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Abstract 
The minimum-travel-cost algorithm is a dynamic programming algorithm to compute 

an exact and deterministic lower bound for the general case of the traveling salesman 

problem (TSP). The algorithm is presented with its mathematical proof and asymptotic 

analysis. It has a (n2) complexity. A program is developed for the implementation of the 

algorithm and successfully tested among well known TSP problems. 
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1. Introduction 
The traveling salesman problem (TSP) is defined by a given finite number of (n) cities 

along with the cost of travel between each pair of them. It is required to find the tour 

with least cost to visit all of the cities and returning to the starting point. Each city has to 

be visited once and only once (Applegate, et al. 2006). The travel costs are asymmetric 

in the sense that traveling from city a to city b does not cost the same as traveling from 

b to a. TSP is a prototype of hard combinatorial optimization problem where the 

possible solutions are (n-1)! and is considered NP-hard and NP-complete (Jungnickel 

2008), it is mathematically presented as a full graph with (n) nodes.  

The purpose of this research is to compute a minimum bound of the TSP in an exact 

algorithm for the general case of the problem which is asymmetrical data where 

𝑐𝑜𝑠𝑡(𝑢, 𝑖)  ≠ 𝑐𝑜𝑠𝑡(𝑖, 𝑢 ). The mathematical and asymptotic analysis of the algorithm are 

presented. 

 

2. Data Structure 
The TSP is composed of (n) nodes (V) and (n2) edges (E). A weighted complete directed 

graph G = (V, E), where V = {1, 2, …, n}, and 

𝐸 = {(𝑢, 𝑣)| 𝑢, 𝑣 ∈ 𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣)  ∈   ℝ}  (Bondy and Murty 1976). 

2.1 Input 

The input data, which is the cost array, is stored in array with the format [from-node, to-

node, cost]. From-node and to-node have integer type, while cost type is real. The size 

of the input array is (3 n2) and its structure is shown in Table 1. The input array is sorted 

by from-node then to-node in order to fast seek for minimum cost for each node from 

both direction. 

 

Table 1 Input data structure 

From-Node To-Node Cost 

1 1 ∞ 

… … … 

1 n … 

2 1 … 

2 2 ∞ 

2 

 



 

 

 
2.2 Minimum Travel Array 

The Minimum-Travel-Array is the main output of this algorithm. It is (5 n) in size. The 

first and second columns are for incident cost, and its incident node. Third is the ID of 

the node. This column is sorted in ascending order for all the nodes ID. Then, the fourth 

and fifth columns are the outgoing node, and its outgoing cost (Eleiche, Markus 2010). 

The algorithm is based on creating the Minimum Travel Array for the problem. It has 

the same structure as the following Table 2.  
 

Table 2 Minimum Travel Array 

Incident Cost Incident Node (u) Node ID Outgoing Node (v) Outgoing Cost 

… … 1 … … 

InCost u i v OutCost 

     

… … n … … 

 

 

3. Main Idea 
The idea of this algorithm is to divide the problem into two main subproblems, incident 

side and outgoing side. The incident side is where the node (i) is the arrival destination 

from another node (u). The outgoing side is to depart from the node (i) to another node 

(v), as shown in Figure 1. 

 

 

 
Figure 1 Incident and outgoing nodes  

 

 

… … … 

n n ∞ 
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For each subproblem, the minimum cost is determined for each node (i). From the 

incident side, the node (u) with the minimum cost (InCost) to arrive to node (i) is 

determined and stored inside the main array. From the outgoing side, the node (v) with 

the minimum cost (OutCost) to depart from node (i) is determined and stored inside the 

main array. 

𝐼𝑛𝐶𝑜𝑠𝑡 = 𝐸(𝑢, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑢, 𝑖) = min  𝐸([1, 𝑛], 𝑖) 

𝑂𝑢𝑡𝐶𝑜𝑠𝑡 = 𝐸(𝑖, 𝑣) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑖, 𝑣) = min E(𝑖, [1, 𝑛]) 

min 𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 (𝑖) = 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡 +  𝑂𝑢𝑡𝐶𝑜𝑠𝑡 

 

After the Minimum Travel Array is computed and completed, each node is analyzed 

separately to ensure if the node (i) has the same node as incident and outgoing node. 

This is not allowed by the definition of TSP, which states that each node is visited only 

once (Eleiche 2015). 

In case node(u) = node(v) for node(i), the second cost is computed from each side and 

the minimum travel cost for the node is computed, to prevent same node to be in both 

sides for node (i). 

 

3.1 Prevent same node 

In case where node (u) = node (v), same node has the minimum cost to arrive to node (i) 

and to depart from it, another computation is required. The second node (u2), from 

incident side, is selected such has it has second minimum cost (InCost2) to arrive to 

node (i), and node (v2) from outgoing side which has the second minimum cost 

(OutCost2) to depart from node (i), as shown in Figure 2. It is worth to note that 

although node (u) = node (v) = node (a), however, InCost ≠ OutCost, as the problem is 

not symmetrical. 

 
Figure 2 Second minimum cost for Node (i) 
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 𝐼𝑛𝐶𝑜𝑠𝑡2 = 𝐸(𝑢2, 𝑖) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑢2, 𝑖) = min  𝐸([1, 𝑛], 𝑖) && 𝐸(𝑢2, 𝑖) ≥  𝐸(𝑢, 𝑖) 

𝑂𝑢𝑡𝐶𝑜𝑠𝑡2 = 𝐸(𝑖, 𝑣2) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸(𝑖, 𝑣2) = min E(𝑖, [1, 𝑛]) && 𝐸(𝑣2, 𝑖) ≥  𝐸(𝑣, 𝑖) 

Let minCost = Minimum travel cost for same node case  
 

𝑚𝑖𝑛𝐶𝑜𝑠𝑡 =  𝑚𝑖𝑛[(𝐼𝑛𝐶𝑜𝑠𝑡 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2), (𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡), (𝐼𝑛𝐶𝑜𝑠𝑡2
+ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2)] 

 
Case (1): 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = (𝐼𝑛𝐶𝑜𝑠𝑡 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2) 

In this case, the Minimum-Travel-Array will be filled as follows [InCost, 

u,i,v2,OutCost2]. 

Case (2): 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = (𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡) 

In this case, the Minimum-Travel-Array will be filled as follows [InCost2, 

u2,i,v,OutCost]. 

Case (3): 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = (𝐼𝑛𝐶𝑜𝑠𝑡2 + 𝑂𝑢𝑡𝐶𝑜𝑠𝑡2) 

In this case, the Minimum-Travel-Array will be filled as follows [InCost2, 

u2,i,v2,OutCost2]. 

 

4. Minimum bound Algorithm for TSP 

 
Input: A weighted complete directed graph G = (V, E), where V = {1, 2, …, n}, and 

𝐸 = {(𝑢, 𝑣)| 𝑢, 𝑣 ∈ 𝑉} 𝑎𝑛𝑑 {𝑐𝑜𝑠𝑡(𝑢, 𝑣)  ∈   ℝ} such that { 𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≥ 0} and 

𝑐𝑜𝑠𝑡(𝑢, 𝑣) ≠  𝑐𝑜𝑠𝑡(𝑣, 𝑢) 

 

Output: The minimum travel cost array for each vertex and the minimum lower bound 

for the cost to visit each vertex in V only once. 

 

1. Class MinTravel{InCost, From_Node, Node_ID, To_Node , OutCost} 
2. For each vertex   i ∈ V   
3.      MinTravel[i,3]  ← i     
4.       MinTravel[i,2]  ← u of minimum cost of  E’ =  {(u, i)|u ∈ V} 
5.       MinTravel[i,1]  ← minimum cost of  E’ =  {(u, i)|u ∈ V} 
6.       MinTravel[i,4]  ← v of minimum cost of  E’’ =  {(i, v)|v ∈ V} 
7.       MinTravel[i,5]  ← minimum cost of  E’’ =  {(i, v)|v ∈ V} 
8.      if (MinTravel[i,2]  ==   MinTravel[i,4]  ) then Prevent(i) 
9. TSPLowerBound() 
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Procedure Prevent(i) 

1. u2 ← u of second minimum cost of  E’ =  {(u, i)|u ∈ V} 
2. InCost2   ← second minimum cost of  E’ =  {(u2, i)|u ∈ V} 
3. v2  ← v of second minimum cost of  E’’ =  {(i, v)|v ∈ V} 
4. OutCost2 ← second minimum cost of  E’’ =  {(i, v2)|v ∈ V} 
5. C1 = MinTravel[i,1]  + OutCost2 
6. C2 = InCost2 + MinTravel[i,5] 
7. C3 = InCost2 + OutCost2 
8. C = min[C1, C2, C3] 
9. Case (1): C = C1 
10.            MinTravel[i,4]  ← v2 
11.            MinTravel[i,5]  ← OutCost2  
12.  Case (2): C = C2 
13.            MinTravel[i,2]  ← u2 
14.            MinTravel[i,1]  ← InCost2    
15. Case (3): C = C3 
16.            MinTravel[i,2]  ← u2 
17.            MinTravel[i,1]  ← InCost2    
18.            MinTravel[i,4]  ← v2 
19.            MinTravel[i,5]  ← OutCost2  

 
Procedure TSPLowerBound 

1. for i← 1 to n 
2.       Sum_in   = Sum_in   + MinTravel [i,1] 
3.       Sum_out = Sum_out + MinTravel [i,5] 
4. If (Sum_in > Sum_out)  
5.       then TSPLowerBound = Sum_in  
6.       else TSPLowerBound = Sum_out    

 
 

5. Proof 
The minimum incident cost (Incost) is the least cost to arrive to node (i), and (OutCost) 

is the least cost to depart from it. It is not possible to travel through node (i) with a cost 

less than 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 = 𝐼𝑛𝐶𝑜𝑠𝑡 +  𝑂𝑢𝑡𝐶𝑜𝑠𝑡. 

The Minimum-Travel-Array presents minimum exact cost to travel each node, and by 

summation of costs from both sides, exact minimum bound for the TSP is computed. 

Consider that : (C = a), then: 

C = 𝑎 = 𝑎 + 𝑏 − 𝑏               (𝑤ℎ𝑒𝑟𝑒 {(𝑎, 𝑏) ≥ 0 𝑎𝑛𝑑 𝑎 ≥ 𝑏 } 
C = 𝑎 = (𝑎 −  𝑏) + 𝑏          {(𝑎 −  𝑏) ≥ 0  } , then 
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C ≥ 𝑏          
 
In the previous example, (C) is the required cost for the minimum cycle and it is 

unknown, and it equals to the quantity (a). The quantity (b) is the minimum travel cost 

for each vertex and it is a known quantity. It is evident that both  {(𝑎, 𝑏) > 0 𝑎𝑛𝑑 𝑎 ≥

𝑏 } by addind and sudtracting (b) still the equation is valid, and still (a-b) is unknown 

but {(𝑎 −  𝑏) ≥ 0  }. This means that (C) must be greater than (or equal) to (b). By 

applying this concept to the minimum travel cost and assuming that the Minimum-

Travel-Array in Table 2 represents the tour of least cost, then: 

 

𝐶𝑇𝑆𝑃 =  � 𝐶𝑇𝑆𝑃−𝑖𝑛

𝑛

1

 =  � 𝐶𝑇𝑆𝑃−𝑜𝑢𝑡

𝑛

1

 

 

𝐶𝑇𝑆𝑃 =  � 𝐶𝑇𝑆𝑃−𝑖𝑛

𝑛

1

 =  �(𝐶𝑇𝑆𝑃−𝑖𝑛 −  𝐼𝑛𝐶𝑜𝑠𝑡
𝑛

1

)  + � 𝐼𝑛𝐶𝑜𝑠𝑡
𝑛

1

 

𝐶𝑇𝑆𝑃 =  � 𝐶𝑇𝑆𝑃−𝑜𝑢𝑡

𝑛

1

 =  �(𝐶𝑇𝑆𝑃−𝑜𝑢𝑡 −  𝑂𝑢𝑡𝐶𝑜𝑠𝑡
𝑛

1

)  +  � 𝑂𝑢𝑡𝐶𝑜𝑠𝑡
𝑛

1

 

 
 
In the last equation, for each vertex (i), the minimum incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) was added 

and removed which will not affect the value of the equation.  

Then, the value of the incident cost  to the vertex (i) from minimum cycle (𝐶𝑇𝑆𝑃−𝑖𝑛) is 

represented as the known minimum incident cost (𝐼𝑛𝐶𝑜𝑠𝑡) in addition to another 

quantity (𝐶𝑇𝑆𝑃−𝑖𝑛 −  𝐼𝑛𝐶𝑜𝑠𝑡). It is evident that the quantity (𝐶𝑇𝑆𝑃−𝑖𝑛) is unknown, while 

the other quantity (𝐼𝑛𝐶𝑜𝑠𝑡) is well known. 

 
𝐶𝑇𝑆𝑃  ≥   ∑ 𝐼𝑛𝐶𝑜𝑠𝑡𝑛

1  ≥ 0 ( 𝑘𝑛𝑜𝑤𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 
 
𝐶𝑇𝑆𝑃  ≥   ∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛

1  ≥ 0 ( 𝑘𝑛𝑜𝑤𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 
 
 

TSPLowerBound =

⎩
⎪
⎨

⎪
⎧ � 𝐼𝑛𝐶𝑜𝑠𝑡

𝑛

1

,   � 𝐼𝑛𝐶𝑜𝑠𝑡
𝑛

1

> � 𝑂𝑢𝑡𝐶𝑜𝑠𝑡
𝑛

1

� 𝑂𝑢𝑡𝐶𝑜𝑠𝑡
𝑛

1

, � 𝑂𝑢𝑡𝐶𝑜𝑠𝑡
𝑛

1

≥ � 𝐼𝑛𝐶𝑜𝑠𝑡
𝑛

1
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Where 
 
𝐶𝑇𝑆𝑃 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑖𝑚𝑖𝑚𝑢𝑚  𝑐𝑦𝑐𝑙𝑒 (𝑢𝑛𝑘𝑛𝑜𝑤𝑛) 
 
𝐶𝑇𝑆𝑃−𝑖𝑛  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥(𝑖)𝑓𝑟𝑜𝑚 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑖𝑚𝑖𝑚𝑢𝑚  𝑐𝑦𝑐𝑙𝑒 

𝐶𝑇𝑆𝑃−𝑜𝑢𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑡𝑜 𝑙𝑒𝑎𝑣𝑒 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥(𝑖)𝑓𝑟𝑜𝑚 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑖𝑚𝑖𝑚𝑢𝑚  𝑐𝑦𝑐𝑙𝑒  
 
𝐼𝑛𝐶𝑜𝑠𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑚𝑖𝑚𝑢𝑚  𝑐𝑜𝑠𝑡 𝑡𝑜 𝑎𝑟𝑟𝑖𝑣𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 (𝑖) 𝑓𝑟𝑜𝑚 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
 
𝑂𝑢𝑡𝐶𝑜𝑠𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑚𝑖𝑚𝑢𝑚  𝑐𝑜𝑠𝑡 𝑡𝑜 𝑑𝑒𝑝𝑎𝑟𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥(𝑖)𝑓𝑟𝑜𝑚 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
 
𝐶𝑇𝑆𝑃 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 
 
 𝐶𝑇𝑆𝑃−𝑖𝑛 , 𝐶𝑇𝑆𝑃−𝑜𝑢𝑡 𝑎𝑟𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥(𝑖) 
 
𝐼𝑛𝐶𝑜𝑠𝑡  & 𝑂𝑢𝑡𝐶𝑜𝑠𝑡 𝑎𝑟𝑒 𝑘𝑛𝑜𝑤𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥(𝑖) 
 
Then, 
 
𝐶𝑇𝑆𝑃  ≥   ∑ 𝐼𝑛𝐶𝑜𝑠𝑡𝑛

1   and  𝐶𝑇𝑆𝑃  ≥   ∑ 𝑂𝑢𝑡𝐶𝑜𝑠𝑡𝑛
1  

 
The minimum bound for the general case of TSP is the higher from sum of incident and 

outgoing cost. 

It is evident that the Minimum-Travel-Array does not represent the required least tour 

for TSP, and many nodes will have travel cost higher than their minimum-travel-cost 

within the least tour. However, the Minimum-Travel-Array is important characteristic 

for the TSP, and provides exact minimum bound that the least cost will exceed. 

 

 
6. Asymptotic Analysis and Algorithm Classification 
The Minimum Travel Cost Algorithm for the Traveling Salesman Problem has the 

following characteristics: 

1) It divides the problem into two separate subproblems: incident side and outgoing 

side, solving each one separately. 

2) The algorithm is recursive, it computes the minimum incident and outgoing cost 

for each node 

3) It has iterative part, in which for each node the minimum cost is computed for 

the whole problem 

4) It memoizes the output for each step for further use. 
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From the above characteristics, the algorithm can be classified as Dynamic 

Programming (DP) algorithm (Bertsekas 2005). 

 

6.1 Main Function asymptotic analysis 

The main function finds the minimum cost for each side for the TSP. The highest cost is 

for the minimum cost which runs (n) time for each node, making it (n2) for each side, as 

shown in Table 3. If the input array of data is not sorted, then it will cost (n3). The 

Prevent(i) function is executed only when both incident and outgoing nodes are the 

same. This can never happen in best condition and can appear at each node in worst 

condition. 

 

Table 3 Asymptotic analysis of main function 

Whole 

Problem 

Each 

Node 
Function Complexity 

Yes Yes MinTravel[i,3]  ← i     n 

Yes Yes 
MinTravel[i,2]  ← u of minimum cost of  E’ 

=  {(u, i)|u ∈ V} 
n 

Yes Yes 
MinTravel[i,1]  ← minimum cost of  E’ =  

{(u, i)|u ∈ V} 
n2 

Yes Yes 
MinTravel[i,4]  ← v of minimum cost of  E’’ 

=  {(i, v)|v ∈ V} 
n 

Yes Yes 
MinTravel[i,5]  ← minimum cost of  E’’ =  

{(i, v)|v ∈ V} 
n2 

Yes Yes if (MinTravel[i,2]  ==   MinTravel[i,4]  )  n 

May be May be Prevent(i) 
Worst condition = n2 

Best Condition = 0 

no no TSPLowerBound() n 

 

6.2 Prevent(i) asymptotic analysis 

This function computes the second minimum cost for each node (Kavitha, et al. 2008). 

Similarly to main function, the minimum second cost has cost of (n-1), as shown in 

Table 4. 
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Table 4 Asymptotic analysis for Prevent(i) function 

Each 

Node 
Function Complexity 

Yes u2 ← u of second minimum cost of  E’ =  {(u, i)|u ∈ V} 1 

Yes InCost2   ← second minimum cost of  E’ =  {(u2, i)|u ∈ V} n-1 

Yes v2  ← v of second minimum cost of  E’’ =  {(i, v)|v ∈ V} 1 

Yes OutCost2 ← second minimum cost of  E’’ =  {(i, v2)|v ∈ V} n-1 

 

6.4 TSPLowerBound() asymptotic analysis 

This function is simple and compute the total value for the minimum-travel-cost as 

shown in Table 5, by direct addition with cost of (n). 

 
 

Table 5 Asymptotic analysis for TSPLowerBound() function 

Each 

Node 
Function Complexity 

Yes Sum_in   = Sum_in   + MinTravel [i,1] n 

Yes Sum_out = Sum_out + MinTravel [i,5] n 

 
6.5 Algorithm asymptotic analysis 

The algorithm has an upper bound of O(n2) before arriving to Prevent(i) function. This 

function can be executed (n) times in worst condition and never executed in best 

condition. It has (n-1) complexity for each node separately, leading to complexity of 

(n(n-1)) same O(n2) too. 

 

 
7. Application 
A C++ program was implemented for this algorithm to test its validity among some TSP 

problems with (best) known solutions. The TSPLIB website 

(http://www.math.uwaterloo.ca/tsp/problem/outlinks.html, December 2015) provides 

sample TSP problems with best known solutions in order to test the validity of proposed 

solutions for this interesting problem. This research tested three problems which are 
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(br17, ry48p, ft53) as shown in Table 6.  The fourth problem is defined at 

(http://www.math.uwaterloo.ca/tsp/college/). 

 

Table 6 Applications of algorithm 

Problem 

Name 

Size 

(n) 

Best known 

solution 

Incident 

Cost 

Outgoing 

Cost 

Minimum 

Cost 

br17 17 39 0 24 24 

ry48p 48 14422 12987 11964 12987 

ft53 53 6905 3580 3989 3989 

College 647 647 47,149,705 25,615,500 42,777,207 42,777,207 

 

As shown in Table 6, all the four tested problems had the computed lower bound less 

than best-known-solution. This test prove practically the validity of the algorithm. 

 

8. Conclusion 
This article presented the Minimum-Travel-Cost Algorithm for computing an exact 

lower bound for the general case of Traveling-Salesman-Problem. It computes the 

minimum cost to arrive to each node and depart from it. Then, it compute the total cost 

to arrive to all nodes, and depart from all nodes. The highest from arrival and departure 

costs is the lower bound for the problem. The mathematical proof for the algorithm was 

presented. The algorithm is classified as dynamic programming algorithm with 

complexity of O(n2). The algorithm was implemented into a program and tested among 

well known cases for existing problems, and the results were consistent and validate the 

algorithm. It does not solve the Traveling-Salesman-Problem, however it provides an 

exact and deterministic lower bound for the general case. 
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