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Abstract

One common way to define spontaneous symmetry breaking involves necessarily explicit
symmetry breaking. We add explicit symmetry breaking terms to the Higgs potential, so that
the spontaneous breaking of a global symmetry in multi-Higgs-doublet models is a particular
case of explicit symmetry breaking. Then we show that it is possible to study the Higgs
potential without assuming that the local gauge SU(2)L symmetry is spontaneously broken
or not (it is known that gauge symmetries may not be possible to break spontaneously). We
also discuss the physical spectrum of multi-Higgs-doublet models and the related custodial
symmetry.

We review background symmetries: these are symmetries that despite already explicitly
broken, can still be spontaneously broken. We show that the CP background symmetry
is not spontaneously broken, based on this fact: we explain in part a recent conjecture
relating spontaneous and explicit breaking of the charge-parity (CP) symmetry; we also
relate explicit and spontaneous geometric CP-violation.

1 Introduction

There are several definitions of spontaneous breaking of global symmetries [1, 2], all are related
with the existence of disjoint1 phases in a system. In the context of statistical mechanics [1],
spontaneous symmetry breaking is often defined as a particular case of explicit symmetry break-
ing via an external source.

Let A be an algebra of operators, let G be a group of global transformations A → A.
The system’s expectation value ωJ,N is a positive linear functional ωJ,N : A → R,

J ≥ 0 is the intensity of an external source breaking the symmetry G, while N is the size of the
system.

1disjoint in the sense that a system cannot go through a phase transition by physically realizable operations
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For finite size N , the system is well behaved with continuous expectation values2 as a
function of J , i.e. for any operator A ∈ A and any symmetry β ∈ G: ωJ,N (A− β(A)) = 0 if J = 0

limJ→0 ωJ,N (A− β(A)) = 0

Definition 1 (In statistical mechanics). The spontaneous symmetry breaking of G happens
when there are finite expectation values breaking the symmetry G, for an arbitrarily small
explicit symmetry breaking, i.e.

lim
J→0
{ lim
N→∞

ωJ,N (A− β(A))} 6= 0

for some A ∈ A and some β ∈ G.

The non-null limit is possible since the (pointwise) limit of a convergent sequence of contin-
uous functions is not necessarily continuous.

Other definitions in the context of statistical mechanics do not consider an external source
and coherently are not based on the existence of expectation values that explicitly break the
symmetry (since that would not be possible by definition of the system’s expectation value
with J = 0), but are based instead on a long-range order parameter which is the expectation
value of a G-symmetric function f(A) (e.g. the modulus f(A) = |A|) of an operator A which
is translation invariant and breaks G; or on a conditional expectation value of some operator A
given some condition C = 0 that breaks the symmetry; or on a two-point correlation function
with the points at an infinite distance from each other (related with boundary conditions3) [1].
It is widely accepted that these definitions should be all equivalent to Def. 1 (e.g. in the Ising
model [1]), although it does not seem easy to prove it because the systems with or without
external source are physically different [3].

When it comes to quantum non-abelian gauge field theories, the theories themselves lack a
non-perturbative mathematical definition [4], so it is even more difficult to relate these different
definitions. By analogy with statistical mechanics, we expect that they are related—since the
correlation functions of quantum field theory can be defined as the Wick-rotation of correlation
functions of a statistical field theory [5]. In the presence of the Higgs mechanism, there is
yet another definition of spontaneous symmetry breaking, most common in the context of
perturbation theory of the Electroweak interactions:

Definition 2 (Electroweak symmetry breaking). After a suitable perturbative non-abelian
gauge fixing, the vacuum expectation value (vev) of the Higgs field is determined (up to quantum

2It is not strictly required that the expectation values are continuous for finite N to have spontaneous
symmetry breaking [2], but the systems with local interactions (e.g. the Ising model or gauge theories) share this
property. If already for finite N the expectation values would not be continuous, we could study the symmetry
breaking in the finite system which may be a much simpler problem (certainly a very different problem).

3There are yet more definitions based on an Hamiltonian formulation of statistical field theory [2] with the
boundary conditions such as the initial time playing a key role. It is widely accepted that the definitions based
on boundary conditions should be equivalent to Def. 1 [2, See Sec. 10.C].
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corrections) by one of the possible minima of the Higgs potential. The symmetries broken by
the Higgs vev are the spontaneously broken symmetries.

The Def. 2 does not seem to be physically (not to mention mathematically) equivalent to
Def. 1 in the context of the quantum Electroweak theory, since spontaneous symmetry breaking
is a non-perturbative phenomenon of the entire system which in Def. 2 is drastically simplified
to a classical problem of minimization of a polynomial [6]. Note that in Def. 2 the Higgs vev
explicitly breaks the symmetry and therefore Def. 2 should be compared with Def. 1. The
comparison with other definitions that do not involve explicit symmetry breaking vevs would
be more troublesome4, but assuming that such alternative definitions are all compatible with
Def. 1, it suffices for our purposes to compare definitions 1 and 2. One reason why Def. 2
involves explicit symmetry breaking vevs is that perturbation theory can only deal with small
perturbations of the Higgs field, which is only guaranteed if the Higgs vev is non-null5.

However, the fact is that the perturbative predictions from the Electroweak theory seem
to be a very good approximation to the existing experimental data in high-energy physics[7],
and the (non-perturbative) lattice simulations so far agree with this picture [8–10] (also for
two-Higgs-doublet models [11]). Therefore, for consistency these definitions should be related.
While we cannot give a solid proof that this is so, we can check in concrete models that the
perturbative definition 2 is consistent with the non-perturbative definition 1. The consistency
is not merely formal, but also phenomenological since non-perturbative lattice simulations [12]
and the functional renormalization group [13] are becoming increasingly relevant in the studies
of Electroweak physics and beyond, and are well established in Flavour physics and QCD.

There is a further ingredient to take into account [14]: a spontaneous breaking of local gauge
symmetry without gauge fixing may be impossible in a gauge theory such as the Electroweak
theory. The argument is based on the fact that local gauge transformations affect only a small
sized system near each space-time point and so the non-commutativity of the limits seen above
does not apply (under some assumptions on the analiticity of ωJ,N ). It can be argued that
the Higgs mechanism avoids the presence of Nambu-Goldstone bosons precisely because the
local gauge symmetry is not spontaneously broken [15, 16]. Many non-perturbative studies
support this picture [17–20]. Moreover, there is a group-theory correspondence between gauge-
invariant composite operators and the gauge-dependent elementary fields in the Electroweak
theory [16, 21] (also for two-Higgs-doublet models [22]).

The above discussion implies that there must exist specific relations between the gauge-
dependent minima of the Higgs potential and the gauge-invariant operators appearing in the
Lagrangian, for consistency reasons. That is, relations between explicit and spontaneous symme-

4The alternative definitions (e.g. boundary conditions) involve assumptions beyond the Lagrangian and so
they are more dependent on the particular Quantum Field Theory framework (e.g. perturbative/continuum or
non-perturbative/UV-cutoff, scattering processes or bound-states), and we want to use several frameworks for
phenomenology studies.

5When considering superselection sectors, we don’t deal perturbatively with a null Higgs vev, we deal with
a statistical ensemble of systems each with a non-null Higgs vev corresponding to one superselection sector and
we study each system perturbatively.
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try breaking. Some of these relations were noted recently for the CP (charge-parity) symmetry
in multi-Higgs-doublet models and were summarized in the form of a conjecture [23], previous
relations in the same context were found earlier for a specific three-Higgs-doublet model [24].

In this paper we address four problems in the context of multi-Higgs-doublet models which
as we will see are related:

• check that the non-perturbative Def. 1 of spontaneous symmetry breaking is compatible
with the usual assumptions of perturbation theory (Def. 2);

• how to study the Higgs potential and its phenomenological consequences without assuming
spontaneous symmetry breaking of the gauge symmetry SU(2)L;

• why the custodial symmetry is accidentally conserved in the Higgs potential of the Stan-
dard Model, and its relation with the physical spectrum;

• the relations mentioned above between explicit and spontaneous CP symmetry break-
ing [23, 24].

In Sec. 2 we state the assumptions we will make throughout the paper, they are an exten-
sion to multi-Higgs-models of the perturbative assumptions of Ref. [21] and do not imply that
SU(2)L-gauge symmetry is or is not spontaneously broken. In Sec. 3 we review background
symmetries: these are symmetries that despite they are already explicitly broken, can be still
spontaneously broken. In Sec. 2 we add explicit symmetry breaking terms to the Higgs potential,
so that Def. 1 of spontaneous symmetry breaking applies. Our assumptions and framework are
compatible with the usual assumptions of Electroweak symmetry breaking (Def. 2), as we show
in Sec. 5. We also show that explicit symmetry breaking implies that spontaneous symmetry
breaking is allowed, in Sec. 6. In Sec. 5 we discuss the physical spectrum of multi-Higgs-doublet
models and the related custodial symmetry. Finally in Sec. 8, we show that the CP background
symmetry is not spontaneously broken. Based on this fact we relate explicit and spontaneous
geometric CP-violation, and in Sec. 9 we explain part of the conjecture mentioned above [23].
We conclude in Sec. 10.

2 Higgs potential and minima

We consider a G-invariant Higgs potential. The SU(2)L-gauge is a normal subgroup of G. We
also assume that G/SU(2)L is a group of global transformations6. In analogy with Def. 2,
to study the Higgs potential and in particular the global symmetries which are spontaneously
broken or not, we assume that:

6Since the U(1)Y gauge symmetry is abelian and there are no Gribov-Singer ambiguities for abelian gauge
fixing (unlike for a non-abelian gauge symmetry such as SU(2)L), we can unambiguously fix the local gauge with
a gauge-fixing local term and deal only with the U(1)Y global symmetry
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• we fix the local gauge and assume that the vevs of SU(2)L-invariant operators are given
by the usual perturbative expansion, which is an expansion in: 1) the Higgs field around
one constant point of the SU(2)L-orbit for which the potential has an absolute minimum;
and 2) in the couplings of the interactions7;

• whenever there are two or more SU(2)L-orbits minimizing the Higgs potential related by
G/SU(2)L, there is spontaneous symmetry breaking of the global symmetry G/SU(2)L:
we add a small G/SU(2)L-symmetry breaking term to the Higgs potential such that only
one of the SU(2)L-orbits is the absolute minimum of the modified Higgs potential, the
perturbation expansion then implies that in the limit that the term goes to zero there are
finite vevs breaking G/SU(2)L;

• the corrections due to the interactions are calculated with usual perturbation theory (in-
cluding loops), in particular the interactions do not change which global symmetries are
spontaneously broken or not, beyond .

These are non-trivial assumptions. In the Standard Model, the SU(2)L-gauge orbit minimiz-
ing the Higgs potential is unique and therefore there is no experimental evidence in the context of
Electroweak physics, that these assumptions relating spontaneous symmetry breaking with non-
unique SU(2)L-gauge orbits are valid. Moreover these assumptions imply that the Golstone’s
theorem applies for global symmetries [2], and there is theoretical evidence that also for global
symmetries there are exceptions to the Goldstone’s theorem8. Thus more non-perturbative
studies and/or experimental data are required to support these assumptions [11, 22].

The electromagnetic symmetry U(1)em is the representation of the U(1)Y gauge symmetry in
the SU(2)L-invariant operators (coincides with the U(1)em symmetry in the usual perturbative
formulation, see Sec. 5) and we can treat it as a global symmetry after U(1)Y local gauge fixing.
Therefore, under our assumptions the U(1)em symmetry can also be spontaneously broken like
all other global symmetries if there are two SU(2)L-gauge orbit minimizing the Higgs potential

7The usual perturbative expansion is an expansion in the couplings with the mass of the W boson kept finite
(MW = gv/2) therefore it is also an expansion for large Higgs vev. The only difference with respect to the usual
perturbative expansion is that we only evaluate vevs of SU(2)L-invariant operators so we do not assume that
SU(2)L is spontaneously broken.
The vevs of the SU(2)L-gauge-invariant operators are the physical observables if the SU(2)L gauge symmetry is

not spontaneously broken, as it seems to be the case [15, 16, 21]. In the context of the perturbative formulation of
Electroweak theory, there are already studies of the (multi-)Higgs potential based on SU(2)L-invariant bilinears
of the Higgs field [25–28].
The local gauge fixing is perturbative with a local term and in a suitable gauge [21, 29] (such as the usual

gauges used in perturbation theory), we assume that the (non-perturbative) Gribov-Singer ambiguities do not
affect our results. The reference point is constant in the chosen SU(2)L × U(1)Y local gauge.

8The standard perturbative expansion is based on the λφ4 quantum theory (mexican hat potential), but in
the λφ4 quantum theory the (non-perturbatively) renormalized coupling λ is necessarily null (trivial) [5, 30]—
so the prototype of the Golstone’s theorem in the quantum field theory context does not lead to spontaneous
symmetry breaking and is itself an exception to the Goldstone’s theorem.
In general, the full quantum theory may change which symmetries are spontaneously/explicitly broken/con-

served, e.g. due to a significantly different effective potential (like in λφ4), some symmetry is not only global but
is also a local gauge symmetry, the confinement mechanism (which does not seems an exclusive of QCD [31]),
spontaneous symmetry breaking via non-Higgs fields, unknown mechanisms of symmetry breaking [32], etc.
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related by a U(1)em transformation9.
Under these assumptions, we have to solve a classical (but still non-perturbative) problem

of minimization of a polynomial invariant under a group of symmetries [6]. It is required that
the Higgs potential (just the Lagrangian is not enough) explicitly breaks the spontaneously
broken symmetries, so that the choice of one of the possible reference points related by G

uniquely depends on the explicit symmetry breaking term up to SU(2)L transformations10. If
the reference point is not unique up to G transformations, then we still make an arbitrary choice
but not one which breaks a symmetry—we will try to avoid this case, but it is possible that
two different arbitrary choices lead to compatible numerical results and it is not easy to check
a priori that the reference point is unique up to G transformations.

3 Background symmetries

Let A be an algebra of operators, let G be a group of global transformations A → A, with Gb
and Gf ⊂ Gb normal subgroups of G11.

Consider a Gf -symmetric functional ω : A → R, by definition all the symmetries conserved
by ω are explicitly conserved by all correlation functions, independently of whether the sym-
metries are spontaneously broken or not. That is, ω(A) = ω(β(A)) for all A ∈ A and all
β ∈ Gf .

The Gf -invariant operators are the representation space of the group G/Gf—we have the
homomorphism G→ G/Gf where Gf is the kernel of the homomorphism.

Consider now the functional ωB depending on a Gf -invariant background field12 B. In
analogy with Def. 1, we say that G/Gf is a background symmetry of ωB when ωB(A) =
ωβ(B)(β(A)) for all Gf -invariant A ∈ A and all β ∈ G/Gf , i.e. ωB is G/Gf -invariant up to

9We are not dependent on these assumptions to determine what would happen if the SU(2)L-gauge orbit
minimizing the Higgs potential breaks the U(1)em generator: the photon would become massive due to the abelian
Higgs mechanism—there are theoretical arguments [33] and also experimental evidence from superconductivity
where the abelian Higgs mechanism also happens. It would not depend on the U(1)Y gauge-fixing and would not
imply spontaneous breaking of the local gauge U(1)em [2]. The U(1)Y gauge-fixing merely allows us to simplify
the study by treating the U(1)Y symmetry and the remaining global symmetries in the same consistent way,
which is particularly useful to interpret the results of non-perturbative lattice studies where U(1)Y is not a local
gauge symmetry (reducing computation time) [8–10].

10It makes sense to choose the absolute minimum but that is not a priori mandatory. What is mandatory
is that the choice of the Higgs reference point from those related by G is uniquely determined by the explicit
symmetry breaking term up to SU(2)L transformations, otherwise it would be possible to have vevs breaking the
symmetry G/SU(2)L even when the explicit symmetry breaking term is exactly null which would be inconsistent
with Def. 1.

11b/f stand for background/functional for reasons which will become clear in this section.
12A spurion or (non-dynamical) background field enters in the definition of the Lagrangian but it is not a

variable of the Lagrangian. When calculating the observables, the background fields are replaced by numerical
values. It is a representation of a group of background symmetries of the Lagrangian, but there are no Noether’s
currents associated with such background symmetries if the numerical values are non-trivial. The observables are
invariant under the action of the group of the background symmetries. See Ref. [34] for details and related studies;
in the particular case that the group of true symmetries is a normal subgroup of the background symmetries
(which we is the case we are considering), then the transformations of the group of background symmetries were
called equivalence transformations in the literature [35].
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transformations of the background fields13.
As consequence of the isomorphism theorems [36], the following groups are isomorphic

G/Gb ' (G/Gf )/(Gb/Gf ) and the homomorphism G → G/Gb can be achieved in two steps:
first G → G/Gf and then G/Gf → (G/Gf )/(Gb/Gf ). This is important since we can build
operators invariant under the background group Gb using only the operators invariant under
the group of symmetries Gf that we constructed in a first step.

Soft symmetry breaking The soft symmetry breaking terms are very useful for phenomeno-
logical applications [37]. These are quadratic terms of the Higgs potential, the corresponding
parameters can be promoted to background fields, such that the symmetry which is softly bro-
ken is a background symmetry. Therefore we can study spontaneous symmetry breaking with
the procedure described in Sec. 4 and Sec. 7, in the context of softly broken symmetries.

4 Procedure to add explicit symmetry breaking terms to the
Higgs potential

The study of the spontaneous breaking of the background symmetry G/Gb in a potential V
which has SU(2)L-gauge symmetry and G background symmetry, under the assumptions of
Sec. 2 follows the procedure:

• We replace the background fields by its particular numerical values;

• We find the absolute minimum of the potential and the correspondent constant reference
point v√

2φ0 is chosen (φ†
0φ0 = 1);

• We define the SU(2)L-invariant projector on the SU(2)L-orbit of φ0: P0 =
∫
SU(2)L dg gφ0φ

†
0 g

†,
with the normalization of the Haar measure of the global group SU(2)L such that P0φ0 =
φ0.

• We modify the Higgs potential W = V + εU , where ε > 0 is arbitrarily small and U =
−v2φ†P0φ+ (φ†φ)2;

• Since the absolute minima of U is also an absolute minima of V , then the absolute minima
of W = V + εU is the absolute minima of U : which is the SU(2)L-orbit of v√

2φ0;

• We reestablish the background fields and promote the reference operator v2

2 P0 to a back-
ground field.

13There is a related definition: G/Gf is a background symmetry of ωB when for any β ∈ G there is some
h ∈ Gb such that ωB(A) = ωhβ†B(βh†(A)) for all operator A. This definition is worse, since G/Gf is not a group
when acting on Gf variant operators and a symmetry should be described mathematically by a group. We can
make these two definitions equivalent by choosing an appropriate set of background fields.
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The modified Higgs potential W is SU(2)L-gauge-invariant and it has a G background
symmetry, but it depends on one more background field (v2

2 P0) than V .
The reference operator is a background field v2

2 P0 whose numerical value depends on the
numerical value of the remaining background fields. Since the potential V is G-invariant then
VB(φ) = VgB(gφ) so its minima (thus also the reference operator VB( v√

2φ0) = VgB(g v√
2φ0))

transforms under G covariantly with respect to the remaining background fields (represented by
B) [35]. Therefore, the vacuum functional ωB,P0 has a background symmetry G, i.e. ωB,P0(A) =
ωgB,gP0g†(g†A) for any g ∈ G and operator A.

So the question is if the vevs of the operators are invariant under a G-transformation of the
numerical values of the reference operator. By construction the operator P0 breaks g ∈ G if and
only if g is explicitly broken byW . If g ∈ G conserves P0 = gP0g

†, then ωB,P0(A) = ωB,g†P0g(A)
for all A. If g ∈ G does not conserve P0, then ωB,P0(P0) 6= ωB,g†P0g(P0). In conclusion, a
transformation g ∈ G is conserved by the vevs (i.e. it is not spontaneously broken) if and only
g is explicitly conserved by the modified Higgs potential W .

We can write the vev of A as function of the numerical value of the reference operator
fA(P0) = ωB,P0(A). We say that the background symmetry Gb is conserved by the vev of
A when for any h ∈ Gb we have fA(P0) = fA(h†P0h), i.e. ωB,P0(A) = ωB,h†P0h(A). We
then say that the background symmetry G/Gb is conserved when for any g ∈ G we have
ωB,P0(A) = ωB,g†P0g(A) for all operator A whose vev conserves Gb.

Note that since the Higgs potential W has a background symmetry G, then the parameters
of the Higgs potentialW are background fields, transforming under G covariantly with φ. Under
the assumptions of Sec. 2 the interactions do not change which symmetries are spontaneously
broken or not, so that the modified Higgs potential W determines the spontaneously broken
symmetries. Therefore, considering vevs of background operators, i.e. operators involving only
background fields, suffices to determine the spontaneously broken symmetries.

This procedure and associated assumptions, were implicitly used before in the study of
global symmetries in two-Higgs-doublet models, in the context of lattice simulations [11, 22].

5 Compatibility with Electroweak symmetry breaking

In the procedure described in Sec. 4, we are not assuming that the SU(2)L-gauge symmetry
is spontaneously broken, but we are not assuming that it is not spontaneously broken either;
the assumptions made in Sec. 2 are compatible with further assumptions on gauge symmetry
breaking, and they are suitable for studies looking for evidence of the spontaneous breaking
of the SU(2)L-gauge symmetry—e.g. comparing perturbative predictions from vevs of gauge-
invariant/dependent operators with experimental results and with non-perturbative studies.

After (perturbative) local gauge fixing and neglecting Gribov-Singer ambiguities, we can
treat the SU(2)L as a global symmetry. Consider the most general Higgs potential V which
has a background symmetry G (compact group), with Gb as a normal subgroup. Assuming
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spontaneous symmetry breaking of SU(2)L, we have the Higgs vev14 ΩB,φ0(φ) = v√
2φ0, where

Ω is the SU(2)L-gauge-dependent vacuum functional. Then v√
2φ0 is a background field which

transforms under G covariantly with the remaining background fields [35], so SU(2)L is a
background symmetry of ΩB,φ0 .

In analogy with Sec. 4, g ∈ G/SU(2)L is conserved by ΩB,φ0 when ΩB,φ0(A) = ΩB,gφ0(A) for
all operator A whose vev conserves SU(2)L. In Def. 2, the Higgs vev is enough to determine the
spontaneously broken symmetries, then the SU(2)L-invariant operators which depend linearly
on the Higgs field are enough to determine the spontaneously broken transformations g ∈
G/SU(2)L. That is, we have to evaluate the vevs of the SU(2)L-invariant operators Ψ†φ,
where φ is the Higgs field and Ψ is a polynomial of the background fields and φ0. The vev is
ΩB,φ0(Ψ†φ) = v√

2Ψ†φ0.
Since v√

2φ0 is the only background field which is not SU(2)L-gauge invariant, then v√
2Ψ†φ0

depends on v√
2φ0 via P0 only—the invariant tensors of SU(2)L are the Kronecker delta and

the Levi-Civita tensor, and since the Levi-Civita is skew-symmetric it will not contribute for
products of φ0 with itself. Note that P0 is a background field in the SU(2)L-gauge-invariant
vacuum functional ωB,P0 of Sec. 4.

Therefore, a transformation g ∈ G/SU(2)L is broken (spontaneously or explicitly) in the
gauge-dependent vacuum functional Ω if and only if it is broken in the gauge-invariant vacuum
functional of Sec. 4.

We conclude that it is possible to study the Higgs potential without making assumptions
on whether the SU(2)L-gauge symmetry is conserved or spontaneously broken.

6 Explicit symmetry breaking implies that spontaneous sym-
metry breaking is allowed

6.1 Non-renormalizable potential

In this subsection we assume that the Higgs potential is a polynomial of arbitrary order. From
the point of view of the classical problem of minimization there is no reason to limit the order of
the potential—of course that the parameters must be adjusted to reproduce the experimental
data and thus the parameters of the potential will be such that they approach a fourth order
potential for sufficient small energy scale [38]. When taking into account the quantum effects,
then we are working in the framework of an effective field theory, without making assumptions
about the ultra-violet completion of the theory, which given the present experimental situation
seems appropriate [13, 39].

In the following proposition, a G-invariant Higgs potential is a polynomial of the Higgs field
φ with an arbitrary order and of the background fields.

14For instance, we can add the explicit symmetry breaking term U = − v√
2φ

†φ0 + φ†φ to the Higgs potential
V + εU , so that the minimum of the potential is unique and given by v√

2φ0.
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Proposition 3. Consider a G-invariant Higgs potential V (φ), with an absolute minimum at
φ = v√

2φ0.
There is spontaneous symmetry breaking of g ∈ G for the Higgs potential V if and only if

there is a G-invariant Higgs potential W which is not invariant under a transformation g ∈ G
of the Higgs field at φ = v√

2φ0 (i.e. W ( v√
2φ0) 6= W ( v√

2gφ0) with the background fields fixed).

Proof. Consider a G-invariant potential WB, such that WB( v√
2φ0) 6= WB(g v√

2φ0) at φ = v√
2φ0

and some g ∈ G, where B are the background fields.
If there is such Higgs potential W , then we can replace all Higgs fields by the minima

φ = v√
2φ0 and the vev of such operator ωB,P0(W ) = WB( v√

2φ0) 6= WB(g v√
2φ0) = ωB,gP0g†(W )

will break g ∈ G for the potential V . The reference operator P0 is the projector on the SU(2)L
orbit of φ0 as in Sec. 4.

Let p( v√
2φ0) = ωB,P0(p) be a real G-invariant polynomial term in P0 and in the background

fields evaluated at φ = v√
2φ0.

If there is no such Higgs potential W , then the operator p( v√
2φ0) must also be invariant

under g ∈ G, otherwise the term p(φ) could appear in a G-invariant Higgs potential and so
W would exist. Therefore if W does not exist, there is no spontaneous symmetry breaking of
g ∈ G .

In the remaining of the paper we will only consider a polynomial of a fixed order m (which
can be order m = 4 and thus a renormalizable potential). So the above proposition is not valid,
since it was assumed that terms of order larger than m could enter in the potential.

6.2 Not necessarily non-renormalizable potential

In the following proposition, a G-invariant Higgs potential is a polynomial of the Higgs field φ
with order m (where m = 4 or m > 4) and of the background fields. G includes Z2, and Z2 is
a symmetry of the potential (not only a background symmetry).

Proposition 4. If there is a G-invariant Higgs potential W which is not invariant under a
transformation g ∈ G of the Higgs field only, then there is a G-symmetric Higgs potential U
which spontaneously breaks g ∈ G.

Proof. Consider a G-invariant potential WB, such that WB( v√
2φ0) 6= WB(g v√

2φ0) for some
φ = v√

2φ0 and some g ∈ G, where B are the background fields.
We multiply the terms ofW by aφ†φ with appropriate constants a as many times as necessary

to get only terms of the same orderm as the (maximum) order ofW in φ, such that its symmetry
is still G and not larger. We further modify W adding a term proportional to (φ†φ)m/2 such
that the resulting polynomial V verifies V (φ) > 0 for any φ 6= 0.

Consider the Higgs potential: U = −yφ†φ + V (φ), and we adjust y such that v√
2φ0 is the

absolute minimum, i.e. y v√
2 = φ†

0
∂V
∂φ† (φ = v√

2φ0). Note that since V is a term of order m in φ,
we get15 V (φ) = m

2 φ
† ∂V
∂φ† (φ) so v√

2φ0 is an absolute minimum of U .
15We are assuming a complex field φ, for a real field φ we get V (φ) = mφ† ∂V

∂φ† (φ).
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Therefore U is an example of a G-symmetric Higgs potential, with an absolute minimum
v√
2φ0 breaking g ∈ G.

The fact that a Higgs potential with a background symmetryG can in principle be necessarily
invariant under a transformation g ∈ G of the Higgs field only, is related with the fact that
not all symmetries are realizable in the Higgs potential [40] and so accidental symmetries may
appear.

Note that we can play with the particular values of the parameters so to avoid spontaneous
symmetry breaking, so the fact that spontaneous symmetry breaking is allowed, does not imply
that it necessarily happens—as we will see in Sec 7 for the case of the U(1)em global symmetry.

Also, the potential U may imply that some subgroup of G (e.g. U(1)Y or SU(2)L) is also
broken by its absolute minimum, this is important if we require that U(1)em is not spontaneously
broken; or if we naively try to evaluate vevs of SU(2)L-gauge-dependent operators.

6.3 Perturbative renormalizability

We now present a simple example showing that the converse of the above proposition—i.e. if
all G-invariant Higgs potential is invariant under a transformation g ∈ G of the Higgs field only,
then there is no G-symmetric Higgs potential U which spontaneously breaks g ∈ G—is not valid
for any group G, in case we limit the G-invariant potentials to fourth order.

Consider a one-dimensional complex field φ and the potential V (φ) = −φ†φ+ 1
2(φ†φ)2. Then

the phase φ = φ0 is arbitrary at the minimum of the potential. The potential above is the most
general potential invariant under theGb = Z6 group generated by the transformation φ→ eiπ/3φ

and we can check that it is also invariant under G = U(1) generated by the transformation
φ → eiθφ with θ arbitrary. But the operator φ6 is Z6-invariant so we could explicitly break
U(1) without breaking Gb = Z6 if φ6 would be allowed to enter in the Lagrangian multiplied
by an infinitesimal term. The vev of the background operator φ6

0 would spontaneously break
G = U(1) while conserving Gb = Z6.

This example can be modified to include the U(1)Y × SU(2)L symmetry, for instance in
a two-Higgs-doublet model, with Z6 ⊂ SO(2) being a subgroup of the rotations of the two
doublets.

7 Custodial symmetry and the physical spectrum

As it was mentioned in Sec. 2, we can consider the U(1)Y gauge symmetry as a global symmetry.
In this section, we will not consider the U(1)Y gauge symmetry at all, local or global. We also
consider the Higgs field as a real representation space which enlarges the possible symmetries,
we can do it since the potential is a real function [27, 41, 42]. There are good reasons for
this: for efficiency, the lattice simulations of Electroweak physics usually do not include the
photons; the custodial accidental symmetry (which includes the global U(1)em and CP) plays
an important role in Electroweak physics, despite that it is broken by the U(1)Y gauge field; this
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apparent redundancy is important to predict correctly the number of pseudo-Goldstone bosons
after spontaneous symmetry breaking in the multi-Higgs doublet models [25–27]; moreover, we
want to study in detail the CP transformation, which necessarily affects the generator of the
U(1)Y gauge symmetry anyway16.

The group of background symmetriesG includes SU(2)L as a normal subgroup, but the outer
automorphisms of SU(2)L are trivial so G = (G/SU(2)L) × SU(2)L. Therefore (G/SU(2)L)
conserves the generators of the SU(2)L gauge group, which form an algebra of quaternions.

The maximal background group Gm is then Gm = (Sp(n)/Z2) × SU(2)L where Sp(n) is
the compact symplectic group and n is the number of Higgs doublets [27, 43]17. The maximal
background symmetry which conserves the reference operator P0 and thus it is not spontaneously
broken18 is G0 = Sp(n− 1)× SO(3), it is a normal subgroup of Gm/SU(2)L.

The elements g ∈ Sp(n) are given by the n × n real matrices Z0 (skew-symmetric) and Zj
(symmetric), such that g = exp(Z01 + Zjiσj) where iσj are Pauli matrices corresponding to
the generators of the custodial group SU(2)R. Since there are n(n− 1)/2 skew-symmetric and
n(n+ 1)/2 symmetric real matrices, the total number of generators is n(2n+ 1).

Then, the hermitian matrices are given by (H0 +Sjiσj), with H0 (symmetric) and Hj (skew-
symmetric), so we have 2n(n − 1) + n = n(2n − 1) linearly independent possibilities for Higgs
bilinears appearing in the Higgs potential. Since the invariant tensors of SU(2)L are products
of Kronecker deltas and Levi-civita tensors, then the Higgs potential only depends on the Higgs
field via Higgs bilinears.

For one Higgs-doublet Gm = (Sp(1) × SU(2)L)/Z2 = (SU(2)R × SU(2)L)/Z2. The only
Higgs bilinear is φ†φ. Therefore under the assumptions of Sec 2, the custodial symmetry (thus
also U(1)em and CP) cannot be explicitly broken or spontaneously broken since there is only
one SU(2)L-orbit.

On the other hand, for more than one Higgs doublet, there is by construction more than
one SU(2)L-orbit so we can have the Pauli matrices iσj corresponding to the custodial SU(2)R
generators appearing in the Higgs bilinears, breaking explicitly and completely the custodial
symmetry. Therefore in the context of multi-Higgs-doublet models, according to Sec. 6 there
may be also spontaneous symmetry breaking of U(1)em and/or CP, as is already well known [25–
27].

We introduce a SU(2)L-invariant unitary matrix R : R4n → R4n, related with the reference
point as (P0)kl = (R†P0R)kl = δk1δ1l (k, l = 1, ..., n), as a consequence (P0)kl commutes with the
generators of the custodial group iσj—where P0 is the projector in the reference SU(2)L-orbit
defined in Sec 4. Note that the group G0 conserves (P0).

We can then express the Higgs field as ϕ = R†φ, so the unitary matrix defines a basis for the
16In a rigorous definition of a complex representation, the imaginary unit is not affected by any transformation.

The Majorana representations [27] or the set of all present representations [35] which were used before to deal
rigorously with the CP transformation are isomorphisms of real representations.

17In Ref. [27], the same group is called Sp(2n) instead of Sp(n).
18There are symmetries which are necessarily spontaneously broken, these were studied and called frustrated

symmetries in Ref. [44].
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space of Higgs doublets, we will call it the reference basis since it is related with the reference
point ϕ0 = R†φ0 such that only the first SU(2)L doublet is non-null (ϕ0)k = δk1(ϕ0)1.

Suppose that the quadratic part of the G-invariant potential V is given by φ†Y φ and the
quartic part is (φ† ⊗ φ†)Z(φ ⊗ φ) 19. We have then the parameters Y = R†Y R and Z =
(R† ⊗R†)Z(R⊗R) and P0 (which appears in the modified potential W ).

We assume now without loss of generality, that iσjϕ0 = iτjϕ0 after gauge-fixing, where iτj
are the SU(2)L generators. From the Higgs field ϕ we can also form SU(2)L-invariant operators,
in particular the operators ϕ†

1ϕk and ϕ
†
1iσjϕk expand to the elementary fields in leading order of

the expansion around the reference point and therefore correspond to the physical Higgs bosons
appearing in the spectrum of the model, except for the would-be goldstone bosons ϕ†

1iσjϕ1

since ϕ†
1iσjϕ1 is null due to the fact that the iσj are skew-hermitian 4× 4 real matrices. Also

ϕ†
1Dµiσjϕ1 expands to the SU(2)L gauge fields and ϕ†

1Ψ and ϕ†
1iσjΨL expand to an elementary

left-handed fermion field, where Dµ is the covariant derivative involving the SU(2)L gauge fields
and ΨL is a fermionic SU(2)L doublet in the reference basis20.

8 Geometric CP-violation

Following Sec. 7, we now consider the global U(1)Y gauge symmetry as a symmetry of the
potential. The maximal group which conserves U(1)em is Gem/SU(2)L = (PSU(n)×U(1)em)o
Z2 since it must contain U(1)em as a normal subgroup, where Z2 is the CP (charge-parity)
transformation.

As we have seen, in Sec. 7 the U(1)em can be spontaneously broken. But since U(1)emoZ2 ⊂
G0, there is no spontaneous symmetry breaking of the background symmetry U(1)em o Z2.
The CP transformation Z2 is given by ϕ → −iσ1iτ1ϕ and the generator of U(1)em given by
ϕ → (iσ3 − iτ3)ϕ. Note that as in Sec 7, iσjϕ0 = iτjϕ0 after SU(2)L gauge fixing, where iτj
are the SU(2)L generators and ϕ0 is the reference point. We have then the CP-even neutral
elementary fields (ϕ0)†

1ϕk, the CP-odd neutral elementary fields (ϕ0)†
1iσ3ϕk and the (complex)

charged elementary fields (ϕ0)†
1(iσ1 − σ2)ϕk. So the imaginary unit corresponds to iσ3 and CP

acts as a complex conjugation.

Neutral vacuum Assuming now that U(1)em is a true symmetry in the reference basis, then
Ykl and Zkm ln and (P0)kl are complex tensors—i.e. they commute with iσ3. But they are not
CP-invariant unless the tensors are real because CP acts as the complex conjugation.

All phases in the reference basis come from background fields, since the Z2 (complex conju-
gation in the reference basis) background symmetry is not spontaneously broken. In this sense,
CP violation is always determined by the background symmetry G.

19For simplicity we consider a potential up to fourth order, but we could consider more orders here. See
Sec. 6.1.

20See [22] for more details on how to add the U(1)Y gauge field and the Yukawa couplings, in the case of the
two-Higgs-doublet model—the generalization for the n-Higgs-doublet model is straightforward in the reference
basis (which is the Higgs basis in two-Higgs-doublet model).

13



The group G may imply that the numerical phases of the background fields are arbitrary, or
that all numerical phases are restricted to a finite set of possibilities (see below), or even that
all the numerical phases are null (see Sec. 9). So the question now is if CP is just a background
symmetry or it is a true symmetry.then all phases in the reference basis are related and the CP
background symmetry is not s

∆(54)-symmetric three-Higgs-doublet model Geometric CP-violation involves calculable
phases [24, 35, 45–47].

The idea of spontaneous geometric CP-violation arose in a three-Higgs-doublet model, with
a ∆(54)-symmetric Higgs potential which is a polynomial of fourth order. However, it is now
known that the ∆(54)-symmetry is not enough to guarantee spontaneous geometric CP-violation
in a non-renormalizable potential beyond fourth order [48]21. Moreover, there is also explicit
geometric CP-violation [49] which shows that the root of geometric CP-violation is not the
process of minimization of a polynomial.

We describe it not as CP-violation, but as CP conservation up to a background phase. So
we are dealing with CP as a background symmetry.

We consider a three-Higgs-doublet model, with explicit symmetry Gf = SU(2)L×U(1)em×
(∆(54)/Z3). Promoting the parameters of the fourth order potential to background fields, we
have a background symmetry G = Gb o Z2, with Gb = SU(2)L × U(1)em × (Σ(216 × 3)/Z3),
Gb/Gf = A4 and G/Gb = S4 [50].

As we have seen above, there is no spontaneous symmetry breaking of the background
symmetry G/Gb = U(1)em o Z2. In the reference basis, one absolute minima is necessarily
real. Choosing such minimum as the reference point, then the phases are all in the background
fields (since there is no spontaneous violation of the background CP symmetry). On the other
hand, imposing an explicit CP symmetry to the numerical values of the background fields, it
was shown [35] that the phases of the parameters of the Higgs potential are limited to a finite
set. These are the calculable phases.

Note that if the parameters of Higgs potential are g ∈ Gf -invariant in some basis, then they
are also in the reference basis with the representation of Gf transformed to UgU †, and U is the
unitary matrix doing the basis change.

We conclude that the absence of explicit violation of the background symmetry G/Gb,
implies that G/Gb cannot be spontaneously violated. Therefore all CP-phases are in the back-
ground fields which are constrained by the imposition of a explicit CP-symmetry in the Higgs
potential.

We can then use the Higgs vev to modify the Higgs potential, using the procedure of Sec. 4.
The modified Higgs potential constitutes an example of explicit geometric CP-violation, which
is always associated to spontaneous geometric CP-violation, as consequence of the fact that
spontaneous symmetry breaking can be defined as a particular case of explicit symmetry break-

21Despite that for a large parameter region, the geometrical CP violation still holds in a non-renormalizable
potential.
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ing. In the sense of Def. 1, explicit geometrical CP-violation was necessarily present in the first
example of spontaneous geometrical CP-violation [24]. Note that there are other examples of
explicit geometrical CP-violation which do not involve the Higgs potential [49].

9 Absence of explicit CP-violation

We assume now that there are no polynomial terms which can break CP explicitly, in a Gf -
invariant potential without background fields, as it was studied in the conjecture of Ref. [23].
In all the examples considered in Ref. [23], the group of symmetries was given by G = Gf oZ2,
so there was always an order-2 CP transformation present22. We assume therefore that G =
Gf o Z2. We also assume that U(1)em is conserved by the minimum of the potential. This
can be seen as a particular case of CP-conservation up to a finite set of numerical phases (i.e.
geometric CP-violation), where the finite set is the empty set.

Proposition 1 If explicit breaking of G = Gf o Z2 (thus CP-violation) is not possible in a
Gf -symmetric Higgs potential, then there is no spontaneous CP-violation.

Proof. There is a basis where the Z2 transformation is the complex conjugation. As in Sec. 8,
if the parameters of the Higgs potential are g ∈ Gf -invariant in some basis, then they are also
in the reference basis with the representation of Gf transformed to UgU †, and U is the unitary
matrix doing the basis change. Since in the reference basis the Z2 transformation is also the
complex conjugation, then U commutes with the complex conjugation so it is a real matrix.

The absence of spontaneous symmetry breaking of the background symmetry U(1)em o Z2

(see Sec. 8), implies then that also in the reference basis the parameters of the Higgs potential
are real.

From the proposition of Sec. 6, it follows that if explicit CP-violation is possible in a Gf -
symmetric Higgs potential, then spontaneous CP-violation is possible. However, we are not
assuming the vacuum to conserve U(1)em here.

If we additionally assume that we will choose parameters of the Higgs potential such that
U(1)em is conserved by its minimum, then the terms in the Higgs potential which will be null
for a neutral vacuum correspond to Lagrange multipliers to minimize the potential [25–27]. It
is easy to see in the proof of the proposition of Sec. 6, that these terms do not lead necessarily
to spontaneous CP-violation.

Then we have to look for the terms which verify 3 conditions: break CP , conserve U(1)em
and finally are non-null at the neutral minima. If such term exists then spontaneous breaking
of CP is allowed.

22In the context of groups which are not finite and abelian, the author is not aware of any example where
G = Gf oZ2 does not hold, and no such example is discussed in Ref. [23]. Note that the particular case of finite
abelian groups was discussed fully in Ref. [23] and will not be addressed here.
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We can also consider a different potential, function only of neutral Higgs fields (the neutral
Higgs sector as in Ref. [23]). For such potential we can adapt the above discussion to show
that for G = Gf o Z2: if explicit CP-violation is not possible in the neutral Higgs sector
of a Gf -symmetric Higgs potential, then there is no spontaneous CP-violation for a neutral
vacuum. Note however that this different potential is only used as an auxiliary function to
evaluate spontaneous CP-violation, since such potential cannot appear in a SU(2)L-invariant
Lagrangian.

So we explained the conjecture of Ref. [23]), for groups including CP transformations of
order 2. However, there are more general groups involving only CP transformations of order
> 2 [51], in principle there may be models where the Proposition 1 is still valid despite that
the assumption G = Gf o Z2 does not hold. Better mathematical tools to deal with such
CP groups may help, for instance an algebraic basis of CP-pseudoscalars is not yet known for
general multi-Higgs-doublet models [51].

Note that if we assume a Higgs potential of arbitrary order, then Prop. 6.1 applies and the
condition G = Gf o Z2 is not necessary.

10 Conclusion

Dealing with concepts which are not rigorously defined (in the mathematical sense) can have
advantages with respect to an approach where every concept is rigorously defined [52]. In the
context of Electroweak physics that is necessarily the case since a rigorously defined non-abelian
gauge Quantum Field Theory does not exist yet. Therefore, assumptions play a key role.

But after making assumptions some problems are still very complicated. That is the case
of building extensions of the Standard Model23, and in particular studying the Higgs potential
(a symmetric polynomial of many variables [6]).

So we started with a very complicated and not rigorously defined problem (Electroweak
physics), then we make some assumptions, and end up with a new but still very complicated
problem (minimization of a symmetric polynomial) only this time it is a rigorously defined
problem. We should be careful: making assumptions can be used to focus on the physical
questions as much as it can be used to avoid the physical questions.

To study the Higgs potential, one option is to check what are the implications of alternative
assumptions. Such as non-perturbative assumptions—such as the ones used in lattice gauge
theory or in the functional renormalization group, which can produce complementary results [12,
13]. Or working with real representations of groups—which in a real polynomial makes sense [42]

23Using extensions of the Standard Model is a practical way to produce predictions for experiments. But
like statistical inference [53], (new) physics is not just about producing numbers. E.g. accounting all reasonable
extensions, we may have one prediction for each logical possibility [54], which is a kind of look-elsewhere effect.
Producing predictions where such effect is consistently accounted for is a hard problem (even if we use subjective
but still consistent criteria, e.g. assumptions on spontaneous symmetry breaking without enough experimental
or theoretical support).
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and it is necessary24 to deal with the custodial symmetry of the Higgs potential [25–28]. In
this paper we showed that such option does lead to progress, despite that the perturbative
Electroweak expansion is a good approximation to the experimental results.

We added explicit symmetry breaking terms to the Higgs potential, so that the spontaneous
breaking of a global symmetry in multi-Higgs-doublet models is a particular case of explicit
symmetry breaking. Then we showed that it is possible to study the Higgs potential without
assuming that the local gauge SU(2)L symmetry is spontaneously broken or not. We showed
that explicit symmetry breaking implies that spontaneous symmetry breaking is allowed. We
also discussed the physical spectrum of multi-Higgs-doublet models and the related custodial
symmetry.

We reviewed background symmetries, which despite they are already explicitly broken can
still be spontaneously broken. We showed that the CP background symmetry is not sponta-
neously broken. We then related explicit and spontaneous geometric CP-violation. We also
explained in part a recent conjecture relating spontaneous and explicit breaking of the CP
symmetry.

Our study of the CP symmetry benefited much from the insights of non-perturbative studies
and of considering real representations of groups. There are yet many unsolved problems, for
instance an algebraic basis of CP-pseudoscalars is not known for general multi-Higgs-doublet
models [51].

Therefore, the phenomenology of multi-Higgs-doublet models is not yet well understood,
assuming gauge symmetry breaking or not. Also, the usual assumption that considering the
fields as complex representations of groups suffices to study Higgs models (i.e. real representa-
tions are not needed) is not valid, since in fact it does not even suffice to study the operation
of complex conjugation (related with the CP pseudoscalars).

In conclusion, assuming gauge symmetry breaking or using only complex representations of
groups is not sufficient to study the phenomenology of multi-Higgs-doublet models.
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