general gauge transformations

ψ → eΘψeΘ′
, (152)

where eΘ and eΘ′ ∈ C`0,6 are independent gauge transformations. Spinor bilinear〈
ψ̃γ0ψ

〉
(153)

is invariant if

eΘ̃γ0e
Θ = γ0, (154)

eΘ′
eΘ̃′

= 1, (155)

where we restrict our discussion to gauge transformations continuously connected to
identity. General solution of these equations includes Θ ∼ so(4, 4), which is a linear
combination of 28 gauge transformation generators

{γa, γaγb,ΓaΓb, iΓj,Γ0γjΓk; j, k = 1, 2, 3, a, b = 0, 1, 2, 3, a > b} ∈ Θ, (156)

and Θ′ ∼ sp(8), which is a linear combination of 36 gauge transformation generators of
pseudoscalar, all bivectors, and all trivectors

{i, γjΓk, γkγl,ΓkΓl, γ0,Γ0, γ0γjΓk,Γ0γjΓk; j, k, l = 1, 2, 3, k > l} ∈ Θ′. (157)

The de Sitter algebra ΘDS ∼ so(1, 4)

{γa, γaγb} ∈ ΘDS (158)

is a subalgebra of Θ.
The Clifford odd parts of Θ and Θ′ mix odd (left-handed ψL) and even (right-handed

ψR) spinors. Since we know that left- and right-handed spinors transform differentially,
only Clifford even subalgebras of Θ and Θ′ are permitted, namely

{γaγb,ΓaΓb} ∈ ΘEven ∼ so(1, 3)⊕ so(1, 3), (159)
{i, γjΓk, γkγl,ΓkΓl} ∈ Θ′Even ∼ u(1)⊕ so(6) ∼ u(1)⊕ su(4). (160)

The gauge transformations {ΓaΓb} can be further decomposed into weak transforma-
tions {ΓkΓl} and weak boost transformations {Γ0Γj}, which are counterparts of spacial
rotation {γkγl} and Lorentz boost transformations {γ0γj}.

Unitary algebra u(3) is embedded in {γjΓk, γkγl,ΓkΓl} ∼ su(4). Removing u(1) J from
u(3) defines the color algebra su(3).

Of course, the grand unification symmetries studied in this section are speculative
in nature. If there is indeed grand unification scale physics involving ΘEven and Θ′Even,
either symmetry breaking or other mechanism is needed to prevent detection of gauge
interactions related to weak boost {Γ0Γj}, pseudoscalar {i}, and quark/lepton mixing
su(4) 	 u(3). It’s an interesting topic. Nevertheless, we leave grand unification to future
research.
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6 Conclusion

We propose a Clifford algebra based model. A ternary Clifford vector is introduced along-
side 6 binary Clifford vectors. The model includes local gauge symmetries SO(1, 3) ⊗
SUL(2)⊗UR(1)⊗U(1)⊗SU(3). Both gravitational and Yang-Mills interactions are treated
as gauge fields. There are two sectors of Higgs fields as Majorana and electroweak Higgs
bosons.

The Majorana Higgs sector causes flavor-mixing between 2nd and 3rd generation
right-handed leptons as well as between 1st and 2nd generation right-handed quarks.
Higher order corrections can introduce further mixing between generations. One may
potentially couple above effects with appropriate choices of Majorana- and electroweak-
Yukawa coupling constants to explain the quite different patterns of CKM and PMNS
matrices.

The quark part of Majorana Higgs sector may be responsible for the 750 GeV diphoton
resonance via Higgs boson loops. Majorana Higgs directly interact with photons and
gluons. No further extended intermediary particle content is needed. We expect detection
of resonance decaying to Z bosons as well, in addition to decaying to photons. A crude
approximation suggests that the diphoton resonance mass is 4 times the top quark mass
173 Gev, which is not far off. The Majorana Higgs mass is roughly twice of top quark
mass or half of the diphoton resonance mass, which is estimated to be around 346-375
Gev.

The neutrino part of Majorana Higgs sector acquires a non-zero VEV via spontaneous
symmetry breaking, inducing Majorana masses of right-handed neutrinos via Yukawa-
like couplings.

The electroweak Higgs sector is composed of scalar, pseudoscalar, and antisymmetric
tensor components. Scalar and/or pseudoscalar Higgs break the electroweak symmetry,
contributing masses to fermions.

The antisymmetric tensor Higgs is not a Lorentz scalar. Its possible non-zero VEV
would break Lorentz symmetry, giving rise to ’dark spin’. ’Dark spin’ is a counterpart
of dark energy, with the former affecting space-time torsion and the later affecting space-
time curvature. Since we know that Lorentz symmetry breaking modifications to torsion
could have gravitational and cosmological consequences[16], it’s worth further research
on the Higgs-induced scenarios.
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