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Abstract

One common way to define spontaneous symmetry breaking involves necessarily explicit
symmetry breaking. Thus, how could we have spontaneous without explicit symmetry break-
ing? We study the concept of Hidden symmetries, which are not necessarily spontaneously
broken, and its real representations on Higgs fields. Given Gp is a normal subgroup of Ga

(compact group), we proved for a multi-Higgs-doublet model that:
1) if we impose a symmetry Gp to the Higgs potential and no term exists violating Ga,

then there is no spontaneous breaking of Ga.
2) if explicit symmetry breaking of Ga is allowed while Gp is conserved, then Ga is

allowed to break spontaneously;
Using this theorem we explain a recent and related conjecture related with the CP

symmetry.

1 Introduction

There are several definitions of spontaneous breaking of global symmetries [2, 3]. In the following
common definition[2], spontaneous symmetry breaking is defined as a particular case of explicit
symmetry breaking via the external source J .

Let A be an algebra of operators, the global symmetry β is a bijective map β : A → A.
The system’s expectation value ωJ is a positive linear functional ωJ : A → R,

J ≥ 0 is the intensity of an external source breaking the symmetry β. The system has infinite
size ωJ = limN→∞ ωJ,N .

For finite size N , the system is well behaved with continuous expectation values J > 0:
ωJ,N (A− β(A)) = aJ,N 6= 0 J = 0: ω0,N (A) = ω0,N (β(A)) limJ→0 ωJ,N (A− β(A)) = 0 for some
A.

1) The spontaneous symmetry breaking happens when: limJ→0{limN→∞ ωJ,N (A−β(A))} →
a0 6= 0 and it is possible due to the fact that the limits are non-commutative if ωJ,N is continuous
but not uniformly continuous.
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Other definitions do not consider an external source [2], at least not explicitly.
In statistical mechanics, it is more or less clear that these definitions should be all equivalent

(e.g. in the Ising model [2]), although it is not easy to mathematically prove it as the systems
with or without external source are physically different [4].

When it comes to quantum non-abelian gauge field theories, the theories themselves lack a
non-perturbative mathematical definition [5], so it is even more difficult to relate these different
definitions. By analogy with statistical mechanics, we expect that they are related. In the
presence of the Higgs mechanism, there is yet another definition of spontaneous symmetry
breaking, most common in the context of perturbation theory:

2) After a suitable perturbative non-abelian gauge fixing, the vacuum expectation value of
the Higgs field is determined (up to quantum corrections) by one of the possible minima of the
Higgs potential. The symmetries broken by the vacuum expectation value of the Higgs field are
spontaneously broken symmetries.

It is not at all obvious that the last definition (2) is physically (not to mention mathe-
matically) equivalent to the first definition (1) in the context of the Electroweak theory, since
spontaneous symmetry breaking is a non-perturbative phenomenon.

However, the fact is that the perturbative predictions from the Electroweak theory seem to be
a very good approximation to the existing experimental data in high-energy physics[6], and the
lattice simulations so far agree with this picture [7–9] (also for two-Higgs-doublet models [10]).
Therefore, for consistency these definitions should be related. While we cannot give a solid proof
that this is so, we can check in concrete models that the perturbative definition is consistent
with the non-perturbative ones.

There is a further ingredient to take into account [11]: a spontaneous breaking of local gauge
symmetry without gauge fixing may be impossible in a gauge theory such as the Electroweak
theory. The argument is based on the fact that local gauge transformations affect only a small
sized system near each space-time point and so the non-commutativity of the limits seen above
does not applies (under some assumptions on the analiticity of ωJ,N (A−β(A))). It can be argued
that the Higgs mechanism avoids the presence of Nambu-Goldstone bosons precisely because
the local gauge symmetry is not spontaneously broken [12, 13]. Moreover, there is a group-
theory correspondence between gauge-invariant composite operators and the gauge-dependent
elementary fields in the Electroweak theory [9, 13, 14].

The above discussion implies that there must exist specific relations between the gauge-
dependent minima of the Higgs potential and the gauge-invariant operators appearing in the
Lagrangian, for consistency reasons. That is, relations between explicit and spontaneous sym-
metry breaking. Some of these relations were noted recently in the context of the study of
the CP symmetry in multi-Higgs-doublet models [1] and were summarized in the form of a
conjecture. We will study the concept of Hidden symmetries, which are not necessarily sponta-
neously broken, and its real representations in Higgs fields. Then we will generalize and try to
understand the recent conjecture mentioned above [1].
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2 Hidden symmetries and minima

An important remark is that the minimization of the potential is done classically. Then quantum
corrections may be added, but evaluating if spontaneous symmetry breaking is allowed or not
is always done purely classically and more importantly, only Higgs fields and the potential are
considered. Another remark is that the Higgs potential is a real function, so we have to work
with irreducible representations over the real numbers (which admit more operators than the
corresponding irreducible complex representations, in this sense they are more general than the
complex representations) [15].

Suppose we have a compact group of symmetries G. We consider a real irreducible repre-
sentation of G, φ. Also we call to the sub-groups Gp the physical group and to Ga the absent
group. Gp is a normal subgroup of Ga ⊂ G.

We now assume that we can decompose the representation space φ into a direct sum of
irreducible equivalent representations of Ga. Now we assume that every irreducible subspace of
φ conserved by Gp is also conserved by Ga. This implies that every hermitian H operator acting
on φ that is invariant under Gp is also invariant under Ga. (the converse is also true: every
hermitian operator that is conserved by Gp is proportional to the identity in each irreducible
representation of Gp— by the Schur’s lemma over the real numbers— if all of them are conserved
by Ga that implies that Ga leaves invariant the projection operators defining the subspace of
each irreducible representation of Gp and that we can decompose the representation space φ
into a direct sum of irreducible equivalent representations of Ga).

We write the most general quartic potential symmetric under Gp, V (φ) and therefore verify
that it is also invariant under Ga. Then the group of background symmetries Gb is the subgroup
of G such that Ga, not Gp is a normal sub-group. That is because we cannot tell the difference,
whether we wanted or not for the symmetry Ga to be conserved, as the potential is exactly
the same. The parameters of the potential will be an irreducible representation of Gb, with Ga

acting trivially.
Then the Higgs basis will necessarily conserve Ga. These symmetries are hidden in the

problem of minimization. They are not broken by the bilinears in the Higgs basis. This is what
lies behind the fact that the Higgs mechanism in the SM involves a minimization problem, that
does not lead necessarily to the breaking of the SU(2)R × SU(2)L → SO(3) [12–14].

The coordinates of a vector space covariant under a group G are not meaningful math-
ematically (neither physically). The only relevant information we can extract from a group
representation are its invariants, in the case of the Higgs potential which only depends on Higgs
fields in one space-time point, these are the bilinears which always absorb the Ga group, thus
these symmetries are hidden at least in the Higgs potential which determines what are the
spontaneously broken symmetries.
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3 The case when explicit symmetry breaking is allowed

When the normal subgroup Gp ⊂ Ga is a hidden symmetry, suppose that explicit symmetry
breaking of Ga is possible. Then, in the Higgs basis we can have one such term breaking Ga.
That implies spontaneous symmetry breaking if in the Lagrangian basis the symmetry Ga is
conserved. Note that the terms of the Lagrangian are an irreducible representation of the group
of background symmetries Gb, therefore there are no invariant subspaces under Gb. Of course
that we can play with the parameters so to avoid spontaneous symmetry breaking, an extreme
case would be for instance setting the quadratic terms to zero.

4 Avoiding the charged vacuum

In the context of multi-Higgs-doublet models, the vacuum may break U(1)em. That is because
we are not considering all the possible terms which are invariant under SU(2)L for real irre-
ducible representations (note that the Higgs potential is a real function), we are setting some
of the terms in the potential manually to zero, such that U(1)em is conserved explicitly [16].
So, we have to work with the most general potential invariant under SU(2)L, or modify the
representation space.

The terms in the Higgs potential which will be null for a neutral vacuum are irrelevant when
evaluating spontaneous symmetry breaking at neutral minima, since changing such terms leaves
the potential invariant at the minimum (they correspond to Lagrange multipliers in the bilinear
formalism to minimize the potential). Dropping such terms is equivalent to consider a smaller
system where all the Higgs fields are aligned.

Hence, our irreducible representation space is instead two-dimensional, i.e. a real represen-
tation of U(1)Y . Then we can apply the theorem.

In order to apply the theorem to CP violation, we need to define the group that includes CP.
The theorem is valid for any subgroup of SU(n)oZ2 where n is the number of Higgs doublets,
so it is valid for any subgroup including CP [17, 18].

5 Conclusion

Consider the groups Gp the physical group and to Ga the absent group. Gp is a normal
subgroup of Ga. The Higgs field representation should be real since the potential is a real
function. Under the non-perturbative assumption that the vacuum expectation value of the
Higgs field is determined (up to quantum corrections) by one of the possible minima of the
Higgs potential, we proved for a multi-Higgs-doublet model that:
1) if we impose a symmetry Gp to the Higgs potential and no term exists violating Ga, then
there is no spontaneous breaking of Ga. 2) if explicit symmetry breaking of Ga is allowed while
Gp is conserved, then Ga is allowed to break spontaneously;
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Using this theorem we explained a recent and related conjecture [1], related with the CP
symmetry. Note that the theorem of this paper is not just valid for the breaking of the CP
symmetry, it also considers restrictions from compact groups (not necessarily finite or abelian),
unlike the mentioned conjecture [1].

Already for consistency reasons, the above theorem (modulo technical details) should be
valid: probably the most popular way to define spontaneous symmetry breaking involves nec-
essarily explicit symmetry breaking (def. 1 of the introduction). Thus, how could we have
spontaneous without explicit symmetry breaking? (1st part of theorem). Also, since we are
assuming that the spontaneous symmetry breaking is determined by the minima of the Higgs
potential, then if we allow explicit symmetry breaking of the Higgs potential we necessarily
allow spontaneous symmetry breaking, since we can redefine the field coordinates with respect
to a particular minimum that breaks explicitly the symmetry (2nd part of theorem).
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