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Abstract

This paper introduces the G4 g Double Conformal Space-Time Algebra (DCSTA). G g
DCSTA is a straightforward extension of the Gy g Double Conformal Space Algebra
(DCSA), which is a different form of the Gg o Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA). G4 8 DCSTA extends G § DCSA with spacetime boost
operations and differential operators for differentiation with respect to the pseudospa-
tial time w = ¢t direction and time t. The spacetime boost operation can implement
anisotropic dilation (directed non-uniform scaling) of quadric surface entities. DCSTA
is a high-dimensional 12D embedding of the G; 35 Space-Time Algebra (STA) and is
a doubling of the Gs 4 Conformal Space-Time Algebra (CSTA). The 2-vector quadric
surface entities of the DCSA subalgebra appear in DCSTA as quadric surfaces at zero
velocity that can be boosted into moving surfaces with constant velocities that display
the length contraction effect of special relativity. DCSTA inherits doubled forms of
all CSTA entities and versors. The doubled CSTA entities (standard DCSTA enti-
ties) include points, hypercones, hyperplanes, hyperpseudospheres, and other entities
formed as their intersections, such as planes, lines, spatial spheres and circles, and
spacetime hyperboloids (pseudospheres) and hyperbolas (pseudocircles). The doubled
CSTA versors (DCSTA versors) include rotor, hyperbolic rotor (boost), translator,
dilator, and their compositions such as the translated-rotor, translated-boost, and
translated-dilator. The DCSTA versors provide a complete set of spacetime transfor-
mation operators on all DCSTA entities. DCSTA inherits the DCSA 2-vector spatial
entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics,
and ring torus) and gains Darboux pseudocyclides formed in spacetime with the
pseudospatial time dimension. All DCSTA entities can be reflected in, and inter-
sected with, the standard DCSTA entities. To demonstrate G4 § DCSTA as concrete
mathematics with possible applications, this paper includes sample code and example
calculations using the symbolic computer algebra system SymPy.
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1 Introduction

This original research monograph!! introduces the Gy s Double Conformal Space-Time
Algebra (DCSTA) (§7), which is a straightforward extension of the Gag Double Con-
formal Space Algebra (DCSA) (§4) into spacetime. Gy g DCSA is a different form of
the Gg o Double Conformal / Darbouzx Cyclide Geometric Algebra (DCGA). Gg o2 DCGA
is introduced in the original research monograph [7| and in the published short paper
[8], and is discussed further in the papers [5] and [6]. All of the results of Ggo2 DCGA
have a similar form in G, s DCSA, and also in Gy s DCSTA at time w = ct = 0. Gy
DCSTA is a high-dimensional 12D embedding of the G, 3 Space-Time Algebra (STA) (§5).
G153 STA is introduced by HESTENES in [16]. G4 s DCSTA is an application of the G4 g
Geometric Algebra. Geometric Algebra is introduced by HESTENES and SOBCZYK in [17].
Familiarity with Geometric Algebra and Gs 2 DCGA [7] is assumed.

Ga4.8 DCSTA may offer new mathematical methods for some applications. However, the
12D high-dimensionality of DCSTA incurs high computational cost and applications may
require an efficient implementation [10] using optimized hardware and software [13] for
DCSTA. Other works on algebras similar to G4 s DCSTA may exist in the mathematical
physics literature, but no specific works essentially the same as G4 s DCSTA were known
by this author at the time of researching and writing this paper.

1.1. Revised version v5, Oct 4, 2016.



INTRODUCTION 9

Gas DCSTA (§7) is a doubling extension of the G, 4 Conformal Space-Time Algebra
(CSTA) (§6). G4 CSTA is introduced by C.J.L. DORAN and A.N. LASENBY in [3] as
the spacetime conformal group. Ga 4 CSTA (§6) embeds Gy 3 STA (§5) using stereographic
embedding and homogenization as discussed by PERWASS [20] in the context of Gy
Conformal Geometric Algebra (CGA) (chapters 1-3 in [25]) and as discussed (in French)
by ANGLES [1].

This paper is logically structured into two parts as follows.

Part I of this work is comprised of the three sections on spatial algebras,

o Gos Space Algebra (SA) (§2)
o Gy 4 Conformal Space Algebra (CSA) (§3)
o Gsg Double Conformal Space Algebra (DCSA) (§4),

which are adequate as alternatives to G APS, G4 ;1 CGA, and Gg » DCGA [7], respectively.
Part II of this work is comprised of the three sections on spacetime algebras,

o G 3 Space-Time Algebra (STA) (8§5)
o Gy 4 Conformal Space-Time Algebra (CSTA) (§6)
o Gy s Double Conformal Space-Time Algebra (DCSTA) (§7).

The algebras in Part I are spatial subalgebras of the corresponding spacetime algebras in
Part II. The material of Part I should probably be understood before reading Part II.

The following six introductory subsections define the basis vector elements that are
used throughout all six algebras. The first three subsections are a breakdown of the basis
vector elements in DCSTA (§1.1) into the basis vector elements of its subalgebras CSTA
(§1.2) and STA (§1.3). The last three subsections are a buildup of the basis vector elements
in SA (§1.4) and CSA (§1.5) into DCSA (§1.6).

1.1 DCSTA basis vector elements

Ga.s Double Conformal Space-Time Algebra (DCSTA) D (§7) has a basis of twelve ortho-
normal unit vector elements e; : 1 <7 <12 with metric matrix

mp = diag(l,—-1,-1,-1,1,-1,1,-1,-1,-1,1, —=1) =[(mp);;] = [e; - €j]. (1.1)

All basis vector elements are orthonormal unit vectors. For any two different basis vector
elements u and v, their geometric product is uv=uAv.

1.2 CSTA basis vector elements

Ga.a Conformal Space-Time Algebra (CSTA) C (§6)]3] has the six basis vector elements
v :0<i<3,e,,and e_,
2 _ 1 NS {0}
V= { -1 : ie{1,2,3} (1.2)
el =1 (1.3)
e’ = —1. (1.4)
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Go.4 Conformal Space-Time Algebra 1 (CSTA1) C' (§6) has the six basis vector elements
e 1<i<6,

. [1 :ie{1,5)
¢ = {—1 . i€1{2,3,4,6). (1.5)

Go.4 Conformal Space-Time Algebra 2 (CSTA2) C? (§6) has the six basis vector elements
0 T<i<12,

. [1 cie{r11
e = {—1 . 1€18,9,10,12}. (1.6)

CSTA1 C! and CSTA2 C? (§6) are the two major subalgebras of DCSTA D (§7). Dis-
cussions of CSTA are mostly in terms of the generic CSTA C. CSTA C, CSTA1 C!, and
CSTA2 C? correspond to each other as indicated in (1.7).

CSTA =~ CSTA1 ~ CSTA2

C ~ (! ~ (2

Yo = e = er

7 % € % eg (1.7)
Y2 = €3 = €

Y3 = ey = ey

e, = es = e

e_ = eg = e

1.3 STA basis vector elements

G135 Space-Time Algebra (STA) M (85)[16] has the five elements, called the DIRAC
gammas, v; : 1 €{0,1,2,3,5},

1 : 1e{0}
v =4 -1 :ie{1,2,3} (1.8)
(Yoy172¥3)? =T5(=—1 : i=5.

G1.3 Space-Time Algebra 1 (STA1) M (§5) has four basis vector elements e; : 1 <i <4,
.  [1 el

¢ = { —1 : ie{2,3,4}. (1.9)

G1.3 Space-Time Algebra 2 (STA2) M? (§5) has four basis vector elements e; : 7 <17 <10,

¢ = { ~1 : i€{8,9,10}. (1.10)

CSTA1 C' and CSTA2 C? (§6) embed the subalgebras STA1 M! and STA2 M? (§5),
respectively. The element ~5=1,, is the STA M unit pseudoscalar (§5.1.2). STA M also
defines the PAULI sigmas o,

o1=0, = Y10 (1.11)
O2=0y = Y20 (1.12)
O3=0: = 7Y3Y0- (1.13)
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The Gy 3 STA M (85) elements ~p, 71, 72, 7¥3 that are introduced in [16] are used in all
general discussions of STA. The STA M elements can be identified isomorphically with
either the STA1 M or STA2 M? elements, per (1.7). The elements =y, 72, and 73 can
also be denoted <, v,, and v, when emphasizing their usage as the conventional z, y,
and z spatial directions. The element 7, is the pseudospatial time w = ct direction.

1.4 SA basis vector elements
Go,s Space Algebra (SA) S (§2) has three basis vector elements ~; : 1 <i <3,

v = —1 :ie{1,2,3}. (1.14)
Go.3 Space Algebra 1 (SA1) S' (§2) has three basis vector elements e; : 2 <7 <4,

e = —1:1i€{2,3,4}. (1.15)
Go3 Space Algebra 2 (SA2) §? (§2) has three basis vector elements e; : 8 <7 <10,

e/ = —1 : i€{8,9,10}. (1.16)
SA S, SA1 8!, and SA2 S§? correspond with each other according to (1.7).

1.5 CSA basis vector elements

G1.4 Conformal Space Algebra (CSA) CS (§3) has five basis vector elements ~; : 1 <i <3,
e, and e_,

v = —1:ie{1,2,3} (1.17)
e2 =1 (1.18)
e = —1. (1.19)

G1.4 Conformal Space Algebra 1 (CSA1) CS' (§3) has five basis vector elements e; :
2<1 <6,

9 1 :1e{b
G = {—1 : ie}2}3,4,6}. (1.20)

G1.4 Conformal Space Algebra 2 (CSA2) CS? (§3) has five basis vector elements e; :
8<i<12,

, 1 :ie{1}
%= { —1 : ie€{8,9,10,12}. (1.21)
CSA CS, CSA1 CS!, and CSA2 CS? correspond with each other according to (1.7). G 4
Conformal Space Algebra (CSA) CS (§3) is very similar to the well-known G, ; Conformal
Geometric Algebra (CGA) with differences only in the signs of some expressions.

1.6 DCSA basis vector elements

Ga,s Double Conformal Space Algebra (DCSA) DS (§4) has the ten basis vector elements
of C8* and CS? (§1.5).

Ga,s DCSA (84) is very similar to Gg o DCGA [7][8][5][6], except for differences in the
signs of some expressions. Gy s DCSTA (§7) becomes Go s DCSA (§4) when all times are
zero, w=ct=0.
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2 Space Algebra (SA)

Go.s Space Algebra (SA) S is very similar to Gs Algebra of Physical Space (APS) [15].
Vectors in SA square negative (v =v -v) <0, which causes sign flips in many formulas
adapted from Gs APS, G,1 CGA (Conformal APS), or Gs 2 DCGA. While Gs 2 DCGA
embeds two Euclidean Gz APS algebras, Gy s DCSA DS and G4 5 DCSTA D embed two
anti-Euclidean Gy 3 SA algebras S and S2.

The subscript S denotes an element or operation in generic SA. The subscript S*
denotes an element or operation in SA1. The subscript S? denotes an element or operation
in SA2. In most formulas, these subscripts can simply be substituted to write formulas in
SA, SA1, and SA2. Such duplication of similar formulas in each representation is avoided
unless it adds clarity to the discussion. In similar fashion, in STA (§5), STA1, and STA2,
the subscripts M, M!, and M? indicate elments in STA, STA1, and STAZ2.

The 3D spatial vectors in Gj 3 SA are generally bold lowercase letters, such as p = ps.
The 4D spacetime vectors in Gf 3 STA (§5) are generally bold italic lowercase letters,
such as p=pum.

2.1 SA unit pseudoscalar

The SA 3-vector unit pseudoscalar Is with signature (———) is

Is = m72vs (2.1)
I3 = (-1)°0"DPLs= T (2.2)
IZ = —Islz=1 (2.3)
I3t = Is. (2.4)

The SA1 3-vector unit pseudoscalar Is1 with signature (———) is
]:31 = €9e3ey. (25)

The SA2 3-vector unit pseudoscalar Is2 with signature (———) is
132 = €g€glqp. (26)

The notation A~ is the reverse of A [4][20]. The Gy 3 SA unit pseudoscalar Is is its own
inverse and squares to 1 as a hyperbolic unit. In G3 APS, the unit pseudoscalar squares
to —1 and is an tmaginary unit. This difference affects how the SA dualization operation
is defined.

The distinction between a k-blade and a k-vector is rarely made in this paper, and the
more-general term k-vector is used in most cases. A k-blade is any element that can be
factored into the outer product of k vectors. Blades include all 1-vectors, all pseudoscalars,
all CSA and CSTA entities, and all of the doubled “standard” entities in DCSA and
DCSTA. A k-vector is the sum of one or more k-blades.

2.2 SA dualization
The SA S dual A% of an SA multivector Ag is

As=A¥ = Asls=—AIg (2.7)
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The SA S undual Ag of a dual SA multivector A% is
As = A5I3=—A5ls (2.8)

The SA dual and undual operations are the same, and the SA dualization is an involution.

The notation As denotes an element of the algebra denoted by &, which is SA. In
later sections, we will encounter the algebras denoted by M, C, and D, which are STA,
CSTA, and DCSTA, respectively. For the subalgebras S, M, and C of D, there are two
copies of them in D, which are denoted by S! and S? and similarly for other subalgebras
that have a double in DCSTA.

The explicit dualization notation A% denotes the dual of Ag in algebra S using the
unit pseudoscalar Is of the algebra §. The implicit dualization notation A% denotes the
same dualization as indicated by the subscript S.

To introduce the notation further, the dualizations are

A¥ = As=—Aslg" : SA S dualization (§2.2)
o A= A= ApIng @ STA M dualization (§5.2.1) (2.9)
A€ =Ap=Acdz" . CSTA C dualization (§6.6.1) '

AP = Ap=Aply'  : DCSTA D dualization (§7.7.1).

Duals are typically the result of division by the unit pseudoscalar. The SA dualization is
defined as division by the negative unit pseudoscalar, and the reason is explained in (§2.6)
on the SA rotor. These dualizations are discussed further in later sections.

2.3 SA test vector
The symbolic SA S test vector ts is defined on the basis of the DIRAC gammas [16] as

t=ts = xvi+ yy2+27s (2.10)

The symbolic SA1 S test vector ts: is defined as
tst = wes+ yes+ zey. (2.11)

The symbolic SA2 8?2 test vector ts2 is defined as
ts2 = wes+ yeg+ zeq. (2.12)

The symbolic scalars x, y, and z are the conventional coordinates in space. Numerical
scalars are denoted p,, p,, and p, for a vector

P = px71+py72+pz73- (213)

This distinction between symbolic values and numerical values is helpful in symbolic
computations. Symbolic computations using a symbolic computer algebra software, such
as SymPy [24] with the GAlgebra [2] module, can assist in the study of DCSTA and other
high-dimensional Geometric Algebras.

A test vector, or other test entity, holds symbolic coordinates and parameters. A
non-test vector, or other non-test entity, holds numeric coordinates and parameters. In
symbolic calculations, a non-test entity, or simply an actual entity, can be evaluated
against a symbolic test entity to obtain the symbolic algebraic expression, or implicit
surface function, that is represented by the entity.
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2.4 SA spatial velocity vector
An SA S spatial velocity vector vs has the form

V=Vs = U1+ U2+ 0y3= v (2.14)

An SA1 8! spatial velocity vector ve: has the form
Vst = U89+ Uye3+ v.e4= fcvg. (2.15)

An SA2 82 spatial velocity vector vz has the form
Vs2 = Ug€g+ Uy€9+ v.e10= fcVse. (2.16)

The scalars v, vy, and v, are coordinate speeds in the conventional z, y, and z spatial
directions. Natural speed is f=v/c=||v]|/¢, |3| < 1. Light speed is c.

The vector units e; and e; are in STA1 and STA2 (§5.1.7), respectively, where they
serve as the unit directions for pseudospatial time w = ct. Pseudospatial time coordinate
w is measured in distance that light travels in time ¢. Clock time (coordinate time) is
t=w/c. In standard units of meters and seconds, ¢ =299792458 m/s, exactly. In natural
units, ¢ = 1, which is convenient for testing calculations and graphing implicit surfaces
F(z,y,z)=0.

In special relativity, the constant non-negative norm of an SA velocity

vl = \fvs:v= Vv = T+ = (217)
must not exceed light speed ¢
0<|vs]| <e. (2.18)
The unit direction of velocity v is
v = v/|v]. (2.19)

The conjugate v1 is discussed by PERWASS in [20]. The conjugate of any STA multivector
Anm, including any SA multivector, is

Ajw = 7012174’)’0- (2'20)

The conjugation formula (Eq. 2.20) is valid for any G, , Geometric Algebra, where vyp=e;
and 43 = 1. The conjugate takes the reverse A%, and reflects it in v, (as a versor sandwich
product). The reflection in -y has the effect of inverting the sign on any anti-Euclidean
vector v € Gj . The conjugate of an SA vector is simply its negative, vi = —v. The
conjugate has the positive-definite property

Apm-Aly = Aly-Ay>0 (2.21)
= [[Am|? (2.22)

that produces the squared norm (or squared magnitude) of Axs. If A+ 0 is null A% =

0, then its conjugate AT can still be used to obtain its norm ||A|| = VA- A" and its
pseudoinverse

A = A/|AJ? (2.23)
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such that A- AT=AT- A=1. The division A/||A] is called the normalization (or norm-
unit) of A and is especially useful since it is valid for all k-vectors, including null k-vectors.
The normalization is different than the “modulus-unit” A /| A, for |A|#0, where |A|? = A?
is the indefinite squared modulus (or squared interval) of A that can be positive, negative
or zero. Both the norm-unit A/||A| and modulus-unit A/|A| have uses in this paper.

The notations as used by HESTENES in [16] are not adopted here and conflict with the
notations as they are adopted here. In [16], the notation v is called hermitian conjugation
and is the reverse of an element in STA. The reverse v~ is the notation that is adopted
here. In [16], the notation v* is called space conjugation and is anti-Euclidean conjugation
in STA. The notation v* is adopted here as the dual of v. The conjugate v’ is adopted
here, following PERWASS in [20], and is discussed by this author in [9].

In general, a conjugation is an operation that selectively changes the signs on only
certain elements and there are many kinds of conjugations and notations. It is thought
that the notations that have been adopted here are the ones most commonly adopted in
the current literature on Geometric Algebra. The notations of HESTENES in [16] may be
found in physics literature.

2.5 SA spatial position vector

An SA S spatial position vector ps(t), as a function of time ¢, has the form

P(t)=ps(t) = psyi+pyy2+pY3=Po+ Vt. (2.24)
An SA1 S! spatial position vector ps: has the form

Psi(t) = poes+pyes+ p.es (2.25)
An SA2 8? spatial position vector ps: has the form

Psz = Pz€8t Py€y + pzeio. (2.26)

The scalars p,, py, and p. are coordinate positions in the conventional z, y, and z spatial
directions. The vector pg is the initial position at time t = 0, and v is the velocity. A
spatial vector p is the spatial position of a particle, observer, or other observable object.
For all time Vt, p(t) is the spatial path of the spacetime worldline of an observable moving
at contant velocity v. This paper only considers constant velocities in special relativity.

2.6 SA rotor

A rotation operator R, called a rotor, can be understood in terms of ratios (or products)
of unit vectors, which are called versors. The term wversor, which seems to mean version
operator, was coined by WILLIAM ROWAN HAMILTON in [14]. A rotor is isomorphic to
a quaternion versor as discussed at length by this author in [9]. The concept of versors is
generalized to k-versors in [17]. A k-versor is the product of k unit vectors. In DCSTA,
we will encounter 4-versors for rotation, translation, dilation, boost, and planar reflection,
and 2-versors for inversions in hyperpseudospheres.
In SA, the unit bivector rotor elements are the ratios

i=k/j = v/72=—77 (2.27)
j=i/k = v/v=—m7s (2.28)
k=j/i =2 v/vm=—"7. (2.29)
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The SA duals of the SA unit vector elements are

i o= mlE=—ls=—ls' = —m(mvvs) = —w7 i (2.30)
¥ = li=—yls=—7ls' = —(nrv) = - 1173 (2.31)
v = wlE=—pls=—ls' = —v(mvv) = —rm =k (2.32)

The SA dualization is defined such that the isomorphism (&) to quaternion units is via
duals.

The dual of an SA vector xgs is
X'=x5 = —xslg'. (2.33)

The dual SA vector x* is the rotor element or logarithm of a rotor R =eX", where

eA = exp(A) (2.34)
= % (2.35)
OZOO A2n © A2n+1
= 2% 2n)! +z% 2n+ 1) (2.36)
— cosh(A)+ sinh(A) (2.37)

for any multivector A. For a scalar x, imaginary unit ¢ = y/—1, hyperbolic unit j2 =1,
and null (nilpotent) unit e =0, we also have the standard formulas

cosh(iz) = cos(z) (2.38)
sinh(iz) = isin(x) (2.39)
cosh(jx) = cosh(x) (2.40)
sinh(jx) = jsinh(z) (2.41)
cosh(ez) = 1 (2.42)
sinh(ex) = ex. (2.43)
Given the SA unit vector
X=%s = 0 x5 (2.44)

sl =xE

as the axis of rotation, and ||xs|| = %6 as half the non-negative angle § of rotation, then
(x*)2=—1 and x*~+/—1, and the rotor Rs for the rotation is

R=Rs = X =exp(x*)=cosh(x*) + sinh(x*) (2.45)
= cosh<%9§<*>+sinh(%«9f<*) (2.46)
= cos l«9 +X"sin 19 (2.47)
a 2 2 .
6 AN
= COS(§)+SIH(§)XSI§ (2.48)

- exp(%@fc};) — 275 (2.49)
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The unit vector axis Xs and unit pseudoscalar Is may be in SA1 or SA2 by changing
subscript S to St or §? for rotors Rg: and Rg2, respectively.

In G4 1 CGA, G, 4 CSA, and G, 4 CSTA, the isotropic dilator D (§6.6.6) has a logarithm
unit that is isomorphic (&) to a hyperbolic unit j, and the translator 7" (§6.6.4) has a
logarithm unit that is isomorphic to a null (nilpotent) unit . The CSTA boost B (§6.6.8),
like a dilator D, has a logarithm unit that is isomorphic to a hyperbolic unit j and can
be used as a directed non-uniform (anisotropic) dilation operator (§7.7.9) in DCSTA.

The rotor operation, or versor “sandwich” operation, that rotates any SA multivector
As around the axis Xs by angle 6 is

As = RsAsRs'= Rs AsR3. (2.50)

The SA multivector Ag is typically a vector ag, but it can be any multivector in SA.

The sense of positive angle 0 rotation around an axis X usually follows the right-hand
rule on a right-handed axes model. The sense of positive rotation around an axis follows
the similar left-hand rule on a left-handed axes model. The choice of axes model does not
affect the rotation mathematics, but it affects the orientation, or handedness, of the axes
and the interpretation of rotation results on the chosen axes model.

In general, the rotor operation is an example of a wversor operation, and each ith
vector a; i, of the jth k-blade A j; of the k-vector Ay =(A); of a multivector A ina G, ,
Geometric Algebra n = p + ¢, is transformed by a (1 < m < n)-versor R as the versor
operation

A" = RAR™! (2.51)
~ R i (A>k)R—1 (2.52)
k=0

- R ’ A]k))Rl (2.53)

= R ; 2 (/\1 a”k>))l%1 (2.54)

(2.55)

For grade k = 0, the O-vector (A)¢ is defined as the scalar part of A, which is not
transformed by any versor operation since scalars commute with all multivectors. The
general versor R is called an m-versor [17], which is the product of m vectors with inverses.
This result is called versor outermorphism, which is discussed by PERWASS in [20] and
by this author in [9].
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If R is a rotor, then the whole multivector A is rotated, as a rigid body of blades or
as a surface entity, vector by vector in the multivector and preserves the angles between
all vectors as a conformal transformation. Other angle-preserving (i.e. conformal) trans-
formations of surface points or geometric surface entities are uniform surface scaling
(isotropic dilation) and surface translation, which preserve the angles between surface
features. The conformal transformations, as versor operations, for dilation and translation
of surface points or entities require the embedding of surface representations or surface
points into the G, ;41 Conformal Geometric Algebra (CGA) or conformal space model.
The same conformal rotation versor R of the base algebra, the G, ;, Geometric Algebra
(GA), is also valid in the embedding of G, , GA into its higher-dimensional conformal
algebra G,11,4+1 CGA. In a CGA, some types of surfaces have a full representation as
a multivector-valued surface entity A, but general surfaces are represented point-wise as
embedded surface points that can be transformed by versor operations. This should be
familiar from books on CGA such as 4], where surface entities for flats and rounds are the
types of surface entities available in G4; CGA. In G2 DCGA [7][5][6], we gain 2-vector
surface entities for quadrics, Dupin cyclides, and Darboux cyclides. In G4 5 DCSTA, we
gain 2-vector surface entities for quadrics that can be boosted and anisotropically dilated.
In Go 4 CSTA, we have entities for spacetime flats and hyperbolics (pseudorounds). Still,
other general surfaces that do not have any multivector-valued entity A representation
in the algebra must be represented point-wise as meshes or clouds of surface points.
When they are available in a CGA, multivector-valued surface entities are powerful rep-
resentations of complete surfaces that have advantages over point-wise representations of
surfaces, and they can be transformed by versor operations (e.g., A’= RAR™!) as versor
outermorphism, which preserves blades as transformed blades of the same grade that are
composed of transformed vectors.

The axis x of a rotor R is a directional unit vector that represents a line through
the origin around which to rotate. A general line is represented by any point q on the
line and the unit direction x of the line. The rotation of a point p around a general line
requires a composition of translations and rotation TRT~pT R~T"~. The translation T~
translates by —q, which translates any point q on the line to the origin and translates
point p relatively as p — q. The rotation R rotates around the unit direction x of the
line, which is translated to the origin by 7. The translation 7" translates by q, which
translates the rotated point back to a position relative to the general line. The versor
TRT™ is a translated rotor. See the CSTA 2-versor translated-rotor (§6.6.5).

3 Conformal Space Algebra (CSA)

The G4 Conformal Space Algebra (CSA) is very similar to Gs1 Conformal Geometric
Algebra (CGA) [7], with only some changes in signs. This section is a very straightforward
expanded adaptation of §2 “CGAI1 and CGA2” in [7], with some additional notes on
differences between similar CSA and CGA entities.

All of the G4 CSA entities and versors can be doubled into the corresponding Gs g
Double Conformal Space Algebra (DCSA) (§4) entities and versors that are similar to
those in Gg o Double Conformal Geometric Algebra (DCGA) [7].
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3.1 CSA point

3.1.1 Introduction

In the following discussion about the conformal embedding of Gy 3 SA point p=ps (§2.5)
into Gy 4 CSA point Pes=C(p), the generic G; 4 CSA CS algebra is used with vector units
Y1, Y2, V3, €4, € (§6.2.2). The discussion is similar in CSA1 CS! with vector units es, es,
ey, €5, €s, and in CSA2 CS? with vector units eg, €9, €19, €11, €1o0. PERWASS [20] discusses
the conformal embedding, and some of his notation has been adopted here.

3.1.2 Stereographic embedding
In Gy 4 Conformal Space Algebra (CSA), the conformal embedding of a SA point (§2.5)

Ps=P = Y1+ Yyt 2y (3.1)

starts with a stereographic embedding of p onto an anti-Euclidean 3-hypersphere or 3-
sphere $%3 using the stereographic 3-sphere south pole —e_ (§6.2.2) as the origin of pro-
jecting rays. In G, CGA [7], e, is the stereographic 3-sphere $? north pole for projecting
rays.

The signature of an SA unit vector p2= —1 is negative (anti-Euclidean), and to form
a spherical geometry or metric, p and the stereographic pole e_ must have the same
signature. The choice is arbitrary to use either the north pole +-e_ or south pole —e_ as the
origin for projecting rays. But as shown below, if the south pole —e_ is used, then it leads
to familiar definitions for the point at the origin e,, (§6.2.2) and at infinity e, (§6.2.3).

The stereographic embedding of p on the 3-sphere is the intersection of the ray (line)
from —e_ to p with the 3-sphere (see [20], or Figure 1 in [7]). The vectors —e_ and p are
perpendicular, and we can treat the embedding of p as similar to a 1D axis embedding
onto a stereographic 1-sphere or circle.

The identities

lpll = Vp-pi=v-p’ =2+ + 2 (3:2)
. P

_ 3.3

ol 33

p = |plp (3.4)

p’ = —|pll’=—(2*+y*+2°) (3.5)

are used in the following.
The stereographic embedding S of p=||p||p is the intersection point («, /3)

S(p)=S(pllp) = ap—Pe_ (3.6)

where the line through —e_ and ||p||p intersect the unit 3-circle on the pe_-hyperplane.
The Minkowski homogenization Haq of S(p) is

Hm(S(p) = ap—Pe_—e.. (3.7)

The vectors e_ and e, are the basis of a Minkowski plane. It is an arbitrary choice to
add or subtract the homogeneous unit e, but subtracting leads to familiar formulas for
€,, and e.,. The anti-Euclidean signature of vectors in 9673 SA leads to making many
opposite choices about the CSA embedding as compared to CGA that has Euclidean
vectors in G5 APS. By following a ray from —e_ to a point p, it can be seen how the ray
intersects the 3-sphere, and the origin embeds to e,y =e_ — e} and the point at infinity
embeds to e, = —e_ —e,.
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For other points p that are not at the origin or infinity, the values for @ and § on a
unit circle are solved as follows. The initial relations are the unit circle

a2+ 5% =1 (3.8)
and, by similar triangles, the line
1-5_ 1 (3.9)
a Ipll
Then, [ is
ot = 1= F=1+p)1-8)=(1-p)pl)* (3.10)
1+p) = A=p)lpl? (3.11)
Blpl*+8 = lpll*—1 (3.12)
Ip|*—1
— 3.13
7= Tolre 1)
and « is
a = (1-p)|pll (3.14)
||P||2—1>
= (1-—7— 3.15
(1= 121 el (3.15)
P[] +1 ||P||2—1)
_ _ 3.16
(fefs1- Toter el (10
2||p||
= 0. 3.17
i1 1
The stereographic embedding of ||p||p, denoted S(||p||p), can now be written as
S(llpllp) = ap—Pe- (3.18)
2|p| ) <||p||2—1>
— (2P Ny (IPIEZ 20, 3.19
(i o= (o (19
3.1.3 Homogenization
The homogenization of S(||p||p), denoted Hr(S(||p||P)), can be written as
. 2lpll \, _(lpl*-1
P=Hu(S(|p|lp)) = <— P—|1—r— Je_—e.. 3.20
m(S([lpl[p)) pl2+1 Ipll2+1 + (3.20)

3.1.4 Conformal embedding
The point entity P is the conformal embedding of p. Since the point entity P is homoge-

2
neous, and ||p||*+ 1 is never zero, it can be scaled by MTH to define P as

P~ Hu(S(plp) (3.21)
= C(p)=Ci4(p) (3.22)
_ Hpr,_HpH;—la_HPH;He+ (3.23)
= |pllp- HI;H2(e+e+)+%(e—e+) (3.24)
— p+lp2(e++e_)+l(—e++e_). (3.25)

2 2
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3.1.5 Origin point
When |[p[| =0,

1
Pipj=0 = 5(_e++e—):eov (3.26)

representing the point at the origin e,, (§6.2.2).

3.1.6 Infinity point

Dividing P by %pQ and taking the limit as ||p|| — oo, we find that
Pipjos = €r+e_=ew, (3.27)

represents the point at infinity e, (§6.2.3). The vector e, can be reinterpreted as the
stereographic north pole, and the vector e_ can be reinterpreted as the homogeneous unit.
By taking inner products, it can be shown that conformal embedded points are null
vectors P2=0 on the null 4-cone [4][20] in Gi 4.
A frequently used inner product, worth remembering, is

€0y €00y = —L. (3.28)

3.1.7 CSA point definition
The CSA embedding of SA vector p as CSA point P can now be defined as

1
P=Pcs=Pc,, = C(p)=C14(P) =P+ 5P €ccy+ €0y (3.29)
The CSA point embedding C(p) is the same as the CSTA point embedding C(p) (§6.2.4)
of a spatial SA point p. G; 4 CSA is a subalgebra of Gy 4 CSTA.
3.1.8 CSA point normalization

A normalized point P has unit scale on the homogeneous component e, as

. P
P- - )
- (3.30)

Points are assumed to be initially normalized as the embedding P = C(p). After per-
forming operations (§3.4) on a point (or other entity), a point (or other entity) may, in
general, no longer be normalized (have unit scale). Some operations do not preserve scale.

3.1.9 CSA point projection
The projection (inverse embedding) of a CSA point Pcs back to an SA wvector pgs is

ps = (Pes-Is)Ig' (3.31)
where I is the SA unit pseudoscalar (§2.1). Pes must be a normalized point (§3.1.8).

3.1.10 Distance between two points

The distance d(p,q) between two CSA points P =C(p) and Q=C(q) is

d(p,q) = {/2P-Q (3.32)
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In G411 CGA, distance is d = 1/ —2P - Q, with a difference in sign. The points P and Q

must be normalized points (§3.1.8).

3.2 CSA GIPNS entities

A CSA point Tes=C(t) =Cy.4(t) (§3.1) is on a spatial CSA Geometric Inner Product Null
Space (GIPNS) surface entity Xes if Tes - Xes=0 [20].

Using a CSTA spacetime point T (§6.2.4) instead of a CSA spatial point T¢s (§3.1)
causes a change in the meaning of the test T¢ - X¢s, where Xes is then interpreted as a
CSTA spacetime entity X¢=X¢s. A round CSA surface entity Xes is a CSTA hyperbolic
hypersurface entity X that grows in radius in space with time. A flat CSA surface entity
Xcs is a flat CSTA hypersurface entity X that gains the span of the pseudospatial time
dimension wyq.

3.2.1 CSA GIPNS sphere

The CSA GIPNS 1-vector sphere Scs, centered at CSA point Pes (§3.1) with radius r or
with surface point Qgs, is defined as

Scs = PCS+%T29007 (334)
= ch —+ (PCS . ch)eoow (335)

1
= Pes—5(p— )%y (3.36)

In G,1 CGA [7], the sign on r? in Eq. 3.34 is negative. However, Eqs. 3.35 and 3.36, for
a sphere Scs defined by center point Pes and surface point Qcs, are the same in both
CGA and CSA.

For any point T =C(t) on sphere S at center P =C(p) with radius r,

2(t,p)=2T-P = 7 (3.37)
and
L 5
T-P—or = (3.38)
T (P+2r2ecm) = (3.39)
T-S = 0. (3.40)

A sphere with unit scale S has a unit scale center point f’, and
S* = —2 (3.41)

As a CSTA spacetime entity 3¢ =S¢s, the sphere gains the span of w~, and is a spacetime
hyperpseudosphere ¢ (§6.4.5) centered at Pcs with initial radius 7o =r. If r =0, then
it is a hypercone (§6.4.2) centered on Pcs. The imaginary sphere with negative sign on
r? (squared imaginary radius) becomes the imaginary hyperpseudosphere Z¢ (§6.4.6) in

CSTA.
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3.2.2 CSA GIPNS plane

The CSA GIPNS 1-vector plane Ilcs, normal to unit vector n at distance d from the
origin, or through point p, is defined as

HCS = fl—deoofy (342)

In G4 1 CGA [7], the plane is N+ de., which is a difference in sign compared to Eq. 3.42.
However, Eq. 3.43 is the same in CGA and CSA.

A unit plane I has a unit scale, normalized component n, and for a spatial plane
’=II-11 = —1. (3.44)

As a CSTA spacetime entity Eq-=1Il¢g, the plane gains the span of w-, and is a spacetime
hyperplane Ec (§6.4.3) through point dn or p in the 3D spacetime unit direction n*M
(§5.2.1) perpendicular to n in spacetime.

Equation 3.43 for Iles can be obtained as the translation (§3.4.2) by p of the plane
n, which is through the origin, as

™~ = < %peom) (1—%pem7) (3.45)
1 1
== + §pneoo'y 1 + §peoov (346)
.1 1
= n—|—§ peooﬂy—|—2pne0(w (3.47)
.1
= n+§( np + pi)es, (3.48)
= N+ (p-N)es. (3.49)

The plane Il¢s is a sphere Ses (§3.2.1) through point dn with center dn + rn and radius
r— 00 as

l7“2eoo7 (3.50)

SCS = C(dﬁ—l—?“fl)—l—2

.1 1
= (al—}—r)n—§(al+r)ze<m—l—em—l—§7ﬂ2e007 (3.51)
- (d+r)ﬁ_%(duzdr)emﬂe(W (3.52)
. 1 (d*+2dr)
~ D=5 T e (3.53)

and using L’Hopital’s rule as

Hcg = lim SCS (354)
r—>00
L . 10:(d*+2dr) €oy
= Jfim (“ 2 0,(d+r) T @ (3.55)
Y . 12d €0y
= (n 51 ST (d+r)) (3:56)

— n—des. (3.57)
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Reflection of a point P in a plane IT is

P’ = IIPII~ (3.58)
— IIPII (3.59)
— TAT~PTAT", (3.60)

which is a translated reflection in n. If there is no translation, then

A 1 .
P = n(p+§pgeoo7—|—ew)n (3.61)
NRIT: NP ST A
= n(p“n—l—an)n%—§p2necmn+newn (3.62)
A ay L
= (-pI"+p*) + 5Py €0 (3.63)

In G41 CGA, this same reflection in 1 is slightly different, and results in

P
Piy = (pI"—p'") - 5pex —e,, (3.64)

such that the result is scaled by —1 and is not normalized. Normalizing P} ; (like §3.1.8)
and projecting (like §3.1.9) still gives the correct result. In G; 4 CSA, n is naturally a
plane entity for the plane through the origin perpendicular to n since the reflection in n is
the planar reflection. In G4; CGA, 1 is not naturally a plane entity, but is just a vector,
since the reflection in n is vector reflection. It could be argued that G; 4 CSA is the more-
natural Conformal Geometric Algebra G, 441 for conformal 3-space than is G4 ; CGA.

3.2.3 CSA GIPNS line

The CSA GIPNS 2-vector line L¢s, in the direction of the unit vector &, perpendicular
to the SA unit bivector D =d*° = —&Igl formed by SA dualization (§2.2), and through

SA point p, is defined as
Les = d¥— (p-d™¥)ew, (3.65)
= D—(p-D)ex,.
The G4 1 CGA line entity L [7] has the same form as the CSA line L¢g, with no differences

in signs. The SA unit pseudoscalar is Is = v1927y3 (§2.1). The SA unit bivector D is the
planar direction passing through p. L¢s can be obtained as a translation (§3.4.2) by p of
the line D, which is the line through the origin perpendicular to D, and is similar to the
translation of a plane through the origin (§3.2.2). The line L¢s can also be obtained as
the intersection of two non-parallel CSA planes (§3.2.2) as

Les = Iles, Aes,. (3.67)

As a CSTA spacetime entity Il = L¢s, the line gains the span of w=y, and is a spacetime
plane I1; (§6.4.10) through p in the direction D = d~o=DI.

3.2.4 CSA GIPNS circle
The CSA GIPNS 2-vector circle Ces is defined as

Ces = SesNles (3.68)
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which is the intersection of a CSA sphere S¢s and CSA plane Ilgs. An intuitive construc-
tion uses a sphere centered at a point p with radius ry and a plane that intersects the
sphere through the center p to form a circle of radius ry in the plane.

As a CSTA spacetime entity Se = Cgs, the circle gains the span of w7y and is a
spacetime hyperboloid of one sheet (pseudosphere) Sec = X N E¢ (§6.4.8) centered on
p with initial radius ry that grows with time in the spatial plane. The radius grows as

r= \/ (w — pw)?+7§. In the spacetime of E¢, the hyperpseudosphere S¢ is a spacetime
hyperboloid aligned around the time axis w~yy. If S¢s is an imaginary sphere, then Se=Ces
is a hyperboloid of two sheets (imaginary pseudosphere) (§6.4.9) in spacetime.

3.3 CSA GOPNS entities
A CSA point Tes=C(t) =Cy 4(t) (§3.1) is on a CSA Geometric Outer Product Null Space
(GOPNS) surface entity X*¢S if Tes A X*¢S =0 [20], where

XS =Xps = Xesles =Xesles (3.69)

is the CSA dual (§3.4.1) of the CSA GIPNS entity X¢s (§3.2). An entity and its dual
entity represent the same geometric surface.
A CSA GOPNS entity can be directly formed as the wedge of up to five CSA points

X = A Pes, for 1 <i<5. (3.70)

3.3.1 CSA GOPNS sphere
The CSA GOPNS 4-vector sphere S*® is the wedge of four non-coplanar CSA points P,
(§3.1) on the sphere
S*CS = Pes, ANPes, NPcs, A Pes, (3.71)
= Seslz!' =Sesles (3.72)
and is the CSA dual (§3.4.1) of the CSA GIPNS 1-vector sphere Scs (§3.2.1).

The CSA unit pseudoscalar is Ies = y1v27y3ere_ (§3.4.1), and the CSA dualization
and undualization are both multiplication with Ics=1Ize as an involution. In Ga1 CGA,
the dualization is an anti-involution. The SA dualization (§2.2) is also an involution by
multiplying with I3 = —1Is.

3.3.2 CSA GOPNS plane
The CSA GOPNS 4-vector plane IT*®® is the wedge of three non-collinear CSA points
Pcs, (83.1) on the plane and the point e
IS = Pes, ANPes, ANPes, A €oory (373)
= HCSICS (374)

and is the CSA dual (§3.4.1) of CSA GIPNS 1-vector plane Il¢s (§3.2.2).

3.3.3 CSA GOPNS line
The CSA GOPNS 3-vector line L*® is the wedge of two CSA points Pc, (§3.1) on the
line and the point e,

LCS = Pes, APes, Ao, (3.75)
Lesles (3.76)
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and is the CSA dual (§3.4.1) of the CSA GIPNS 2-vector line L¢s (§3.2.3).

3.3.4 CSA GOPNS circle

The CSA GOPNS 3-vector circle C*® is the wedge of three CSA points P¢, (§3.1) on the
circle

C*S = Pes, ANPes, N Pes, (377)
= CCSICS (378)
and is the CSA dual (§3.4.1) of the CSA GIPNS 2-vector circle Ces (§3.2.4).

3.3.5 CSA GOPNS point pair
The CSA GOPNS 2-vector point pair 2*°° is the wedge of two finite CSA points Pe, (§3.1)
2+CS — 20s = chl A PC$2 (379)
— 2l (3.80)

and is the CSA dual (§3.4.1) of the CSA GIPNS 3-vector point pair 2¢s. If one of the
points is €., then it is a CSA GOPNS 2-vector flat point P** (§3.3.6).
The point pair decomposition [4]

A 2¢ v/ (2E5)?
Pes, =~ .(2gj) — (265 F /25 265)(—€nr 265) " (3.81)
ooy

gives the two normalized (unit scale) finite points Pcs . and Pcs of the point pair 2*¢.
The CSA point pair decomposition is the same form as the CSTA point pair decomposition
(Eq. 6.217).

3.3.6 CSA GOPNS flat point

The CSA GOPNS 2-vector flat point IP*®S is the wedge of one finite CSA point Pes (§3.1)
and the point e

IP*CS = ]_:)C,S/\eoo7 (382)
= Pesle (3.83)

and is the CSA dual (§3.4.1) of the CSA GIPNS 3-vector flat point Pcs.

As explained in [4] in the context of G4 ;1 CGA, a CSA GIPNS 3-vector flat point Pcs
can represent the intersection of a CSA GIPNS 1-vector plane Iles (§3.2.2) and CSA
GIPNS 2-vector line Les (§3.2.3) as

Pes = Iles A Les. (384)
The CSA point Pcs of CSA GOPNS 2-vector flat point IP*S is projected [4] as
—cyp _ (€oy v Y _ ) _ ]
Pa=CuilPes) = e New) P ey ey s o0 (35

which is the same form as the CSTA flat point projection (Eq. 6.239).

3.3.7 CSA GOPNS point

The CSA GOPNS null 1-vector point P¢g is the CSA null point (embedding) Pes=C(p)
(§3.1), which is also the CSA GIPNS null 1-vector point Pcs.



CONFORMAL SPACE ALGEBRA (CSA) 27

The CSA GOPNS null 4-vector point P*¢® is
P*S = Pesles, (3.86)

which is also the CSA GIPNS null 4-vector point P*®. The CSA null 4-vector point P*¢S
is usually taken into its undual as Pes = P**I¢s.
The CSTA null point embedding Pes=C(p) (§3.1) represents the implicit surface

(ZL‘ _px)2+(y_py)2+(z _pz)2 =0 (387)

of a sphere with radius » =0 centered at p = p,v1 + pyy2 + p-¥s-

The CSTA point embedding P = C(p) (§6.2.4) is the CSTA GIPNS null 1-vector
hypercone (§6.4.2) and is the CSTA GOPNS null 1-vector point (§6.5.2). The CSTA
GIPNS null 1-vector hypercone (point embedding) represents the implicit surface

(U} - pw)2 - (:U - pz)2 - (y - py)2 - (Z - pz)2 =0 (388)

of a hypercone in spacetime that is centered at p =w~yy+ xv1 + y7vy2 + 27v3. The different
metrics of Gps SA (§2) and G; 3 STA (§5) make a difference in the implicit surfaces
represented by their conformal point embeddings.

3.4 CSA operations

The rotor R (§3.4.3), dilator D (§3.4.5), and translator 7' (§3.4.2) are called wversors
V €{R,D,T}. Their operation on a CSA entity X has the form X’'=VXV ! called a
versor operation. The versor V' of the operation often has an exponential form which can
be expanded by Taylor series into circular trigonometric, hyperbolic trigonometric, or dual
number form.

3.4.1 CSA dualization
The Gy 3 SA unit pseudoscalar Is (§2.1) is defined as

Is = mARAY="17%7s (3.89)
Iz = (—1)P36V 2= 15 (3.90)
I3 = —Islz=1 (3.91)
Ig' = —Iz=1I; (3.92)

and its negative is defined as the SA dualization operator (§2.2) on multivectors in Gp 3

SA. A k-blade B € g(’{g is taken to its Go 3 SA dual B*$ € gg’,g’“ of grade 3 —k as
B* = —BI5'=-B.Is. (3.93)

Duals represent the same objects from two converse spatial spans, and duals have different
behavior as operators or versors.

As a 1-versor, an SA unit vector X acts as a reflector in the plane through the origin
perpendicular to X. As a 2-versor, the SA dual bivector X = %*S acts as a versor for
successive reflections in two perpendicular planes for a rotation by 7 around x. The unit
bivector X is the generator of rotations around X, and its exponential R = exp(%QX) is
the rotor R for rotations around X by angle # anticlockwise on right-handed axes.
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The G 4 CSA unit pseudoscalar I¢s is defined as

Ics = Y1v2v3ere_ (3.94)
Igs = (—1)°67D/ps=1cs (3.95)
IBs = Iesles=1 (3.96)
Is = Tes=les (3.97)

and is the dualization operator on CSA entities that takes CSA GIPNS entities to or from
CSA GOPNS entities. A CSA entity X € G, of grade k is taken to its CSA dual entity
X*CS ¢ Qi}k of grade 5 —k as

XS = XIgd=X-Ips. (3.98)

The CSA 5-vector unit pseudoscalar Ics can be interpreted as the CSA GOPNS 5-vector
space entity that represents the entire 3D space of the vector point space Gj .
CSA dualization and undualization are both multiplication of any CSA entity with I¢s.

3.4.2 CSA translator

A translator is a translation operator or versor.
The CSA 2-versor translator T', by an SA vector d = dyv1 + dyy2 + d.7y3, is defined as

T = 1—=deq, (3.99)
= e 3%, (3.100)

The G; 4 CSA translator T" has the same exact form as the G, ; CGA translator, and is the
same as the CSTA translator (§6.6.4) for translation by an STA spacetime displacement
d. Any CSA entity X is translated by the SA vector d as

X = TXT". (3.101)
Spatial translation is also defined by reflection in two parallel CSA planes (§3.2.2) as
X' = ILIT; XTI II, (3.102)

which translates by twice the vector d = (dy — dq)n, with common normal unit vector n
of each plane (they are parallel) and plane distances from origin d; and ds of planes IT;
and Iy, respectively. The translator T' for translation by displacement 2d is

T = —ILLII; (3.103)
= —(fl — dgeoov) (fl - dleow) (3104)
= —(—1 — dlfleom—f—dzfleoow) (3105)
= 1- (dg — dl)ﬁeow (3106)
= 1—dey,. (3.107)
A CSA point P=Pcs=C(p) (§3.1) is translated by d as
Clp+d) = TPT~ (3.108)

= T<p—|—%p2eoo7+e07>T”, (3.109)
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where the vector p transforms as a plane (§3.2.2)

TpT~ = (1—%demv>p(l —%deom) (3.110)
1 1

= P+5dpes, +spdec, (3.111)

= p+(p-d)ex,, (3.112)

and e, is translation invariant

1 ~ 1 1 1
T(Epgeoofy)T = <1 —§deoo,y>(§p2eoow)<1+§deoo,y> (3113)

1

— Epzem’ (3.114)
and e, is translated as
N 1 1
Te,, = [1- Edeoov €| 1+ §deCm (3.115)
1 1
= (e(W — §deoo7em>(1 + §deoov) (3.116)
1 1 1.,
= €, — §de<mew + §ewde<m — Zd €00+€0-€00y (3.117)
1

= €y —d(€xy €py) — Zdz(—Qecm) (3.118)
= d+%d2eoov—l—ew (3.119)
= C(d), (3.120)

and finally, adding gives

1 1
TPT~ = p+ (p-d)eoo7—|—§p2em7+d+§d2em7+ew (3.121)
1
= (p+d)+§(pd+dp+p2+d2)eoow+eov (3.122)
1

= (p+d)+§(p+d)26mv+em (3.123)
= C(p+d). (3.124)

A surface entity represents a set of points, and translating an entity represents translating
the set of surface points. A similar argument holds for rotation (§3.4.3) and dilation
(§3.4.5) of entities, and for the boost (§6.6.8) of entities in CSTA.

3.4.3 CSA rotor

A rotor is a rotation operator or versor. The CSA rotor R is the same as the SA rotor

(§2.6).

The CSA 2-versor rotor R, for rotation around unit vector axis n by 6 radians, is

defined as
1 (1, \ s
R = cos 5«9 4+ sin 5«9 n* (3.125)

1,0k 1,
= =™, (3.126)
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The SA unit bivector N = a*S represents the plane of rotation. Any multivector in Gy 3
SA or any G; 4 CSA entity X is rotated as

X' = RXR~ (3.127)
— RXR! (3.128)

where R~ the reverse of R, is equal to the inverse R~!. Rotation is also defined by
successive reflections in two non-parallel CSA planes (§3.2.2) as

X/ == H2H1XH1H2 (3129)

which rotates X by twice the angle between the planes from IT; to Ily. The axis of rotation
is the line of intersection L¢s=1II; ATl, (§3.2.3) of the two non-parallel planes, which can
be a line through the origin or a general line. The orientation of the rotation is by right-
hand rule on right-handed axes, or by left-hand rule on left-handed axes, around the line
from II; toward Ils.

3.4.4 CSA translated-rotor

The rotation of an entity E by angle § around an arbitrary line L (§3.2.3) through point
p with direction d is a composition of translations (§3.4.2) and rotations (§3.4.3)

E' = TRT"ETR T~ (3.130)
— RSERY”, (3.131)
where
1 -
d = 50d (3.132)
R = exp(ga*s> (3.133)
— Q ; Q _AT1=1)(82.6)
= cos| 5 | +sin{ 5 (—dIg) (3.134)
T = exp(—%pecm) (3.135)
= 1—%pe<m, (3.136)
and
RY = TRT~ (3.137)
= exp<gTa*3T~> (3.138)

(a*S . (p . a*S)eoov)(§3.2.3)> (3139)
[ ) (3.140)

<9
= exp
- exp<

N N
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The CSA GIPNS 2-versor translated-rotor RY, for rotation by angle # around the unit line
L (§3.2.3), is defined as

RY = exp(%ﬁ) (3.141)
= cos(%)%—sin(%)f;, (3.142)

where
L = d°-(p-d¥)ew. (3.143)

A unit line L is a line with unit scale, when the line direction is a unit vector d. Then,
L = —1. (3.144)

Alternatively, the line can be the axis-angle line

L = gL (3.145)

and the translated-rotor is

Ry = exp(L). (3.146)

3.4.5 CSA dilator

A dilator is a dilation operator or versor.
The CSA 2-versor isotropic dilator D, by dilation factor d, is defined as

D - %(1+d)+%(1 —d)ew, Ae, (3.147)
(1—d)
~ 1 .14
+ 15d) €oory N €0y (3.148)
~ eatanh<%)eow/\ew = e_%ln(d)e“”/\e‘”. (3.149)

Any G, 4 CSA entity X is dilated by the factor d as
X' = DXD~. (3.150)

The first form of D (Eq. 3.147) is the most applicable since it allows d < 0 and usually
gives the expected results in that case. The forms of D using atanh or In cannot accept
d <0 since those functions would return an infinite result for d =0 or complex numbers
which are not valid in a geometric algebra over real numbers.

It should be noted that a zero dilation factor d =0 is generally not valid. Finite surface
entities having e, or its dual eﬁﬁs as a term will dilate by factor 0 into e,, or its dual
(up to scale), which is a valid result. All other entities dilate by factor 0 into the scalar
0, which is an inwvalid result. Dilation by factor 0 is valid on the CSA GIPNS sphere and

CGA point and their duals. Using d=0 in the first form of D gives
1

D = E—l—%ecm/\e(W (3.151)
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which, as can be checked, dilates any normalized CSA GIPNS sphere S (§3.2.1) or CSA
point Pes (§3.1) into

DSD~ = DP¢sD™=De, D~ =e,,. (3.152)

A DCSA entity must have the DCSA origin point e, or its dual e:PS as a term for DCSA
dilation by factor d=0 to be valid. This is explained further in the section on the DCSA
GIPNS cyclide.

Dilation is also defined by inversions in two concentric spheres (§3.2.1) as
X" = 895:X5;S, (3.153)

which dilates by d=-2, with radius r; of S; and radius 5 of So. The dilator D is derived

from successive 1nvers1ons in two spheres centered at the origin, but it is also possible for
the spheres to be centered at any point and to dilate relative to that point.

3.4.6 CSA spherical inversion

The inversion of point P =P = C(p) = C(c + d) (§3.1) in sphere S (§3.2.1), at center
C =C(c) with radius r, where p is at displacement d from c, is

P’ — SPS~—SPS (3.154)
— (C+%r26m7)P(C+%r2eo@7) (3.155)

= CPC+ %rQeOOWPC + %7‘2CPeO07 + l7’4ecmPeCm (3.156)

4

_ 2(C.P)C+ 1r2(empc + CPe..) + %«42(%7 Pew, (3.157)
= PCH 1%(exy(P-CHPAC)+(C P+ CAPew,) — srlen, (3.158)

= —d2C+< ’C-P-— )eooy%—;r (€or - (PAC)+ (CAP)-ex) (3.159)
= —dQC+< —r?d*— )emqL ;7’ ((CAP) -ex,+(CAP)-ex,) (3.160)
1

= —dZC—2 2dz—l—r)eow—l—r(C/\P) €cory

(3.161)
= —d’C —§(r2d2+r4)em+r2P —7r?C (3.162)
— 2P — (24 12)C — %(T%P +ren, (3.163)
= —d%c+rid+ %(rg(c +d)? — (d*+7?)c? — r’d? — rt)en, — d?e,, (3.164)
s op ld Led e R e a0, (3165
~ c—r’d'+4 %(—7’2cd_1 —r’d7 e+ +r*d?)eqy, + €,y (3.166)
~ c—7’2d*1—|—%(c—7“2d*1)2(ecm+eo7 (3.167)

12

c+ P27+ L e+ 2 d] T d) ey + e (3.168)
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The algebra looks involved, but the result is important. If p is on sphere S, then p=c+ Tfl,
d= r&, and

rAld|~'d = rd, (3.169)

such that points on the sphere are invariant, up to scale by r? (Eq. 3.163), by inversion.
When =1, d transforms to

Pldf~'d = |ld]-'d, (3.170)

which is a displacement of inverse magnitude from the center c. This accounts for the
name inversion. Equation 3.162 shows that when P = C, then

SCS = —%r‘*em (3.171)

These results confirm that inversions of points in spheres are correct. Now, consider a test
point T, GOPNS entity X*, and the outermorphism of their test by a sphere S

S(TAX*)S = (STS)A (SX*S) (3.172)
= T'A /\ SP:S (3.173)
= T'AX". (3.174)

Since inversions of points are correct, the inversion of X* into the entity X*'is also correct.
Considering the GIPNS entity

X = X*Ics (3.175)
= X*-Igs, (3.176)
then the inversion of the test is
S(T-(X*-Ics))S = S((TAX*)-Ics)S (3.177)
= S(TAX*)IesS (3.178)
= S(T AX*)SIs. (3.179)

With these results, the CSA GIPNS sphere S (§3.2.1) can be defined as the CSA 1-versor
inversion operator (inversor) S for spherical inversion in the sphere S of any CSA entity
X. The inversion (inversor) operation is the versor sandwich product

X' = SXS. (3.180)

In general, the round or hyperbolic entities defined in a Conformal Geometric Algebra
(CGA) Gp11,4+1 are inversors, and the flat entities are reflection operators (reflectors). In
a Double Conformal Geometric Algebra (DCGA) Gap19.24+2, the doubled inversors and
reflectors are DCGA 2-versor inversors and reflectors.

The CSTA 1-vector hyperpseudosphere ¥ (§6.4.5) is an inversor for both spherical
inversion in space, and pseudospherical (hyperboloidal) inversion in a 3D spacetime. Inver-
sion in the CSTA 2-vector spacetime hyperboloid (pseudosphere) Sc (§6.4.8) is also valid.
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In DCSTA, the 2-versors Xp (§7.3.3) and Ep (§7.3.4) are valid for the inversion of
doubled entities and all DCSTA 2-vector entities (7.5), including the DCSTA 2-vector
quadric and pseudoquadric surfaces, with different results for the inversion of doubled
entities, quadrics, and pseudoquadrics.

3.4.7 CSA translated-dilator
The CSA 2-versor translated-dilator DP. for isotropic dilation by factor d > 0 centered
around the unit-scale point Pes=C(p) (§3.1.8), is defined as

DY = exp(%ln(d)ﬂa*cs), (3.181)

where the unit CSA GOPNS 2-vector flat point (§3.3.6) is
P = Prs A€o (3.182)

The translated-dilator is derived as D} = TPD, TP~ by translating (§3.4.2) the dilator
(§3.4.5) by p.

3.4.8 CSA motor

A motor is a motion operator. A rotation around an SA unit vector axis n, followed
by a translation parallel to n are commutative operations. Either the translation or the
rotation can be done first, and the other second, to reach the same final position. This
commutative operation, being a screw or helical motion, can be seen physically without
mathematics. The motor is a special case where the commutative rotor and translator
can be composed into a single versor M with an exponential form as

M = RT=TR (3.183)
1, 1 . 1,4 150
_ 656n Sefgdneooq — efgdneooveggn s (3184)
Loa*s _Lane
_ 2o lade.., (3.185)
1.
_ o sh(Olstdens) (3.186)

The exponents or logarithms of commutative exponentials can be added. A motor can be
used to model smoothly-interpolated screw, twistor, or helical motions, performed in n
steps using the nth root of M

1 1 A
Mr = ¢ mt(flstde) (3.187)
applied at each step.

3.4.9 CSA intersection

CSA GIPNS intersection entities, which represent the surface intersections of two or more
CSA GIPNS entities, are formed by the wedge of the CSA GIPNS entities. The CSA
GIPNS circle is defined as a CSA GIPNS intersection entity Ces = Scs A Iles.

Almost any combination of CSA GIPNS entities may be wedged to form a CSA GIPNS
intersection entity up to grade 4, except that the CSA GIPNS 2-vector line and circle enti-
ties that are coplanar cannot be intersected unless their common plane is first contracted
out of each of them, then the common plane is wedged back onto their intersection entity.
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Like any CSA GIPNS entity, a CSA GIPNS intersection entity X can be taken dual
as X" =X /I¢s (§3.4.1) into its CSA GOPNS intersection entity X*¢.
De Morgan’s law for the intersection X of two objects A and B is

X = not((not A)and (not B)) (3.188)
and translates into the CSA intersection
X*CS — (A*CS/\B*CS)*CS. (3189)

This is just the creation of the CSA GOPNS intersection entity X*¢S of two CGA GOPNS
entities A and B. In this case, A**® and B**® are the undual CSA GIPNS entities,
which can then be intersected by wedge product. The CSA GIPNS intersection X is then
dualized as the CGA GOPNS entity X*“®. The classical view of intersections is by working
with spanning objects, which are the CSA GOPNS entities.

3.5 CSA1 and CSA2 notations

The CSA1 and CSA2 spaces are used as exact copies of CSA. All that is needed is a little
notation to separate the two spaces.

Multivectors in the Go 3 SA1 subspace of G; 4 CSA1 use the subscript S'. For example,
an SA1 vector p in CSA1 is denoted

Pst = Pz€2+ pyes+ p.es. (3.190)

CSA1 entities use the subscript CS*. For example, the embedding of ps: as a CSA1 point
Pcst is denoted

Pcesi = Cl(ps) (3.191)
= psl+%p?sleoo1+eol (3.192)
where
€1 = (e5+eq) (3.193)
€1 = %(—e5+e6). (3.194)

The CSA1 point embedding function has been named C;. Likewise, a CSA1 surface entity
is named Xcgi. The CSA1 point at the origin e,; and point at infinity e.,; are named
with suffix 1 to indicate their version as being the CSA1 and CSTA1 versions.
Multivectors in the Gy 3 SA2 subspace of CSA2 space use the subscript S? (e.g., ps2).
CSA2 entities use the subscript CS? (e.g., Xes2)-
With this notation, the CSA1 unit pseudoscalars are

ISI = €2€3€e4 (3195)
Iest = eseseqeses (3.196)

and the CSA2 unit pseudoscalars are

132 = eg€glq (3197)

Ics: = egegergeriens. (3.198)
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An SA2 vector p in CSA2 is denoted

Ps2 = Pz€s+ Py€9 + p-Lro. (3.199)

The CSA2 point embedding is

Pes: = C*(pse) (3.200)
1
= Ps?F 5Ps%ecn+ €0 (3.201)
where
€x2 = (en+emn) (3.202)
1
€o2 = 5(—911-1—912)- (3.203)

The CSA2 point at the origin e, and point at infinity e, are named with suffix 2 to
indicate their version as being the CSA2 and CSTA2 versions.

A versor O (rotor, dilator, translator, or motor) in CSA1 is denoted O¢s:, and in CGA2
is denoted Ogg2.

4 Double Conformal Space Algebra (DCSA)

The G g Double Conformal Space Algebra (DCSA) is a doubling of the G, 4 Conformal
Space Algebra (CSA) (§3) and is the spatial subalgebra of Gy g Double Conformal Space-
Time Algebra (DCSTA) (§7).

G2.8 DCSA is very similar to the Gs o Double Conformal Geometric Algebra (DCGA)
that is introduced in [7], and this section is directly based on [7]. Compared to DCGA,
there are some changes in notation and some changes in signs to account for the changes
in signatures. The discussions on the DCSA entities include new details on how the
entities can be used within DCSTA. In DCSTA, the spatial DCSA entities gain the
ability to be boosted using the DCSTA boost operator (§7.7.3), and their inversions in
hyperpseudospheres (§7.3.3) and reflections in hyperplanes (§7.3.2) are also possible.

4.1 DCSA point

4.1.1 DCSA point embedding

The standard DCSA null 2-vector point entity Pps is the embedding of a vector

P=DPs = D21+ PyY2+ DPY3 (41)
as
Pps = D(p) (4-2)
= C'(ps1) NC*(ps2)

Pesi APese (4.4)
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where
Pst = Pz€2+pyes+ p.ey (4.5)
Psz = Pz€s+ Py€9+ P-Cio. (4.6)

The DCSA point Ppg is the wedge (or geometric product) of a CSA1 point Pgg: with a
CSA2 point Pes: (§3.5). All DCSA points are null 2-vectors, Phg=0.

CSA1 and CSA2 points and surface entities can be rotated, translated, and dilated
using CSA1 and CSA2 versors for these operations. The wedge of a CSA1 versor with its
copy CSA2 versor (rotor, translator, dilator, or motor) creates the DCSA versor on DCSA
points and surface entities.

4.1.2 DCSA origin point
The DCSA point at the origin e, is defined as
e, = €, /\eyn. (4.7)

This is also the DCSTA origin point (§7.2.1.1). The CSA origin point e,, (§3.1.5) in CSA1
e,1 and CSA2 e,y (§3.5) are multiplied to form the DCSA origin point e,.

4.1.3 DCSA infinity point
The DCSA point at infinity e, is defined as
€ = €oo1 /€. (4.8)

This is also the DCSTA infinity point (§7.2.1.2). The CSA infinity point e, (§3.1.6) in
CSA1 ey and CSA2 ey (§3.5) are multiplied to form the DCSA infinity point €.
As in CSA, the DCSA origin and infinity points have the inner product

€x-€ = —L (4.9)

4.1.4 Distance between two DCSA points

The squared-squared distance d* between two DCSA points Pps, and Ppg, is

d* = —4Pps, Pps, (4.10)
= —4(Pesi APes?) - (Pesy APes3) (4.11)
= —4(P0311 ) ((Pcs% ) P(:S%)Pcs2 - Pcs;(Pcs% : Pcs%))) (4'12)
= —4((Pesz- Pest) (Pes - Pesz) — (Pest - Pest) (Pesz - Pesz)) (4.13)
2\ [ d?
- —(00-(£)(%)) (414)
The squared distance d? between points is also
—Pops, - €x2 —Pops, - €x2
> = 2 ! . 2 4.15
(Pps, - €x2) " €x01 (Pps, - €x2) - €co1 (4.15)
— 2PC311 . Pcs% (416)

where each DCSA point is contracted and renormalized into a CSA1 point.
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4.1.5 DCSA point projection (inverse embedding)

The projection of a DCSA point Pps back to an SA1 vector p is

Pcsl ~ Pps-eoog (417)
(Pest - Is1)IgH

= A Cor To/7S 4.18

P —Pesi- e (4.18)

= (Pesi-Is)I51. (4.19)

4.1.6 DCSA point value-extraction elements

The DCSA null 2-vector point Tps=D(t) allows for the extraction of more polynomial
terms than only the z, y, z, and t? = —(2? + y* + 2?) terms that the CSA null 1-vector
point Tes (§3.1) embeds. The terms that can be extracted from a point determine what
polynomial equations or entities can be represented as GIPNS entities that test against
the point.

When expanded, the DCSA point Tps=D(t) is

T’DS = (tsl + %thool —+ e01> N (t32 + %tZeOOQ -+ e02> (420)
= tsiANts2+tsiAep+e, Atgz+ (4.21)

%tzeool A (t32 + e02) + %t2(tsl + eol) N €2+

it‘leC>O +e,
where

t=ts1 = wey+yes+ zey (4.22)
t32 = xeg+ Ye€9 + zeqo (423)
t2 = —(2?+y*+2?) (4.24)
t? = ot oyt 2 202y 29222 4 222502 (4.25)

Fully expanding, Tps is

TDS = %(]}tQ — {L‘)ezen + %(ItQ + x)92912 + %(ItQ - x)e5eg + %(l’tQ + I)eﬁeg + (426)
Lot Lo Lot Lo
5 (yt? — y)esenn + 5 (yt°+ y)esern+ 5 (yt? — y)eseq + 5 (yt*+ y)eseq +
1 1 1 1
5(2132 — 2)84811 + 5(2132 + 2)84812 + E(Z’t2 — 2)85810 + E(Z’t2 + 2)86810 +

TYyeo€g + ryeses + Yyzeseio + Yyzey g + xzeseg+ T zeyses +

r?eses + ylezey + 2ese10 +
1 1
Z(t4 — 1)85612 —+ Z(t4 — 1)66811 —+

i(t4 — 2132 + 1)85811 + i(t4 + 2t2 + 1)86812.

The vector t, and its DCSA point embedding Tps="D(t), will be used as a test point for
position on surfaces.
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The DCSA 2-vector extraction elements T, are defined as

Tx = %(GOOQ/\GQ—Feg/\GOOl) (427)
Ty = %(eoog/\eg,—l—eg/\eool) (428)
1

z — 5(8002 Neg+ e eool) (429)
T$2 = egN\e (430)
TyQ = eg/\e3 (431)
TZQ = eppgey (432)

1
by = §(e9/\e2+eg/\e3) (4.33)

1
yz — 5(810 Nes+eg 64) (434)

1
zx — §(e8/\e4+elo/\eg) (435)
thz = €y Neg+ (S7] A €51 (436)
Tytz = € A €3+ €g VAN €51 (437)
thz = expNest+epghen (438)
T, = —ex (4.39)
th = €, /N\€sl+ €ex2 A €51 (440)
Ty = —de,. (4.41)

The DCSA 2-vector extraction elements T, are inner product extraction operators on the
DCSA point Tps. The value s can be extracted from point Tpg as

s = TS . T’DS = TDS . TS. (442)

The DCSA extraction operators T, which are a subset of the DCSTA extraction operators
(§7.2.3) with t =t, =tgs, are used to define most of the DCSA GIPNS 2-vector surface
entities.

In the metric of Gy g DCSA,
t2=t% = —(22+y>+2?), (4.43)

which has the opposite sign of t?=1t% in Gg » DCGA. The Gy s DCSA extraction operators
Ti2, Ty, Tye2, and T¢2 each produce the opposite sign compared to the similar extraction
operator in Gg o DCGA. These sign differences require sign changes in the definitions of
any entities that include these extraction elements.

Two properties of the extraction elements are

o O . TS#Tt‘l
e Ty = {4 i, (4.44)

(0 T4+T
e, T, = {1 ey (4.45)
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The first property, about the point at infinity e.,, has the consequence that all DCSA
GIPNS 2-vector surface entities (§4.2.20) without a term in T4 are entities having the
surface point e... In particular, the DCSA GIPNS 2-vector ellipsoid surface entity (§4.2.2)
is generally considered to be a finite closed surface, yet in DCGA it always has the surface
point e,. Other surface entities can also unexpectedly have the surface point e,,. This
possible problem about e., will be mentioned again in the section on the DCSA GIPNS
2-vector ellipsoid entity E (§4.2.2). This possible problem about e, will also be discussed
further in the section on inversions in spheres and on parabolic cyclides (§4.2.20.3). The
second property, about the point at the origin e,, does not pose any known problems.

The spherical inverse surface entity SES™ of any surface entity E without a term in
Tia will always have the inversion sphere S (§4.2.3) center point Pp as a surface point.
The point at infinity e, always reflects into the inversion sphere center point Ppg, or the
reverse. All open surfaces are expected to have the point e,,, and their inverse surfaces
are expected to have the inversion sphere center point. Unexpectedly, the inverse surface
entity of the ellipsoid entity when reflected in a sphere will always have a singular outlier
surface point at the inversion sphere center point (see Fig. 4.16). A singular outlier point
may be invisible in a surface plot.

4.2 DCSA GIPNS entities

Many of the DCSA 2-vector Geometric Inner Product Null Space (GIPNS) surface entities
are constructed using the value extractions T Tps (§4.1.6) from the DCSA point entity
(§4.1). The DCSA GIPNS surface entities are the undual surface entities in DCSA since
the direct construction of DCSA Geometric Outer Product Null Space (GOPNS) surface
entities is limited to the wedge of up to four DCSA points, which cannot construct
all of the DCSA GOPNS surface entities. The DCSA GIPNS surface entities can be
rotated (§4.4.1), dilated (§4.4.2), and translated (§4.4.3) by DCSA versors, and they can
be intersected (§4.4.5) with the bi-CSA GIPNS surface entities.

A DCSA test point Tpgs that is on a DCSA GIPNS surface entity S must satisfy the
GIPNS condition

Tps-S = 0. (4.46)

The DCSA GIPNS k-vector surface entity S represents the set NIg(S € G5g) of all
3D vector test points t that are surface points

NIg(S€Ghs) = {teGss : (D(t)=Tps)-S=0 }. (4.47)

4.2.1 DCSA GIPNS toroid

The implicit quartic equation for a circular toroid (torus), which is positioned at the origin
and surrounds the z-axis, is

t1—262(R2—1?) + (R?—r?)? —4R*(2®+ 9% = 0 (4.48)
where
t=ts = sV +yr+2v3€Gis (4.49)

is a test point, R is the major radius, and r is the minor radius. The equation is true if
the test point t is on the toroid. The radius R is that of a circle around the origin in the
xy-plane. The radius r is that of circles centered on the circle of R and which span the
z-axis dimension for z = =£r. The toroid spans z,y=+(R+r).
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The DCSA GIPNS 2-vector toroid surface entity O is defined as
O = Tu—2(R*— 1T+ (R*—r?)*T, —4R* (T2 + Ty2). (4.50)

A test DCSA point Tps = D(t) is on the toroid surface represented by O if Tps- O =
0. Using symbolic mathematics software, such as the Geometric Algebra Module [2] for
Sympy [24] by ALAN BROMBORSKY et al., the inner product Tps- O generates the scalar
implicit surface function of the toroid when t is a variable symbolic vector. When t is a
specific vector, Tps- O is a test operation on the toroid for the specific point.

We can denote the DCSA-dual (§4.4.6) of O as O*P°, and define it as

0*PS = O /Ips=O0Ips=—0-Ips. (4.51)

The DCSA GOPNS 8-vector toroid surface entity is O*PS| where a test point t on the
surface must satisfy the GOPNS condition Tps A O*P® =0. Since Tpgs is a 2-vector and
O*PS is an 8-vector, then Tps A O*P9 is the DCSA 10-vector pseudoscalar implicit surface
function of the toroid when t is a variable symbolic vector. The undual operation (§4.4.6)
returns the DCSA GIPNS surface O = O*P° . Ipg. The other DCSA GOPNS surface
entities will be discussed later in this paper.

Although the toroid O is created at the origin and aligned around the z-axis, it
can then be rotated, dilated, and translated away from the origin using DCSA versor
operations. Like all DCSA GIPNS surface entities, the DCSA GIPNS toroid can be
intersected with any bi-CSA GIPNS (2, 4, or 6)-vector surface, which are 2-vector spheres
and planes, 4-vector circles and lines, and 6-vector point-pairs.

Since the toroid O is constructed with an extraction term Tiya = —4e,, it is a DCSA
closed-surface entity that does not include e, as a surface point, and it can be dilated
(§4.4.2) by a zero dilation factor d =0 into e,. The inverse toroid entity, when reflected
in a standard DCSA GIPNS 2-vector sphere (§4.2.3), does not have a singular outlier
surface point at the center point of the inversion sphere. The standard DCSA GIPNS 2-
vector sphere S (§4.2.3) also has these closed-surface characteristics, but the ellipsoid E
(§4.2.2) does not.

translation 7T°

TROR™T™

rotation R

Figure 4.1. DCSA toroid rotated and translated
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4.2.2 DCSA GIPNS ellipsoid

The implicit quadric equation for a principal axes-aligned ellipsoid is

)2 RN )2
where p = p,v1 + pyy2 + pys (§2.5) is the position (or shifted origin, or center) of the
ellipsoid, and 7, ry, 7, are the semi-diameters (often denoted a, b, ¢). Expanding the
squares, the equation can be written as

—2psw | —2 —2p.z [ 2? y? 2P 2 opy o p?
e I R e o N C%:%)
rs Ty s Ty Ty T3 R S

Using the DCSA point value-extraction elements (§4.1.6), an ellipsoid equation can be
constructed. This construction will be similar for the remaining surface entities that

follow.
The DCSA GIPNS 2-vector ellipsoid surface entity E is defined as

E — —=beie | TPty | TEPe: (4.54)

T Ty T

T Tp T.

2 _2+ 2 +

T Ty Ty
2 2 2

BeleBoi)n
rz Ty TZ

A DCSA 2-vector point Tps="D(t) is tested against the DCSA 2-vector ellipsoid E as

<0 : tis inside ellipsoid
Tps-E<¢ =0 : tis on ellipsoid (4.55)
>0 : tis outside ellipsoid.

It was first mentioned in Section 4.1.6, on the DCSA point Tps and value-extraction
operators Ty, that the ellipsoid entity E has the possible problem that it includes the
point at infinity e, as a surface point according to the test just given above. We could
define the invariant test e, - E=0 as an invalid test, or we could accept that e, is a valid
surface point of the particular DCSA ellipsoid entity E but not of ellipsoids in general.

An inverse ellipsoid surface entity, which is an ellipsoid entity E that has been reflected
in a standard DCSA 2-vector sphere S (§4.2.3) as SES™, will always have a singular
outlier surface point that is exactly the center point Ppg of the inversion sphere S and
the test Pps - (SES™) =0 will always hold true. The point e, on the ellipsoid entity E
is reflected into Pps. The inverse ellipsoid surface entity SES™ is otherwise a correctly
formed surface entity of one of the types that should be expected, which is either a quartic
Darboux cyclide (§4.2.20) or a cubic parabolic cyclide (§4.2.20.3). The outlier point is
often invisible in surface plots. See Figure 4.16, which shows an ellipsoid reflection that
produces a Darboux cyclide.
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Hz=0

E,NILL

Figure 4.2. DCSA ellipsoids rotated, translated, and intersected with planes

Figure 4.2 shows two ellipsoids that have been rotated (§4.4.1) and translated (§4.4.3)
into their intersecting positions using DCSA versor operations. The DCSA GIPNS ellip-

soid Ey (r, =4, r,=5, r,=3) is rotated 25° around the line n= %(—71 +72), then rotated

45° around the z-axis, then translated by d = 10~; + 104,. The DCSA GIPNS ellipsoid

E; (p.=6, ry=2, r,=3, r,=06) is rotated -35° around the line n = %(—71 + 72), then

rotated 35° around the z-axis, then translated by d =10~ + 107y,. The ellipsoids intersect
in a curved ellipse which, unfortunately, could not be represented as an intersection entity.

Although not rigorously proved here, in tests performed by this author, the ellipsoid
and all other DCSA entities can be intersected with the standard DCSA sphere (§4.2.3),
plane (§4.2.5), line (§4.2.4), and circle (§4.2.6) entities (bi-CSA entities), but DCSA enti-
ties cannot be intersected in full generality.

The upper-left image in Figure 4.2 shows the ellipsoids with standard planes drawn.
The upper-right image shows the ellipsoids drawn with DCSA GIPNS plane IT; repre-
senting the plane z =0, and with the DCSA GIPNS plane II, representing the plane z =0
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rotated 60° around the z-axis. The lower-left image shows the DCSA GIPNS intersection
entity E; AIlj; the green elliptic cylinder H (§4.2.7) is an intersection entity component
and represents the ellipse in which they intersect. The lower-right image shows the DCSA
GIPNS intersection entity Es A Ily; the green hyperboloid of one sheet ¥ (§4.2.11) and
the red non-parallel planes pair X (§4.2.16) are intersection entity components which are
also coincident and represent the intersection (§4.4.5).

4.2.3 DCSA GIPNS sphere

The standard DCSA GIPNS 2-vector sphere S will be defined as a bi-CSA sphere, not
the DCSA GIPNS ellipsoid E (§4.2.2) with equal semi-diameters r =r, =r,=r,.

The DCSA GIPNS ellipsoid E with r=1,=1r,=r, can be reformulated into the DCSA
GIPNS 2-vector ellipsoid-based sphere entity © as

© = —2(pTo+p Ty +pTe) + Tort+ Tyo+ Tz + (p3 + py + p2 — )T (4.56)
1 1 1
~ (pTyp+p,y+p.T.) — 5(]93 +pi+p2) T — §(sz + T2+ T.2)+ 57“2T1. (4.57)

Taking r =0 suggests that the sphere ® degenerates into some type of point entity. With
T1 = —ex, the middle term has a familiar CSA point (§3.1.7) form. However, if this were a
CSA point, the last term should reduce to e,, but it does not. The result here is that, the
sphere entity © with =0 degenerates into a DCSA GIPNS non-null 2-vector point entity,
which is not the standard DCSA null 2-vector point that we might expect. The DCSA
GIPNS ellipsoid E can be reformulated into a kind of sphere entity ® that degenerates
into a kind of non-null point entity when r=0. However, r =0 is invalid for an ellipsoid
entity E, and only in the limit » — 0 does E approach a point ©® with »=0. We can also
form a sphere in another way which does degenerate into a standard DCSA point.

The standard DCSA GIPNS 2-vector sphere surface entity S, also being called a bi-
CSA GIPNS 2-vector sphere, is defined as

S=Sps = Scst /A Scs? (4.58)
where

Scst = Pesi+ %Tgeool (4.59)

Scs: = Pes2+ %rgeoog. (4.60)

The CSA1 GIPNS 1-vector sphere Sgs1 and the CSA2 GIPNS 1-vector sphere Scs2
(§3.2.1), both representing the same sphere, with radius r at center position p = ps
in 3D anti-Euclidean SA space S (§2.5), are wedged to form the DCSA or bi-CSA GIPNS
sphere S. If » =0, the sphere is degenerated into a DCSA point

Pps = Pesi APes2 (4.61)

that would represent the center position of the sphere. This form of sphere allows greater
consistency, and it can also be intersected with any DCSA GIPNS entity. A sphere that
is formed using the DCSA GIPNS ellipsoid can only be intersected with bi-CSA GIPNS
entities. In general, the other bi-CSA GIPNS entities for lines (§4.2.4), circles (§4.2.6),
and planes (§4.2.5) follow this same pattern, that they are the wedge of the CSA1 and
CSA2 copies (§3.5) of the entity.
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A DCSA 2-vector point Tps=D(t) is tested against the standard DCSA GIPNS 2-
vector sphere S as

<0 : t is inside sphere

9 —T'ps - €cc2 _ —S - €2 =0 : tis on sphere (4.62)
(Tps - €x02) - €col (S-€ex2) " €0l >0 : tis outside sphere ’
>0 : =d? squared tangent.

To determine inside or outside, this incidence test requires the bi-CSA point Tps (§4.1)
to be contracted into a CSA1 point (§3.1), and the bi-CSA sphere S to be contracted into
a CSA1 sphere (§3.2.1), and both are renormalized. The entity e, is both a CSA2 point
and a CSA2 sphere of infinite radius, and it serves as the contraction operator on both the
point and sphere into CSA1 entities, up to scale. The result is reduced to a CSA1 incidence
test. When the test is positive, it is the squared distance d? from the point to the sphere
along any line tangent to the sphere surface. Similarly for other bi-CSA entities, they can
be contracted into CSA1 entities and then all the usual CSA tests are available on them.

4.2.4 DCSA GIPNS line
The DCSA GIPNS 4-vector line 1D surface entity L is defined as

L=TLps = LesiALgse (4.63)

where
Lcsl = Dsl — (PSI . Dsl)eool (464)
LC82 = D32 — (p32 . D32)6002. (465)

This is the wedge of the line as represented in CSA1 with the same line as represented
in CSA2 (§3.2.3). It could also be called a bi-CSA GIPNS line entity. The D are unit
bivectors perpendicular to the line, and p is any sample point on the line. The SA undual
(§2.2) unit vector d = —DlIg, or dsi = —Dgils1 and ds2 = —Dg2Is2, is in the direction of
the line.

4.2.5 DCSA GIPNS plane
The DCSA GIPNS 2-vector plane surface entity Il is defined as

M=Tps = s ATlese (4.66)

where
Hcsl = g1 — deool (467)
HC$2 = Ig2 — deoog. (468)

This is the wedge of the plane as represented in CSA1 with the same plane as represented
in CSA2 (§3.2.2). It could also be called a bi-CSA GIPNS plane entity. The vector n is
a unit vector perpendicular (normal) to the plane, and the scalar d is the distance of the
plane from the origin.

The DCSA GIPNS 4-vector line L (§4.2.4) can also be defined as the intersection of
two DCSA GIPNS planes as

L = ILAIL (4.69)
= (n1s1 — d1€0c1) A (D152 — d1€002) A (D251 — d2€s01) A (Nas2 — do€oo2) (4.70)
—((n151 — d1€0c1) A (Nas1 — d2€oo1)) A (152 — d1€002) A (Nas2 — da€0c2)) (4.71)



46 SECTION 4

~ (nis1 Angst — (donyst — dinasi)€nct) A (Mys2 ANoge — (donys2 — diNgg2)ess)  (4.72)

~ (Dsi— (psi-Ds1)esct) A (Dsz — (Ps2 - Dis2)eccs) (4.73)

~ Lcsl N L032, (474)
where

Dsl = 51 /A Nogt (475)

D32 = Nn;s2/\Ngg2 (476)

p31-D$1 = (psl-n1$1)n2$1— (psl-n2$1)n131 (477)

= —d1n231 + d2n151 (478)

ps2-Dsz = (psz-mis2)nasz — (Psz - Nas2)nyse (4.79)

(4.80)

= —dings2+ dony g2

such that p is any point on both planes (the line), and D =d*S = —dI3" (§2.2) is the unit
bivector perpendicular to the line. The unit vector d = —DIs points in the direction of
the line. Other bi-CSA GIPNS entities are formed similarly as the wedge of the entity in
CSA1 with the same entity in CSA2.

Some of the subscripting notation may seem confusing. For example, n;s: is the first of
the two anti-Euclidean 3D unit vectors in Gy 3 SA1 (§2.5), and this could also be denoted
as ngi. Recall that Goz SA1 S !is the algebra with unit pseudoscalar Is1 = ejesey, and it
is a subalgebra of G; 4 CSA1 CS* with unit pseudoscalar Ics: = eseseseseq (§3.5). The Gy 4
CSA2 CS? algebra uses notations n;g2 or ngz, where Isz =egege o and Ies2 = egegerperiers
(§3.5). The subscripting indicates the index number for multiple entities sharing the same
name, and also the algebra in which the entity exists. Finally, n;s1 and n;s2 have the same

index number 1, so they represent the same 3D unit vector n copied or doubled into the
S' and 8? anti-Euclidean subalgebras of CS' CSA1 and CS? CSA2, respectively.

4.2.6 DCSA GIPNS circle

A circle is the intersection of a sphere and plane. We can intersect a bi-CSA GIPNS 2-
vector plane IT (§4.2.5) with either a bi-CSA GIPNS 2-vector sphere S (§4.2.3) or with a
spherical DCSA GIPNS 2-vector ellipsoid E (§4.2.2) and get two different GIPNS 4-vector
circle entities. The first can be intersected again with any other entity, but the latter can
only be intersected again with another bi-CSA GIPNS entity.

Intersections (§4.4.5) are limited to an GIPNS intersection entity of maximum grade
8, so up to four 2-vector entities, two 4-vector entities, or a 4-vector entity and two 2-
vector GIPNS entities can be intersected, but only one of the intersecting entities can be
a DCSA GIPNS 2-vector Darboux cyclide (§4.2.20).

As the standard DCSA GIPNS 4-vector circle 1D surface entity C, we will define it
as the bi-CSA GIPNS circle

C=Cps = SpsAIlps (4.81)
— Scsl VAN Scs2 N Hcgl N Hcs2 (482)
— —(Scsl AN Hcsl) N (Scs2 N HCSQ) (483)
~ CC81 N CCSQ- (484)
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4.2.7 DCSA GIPNS elliptic cylinder

An axes-aligned elliptic cylinder is the limit of an ellipsoid as one of the semi-diameters
approaches oo. This limit eliminates the terms of the cylinder axis from the implicit
ellipsoid equation.

The z-axis aligned cylinder takes r, — 0o, reducing the ellipsoid equation to

(y —py)° i (z—p)* _ 1 = 0. (4.85)

2 2
Ty T3

Similarly, the y-axis and z-axis aligned cylinders are

2 2
e A (4.86)
N2 2
(« Tsz) e 7’2py) 1 -0 (4.87)

x Y

where p = p,7y1 + pyY2 + p-¥3 is the position (or shifted origin, or center) of the ellipsoid,
and r,, 7,7, are the semi-diameters (often denoted a,b, ¢).

The DCSA GIPNS 2-vector z,y,z-azis aligned cylinder surface entities HI#¥:2} are
defined as

B 9. T, 2 2

Hle = —2ly  =2pl: 2+T2+<p—3+p—§—1>T1 (4.88)
’l“y rz Iry rz Yy ,rZ
. N 2 2

Hlv — 2p2xTz+ 2psz+&+Tz2+(p_§+p_;_1>Tl (4.89)
T ,rz Tz z Tz Tz

Hl- = —2de Z2bly | Tae Ty +<p +p—g—1>T1. (4.90)
T ry rx ry s Ty

These elliptic cylinders are created as axes-aligned, but like all DCSA entities, they can
be rotated, dilated, and translated using DCSA versor operations (§4.4).

TRHR™T™

TDHD~T~

Figure 4.3. DCSA elliptic cylinders
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Figure 4.3 shows a red DCSA GIPNS z-axis aligned elliptic cylinder H at the origin
with semi-diameters r, =1 and r, = 3. The cylinder is the red cylinder dilated by
factor 2 and translated 5+, — 57, using DCSA versors. The blue cylinder is the red cylinder
rotated 45° around the y-axis and translated —54; + 57».

4.2.8 DCSA GIPNS elliptic cone

An axis-aligned elliptic cone is an axis-aligned cylinder that is linearly scaled along the
axis.

The implicit quadric equation for an z-axis aligned cone is

=p)® Gop) @-p)® (4.91)

3 =
Ty r T

z

where p = p,7y1+ pyy2 + p-¥3 is the position (or shifted origin, or center) of the cone apex,
and r,,7,,7, are the semi-diameters (often denoted a, b, c) of the ellipsoid upon which the
cone is based. When

(z—pa)® _

(4.92)

the cross section of the cone is the size of the similar cylinder. When x = p, the cross
section of the cone is degenerated into the cone apex point.

Similarly, the implicit equations for y-axis and z-axis aligned cones are

(v pr) L sz) v 229y) _ 0 (4.93)
rq; TZ ry
( 2px) LW 2py) _ 2pz) _ 0 (4.94)

The GIPNS cone entities are constructed similarly to the ellipsoid and cylinder entities.

The DCSA GIPNS 2-vector {z,y,z}-azis aligned elliptic cone surface entities K= v.2}
are defined as

Ko = g Loz _Buy Pz )22 2y (B B _Bn (4.95)
x Yy z x Yy z Yy z T

Klv — 9 »Z,/«?y_ - Rl s LT F_r_g—'—ﬁ T, (4.96)
y z T T Y z T Y z
A T oL Tz T, Tz 3: ; g

Kle — 9 pr2 _p;yﬂy_pr2 n r;+ v r22+ %+%_% T,. (4.97)
z Y x x Yy z z Yy z

These elliptic cones are created as axes-aligned, but they can be rotated, dilated, and
translated using DCSA versor operations (§4.4). All the DCSA surfaces can have general
position, but we initially define them in axes-aligned position for simplicity. Defining the
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surfaces in general position may be possible if the value-extraction operations T, T} .,
and T, are employed.

TRKR™T™

_

TDKD~T~

Figure 4.4. DCSA elliptic cones

Figure 4.4 shows some DCSA GIPNS cones positioned and transformed similar to the
elliptic cylinders of Figure 4.3. The dilation of a cone does not change the cone shape, but
it does dilate the cone center position to effectively translate a cone that is not initially
at the origin to be further from the origin by the dilation factor.

4.2.9 DCSA GIPNS elliptic paraboloid

The elliptic paraboloid has a cone-like shape that opens up or down. The other paraboloid
that would open the other way is imaginary with no real solution points.

The implicit quadric equation of a z-axis aligned elliptic paraboloid is

(z —21):1;)2 L —2py)2
T

r B Gl O R (4.98)

T2

z Yy

The surface opens up the z-axis for r, >0, and opens down the z-axis for r, < 0. Similar
equations for z-axis and y-axis aligned elliptic paraboloids are

2 )2 _
(Z TQPZ) + (y r2py) _ (x . pﬂ?) =0 (499)
z y T
a2 )2 _
(.’E r2pm) + (Z TQPZ) _ (y . py) = 0. (4100)
x z Yy

Expanding the squares, the z-axis aligned equation is

—2D, -2 — 2 2 g 2 z
Tz Ty = T Ty e Ty Tz
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and the z-axis and y-axis aligned equations are

—2p.z | —2 2 E o
Dz AP, T 2 +y i p: +Py+P -0 (4.102)
T ’r‘y Tz Tz y ’T‘Z y Tz
Pt | fz+—y+x +z +(p—2+p +py> = 0. (4.103)
Tz T Ty Tﬂc Tz Tz Ty

The DCSA GIPNS 2-vector {z,y,z}-axis aligned elliptic paraboloid surface entities
VIH=v:2} are defined as

—2p.T. —2p,, ~Tp T Tp 202 pe
yle = 2Pz Z2buly e ;+ 2+ Pe By y P2y (4.104)
r? Y Ty z Ty T
—2p. T —2p.T. T, Ty T. 2 P2
Viv = heey TR vy 2 2y P o Py Py (4.105)
rs rZ Ty 7”9; T 7” z Ty
s fz + f;’ . 22+ —F +<p +py+r )Tl (4.106)
x Yy z T y z

A DCSA 2-vector point Tps="D(t) is tested against the DCSA 2-vector paraboloid V as

<0 : t is inside paraboloid
Tps-V{ =0 : tis on paraboloid (4.107)
>0 : t is outside paraboloid.

This is similar to the ellipsoid incidence test, and this test is similar for many of the
surfaces.

TRVR™T~

TDVD~T~
Figure 4.5. DCSA elliptic paraboloids

4.2.10 DCSA GIPNS hyperbolic paraboloid

The hyperbolic paraboloid has a saddle shape. The saddle can be mounted or aligned on
a saddle axis with another axis chosen as the up axis. The third axis may be called the
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straddle axis.
The implicit quadric equation of a hyperbolic paraboloid is

(z—pa)® (y=—p)* (z=p) _ (4.108)

r? Y r,

This particular form of the equation has saddle z-axis, straddle y-axis, and up z-axis
for r, > 0 or up negative z-axis for r, < 0. By its similarity to the z-axis aligned elliptic
paraboloid with the elliptic y-axis inverted, this particular form can be seen as z-axis
aligned. Other forms can be made by transposing axes, or by rotation around diagonal
lines using DCSA rotor (§4.4.1) operations.

Expanding the squares, the equation is

—2 r 2 2 ac rz
T Ty z r;p ry .’E ry Tz

The DCSA GIPNS 2-vector z-azis aligned hyperbolic paraboloid surface entity M is defined
as

—op. T, ~T. T 2 P D
M = —2pale  2pydy T T +<p p_ngp_)Tl. (4.110)

2
o Ty T, rs o LT

rotation Ry

/

RoR{MRT Ry

NSO

rotation R,

Figure 4.6. DCSA hyperbolic paraboloid rotated twice

Figure 4.6 shows the hyperbolic paraboloid entity M, which is centered on the origin
with parameters r, =r,=1.=1, and which was initially z-axis aligned. It was then rotated
twice. The first rotation was 45° around the blue z-axis, pointing nearly out of the page.
The second rotation was 25° around the line n= f( 1+ 2) pointing toward the lower-

right of the page. The rotations follow the right-hand rule on a right-handed axes model.
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4.2.11 DCSA GIPNS hyperboloid of one sheet

The hyperboloid of one sheet has a shape that is similar to an hourglass which continues
to open both upward and downward. The implicit quadric equation is

2 2 2
=p”  Wop)” Eopl g (4.111)

rs Ty s
This particular form opens up and down the z-axis. Planes parallel to the z-axis cut
hyperbola sections. Planes perpendicular to the z-axis cut ellipse sections. At z = p,,
the ellipse section has a minimum size of the similar cylinder. Other forms can be made
by transposing axes, or by rotation around diagonal lines using DCSA rotor operations

(§4.4.1).

Expanding the squares, the equation is

Ty Ty Ty Ty P T T'y Ty

—2p;r | —2 A A - T -
e — A p22+x—2+%+—§+<p—2+p—g—p—2—1 — 0. (4.112)
Y

The DCSA GIPNS 2-vector z-azis aligned hyperboloid of one sheet surface entity X is
defined as

T paTh T T, Tp T, 2opr o p?
> = 2<pr2 —pTQ —p12y>+—;+—y;— ;+<p—2+%—%—1 T (4.113)
z T y z

Figure 4.7. Rotation of DCSA hyperboloid of one sheet

Figure 4.7 is an orthographic (parallel projection) view from above the zz-plane that
shows the hyperboloid ¥ with r, =1, r, =2, r, =3, initially with green color, positioned
at p, = 10, and aligned up and down the z-axis. It is then rotated using a DCSA rotor
R (8§4.4.1) by 90° in 10° steps as its color fades to blue, with final position at p, = —10
and aligned up and down the z-axis. The rotation is counter-clockwise around the y-axis
coming out of the page on a right-handed system of axes. The z-axis is red and positive
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up, the y-axis is green (not visible), and the z-axis is blue and positive to the right. The
axes are drawn by rendering thin elliptic cylinder entities (§4.2.7). The right-hand rule,
holding the y-axis, provides orientation for this rotation. The hyperboloid is rotated about
the origin, around the y-axis, as a rigid body of points. In the symbolic computer algebra
system (CAS) Sympy [24], the hyperboloid equation itself, as a DCSA entity, was rotated
symbolically and graphed at each step using the Maya Vi [21] data visualization software.

4.2.12 DCSA GIPNS hyperboloid of two sheets

The hyperboloid of two sheets has the shapes of two separate hyperbolic dishes; one
opens upward, and the other one opens downward. The shape is like an hourglass that
is pinched closed and the two halves are also separated by some distance. The implicit
quadric equation is

7"2 7"2 7"2

(v —pa)® _ (y—py)?° + (2 —p2)° 1 = 0. (4.114)

x z

Y

This particular form has the two dishes opening up and down the z-axis. The dishes are
separated by distance 2r, centered at p,. At |z — p.|=/2r., the sections perpendicular
to the z-axis are the size of the similar cylinder.

Expanding the squares, the equation is

2ot 2pyy  2pez 2y 2 [ —pi -y Pl
_ SN R P 1) =0 4.115
R T R R R B N B R (4.115)
The DCSA GIPNS 2-vector z-azis aligned hyperboloid of two sheets surface entity = is
defined as

- Lo pdy p i\ T Tp To (p2 pi pi
= = 2<p et )——22——y22+—;+<%—p—2—&—1 Ti.  (4.116)

T ry Tz

T T T

T Y z r

«— Hz:()

Figure 4.8. Rotation of DCSA hyperboloid of two sheets
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Figure 4.8 shows a perspective view of the hyperboloid of two sheets = initially with
green color, centered at p, =5, p,=—>5, and with semi-diameters r, =1, r,=2, r,=3. The
black dots (small sphere entities) are the center positions as the surface is rotated around
the white line through the origin and the red point 544 4+ 1075+ 573. The rotation is by
90° in 10° steps until it reaches the position of the blue surface. The first black dot is on
the zy-plane (blue plane), and then the black dots go under the blue plane along an arc
directly around the axis of rotation. The surface is carried along as a rigid body by the
rotation using a DCSA rotor operation (§4.4.1). The symbolic CAS Sympy was used for
each rotation step, where an exact symbolic equation of the hyperboloid was generated
by the rotated entity and graphed using MayaVi data visualization software.

4.2.13 DCSA GIPNS parabolic cylinder

The implicit quadric equation for the z-axis aligned parabolic cylinder is

-p? -p) _ (4.117)

r2 Ty

The z coordinate is free, which creates a type of cylinder with parabolic sections that
open up the y-axis for r, >0, and open down the y-axis for r, <0. The similar equations
for z-axis and y-axis aligned parabolic cylinders are

(y=—m)® (z=p) _ | (4.118)

T r,

(x=pa)* (2=ps) _ (4.119)

r2 r,

with parabolas that open up or down the z-axis. Other forms can be made by transposi-
tions or by using DCSA versor operations (§4.4).

Expanding the squares, the equations are

2}27$x_£+1‘_2+(p_§+_y) =0 (4.120)
/rz Ty x T:D /ry
2 2 Y D

J;yy_i+y_2+ p_g+_ -0 (4.121)
Ty Ty Ty ry Tz
—2pzx z @ 2P

L4t P P2 ) — 0. 4.122

r2 rz+r§+<r§+rz 0 ( )

The DCSA GIPNS 2-vector {z,y,z}-axis aligned parabolic cylinder surface entities
B!{=¥:2} are defined as

B 2
Bl — Q%yTy_2+T_?§+<p_g+_z>Tl (4.123)
Ty T, Ty ry Tz
B 2
s — L S 0 <p—2 + &)Tl (4.124)
T T Ty T z
B 2
rq; ry rl‘ rl‘ ry
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These are created as axes-aligned surfaces, but can be rotated, dilated, and translated
using DCSA versor operations (§4.4).

Figure 4.9. DCSA parabolic cylinders and toroid rotated and translated

Figure 4.9 shows multiple perspective views of the DCSA GIPNS 2-vector parabolic
cylinders and toroid (§4.2.1) surface entities rendered together in one scene. The red
cylinder is z-axis aligned, r,=1, r, =1, rotated 20° around the z-axis, and then translated
by d = —10~, from the origin. The green cylinder is y-axis aligned, r, =2, r,=1, rotated
40° around the y-axis, and then translated by d =104; — 1073 from the origin. The blue
cylinder is z-axis aligned, r, =4, r, =1, rotated 60° around the z-axis, and then translated
by d = —10~; + 10, from the origin. The toroid, with R =4 and r =1, is rotated 25°

around the axis n = %(—71 + 72), and then translated by d =104; 4+ 10, + 103 from

the origin. The rotations follow the right-hand rule on right-handed axes. The rotation-
translations were performed as compositions of DCSA rotors (§4.4.1) and translators
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(§4.4.3). Symbolic CAS Sympy was used to generate exact equations of the transformed
entities, which were then graphed using the MayaVi data visualization software.

4.2.14 DCGA GIPNS hyperbolic cylinder

The implicit quadric equation for the z-axis aligned hyperbolic cylinder is

(@—pa)* (y=p) | _ (4.126)
r? r?
x Yy

The z coordinate is free, which creates a type of cylinder with hyperbolic sections that
open up and down the x-axis. The hyperbola branches are separated by distance 2r,
centered at p = pyv1 + pyYy2 + 27v3. The asymptotes are the lines

(y=p) = £z —p) (4.127)

through (p., py), where in the limit as x — £oo the —1 becomes insignificant.

The similar equations for z-axis and y-axis aligned hyperbolic cylinders are

(y 2py) (= 2}%) 1 -0 (4.128)
T'y Ty
(2 szz) G szx) 1 -0 (4.129)

z x

with hyperbolas that open up and down the y-axis or z-axis. Other forms can be made
by transpositions or by using DCSA versor operations (§4.4).

Expanding the squares, the equations for x, y, z-aligned hyperbolic cylinders are

. 2 2 2 2
2z;yy+2p§z+y_2_2_2+<29_z2;_29_;_ ) =0 (4.130)
Ty TZ Yy /rz /ry Tz

—2p.2 | 2per | 2% 2 (p: ph

SN AN =0 4.131
2 T 2\ s

—2p. | 2 R
Pt | pgy+x_2_y_2+<_2_1?_g_ = 0. (4.132)
T Ty T Ty (= Ty

The DCSA GIPNS 2-vector {z,y,z}-axis aligned hyperbolic cylinder surface entities
JIHz.v:2} are defined as

. T, T 2 2

gle = =20y 2T ZQ_T_§+<P_g_p_;_1>T1 (4.133)
Ty s ry T Ty Ts
—2psz 2psz Tz2 Tx2 pz p?ﬁ

Jlly = rg + T’?C +r_§__§+(r_§_r_§_1 Tl (4'134)

2
Tz Y T Y

—_ 2 2 2
Jl= — 2prz+2134@/2T9+T_I2_E+<&_@_1>T1_ (4.135)
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translation T

Yy
“
TRIIZR~T" rotation R

Figure 4.10. DCSA hyperbolic cylinder rotated and translated

Figure 4.10 shows the z-axis aligned hyperbolic cylinder, with initial parameters p, =0,
py=0, r,=1, and r, =2. The second rendering of it is rotated 60° around the z-axis and
then translated by d =—10-; + 107, using a composition of DCGA rotor R (§4.4.1) and
translator 7' (§4.4.3) operations.

4.2.15 DCSA GIPNS parallel planes pair

Parallel pairs of axes-aligned planes are represented by the simple quadratic equations in
one variable

(z = pa1)(x = pa2) = 0 (4.136)
(Y =py)(y—py2) = 0 (4.137)
(2 =pa)(z—pw2) = 0. (4.138)
Each solution is a plane. Expanding the equations gives
2% = (Pa1 + Pe2) + Parpez = 0 (4.139)
y* = (py1 + Py2)y + pypy2 = 0 (4.140)
22— (paa+ p2)z+ pap2 = 0. (4.141)

The DCSA GIPNS 2-vector parallel {z,y,z}-planes pair entities 12} are defined as

It = Tx2 - (pzl + pz2)Tx + pzlprTl (4142)
MY = T2 — (py1+ py2) Ty + pyipyaTh (4.143)
Iz = T,.— (P21 + D22)Ts+ paapaoTh. (4.144)

These surfaces can also be described as being types of cylinders with cross sections being
two parallel lines.
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Figure 4.11. DCSA parallel planes pairs rotated

Figure 4.11 shows the DCSA GIPNS parallel planes pair entities rotated using DCSA
rotor operations (§4.4.1). The red planes pair is initially perpendicular to the z-axis
through points p,; =4 and p,2 = 8, then it is rotated 30° around the y-axis. The green
planes pair is initially perpendicular to the y-axis through points p,; = —5 and p,2 = 5,
then it is rotated 60° around the z-axis. The blue planes pair is initially perpendicular
to the z-axis through points p,; =—10 and p,; = —7, then it is rotated 90° around the z-
axis until it is perpendicular to the y-axis through the points p,; =10 and py,="7.

4.2.16 DCSA GIPNS non-parallel planes pair

The implicit quadric equation for a pair of intersecting, non-parallel planes that are
parallel to the z-axis is

(v —pa)®  (y—py)°
2 Tgy = 0. (4.145)

This equation can be written as

r
(y—py) = 2z —p) (4.146)
with the z coordinate free to range. This surface can also be described as a kind of
cylinder with a cross section in plane z that is two lines with slopes j:% intersecting at
P = P21+ PyY2 + 273

Expanding the squares, the equation is

—2p.r | 2pyy 2 Y, (P Dy
L N Y T ) (4.147)

2
T Ty ry Ty Ty Ty

The DCSA GIPNS 2-vector {z,y,z}-axis aligned non-parallel planes pair entities X [Hz.y,2}
are defined as

. T, T 2 2
xle = Z2oly | 20T Tye Te2 (p_g - p—;)ﬂ (4.148)
Ty T Ty e ry T:

. 5 5 2 2
xly = 2Lz 2pele | T T +<&_&)Tl (4.149)

2 2 2
T Tz T

=
8N
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. T 2p, T, T, T 2l
Xl = fz + Zjnyz y+T_22_ rer(%_%)Tl' (4.150)
x Yy x Yy x )

RXI"R~

Figure 4.12. DCSA non-parallel planes pair rotated

Figure 4.12 shows the entity X!, initially having planes with slopes i% = :I:% that

cross at the origin point p, =0, p, =0 in the zy-plane. It is then rotated using a DCSA
rotor R (§4.4.1) around the y-axis by 70°. The line of crossing points was initially the z-
axis, but after rotation the crossing line is at 70° off the z-axis, around the y-axis. Like
the other DCSA entities, the non-parallel planes pair entities can be transformed into
general positions using DCSA versor operations (§4.4).

4.2.17 DCSA GIPNS ellipse

The ellipse is a conic section, and like all conic sections it can be made as the intersection
(8§4.4.5) of a plane (§4.2.5) and cone (§4.2.8), but we are not limited to intersecting
with cones. A simple ellipse representation is made as the intersection of a plane and
elliptic cylinder (§4.2.7). The parabola (§4.2.18) and hyperbola (§4.2.19) are also conic
sections, and their simple representations are as planes intersecting parabolic (§4.2.13)
and hyperbolic (§4.2.14) cylinders. We can just define these conic sections as these plane
and cylinder intersections, but these conic sections could be formed by a wide variety of
other possible intersections.

The DCSA GIPNS 4-vector zy-plane ellipse 1D surface entity €¥ is defined as
elvy = TI=0AHI (4.151)

where the DCSA GIPNS 2-vector plane IT*=Y (§4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector elliptic cylinder HI* (§4.2.7) is as previously defined and
directly represents an ellipse in the xy-plane. Other similar ellipse entities are the wedges
of other planes with other elliptic cylinders that are aligned differently.
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A DCSA GIPNS ellipse entity €, or its dual DCSA GOPNS ellipse entity €7 = elp},
can be rotated, dilated, and translated using DCSA versor operations (§4.4), where versor
outermorphism is applied to the wedge of plane and cylinder that form the ellipse entity.
In versor operations on the ellipse entity, the plane and cylinder are each transformed by
the versor operations, and then the transformed plane and cylinder are intersected.

The invariant test e, - €/”¥ =0 seems to indicate that the ellipse reaches to infinity,
but this should be considered as an invalid test.

4.2.18 DCSA GIPNS parabola
The DCSA GIPNS 4-vector zy-plane parabola 1D surface entity p!*¥ is defined as

pllty = M= A Bl (4.152)

where the DCSA GIPNS 2-vector plane I1*=° (§4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector parabolic cylinder BlI* (§4.2.13) is as previously defined
and directly represents a parabola in the xy-plane. Other similar parabola entities are
the wedges of other planes with other parabolic cylinders that are aligned differently.

4.2.19 DCSA GIPNS hyperbola
The DCSA GIPNS 4-vector zy-plane hyperbola 1D surface entity n/l*¥ is defined as

nllty = T1#=0 A Jlz (4.153)

where the DCSA GIPNS 2-vector plane I1*=° (§4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector hyperbolic cylinder JI1 (§4.2.14) is as previously defined
and directly represents a hyperbola in the zy-plane. Other similar hyperbola entities are
the wedges of other planes with other hyperbolic cylinders that are aligned differently.

4.2.20 DCSA GIPNS Darboux cyclide

The implicit quartic equation for a Darbouz cyclide [19] surface is

At'+ Bt2 + (4.154)
Crt? + Dyt + Ext? +
Fo? +Gy*+ H22 +
Izy+ Jyz+ Kzx +
Lx+My+Nz+0O = 0

where t =z, + yy2 + 273 is a test point and the A...O are 15 real scalar constants. The
point t (§2.3) is on the cyclide surface if the equation holds good. The square

t?=t3 = —(22+y*+2? (4.155)

has the opposite sign compared to t# in Gg» DCGA [7][8].
The DCSA GIPNS 2-vector Darboux cyclide surface entity €2 is defined as

Q = ATu+ BT+ (4.156)
CTyo2+ DTy2+ ET 42+
FTp+GTp+ HT 2+
ITyy+ JTyet KTeq +
LT,+MT,+ NT,+ O1T;.
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All DCSA versor operations (§4.4) are valid on the Darboux cyclide entity €2 and its
dual 2*PS. The Darboux cyclide entity € can be intersected with DCGA GIPNS planes
(8§4.2.5), spheres (§4.2.3), lines (§4.2.4), and circles (§4.2.6).

Entities with A # 0 have valid dilator operations (§4.4.2) with all dilation factors,
including dilation factor d =0. If A 0, then €2 dilates by factor 0 into ATy = —4Ae,,
which is a wvalid result representing the point at the origin. If A =0, then  dilates by
factor 0 into scalar 0, which is an invalid result. Said differently, GIPNS entities that have
e, as a term dilate by factor 0 into e, (up to scale), and other GIPNS entities dilate by
factor 0 into scalar 0. The duals of such dilations are either e:P° or 0.

It was first discussed in Section 4.1.6, on the DCSA point Tps and extraction operators
T}, and then mentioned again in the section on the DCSA GIPNS 2-vector ellipsoid surface
entity E, that any DCSA GIPNS 2-vector surface entity without a term in T4 has the
surface point e,.. This includes some closed surfaces that would not be expected to have
the point e.

The constant B and the constants F', G, H allow alternative formulations of an entity
Q. If F=G=H, then F could be added to B to form a simpler entity having fewer terms
by eliminating F', G, H. If an amount b is subtracted from each of F', G, H, then it can
be added back as (B +b), or the reverse. The surface represented by the entity €2 is not
affected by the specific choice of how to use B, F', G, H, but other metrical properties could
be affected. Metrical properties include the scalar results returned by the inner products
of entities, which are often distance measures between surfaces.

The Darboux cyclide entity €2 is the most general form of DCSA GIPNS 2-vector
surface entity that can be defined using the DCSA point Tps value-extraction operators
s =T, - Tps (§4.1.6). DCSA could be described as a conformal geometric algebra on
Darboux cyclide surface entities in 3D space. DCSA could also be Gg o Darboux Cyclide
Space Algebra. All of the DCSA GIPNS 2-vector quadric surface entities and the toroid
entity, and also their inversive or cyclidic surface forms when reflected in DCSA spheres
(§4.2.3), can be represented as instances of the Darboux cyclide entity €.

An instance of the DCSA GIPNS 2-vector Darboux cyclide surface entity {2 can be
produced by one or more inversions in DCSA GIPNS 2-vector spheres S; (§4.2.3) of any
DCSA GIPNS 2-vector surface entity Y. For example, the inversion of a DCSA GIPNS
2-vector quadric or toroid surface entity Y in a DCSA GIPNS 2-vector sphere entity S is
the reflection 2=SY S~ which is an instance of the Darboux cyclide surface entity €2 that
appears to be Y reflected in the sphere S. The sphere S can be visualized as a spherical
mirrored surface when Y is located entirely outside S, and the cyclidic reflection of Y is
seen on the surface of S or inside of S. Successive inversions or reflections of Y in multiple
spheres S; transforms Y into a succession of different cyclide surface entities, all based on
the initial shape of Y. The distinction between inversion and reflection, which concerns
whether or not the orientation of the surface remains the same or becomes inside-out, is
not being made here.

Dual DCSA GOPNS 8-vector surface entities Y*PS can also be reflected in a sphere S,
or in its dual S*P°, to produce an instance of the dual DCSA GOPNS 8-vector Darboux
cyclide surface entity €2*PS.

A singular outlier surface point Ppg will exist on the inverse surface entity SYS™ of
any DCSA GIPNS 2-vector closed surface entity Y without a term in Tya = —4e,. The
singular outlier surface point Ppg is always the center point of the inversion sphere S.
The inverse surface entity SYS™ of an open surface entity Y that is known to reach
€ is expected to have the point Ppg, as it does. If X is a closed surface entity, then
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it does not actually reach to infinity, and yet any such entity Y without a term in T4
has the surface point e,, and has an inverse surface STS™ that has the inversion sphere
center point Ppgs as a singular outlier surface point. The inverse of point e, is always the
inversion sphere center point Ppg, or the reverse. A singular outlier surface point may be
invisible on a surface plot. In particular, for any DCSA GIPNS 2-vector ellipsoid surface
entity E, its inverse surface entity SES™ has the inversion sphere S center point Pps as
an (invisible) singular outlier surface point. An unexpected e, or outlier point Pps is a
possible problem for an application, but awareness of their existence may allow for a
workaround to mitigate any possible problem caused by their existence.

ring Dupi clide ®

Figure 4.13. Toroid O reflected in sphere S, & =S0OS"™
n-Zde {)g
Figure 4.14. Cylinder H reflected in sphere S, & = SHS™

horned Dupin cyclide T’

Figure 4.15. Cone K reflected in sphere S, 2 =SKS™

Q

e ——— outlier of

Figure 4.16. Ellipsoid E reflected in sphere S, 2 =SES™
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Figure 4.17. Hyperboloid of one sheet 3 reflected in sphere S, 2 =S3S~

Figure 4.18. Hyperboloid of two sheets = reflected in sphere S, 2 =SES™

Figure 4.19. Paraboloid V reflected in sphere S, 2 =SVS™

Figure 4.20. Hyperbolic paraboloid M reflected in sphere S, & = SMS™

It is beyond the scope of this paper to analyze and define every possible type of cyclide
that can be defined as instances of the Darboux cyclide entity 2. However, as an example
of what can be defined, we can consider the subsets of cyclides known as Dupin cyclides
and parabolic cyclides [11][23]. The Dupin cyclides can generalize the circular toroid
(torus) by creating cyclides based on torus inversion in a sphere. As shown in Figures
4.13,4.14,4.15, 4.16, 4.17, 4.18, 4.19, and 4.20, it is possible to define many other specific
cyclide entities based on each of the quadric surfaces reflected in spheres.
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4.2.20.1 DCSA GIPNS Dupin cyclide
The implicit quartic equation for a Dupin cyclide surface is
(—t2 4 (b2 — i2))? — d(az — o) — 4By° = 0
where t =27, + yy2 + 273 is a test point. Expanding this equation gives
t4— 26%(b% — 1) + (b* — p?)? — 4(a®x? — 2acux + Ap?) — 4b*y* = 0.
The DCSA GIPNS 2-vector Dupin cyclide surface entity ® is defined as

@ = Tt4 — 2ﬂ2(b2 - ,U/Q) +
—Aa?Tye — VT +
8acuT, + ((b* — pu?)* — 4c*u*)Th.

SECTION 4

(4.157)

(4.158)

(4.159)

The scalar parameters of the surface are a, b, ¢, u, with b always squared. The Dupin
cyclide can be described as a surface that envelops a family of spheres defined by two
initial spheres of minor radii, r; and ry, centered on a circle of major radius R. To gain
a more intuitive expression of the Dupin cyclide equation, we can define the parameters as

a = R
1
Bo= §(T1+T2)
1
c = §(r1—r2)
b2 = a®>—c2

4.160

4.161
4.162

)
)
)
4.163)

(
(
(
(

The Dupin cyclide @ is now defined by the three radii parameters, R, r1, ro. When
r=r1=rs9, the Dupin cyclide ® is exactly the same entity as the toroid O with parameters

R and 7.
The DCSA GIPNS Dupin cyclide @ has the following related points:

Center of initial sphere S; with radius r; : —Rv;
Center of initial sphere Sy with radius v, : +R7;
Center of ring or spindle hole in the cyclide : +cv,
Center of sphere enclosing entire cyclide : —cy;

Radius around —c7y; enclosing entire cyclide : pu+ R.
Twelve surface points on the Dupin cyclide ® are:

2 surface points on S; with radius r; : —R~vy;£7r1v7
2 surface points on S; with radius r1 : —Ry; £7r173
2 surface points on S, with radius ro : +Rvy; £ 79V
2 surface points on Sy with radius ro : +R~y; 17273
2 surface points : —cy1 £ (pu+ R)y2

2 surface points : +cvy;+ (pu— R)~o.

The Dupin cyclide @ is initially created having these 12 points. All DCSA versor opera-
tions are valid on the Dupin cyclide @ and can be used to rotate, dilate, and translate it

into another general position.
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The type of cyclide or torus represented by @® is determined by:

Ring cyclide when :
Spindle cyclide when :

Ring torus when :

( )

( )
Horn cyclide when : (r;+rq)=2R

( )

Spindle torus when : ( )

( )

Horn torus when :

Figure 4.21. Ring cyclide ®, (r1+72) <2R

@O b

Figure 4.22. Spindle cyclide ®, (r;+r2) >2R

S b=

Figure 4.23. Horn cyclide ®, (11 +1r2) =

Figures 4.21, 4.22, and 4.23 show three types of the Dupin cyclide ®. The torus types,
not shown, are ordinary toroid surfaces and they are exactly the same entities as formed
by the toroid entity O. The inversion of a circular cylinder in a sphere can form a needle
cyclide 23], which is a ring cyclide having r; =0 or 19 =0, r1 # ro.

4.2.20.2 DCSA GIPNS horned Dupin cyclide
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The horned Dupin cyclide is a modification of the Dupin cyclide that causes both of
the initial spheres to shrink until they meet in points. The horned Dupin cyclide is formed
by swapping p and c in the implicit equation of the Dupin cyclide. The parameters a, b,
c, i are defined as

a = R (4.164)
1
no= 5(7’1 +T2) (4 65)
¢ = %(rl 1) (4.166)
Vo= a®— 2 (4.167)
The DCSA GIPNS 2-vector horned Dupin cyclide surface entity I' is defined as
' = Tu—2Tp(b?—2) + (4.168)

—4a2T$2 — 452Ty2 —+
8acuT, + ((b* — ?)? — 4 p®)Th.

The DCSA GIPNS horned Dupin cyclide I' has the following related points:

Center of initial sphere S; with radius r, : —Ry;
Center of initial sphere Sy with radius v : +R7;
Center of ring or spindle hole in the cyclide : +cv;
Center of sphere enclosing entire cyclide : —cvy;

Radius around —c~y; enclosing entire cyclide : pu+ R.
Twelve surface points on the horned Dupin cyclide I" are:

2 surface points on S; with radius r; : —Ry; +rim

2 surface points on S; with radius r1 : —Ry; £7r173

2 surface points on Sy with radius ro : +R~y; £7rov

2 surface points on Sy with radius ro : + R~y £ 773
2 surface points : —py; £ (c+ R)vy
2 surface points : +puvy; £ (c — R)~e.

The horned Dupin cyclide I' is initially created having these 12 points. All DCSA versor
operations are valid on the horned Dupin cyclide I' and can be used to rotate, dilate, and
translate it into another general position.

The type of cyclide or torus represented by I' is determined by:

Horned ring cyclide when : (r1+1r9) <2R

Horned spindle cyclide when : (r1+1r9) >2R

Horned spheres (two tangent spheres) when : (r;+41)=2R
Horned ring torus when : (ri=m) <R
Horned spindle torus when : (ri=r3) >R
Horned spheres when : (r;=m3)=R.
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The horned spheres represents the union or product of two implicit surface functions for
two spheres of radius r; and r5 that touch in a single tangent point, and it is an instance of
a spheres pair cyclide entity. A different and more general spheres pair entity, the DCSA
GIPNS 2-vector spheres pair entity &€, can be defined as the wedge of a CSA1 GIPNS
sphere Sics: and another CSA2 GIPNS sphere Socs2 as & = Siest A Soes2 (§3.2.1). The
spheres pair &€ can be transformed by the DCSA versors and intersected with standard
DCSA spheres, planes, lines, and circles but not with any quadric or cyclidic surface
entities.

-~
[}
ee

A\

Figure 4.26. Horned spheres cyclide T', (r1 +r2) =2R

Figures 4.24, 4.25, and 4.26 show three types of the horned Dupin cyclide I'. The three
other types with r; = ry, not shown, are symmetrical versions of the three types shown.
As defined, the Dupin cyclides are symmetrical across the planes y=0 and z=0, and are
also symmetrical across the plane x =0 only when r; =75. The horned Dupin cyclides can
be formed as the inversions of circular cones in spheres.

All of the Dupin cyclide entities have term T+ = —4e, and are true closed surfaces
that do not have surface point e,,. Therefore, the Dupin cyclide entities ® and T, like
the standard sphere S and toroid O entities, are well-behaved entities that do not have a
singular outlier point at the inversion sphere center under inversion in a sphere.
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4.2.20.3 DCSA GIPNS parabolic cyclide
The DCSA GIPNS 2-vector parabolic cyclide surface entity W can be defined as

U = BT+ CTye+ DT+ ET.2+ (4.169)
FT2+GT2+ HT,2+
IT,y+JT,).+ KT, +
LT,+MT,+ NT.+OT,

with C', D, E not all zero. A degenerate parabolic cyclide has C =D = FE =0. All DCSA
versor operations are valid on the parabolic cyclide entity ¥, and it can be intersected
with the standard DCSA GIPNS sphere (§4.2.3), plane (§4.2.5), line (§4.2.4), and circle
(§4.2.6) entities that are defined as special bi-CGA entities.

The parabolic cyclide entity ¥ is simply the Darboux cyclide entity €2 (§4.2.20) with
A=0, and it is a cubic surface entity. Without a term in Tya = —4e,, the surface entity ¥
has surface point e, and is generally an open-surface entity. The DCSA GIPNS 2-vector
ellipsoid entity E (§4.2.2) is a degenerate parabolic cyclide entity that becomes a closed-
surface entity with a singular outlier surface point at e...

An instance of the DCSA 2-vector parabolic cyclide surface entity ¥ can be produced
as the inversion of a DCSA GIPNS 2-vector Darboux cyclide surface entity €2 (§4.2.20)
in a standard DCSA GIPNS 2-vector sphere surface entity S (§4.2.3) that is centered on
a surface point of €.

The inversion sphere S, with center point Pps=D(p) on the surface of an entity €2,
gives the inverse surface ¥ as

U = SQOS™=(Scs1 A Scs2)2(Ses2 A Sest) = Ses1Ses22Scs2Sest (4.170)
= <Pcsl + %T’2eoo1) <PC82 + %728002)08@528@51. (4171)

If expanded further with the surface point condition Ppg - {2 = 0, then it is found that
(Pps=Prsi APrs2) «— ey, or that Ppg goes to e, and ey, goes to Pps. Surface points
of €2 that are outside S are brought inside S, and surface points of €2 that are inside S
are taken outside S.

A surface point D(p +d) of € is transformed by inversion in sphere S centered at p
with radius r as

/

D(p—kHSWd) . |ld|[ 0
» €x : ||| =0
SD(p+d)S™" = { D(p) :|ld = o0 (4.172)
D(p+||d||*1(;l) cr=1
| D(p+4d) tldff=r
L | 1o

The displacement d = ||d||d from the inversion sphere center p is transformed into the
inverse magnitude displacement ||d||~'d when the inversion sphere has radius r = 1. As
an inversion operator, an inversion sphere S could be called an inversor, especially if it
has radius r =1 where S?= —1 as a proper versor with unit magnitude.

In general, an inversion sphere S can have any center point Pps and any radius r. If
r =0, then S=Ppgs, which is a finite point that could be e,. An infinite radius r = oo is
represented by S = e... Inversion in any point S =Ppg or S = e, sends everything into
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the point and produces the point S, unless the point S is a surface point of {2 and then
any point sent into itself produces the nil scalar 0 result for the entire surface inversion.

Open surfaces W that extend out to infinity e, are the only surfaces that reflect S¥S™
continuously into the center point Pps of an inversion sphere S. Conversely, by placing
the center point Ppg of an inversion sphere S on any surface €2 and then reflecting SQ2S™
the surface outward, the resulting open surface ¥ = SQS™ extends out to infinity e,
and must be a plane or curved sheet that is either a parabolic cyclide ¥ or a degenerate
parabolic cyclide that is one of the quadric surfaces. Quadric surfaces are degenerate
parabolic cyclides, and all other curved-sheet cubic surface entities are instances of the
parabolic cyclide entity.

Sphere, plane, line, and circle entities can be created as the standard DCSA GIPNS
sphere, plane, line, and circle entities S (§4.2.3), IT (§4.2.5), L (§4.2.4), C (§4.2.6) which
are defined as bi-CSA entities. Sphere, plane, line, and circle entities can also be created as
non-standard entities that are instances of degenerate parabolic cyclides using only linear
and quadratic extraction terms (§4.1.6). Only the standard sphere, plane, line, and circle
entities operate as inversion or reflection operators. All DCSA surface entities Y can be
reflected in the standard sphere S, plane I1, line L, and circle C. Reflection in a line LY L™
rotates Y by 180° around the line. The results of inversion or reflection operations on
standard and non-standard sphere, plane, line, and circle entities in the standard ones are
not the same. Reflections and inversions of the standard entities produce another one of
the standard entities. Reflections and inversions of the non-standard entities can produce
cubic surfaces that represent the expected surfaces but which also have a singular outlier
surface point at the inversion sphere center point. All parabolic cyclides and degenerate
parabolic cyclides have the point e, which reflects into an inversion sphere center point.

Figure 4.27. Toroid O on inversion sphere S center Pps=¢,, ¥=S0S"
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_ »ees
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\ /
B e, =SPpsS™ 7

outlier pf E

Figure 4.28. Ellipsoid E on inversion sphere S center Pps=D(—1073), ¥ = SES™

4.3 DCSA GOPNS entities

Up to four DCSA points (§4.1) can be wedged to form DCSA geometric outer product null
space (GOPNS) 4,6,8-vector surface entities of the surface types available in CSA (§3.3).
Unfortunately, the wedge of more than four points, as required for the quadric surfaces,
does not work with DCSA points.

The DCSA GOPNS surface entities for quadric surfaces and the toroid would require
more than four points to define them. For quadric surfaces in general position, it takes 5
points in 2D, and 9 points in 3D to define a quadric surface. If limited to principal axes-
aligned surfaces, it still requires 6 points in 3D to define a quadric surface, as in Gg 3
Quadric Geometric Algebra (QGA) [27][9][18]. Therefore, it seems that it is not possible
in DCSA to directly represent the DCSA GOPNS quadric surfaces as the wedge of DCSA
surface points. When more than four DCSA surface points are required to define a surface,
then more complicated formulas are still possible but they resolve back to the GIPNS
entities.

In general, we can always obtain a DCSA GOPNS surface entity S*P° by taking the
DCSA dual (§4.4.6) of a DCSA GIPNS surface entity S as S*PS =SIpgs. All DCSA versor
operations (§4.4) are valid on both the DCSA GIPNS entities and their dual DCSA
GOPNS entities.



DoUBLE CONFORMAL SPACE ALGEBRA (DCSA) 71

The following four subsections define the four DCSA GOPNS surface entities which
can be constructed as wedges of up four DCSA surface points. These four DCSA GOPNS
surface entities are just the DCSA analogues of the CSA GOPNS surface entities.

A DCSA test point Tps that is on a DCSA GOPNS surface entity S*PS must satisfy
the GOPNS condition

Tps ASPS = 0. (4.174)

The DCSA GOPNS k-vector surface entity S*PS represents the set NO¢(S*PS € G5 g)
of all 3D vector test points t that are surface points

NOG(S™PeGhs) = {teGis : (D(t)=Tps) ASPS=0 }. (4.175)

4.3.1 DCSA GOPNS sphere

The DCSA GOPNS 8-vector sphere S*P¢ is defined as the wedge of four DCSA points
Pps, (§4.1) on the sphere as

S*PS = Pps, APps, APps, APps, (4.176)
= Slps (4.177)

and is the DCSA dual of the DCSA GIPNS 2-vector sphere S (§4.2.3).

4.3.2 DCSA GOPNS plane

The DCSA GOPNS 8-vector plane IT*PS is defined as the wedge of three DCSA points
Pps, (§4.1) on the plane and the DCSA point at infinity e, as

IT*PS = Pps, APps, APps, A es (4.178)
= I} (4.179)

and is the DCSA dual of the DCSA GIPNS 2-vector plane IT (§4.2.5).

4.3.3 DCSA GOPNS line

The DCSA GOPNS 6-vector line L*PS is defined as the wedge of two DCSA points Ppsg,
(§4.1) on the line and the DCSA point at infinity e, as

L*DS = Ppgl VAN ].:)1)32 Ne€eso (4180)
= LI (4.181)

and is the DCSA dual of the DCSA GIPNS 4-vector line L (§4.2.4).

4.3.4 DCSA GOPNS circle

The DCSA GOPNS 6-vector circle C*PS is defined as the wedge of three DCSA points
Pps, (§4.1) on the circle as

C'PS = Pps, APps, A Pps, (4.182)
= Clps (4.183)
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and is the DCSA dual of the DCSA GIPNS 4-vector circle C (§4.2.6).

4.4 DCSA operations

Any CSA1 versor Vest and its copy CSA2 versor Ves2 are multiplied to form the corre-
sponding doubled DCSA versor Vpg as

Vos = Vesi AVes2 (4.184)
= VesiVese. (4.185)

In theory, a DCSA versor Vps can operate on any DCSA entity X using the versor
“sandwich” operation

X' = VpsXVhs (4.186)

to produce the transformed entity X’ as expected for the operation, which can be rotation
(§4.4.1), dilation (§4.4.2), translation (§4.4.3), or a composition of these operations.

In practice, the DCSA versor operations can be extremely slow, depending on the
particular software and hardware that is employed for computations. However, a large
speed-up may be gained by using the CSA versors for rotation (§3.4.3), dilation (§3.4.5),
and translation (§3.4.2), or a composition of these operations, directly on any DCSA entity
X as a succession of CSA operations,

X" = VpsXVps (extremely slow DCSA computations) (4.187)
= Vesi(Ves2 X Vege) Vs (much faster CSA computations). (4.188)

The only difference is to take advantage of the associativity of the geometric and outer
products. The speed-up can be very large, turning an impractical DCSA versor operation
into a practical succession of CSA versor operations. Taking advantage of associativity
can also speed up the DCSTA versor operations (§7.7).

Practical applications may become increasingly feasible with advances in Geometric
Algebra Computing for Heterogeneous Systems [13] and with advances in Embedded
Coprocessors for Native Execution of Geometric Algebra Operations [12].

4.4.1 DCSA rotor
The DCSA 4-versor rotor R is defined as

R = Resi A Rese. (4.189)
The CSA rotors (§3.4.3) for the same rotation operation in CSA1 and CSA2 are wedged
as the DCSA rotor R. All DCSA entities X, including both GIPNS and GOPNS, can be

generally rotated around any axis by any angle by the DCSA rotor operation

X' = RXR™. (4.190)
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The CSA translated-rotor (§3.4.4) can be doubled into the DCSA translated-rotor.

4.4.2 DCSA dilator

The DCSA 4-versor dilator D is defined as
D = De¢si A Dese. (4.191)

The CSA dilators (§3.4.5) for the same dilation operation in CSA1 and CSA2 are wedged
as the DCSA dilator D. All DCSA entities X, including both GIPNS and GOPNS, can
be dilated by the DCSA dilator operation

X' = DXD~. (4.192)
Keep in mind that dilation also dilates the position of an entity, which may cause an
unexpected translational movement. To scale an entity, it should be translated to be

centered on the origin, dilated around the origin, and then translated back. The CSA
translated-dilator (§3.4.7) can be doubled into the DCSA translated-dilator.

4.4.3 DCSA translator

The DCSA 4-versor translator T is defined as
T = Test Npse. (4.193)

The CSA translators (§3.4.2) for the same translation operation in CSA1 and CSA2 are
wedged as the DCSA translator T'. All DCSA entities X, including both GIPNS and
GOPNS, can be translated by the DCSA translator operation

X' = TXT. (4.194)

4.4.4 DCSA motor

The DCSA 4-versor motor M is defined as
M = Mesi A\ Mes2. (4.195)

The CSA motors (§3.4.8) for the same motion operation in CSA1 and CSA2 are wedged
as the DCSA motor M. All DCSA entities X, including both GIPNS and GOPNS, can
be moved by the DCSA motor operation

X' = MXM"~. (4.196)

All versors can be translated by the translators, including the motor.
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4.4.5 DCSA intersection

Inversions in the standard DCSA GIPNS 2-vector sphere S (§4.2.3), and reflections in
the standard DCSA GIPNS 2-vector plane IT (§4.2.5) are valid operations on all DCSA
GIPNS entities. The dilator D (§4.4.2) operation is defined by inversions in spheres. The
rotor R (§4.4.1) operation is defined by reflections in planes. These are operations that
are known to work correctly, based on inversions and reflections.

If any DCSA GIPNS 2-vector entity Y (§4.2.20) and sphere S (§4.2.3) are intersecting
in curve X on S, then the inversion of Y in the sphere 2 =SYS™ is also intersecting with
both Y and S through the same intersection X. If entity Y and plane IT (§4.2.5) are
intersecting, then the reflection of Y in the plane ITYII™ is also intersecting with both
Y and IT through the same intersection. Planar reflection is a special case of spherical
inversion when the sphere radius r — oo and S — IT through three plane points. As Y
becomes a sphere S, or plane IT denoted by Y — So|IT, then € — II|S,, and X — C to
form a circular intersection, but €2 and X have various possible surface and curve shapes
when Y # Sy|I1.

For the inversion, we have

Q = SYS"=(S-YT+SXxYT+SAY)S™ (4.197)

= (S-T)S~+ (Y xS)S — S¥(Y AS)SS~? (4.198)

= (S-Y)S™+ (T8~ 8Y)S — S*P(Y) (4.199)

= 2(S-Y)S~+YS?-2S*Ps(Y) ( )
X=0AS = S(YTAS)—282P4(T)S=—S}YAS). (4.201)

This expression of X implies that X represents something in common with both Y and €2
in relation to S. That something is their intersection, and X is the entity that constructs
and represents their intersection.

The product x is the commutator product on 2-vectors that produces another 2-
vector. The operation Pg(Y)= (Y AS)S~!is the perpendicular projection or rejection of
Y from S, and Pg(Y) = (Y -S)S~!is the parallel projection of X on S [17]. The operation
Pg(Y) = (Y x S)S~! is another projection of Y on S. For 2-vectors, S x ¥ = —Y x S,
but SAY =Y AS. Note that S~=—-S=—-S82S~!, and S?= —r* where r is the radius of
sphere S. If r = 00, then S = II, S2 - II?=—1, and X=QAS=TAS.

The pair of inverse surface entities Y and €2 could also be defined as

YT = YSS'=Pg(Y)+PZ(Y)+Pg(Y) (4.202)
Q = SYS'=Ps(Y)—PS(Y)+Pg(Y) (4.203)

and then X =QAS=Y AS exactly, but 2 =SYS™ will be assumed henceforth.

The test for a point Tps on the intersection entity X is
Tps-X = Tps- (2AS)=—-S?Tps- (T AS) (4.204)

where if Tps - X = 0, then the point Tps is on the intersection of all three surfaces
represented by S, Y, and 2.
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The DCSA GIPNS 4-vector intersection entity X =Y A S is derived from the inversion
of ¥ in S. Proving this precisely may be simple if certain algebraic steps are taken
correctly. Y, €2, and X are generally not blades, and Tpg is a null 2-blade. Most of the
usual algebraic identities are valid only on blades that are the product of non-null vectors
or blades. Therefore, the algebraic steps leading to a clear proof may require unusual
identities or other results.

DCSA GIPNS intersection entities Y AII, XY AL, and Y A C, for intersections of any
DCSA GIPNS entity Y with the standard DCSA GIPNS 2-vector plane IT (§4.2.5), 4-
vector line L (§4.2.4), and 4-vector circle C (§4.2.6), are also derived from reflections or
inversions. Line L =1II; A Il; and circle C =S A II are just intersections of sphere and
plane entities.

In DCSA, inversions or reflections work only in the standard DCSA 2-vector sphere
S (§4.2.3) and plane IT (§4.2.5). In DCSTA, inversions or reflections work only in the
standard DCSTA 2-vector hyperpseudospheres ¥p (§7.3.3) and Ep (§7.3.4), and in the
DCSTA 2-vector hyperplane Ep (§7.3.2). Inversions do not work in other DCSA entities,
and therefore other entities cannot form intersection entities with each other. For example,
the DCSA GIPNS 2-vector quadric surface entities do not work as inversion or reflection
operators, and therefore they cannot form intersection entities with each other. The
intersection of two entities depends on at least one of them being a valid inversion operator
on the other entity.

In symbolic calculations, the simplest intersection entities, such as X =Y A S, are
4-vectors with many 4-blade terms or components. The scalar magnitude of each 4-
blade is an implicit surface function for a surface that is coincident with the intersection
represented by Y A'S. Not every blade holds a unique implicit surface function, but the
number of unique functions can exceed ten. Figures 4.29 and 4.30 are plots of intersections
that are showing all of the unique implicit surfaces that are extracted from the blades of
the intersection entities.

The foregoing discussion has not given any rigorous proof of the correctness of the
intersection entities. Go g DCSA is a large and complicated pseudo-Euclidean algebra, and
there could be unforeseen cases where intersections do not work as expected. Therefore,
the following box serves as a mild warning before continuing.

Although not rigorously proved here, the intersection tests performed by this author sup-
ported the following claims given in this subsection about DCSA intersection. Detailed
examinations of ellipsoid-plane and ellipsoid-sphere intersections are shown in Figures
4.29 and 4.30. These claims should be considered preliminary, and require additional
research to prove for certain what intersections are valid or invalid.

The set S ={S, IT} of standard bi-CSA GIPNS entities includes all instances of the
DCSA GIPNS 2-vector sphere S (§4.2.3) and plane IT (§4.2.5). These two entities are
defined in previous sections on them. The DCSA GIPNS 4-vector line L=1I; ATI, (§4.2.4)
and circle C=S ATI (§4.2.6) are extended standard bi-CSA GIPNS entities that are the
intersections of spheres and planes.

The DCSA GIPNS intersection entity X is the wedge of 2 <n <4 standard bi-CSA
GIPNS entities B; € S, or is the wedge of 1 <n <3 entities B; €S and one DCSA GIPNS
2-vector entity A ¢ S that is not a standard bi-CSA GIPNS entity. Only one DCSA
GIPNS 2-vector Darboux cyclide surface entity A gy =€ (§4.2.20) (or any degenerate) can
be included in a wedge that forms an intersection entity X. Unfortunately, the Darboux
cyclide entities, including the quadric surfaces, cannot be intersected directly with each
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other by wedge products since they are invalid inversion operators. These claims are
summarized by the following definition.

The DCSA GIPNS intersection entity X of grade 4 <k <8 is defined as

2<n<4
A B, : B;€S and S={S,II}
Xa<kzs) = = cn<s (4.205)

A<2>/\ /\ B; : A<2>§ZS and B, € S.

i=1

The maximum grade for a valid intersection entity X is grade 8. The grade of the wedges
is divisible by 2, making the next grade above 8 to be 10, proportional to the DCSA unit
pseudoscalar Ips. No valid entity is a pseudoscalar, unless the whole 3D space is considered
to be a flat entity.

y

Figure 4.29. Intersection of ellipsoid and plane in general positions
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Figure 4.29 shows the details of a DCSA GIPNS 4-vector intersection entity E A IT
representing the intersection of a DCSA GIPNS 2-vector ellipsoid E (§4.2.2) and DCSA
GIPNS 2-vector plane IT (§4.2.5), both rotated and translated differently into general
positions that have an intersection. The red ellipsoid E has initial parameters r, = 5,
ry="17,7,=9, py=1, p,=—2, p,=3, and is then rotated 30° around the blue z-axis. The
Sympy test code for the ellipsoid was:

Rotor(e4,30*pi*Pow(180,-1))*
GIPNS_Ellipsoid(l ,-2,3,5,7,9)%
Rotor(e4,30*pi*Pow(180,-1)) .rev()

The black dot is the ellipsoid center position. The blue plane II is initially perpendicular
to the x-axis through the origin, then transformed according to the following code:

Rotor(e2,30*pi*Pow(180,-1))*
Translator(-4+*e3) *
Rotor(e4,-60*pi*xPow(180,-1))*
GIPNS_Plane(e2,0)*
Rotor(e4,-60*pi*xPow(180,-1)) .rev()*
Translator(-4*e3) .rev()*
Rotor(e2,30*pi*Pow(180,-1)) .rev()

Their DCSA GIPNS intersection is X = E A II. The various images in Figure 4.29 show
components of X that represent other surfaces that are all coincident with the intersection
of the ellipsoid and plane. There were ten unique components in X. These components
are cylinders, hyperboloids, and a cone. The intersection entity X represents the locus
of points that are simultaneously located on all ten of these surfaces, which is an ellipse-
shaped intersection of the ellipsoid and plane.
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N

Figure 4.30. Intersection of ellipsoid and sphere in general positions

Figure 4.30 shows the same red DCSA GIPNS ellipsoid E as in Figure 4.29, but now
intersected with a blue DCSA GIPNS sphere S of radius =5 at position ~; + 5y2+ 33 =
es+ bes+ 3e4. The DCSA GIPNS intersection entity is now X =E A'S. The shape of the
intersection appears like a curved ellipse or curved circle. The components of the entity
X represent 15 other unique surfaces that are also coincident with the intersection of E
and S. The images of Figure 4.30 show how each of these 15 surfaces intersect with the
intersection of E and S. Some of these surfaces are unusually shaped, and some have
two sheets. The DCSA GIPNS intersection entity X represents the simultaneous locus
or intersection of all of the involved surfaces and appears to be a valid intersection entity
for the ellipsoid and sphere.

The DCSA GIPNS 2-vector quadric surface entities, of the types not available in CSA,
could not be wedged with each other to form valid intersection entities - incorrect or
inwalid intersection entities resulted from their wedge. More generally, the DCSA GIPNS
Darboux cyclide entities €2 cannot be intersected with each other by wedge products,
but one can be intersected with standard bi-CSA GIPNS entities. As a curiosity, it was
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noticed that the sum and the difference of two intersecting DCSA GIPNS quadric surface
entities represent two more coincident intersecting surfaces.

h - S

Figure 4.31. Intersection ® A II of ring Dupin cyclide ® and plane IT

4.4.6 DCSA dualization
The DCSA unit pseudoscalar Ipg is defined as
IDS - Icsl/\ICS2 (4206)

= €9€e3e4e55E3€9€10€11€12 (4207)

and is the DCSA dualization operator on all DCSA entities.
Properties of Ipg include

Ips = (—1)°00" D pg= —Tps (4.208)
Ihs = —IpsIps=—1 (4.209)
Ips = Ips=—Ips. (4.210)
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According to the sign rule (—1)"1°~Y for the commutation of the inner product of two
blades, the DCSA unit pseudoscalar Ips commutes with blades of even grade r, such as
the DCSA 2-vector points, DCSA GIPNS 2.4,6,8-vector surfaces, and their dual DCSA
GOPNS surfaces.

A DCSA GIPNS k-vector surface entity X is dualized into its dual DCSA GOPNS
(10 — k)-vector surface entity X*PS as

XS = X /Ips=—X-Ips. (4.211)

A DCSA GOPNS k-vector surface entity X*P¢ is undualized into its undual DCSA GIPNS
(10 — k)-vector surface entity X as

X = X*PSTpg=X*DS.Ips. (4.212)

This definition of dual and undual preserves the sign on the entities, otherwise the dual
applied twice changes signs.

It is understandable that many authors may call the GIPNS entities dual and the
GOPNS entities direct, standard, or undual, but since in DCSA we cannot wedge DCSA
points into all of the GOPNS entities, the GIPNS entities are considered the undual
entities and the GOPNS entities are the dual entities. Most of the DCSA GOPNS entities
can only be obtained by the dualization operation as duals.

In DCSTA, a DCSA (or DCSTA) GIPNS 2-vector quadric entity X (at zero velocity)
and its DCSTA dual (§7.7.1), the DCSTA GOPNS (12 — 2)-vector quadric entity X*P| are
independent of time w = ct, but the DCSA dual, the DCSA GOPNS (10 — 2)-vector entity
X*PS is at w=ct=0. A DCSA quadric X that has been boosted (§7.7.3) is a DCSTA
quadric X that moves with the velocity of the boost and is length-contracted, consistent
with special relativity length contraction L = y/1— 32Ly. The DCSA GIPNS 2-vector
cubic and quartic entities are dependent on time w as DCSTA entities, but their DCSA
duals are at time w =0.

4.5 DCSA computing using Gaalop

In [7], Gs,» DCGA computing using Gaalop is discussed, and listings of sample code are
included. The computations are nearly the same for G s DCSA, with just a few changes
in signs.

4.6 Concluding remarks on DCSA

In conclusion, this section on Gy s DCSA is directly based on [7] and there are actually very
few differences between Gy s DCSA and Gs o DCGA other than sign changes. Therefore,
this section has been quite redundant but is included for completeness. Charges of self-
plagiarism shall be dismissed.

An important difference between DCSA and DCGA is apparent in vector reflections.
In G3 Algebra of Physical Space (APS), the reflection of vector v in unit vector u is

a(vitving = vt vl (4.213)
and in G 3 Space Algebra (SA), the reflection is

a(vit vt = vt i (4.214)
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The APS reflection tvu reflects v in line @, but the SA reflection tivu reflects v in the
plane 1 that is through the origin and orthogonal to vector u.

In APS, a unit vector 1, according to its action as a reflection operator, naturally
represents a line through the origin in direction t. In CGA, 1 is a CGA GIPNS plane
entity IT=1, or it can form a CGA GOPNS line entity L*=aA E=1uA e, Ae,. Although
U is naturally an APS line entity according to its action as a reflection operator, u is
not a CGA line entity. By the reflection operation, there appears to be an incongruency
between APS and CGA, where 1 is a line entity in APS and a plane entity in CGA.

In SA, a unit vector 1, according to its action as a reflection operator, naturally
represents a plane through the origin perpendicular to t. In CSA, 11 is a CSA GIPNS
plane entity IT=1. In SA and CSA, 1 is a plane entity.

On the other hand, reflection could be defined as

a(vitvina-t = ylle_yla (4.215)

which is reflection in the line i1 in APS and SA. However, using the inverse is often avoided
in favor of using the reverse "~ =1, which makes a difference. More arguments could be
made on specific formulas for reflections in planes or in lines, but these remarks conclude
here.

5 Space-Time Algebra (STA)

Space-Time Algebra (STA) is introduced in the book Space-Time Algebra by DAVID
HESTENES [16]. STA is also called DIRAC Algebra (DA). As explained in [16], the space-
time split generates a PAULI Algebra (PA) on a unit bivector basis. DCSTA contains two
STA M subalgebras, STA1 M' and STA2 M?2.

The M is for MINKOWSKI spacetime (1,3) and is the subscript that denotes an element
or operation in STA. The subscript M! denotes an element or operation in STA1. The
subscript M? denotes an element or operation in STA2.

5.1 STA elements

5.1.1 Dirac gammas and Pauli sigmas in STA

The DIRAC gammas and PAULI sigmas can be defined in STA1 as

€1 : i€{0,1,2,3}
P = , 5.1
7 { YoY1Y2Ys ¢ t=9 (5.1)

O1=0; = ’71’70 (52)
O'QZO'y = Y2% 53)
O3=0; = 7370

The STA elements can also be defined similarly in STA2. The DIRAC gammas and PAULI
sigmas are represented as matrices in other literature, but they have multivector repre-
sentations in STA. See reference [16] for more information about these representations.
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The gammas are used to denote elements in STA M, but it should be understood
that all discussions of STA M apply similarly in STA1 M! and STA2 M? by changing
subscripting and elements

STA =~ STA1 =~ STA2

M 2 MY 2 M

»ose 2 (55)
71 = € = €3

Y2 = €3 = ey

Y3 = ey = ej.

5.1.2 STA unit pseudoscalar
The Gy 3 STA 4-vector unit pseudoscalar I, with signature (+———) is

v = Y%Mm721="7s (5.6)
Iy = (-1 Py =1y (5.7)
I, = -1 (5.8)
Iy = —Iy=-Ix. (5.9)

The G 3 STA1 4-vector unit pseudoscalar Inp with signature (+———) is
Ivi = ejegese,. (5.10)

The Gy 3 STA2 4-vector unit pseudoscalar Iy with signature (+———) is
IMQ = €7€g€9€e(. (5.11)

5.1.3 STA test vector
The symbolic STA test vector t is defined on the basis of the DIRAC gammas [16] as

t=tym = wyotazyvi+yye+zyz=cly+ts=omt+ts. (5.12)
The symbolic STA1 test vector ty is defined as

tyr = wei+ xres+ yes+ zes=cte; +tsi=opnt + tsi. (5.13)
The symbolic STA2 test vector t 2 is defined as

tyz = wer+ xreg+ yeg+ zeg=cte;+ tsz=opet + tse. (5.14)

The symbolic scalars w, z, y, and z are the conventional coordinates in spacetime. The
observer with coordinate time ¢ is identified with the worldline ot = ct~y.

The symbolic test vector 4 is useful in symbolic computations and will be embedded
as the Gy 4 CSTA test point Te. Go 4 CSTA1 and CSTA2 test points Ti1 and Tpe, respec-
tively, are multiplied to form the G435 DCSTA test point Tp = TerTe2 = Ter A T2, The
DCSTA point 2-vector value-extraction elements T, are defined as inner product operators
that extract values s from Tp as s=T,-Tp. Linear combinations of the elements T, form
the 2-vector DCSTA entities for quadric surfaces and cyclides.

5.1.4 STA observer

An STA M observer position (or worldline) ot at the observer’s proper (coordinate)
time ¢ 1s

ot=omt = ctv. (5.15)
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For all times t, ot symbolically represents the worldline of the observer that passes through
the origin of spacetime. An observable worldline can be represented non-symbolically in
G4 CSTA as a CSTA GIPNS 3-vector line entity L¢ (§6.4.11).

An STA1 M! observer position ot has the form

orit = ctey. (5.16)
An STA2 M? observer position o2t has the form
oret = cter. (5.17)

An STA translated-observer position oRy(t), translated by spatial position py, has the form

oP(t) =0R(t) = omt+ po=ctyo+ Po. (5.18)
The observer worldline ot of a translated-observer worldline o}y(?) is
Po
ot = oR9(t) = dog;(t)t: cto. (5.19)

For a translated-observer position o}y(t), its spacetime velocity is 0. The translated-
observer o}j(t) represents the observer oyt at po and is the proper observer of any
observable with initial position pg at time ¢t =0. Boosts, spacetime contractions (dilations),
and other spacetime transformations can be translated relative to py (e.g., translated-
boost, translated-dilator) when transforming an observable with initial position py.

In special relativity, the observer onst and an observable particle py, that is being
observed must coincide at the observer’s proper time ¢ =0 (i.e., their worldlines should
intersect in pg at time ¢t =0). If the particle and observer do not coincide at ¢ =0, then
the particle has an initial spatial position py at t =0 and

pM(t) = omlt+Ppo+ Vst. (520)

The translated-observer o}y(t) = ot + po and particle then coincide at t =0, and oRy(?)
can be called the proper observer of p(t). Hyperbolic rotations (boosts) that transform
a particle must be relative to a proper observer that is coincident with the particle at
t =0, which is the translated-observer o}(t). The translated-boost (§6.6.9) relative to a
translated-observer oRY(t) is similar to a rotation around a general line through a shifted
or translated origin. A translated-boost is achieved as a translation of py to the origin
(translaton by —py), then a boost relative to opqt, and then a translation back by po. The
translated-boost can be followed by a translated-dilation (§6.6.7) around py with dilation
factor 1/~ for a spacetime contraction that exits the old observer frame of coordinate
time ¢ and enters the new observer frame of proper time 7 (y=dt/dr), where 7 becomes
the new coordinate time. The value of v depends on the particular boosts and velocities
involved, according to velocity additions or subtractions, where o= ycvyy such that v can
always be extracted (after any number of boosts) from a spacetime velocity v =0 + v

as v - vo/c = . For one simple boost, v is the Lorentz factor v=1/+/1— 32, but 7 is
different after successive boosts.

5.1.5 STA spatial velocity
An STA spatial velocity vs has the form

V=Vs = U1+ U2+ vsy3= Bev. (5.21)
An STAT1 spatial velocity vs: has the form

Vs = Ug€z+ v e3+v.ey. (5.22)
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An STA2 spatial velocity vs2 has the form
Vg2 = U,es+ Vy€9 + v,eqp. (523)

STA spatial velocities are the same as SA spatial velocities. The v,, v,, and v, are coor-
dinate speeds in the conventional x, y, and z directions.
The non-negative norm of an SA spatial velocity v is the speed

lvsll = V—vi=\/vi+vj+0l. (5.24)
In special relativity, speed cannot exceed light speed c,
0<|lvs| <e. (5.25)
The unit direction of an STA or SA spatial velocity vs is
N Vs
Vg = . (526)
[vs
5.1.6 STA spatial position
An STA spatial position ps has the form
P(t) =ps(t) = Po+Vst=po+ BcVst=p,yi+pyre+ p-7s. (5.27)

An STAT1 spatial position ps: has the form

psi(t) = Ppost + Vsit =Ppost + Bevsit = pyes + pyes + p.es. (5.28)
An STA2 spatial position ps2 has the form

ps2(t) = Pposz+ Vst =Pos2 + Pevset = pres + pyeg + poeqo. (5.29)

In special relativity, the time ¢ is called the coordinate time and is the proper time of
the observer opg. The spatial position pg is relative to the observer ox (§5.1.4) as the
spacetime position (§5.1.8)

pm(t) = ot +ps(t)=omt+ (po+ vst) (5.30)
= (omt+Ppo) + Vst =0Ry(t) + vst (5.31)
= po+ (Opm+ Vst =po+ vmt. (5.32)

The spacetime velocity is v (§5.1.7). The spacetime position pg (§5.1.8) is relative to
the translated-observer o}y(t) (§5.1.4) such that pa=po at time ¢ =0.

5.1.7 STA spacetime velocity
An STA spacetime velocity v has the form

V=Upm = Om+Vs=cYo+ Bevs= Yo+ (Vpy1 4+ VY2 + vY3). (5.33)

An STAT1 spacetime velocity v has the normalized form
Vpmt = Opr+ Vsi=ce+ Bevst = cep + (V€2 + vyes+ v.€y). (5.34)

An STA2 spacetime velocity v 2 has the normalized form
Vpmz = Opnpe+ Vsz=cer+ Bevse = cer+ (V€5 + vy€9 + Us€10). (5.35)

In special relativity, a spacetime velocity v, is the sum of an observer spacetime velocity
o and a spatial velocity vs relative to the observer, where 0 < ||vs|| <c.
The modulus of an STA spacetime velocity v is

ol = Vo=V +vE=/E—vs|? (5.36)
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The square of a spacetime velocity v? = ¢? — ||v||? may be positive, negative, or zero and
represents a relative comparison of light speed to spatial speed. A spacetime velocity with
positive signature 0 < v? is timelike, with negative signature v? <0 is spacelike, and with
null signature v?> =0 is lightlike.

The conjugate of an STA spacetime velocity v is

'vj\,[ = YoUMY0o=OMm — Vs. (5.37)

The norm of an STA spacetime velocity v, is

lomll = \om-vhi= Vou: (Yovam) =V —vE=/E+[|vs]. (5.38)

The unit, or modulus-unit, of an STA spacetime velocity v, is

um VM _ VM (5.39)
[om| Vori+vE (-l —vl—u?
The norm-unit of an STA spacetime velocity v, is
oM OM oM (5.40)
[ Vi —VvE A+ ui+u,+ vl

IVES

The overhat is on the modulus-unit of an STA spacetime vector a with a,,#0 as @, but the
overhat is on the norm-unit of an SA spatial vector a with a,, =0 as a. In some contexts, it
is explicitly noted when the overhat notation on spacetime vectors is taking the norm-unit.

There are two times associated with a spacetime velocity v =0 + v. The coordinate
time of v, denoted %,

tew = tpo=t (5.41)

is the proper time ¢, of the observer o= cy, of v. The time ¢ is the conventional notation
for coordinate time. The observable v has spacetime position vt (assuming po=0, §5.1.8)
in the frame of o. The proper time of v, denoted t,,,

tpv = tcov:T (542)

is the coordinate time ¢.,, of the observer o, = o, which is v actively transformed relative
to itself in its own rest frame as (see Fig. 5.1 in §5.2.3)

0, = (vVOv)/7" (5.43)
= (wvou). (5.44)

The time 7 is the conventional notation for proper time. The transformations of time by
boosts can be cause for confusion. The notations ¢., and t,, may help avoid some confu-
sion. The (additive) “active” boosts By passively transform a new proper time parameter
tyw = T back into the old coordinate time t,, =t. The (subtractive or relative) “passive”
boosts By passively transform the same old coordinate time parameter t,,=t into a new
proper time t,,=7. The “active” and “passive” boosts transform times in reverse of each
other.

5.1.8 STA spacetime position

The STA spacetime position pa of SA spatial position pg relative to observer ot is

p(t)=pum(t) = oumt+ps(t)=ctyo+ (po+ vst) (5.45)
= (omt+po) + vst =0R5(t) + vst (5.46)

= Po+ (0m+Vs)t=po+ vt (5.47)
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In special relativity, if the initial position pg# 0, then the proper observer that coincides
with pa at ¢ =0 is the translated observer o}j(t). A spacetime boost of pu should be
relative to the proper observer oR§(¢) by using a translated-boost around py. CSTA has
a versor for translated-boosts (§6.6.9).

The time t derivative of pa, is

Pm = atpM:—ﬁt =O0OM T Vs=Upm. (5.48)
The modulus-unit
N DPm Dbm PM DPMm
Pl PR V()2 =TpslP P2 —p2—pl— 12
and the norm-unit
M M ; . ZZM _— (5.50)
[Pl \/pM Vet + [ps] \/pw+px+py+pz

of an STA spacetime position pa are similar to those of an STA spacetime velocity v .

The square of a spacetime position p3, is the spacetime interval between the origin
of spacetime and paq. Likewise, (pa, — P, )? is the spacetime interval between pyy, and
pm,- The passive boost of a spacetime position ppg to become relative to the frame of a
new observer preserves the spacetime interval p3.

5.2 STA operations

5.2.1 STA dualization
The STA dual A% of an STA multivector A, is

A=A = Apdng = —Apd (5.51)
The STA undual Ay of an STA multivector ARt is
Ap = Anday=ApIInv (5.52)
The STA wunit pseudoscalar In (§5.1.2) is
v = Yoy (5.53)
Iy = —Tu=-Ti (5.54)

5.2.2 STA rotor

The STA spatial rotation operator, or rotor, Ry = Rs is the SA rotor Rs (§2.6).
The STA 2-versor spatial rotor Rs for rotation in SA space around the SA unit vector
axis Xs by angle 0 is

154 1, ~
Rs = 27 = ¢30%sTs (5.55)
= cos(%&)—l—sin(%@)fcﬂg (5.56)
1 (1N
= cos| =0 | —sin| =0 |xsIg". (5.57)
2 2
The rotor operation
Al = RsAuRE (5.58)

rotates any multivector A in STA as expected in the spatial SA components, but leaves
the STA timelike components unchanged.
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5.2.3 STA spacetime boost

5.2.3.1 Introduction
Although it would be sufficient to just define the boost operator

Bum=B, = ¥ (5.59)
for a boost by spacetime velocity
v = o+v=cy+ Bev (5.60)
with natural speed = 3, and rapidity
¢ =y = atanh(Sy)=atanh(||v]|/c), (5.61)

this section also attempts to discuss some of the basics of active and passive boosts, and
velocity addition and subtraction.

5.2.3.2 The exponential function
The following functions and identities are frequently used to define versors.

exp(A)=ed = Z % =cosh(A) +sinh(A), where A is any multivector [15]  (5.62)
n=0 )

L A eAgeA
cosh(A) = HZ:O O (5.63)
. O g2+l LA oA
sinh(A) = nZ:O CIE ) R (5.64)
_ sinh(A)  et—e

tanh(A) = cosh(A) ~ AT e A (5.65)
cosh(iA) = cos(A), wherei’=—1and iA=Ai (5.66)
sinh(iA) = isin(A) (5.67)
cosh(jA) = cosh(A), where j2=1and jA=Aj (5.68)
sinh(jA) = jsinh(A) (5.69)
cosh(eA) = 1, where e2=0 and €A = Ae (5.70)
sinh(¢A) = €A (5.71)

1 (1+B) +V1-FB
cosh| =atanh( S, = , for —1<py<1 5.72
R v ’ o7

T2
sinh(latanh(ﬂv)> _ d+58) ! BV, for —1< g, <1 (5.73)

2 N RV
cosh(atanh(fy)) = %ﬁf for —1< gy <1 (5.74)
sinh(atanh(fy)) = f—VﬁZ, for —1< g, <1 (5.75)

2

cosh(2atanh(fy)) = ii— 6‘2', for —1< g, <1 (5.76)
sinh(2atanh(fy)) = 2B for —1< gy <1 (5.77)
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Hyperbolic rotor (boost): B= By, = e(1/2)ev¥y0
By =exp((1/2)¢vVv0) = Ch(%‘ﬂv) + Sh(%‘ﬂv)‘A"YO

2 2 S
YoV = Bvciy vy

gl Bv:('va/o)l/2:('YV""YVBV‘A"YO)UZ
0,3 space Byi=BY
v

(Vv0)*=1
Hyperbolas of constant
spacetime interval:

Boost velocity: v=0+v=cyy+

3
Natural speed: Bv = 1

/ 2
Lorentz factor: 7v=1/V1—=55
Vv =dtpo/dtpy,=dt/dr
v = By0oy,BYy = By(o/ ) BY
Y = ByoBY = yycyo + Vv vV

Observable velocity: % =0-+u=cyo+ Buc

—1
ﬁu:T "/uzl/\/ 17[53
Active @ and passive & boosts:
(0 @ V)tpy = (BvoBY )tpy = VvVt py = Vtpg
(0 (S} 'U)tc'v = (B:OBv)tcv = 'YV’Uth'v = 'UT Do

(rapidity)
perbolic arc length:
Py = ath( se ) =ath(By)

run
v = Byvev) v=o0-+ Pv vCPv
bv

YO = YCY0

Observer:

N 0 =cY0
vV ="Yv ﬁvCVA

1 .
G1,0 time

Observer v or v':
0,i=BywiB,i=0/v
0y, =BFvBy=0/

) i N Proper times:
" +\/17Tu Y t=tev =t pt=1po

T=tpy=1tpyt =tpo/ v

X / 2
v vi® . 1w
uV4+4/1 - —uV -y
uov= v - —v2vy \ 7ot
© T+ CRSKS

. _dtpo E u-v . _ dtpe u-v
)ue’vi(lhwiﬁ/v(li c? )’ )u@v*dl - )v(1+ c2? )

Lpo

udv=

u-v
o2

1—

(u®v)r=(ByuBy)T=Yuav(io+tudv)r=(o+udv)t
(uov)t=(ByuBy)t=vuov(o+usv)t=(o+uov)r

Figure 5.1. Spacetime diagram of observables o, v, and u

Figure 5.1 shows the spacetime diagram of spacetime velocities for observer o, boost
observable v, and observable w. The time axis is horizontal and the space axis is ver-
tical. The hyperbolic angle (rapidity) ¢ is positive anticlockwise. This orientation of the
spacetime diagram of hyperbolic rotations by ¢ is analogous to circular rotations by an
angle #. By circular rotations, points are translated along a circle through a circular arc
rf. By hyperbolic rotations, points are translated along a hyperbola through a hyperbolic
arc rp. For both circular and hyperbolic rotations, the radius r is an invariant distance
(interval) from the origin to a point. A circular radius is a positive real scalar r, and a real

hyperbolic radius (pseudoradius) is r € {%, c, ’yc} for the hyperbolas of constant spacetime

interval that are shown in the figure. The boost operator B, rotates from o toward v
by ¢y, which corresponds to a change of speed by (,c in the direction v. The speed (,c
of a worldline is its slope in the diagram, 7, is the Lorentz (time dilation) factor, and ¢
is the speed of light. In the rest frame of an observable, the observable is the observer
having proper time 7, zero spatial speed Sc=0, and a worldline o = c¢7y,. An observable
worldline vt that is hyperbolically rotated into the time axis by a passive boost

By (vt)B, = ByvByt=ot/~v =0T (5.78)

gives the proper time 7 rest frame worldline o7 of the observable v relative to the observer
ot /vy. A hyperbolic rotation (boost) of an observable velocity

u = o+u=cyy+ fucu, for 0 < Bu<1, (5.79)
preserves its spacetime interval

e = |u|=Vul=y/c— B2 =cy/1—Bu=c/Vu (5.80)
— |BuB|=|ByuB,|=|u||ByaBy| = |u||ByaBy|,  for u240, (5.81)
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such that all boosted vectors remain on their hyperbola of constant spacetime interval.
A null vector (at light speed) u?= 0 is not on any hyperbola and cannot be boosted. A
hyperbolic rotation by a negative hyperbolic angle is a passive transformation from current
reference frame with time ¢ into a new frame with time 7 at the positive angle of rotation,
representing a relativistic velocity subtraction u©v. A hyperbolic rotation by a positive
hyperbolic angle is an active transformation of a velocity vector into the boosted frame
of the boost observable v with new coordinate time 7, representing a relativistic velocity
addition u @ v. After a passive boost, the time is ¢, which passively transforms into a
relative 7. After an active boost, the time is 7, which passively transforms into a relative
t. The passive boost of a position p that has an initial position pg

p(t) = po+pt=po+(0+D)t (5.82)

is valid, but it should be performed using a translated-boost (§6.6.9) as

CHBy"C(p)By°) = po+ BypDByt (5.83)
= po+ By(o+p)Bit (5.84)
= Pot Ypev(io+pO V)t (5.85)
= po+(0o+pov)T, (5.86)

which preserves the initial position pg at time ¢t =7=0.

5.2.3.3 Derivation of boost operator
An “active” boost operation is a hyperbolic rotation operation in spacetime (Fig. 5.1)
that passively turns (transforms) an observer spacetime velocity

o = Yo, (5.87)

which has zero spatial velocity in its own frame with coordinate time ¢, into a relative
spacetime velocity

o' = ByoBy=DByioB (5.88)
= odv=000! (5.89)
= Wou="y(0+V) (5.90)
= WCYo+ Wwhvev (5.91)

that is relative to (©) the new observer v =0 — v with proper time 7 =t,, consistent with
special relativity. The “active” boost operator is B,, which is a “passive” boost operator
B3 Boosts operate on spacetime velocities, not on positions. Following a velocity boost,
the new time parameter, which is to be multiplied into a transformed velocity o’ as a
spacetime displacement o'7, is the proper time T of v', not the coordinate time t of o.
The time and spatial displacement of o7 is passively transformed into coordinate time
t = ~,7 and spatial displacement d = ~,7v = vt as seen by the coordinate time ¢ observer
o and corresponds to (but is not) a time 7 and displacement seen by v'. That is,

o'T = (Wweyo+ WwhveV)T (5.92)
=ty Byctv (5.93)
= ot+vt (5.94)
— ot+d. (5.95)
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A boost can be applied to any spacetime velocity, but its boosted speed can never exceed
light speed c relative to any observer.

To derive the boost operator, we can start by defining the ratio of spacetime velocities
of an observable (particle) v to its coordinate time ¢ observer o as the hyperbolic biradial
v/o=wvo~! (“v by 0”). The term biradial was coined by HAMILTON in his original work
on Quaternions [14].

The hyperbolic biradial

H = voflz—v/o:T}Af (5.96)

v|? 4 ~ 1 5
_ @/1—%}[: R (5.97)

is an operator that turns the spacetime velocity of the observer o into the spacetime
velocity of the boost particle

v = 0+V (5.98)
as the one-sided versor operation
v = Ho. (5.99)

The natural speed By of the velocity v is

vl _\/V-VT_\/—V2 B

C C C

BV:

v
“ 1
; (5.100)

The Lorentz factor (spacetime dilation factor) =y, of the velocity v is

1 dt

where t =t., =1,0 is the coordinate time of v and 7=t,, is the proper time of v.

(5.101)

The interval (pseudodistance) c7 is the hyperbolic arc length along the worldline of v

cdr = |v|dt =Vvidt =/ — Bt = —dt (5.102)
' . v
T = —dt =—, where 7=0 when ¢ =0. (5.103)
0 Tv Tv

Maximum c7 is when S, =0, such that inertial observers experience maximum time.

The length contraction, to length L from an initial length L in the direction of boost
velocity v, is given by

L = @:Lm/l—ﬁ%. (5.104)

Vv
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The dilation factor of the velocity v is

i- L /i_p (5.105)

v

For a dilation factor d, the required natural speed is 8, =+v/1 — d?. For d <1, the dilation
factor d can be called the spacetime contraction factor, which is the usual case. For
d > 1, then f, is an imaginary natural speed and it is possible to dilate lengths instead
of contract lengths, but dilated lengths are only geometrical effects, not physics effects.

The hyperbolic versor H is the unit hyperbolic biradial

]:I = wH= 'Yv'voil = &'070 (5106)
= ZV( Yo+ vAY)= vv+lgvvo (5.107)
= Wt %MV’YO =W+ BV Y0 (5108)
= cosh(g@v) + sinh( gy )V = exp(py Vo) = eV, (5.109)

where

=)= FA%)? =1 (5.110)
Y = cosh(epy) (5.111)

Whv = sinh(py) (5.112)

By = tanh(py)= % (5.113)

¢v = atanh(fy). (5.114)

Using half of the hyperbolic angle (rapidity) ¢y, the hyperbolic rotation operator (hyperbolic
rotor or boost operator) By is the square root of the hyperbolic versor

B,=H> eXp(%“’Nw) = (5.115)
1 . 1 .
cosh 5%V + sinh 5%v V0 (5.116)

(1+8v) +V1- B (1+ﬁv)—\/1—ﬁw . -
2\/@4\/1—763+2m4\/1—762 Yo or —1<f,<1. (5.117)

The hyperbolic rotation by a natural speed | 8y| =1, corresponding to rapidity |py| =00, is
invalid since it represents reaching the light speed asymptote | = ¢y + ¢v (a null vector),
which can never be reached on the hyperbola of constant (invariant) spacetime interval.

While the hyperbolic versor H is a one-sided versor, the hyperbolic rotor (boost) By is
a two-sided versor or “sandwiching” versor with its reverse By = B; ', such that

v = Ho/vy=DB20/ (5.118)
— B,oB /. (5.119)
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The one-sided versor operation is valid only for collinear (coplanar in spacetime) velocity
boosts, while the two-sided versor operation is valid for general boosts of any velocity
that need not be collinear with v. This is similar to the difference in quaternion rotations

between planar rotation using the one-sided versor operation e’®r? and conical rotation
1 1,4
on

using the two-sided versor “sandwich” operation e?"Pre 2" —plin 4 (Ohpln

Although boosts are generally valid on spacetime velocities and not generally valid
on spacetime positions since the time after a velocity boost is subject to interpretation,
it is valid to passively boost a spacetime position of the form ut = (0 + u)t, which is the
product of the spacetime velocity w and its coordinate time ¢t =1%,, =t.,. After a passive
boost, the time to be applied to the boosted velocity is still ¢, which can be correctly
factored out of the passive boost operation as

By (ut)By = ByubByt. (5.120)

The passive boost is interpreted as transforming coordinate time ¢ into the proper time 7=
ty» of v, and transforming distance into the distance relative to observable v. Evaluating
this passive position boost gives some useful results, as follows.

ByuByt = e%{'%(o + u)e%{’%t =(ucv)t ( )
= (wv/0) *(eyo+ul +u¥)(1vv/0)%t (5.122)
(cyo+ul¥) (v /o)t +utvt ( )
(evo+u) (1 + 3 Bevy0)t + utt (5.124)
(5.125)
(5.126)
(5.127)

TEYo — ’yvﬁvc‘} + ’quH‘A, + Vvﬁvullo‘?q@)t + uLQt

(
(O/ + u/)t = (’Yu@vo + Yuevu © V)t.

The time transformation is

T = Yuevl (5.128)
= (st sy ) (5,129
- %<1+%Bv(u-v)o—1v>t (5.130)

1]v]] (u'V))
= 1=V / (5.131)
( ¢ c vl
u-v
- %<1+ - )t (5.132)
The distance transformation is
u't = (Yuevuov)t (5.133)
= (uov)r (5.134)
9 4 LV _ 5
_ uhu o v Beey (5.135)
I iy
Vv
L i el (5.136)
Yuev
v 2 lv
_ wirvIisAuTov (5.137)

1+

c2
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Summary of useful results:

ut = (o+u)t=(cyo+ fuctr)t

vt = (0+Vv)t={(cy+ Bycv)t

t = tpo=tew=teu="Tleucwv="tcuav

T = tpw=teugv="Lecuov
ByuByt = (WO V)t=(Yucv0+ YuevuOV)t=(0+uov)r
BywuByT = (u® V)T = (Yuev0 + Yuevu B V)T =(0+ud v)t

u-v
Yuev = /7v< )

Tuev = /7v<1_u V)

02
ul 4 /1= Butv — (u-v)v i+ 1-Bi(uAv)vi—v
l_l@VT = v T: a-v
1+ =2 2
W /T- B v (w4 /1= BuAvv!
upvt = v t= (o~

c2

5.2.3.4 Active boost
The “active” boost u @ v of spacetime velocity

u = o+u=cyy+ fucu

tew = t:tpm
by spacetime velocity

v = o+v=cyy+ Byev
lev = t=1po
b = T,
is the “active” boost operation
udv = ByuBy=DBjuB,
= (wo/0)7u(yv/0) T =(1,01/0) Fulr,w!/0)?

1 . 1. 1. 1 .
= eXp(gsw%) ueXP(gWoV) = eXP(gWoVT) UeXp<§<PVT70>

= ud®v = uov
= ud(o+v) = us(o—v)
= YuevO t+ YupsUDV = YuevtO + Tuovid S/ VT
— —_—
= YuaoveYo+ YuaovBuavCl BV = Yoy 1Y + Yoyt Busvica O V1.

The hyperbolic angle (rapidity) is
p=py=p,+ = atanh(fy)= atanh(%t) = atanh(%) = atanh(%)
QDVTVT = —PyV.

The Lorentz factor for v is
1 1

\/1—¥:\/1—ﬁ3'

&

/yV: /va =

93

(5.162)
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The spacetime dilation factor is

u-v
Tuev = Tuevt = 7V<1_ 2 ) (5163)

The spatial relativistic velocity addition is

u”‘7+\/1—”‘c'—!2u”—l—v

udv=uovl = T : (5.164)
T T2

C

The natural speed of the spatial velocity addition u@® v is

luev] _V@ov) (o)

ﬁu@V:ﬁu@vT = c c (5165)
For parallel velocities u||v, then
Puav = %, for ul|v;u= Gyucv. (5.166)
For perpendicular velocities ulv, then
Buev = VO-FFE+E  forulv. (5.167)

5.2.3.5 Time transformations for active boost

Although uw @ v and uw © v are the same spacetime velocities u ® v = u © v, thei{"
associated time transformations are different. For u @ v, the boost operator is (,v/0)2
and v /o transforms time ¢ into 7 internal to the boost operator, and then ~, transforms
time 7 back into ¢ external to the boost operator. Therefore, the time is 7 for u ® v and
the displacement is

(u@v)T = (0+UuDV)YuayT (5.168)
— (o—{—u@v)t (5169)

[

that passively transforms 7 into ¢. For u © v, the boost operator is (v,vf/0) ? and
time transformations are reciprocal such that time 7 transforms into ¢ internal to the
boost operator, and then time ¢ transforms back into 7 external to the boost operator.
Therefore, the time is ¢ for u © v! and the displacement is

(wevht = (o+usvh)youit (5.170)
= (o+uovhr (5.171)

that passively transforms ¢ into 7.

An “active” boost (u @ v)T passively transforms time 7 into ¢ = Yy 7, from the frame
of v into the frame of 0. The boost u ® v adds/moves u into the frame of v with time
T = tp that passively transforms to coordinate time ¢ = ¢,, such that observer o sees
a dilated time t = Yuav7 and a velocity addition yuav7u @& v =1tu @ v. The spacetime
contraction (u @G v /yuev)t is an active velocity addition in the frame of o.

A “passive” boost (u & v')t passively transforms time ¢ into 7 = 7,51, from the
frame of o into the frame of vT. The boost u © v subtracts/moves u from the frame of
v' into the frame of o with time ¢ = t,, that passively transforms to time 7 =t,,+ such
that observer v' sees a relative dilated time 7=, and a relative velocity subtraction
Yuovitu ©vi=7u6 v The spacetime contraction (u & v'/y,.,1)t is an active velocity
subtraction in the frame of o.
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5.2.3.6 Passive boost

95

The “passive” boost is the reverse of the “active” boost. Therefore, the following is very

similar to the “active” boost, but with everything going in reverse.

The “passive” boost u © v of spacetime velocity

u = o+u=cyy+ fucu

tew = t:tpm
by spacetime velocity

v = o+ v=cy+ fyev
= t:tpoa

lew
is the “passive” boost operation

uov = ByuBy=DB,uBy}
= (wv/o) u(wv/0)? =(1,w'/0)*u(yw'/0) 2

"

1 1 . 1 . 1.
= eXp(§w70v> UQXP(§§0V70> = eXp<§s@VT’m) ueXp(§w70vT>

= uov = udv
= usS(o+v) = ud(o—v)
= YuovO + Yuevl ov = /yu@vTO + ’YuEBVTu D VT
— —_—
= TueveYo+ TuovBuevCl OV = Ve 1Y + Vet Bugvicu ® V7.

The hyperbolic angle (rapidity) is

0= py=p,+ = atanh(fy)= atanh(||ol|) = atanh(%) = atanh(

(,DVTVJr = —pyV.

The Lorentz factor for v is

1 1

JIoBE VISR

[

/yV: /yVT =

The spacetime dilation factor is

u-v
Tusv = Yuevi = VV<1_ 2 )

The spatial relativistic velocity subtraction is

v ./ vl 1

uov=uopvl = TV
1+

c2

The natural speed of the spatial velocity subtraction u© v is

ﬁu@v = ﬁu@vT c c

_ Juevll_ V@ov)-(mov)’

rise

run

)

(5.172)
(5.173)

(5.185)

(5.186)

(5.187)

(5.188)



96 SECTION 5

For parallel velocities u||v, then

o ﬁu - ﬁv e A
Buev = 1= BB, for u||v; u= Byucv. (5.189)
For perpendicular velocities ulv, then
Buey = (1—BHF2+ B2 for ulv. (5.190)

5.2.3.7 Time transformations for passive boost

Although v © v and u ® v are the same spacetime velocities u © v = u ® v, thei}"
associated time transformations are different. For u © v, the boost operator is (,v/0) 2
and the reciprocal of v /o transforms time 7 into ¢ internal to the boost operator, and
then the reciprocal of v, transforms time ¢ back into 7 external to the boost operator.
Therefore, the time is ¢ for u © v and the displacement is

(uov)t = (0+uSV)yuevt (5.191)
= (o+u@v)7 (5.192)

1
that passively transforms ¢ into 7. For w @ v7, the boost operator is (v,+v'/0)? and time
t transforms into 7 internal to the boost operator, and then time 7 transforms back into
t external to the boost operator. Therefore, the time is 7 for u @ v and the displacement is

(udv)T = (0+ud v yueyi™ (5.193)
= (o+udvit (5.194)

that passively transforms 7 into ¢.

A “passive” boost (u © w)t passively transforms time ¢ into 7 = vuevt, from the
frame of o into the frame of v. The boost u © v subtracts/moves u from the frame of
v into the frame of o with time ¢ = ¢,, that passively transforms to time 7 = ¢, such
that observer v sees a relative dilated time 7= y,o+t and a relative velocity subtraction
Yuoviu © v = 7u © v. The spacetime contraction (4 © v/ yusv)t is an active velocity
subtraction in the frame of o.

An “active” boost (u & v')7 passively transforms time 7 into t =y, 7, from the frame
of v into the frame of 0. The boost u @ v adds/moves w into the frame of v' with time
T =t,,t that passively transforms to coordinate time ¢ = ¢,, such that observer o sees a
dilated time ¢ = 7,47 and a velocity addition v,g,i7u® vl =tu @ vi. The spacetime
contraction (u@®v'/v,eyi)t is an active velocity addition in the frame of o.

5.2.3.8 Generalization of spacetime contraction operation
A spacetime velocity w that has been boosted successively has the general form

u' = ey + ypel’. (5.195)
In general, the spacetime contraction is

ul

u' Yo

u" = u'/y=c (5.196)

The spacetime velocity u” can be interpreted as some combination of active velocity
additions and subtractions in the frame of observer o. Or, u” can be interpreted as
a spacetime velocity transformed into the frame of a new observer v — o0, with time
T:tpv:tcu//.
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If w =0+ u is in the contracted frame of observable v = o + v with proper time 7,
where u sees v as its observer o, but v sees its observer o as the coordinate time ¢ observer,
then uw can be transformed into the contracted frame of the coordinate time ¢ observer as
the active velocity addition with spacetime contraction

UBV/Yuav = ByuBY/ Yuev (5.197)
= (’YUEBVC'YO + ’Yu@vﬁu@va@) /’VuEBV (5198)
= ot+udv (5.199)
ullv+4/1 —@u”%—v
= o+ ; o : (5.200)

c2

The transformation of this back into the contracted frame of v is

By (u®v/Yev)By/v = BS(0+u®v)By/Yusvey (5.201)
= (7uEBV6VO+’quBvequBV@V)/’Yu@V@V (5202)
= otu=u. (5.203)

where
ubvev = u (5.204)

but

Tuevev F Tu (5.205)
= Yaov- (5.206)

The generalization, for transformation into the new contracted frame after passive boosts
of u, is to divide by the general spacetime contraction factor
/
v = w7 (5.207)

C

as

/

u" = u’/’y:c

/
= .2
oot (5.208)

where o represents the new observer with new coordinate time t,,=t¢y, .

5.2.3.9 Approximations
For boost speed ||v|| < ¢ and initial speed ||u|| < ¢, an active boost is approximately
an addition of velocities

udv & u+v, for |[ul], ||v|| < ¢ (5.209)
and a passive boost is approximately the subtraction of velocities
usSv & u-—v, for ||ul], ||v|| < c. (5.210)

For a very small speed (v = fyc) < ¢, then f, < 1 and the rapidity ¢y is approximately
equal to fy

oy = atanh(fy) (5.211)
~ [y, for By < 1. (5.212)
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For g, < 1, the proper velocity (celerity) yycv is approximately equal to velocity
ovev & (fyev=v), for g, < 1. (5.213)

For a small speed v < ¢, the Lorentz factor v, =1/4/1—10v?/c* ~ 1.
Using the hyperbolic function composition identities, it can be shown that the boost
operator that applies the boost S, twice successively, and adds the rapidity 2¢py, is

1 Bv
ByBy=Bg Bg, = + VYo 5.214
YT R R o2
and the boost operator that applies the boost éﬁv twice successively is
Bi,Bi, = —2 4 (5.215)

The double boost operator Bg,Bg, can be defined as successive reflections in two space-
time planes through the origin, where the first plane contains the observer o and the
second plane contains the boost observable (particle) v. The two planes bound the hyper-
bolic angle ¢, that turns from the first plane at 5,=0 into the second plane at f,, toward
the direction in space of the boost velocity v.

For very small 3, < ¢, then ¢, =atanh(5,)~ , and then

B, = 2PN a0, g, (5.216)

3PV FPv
2 By Vo= DB1, B: (5.217)

VA-B VA- B R

1 ~
ez cosh<%ﬁv) + sinh(%ﬁv>\7'yo (5.218)
The good approximation of By for very small f, < ¢ is
2 ﬁv

0. (5.219)

B, = +
VA-B2 \JA-p32

6 Conformal Space-Time Algebra (CSTA)

Ga,4 Conformal Space-Time Algebra (CSTA) is introduced in [3]| as the spacetime con-
formal group.

Go.4 CSTA is a straightforward extension and adaptation of the G, ; Conformal Geo-
metric Algebra (CGA). CGA is introduced by HESTENES, L1, and ROCKWOOD in [25].
CGA is also discussed by PERWASS in [20], and by DORST, FONTIINE, and MANN in [4].

Ga,s Double Conformal Space-Time Algebra (DCSTA) D contains two copies of G, 4
CSTA C, which are called CSTA1 C' and CSTA2 C?. Elements and operations in CSTA1
are subscripted with C'. Elements and operations in CSTA2 are subscripted with C2.
Elements and operations in generic CSTA are subscripted with C.

Most formulas are expressed in CSTA C and written explicitly in CSTA1 C! and
CSTA2 C? only when helpful to see how the particular CSTA1 and CSTA2 elements are
used in formulas. Most formulas in CSTA can be written in CSTA1 and CSTA2 by just
changing subscripts. CSTA uses the origin e,, and infinity e, points and the DIRAC
gammas o, Y1, V2, Y3 for the timelike w = ¢t and spatial x, y, z axes, respectively. The
generic CSTA point embedding is Pe=C(pum).
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6.1 CSTA unit pseudoscalar
The Go4 CSTA 6-vector unit pseudoscalar Io with signature (+———+—) is

I = Tra(€coy Aeoy) = Yols(€oory A €0y) = YoV172Y3(€00ry A €0y) = Yov1¥2 V3016 (6.1)
I = ()P = -1 (6.2)
2= 1 (6.3)
I;' = —I.=Ig. (6.4)
The Gy 4 CSTA1 6-vector unit pseudoscalar Icr with signature (+———+—) is
ICI = IMl(eool N eol) = 81131(8001 A 801) = 81828384(8001 A 801) — €1€2€e3e4€E5€5. (65)
The Go4 CSTA2 6-vector unit pseudoscalar Ic> with signature (+———+—) is
I = Ine(esa A enn) =erls2(ena A ey) = eresegein(€nca A €y2) = €7€3e9e0e11€12.  (6.6)

6.2 CSTA point

The CSTA null 1-vector point entity is very similar to the CGA null 1-vector point entity.
The following subsections define the CSTA points at the origin and at infinity, and the
CSTA point embedding.

6.2.1 Stereographic embedding and homogenization

The embedding of an G; 3 STA position vector p into a Go 4 CSTA null 1-vector point P
is done in exactly the same way a G3 APS point p is embedded into a G4 ; CGA point Pe.
There are many references that explain the stereographic embedding and homogenization,
such as PERWASS [20], ROSENHAHN [22], and the paper on Gg 2 DCGA [7].

6.2.2 CSTA point at the origin

The CSTA null 1-vector point at the origin is defined as

er = s—eite) (6.7)

where e is the stereographic unit and e_ is the homogeneous unit, and

oo = {o  hosma 6
S P 6

The CSTA1 null 1-vector point at the origin is defined as
€1 = %(—e5+e6). (6.10)

The CSTA2 null 1-vector point at the origin is defined as
€ = %(—911-1—812)- (6.11)

The CSTA null 1-vector point at the origin e, represents either e,; or ep.

6.2.3 CSTA point at infinity
The CSTA null 1-vector point at infinity is defined as

€y = €1+e_. (6.12)
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The CSTA1 null 1-vector point at infinity is defined as

€1 = €5+ e (6.13)
The CSTA2 null 1-vector point at infinity is defined as

Co2 = €11+ e (6.14)

The CSTA null 1-vector point at infinity e~ represents either e.; or esp.

6.2.4 CSTA point embedding
The generic CSTA null 1-vector point Py entity is the embedding of an STA position pq as

1
Pe=C(pm) = PM+ 5PMCoy+ oy (6.15)

The CSTAI1 null 1-vector point P entity is the embedding of an STA1 position paq as

1
Pcl:C(le) = pM1+§p3\416001—|—eol. (6.16)

The CSTA2 null 1-vector point Pp2 entity is the embedding of an STA2 position pas as

1
PC2ZC(pM2) = pM2—|—§p3\428002+802. (6.17)

The embedding function C is implemented as a piecewise embedding function that embeds
an STA, STA1, or STA2 vector into the corresponding CSTA, CSTA1, or CSTA2 point.
The generic CSTA embedding will used to avoid duplication in generic discussions that
can apply just as well in either CSTA1 or CSTA2 by only changing the subscripts accord-
ingly.

The CSTA point P is similar to a CGA point P¢ as in [7| when Pp is the embedding
of a spatial point pr(=ps and we hold w = ct =0, which gives the G; 4 CSA null 1-vector
point Pe¢s.

As a GOPNS entity, a CSTA point P¢ simply represents the point (§6.5.2), as
expected.

As a GIPNS entity, a finite CSTA point P, excluding e, actually represents a
hypercone (§6.4.2) in spacetime of the form

(W —=puw)?—(2—=p)* = (y—py)°—(2—=p.)*> = 0 (6.18)

where

PM = PuYo+ PaV1+ DyYe+ P2Y3= PuYo + Ps- (6.19)

In general, a hypersurface in an n-D space has an (n — 1)-D surface. A cone or other surface
in 3D space has a 2D surface, but a hypercone or other hypersurface in 4D spacetime has
a 3D surface. A hypersurface is treated and conceptualized in most respects the same as
a 2D surface, but it embeds extended dimensions and its mathematical forms contain an
additional term per extended dimension.

The hypercone is a result of the MINKOWSKI spacetime metric (1, 3), which can be
seen in the hypercone equation. For comparison to G4 1 CGA, a CGA point embeds a 3D
Euclidean vector with metric (3,0) and represents an implicit surface equation of a sphere
with zero radius

(Q} _p$)2+ (y _py)2+ (Z _pz)2 = 0. (620)
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In 3D spacetime with only two spatial dimensions by holding z — p, = 0, the hypercone
reduces to the circular cone

(T = pa)® +(y —py)* — (W —pu)* = 0 (6.21)

which is an expanding circle in the zy-plane as the time-like coordinate w = ct increases
past p,. The hypercone is an expanding sphere in space that is expanding with time ¢ in
radius

r = w—py=ct—py (6.22)

at the speed of light ¢. The point begins expanding after time ¢t = p,, /¢ and is contracting
before that time.

A CSTA point, as an expanding sphere, represents a light-cone in spacetime that is
centered at the vertex point pas. In spacetime, the light-cone is a spherical hypercone,
which is a cone with a 3D hypersurface. A surface is usually 2D, but a hypersurface is
imagined as a surface while it is actually a higher-dimensional space. The light-cone is
often depicted as a cone in a 3D spacetime of two spatial dimensions and a time-like
dimension, wherein the cone is a circular wave front of light that expands in space as time
t increases. The expanding radius r = ct — p,, of the wave front is centered at a point light
source pr. A CSTA point represents a spherical wave front of light in space, or light-
cone in spacetime, centered at a point light source p, that flashes at time t =p,,/c.

6.2.5 CSTA point normalization
A homogeneous CSTA point embedding with scalar weight s is
1
sPe=sC(pm) = spm+ sgpf\,lecm + S€0. (6.23)

A normalized point is scaled to weight s=1.
The normalization of a weighted CSTA point sPe is

(SPc) _ sFPe
—(sPc) €xry S

P, = (6.24)
Many formulas require points and other entities to be unit weight. The normalization of
an entity can be particular to the type of the entity.

A normalized point can be denoted

- j=%
6.2.6 CSTA point projection (inverse embedding)
The projection of CSTA point Pe=C(pa) to STA position py, is
_ Pe _
=CYP) = | —% 1 1Y 2
pm=C'(Fe) (_Pc_eoo7 M)M (6.26)
= (Pe-Iy)Iy. (6.27)

6.2.7 CSTA test point

The symbolic CSTA test point Te = C(tr) is the embedding of the symbolic STA test
vector

tm = wyot+xyi+yye+ 2ys=ctyo+ts=omt +ts. (6.28)
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The symbolic CSTA1 test point Ter=C(tpq) is the embedding of the symbolic STA1 test
vector

tMl = we; —+ Treq —+ yes + €= cte1 —+ tgl = OMlt —+ tgl. (629)

The symbolic CSTA2 test point Te2=C(tpq2) is the embedding of the symbolic STA2 test
vector

trz = wey+zeg+ yeg+ zejg=cter+tsz=o0pp2l +tse. (630)

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
time-like coordinate w = ct represents the distance traveled by light in time ¢. The
observer, as defined for special relativity, is identified as the symbolic time-like velocity
O\ .
CSTA1 and CSTA2 test points T¢1 and Tpe, respectively, are wedged to form the Gy g
DCSTA test point Tp = T A Tpe2. The DCSTA point value-extraction elements T, are
defined as elements that extract values from the DCSTA test point Tp as s=Tp - Ts.

6.3 CSTA point value-extraction elements

The CSTA 1-vector point value-extraction elements Cy extract the value s from a test
point Te =C(tr) as s =T¢- Cs. The CSTA value-extraction elements are

C) = —€nr (6.31)
Co = Yo (6.32)
C, = %Cw (6.33)
Co = —m (6.34)
Cy = — (6.35)
C. = -7 (6.36)
Cp = —2e,,. (6.37)

These elements are straightforward to verify. When w = ct, the extraction C; gives t. The
extraction

Te-Cp = tiy = tm]P=w?—ri=(ct)?— 22— 9> - 22 (6.38)

is the squared modulus, or interval from the origin, of the STA test vector & .

The CSTA geometric inner product null space (GIPNS) 1-vector surface entities can
be defined in terms of these extraction elements by writing their implicit surface functions.
Two of these entities are the CSTA GIPNS 1-vector hyperplane E¢ and the CSTA GIPNS
1-vector hyperhyperboloid of one sheet (hyperpseudosphere) Xc. A hyperhyperboloid can
degenerate into a hypercone, which is a CSTA GIPNS null 1-vector point entity Pp.
The CSTA GIPNS 1-vector entities X¢ and E¢ are similar in form to the CGA sphere
S and plane II. The other CSTA GIPNS entities are of grades 2 to 5 and are formed as
intersections (wedges) of hyperpseudospheres and hyperplanes or by specific formulas.

6.4 CSTA GIPNS entities

The Go 4 CSTA GIPNS entities are similar to G4 1 CGA GIPNS entities, but with some
changes to account for the anti-Euclidean signature of Gy 3 SA and the pseudo-Euclidean
spacetime signature of G; 3 STA in a 4-D spacetime. The CSTA GIPNS entities of forms
similar to CGA GIPNS entities are representing hypersurfaces in 4-D spacetime.
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6.4.1 Geometric inner product null space (GIPNS)

Geometric inner product null space (GIPNS) entities are introduced by PERWASS in [20],
and are reviewed by this author in [7] and [9].

6.4.2 CSTA GIPNS 1-vector hypercone

The implicit quadric surface equation for a circular hypercone is
(w—pw)? = (x—pz)* = (y—py)*— (2 —p.)* = 0. (6.39)
The CSTA GIPNS null 1-vector hypercone K is the point embedding
Kc = Pe=C(pum) (6.40)

with center vertex point py(. The hypercone is a sphere in space that expands from a
point at pu with squared radius

r? = (w—pw)?=(ct —py)? (6.41)

6.4.3 CSTA GIPNS 1-vector hyperplane

A hyperplane is a linear subspace of dimension (n — 1) in a space of dimension n. In 4D
spacetime, a hyperplane is a 3D subspace. The hyperplane space can be a MINKOWSKI
spacetime (1,2) or an anti-Euclidean space (0, 3).

An implicit surface equation for a hyperplane in spacetime through the origin can be
written

tv -y = (6.42)
Ny — Nk — Ny — N2 = 0. (6.43)

The STA vector
Ny = Mo + Nz + NyY2 + nys3 (644)

is the normal vector to the hyperplane. Only the direction of m ¢ is significant, and its
magnitude can be arbitrary. However, as a normalization of the scale, normal vectors with

unit magnitudes (norms) n/vn-n' are sometimes required. The STA test vector #, is

tm = wyotayvi+yre+ 2y (6.45)

The equation holds good for any point £ on the hyperplane through the origin orthogonal
to ng. Using the CSTA point value-extraction elements (§6.3), the hyperplane implicit
surface function can be written as the CSTA GIPNS entity

Nyl — Nk — Nyl — N2 —> (6.46)
NCy — NyCy — 1y Cy — n,C, (6.47)
N Yo + NaY1 + Ny Y2 +12y3 = (6.48)
LY (6.49)

The CSTA GIPNS 1-vector hyperplane E¢ through the origin with normal vector m, is
defined as
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The hyperplane through the origin n s can be translated from the origin to a point d a4
using the translator (§6.6.4) operation

(1—%dMeoo7>nM<1—%eoo7dM) = (652)
nM+(dM~nM)eoo7 . (653)

The CSTA GIPNS 1-vector hyperplane E¢ through the point pas with normal vector 1
is defined as

Ec = ny+ (P Ma)€coy (6.54)
~ E:l, (6.55)

and is equal to the CSTA undual of the dual CSTA GOPNS 5-vector hyperplane E§
(§6.5.13) up to a homogeneous scalar factor. The normal vector n s can have any mag-
nitude, and pa can be any point on the hyperplane. The hyperplane E¢ has a form that
is similar to a G41 CGA plane II, and when we hold w = ct =0, then the form gives the
G1,4 CSA GIPNS 1-vector plane ITgs =ngs+ (ps - ns)€sor-

If 7o is normal (perpendicular) to the hyperplane and also a point on the hyperplane,
then the hyperplane can be defined as

E: = ny+nien (6.56)
= nu+d’ew, (6.57)

where d=+/mn%, is the hyperbolic distance (modulus) of 1, from the origin. The modulus
d may be a real or imaginary number, but the spacetime interval d* of m 4 from the origin
is a real scalar. For m,( both normal to and on the hyperplane, the squared modulus
d* = pp - mpy from the origin, as well as d itself, is constant for all points pas on the
hyperplane. By using the squared modulus d?, it is possible to avoid imaginary numbers.
The actual magnitude of n, does not affect the representation of the hyperplane surface
since the hyperplane entity is a homogeneous entity that may be arbitrarily scaled by any
non-zero scalar without affecting the surface that is represented. The scaling of entities
affects metrical distance calculations between entities, and the formulas for distances
between entities must include methods for normalizing the scale of entities.
The hyperplane E¢ is the set of STA points ¢,

NIg(Ec) = {tm @ C(tm) Ec=0} (6.58)

of the geometric inner product null space of E¢, denoted Nlg(Ec) [20]. A similar set
holds for all other GIPNS entities.

If ny is a null vector, then the hyperplane E¢ degenerates into the representation of
a CSTA GIPNS null 1-vector light-line (null line) entity e (§6.4.4) parallel to . and
through the point p4. The null line entity IL¢ includes the point at infinity e, on the line.

The intersections of two, three, four, or five hyperplanes E¢, can define entities for
planes, lines, flat points, and the point at infinity, respectively as follows:

Two hyperplanes intersect as a CSTA GIPNS 2-vector plane Il. (§6.4.10)

Ec,ANEe, = (6.59)

(n1+ dieso) A (na+ dien,) = (6.60)
ni Ang+ (din, — d%ng)ecxw = (6.61)
DM — (pp- D*M)e,,, = Tl (6.62)
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where D*M =mn, An, is the STA dual of the plane Il direction bivector D.
Three hyperplanes intersect as a CSTA GIPNS 3-vector line L¢ (§6.4.11)

Ec, NEc,\ Ec, = (6.63)
(1 Ana+ (dsng — ding)ess) A (g + djes,) = (6.64)
ny Ang Ang+ (d3ng — ding) A es, Ans+ding AngAes, = (6.65)
nyAng Ang+ (ding Ang— dsng Ans +ding Ang)en, = (6.66)
dM+ (py-dMes, = L (6.67)
where d*M=mn, Any Ans is the STA dual of the line L¢ direction vector d.
Four hyperplanes intersect as a CST GIPNS 4-vector flat point (§6.4.16)
Ec NEc,NEc,\ Ec, = (668)
(n1 N1 A\ ns+ (d%ng NNy — d%nl A s+ d%nl A ng)eow) A (n4 —+ dﬁeoov) = (669)
alp—a(pam-Tam)essy (6.70)
L+ pues, = Pe.  (6.71)
The CSTA dual of the flat point is
(L + pivessy)Ic' = (6.72)
ey NFPe = PG (6.73)
)
Ec NEc,NEc,\ Ec, N Ec, = (674)
(Tv + Piv€ooy) A (15 + dBen) = (6.75)
DA ooy As+ dBL N es, =~ (6.76)
I.M/\eoofy = (677)
IvAher+Iyne. = (6.78)
—Ic-e,—Ic-eJr = (679)
—Ic-en, = (6.80)
—(-1)¥6Ve_ - T, = (6.81)
ecorlec = €5 (6.82)

6.4.4 CSTA GIPNS null 1-vector light-line (null line)

As a CSTA GIPNS entity, a null vector n = a7, + n) represents the line through the
origin in the direction of n . This is a degenerate case of the hyperplane E¢ (§6.4.3)
with null vector n as the hyperplane normal vector.

The CSTA GIPNS null 1-vector light-line (null line) L¢ through the origin in the
direction of the null vector n 4 is defined as

Le = na. (6.83)

The null line L =mn can be translated in spacetime from the origin to an arbitrary point
P using a translation operation (§6.6.4). The CSTA GIPNS null 1-vector null line L¢
through the point pa in the direction of null vector n is defined, via translation, as

Le = np+ (P Mam)€con. (6.84)
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The null line LL¢ includes the point at infinity e, on the line.

6.4.5 CSTA GIPNS 1-vector hyperhyperboloid of one sheet

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet is

r(2)+(w_pw)2_ (x_paz)2_ (y_py)Q_ (Z—pz)2 =0 (685)
where 1 is the initial radius of the expanding sphere in space with time-varying radius
r o= 1 (0 —pu)? =18+ (ct — pu)? (6.86)

and center position

PM = P Yo+ PaY1+ DPyYe+ PY3=PuwYo+ Ps (6.87)

in 4-D spacetime.

When w — p,,=0, the surface is a sphere with radius rg. The circular hyperhyperboloid
of one sheet can also be called a hyperpseudosphere. Like a sphere, a hyperpseudosphere
does not include the point at infinity.

In 3-D spacetime with only two spatial dimensions by holding (z — p,) =0, the circular
hyperhyperboloid of one sheet reduces to the circular hyperboloid of one sheet

2 2 2
(Q} _2pi’3) 4 (y _2py) o (w _2pw) - 1. (688)
o o ro
When (w — p,) =0, the hyperboloid of one sheet is a circle in the xy-plane with initial
radius ry at initial time ¢ = p, /¢, or w = p,. The circle radius r = \/r + (w — p,,)? is
expanding after time t=p,, / ¢ and is contracting before that time. The radius is expanding
with time ¢ at the rate

p=d = Lo pe=tiobe o Clope (6.89)

a2 T Vlet—p)t
The initial rate at time ¢ = p,, /¢ is 7(p,/c) =0 and increases to 7(c0) =c as t — oo. In
natural units, c=1 and the hyperhyperboloid of one sheet is asymptotically the hypercone
of a spherically expanding point Pr. The acceleration of the radius r is

. o _ . o 2 o -2
7.;:& _ atct Pw,,_CT 7 (ct pw)cz ¢ —r
ot r r? r
The initial acceleration at t=p,, /¢ is 7'(pw / ¢) =* /o and decreases to 7*(00) =0 as t — oo.
In natural units, c=1 and 7 is a measure of circular, or spherical, curvature at time ¢.
Using the CSTA point value-extraction elements (§6.3) the hyperhyperboloid of one

sheet implicit surface function entity can be written

(6.90)

1o+ (w—pu)’ = (2 =)’ — (Y —py)* — (2 — pa)* — (6.91)
(1§ + p4)C1 + Cp — 2puCl + 2p.Cr + 2p,Cy + 2p.C., (6.92)
— (18 + Pht)€ocy — 20y — 2DuY0 — 2DaV1 — 2DyY2 — 2pY3 = (6.93)
—2pm — (T% + pg\/l)eoow - 2e07 (694)
Normalizing e, by scaling —1/2 gives
1
Pm+5(ri+ Pi)eccy + €0y = (6.95)
Pot irden, . (6.96)

2
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The CSTA GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) 3¢ in
spacetime with initial radius ry centered at CSTA point Pe=C(pp) is defined as

e = Pc+%r(2)eom (697)
~ Sl (6.98)

and equals the CSTA undual of the dual CSTA GOPNS 5-vector hyperpseudosphere 3¢
up to a homogeneous scalar factor.

The CSTA hyperpseudosphere 3¢ is similar to a CGA sphere S discussed in [7| when
P, = C(ps) is the embedding of a spatial point py = ps with w = ¢t = 0, which gives
the G; 4 CSA GIPNS 1-vector sphere S¢s = Pes + %7’28007. When rg =0, 3¢ = K¢ is a
hypercone, which is the CSTA point embedding Pr= K¢ as a GIPNS entity.

Two hyperpseudospheres can intersect in a growing spatial circle, which is a CSTA
GIPNS 2-vector spacetime hyperboloid or pseudosphere S¢. Three hyperpseudospheres
can intersect in a growing spatial point pair, which is a CSTA GIPNS 3-vector spacetime
hyperbola or pseudocircle C¢. Four hyperpseudospheres can intersect in a CSTA GIPNS
4-vector spacetime point pair Pe.

6.4.6 CSTA GIPNS 1-vector hyperhyperboloid of two sheets

The implicit quadric surface equation for a circular hyperhyperboloid of two sheets is

=15+ (w—pu)? — (= pa)? — (Y —py)* — (2 —p:)* = 0. (6.99)

The CSTA GIPNS 1-vector hyperhyperboloid of two sheets (imaginary hyperpseudosphere)
is

e = Pc—%rgem. (6.100)

The imaginary radius is v/—17o.

The intersection of Z¢ and hyperplane E¢= v+ py€so holds w = p,, and produces an
imaginary sphere. The intersection of Z¢ and hyperplane E¢ =3 — p.e~ holds z=p, and
produces a hyperboloid of two sheets in wxy-spacetime opening up and down the w-axis.
The intersection of E¢ and spacetime plane Ile produces a hyperbola in the spacetime
plane that opens up and down the time axis.

6.4.7 CSTA GIPNS 2-vector spatial sphere
The implicit quadric surface equation for a hyperpseudosphere is
15+ (w—pu)?—(r—p)?— (y—py)?— (z—p.)? = 0. (6.101)

If we set the time coordinate w, then we get the implicit surface equation for a sphere in
Ty z-space

(2= pa)*+(y—py)°+(z—p.)* =1 = 0 (6.102)
with radius
ro= 16+ (0 —pu)*. (6.103)
To set w, we can intersect a hyperpseudosphere

Yo = Pc—i—%r%ec,w (6.104)
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with radius rqo centered at
Pe = C(pm) =C(puyo+ pevi + pyye+ p¥3) =C(purvo + Ps) (6.105)
with the hyperplane
Ec = v+ wesy (6.106)

of xyz-space at w. The sphere of radius ry centered at ps is at the time w = py,.
The CSTA GIPNS 2-vector sphere Sc centered at Pe = C(py) with radius rg is the
intersection

Se = XNE; (6.107)
1

= <PC + 57&8%%) A (Yo+ (P Y0)€c0) (6.108)
1

= <PC + 57“(2]6007) A ('70 + pweoow) (6109)

~ S¥I. (6.110)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector sphere S§ up to
a homogeneous scalar factor.

6.4.8 CSTA GIPNS 2-vector spacetime hyperboloid of one sheet

The implicit quadric surface equation for a hyperpseudosphere is

i+ (w—pw)?—(x—p)?—(y—py)?— (2 —p.)?> = 0. (6.111)

If we set one spatial coordinate, for instance z, then we get the implicit surface equation
for a circular hyperboloid of one sheet in wxy-spacetime

(T = pe)?+ (Y= py)* = (w—pu)* = (1§ — (2 —p.)%) = (6.112)
(opel® W=pl (w=pu) (6.113)

with central radius
r = Vrg— (2 —p.)? (6.114)
and circular conic section radius at w, z
re = Vw—pP+ (== p)D = /(W —palP+ 1% (6.115)

The spacetime hyperboloid of one sheet is also called a pseudosphere. Like a sphere, a
pseudosphere does not include the point at infinity. The pseudosphere in wxy-spacetime
is a circle in xy-space that changes in radius with w, z. To set z, we can intersect a
hyperpseudosphere

e = PC—i—%r(Q]eooV (6.116)
with radius rq centered at
Pe = C(pm)=C(puYo+ pav1 + py¥a+ p¥3) = C(puryo + Ps) (6.117)
with the hyperplane
Ec = zy3—2’ex, (6.118)

>~ Y3 — zeooy (6119)
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of wxy-space at z73. To have pseudosphere central radius 7y, set z = p,. The xy-plane
circle of radius ry centered at ps is at the time w = p,,. More generally, the hyperplane
can be through point py( with spatial normal vector ngs as

E; = ns+ (pM . ng)eoo. (6.120)

The CSTA GIPNS 2-vector spacetime hyperboloid of one sheet (pseudosphere) S¢ centered
at Pc=C(pam) with central radius r in the spatial plane orthogonal to normal vector ng
is the intersection

S = SeAE, (6.121)
1

= <Pc+§r§eoo)/\(n3+(pM~n3)eoo) (6.122)

~ Sl (6.123)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector pseudosphere S¢
up to a homogeneous scalar factor.

The CSTA GIPNS null 2-vector spacetime cone (null cone) is the pseudosphere Se
with central radius r =0.

The spacetime hyperboloid of one sheet is always in a 3D spacetime and is not a purely
spatial surface. The spatial part is circles in planes parallel to the n§-plane centered at
ps with radius 7. = \/(w — p,)? +72. The CSTA GIPNS 3-vector circle entity Ce with
radius r( is obtained by another intersection with the hyperplane at p,o.

6.4.9 CSTA GIPNS 2-vector spacetime hyperboloid of two sheets

The CSTA GIPNS 2-vector spacetime hyperboloid of two sheets (imaginary pseudosphere)
Sc centered at Pp=C(paq) with central radius rq in the spatial plane orthogonal to normal
vector ng is the intersection

Sec = EcNE; (6.124)
1

= (Pc—grgeoo)/\(ns—l—(pM-ng)eoo) (6.125)

~ Sile (6.126)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector imaginary pseu-
dosphere S¢ up to a homogeneous scalar factor. The two sheets open up and down the
w-axis and have circular sections in the ns-plane.

6.4.10 CSTA GIPNS 2-vector plane

A plane in spacetime can be defined by two orthogonal unit-norm direction vectors

dm,

d./\/l1 = dM :dw170+d33171+dy172+d2173 (6127)
[eave
dpm,

Ay, = dM = duwyYo + duy Y1+ dyy Y2 + doyys (6.128)
Jreavel

da, - di, = 0 (6.129)

and a point

PM = PuwYo+ DaY1+ DyYo+ D2Y3 (6130)
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on the plane. The direction of the plane is represented by the normalized unit bivector

D = dy, Adu, (6.131)

_ Db _ D (6.132)

D-D' /D -(~vD>v) .

The notation Aj\,l = YA Yo is the anti-Euclidean space conjugation, or SA space con-
jugation, which is necessary for the case where D is a null bivector. For blade A in
spacetime, the conjugate [20] has the property

Ani- Al = An (YoA ) = |A M~ (6.133)

Any test point
tm = wyo+ Y1+ yye+ 23 (6.134)
on the plane must satisfy the plane equation
(tm—pm)AND = 0 (6.135)
which can also be written in the dual form
(tp—pr) - DM = ty - DM —py- DM =0. (6.136)

The dual form plane equation is vector-valued and the components represent a system of
implicit surface equations for an intersection of hyperplanes that gives the plane.

The CSTA GIPNS 2-vector plane Ile through point pas in the planar direction of the
unit bivector D in spacetime can be defined as

. = DM — (py-DM)Aen, (6.137)
~ IIIC (6.138)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector plane II{ up to
a homogeneous scalar factor.

The CSTA translation operation on any CSTA entity can be defined as its succes-
sive reflections in two parallel CSTA planes. The CSTA 2-versor translator (translation
operator) T¢ can be defined by two parallel planes Il¢, and Ilg, that are separated by a
spacetime displacement vector %d M from Ie, to Ie, as

Te = I JIIg,. (6.139)
The translator versor operation on a CSTA point Pr=C(puz), for example, is
P = TePAe =T e, PeIIZ I, =C(pm+ dum). (6.140)

The successive reflections in two parallel planes translates by twice the spacetime dis-
placement between the parallel planes.

The rotor (spatial rotation operator) Rs for a rotation by twice the angle between
two non-parallel spatial planes Il¢, and Il;, can be defined as

Rs = I, (6.141)

The spatial rotation operator Rg is equivalent to the SA rotor and is the same spatial rotor
that is used in STA and CSTA. The spatial rotor Rs can spatially rotate any multivector
by wversor outermorphism [20] that rotates all vectors within outer products.
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The double boost operator By By, where By, = (v / o)% and v = ¢y + SByev, that
adds the double rapidity 2p, = 2atanh(fy) in the direction of v can be defined as the
successive reflections in two non-parallel spacetime planes. The first plane Il¢, should
represent the observer as a plane through the origin and observer o that spans the time
axis and another spatial axis perpendicular to v. The second plane Il¢, should represent
the boost velocity v =0+ v by passing through the origin and v and spanning the same
direction perpendicular to v as the first plane. The planes should be unit scale by using
unit bivectors to define the plane directions. The two planes contain the hyperbolic angle
@y that turns positive from Il toward Ilg, into the direction of v. The double boost
By B, of a spacetime velocity u is obtained by the successive reflections

w = I e ulls I3, = B,ByuBy By, (6.142)

6.4.11 CSTA GIPNS 3-vector line

6.4.11.1 Implicit surface equation of line
An implicit equation for a line in spacetime through two points can be written as

(t—p1)- (p2—p1)™ = 0 (6.143)

where t is the CSTA test point. The equation holds good for any ¢t on the line of the two
points p; and ps. The unit norm direction d of the line can be written as

d = p2— D1 6.144
\/(pQ_pl) : (pz—pl)T ( )

— p2— D 6.145
\/(Pz—m) (Yo(P2— P1)Y0) ( )

— —HZ:ZH' (6.146)

The unit norm trivector dual to the line direction is
dM = dI,;. (6.147)
The implicit equation can be rewritten as

(t—p)-dM = (6.148)
t-dM—-p-dM = 0 (6.149)

where p is any point on the line.

6.4.11.2 Definition of line entity
The CSTA 3-vector line entity L¢ through point pa in the direction of unit norm
vector daq can be defined as

Le = d™M+ (pp-d™M) Aew, (6.150)
~ Lgle (6.151)

which is equal to the CSTA undual of the dual CSTA GOPNS 3-vector line L§ (§6.5.6)
up to a homogeneous scalar factor. If the line direction d is a null vector, then the line
entity L¢ is a null 3-vector representing a null line (light-line), otherwise it is a non-null
3-vector representing a timelike or spacelike line. The point at infinity e, is on all 3-
vector lines L.
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6.4.11.3 Observable representation
The observable worldline

pPRy(t) = po+ut (6.152)
= po+tot+vt (6.153)
= ofg(t)+vt, (6.154)

which intersects the worldline of the translated observer oRS(t) at

Po = 0171+0y72+0273 (6155)

when the coordinate time is t =t,, =t., =0, can be represented as the CSTA GIPNS 3-
vector line L, that is constructed as

L, = v'M+ (po-v'"M) Aews. (6.156)

The observable worldline L,, can be operated on by all of the CSTA versors. For example,
the translated-boost B, (§6.6.9) of L, can boost L, into the frame of u = oRy(t) + u
with proper time 7 =t,,, = t.paw relative to the translated-observer oRy(t) as a relativistic
velocity addition v @ w while the initial position remains py. Other, even more compli-
cated, spacetime transformations can be achieved by compositions of the CSTA versors
applied to an observable line L,

The position point PF°(t) of the observable L, at time ¢ is represented by the CSTA
GIPNS 4-vector flat point (§6.4.16)

Pe = L,NE; (6.157)
~ (PP(t) A esy)e (6.158)

with time hyperplane
E;: = ~y+tes. (6.159)

The flat point projection (Eq. 6.239) of the CSTA GOPNS 2-vector flat point P ~PclI;*
(§6.5.5) can project the CSTA position point PP°(t) as the STA position vector pRy(t).
The rapidity of L, is given by

© = acosh(M) (6.160)
L
and the natural speed [ of L, is
B = tanh(y). (6.161)

The formula for rapidity ¢ is similar to the standard formula for the angle 6 between two
Euclidean plane vectors v and u, = acos(@ﬁ), except that this plane is a Minkowski
spacetime plane with hyperbolic angle .

The spacetime velocity v of L, is the line direction

v=d = ((Lp Ipm)Iy))Iym=Ly Tp. (6.162)

If the observable L, is boosted by translated-boost operations, then v is boosted according
to all the same results and interpretations as v boosted by STA boost operations centered
on the observer o.
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One advantage of using the CSTA worldline representation L, is the ability to easily
incorporate initial positions pg and use translated spacetime operations with the CSTA
translator (§6.6.4). Other advantages may include the ability to compute various inter-
sections of a worldline with other CSTA spacetime entities.

6.4.12 CSTA GIPNS 3-vector spatial circle
The CSTA GIPNS 1-vector hyperpseudosphere with radius rg

1
EC = PC + §r8eoov (6163)
centered at
Py = C(pm)=C(puYo+ pay1+ PyYa+ p-73) (6.164)

can be intersected with two CSTA GIPNS 1-vector hyperplanes

Ec, = ns+(pum-ns)es, (6.165)
ECQ = Y + (pM ' 70)e00'y (6166)
to obtain a circle with radius rg centered at ps in the spatial plane through py, with
direction bivector Ng=n}% = —ngIgl.

The CSTA GIPNS 3-vector circle entity Ce centered at py with radius o at time p,,

in the plane of bivector Ng=n%= —ngsI3s' dual to normal vector ngs can be formed as
C, = eNEe, N Eg, (6167)
= ScNEg, (6.168)

Without setting the time w = p,, by intersecting E,, the circle changes radius with time
as the CSTA GIPNS 2-vector hyperboloid (pseudosphere) Sc =3¢ N Ee¢, (§6.4.8).

The CSTA GIPNS 3-vector circle C¢ can also be represented as the intersection of
the CSTA GIPNS 1-vector hyperpseudosphere 3¢ and CSTA GIPNS 2-vector plane Il¢ as

Ce = YeNIIe (6.169)

where the hyperpseudosphere X¢ is the same as above and sets the center p( and radius
ro, and the plane Il with spatial direction bivector Ng through point pa, is

e = DM~ (py- D*"M) Aey, (6.170)
= NM— (pm-N¥Y New, (6.171)
= FE¢ NEg,. (6.172)

The CSTA GIPNS 3-vector circle C¢ is equal to the CSTA undual of the dual CSTA
GOPNS 3-vector circle C¢

CC ~ CéIC (6173)

up to a homogeneous scalar factor.

A CSTA GIPNS 3-vector circle C¢ can also be formed as the intersection of a CSTA
GIPNS 1-vector imaginary hyperpseudosphere Ec or CSTA GIPNS 1-vector hypercone K¢
and CSTA GIPNS 2-vector spatial plane Il as

Ce. = BN, (6.174)
= K:NIIe. (6.175)



114 SECTION 6

6.4.13 CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle)

The circle Ce with radius r¢ centered at pas= p,Yo+ Ps in spatial plane Ng=n} is formed
by intersecting the plane Il of Ng through p with the hyperpseudosphere ¥¢ of radius
ro at pag. Similarly, the pseudocircle Ce with central radius rq centered at py = puYo+ Ps
in MINKOWSKI spacetime plane D (= ~ds is formed by intersecting the plane I1¢ of Dy,
through pa with the hyperpseudosphere ¢ of radius ry at prs. The hyperbola opens
up and down the spatial vector axis dg for a hyperpseudosphere 3¢, and it opens up and
down the time axis 7, for an imaginary hyperpseudosphere Zc.

The CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) Ce can be defined as

C. = YXNI1, (6176)

where the hyperpseudosphere ¥ sets the central position Pe=C(p) and initial radius
ro as

Ec = Pc—|—%7'()eoo,y (6177)

and the plane Il sets the MINKOWSKI spacetime plane D = ~yds of spatial unit direction
vector ds and time direction v, as

I, = DM~ (py- DM)Aes, (6.178)

The hyperbola can be visualized as a point pair on the spatial line dgs, centered on pg, and
separated by an initial distance 2r = 2r¢ at time w = p,,. As time w changes away from

the initial time p,, the radius r increases to r = /78 + (w — p,)*. The CSTA GIPNS 4-

vector spacetime point pair can be obtained as
2 = ScN E¢ (6.179)
where E¢ is the xyz-space hyperplane
Ec = v+ wesy (6.180)

at the time w for the point pair with radius r around ps on the line direction ds. The
hyperplane sets the time w component of the points in the spacetime point pair. The
points appear to move apart spatially with time away from p,,.

A CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) Ce can also be formed
as the intersection of a CSTA GIPNS 1-vector imaginary hyperpseudosphere Ec or CSTA
GIPNS 1-vector hypercone K¢ and CSTA GIPNS 2-vector spacetime plane Il as

Ce = EcNIIe (6.181)
= K:NII; (6.182)

which open up and down the time w-axis.
6.4.14 CSTA GIPNS 4-vector point pair
The CSTA GIPNS 4-vector point pair 2¢ is

20 = —P, - P, (6.183)
= —Pp, - (P JI;Y)=Pe, - (PeJe)= (P, A Pp)Ie (6.184)
= 21, (6.185)
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which is exactly the CSTA undual of the dual CSTA GOPNS 2-vector point pair 2¢.

If the two points are relatively lightlike, then the point pair is actually the CSTA
GIPNS null 4-vector light-line (null line) Lc that is exactly undual to the dual CSTA
GOPNS null 2-vector light-line (null line) L& (§6.5.4). The point pair 2¢ of two not
relatively lightlike points is non-null.

If one of the two points is e, then the point pair is actually the CSTA GIPNS 4-
vector flat point P that is exactly undual to the dual CSTA GOPNS 2-vector flat point
P¢ (§6.5.5). A flat point is non-null.

6.4.15 CSTA GIPNS null 4-vector light-line (null line)

The CSTA GIPNS null 4-vector null line (light-line) L¢ is exactly the undual Lo = LEIe
of the dual CSTA GOPNS null 2-vector null line (light-line) L& (§6.5.4).
The CSTA GIPNS null 4-vector light-line (null line) L is

Le = —P;,- P, (6.186)
= —P, - (P IZY) =P, - (P Jo)= (P, APl (6.187)
= Ll (6.188)

where Pz, = C(pum;) = C(puYo + Ps;) denotes points that are relatively lightlike in
spacetime positions. The two relatively lightlike points P, and P, are on a light-line
in spacetime having equal changes in time components |p,, — puw,| t0 space components

Hp31 _p32H7

AP = pudl (6.189)
||p31_p32||
O|IPs, — P&, |l = Ot pu, — Punl = ¢ (6.190)

Light speed c is required to travel between the two points, or any two points on a light-
line, in spacetime. The vector pa(, — P, is @ null vector in spacetime, and any two points
in spacetime with a null difference vector are relatively lightlike.

A null 4-vector light-line L¢ can be converted into a non-null 3-vector line L¢ as

L, = ([,E/\GOO,Y)IC:LEI@ (6.191)

6.4.16 CSTA GIPNS 4-vector flat point
The CSTA GIPNS 4-vector flat point Pe is

IPC = —Pc~e2§m (6192)
= —Pr (e, Ig!) = Pe (esIc) = (Pe New,)]e (6.193)
= Pl (6.194)

which is exactly the undual of the dual CSTA GOPNS 2-vector flat point P¢.

A flat spatial point Pc=C(ps) A €x~ at w =0 can be represented as the intersection
of a CSTA GIPNS 2-vector plane Il and CSTA GIPNS 3-vector line L¢ that are in the
common zyz-space hyperplane at any times in spacetime as

Pe = oA (70 He) A (0 Le) (6.195)
— P, (6.196)
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where the common hyperplane of xyz-space E¢ = 7y is contracted out of the plane and
line before they are intersected, and then =, is intersected back into the result. The time
components of the plane and line do not affect the result, which is spatial intersection
at w=0. The flat spatial point P¢ can exactly match the undual P¢I.. The flat spatial
point represents the point Pr of intersection on the plane where the line passes through,
and it also represents e,, where the plane and line also intersect. A flat spacetime point
as intersections may also be possible but is not considered here.

6.4.17 CSTA GIPNS 5-vector point
The CSTA null 1-vector point embedding Pc=C(pa) is the
e CSTA GIPNS null 1-vector hypercone Pp centered at pay

e (CSTA GOPNS null 1-vector point P representing the point p.
Therefore, the CSTA GIPNS null 5-vector point PZ is the undual

Pr = Pl (6.197)

which also introduces a notation for the undual operation. The undual notation has been
omitted on other undual entities. For the 5-vector point, the undual notation avoids a
notational conflict since Pe is the dual, not P¢.

For STA vectors, the undual is

Y5 = Yolm=71773 (

Y= ylv=Y0727s (6.199

¥ = Yelm=vvm (

v5 = Yslv =Yo7 (
which is consistent, in this case, with Hodge dual that is denoted xA in other literature.

The CSTA GIPNS null 5-vector point P can also be represented as the intersection
of a hypercone P; with the four hyperplanes E¢, through the hypercone vertex p as

Pr = P:NE¢, NEcg,N\Ec, N\ Eg, (6.202)
where
Pe = C(prm) =C(purvo+ pay1+ Py¥e + py3) (6.203)
Ee, = Yo+ Pu€ooy (6.204)
Ec, = =7+ pr€ooy (6.205)
EC3 = —72+ Py€oory (6206)
EC4 = —73 + pzeoow- (6207)

Each hyperplane fixes one coordinate to hold a value.

6.5 CSTA GOPNS entities

In G4 CSTA, five or less points can be wedged into CSTA GOPNS entities, allowing a
greater variety of entities than in G, ; CGA, which uses four or less points. The CSTA 6-
vector unit pseudoscalar and the CGA 5-vector unit pseudoscalar are dualization oper-

ators that can also be interpreted as GOPNS entities that represent the whole 4-D
spacetime in CSTA or the whole 3-D space CGA.
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The familiar flat and round GOPNS entities of G4 ; CGA have a similar representation
in G, 4 CSTA as the wedge four or less points that are the embeddings of spatial points
Pc = C(ps). These flat and round CGA-like entities are at w = ¢t = 0 in spacetime
unless translated to time w # 0, and can be constructed as the intersections of CSTA
GIPNS flat and hyperbolic entities with the CSTA GIPNS hyperplane ~y + we, for
time w. These CGA-like entities are the entities of the G; 4 Conformal Space Algebra
(CSA) that is without time components. G; 4 CSA is similar to G4 1 CGA, except that
there are differences in the signs of some similar CGA expressions. For example, the
distance between two G; 4 CSA points is d = /2P¢s, - Pcs,, while in G4; CGA it is
d=+/—2P¢,-Pc,. As a subalgebra of CSTA, the CSA versors are the CSTA versors for
spatial operations, which excludes the spacetime boost versors. The dilator operation,
or successive inversions in two concentric spheres for a dilation by factor r3 /ri, can
1sotropically dilate CSA entities in space and time. The translator operation, or successive
reflections in parallel spacetime planes, can translate CSA entities in space and time. The
rotor operation, or successive reflections in non-parallel spatial planes, can rotate CSA
entities in space, leaving the time unaffected.

The GOPNS entities are called dual to the undual GIPNS entities, but this naming
is quite often reversed in other literature. This naming is chosen to be consistent with
DCSTA entities, where the DCSTA GIPNS entities are unduals and the DCSTA GOPNS
entities are duals.

6.5.1 Geometric outer product null space (GOPNS)

Geometric outer product null space (GOPNS) entities are introduced by PERWASS in [20],
and are reviewed by this author in [7] and [9].

The Gy 4 CSTA unit pseudoscalar Ic is grade 6, and it can be interpreted to be a
GOPNS 6-vector entity that represents the entire 4D spacetime. Otherwise, the CSTA
GOPNS surface entities are formed as the wedge of five or less CSTA GOPNS null 1-
vector points A P, (§6.5.2) on the surface that span the surface. In G, ; CGA, the CGA
GOPNS entities are formed as the wedge of four or less points. Compared to CGA, CSTA
has a larger set of GOPNS entities.

The subset of G, 4 CSTA GOPNS entities that are similar to G, ;1 CGA GOPNS entities
are the G; 4 CSA GOPNS entities, which are defined as the wedge of four or less CSTA
spatial points Pe, = C(ps;), or Gi4 CSA null 1-vector points Pcs, = C(ps,), that are on
the surface and that also span the surface of the entity. The CSA GOPNS entities are
constructed as wedges of spatial points by the same forms as in G4 CGA. The spatial
CSA entities are located at time w=ct =0 in the CSTA spacetime, but can be translated
(§6.6.4) to exist at any time w = ¢t = p,,. The G; 4 CSA entities and G4 1 CGA entities
represent the same surfaces, but there are some sign changes. For example, the distance
d between two spatial points P¢s, and Pes, is now

d = /2Pc¢s, - Pes, (6.208)
while in ordinary G4 CGA, d=./—2P¢, - Pe,.

6.5.2 CSTA GOPNS 1-vector point

As a GOPNS entity, the CSTA null 1-vector point embedding Pe = C(pa) represents
the point of the embedded STA position py. The GOPNS test

TeAP: = 0 (6.209)
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holds good if and only if (iff)

As a GIPNS entity, a point P represents a null hypercone (§6.4.2) in spacetime. The
GIPNS test

T.-P, = 0 (6.211)

holds good for any point T¢ on the hypercone with vertex Pe. A point T¢ on the hypercone
is a point that is located at a lightlike (null vector) displacement from the vertex Pe. The
hypercone is a sphere in space, centered at P, with time-varying radius r = w — p, =
ct — Py

A CSTA null 1-vector point embedding Pe=C(ppq) represents

null hypercone centered at vertex ppy : o is -

212
null point at pay. : 0is A (6 )

TCoPC = {

6.5.3 CSTA GOPNS 2-vector point pair

The CSTA GOPNS 2-vector point pair 2¢ is the wedge of two finite CSTA points that
are not relatively lightlike (i.e., (Pam,— Pm,)? #0)

2t = P, AP, (6.213)
= 2cI;° (6.214)

and is the CSTA dual of the CSTA GIPNS 4-vector point pair 2¢. Two points are relatively
lightlike if they are separated by a null vector displacement. The GOPNS test

Te -2t = 0 (6.215)

holds good for the point pair 2¢ of two finite points that are not relatively lightlike if and
only if (iff)

T: € {PCNPCQ}- (6.216)

A valid point pair 2¢ represents the two distinct points as a single entity.
The point pair decomposition [4]

A~

2¢ + V 2¢ 2 * X * %) —
Pe, = C—<C):(2C:F\/2C'2C)(_eoo’y'2C) ! (6.217)

—€50ry 20

gives the two normalized (unit scale) finite points P. . and P of the point pair 2¢.

A light-line (null line) L& = Pr, A Pr, (§6.5.4) is the wedge of two relatively lightlike
points P, and represents the line of the two points, excluding e«. A flat point Pz = Pe A
€~ (§6.5.5) is the wedge of one finite point Pr and the point at infinity .

6.5.4 CSTA GOPNS 2-vector light-line (null line)
An STA null lightlike position vector I relative to the origin has the form

Ly = Ct(’70+ﬁ3):w(’70+ﬁ3)zctn/\4. (6.218)
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It can be verified that a vector of the form of n =~y + hs is a null vector n3,=0, where
Nng is any spatial unit direction vector. A lightlike position relative to an STA position
vector pag is

Pr = Pm+lnm (6.219)
Let any three collinear positions p., and their CSTA point embeddings P, be

PEIIC([)EI) = C(pM+w1nM):C(pM+ct1nM) (6.220)
Pr,=C(ps,) = C(pm+wimm)=C(pm+ ctanu) (6.221)
Py, =C(pry) = C(pm+wsnpy) =C(pm+ ctsnp). (6.222)

These three points, called relatively lightlike points, are along a light-line in the null
direction n g on a light-cone with vertex paq. Two points, p,, and p.,, are relatively
lightlike if their difference vector Iy = c(ts — t1)na = Pr, — Pr, is a null vector nk, = 0.
It can be verified that for any three collinear relatively lightlike points

Py ANPp,NPr, = 0. (6.223)

Therefore, the light-line L in the direction of n 4 through the point p, is characterized
by the wedge of any two points on the light-line. The point at infinity e, is not a point
on a light-line that is represented like a point pair.

The CSTA GOPNS null 2-vector light-line L¢ is the wedge of any two relatively light-
like points on the light-line

L: = P, AP, (6.224)
~ Lelg? (6.225)

and is the CSTA dual of the CSTA null 4-vector light-line L¢ up to a homogeneous scalar
factor.

The light-line £ does not include the point at infinity e,.,. A light-line exists only in
spacetime. In general, the two points of L are along a light-line, which is a line through
spacetime with slope m = =1 of time to space distance on a light-cone. A light-line is also
called a null line since

(L£E)? = 0. (6.226)
For any two coplanar light-lines L&, and Lg,, the lines share a light-cone vertex p and
LoENLE, = 0 (6.227)

which is a result that holds in general for all coplanar lines.
A light-line L¢ is a special type of line that requires only two points to define the line.
A light-line is also called a lightlike line. Other lines in spacetime are timelike or spacelike
lines and require the wedge of three collinear points to define them as GOPNS entities.
The CSTA GOPNS 3-vector line Lg (§6.5.6) always includes e on the line. A light-
line £ can be extended to include e, as a null 3-vector line Lg. A lightlike line L is
converted into a CSTA GOPNS null 3-vector line L{ as

Ly = LiAes, (6.228)

See also, the CSTA GIPNS null 1-vector light-line (null line) (§6.4.4), which also includes
€.~ on the null line.
The two points of a lightlike line £¢ cannot be decomposed from the line entity.
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6.5.5 CSTA GOPNS 2-vector flat point

A CSTA flat point P¢ is the wedge of a finite CSTA point Pr and the CSTA point at
INfinity €soy

Pt = PeAeoory=C(Pm) N €cory (6.229)
~ Pelg! (6.230)

and equals the CSTA dual of the CSTA 4-vector flat point IP¢ up to a homogeneous scalar
factor.

As introduced in [4] in the context of G4 CGA, a flat point is the intersection point
of a plane and line in space. However, a plane and line both also include the point at
infinity. Therefore, a flat point represents the two points where a line and plane intersect
in space. In Gy 4 CSTA, a line and plane are in spacetime and may intersect at a spacetime
flat point. The CSTA GIPNS 2-vector plane Il¢ is the intersection of two hyperplanes

. = Ec, AEg, (6.231)
and the CSTA GIPNS 3-vector line L¢ is the intersection of three hyperplanes
Le = E¢, N E¢, N Eg.. (6.232)

In CGA, the intersection of a line and plane is simply L ATI, but this form cannot work as
simply in CSTA. There can be zero, one, or two hyperplanes that are the same in the line
and plane. If zero are the same, then ITc A Le # 0 and the intersection is ITe A Lo~ €.,
(§6.4.17). If two are the same, then Le = Il A E¢ and the intersection is L¢. If one
hyperplane is the same, then the intersection is a finite spacetime point Pr and e, which
are represented as a CSTA GOPNS 2-vector flat point Pt = P¢ A\ €. In all three cases,
a line and plane intersect at e...
Assume, for now, that there is only one common hyperplane

EC:EC1:EC3 = ’I’LM—f—(pM"I’LM)GOO7. (6233)

We expect to obtain a CSTA GIPNS 4-vector flat point Pe as the intersection of the
CSTA GIPNS 3-vector line Le and CSTA GIPNS 2-vector plane Ilq. If we contract Ee
into the line or the plane and then wedge them, then we get the 4-vector flat point. The
pseudoscalar of the spacetime projections of Il and L is I, which can be used to project
their directional blades. The conjugate normal vector nj\,( of the common hyperplane E¢
is given by the spacetime meet product V4 of the plane and line as

nl, = (IIeVa Le)f (6.234)

= (((Tle-Tag) A (Le - Tap)) - v vo- (6.235)

The conjugate normal vector nj\,t can be used to contract E¢ in either the plane or line,
which then allows intersections of the plane and line to be formed as the two flat points

Pe, = (nl,-TIc) A Le (6.236)
Pe, = TIeA(nl,- Le). (6.237)

For one common hyperplane E¢, as assumed, then P¢, = +P¢,. Now, if two hyperplanes
are common in the plane and line, then the spacetime meet produces zero and the flat
points are zero. These results allow the following definition for the intersection ITe N L¢
of a line and plane.
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The CSTA GIPNS intersection Il N Le of a CSTA GIPNS 2-vector plane Tl and
CSTA GIPNS 3-vector line Lc can be defined as

Hc/\chec*,w . Hc/\Lc#O
HcmLc: IPC1::|:IPCQ : Hc/\LCIO,HC VM Lcﬁéo (6238)
Lc : Hc/\LCIO,Hc\/MLc:O.

The intersection is valid for any null or non-null 3-vector line L¢ and any spacetime plane
IT..
The point P of a flat point Pz =PIz ! is projected [4] as

) (
p :C 1 P = " = * . eO
M=) = N e Pe (emAem) PE

6.5.6 CSTA GOPNS 3-vector line
The CSTA GOPNS line L¢ is similar to the CGA GOPNS line L* discussed in [7]. In

general, any line in spacetime can be represented as the wedge of three well-chosen points
on the line. A CSTA GOPNS 2-vector lightlike line L& (§6.5.4) is represented by the wedge
of just two points but it does not include the point at infinity e, on the line.

A CSTA GOPNS null 3-vector lightlike line L¢ is the wedge of any two relatively
lightlike points P, on the line and the CSTA point at infinity e,

Lz’ = PLI/\PEQ/\eow:EZ}/\eOOW. (6240)

A CSTA GOPNS non-null 3-vector timelike or spacelike line L§ can be the wedge of
any two points Pe, on the line and the CSTA point at infinity e~ or the wedge of any
three collinear points Pe, on the line

— ey, (6.239)

LZ’ = PCl/\PCg/\eoow (6241)
~ Pe, NP, \ P, (6.242)
~ Lcl;? (6.243)

and is equal to the CSTA dual of the CSTA GIPNS 3-vector line L¢ (§6.4.11) up to a
homogeneous scalar factor.
The 3-vector line entity can be used to represent an observable (§6.4.11).

6.5.7 CSTA GOPNS 3-vector spatial circle

The system of implicit surface equations for a spatial circle with radius ry centered at
(Pz, Dy, P-) In the zy-plane at z=p, is

(r=p)?+(y—py)* =18 = 0 (6.244)
z—p, = 0 (6.245)
w—p, = 0. (6.246)

The CSTA spatial circle entity Ce represents a system of implicit surface equations of this
form for the intersection of a circular cylinder and plane. The center position of the circle

PM = PuwYo+ DaY1+ DyYo+ PY3 (6247)

includes a time component p,yo that indicates when the circle exists.

The CSTA GOPNS spatial circle C¢ is similar to the CGA GOPNS circle C* discussed
in [7] and is the wedge of any three points on the circle in space at the same time. Three
points are always coplanar cocircular points. Three collinear points are on a circle of
infinite radius, which is a line.
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The CSTA GOPNS 3-vector spatial circle C¢ is the wedge of any three CSTA points
P, =C(puYo+Ps;) at the same time p,, on the circle

C; = FPe, A\ Pe, \ Pe, (6.248)

~ Cel;? (6.249)

and is the CSTA dual of the CSTA GIPNS 3-vector spatial circle Ce up to a homogeneous
scalar factor.

The wedge of three points that are not all at the same time may produce a spacetime
hyperbola (§6.5.8). The circle is produced for three points at the same time.

6.5.8 CSTA GOPNS 3-vector spacetime hyperbola (pseudocircle)

The system of implicit surface equations for a spacetime circular hyperbola in the xw-
plane centered at (py, pz, Py, P2), With central radius r, opening up and down the w-axis is

(@ —pa)® +7° = (w=pu)* = 0 (6.250)
y—py = 0 (6.251)
z—p, = 0. (6.252)

The spacetime circular hyperbola can also be called a pseudocircle. The CSTA pseudo-
circle entity represents a system of implicit surface equations of this form. This hyperbola
is not general, but circular. To get the expected shape, the points have to be chosen
carefully. At z=p,, w=p,+r. At w=p,+V2r, x=p,+r. The axes may be transposed.
Spatial rotations, spacetime translations, and spacetime isotropic dilations permit the
pseudocircle to be in any MINKOWSKI space-time plane, at any spacetime center point,
and with any central radius. The hyperbola is generally a conic section of a related
circular hyperboloid (§6.5.10) cut through a spacetime plane and has lightlike asymptotes.
By cutting the related hyperboloid in different spacetime planes, it is possible to get
hyperbolas that open up and down the time or space axis. The hyperboloids are w-axis
(time-axis) aligned with circles in the xy-planes.

The CSTA GOPNS 3-vector spacetime circular hyperbola C¢ is the wedge of any three
non-collinear CSTA spacetime points Pe,=C(pay,) on the spacetime circular hyperbola

C: = Pe, NP, N\ P, (6253)
~ Ccl;? (6.254)

and is the CSTA dual of the CSTA GIPNS 3-vector spacetime hyperbola Ce up to a
homogeneous scalar factor. Similar to a circle, the point at infinity e is not a point on
the pseudocircle.

The spacetime hyperbola C¢ becomes a light-line pair of a light-cone when the three
non-collinear points are relatively lightlike points P, (§6.5.4). The points are relatively
lightlike when any two points are relatively lightlike, forming one of the light-lines. The
perpendicular line through the third point is the other light-line. The light-cone vertex is
the point of intersection of the two light-lines, which could be one of the points.

In general, the wedge of three non-collinear CSTA spatial points Pe,=C(ps,) produces
a spatial circle (§6.5.7) at w=ct=0.

6.5.9 CSTA GOPNS 4-vector spatial sphere

The CSTA GOPNS spatial sphere S¢ is similar to the CGA GOPNS sphere S* discussed
in [7].
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The CSTA GOPNS 4-vector spatial sphere S¢ is the wedge of four CSTA spatial points
P, =C(ps;) on the sphere surface that span the sphere

St = Pe, AN Pe, N\ Pe, \ Py, (6255)
~ ScI;! (6.256)

and is the CSTA dual of the CSTA GIPNS 2-vector spatial sphere Sc up to a homogeneous
scalar factor. To span the sphere, the points cannot be all coplanar. The spatial sphere S¢
holds w=ct=0 and is a sphere in space that exists at time ¢ =0, but it can be translated
to any time w = p,, (or to any spacetime position) using the CSTA translator (§6.6.4).

6.5.10 CSTA GOPNS 4-vector spacetime hyperboloid (pseudosphere)

The implicit quadric surface equation of a spacetime circular hyperboloid of one sheet with
circular sections in the zy-plane and central radius r is

(w—pu)?+r?—(z—p)* = (y—py) = 0. (6.257)

The spacetime circular hyperboloid can also be called a pseudosphere. Spatial rotations,
spacetime translations, and spacetime isotropic dilations permit the pseudosphere to be
in any spatial plane, at any spacetime center point, and with any central radius.

The CSTA GOPNS 4-vector spacetime circular hyperboloid of one sheet (pseudos-
phere) S¢ is the wedge of four CSTA spacetime points Pe, = C(pu,) on the surface that
span the surface

S¢ = Pe, /\Pcz/\PCS/\IDC4 (6258)
~ L& ALE, (6.259)
~ Scl! (6.260)

and is the CSTA dual of the CSTA GIPNS 2-vector spacetime circular hyperboloid of one
sheet Sc up to a homogeneous scalar factor. Similar to a sphere, the point at infinity e.,
is not a point on the pseudosphere. Two non-coplanar light-lines £, and L{, can span a
pseudosphere as asymptotes that are tangent to the hyperboloid.

The pseudosphere S¢ becomes a light-cone, also called a null cone, when the four
points are relatively lightlike points P,,. The points are relatively lightlike when any three
points are relatively lightlike to the fourth point, which is the vertex center point of the
light-cone. The wedge of the light-cone vertex and another point is a light-line £§, and
the light-cone is spanned by three light-lines sharing the vertex.

In general, the wedge of four non-coplanar CSTA spatial points Pe,=C(ps,) produces
a spatial sphere that holds w=ct=0.

It is also possible to produce the CSTA GOPNS 4-vector spacetime hyperboloid of two
sheets (imaginary pseudosphere) as the wedge of four well-chosen points that span the
surface.

6.5.11 CSTA GOPNS 4-vector plane
The CSTA GOPNS plane IT¢ is similar to the CGA GOPNS plane IT* discussed in [7]. In

CGA, a plane IT* is the wedge of any four coplanar non-collinear non-cocircular points
on the plane. The four well-chosen points that define a plane in CGA are nearly the same
for IIg, but light-lines £¢ (§6.5.4) introduce an additional constraint on the choice of the
four coplanar points in spacetime.
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Three non-collinear finite points Pp, are co(pseudo)circular and define a finite
(pseudo)circle Cg. The fourth point can be the point at infinity e, or some other
coplanar non-co(pseudo)circular finite point Pp,.

Three collinear, not relatively lightlike, finite points Fp, define a line L§. The fourth
point cannot be the point at infinity e, since it is collinear. The fourth point can be
some other non-collinear finite point Pp,.

Two relatively lightlike finite points P, define a light-line £¢. The other two points can
be e, and a coplanar non-collinear finite point Pp,. The other two points can also be not
relatively lightlike finite points Pe, and P, that are coplanar non-collinear points to L.

The CSTA GOPNS 4-vector plane II¢ is the wedge of four well-chosen points Pg, on
the plane in space or spacetime

Iy = P, ANPe,NPe,ANPe,=Ce NP, (
~ Pe, A Pe, NPy Neooy=Cc A ey (
~ L{A P, (6.263
~ LENesy A Pe, (
~ LENPe, NP, (
~ TI:I;! (6.266

and is the CSTA dual of the CSTA GIPNS 2-vector plane Il (§6.4.10) up to a homoge-
neous scalar factor. The four points must be well-chosen as explained above.

The entity IT¢ is a plane in space that holds w = ¢t =0 when its points Pe, = C(ps,)
are the embeddings of spatial points ps, in 3D SA space. In the general case of points
Py, = C(pnr,) in spacetime, the entity II§ is a plane in spacetime. The plane entity is
generally valid in both space and spacetime.

As explained in §6.4.10, the rotor R, translator T¢, and boost Be can be defined as
reflections in planes. Reflections in either the GIPNS plane Il or GOPNS plane II¢
are both valid on all entities. The dilator D¢ (§6.6.6) can be defined as inversions in
hyperpseudospheres (§6.4.5).

6.5.12 CSTA GOPNS 5-vector hyperhyperboloid

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet (hyper-
pseudosphere) is

76+ (w—puw)® — (@ —pe)? = (y—py)° = (2=pa)* = 0 (6.267)
where rg is the initial radius of the expanding sphere in space with time-varying radius
ro= o+ (w—pw)? =18+ (ct — pu)? (6.268)

and center position

PMm = DuwYo+ DaY1+ PyYe+ DY3 (6.269)

in spacetime.

The hyperhyperboloid can be spanned by five surface points that do not form entities
for any (pseudo)sphere, plane, line, or (pseudo)circle. Planes and lines are avoided by
excluding the point at infinity. Spheres and circles are avoided by using only one or
two points in any circle on the surface. The choice of points is otherwise arbitrary. For
example, using an arbitrary scalar [ # 0, three values of time

w € {pw+!,pw+2l,p,—3l} (6.270)
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and corresponding values of radius

roe {\/r§+z2, V4L, W3+9z2} (6.271)

can be chosen. Then, use at most two surface points per value of w. The hyperhyperboloid,
a sphere that expands with time, has the five surface points that span the surface

FPe, = C(pM+l70+ r8+l271> (6.272)
FPe, = C(?M-i—?l’)/o— r8+4l272> (6.273)
Fe, = C<pM+QZ’Yo— r8+45273> (6.274)
P, — C(pM—3l'70+ 7’%4—9[2'71) (6.275)
Pe. = C(pM—3l'70+ r§+9z272). (6.276)

These points are just an example of five well-chosen points on the surface that span the
surface, and other points could be chosen.

The CSTA GOPNS 5-vector hyperhyperboloid of one sheet (hyperpseudosphere) 3¢ is
the wedge of five CSTA points P, on the surface that span the surface

Y6 = Pe,ANPe,ANPe, AP, AP, (6.277)
~ YIz! (6.278)

and is the CSTA dual of the CSTA GIPNS 1-vector hyperhyperboloid ¥ up to a homo-
geneous scalar factor.

The hyperhyperboloid with rg = 0 degenerates into the CSTA GOPNS null 5-vector
hypercone P¢ = X(pam,ro=0). The CSTA GIPNS null 1-vector hypercone Pr = K¢ at
Pam is the point embedding Pe = C(pa). The undual PF = Pele = Pilcle = — P¢ is the
CSTA GIPNS null 5-vector point Pg.

It is also possible to produce the CSTA GOPNS 5-vector hyperhyperboloid of two sheets
(imaginary hyperpseudosphere) B¢ as the wedge of five well-chosen points that span the
surface.

6.5.13 CSTA GOPNS 5-vector hyperplane

A hyperplane is a subspace of dimension (n — 1) in a space of dimension n. In 4D space-
time, a hyperplane is a 3D subspace at a fixed coordinate along a fourth perpendicular
axis. Intersecting with a hyperplane serves to set or fix one coordinate. The signature of
the hyperplane space can be (2,1) or (3,0).

The wedge of three non-collinear CSTA points Pe,=C(pp,) spans a spatial circle or
spacetime pseudocircle C¢. Adding the CSTA point at infinity e, then the four CSTA
points span a spatial plane or spacetime plane IT¢. Adding a fifth CSTA point that is non-
coplanar to the other four points, then the five points span a 3D space. The wedge of five
well-chosen CSTA points is the CSTA GOPNS 5-vector hyperplane Ej that represents a
3D subspace of the 4D spacetime.

The CSTA GOPNS 5-vector hyperplane E{ is the wedge the CSTA point at infinity
€ and four CSTA points P, on the surface that span the hyperplane

E; = PC1/\PC2/\PC3/\PC4/\eOO’y (6279)
= E/I;! (6.280)
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and is the CSTA dual of the CSTA GIPNS 1-vector hyperplane E. (§6.4.3) up to a
homogeneous scalar factor.

6.6 CSTA operations
6.6.1 CSTA dualization
The CSTA dual A of a CSTA multivector Ae is

AX = Acd'= Aclg. (6.281)
The CSTA undual Ac of a CSTA multivector A is

Ae = A= Al 1. (6.282)
The CSTA unit pseudoscalar 1o (§6.1) is

Ic = ~oviy2y3ere_ (6.283)
It = —I.=1Ig. (6.284)

6.6.2 CSTA spatial projection
The Gy 4 CSA1 spatial projection Acs: of a Gy 4 CSTAL multivector Ac: is
Acst = (Aer-Tes)Ize (6.285)
where the G 4 Conformal Space Algebra 1 (CSA1) unit pseudoscalar Ics: is
Icsi = e -Ipi=1Isieses. (6.286)
The G 4 CSA2 spatial projection Acs: of a Go 4 CSTA2 multivector Aee is
Acs: = (Acz-Tes2)Igae (6.287)
where the G; 4 Conformal Space Algebra 2 (CSA2) unit pseudoscalar Icsz is
Ics: = e7-Ipz=1g2eq1€10. (6.288)

The spatial projections Acs drop the time components of Ae, and may be useful for

extracting geometrical results in space.

6.6.3 CSTA spatial rotor

The spatial rotor R is the same in Gy 3 SA' S, G13 STA M, G, 4 CSACS, and Gy 4 CSTA C.
The CSTA 2-versor spatial rotor Re is equal to the SA rotor Rs

R=Rs=Ry—= Res= Re = e2 (6.289)
= cos(%@) + sin<%9>ﬁSI§ (6.290)

where the SA unit vector ng is the axis of rotation, and 6 is the angle of rotation around
the axis by the right-hand rule on a system of right-handed axes. The rotor operation

RcAcRE on any CSTA entity Ac spatially rotates the entity in the usual way in space,
leaving any time component unchanged.
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The CSTA rotor operation that spatially rotates any CSTA entity Ac by angle 6
around SA axis ng is defined as

Al = RCACRE. (6.291)
The rotor R can be defined as
R = Il I, (6.292)

which is the successive reflections in two non-parallel spatial CSTA GIPNS planes
(§6.4.10) that intersect in the rotation axis ngs through the origin. The angle of rota-
tion # is twice the angle subtended by the two planes. More generally, the two spatial
planes can intersect in an arbitrary spatial CSA GIPNS 2-vector line

Les = —v- Le (6.293)
= (=70 Ie,) A (=70 - Icy) (6.294)
= Tes, Allgs, (6.295)

as the rotation axis (§6.6.5).
As a 2-versor, the rotor R can also be defined as

R = EgFEc, (6.296)

which is the successive reflections in two non-parallel CSTA GIPNS 1-vector hyperplanes
(§6.4.3). The rotation is by twice the angle subtended by the two spatial hyperplane
normal vectors, from ng, toward ngs,. The right-handed rotation axis is the SA undual
n=—(ngs,Ang, )Is. If the two hyperplanes are both centered on pg, then the rotation axis
is the line through pg in the direction of n.

6.6.4 CSTA translator

The CSTA 2-versor translator Te, adapted from the CGA translator, is defined as
1
Tp = ¢ 2% (6.297)
_ - %dM A€ (6.298)

The translation vector dq is an STA spacetime displacement vector. Translations through
space and of time are possible.

The CSTA translator operation that translates CSTA entity A¢ in spacetime by STA
spacetime displacement d 4 is the two-sided versor “sandwich” operation

AL = TeACE. (6.299)
The translator T; can be defined as
T = E¢Ec, (6.300)

which is the successive reflections in two parallel CSTA GIPNS 1-vector hyperplanes
(§6.4.3). The translation is by twice the spacetime displacement between the two hyper-
planes. As a proof, assume that the translation direction m is unit modulus

R dm dm 2
n=n = = , for d 0, 6.301
T MF (6.301)
n? = 1, (6.302)

n! = n, (6.303)
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and that p; is a point on hyperplane E¢,, and ps is a point on E¢, (n.b., |da| € C). Then,

Ec,Ec, = (n+(p2-n)es,)(n+ (p1-n)ex) (6.304)
= n’+(p1-n)new, — (P2 n)ne, (6.305)
= n’—((p2—p1) - n)nex, (6.306)
= n72(n’— ((p2— p1) - n)new.) (6.307)
= 1—((p2—p1) - n)n"'ew, (6.308)
= 1= (Pu(p2) — Pn(p1))eccy (6.309)
= 1—dmNex,. (6.310)

The translator (RHS Eq. 6.310) is also valid for a null translation vector d34 = 0, even
though the computation of its unit direction m = n is invalid. The translator does not
depend on n when dq is a given, rather than computed by the projections P,. Equation
6.306 degenerates to 0 when (n = da)? = 0, and the theory of reflections in parallel
hyperplanes fails for translation in null spaces. The translator extends the theory of
reflections in parallel hyperplanes for translation in non-null and null spaces.

Similar to reflections in two hyperplanes, the translator 7 can also be defined as
Te = I I, (6.311)

which is the successive reflections in two parallel CSTA GIPNS 2-vector planes (§6.4.10)
that are separated by %d M, half the spacetime displacement dn, of the translator. The
translation is by twice the spacetime displacement between the planes. The orientation
of the displacement dp, is from Il¢, toward Ile,. As a proof, consider two planes having
the same unit directional 2-blade
- — D _ D 2
D=D = Nl for D*+0, (6.312)

for parallel planes passing through two different points p; and py (n.b., |D| € C). Then,

— ((p2— p1)- DM)(D*M) e,
= 1— ((Pp-m(p2) — Pp-m(p1))€sor
= 11— dM A\ eooy.

M I, = (DM~ (py- D'M)ew,)(D*M — (p1- D*M)e,.) (6.313)
= (D*M)?— D*M(p,- D*M)e, — (p2- D*"")ey, DM (6.314)

= (D*™M)*+ (p1- D*M)D*Mesr — (p2- D) D*Mee, (6.315)

= (D)= ((p2—p1) - D) DMe, (6.316)

= (D) 2((D*M)? = ((p2— p1) - D*M) D*Mew) (6.317)

1 (6.318)

(6.319)

(6.320)

This result is the translator, which is valid for any given spacetime displacement d 4, but
the theory of reflections in planes fails when D? =0 for translation in a null space. The
translator extends the reflections theory for translations in non-null and null spaces.

Since the scale of hyperplane E. and plane Il entities does not affect the surface
representation, it is not necessary to use unit directions n and D. Therefore, when these
directions are not null directions, the reflections in hyperplanes and planes are valid, and
complex (imaginary) numbers C can be avoided. As a normalization, it is useful to use
unit norm directions.
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6.6.5 CSTA translated-rotor
The CSTA translated-rotor (spatial line rotor) RE = L¢ for rotation by angle 6 = 2||d||

aroupd slzatial line Les = —~0 - Le through point py = ps = p with unit direction
d=ds=d is defined as

Ri=Lec = T,R4Ty (6.321)

s (6.322)

= cos(g) +sin(g)Tp&*$T;; (6.323)

= cos(g) —l—sin(g)(&fgs _ (ps ) 6125) /\eooy) (6.324)

_ afles (6.325)

e (6.326)

= cos(g) +sin(g)(—'yo-Lc). (6.327)

The G4 CSA GIPNS 2-vector spatial line L¢s has the form of the G4 ; CGA line L [7].
The G4 CSTA GIPNS 3-vector spacetime line (§6.4.11)

Le = d*™M+ (pa-d*™Mew, (6.328)

should be a purely spatial line, with a spatial unit vector direction d =dy = ds through
a spatial point py; = ps. The direction of rotation follows the right-hand rule, which is
anticlockwise # radians around the spatial direction d = ds.

To understand how the spatial line rotor L¢ is derived, consider the following. The
STA dual of the unit spatial direction d = ds of the line L is

dM = (6.329)
dsIy = (6.330)
—dsIy = (6.331)
YodsIs (6.332)

Therefore, the line L¢ in spatial direction d = ds through spatial point pr=ps is
Le = vodsIs+ (ps- (YA (dsls))) A e, (6.333)
= YA (dsIs) — Yo A\ (ps- (dsIs)) N €. (6334)

The spatial line rotor L¢ uses the generator

—o-Le = (6.335)
—(dsIs — (ps- (dsIs)) Aewoy) = (6.336)
d5’ — (ps-d&¥) New, = Les=L (6.337)

which has the same form as a spatial G4 1 CGA GIPNS 2-vector line L, but is a line entity
in the similar G; 4 Conformal Space Algebra (CSA) CS. If the line L were at (or through)

the origin, then it would be L= &j;"’”, which should be a unit bivector as a rotor generator.
Therefore, d = ds should be a unit SA direction. But, the line L is translated from the
origin to point ps as

L = T,d5Ty =ds — (ps-dS) Aew, (6.338)
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by CSTA translator 7, (§6.6.4) for translation by ps. )
The SA dualization (§2.2) of an SA unit direction vector ds is defined to create a

rotor unit bivector generator Elfgs (§2.6) that is isomorphic to a quaternion versor without
a reversal in orientation or sign and obeying the usual right-hand rule for rotation orien-
tation around an axis dg through the origin.

Now, consider a rotor R and translators 1" and T~ by ps and —ps, respectively,

1 5,3%S
R = ef"lds (6.339)
T = el‘EpsAeM (6.340)
T~ = ezPshe (6.341)

and their composition that translates ps to the origin, then rotates around the line of

the unit vector dg through the origin, and then translates the origin back to ps, which is
applied to an entity E as

TRT~ETR>T~ . (6.342)
The versor T'RT™ is a spatially translated rotor
TRT~ = (6.343)
T(cos(%@) +Sin(%6’>(§lz§$>T’“ = (6.344)
cos(%&) + sin(%Q)T&ZSTN = (6.345)
cos(%&) + sin(%&)L = (6.346)
2™ = (6.347)
0wl _ g (6.348)

This composition, the translated rotor L¢, is a versor for rotation around the spatial line
L¢ by the angle 6. The spatial line L¢ should be unit scale, with the spatial line direction
given by a unit vector d = ds that passes through the spatial point py = ps.

All of the CSTA GIPNS 1-vector entities can be transformed by the CSTA versors
that are defined in this section, including L¢ in this subsection. All of the CSTA GIPNS
k-vector entities can be constructed as the wedge, or intersection, of five or less CSTA
GIPNS 1-vector entities. By versor outermorphism, all of the CSTA GIPNS k-vector
entities can be correctly transformed by the CSTA versors. By the CSTA dualization
transformation of the CSTA GIPNS entities into CSTA GOPNS entities, all of the CSTA
GOPNS k-vector entities can also be correctly transformed by the CSTA versors.

6.6.6 CSTA isotropic dilator

The CSTA 2-versor isotropic dilator D¢, adapted from the CGA dilator, is defined as
1 1
DC = 5(1+d)+§(1 —d)eoofy/\em. (6349)
The scalar d is the dilation factor. The CSTA isotropic dilator D¢ is a spacetime dilator,
which includes the dilation of the time and space components of an entity by the factor d.
The CSTA isotropic dilation operation that isotropically dilates CSTA entity Ac by

factor d in spacetime is the two-sided versor “sandwich” operation

Al = D¢AcDg. (6.350)
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It can be verified algebraically that the dilator D¢ correctly dilates by factor d any CSTA
GIPNS 1-vector entity. By versor outermorphism, D¢ also correctly dilates any CSTA
GIPNS Ek-vector entity, which can always be formed as the wedge of k& CSTA GIPNS 1-
vector entities. By CSTA dualization of GIPNS entities to GOPNS entities, all CSTA
GOPNS entities are also dilated correctly by the dilator.

The dilator D can be derived from successive inversions in two CSTA GIPNS 1-vector
hyperpseudospheres X, and ¢, (§6.4.5) centered on the origin e,, with radius ;=1 and

ro=+/d, respectively, as
DC = _EC22C1:EC22C1' (6351)

The minus sign can be dropped since it cancels in the versor operation. D¢ dilates relative
to (around) the origin e,,, but it can be translated by p using a translator T¢ to make
the CSTA translated-dilator DE (§6.6.7) around point Pe=C(ppm)-

6.6.7 CSTA translated-dilator

The CSTA 2-versor translated-dilator DE that dilates by factor d around Pe=C(ppz) is

DY = TeDcI¢ (6.352)
1 1
= TC(§(1+d)—|—§(1 —d)eooy/\ew)TcN (6.353)
1 1
= 5(1 +d)+ 5(1 — d)Te(€coy N €oy)TE (6.354)
1 1 5
= s1+d)+30 — d)(ecy A Pr). (6.355)
The flat point (§6.5.5) in reverse orientation
Pe = ey AP (6.356)
should be unit scale
(Pe)? = PePe=1 (6.357)
S P

The orientation of P¢ is important since its reverse makes reverse operations. For d >0,
the translated dilator can also be formulated as

Dg _ eatanh(%;Z)eoo.y/\ﬁc (6359)
1 :
= 2 Peen e (6.360)

Using the unit scale flat point in standard orientation Ilsc = 13(; A €xo (per §6.5.5), the
translated dilator can be written as

pp = e (6.361)
_ cosh(%ln(d))+sinh(%ln(d)>ll3c, for d> 0, (6.362)

The translated-dilator DE can be derived from successive inversions in two CSTA GIPNS
1-vector hyperpseudospheres 3¢, and ¢, (§6.4.5) centered on Pr = C(pa) with radius
r1=1 and o= /d, respectively, as

D(I; = —ECQECIZECQEQ (6363)
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The minus sign can be dropped since it cancels in a versor operation. Any CSTA entity
E with center position pa can be dilated in situ as

E' = DEED?!™. (6.364)
The identity
1—d 1
which can also be written as
In(d) = 2atanh d=1 (6.366)
N d+1) '

may not be familiar, but can be derived or verified as follows.

y/\
—y?=4d=r?
VT

g1 T run d+1
! (d+1)°— (d—1)2=4d
Arc® or = @2vd
O/’/ s T
Area® d d+1

A:§r2:cp2d r=2vd

Figure 6.1. Area A= ¢r?/2= p2d of hyperbolic angle ¢

Referring to Figure 6.1, and noting the analogy between the trigonometry of circles
and the trigonometry of hyperbolas (spacetime pseudocircles), then

2atanh<%) _ (6.367)

Qatanh(%) 2p=2-4 = (6.368)

A 4d+y——> _ (6.360)

%((g 4d+y2+4—dln<y+\/m>>[%] (d“) )d - (6.370)
E<42d1 (d—1+d+1))—3 le (2f)) = (6.371)

2In(2d) — 2In(2V/d) 21n< ) 2In(vd) = In(d) (6.372)
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6.6.8 CSTA spacetime boost

CSTA inherits the STA boost operator B (§5.2.3) as the CSTA boost operator Be = B.
The boost Be = By, by a spacetime velocity v =0+ v (with proper time 7=t,,) can be
applied to any CSTA spacetime surface entity. An STA spacetime surface point p (with
coordinate time t = t., = t,0) of a CSTA spacetime entity E represents an observable
spacetime position of the form

p(t) = po+pt (6.373)
= po+(o+Dp)t. (6.374)

The boost of the entity ByEBy is congruent to the set of all boosted surface points
BypBy. For GIPNS entity E, the set of spacetime surface points is

NIg(E) = {p : C(p)-E=0} (6.375)
and the set of the boosted entity is

A point p is boosted as

BypBy = By(po+pt)By=pdv (6.377)
= BJi(po+ot+pt)Byi=povf (6.378)
= Byi(—o+0+po)B,i+ Byi(o+p)Byit (6.379)
= —BJioBy++ B3i(o+po) Byt + Byi(0 4 p) Byt (6.380)
= —W(0+V) +Ypevi(@+ PO V) +ppevi(o+ DOV (6.381)
= poovi+(povit (6.382)
= poovi+(o+povi)r (6.383)
= poBv+(o+p@v)t. (6.384)

This boost can be interpreted at least two ways: (Eq. 6.383) as p relative to vi =0 —v
and expressed in the frame of v’ as a passive change of frame, or (Eq. 6.384) as p
actively boosted up into the frame of v = o + v but passively expressed in the frame
of o as an active relativistic velocity addition. The boost of a spacetime surface entity
ByEBy, representing the set of all boosted spacetime surface points B, pBy, has a similar
interpretation: that the entity is either (Eq. 6.383) relative to v' in its frame as a passive
frame change, or (Eq. 6.384) boosted up into the frame of v but expressed (viewed) in
the frame of o as an active relativistic velocity addition.

The CSTA boost operator Be for a natural speed Sy in the SA wunit direction Vg is
defined as

Be=Bum=B, = (nwv/ )2—62%"1570 (6.385)
= exp(%gpvffﬂo> (6.386)

1 . 1 N
= cosh(§¢v)+81nh(§gpv)V3A'yo. (6.387)

For more information, see the STA boost operator (§5.2.3).
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6.6.9 CSTA translated-boost

The CSTA 2-versor translated-boost B¢ by ¢ = atanh(f) in direction ¥ centered at d, is
defined as

d ~ _ldMeoo l5‘7{"'7’0 ld./\/leoo

B=TeBeTy = e 2Menea#?m gdaens (6.388)

o 1 . ]. _ldMeOO’y A~ ldMeoo'y
= cosh 5% | +sin| 5 Je VApe? (6.389)

1 (1 . .
= cosh 5% | +sin| 5 (VYo — (dam - (YY0))€con) (6.390)
= e%@(QWO—(dM'(‘A”YO))eoov) (6391)
lom
= ¥l (6.392)
where the plane (§6.4.10)

[lc = DM~ (py-D*Men, (6.393)

has unit bivector direction D = vyl through point py=du,.

6.6.10 CSTA differential operators

Some of the CSTA point value-extraction elements C (§6.3) have inverses. These inverses
allow the following CSTA 2-vector differential elements to be defined as

DS = CiCp =70 €y (6.394)
Df = CiC7 =y A e (6.395)
DS = CiC; =71 A e (6.396)
Dy = Ci1C0; ' =y exy (6.397)
D¢ = CiC; ' =73N e (6.398)

The CSTA differential elements are free vectors [4], which are translation-invariant and
represent directions without location.
Using the commutator product x, the CSTA differential operators are defined as

o — a%:pgx (6.399)
o = %:Dfx (6.400)
o = é%:Dgx (6.401)
o = %:Dgx (6.402)
o (,%:DSX (6.403)

The differential elements and operators in CSTA1 and CSTA2 can be denoted D' and
9%, and D and 02, respectively. The CSTA differential operators can be used for entity
analysis. A different, but similar, set of differential elements and operators are defined in
DCSTA (§7.8.1).
A CSTA directional derivative operator DS x , in the direction of a vector
N = Yo+ a1+ nyye + 0y, (6.404)

can be formed as the linear combination

DS x = (ngDS +n,DS +n,DS +n,DS) x . (6.405)
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The simplest example of using a CSTA differential operator D x is to take the derivative
of any CSTA GIPNS 1-vector entity 3¢ in the n-direction as

e = %:Dﬁ x 3. (6.406)

7 Double Conformal Space-Time Algebra (DCSTA)

The G4 3 Double Conformal Space-Time Algebra (DCSTA) is a straightforward extension
of the Gy g Double Conformal Space Algebra (DCSA), which is similar to the Gg » Double
Conformal / Darboux Cyclide Geometric Algebra (DCGA) that is introduced in the
original research monograph [7] and in the published short paper [8], and discussed further
in the papers [5] and [6]. There are only some differences in signs between Ga g DCSA
and Gg o DCGA, such that all the results of DCGA transfer to DCSA with only some sign
changes.

The key idea of DCSTA is that any CSTA1 entity or versor Ac: and its double Ae2 in
CSTA2 can be multiplied to form the corresponding DCSTA entity or versor Ap, where

AD — AclAc2 == Acl N Ac2. (7].)

According to the outermorphism property for transformation operators [20], or versors
that operate as the two-sided versor “sandwich” operation, any doubled versor Vp, which

can be for rotation Rp (§7.7.6), translation Tp (§7.7.7), dilation Dp (§7.7.8), boost Bp
(§7.7.3), or any of their compositions, operates on a doubled entity Ep as

Ep = VpEpVi (7.2)
= VeiVer(Eer A Ee2)VesVex (7.3)
= (VerVerEeVaVer) A (Ver Ve Ec2VEsVer) (7.4)
= (VerEerVer) A (VezEe2Vex) (7.5)
— E'wAEl—=EWEb. (7.6)

Therefore, the CSTAL1 entity E¢: is correctly transformed by the CSTA1 versor Vg1, and
similarly for the CSTA2 entity Fe2. The product of the two correctly transformed CSTA
entities is the correctly transformed DCSTA entity. For example, the DCSTA point entity
Py, (§7.2) is correctly transformed by all of the DCSTA versors. The DCSTA point value-
extraction elements Ty (§7.2.3) extract correctly transformed values from a point Pp,
leading to the ability to form entities in the general form of Darboux cyclides that can be
correctly transformed by all of the DCSTA versors.

As a subalgebra of DCSTA, all the results of DCSA (or DCGA) are available in
DCSTA. DCSTA extends DCSA with the pseudospatial time axis (w = ct)~yo, a variety of
spacetime entities, and the spacetime boost (hyperbolic rotor) operator. In DCSTA, the
DCSA GIPNS 2-vector quadric surfaces are surfaces in spacetime at zero velocity that can
be boosted into any velocity. The boosted quadric surfaces display spacetime contraction
effects.

DCSTA includes many operations on quadric surface entities, including

e Rotation in space
e Translation in spacetime
e Isotropic dilation in spacetime

e Anisotropic dilation (directed length dilation) in space



136 SECTION 7

e Spacetime active boosts of velocity with length contraction effect
e Spacetime passive boosts relative to a new observer frame
e Intersection with standard entities that are doubled CSTA entities.

The general DCSTA GIPNS 2-vector surface entity € (§7.5) has the general form of a Dar-
boux cyclide in spacetime, which has degenerate forms that include Dupin cyclides, horned
Dupin cyclides, parabolic cyclides, and the quadric surfaces. In DCSTA, the Darboux
cyclide surface entities can be formed, similar to in DCSA or DCGA, as linear combi-
nations of the spatial DCSTA point value-extraction elements Ty (§7.2.3) that represent
spatial cyclide surfaces in the 3D Gy 3 SA space (at zero velocity). Darboux cyclide enti-
ties can also be formed from spacetime value-extraction elements to represent spacetime
cyclides in a 3D G; o STA spacetime, where the spacetime cyclides are called pseudocy-
clides, pseudoquadrics, etc.

The DCSTA quadric surfaces support anisotropic length contraction and dilation
(§7.7.9) since these forms can be written in terms of the DCSTA value-extraction ele-
ments. On the other hand, the higher-degree surfaces, which include cubic parabolic
cyclides and quartic Darboux and Dupin cyclides, do not support anisotropic length
contraction and dilation forms. Any DCSTA GIPNS 2-vector surface entity €2 represents
an implicit surface function in spacetime F(w,x, y, z) and supports function differentia-
tion O, F (or 2F0,,F for doubled entities Ep=F?) using the differential operations (§7.8) for

e Differentiation with respect to w=ct, t, x, y, or z

e Directional derivative with respect to a unit-norm direction n in spacetime.
The DCSTA forms of conic sections can also support the operations for

e Orthographic projection

e Perspective projection

as discussed in the paper [5].

7.1 DCSTA unit pseudoscalar

The DCSTA 12-vector unit pseudoscalar Ip with signature (+———+—+———+—) is
12

ID = ICl/\ICQZ/\ e; (77)
i=1

= Ip=1I5 (7.8)

I = 1. (7.9)

7.2 DCSTA point

7.2.1 DCSTA point embedding
The DCSTA null 2-vector point embedding Pp="D(p) of STA position vector

P=PM = PuYot PaY1+ PyY2+ PY3 (7.10)
= PuYo T+ Ps (7.11)
= potpt (7.12)
= po+(0o+p)t (7.13)
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is defined as the doubling of the CSTA point P, =C(p) as

Pp = C(pr) NC(Pr2) (7.14)
— PuAPe (7.15)
= D(p) (7.16)
where
DMt = Pu€l+ Pr€2+ Pye3 + P:€4= pPye1+ Pst (7.17)
PM2 = Puw7+ Pr€g+ Py€9 + P.€10 = Puer + Ps2. (7.18)

In general, the doubled CSTA entities, as DCSTA entities, represent the same entities as
defined in CSTA (§6).

7.2.1.1 DCSTA origin point
The DCSTA null 2-vector point at the origin is

e, = e, Ney. (7.19)

7.2.1.2 DCSTA infinity point
The DCSTA null 2-vector point at infinity is

€oo = €oo1 N e€so. (7.20)

7.2.1.3 DCSTA point is DCSTA GIPNS hypercone

As a GIPNS entity, the DCSTA point embedding Pp = D(p) represents a spacetime
hypercone (lightcone) centered on vertex p and is the DCSTA GIPNS null 2-vector stan-
dard hypercone Pp= Kp.

7.2.1.4 DCSTA point is DCSTA GOPNS point

As a GOPNS entity, the DCSTA point embedding Pp=D(p) represents the point p
and is the DCSTA GOPNS null 2-vector standard point Pp.

A point embedding Pp="D(p) will often be called a point, but it should be understood
that it is a GOPNS point and not a GIPNS point. For the purpose of testing any GIPNS
or GOPNS surface entity for a surface point p, the point embedding Pp = D(p) is the
test point entity. Point p is on the surface of GIPNS entity E iff D(p)- E=0. Point p
is on the surface of GOPNS entity E* iff D(p) A E*=0.

7.2.2 DCSTA point projection (inverse embedding)
The projection of DCSTA point Pp back to STA1 vector paq is

PMmr = C_l(PD'eoog) (721)

Pp - e -1
= S FVIR K VY 7.22
<_(P’D'e002)'eool M) M ( )

The projection of DCSTA point Pp back to STA2 vector paz is

prme = C'(Pp-ex) (7.23)

Pp-ex -1
= Tae ) -The. 7.24
<_(P’D'eool)'e002 M) M ( )

7.2.3 DCSTA point value-extraction elements
The DCSTA test point Tp="D(t) is the point embedding of the STA test vector

t = wyotrVtyrtovs (7.25)
= ctyo+ xy1 + yy2 + 23 (7.26)
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The DCSTA 2-vector extraction elements T, are defined as

Ty =

T, =

T2

2

_Tw

1
—(e1 N\ ex2+€ex1 Ner)

(eoog A €9 + (ST A eool)

2
1
5(8002 VAN €3+ €g A eool)
1

5 (ex2Nes+ e/ ext)

T, =
Ty =
T, =

T2

Y

T, —

e7/\e1
1

— T2
2"
eg N\ eg
egNes

€10 A €4

(e1 Nes+esAer)
(e1 Neg+esAer)
(

e\ e+ e4/\e7)

S
< 8

3

(eg Neg+ eg N 63)
(e10 A €3 + €9 A 64)

(eg A ey + €10 A e2)

NI T Oy ol Y o I Yol Y LTS N Y NG

= ejNex+eNey;

1

—Lawt?
C

- e02/\e2+e8/\e01
= expNes+egAey

= €y /\e4+ 810/\801

= _eOO

€02 A €01 + €002 A €o1

—4e,.

The value s is extracted from a point Tp as

S

T, - Tp=Tp T

SECTION 7

(7.54)

The DCSTA 2-vector extraction elements T are inner product extraction operators.
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The DCSTA 2-vector extraction elements T, are used to define the DCSTA GIPNS
2-vector entities that are similar to those that can be defined in DCSA or DCGA. The
general DCSTA GIPNS 2-vector spacetime surface entity €2 is a linear combination of the
DCSTA extraction elements Ti. For example, an ellipsoid entity E can be defined as

E = Tx2/a2—|—Ty2/b2+T22/02—T1. (755)

In general, any DCSTA GIPNS 2-vector spatial quadric entity Q, formed similarly to the
ellipsoid entity E as a linear combination of spatial extraction elements T}, is independent
of time w = ct and exists for all time at its current spatial position, which can be
translated using the DCSTA translator (§7.7.7). A spatial quadric surface entity Q is
“pseudocylindrical” with the pseudospatial time w-axis as a type of hypercylinder entity.
The interpretation in spacetime is that the spatial quadric Q is at zero velocity 5 = 0.
The DCSTA 4-versor boost operator B, (§7.7.3) can actively boost any spatial quadric
Q into any velocity v = fycv (into the rest frame of v =0 + v) as a spacetime quadric
Q = B,QBy. Only a DCSTA GIPNS 2-vector spatial quadric surface entity Q can be
formed independently of time w=ct as a linear combination of spatial extraction elements
Ts;. The DCSTA GIPNS 2-vector cubic (parabolic cyclide) and quartic (Darboux and
Dupin cyclide) entities use the extraction elements T, that include ¢ as its square t> or
square square t* and are dependent on time w = ct, with the interpretation that the spatial
cubic and quartic entities exist at time w=ct =0 or are translated to exist at some time
W = Py = Cly,.

7.2.4 DCSTA point value-extraction pseudo-inverse elements

The pseudo-inverse of A is denoted A™ and has the relation
A-AT = 1. (7.56)

If A=!exists, it may be equal to A*. The inverse or pseudo-inverse of an extraction element
T, can be useful for formulating certain other elements and operators, such as pseudo-
integral operators (§7.9). The pseudo-inverses of some of the extraction elements are

TAS=TkH = T, (7.57)
Ta'=T4 = —A2T,e (7.58)
TR =Th = —The (7.59)
Tp' =T} = Ty (7.60)
TZ'=Th = —Tw (7.61)
T = T (7.62)
T, = Ty (7.63)
T;r = —Toe (7.64)
) = ~Tya (7.65)
TH = —Tp (7.66)
TH, = 2Tw. (7.67)
T, = 2T, (7.68)
Ti = 2T,. (7.69)
T, = 26Ty, (7.70)
T} = 20T, (7.71)
(7.72)

T{Z = 2CQTtZ
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TS = —2T,, (7.73)
T = -2T,. (7.74)
T — _%Tﬂ (7.76)
Tp = —%th (7.77)
T = —%Tl. (7.78)

7.3 DCSTA GIPNS standard entities

The DCSTA GIPNS standard surface entities are the doubling of the CSTA GIPNS
entities. The wedge of corresponding CSTA1 and CSTA2 GIPNS entities, X1 and Xz,
forms the DCSTA GIPNS standard entity Xp= X1 A X2 representing the same surface.
The following subsections provide some explicit examples of the doubling.

The DCSTA GIPNS standard entities have special properties and can act as operators
for reflections and intersections. All DCSTA entities can be reflected in the standard
entities. The reflection in a standard sphere is called inversion in a sphere. All DCSTA
entities can be intersected with standard entities. A DCSTA GIPNS intersection entity is
a wedge of GIPNS entities, similar to a DCGA GIPNS intersection entity and with similar
limitations on what combinations of entities can be wedged to form a valid intersection
entity. The basic examples of intersection entities are the DCSTA GIPNS 6-vector stan-
dard line Lp = IIp A Ep (§7.3.7) and DCSTA GIPNS 6-vector standard (pseudo)circle
Cp=IIpN3Xp (§7.3.8).

Any DCSTA k-vector standard entity, as a doubling of a CSTA entity, is a k-blade
since it can be factored into the outer product of k vectors. The DCSTA non-standard
entities (§7.5) are generally not blades.

7.3.1 DCSTA GIPNS null 2-vector hypercone
The DCSTA GIPNS null 2-vector standard hypercone Kp is defined as

Kp = Koo ANKe2=Poi A Pe2= Pp (7.79)
which is the wedge of the same point embedding (hypercone) (§6.2) in CSTA1 and CSTA2.
7.3.2 DCSTA GIPNS 2-vector standard hyperplane
The DCSTA GIPNS 2-vector standard hyperplane Ep is defined as

Ep = EaNEe: (7.80)
which is the wedge of the same hyperplane (§6.4.3) embedded in CSTA1 and CSTA2.

7.3.3 DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet (hyperpseudosphere)
Y p is defined as

Sp = SeiA e (7.81)

which is the wedge of the same hyperpseudosphere (§6.4.5) embedded in CSTA1 and
CSTA2.
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7.3.4 DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets

The DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets (imaginary hyper-
pseudosphere) Ep is defined as

(1]

p = EaAEe (7.82)

which is the wedge of the same imaginary hyperpseudosphere (§6.4.6) embedded in CSTA1
and CSTA2.

7.3.5 DCSTA GIPNS 4-vector standard sphere or pseudosphere
The DCSTA GIPNS 4-vector standard sphere or pseudosphere Sp is defined as
Sp = Sci A Se2 (7.83)

which is the wedge of the same sphere (§6.4.7) or pseudosphere (§6.4.8) embedded in
CSTA1 and CSTA2.

7.3.6 DCSTA GIPNS 4-vector standard plane
The DCSTA GIPNS 4-vector standard plane Ilp is defined as
IIp = I ATle2 (7.84)
which is the wedge of the same plane (§6.4.10) embedded in CSTA1 and CSTA2.
7.3.7 DCSTA GIPNS 6-vector standard line
The DCSTA GIPNS 6-vector standard line Lp is defined as
Lp = Lcei A Le2 (7.85)
which is the wedge of the same line (§6.4.11) embedded in CSTA1 and CSTA2.
7.3.8 DCSTA GIPNS 6-vector standard circle or pseudocircle
The DCSTA GIPNS 6-vector standard circle or pseudocircle Cp is defined as
Cp = CaNCe (7.86)

which is the wedge of the same circle (§6.4.12) or pseudocircle (§6.4.13) embedded in
CSTA1 and CSTA2.

7.3.9 DCSTA GIPNS 8-vector standard point pair
The DCSTA GIPNS 8-vector standard point pair 2p is defined as

2p = 201N 22 (7.87)
which is the wedge of the same point pair (§6.4.14) embedded in CSTA1 and CSTA2.
7.3.10 DCSTA GIPNS null 10-vector standard point
The DCSTA GIPNS null 10-vector standard point Pp is defined as

Py = PhNPy (7.88)
which is the wedge of the same GIPNS point (§6.4.17) embedded in CSTA1 and CSTA2.
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7.4 DCSTA GOPNS standard entities

The DCSTA GOPNS (12 — k)-blade standard entity X*P is the DCSTA dual (§7.7.1) of
the DCSTA GIPNS k-blade standard entity X (§7.3),

XP = XlIp, (7.89)

which represents the same surface.

Any DCSTA GOPNS (12 — k)-blade standard entity X*P can also be formed as the
wedge of (12 —£k)/2 DCSTA GOPNS null 2-vector points (§7.2) by the same formulas as
in CSTA (§6.5),

x®? = A\ Pp, for1<i<6. (7.90)

Only the DCSTA GOPNS standard entities can be formed as the wedge of DCSTA points.
The DCSTA GOPNS 10-vector non-standard entities (§7.5) are generally not blades and
cannot be formed as the wedge of DCSTA points.

7.5 DCSTA GIPNS 2-vector non-standard surface entities

The DCSTA GIPNS 2-vector non-standard surface entities €2 are defined as linear com-
binations

QO - ZOZZT@' (7.91)

of the DCSTA 2-vector value-extraction elements Ty (§7.2.3).

In a straightforward way, an entity €2, which has the general form of a spacetime
Darboux (pseudo)cyclide, is formulated in terms of the value-extraction elements T to
represent an implicit surface function

Flw,z,y,z) = Tp-. (7.92)

A pseudocyclide or pseudoquadric has the form of a spatial cyclide or quadric, but one of
the spatial axes is replaced by the pseudospatial time w-axis.

In terms of the value-extraction elements T}, these entities €2 are defined exactly as
they are in the Gs 2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA)
that is introduced in [7]. The reader should refer to |7] for additional details that are not
repeated in this paper.

Any DCSTA GIPNS 2-vector non-standard surface entity €2, or its dual GOPNS 10-
vector entity

QP = QlIp, (7.93)

can be translated in spacetime using the DCSTA translator Tp (§7.7.7), spatially rotated
in space using the DCSTA spatial rotor Rp (§7.7.6), and isotropically dilated in spacetime
using the DCSTA isotropic dilator Dp (§7.7.8).

Any DCSTA GIPNS 2-vector, or dual GOPNS 10-vector, non-standard quadric sur-
face entity @ can also be boosted in spacetime using the DCSTA spacetime boost operator
(§7.7.3) with the interpretation that the quadric surface relativistically gains the space-
time velocity v of the active boost By. A spatial quadric surface (at zero velocity) Q= Qps
at position p can also be anisotropically dilated (§7.7.9) in position p by a factor d
in a specific direction v in space using the DCSTA translated-boost BR, (§7.7.4) with
an imaginary natural boost speed [, that is followed by a DCSTA spatial projection
Q'=(Q -Ips)Ipg (§7.7.2). The spatial projection discards all time components to recover
a spatial quadric surface Q' that is again at zero velocity.
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7.6 DCSTA conic section entities

It should be straightforward to adapt the DCGA conic sections into DCSTA and its spatial
subalgebra DCSA. The reader is referred to the paper [5] for details on conic sections in
DCGA and possible applications that include orthographic and perspective projection of
conic sections.

7.7 DCSTA operations

7.7.1 DCSTA dualization

The dual DCSTA GOPNS (12 — k)-vector surface entity Q*P of any DCSTA GIPNS k-
vector surface entity Q is obtained by the DCSTA dualization as

Q" = QlIpr=Q Ip. (7.94)

The undual operation is

Q = Q2. Ip. (7.95)

The dual and undual operations are the repeated application of the same dualization
operation. Therefore, DCSTA dualization is an involution.

The DCSTA GIPNS k-vector surface entity Q and its dual DCSTA GOPNS (12 — k)-
vector surface entity Q*P represent the same surface.
7.7.2 DCSTA spatial projection

The DCSTA spatial projection of a DCSTA entity p is defined as
Qps = (2p-Ips)Ips, (7.96)
which is the projection into the G, g DCSA subalgebra, where

Ips = (e1/er)-Ip=Isieseclseriens (7.97)
= —Ips=—I5; (7.98)
is the DCSA unit pseudoscalar. The projection produces the Gy s DCSA entity €2ps

representing the G, s DCSTA entity Qp at time w=ct=0.
The DCSA null 2-vector point is defined as

Pps = DS(ps) (7.99)
= CS'(ps1) NCS*(ps2) =CS'(ps)CS?*(ps2) (7.100)
= C'(ps)) AC*(ps2) =C'(ps1)C*(Ps?) (7.101)
= D(ps) (7.102)
1 1
= (PSI + §P?sleoo1 + 801) A (psz + §p?52e002 + eog), (7.103)
which is just the doubled embedding of a Gy 3 SA spatial point of the form
Ps = DaY1+ DyY2+ DY3 (7.104)

without a time w = p,, component.

The DCSA GIPNS entity Qps, or dual GOPNS entity Q3R°, that is produced by the
DCSTA spatial projection should be tested against only spatial DCSA points Pps=D(ps)
that represent spatial positions at time w=ct=0.
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The DCSTA spatial projection is specifically defined for the spatial projection of any
DCSTA GIPNS 2-vector quadric surface entity Q (§7.5) as

Q=Qps = (QIps)Ips, (7.105)

which is a DCSA quadric surface entity that represents the DCSTA quadric Q at time
w=ct=0. The DCSTA anisotropic (directed or non-uniform) dilation operation (§7.7.9)
is defined for any DCSA quadric entity Q formed as a linear combination of quadric
extraction elements T (§7.2.3) without a time component. The anisotropic dilation is
implemented as a boost by a natural speed 3 = v/1—d? that may be imaginary for a
dilation factor d > 1. Directed dilation using an imaginary [ results in imaginary time
components that are only artifacts of the directed dilation operation and should usually
be discarded. The DCSTA spatial projection of a DCSTA quadric @, which may be a
spatial DCSA quadric Q that has been boosted for directed dilation, discards any time
components and produces the quadric at time w = ¢t = 0 as a DCSA quadric Q. The
DCSA quadric @Q is again a DCSTA quadric @ at zero velocity §=0.

7.7.3 DCSTA spacetime boost
The DCSTA 4-versor boost operator is defined as
Bp = Bei A Bee, (7.106)

which is the doubling of the CSTA 2-versor boost B¢ (§6.6.8) in CSTA1 and CSTAZ2.
For a DCSTA 4-versor boost, the notation By is defined as

By=Bpy = Beiy A Bezy (7.107)
= exp(%cpvf/gle1> A exp(%cpvff‘gzw), (7.108)
which is an active boost into the frame of the observable spacetime velocity
v = o+V (7.109)
= Yo+ Byev. (7.110)

The observable worldline vt, with initial position pg = 0 (the spacetime origin) at time
t =0, is also being called the observable v or the frame v. The frame of v is carried at
the position vt of the observable.

All DCSTA entities can be boosted. A boosted surface entity represents the set of all
boosted surface points. For a full discussion of the boost operator, see the CSTA boost
Be (8§6.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q (8§7.5) is boosted as

Q' = BpQDB5. (7.111)

The quadric surface @ should have initial position pg=0 at time w=ct=0. If py#0 at
time w = ct =0, then the quadric @ with position p=pg can be boosted using the DCSTA
4-versor translated-boost operator (§7.7.4)

B} = BLYBE (7.112)
that is centered on the initial position pg. The translated-boost of @Q is

Q = BERQBR™, (7.113)
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where the position of Q' is preserved as p=pg at time w=ct=0.

Since entities are homogeneous and any general spacetime dilation factor + of the
boosts can always be divided out (as a normalization of the entity) without affecting
the surface representation, the boost of a quadric surface has the interpretation that
the quadric surface undergoes a relativistic velocity addition for an active boost and
a relativistic velocity subtraction for a passive boost. A boosted quadric displays the
spacetime (length) contraction effect of the boost, which is possible since general quadrics
can be represented by the DCSTA extraction elements T (§7.2.3). For active boosts
By, the length contraction of displacements is as seen by the observable v = 0 4+ v in
its contracted spacetime frame. For passive boosts By = B_,, the length contraction of
displacements is as seen by the observable vf =0 — v in its contracted spacetime frame,
as if the boost is the active boost B_,. The boost is viewed in the active orientation,
and the quadric is boosted up into the frame of the active boost observable v =0+ v for
By, or the frame of the active boost observable vf =0 —v for By = B,i1=B_,. In either

case, the length contraction factor is the same, 1/v,=1/v_,=+/1— 32, and the quadric
surface relativistically gains the velocity v or —v of the frame it is boosted into.

For example, consider a spatial quadric Q =Qps that is initially at zero velocity Fy=0
and at position pg=0 (the origin) in the rest frame of the conventional coordinate time
t observable o. It is then boosted as

Q = BQBY=Qdw. (7.114)

Q is Q boosted or moved into the rest frame of v =0+ v. Local to the frame of v, Q
is still at the origin and still at rest as it was in the frame of 0. @Q is carried along in
the frame of v at the frame velocity v = fycv and with position displacement vt in the
frame of coordinate time ¢ observable o. Since the entity Q is homogeneous, it displays

as the contracted quadric, by contraction factor \/1 — /32 in direction v, as seen by the
observable v in its own contracted frame, but  moves with coordinate time ¢ in the
frame of observable o at the velocity v as seen by o while @ is carried at rest and at the
origin in the frame of v that moves at velocity v.

The boosted quadric surface @ can be symbolically evaluated [24] for its implicit
surface function F' as

D(tm) - Q = F(w,r,y,2), (7.115)

which can be graphed in zyz-space at any selected time w = ct. The graph of @ should
show it to be centered in space at a position consistent with the elapsed coordinate time
t in the frame of the observable o, and the shape of the quadric surface should show a
length contraction effect consistent with the speed of the boost that has been applied.

7.7.4 DCSTA translated-boost

The DCSTA 4-versor translated-boost operator BR_ is the doubling of the CSTA 2-versor
translated-boost BE, (§6.6.9) and defined as

BR, = BE.,ABR%,=BE B, (7.116)
= exp(%gpvﬂcl) A exp(%gpvﬂcg), (7.117)

where
o = DM — (posi - DE)eser (7.118)

e = DA — (posz- D )encs (7.119)
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and
De: = vsiellyve (7.120)
DCQ = {75287IM2 (7.121)
Pst = pge2+pyes+p.ey (7.122)
Psz = pPz€s+ Py€y + p-€io. (7.123)
The translated-boost is centered on the spatial point
P=Po = PaY1+DPyY2+ PY3 (7.124)

and actively boosts into the rest frame of the translated observable with worldline

vP(t) = po+(0+V)t (7.125)
= po+ (cy0+ Becv)t. (7.126)

If po=0, then BR, = Bp, (§7.7.3).

For example, the point po=p can be the center position p of a spatial quadric surface
Q, or it can be the initial point pg at time w=ct =0 of a DCSTA GIPNS 6-vector standard
line Lp (§7.3.7) that represents an observable worldline.

The translated-boost operator B, is used in the definition of the DCSTA anisotropic
dilation operation (§7.7.9), which is valid for the directed scaling of DCSTA quadric
surface entities.

7.7.5 DCSTA spacetime reframe (reverse boost)

The DCSTA reframe operation is the reversed application of the active boost operation
(§7.7.3) and is often interpreted as a passive transformation relative to a new frame of
reference. For a full discussion of the boost operator, see the CSTA boost (§6.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q (§7.5) is reframed (passively
transformed) into (relative to) the frame of observable v =0+ v as

Q' = BYQB,=Qocw (7.127)
— B_ QB> =B,QB:=Q v (7.128)

One way to interpret the reframe is that @ is initially (being carried) in the frame of
v =0+ Vv, where it sees v as its conventional coordinate time 7 =t,, observer o,, and it
is actively boosted down or moved into the frame of the actual coordinate time ¢ = t,,
observer o as Q’. From the perspective of observer o, Q' relativistically loses the velocity
v as a velocity subtraction.

Another way to interpret the reframe is that @ is initially in the frame of o, and it is
actively boosted up into the frame of v’ =0 —v. The frame of v =0+ v and the frame
of v! are conjugate frames that carry boosted entities in opposite directions with the
same proper time T = t,, = 1, relative to the coordinate time ¢ = {,, of observer o. In
many respects, conjugate frames are the same frame, and they also see the same length

contraction factor \/1 — 2. Entities that are actively boosted or moved into the frame
of v’ are how entities carried in the frame of o appear to v when they are passively
transformed (not actively boosted or moved) into the frame of v by a relative or passive
boost.

If an entity @ has an initial position py#0 at time w=ct =0, then a passive translated-
boost BY*™ (§7.7.4) should be used.
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7.7.6 DCSTA rotor
The DCSTA 4-versor rotor Rp is defined as
Rp = Rei A Re2 (7.129)

which is the wedge of the same rotor (§6.6.3) in CSTA1 and CSTA2.
Any DCSTA entity Q is rotated by the rotor operation

Q' = RpQR3. (7.130)

The CSTA 2-versor line rotor (translated rotor) RS = L¢ (§6.6.5) can also be doubled into
the DCSTA 4-versor translated rotor R} = Lp= Lc1 A Lee.

7.7.7 DCSTA translator
The DCSTA 4-versor translator Tp is defined as
Tp = Tor ATp (7.131)

which is the wedge of the same translator (§6.6.4) in CSTA1 and CSTA2.
A DCSTA entity Q is translated by the translator operation

Q' = TpQTs. (7.132)

7.7.8 DCSTA isotropic dilator
The DCSTA 4-versor isotropic dilator Dp is defined as

Dp = DeiADes (7.133)

which is the wedge of the same isotropic dilator (§6.6.6) in CSTA1 and CSTA2.
A DCSTA entity Q is isotropically dilated by the dilator operation

Q' = DpQD5. (7.134)

The DCSTA 4-versor translated dilator D that dilates relative to the center point pa4 is
the doubling of the CSTA 2-versor translated dilator DY (§6.6.7) as

7.7.9 DCSTA anisotropic dilator

7.7.9.1 Introduction
A spatial DCSTA GIPNS 2-vector quadric surface entity Q (8§7.5) at center position

P=DPo=Ps = px’71+py72+pz’737 (7136)

formed similar to a DCGA GIPNS 2-vector quadric as a linear combination of quadratic
DCSTA point value-extraction elements Ty (§7.2.3) without time components, can be
anisotropically dilated (for non-uniform, directed scaling) in situ at p = po, by dilation
factor d in a unit direction v =vg, as a translated-boost BY, (§7.7.4) that is followed by
a DCSTA spatial projection using Ips (§7.7.2). The natural speed f, of the translated-
boost, for the dilation factor d, is

By = V1-a, (7.137)



148 SECTION 7

which is an imaginary number for d > 1. The rapidity of the translated-boost is
¢v = atanh(fy) =atanh(v'1—d?), (7.138)

which can also be imaginary when fJ, is imaginary. The translated-boost spacetime
velocity is

v = o+Vv=cy+ Bvev, (7.139)

which can be an imaginary spacetime velocity when [, is imaginary. A spatial quadric Q

(at zero velocity) is boosted by the translated-boost BY, to be in the moving observable
frame as @ and is carried along the observable worldline at velocity v with position

vP(t) = po+(o+ V)t (7.140)

= po+ (cy+ Byev)i. (7.141)

The observed dilation of quadric surface Q in the moving frame as Q is by factor

d = /1-32 (7.142)

in the direction v, where d > 1 for imaginary (,. The length dilation in the direction v
of the boost follows from the standard formula for special relativity length contraction

L - %:Lm/l—Bﬁ:Lod. (7.143)

The moving, and anisotropically dilated, quadric @ can be evaluated at time w=ct =0
to observe the anisotropic dilation at its position p. By projecting @ into the spatial
G2, DCSA subalgebra, an anisotropically dilated spatial quadric Q" at zero velocity is
recovered.

7.7.9.2 Definition

The DCSTA anisotropic dilator operation, on a spatial DCSTA GIPNS 2-vector
quadric surface Q (§7.5) with position p, for dilation factor d in the direction v, is

defined as
Q'=Qbs = ((BB,QBEY) Ins)Ips (7.144)
= (Q Ips)Ips, (7.145)
where the observable of the translated-boost (§7.7.4) is

vP(t) = p+(o+V)t (7.146)
= p+(cvo+ Becv)t (7.147)
with
By = VI-d (7.148)
¢y = atanh(y) (7.149)
P = paY1+DPyY2+ DY (7.150)

7.7.9.3 Discussion
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The dilated entity Qps can be symbolically evaluated as an implicit surface function
F(z,y,z) = Tp-Qps (7.151)

that graphs at position p as anisotropically dilated in the unit direction vs by factor d.

The spatial quadric Q' has zero velocity and exists at all times at the same position
p. If Q’ should exist only at a specific time w = p,,, then this can be represented as an
intersection of Q" with a DCSTA 2-vector standard hyperplane Ep (8§7.3.2),

Epr = EqaNEg (7.152)
E; = Puw€1 + p%veool (7153)
Ex: = puer+ Dp€oc2, (7.154)

that fixes the time w = ct = p,,. The intersection is the GIPNS 4-vector intersection entity
Q"™ = Q'AEp. (7.155)

The entity Qs """ can be translated in spacetime using the DCSTA translator (§7.7.7).

The entity Q' can subsequently be boosted from zero velocity into a real velocity
v=vg= fycvs with natural speed 0 < 8, <1 by the action of an active DCSTA translated-
boost operation (§7.7.4)

Q. = Bp,Q'Bp,. (7.156)

The boosted quadric entity Qs exists at all times ¢, but its spacetime position

pP(t) = p+pt (7.157)
= p+(o+p)t (7.158)
= p+(o+v)t (7.159)

has velocity v relative to the observer o, and its geometric surface shape undergoes a
contraction by factor d = /1 — 32 along the direction of its velocity v. The contraction
is consistent with special relativity.

7.8 DCSTA differential calculus

The DCSTA differential calculus is a straightforward extension of the DCGA differential
calculus that is introduced in the paper [6].

7.8.1 DCSTA differential elements

Some of the DCSTA point value-extraction elements Ty (§7.2.3) have inverses. These
inverses allow the following DCSTA 2-vector differential elements to be defined as

D, = 2T, T3 (7.160)
D, = 2TT" (7.161)
D, = 21,T3" (7.162)
D, = 2T, T (7.163)
D, = 2T.T3" (7.164)
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7.8.2 DCSTA antisymmetric differential operators
The DCSTA antisymmetric differential operators are defined as

0
aw_@ — D, x (7.165)
(925:? = Dt>< (7166)
Op=s = Dux (7.167)
ay:% — D, x (7.168)
0
O.=5- = D.x (7.169)

where the symbol x is the antisymmetric commutator product. For any multivectors A
and B, the commutator product is

AxB = J(AB-BA)=-BxA (7.170)

Any DCSTA GIPNS 2-vector surface entity €2 (§7.5), defined in terms of the extraction
elements T (§7.2.3), can be differentiated as

o0
=7 = Dyx, (7.171)

where D,, is one of the differential elements or is a linear combination of differential
elements (§7.8.1).

Higher-order mixed partial derivatives can also be computed as successive differential
operations. For example,

d*Q
Oxdy

As required of partial differential operators, the sequence in which the derivatives are
computed does not affect the result.

= Dy x(Dyx)=D,x (D, xQ). (7.172)

7.8.3 DCSTA directional derivative operator
The DCSTA n-directional derivative operator is defined as

Op = 6% = (nyDy+nyDy+nyDy,+n.D,) X (7.173)
where m is a unit norm spacetime direction
n = "% — = N Yo + NaY1 + Ny Y2 + 12ys. (7.174)

7.8.4 DCSTA time derivative operator
The DCSTA time t derivative operator is

0
3,5:E == Dt X . (7175)
The time t derivative of any DCSTA GIPNS 2-vector spacetime entity €2 (§7.5) is
a-00-252 _ pxa (7.176)

ot
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The DCSTA 2-vector spacetime entity €2 (§7.5) is the most general DCSTA GIPNS 2-
vector non-standard surface entity that is formed as a linear combination of the DCSTA
2-vector extraction elements Ty (§7.2.3).

7.9 DCSTA pseudo-integral calculus

In the paper [6], the DCGA pseudo-integral calculus is introduced. A straightforward
adaptation and extension into DCSTA is possible by using the DCSTA extraction pseudo-
inverse elements T, (§7.2.4).

8 DCSTA computing with SymPy

DCSTA computing with SymPy (http://sympy.org) [24] is possible by using
the Geometric Algebra Module for Sympy (GAlgebra) by ALAN BROMBORSKY
(https://github.com /brombo/galgebra) [2]. This section provides sample code listings and
example computations in DCSTA using GAlgebra. The Anaconda and SciPy python
distributions both include SymPy and the Mayavi [21]| data visualization package. The
current version of the GAlgebra module for SymPy can be downloaded and installed from
GitHub. The Jupyter Notebook web application (http://jupyter.org) is recommended
for running the sample code and example computations.

8.1 Sample code

The sample code that is listed in the following subsections can be inserted into cells of
a Jupyter notebook file and executed in the order listed. The sample code initializes
the GAlgebra modules and defines functions and symbols for DCSTA computing. The
example computations use the functions and symbols that are defined in the sample code.
The sample code is provided as is for experimental testing and educational purposes only!

8.1.1 Imports
Import the SymPy and GAlgebra modules:

from sympy import

from sympy.printing import x*
from galgebra.ga import *

from galgebra.mv import *

from galgebra.lt import *

from galgebra.metric import *
from galgebra.printer import *
init_printing()

8.1.2 Basis vectors

Ga,s DCSTA requires twelve unit vectors (§1), which can be setup as follows:

(el,e2,e3,e4,e5,e6,e7,e8,e9,e10,el11,e12) = MV.setup(
’ex11213|41516|718]9110]111]12°,
metric=[1,-1,-1,-1,1,-1, 1,-1,-1,-1,1,-1]
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8.1.3 Points at the origin and at infinity

The CSTA1, CSTA2 (§6.2), and DCSTA (§7.2) points at the origin and at infinity are
defined as follows:

(eol,eil,e02,ei2,e0,ei) = symbols(
’e_0l1 e_i1 e_02 e_i2 e_o e_1i’

)

# CSTA1 points

eol = Pow(2,-1)*(-e5+eb)

eil = (eb+eb)

# CSTA2 points

eo02 = Pow(2,-1)*(-ell+el2)

ei2 = (ell+el2)

# DCSTA points

eo = eol”eo2

ei eil~ei2

I

8.1.4 Unit pseudoscalars

The unit pseudoscalars in Go s SA1 (§2.1), G153 STAL (§85.1.2), Go 4 CSTAL (§6.1), Go3
SA2, G, 5 STA2, G, 4 CSTA2, and G4 s DCSTA (§7.1), respectively, are defined as follows:

(I31,141,161,132,142,162,ID IDS) = symbols(
’I_31 I_41 I_61 I_.32 I_42 I_62 I_D I_DS’

)
# SA1 unit pseudoscalar

I31 = e27e37e4d

# STA1l unit pseudoscalar

I41 = e17I31

# CSTAl unit pseudoscalar

I61 = T41"eil”eol

# SA2 unit pseudoscalar

I32 = e87e97el0

# STA2 unit pseudoscalar

142 = 77132

# CSTA2 unit pseudoscalar

162 = I427ei2"e02

# DCSTA unit pseudoscalar

ID = 1617162

# G2,8 DCSA (spatial) unit pseudoscalar
IDS = (el1”e7)|ID

The last value, IDS, is the G, s DCSA unit pseudoscalar for an algebra that is very
similar to Gs 2 DCGA. The IDS unit pseudoscalar is used to project entities (§7.7.2) into
a purely spatial algebra that drops the two time dimensions e; and e;. When these time
dimensions are dropped, or rejected, by a projection of an entity onto IDS, then the entity
is effectively located at w=ct =0 in spacetime as a spatial DCSA entity that should be
tested against spatial DCSA points. The projection onto IDS is useful after a directed
scaling (anisotropic dilation) of a quadric surface (§7.7.9).

8.1.5 Point embeddings
CSTA1 point embedding (§6.2):
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def EV1(v)
# Embed STA1 vector v as CSTA1 point.
vi = v
return ( vl + Pow(2,-1)*(vi*xvl)*eil + eol )

CSTA2 point embedding (§6.2):

def EV2(v)
# Embed STA1 vector v as CSTA2 point.
# STA1 vector v is converted to an STA2 vector v2.
v2 = (vlel)*e7 - ( (v]e2)*e8 + (v|e3)*e9 + (vled)*el0 )
return ( v2 + Pow(2,-1)*(v2*xv2)*ei2 + eo2 )

DCSTA point embedding (§7.2):

def EV(v)
# Embed STA1 vector v as DCSTA point.
return ( EV1(v) EV2(v) )

8.1.6 Point projections
CSTA1 point projection (§6.2.6) to an STA1 vector:

def PV1(V1)
# Project CSTA1l point to STA1l vector.
# 1) Normalize point.

# 2) Use multivector projection to project vector part.
return Pow(scalar(-Vi|eil),-1)*(V1|I41)*I41.inv()

CSTA2 point projection (§6.2.6) to an STA1 vector:

def PV2(V2)
# Project CSTA2 point to STA1l vector.
# 1) Normalize point.
# 2) Use multivector projection to project vector part.
# 3) Convert into main STAl space.
v2 = Pow(scalar(-V2|ei2),-1)*(V2|I142)*I42.inv()
return ( (v2|e7)*el + (-v2|e8)*e2 + (-v2[e9)*e3 + (-v2|el0)*ed )

DCSTA point projection (§7.2.2) to an STA1 vector:

def PV(V)
# Project DCSTA point V to an STA1l vector.
# 1) Contract DCSTA point into CSTA1l point using ei2.
# 2) Project CSTA1l point V1 to an STAl vector.
Vi = V]ei2
return PV1(V1)

8.1.7 Symbolic vectors and points

Symbols for coordinates, parameters, and vectors:

Ww,X,y,Z,C,t,g,b = symbols(’w x y z c t g b’)
PW,pPX,py,pz = symbols(’p_w p_x p_y p_z’)
rx,ry,rz = symbols(’r_x r_y r_z’)
nw,nx,ny,nz = symbols(’n_w n_x n.y n_z’)
VX,Vy,vz = symbols(’v_x v_y v_z’)
v,v1,v2,V,V1,V2 = symbols(’v vl1 v2 V V1 V27?)
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The pw,px,py,pz are used as symbolic position coordinates for the center position of
surface entities. The rx,ry,rz are used as symbolic radii parameters of implicit quadric
surface functions. The nw,nx,ny,nz may be used as symbolic coordinates of a normalized
unit vector n. The vx,vy,vz may be used to hold the velocity components of a velocity
vector v. The symbol c is used as the symbolic speed of light, and symbol t is time.

Symbolic values, vectors, and points:

W = Cc*t

v = wxel + x*e2 + y*e3 + z*xed
vl = v

v2 = wxe7 + x*e8 + y*e9 + z*xel(
Vi = EV1(v)

V2 = EV2(v)

V = EV(v)

The embedding of the symbolic STA1 and STA2 vectors vl and v2 are symbolic CSTA1
and CSTA2 points V1 and V2, respectively. The DCSTA embedding of a symbolic STA1
vector v is the symbolic DCSTA point V. In symbolic calculations, these symbolic point
embeddings V1, V2, and V are useful to check results.

8.1.8 CSTA extraction elements

A CSTA point value-extraction element Cs (§6.3) extracts the value s from an embedded
CSTA point Te=C(t ) as

s = Tc-CS. (81)

Cc11,C1t,Clw,C1x,Cly,C1z,C1t2 = symbols(
’C1_1 C1_t C1_w Cl_x Cl_y Cl_z C1_t2’

)

Cc21,C2t,C2w,C2x,C2y,C2z,C2t2 = symbols(
’C2_1 C2_t C2_w C2_x C2_y C2_z C2_t2’

)

# CSTA1 (C1) point value-extraction elements
Cl1 = -eil

Clw = el

Cit = Pow(c,-1)*Clw

Clx = -e2

Cly = -e3

Clz = -e4

Clt2 = -2xeol
# CSTA2 (C2) point value-extraction elements

C21 = -ei2

C2w = e7

C2t = Pow(c,-1)*C2w
C2x = -e8

C2y = -e9

C2z = -el10

C2t2 = -2%eo02
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For example, in CSTA1, the element symbol C1t2 extracts 3 from an embedded point T¢.

8.1.9 CSTA differential elements

Using the commutator product x, a CSTA differential element DS, (§6.6.10) can take a
partial derivative of an implicit surface function that is represented by a CSTA entity E as

EE = g—fng x E. (8.2)

The simplest example is when E is any CSTA GIPNS 1-vector entity. The CSTA differ-
ential element DS, for differentiating in the direction n, can be a linear combination of
the CSTA differential elements.

C1Dw,C1Dt,C1Dx,C1Dy,C1Dz,C2Dw,C2Dt,C2Dx,C2Dy,C2Dz = symbols(
’C1Dw C1Dt C1Dx C1Dy C1Dz C2Dw C2Dt C2Dx C2Dy C2Dz’

)

# CSTA1 (C1) differential elements

C1Dw = C11*Clw.inv()

CiDt = C11xCilt.inv()
C1Dx = C11x*Cix.inv()
CiDy = C11*Cly.inv()
C1Dz = C11xClz.inv()

# CSTA2 (C2) differential elements
C2Dw = C21*C2w.inv()

C2Dt = C21*C2t.inv()
C2Dx = C21*C2x.inv()
C2Dy = C21*C2y.inv()
C2Dz = C21*C2z.inv()

8.1.10 DCSTA extraction elements

The DCSTA point value-extraction elements Ty (§7.2.3) are used to extract the value s
from a DCSTA point Tp as

s = Tp-T, (8.3)

The extraction elements are defined in code as:
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(
Tw,Tx,Ty,Tz,
Tww,Txx,Tyy,Tzz,
Txy,Tyz,Tzx,Twx,Twy, Twz,
Twt2,Txt2,Tyt2,Tzt2,
Tt,Ttt,Ttx,Tty,Ttz,Ttt2,
T1,Tt2,Tt4
) = symbols(
"Tw Tx Ty Tz °
"Tww Txx Tyy Tzz ’
"Txy Tyz Tzx Twx Twy Twz ’
"Twt2 Txt2 Tyt2 Tzt2 °
Tt Ttt Ttx Tty Ttz Ttt2
’T1 Tt2 Tt4’
)

# Coordinates; linear extractions
Tw = Pow(2,-1)*x((el"ei2)+(eil"~e7))
Tt = Pow(c,-1)*Tw

Tx = -Pow(2,-1)*((e2"ei2)+(eil"e8))
Ty = -Pow(2,-1)*((e37ei2)+(eil"e9))
Tz = -Pow(2,-1)*((ed4"ei2)+(eil~el10))
# Squares; quadratic extractons

Tww = e7"el

Ttt = Pow(c,-2)*Tww

Txx = e87e2

Tyy = e97e3

Tzz = e10”e4

# Cross terms; quadratic extractions
Twx = Pow(2,-1)*((el"e8)+(e27e7))
Twy = Pow(2,-1)*((el"e9)+(e3"e7))
Twz = Pow(2,-1)*((el~el0)+(ed"e7))
Ttx = Pow(c,-1)*Tux

Tty = Pow(c,-1)*Twy

Ttz = Pow(c,-1)*Tuz

Txy = Pow(2,-1)*((e8"e3)+(e97e2))
Tyz = Pow(2,-1)*((el0"e3)+(e9"e4))
Tzx = Pow(2,-1)*((e107e2)+(e8"e4))

# Coordinates * squared test vector; cubic extractions
Twt2 = (el~eo02)+(eol~e7)

Ttt2 = Pow(c,-1)*Twt2
Txt2 = (e02"e2)+(e8 eo0l)
Tyt2 = (e02"e3)+(e9"eol)
Tzt2 = (eo02~e4)+(el0"eol)
# Unit scalar extraction
Tl = -ei

# Squared test vector; quadratic extraction

Tt2 = (eo2"eil)+(ei2”eol)

# Squared squared test vector; quartic extraction
Ttd = -4xeo
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8.1.11 DCSTA extraction pseudo-inverse elements

A DCSTA extraction pseudo-inverse element (§7.2.4) has the property

T, TH = 1. (8.4)

s

The extraction pseudo-inverse elements are defined in code as:

(
iTww,iTxx,iTyy,iTzz,iTtt,
iTw,iTx,iTy,iT=z,1iTt,
iTxy,iTyz,iTzx,iTwx,iTwy,iTwz,iTtx,iTty,iTtz,
iT1,iTt2,iTt4 ) = symbols(
’1_Tww 1_Txx i_Tyy 1i_Tzz i_Ttt °’
1 Tw 1_Tx 1i_Ty 1_Tz iTt ’
’1_Txy 1i_Tyz i_Tzx i_Twx i_Twy i_Twz 1i_Ttx i_Tty i_Ttz ’
’i_T1 i_Tt2 i_Tt4’

)

iTww = -Tww

iTxx = -Txx

iTyy = -Tyy

iTzz = -Tzz

iTtt = -Pow(c,2)*Tww

iTw = Twt2

iTx = -Txt2

iTy = -Tyt2

iTz = -Tzt2

iTt = Pow(c,2)*Ttt2

iTxy = -2x%Txy

iTyz = -2xTyz

iTzx = -2x%Tzx

iTwx = 2*Twx

iTwy = 2*Twy

iTwz = 2*xTwz

iTtx = 2*Pow(c,2)*Ttx

iTty = 2*Pow(c,2)*Tty

iTtz = 2*Pow(c,2)*Ttz

iT1 = -Pow(4,-1)*Tt4
iTt2 = -Pow(2,-1)*Tt2
iTt4 = -Pow(4,-1)*T1

I

I

8.1.12 DCSTA differential elements

The DCSTA differential (§7.8.1) and pseudo-integral elements (§7.9) are:
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Dw,Dx,Dy,Dz,Dt,
Iw,Ix,Ily,Iz,It
) = symbols(
’D_w D_x D_y D_z D_t °’
T wlIxIyIzI_t’
)
# Differential elements
Dw = 2*Tw*Tww.inv()

Dx = 2*Tx*Txx.inv()
Dy = 2xTy*Tyy.inv()
Dz = 2*Tz*Tzz.inv()
Dt = 2*Tt*Ttt.inv()

# Pseudo-integral elements
Iw = Pow(2,-1)*Tww*iTw

Ix = Pow(2,-1)*Txx*iTx
Iy = Pow(2,-1)*Tyy*iTy
Iz = Pow(2,-1)*Tzz*iTz
It = Pow(2,-1)*Ttt*iTt

In recent versions of the GAlgebra module [2], the commutator product A x B is coded
as (A>>B), and the anti-commutator product A X B is coded as (A<<B). The parentheses
are required to ensure that the precedence rules for Python operators do not interfere. For
example, the derivative of a DCSTA GIPNS 2-vector surface entity €2 (§7.5) with respect
to t is written 9,02 =Q =D, x Q, and if Q is assigned to variable E, then the derivative
is coded as (Dt>>E) and evaluated symbolically as (V| (Dt>>E)). The operation (A|B)
is the inner product.

8.1.13 DCSTA directional derivative operator

The DCSTA n-directional derivative operator (§7.8.3) is defined in code as:

def Dn(w,x,y,z)
n = sqrt(wk*2 + x*k*2 + y*k*2 + z**2)
return Pow(n,-1)*(wxDw + x*Dx + y*Dy + z*Dz)

Only the direction of the spacetime vector
n = we;+rey+ yes+ ze; (8.5)

is significant. The mn-directional derivative uses the norm-unit of n, which is

n n

= . 8.6
Il Ve +ni+ni+n? (8.6)

The directional derivative of a DCSTA GIPNS 2-vector surface entity E (§7.5) is coded
as (Dn(w,x,y,z)>>E).

8.1.14 DCSTA pseudo-integral operator

The DCSTA n-directional pseudo-integral operator (§7.9) is defined in code as:
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def In(w,x,y,z)
n = sqrt(wk*2 + x*k*2 + y*k*2 + z**2)
return Pow(n,-1)*(wxIw + xxIx + y*Iy + z*Iz)

The directional pseudo-integral of a DCSTA GIPNS 2-vector surface entity E (§7.5) is
coded as (In(w,x,y,z)>>E).

8.1.15 DCSTA GIPNS 2-vector surface entities

The following subsections define, in code, many of the same surface entities that are
discussed in the paper on Ggo DCGA [7]. The most general DCSTA GIPNS 2-vector
surface entity €2 (§7.5) is the linear combination of the value-extraction elements T}
(§8.1.10). The value-extraction elements can form a general DCSTA GIPNS 2-vector
quadric surface entity Q that supports anisotropic dilations (§7.7.9). The value-extraction
elements Ty (§7.2.3) can form particular cubic surfaces known as parabolic cyclides and
particular quartic surfaces known as Dupin and Darboux cyclides that do not support
anisotropic dilations. All of the DCSTA GIPNS 2-vector surfaces €2 can be boosted
(§7.7.3) into a velocity in spacetime, but only the quadric surface entities can correctly
display length contraction or dilation effects.

8.1.16 DCSTA GIPNS 2-vector toroid

The DCSTA GIPNS 2-vector toroid is coded as:

def GIPNS_Toroid(R,r)
# Torus centered at the origin circling the z-axis.
R is the major radius
r is the minor radius
R=0 degenerates into exactly -4*Sphere(0,r)
R=r=0 degenerates into exactly -4x*eo
r=0 degenerates into non-standard circle radius R
Note, -Tt2 since signatures are negative
return (
Tt4 +
-Tt242% (R¥*2 - r**2) +
T1x (R**2 - r*%2)**x2 +
(Txx + Tyy)*(-4)*R**2

#
#
#
#
#
#

)

The Toroid is evaluated at w=ct =0 to obtain the same torus as in Gg» DCGA:

| EV(c*O*el+x*e2+y*e3+z+ed) | GIPNS_Toroid(R,r) |

At other times t # 0, the minor radius r of the toroid grows with time ¢, which could be
researched further. For instance, the toroid with major radius R and minor radius r =0,
which is a circle of radius R, will grow (at the natural speed of light ¢=1) into the toroid
with major radius R and minor radius » = R at time w = ct = R, which is a horn torus.
In spacetime, the toroid entity is a toroidal wavefront starting from a circle, and if also
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R =0 then it is exactly a spherical wavefront or lightcone as the GIPNS hypercone —4e,
(GOPNS origin point).

8.1.17 DCSTA GIPNS 2-vector Dupin cyclide

The DCSTA GIPNS 2-vector Dupin cyclide ® is coded as:

def GIPNS_DupinCyclide(R,r1,r2)
# DupinCyclide generalizes the torus.

Types of cyclide:

Ring cyclide when (ri1+r2)<2R
Spindle cyclide when (ri1+r2)>2R
Types of torus:

Horn torus when (ri=r2)=R

Ring torus when (r1=r2)<R

Spindle torus when (r1=r2)>R

#

#

#

#

#

#

#

#

# R is major radius in the xy-plane.

# rl and r2 are minor radii.

# rl is the radius of sphere centered at x=+R.
# r2 is the radius of sphere centered at x=-R.

# When r1=r2, we get exactly a Toroid(R,r=ri=r2).
# When rl+r2=2R, we get the union of two spheres
# that touch in a tangent point, exactly.

#
#
a
u
c
b

Note: -Tt2 since signatures are negative.
=R
(r1+r2) *Pow(2,-1)
(r1-r2)*Pow(2,-1)
sqrt (a*x*2-c**2)
return (
Tt4 +
2% (b**2-ux*2) *Tt2 +
(b**x2-u*x*2) *x*x2xT1 +
-Ax (ax*2+%Txx - 2*%akxcxuxTx + Ck*2¥wk*k2*xT1) +
-4xbxx2xTyy

I

I

I

The DupinCyclide is evaluated at t =0 to obtain the same Dupin cyclide as in Gg s DCGA

|EV(c*O*e1+x*e2+y*e3+z*e4)IDupinCyclide(R,rl,r2) |

Similar to the Toroid, the minor radii of the DupinCyclide grow with time in spacetime.

8.1.18 DCSTA GIPNS 2-vector horned Dupin cyclide

The DCSTA GIPNS 2-vector horned Dupin cyclide T' is coded as:
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def GIPNS_HornedDupinCyclide(R,r1,r2)
# Compared to DupinCyclide, just exchange values of
# u and ¢ to get horned Dupin cyclide.
# For rl=r2: symmetrical, with horn points on y-axis.
# For (r1+r2)<2R: horned ring cyclide.
# For (r1+r2)>2R: horned spindle cyclide.
# For (r1+r2)=2R: union of two spheres exactly.
a==R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a*x*2-u**2)
return (
Tt4 +
-2% (b**2-c**2) *Tt2 +
(b**x2-c*x*2) **x2%xT1 +
-4x (ax*2*%Txx - 2kakcxuxTx + ck*x2xux*2*T1) +
-4xbxx2xTyy
)

Similar to the Toroid, the minor radii of the HornedDupinCyclide grow with time in
spacetime. When r; = ry and some time w = ct = p,, is chosen, it is possible to produce
an ovoidal ring cyclide called a Blum cyclide of the form

A+ y*+ 222+ F*+ Gy + H2*+0 = 0

with scalar coefficients A, F',G, H,O. When 11 # 15, an asymmetrical form of the ovoidal
ring cyclide can be produced. As time w increases from w =0 to w = p,, the radius at the
horn points increases to p,, when ¢=1. The rate of radius increase at the horn points is
at light speed c.

8.1.19 DCSTA GIPNS 2-vector ellipsoid

The DCSTA GIPNS 2-vector ellipsoid is coded as:

def GIPNS_Ellipsoid(px,py,pz,rx,ry,rz)
# Axis-aligned ellipsoid.
return (
Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
Tzz*Pow (rz**2,-1) +
-Tx*2*px*Pow (rx**2,-1)
-Ty*2*py*Pow (ry**2,-1)
-Tz*2xpz*Pow (rz**2,-1)
Tlxpx**2xPow (rx**2,-1)
Tlxpy**2xPow (ry**2,-1)
Tlxpz**2xPow(rz**2,-1)
-T1

+ + + + + +
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An ellipsoid, or any other quadric surface entity (§7.5), that has an initial position (p,,
Dy, D-) can be boosted using a translated-boost (§7.7.4). After the boost operation(s) on
a quadric surface entity, the boosted entity can be evaluated at any time ¢, where the
entity has a moving position and displays a length contraction effect.

8.1.20 DCSTA GIPNS 2-vector elliptic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderX(px,py,pz,rx,ry,rz)

# x-axis aligned elliptic cylinder.

return (
T1x (py**2*Pow (ry**2,-1) +pz**2*Pow(rz**2,-1)-1) +
Tyy*Pow (ry**2,-1) +
Tzz*Pow (rz**2,-1) +
-2%py*Ty*Pow (ry**2,-1) +
-2*pz*Tz*Pow (rz**2,-1)

8.1.21 DCSTA GIPNS 2-vector elliptic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderY(px,py,pz,rx,ry,rz)

# y-axis aligned elliptic cylinder.

return (
T1x (px**2*Pow (rx**2,-1) +pz**2xPow (rz**2,-1)-1) +
Txx*Pow (rx**2,-1) +
Tzz*Pow (rz**2,-1) +
-2xpx*Tx*Pow (rx**2,-1) +
-2xpz*xTz*Pow (rz**2,-1)

8.1.22 DCSTA GIPNS 2-vector elliptic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderZ(px,py,pz,rxX,ry,rz)

# z-axis aligned elliptic cylinder.

return (
T1x (px**2*Pow (rx**2,-1) +py**2xPow (ry**2,-1)-1) +
Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
-2xpx*Tx*Pow (rx**2,-1) +
-2xpy*Ty*Pow (ry**2,-1)

8.1.23 DCSTA GIPNS 2-vector elliptic cone, x-axis aligned

The DCSTA GIPNS 2-vector z-azxis aligned elliptic cone is coded as:
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def GIPNS_ConeX(px,py,pz,rx,ry,rz)

# x-axis aligned elliptic cone.

return (
-T1xpx**2*Pow (rx**2,-1) +
T1l*py**2*Pow (ry**2,-1) +
T1xpz**2*Pow (rz**2,-1) +
-Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
Tzz*Pow (rz**2,-1) +
2%px*Tx*Pow (rx**2,-1) +
-2*py*Ty*Pow (ry**2,-1) +
-2*pz*Tz*Pow (rz**2,-1)

8.1.24 DCSTA GIPNS 2-vector elliptic cone, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cone is coded as:

def GIPNS_ConeY(px,py,pz,rX,ry,rz)

# y-axis aligned elliptic cone.

return (
Tlxpx**2xPow (rx**2,-1) +
-Tlxpy**2xPow (ry**2,-1) +
Tlxpz**2xPow (rz*x*2,-1) +
Txx*Pow (rx**2,-1) +
-Tyy*Pow (ry**2,-1) +
Tzz*Pow (rz**2,-1) +
-2xpx*Tx*Pow (rx**2,-1) +
2xpy*Ty*Pow (ry**2,-1) +
-2xpz*xTz*Pow (rz**2,-1)

8.1.25 DCSTA GIPNS 2-vector elliptic cone, z-axis aligned

The DCSTA GIPNS 2-vector z-azis aligned elliptic cone is coded as:

def GIPNS_ConeZ(px,py,pz,rX,ry,rz)

# z-axis aligned elliptic cone.

return (
Tlxpx**2xPow (rx**2,-1) +
Tlxpy**2xPow (ry**2,-1) +
-Tlxpz**2xPow (rz**2,-1) +
Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
-2xpx*Tx*Pow (rx**2,-1) +
-2xpy*Ty*Pow (ry**2,-1) +
2xpz*xTz*Pow (rz**2,-1)
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8.1.26 DCSTA GIPNS 2-vector elliptic paraboloid, x-axis aligned
The DCSTA GIPNS 2-vector z-azxis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidX(px,py,pz,rx,ry,rz)

# x-axis aligned elliptic paraboloid.

return (
-2*pz*Tz*Pow (rz**2,-1)
-2xpy*Ty*Pow (ry**2,-1)
-Tx*Pow(rx,-1) +
Tzz*Pow (rz**2,-1) +
Tyy*Pow (ry**2,-1) +
T1xpz**2xPow(rzx*2,-1)
T1xpy**2xPow (ry**2,-1)
T1xpx*Pow(rx,-1)

+ +

+ +

8.1.27 DCSTA GIPNS 2-vector elliptic paraboloid, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidY(px,py,pz,rx,ry,rz)
# y-axis aligned elliptic paraboloid.
return (

-2xpx*Tx*Pow (rx**2,-1) +
-2xpz*Tz*Pow (rz**2,-1) +
-Ty*Pow(ry,-1) +

Txx*Pow (rx**2,-1) +
Tzz*Pow (rz**2,-1) +
Tlxpx**2xPow (rx**2,-1) +
Tl*pz**2xPow(rz**2,-1) +

T1xpy*Pow(ry,-1)

8.1.28 DCSTA GIPNS 2-vector elliptic paraboloid, z-axis aligned
The DCSTA GIPNS 2-vector z-azis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidZ(px,py,pz,rx,ry,rz)
# z-axis aligned elliptic paraboloid.
return (

-2xpx*Tx*Pow (rx**2,-1) +
-2xpy*Ty*Pow (ry**2,-1) +
-Tz*Pow(rz,-1) +

Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
Tlxpx**2xPow (rx**2,-1) +
Tlxpy**2xPow (ry**2,-1) +

T1*pz*Pow(rz,-1)
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8.1.29 DCSTA GIPNS 2-vector hyperbolic paraboloid

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic paraboloid is coded as:
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def GIPNS_HParaboloidZ(px,py,pz,rx,ry,rz)
# z-axis aligned hyperbolic paraboloid.
# A saddle-like shape
# that "saddles" x-axis
# and "straddles" y-axis
# with "up" direction as z-axis.
return (
-2xpx*Tx*Pow (rx**2,-1) +
2xpy*Ty*Pow (ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow (rx**2,-1) +
-Tyy*Pow (ry**2,-1) +
Tlxpx**2xPow (rx**2,-1) +
-Tlxpy**2xPow (ry**2,-1) +
T1*pz*Pow(rz,-1)

8.1.30 DCSTA GIPNS 2-vector hyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperboloid of one sheet is coded as:

def GIPNS_Hyperboloidl(px,py,pz,rx,ry,rz)
# z-axis aligned hyperboloid of one sheet.
# An hourglass-like shape that
# 1is elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (
-2%px*Tx*Pow (rx**2,-1) +
-2*py*Ty*Pow (ry**2,-1) +
2%pz*Tz*Pow (rz**2,-1) +
Txx*Pow (rx**2,-1) +
Tyy*Pow (ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1xpx**2*Pow (rx**2,-1) +
T1xpy**2*Pow (ry**2,-1) +
-T1xpz**2*Pow (rz**2,-1) +
-T1

8.1.31 DCSTA GIPNS 2-vector hyperboloid of two sheets

The DCSTA GIPNS 2-vector hyperboloid of two sheets is coded as:
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def GIPNS_Hyperboloid2(px,py,pz,rx,ry,rz)
# z-axis aligned hyperboloid of two sheets.
# A shape like two dishes that
# are elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (
Tx*2*px*Pow (rx**2,-1) +
Ty*2*xpy*Pow (ry**2,-1) +
-Tz*2*pz*Pow (rz**2,-1) +
-Txx*Pow (rx**2,-1) +
-Tyy*Pow (ry**2,-1) +
Tzz*Pow (rz**2,-1) +
-T1xpx**2*Pow (rx**2,-1) +
-T1xpy**2*Pow (ry**2,-1) +
T1xpz**2*Pow (rz**2,-1) +
-T1

8.1.32 DCSTA GIPNS 2-vector parabolic cylinder, x-axis aligned
The DCSTA GIPNS 2-vector z-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderX(px,py,pz,rx,ry,rz)
# Cylinder along x-axis with
# constant parabola cross-section in yz-plane.
return (
-2*py*Ty*Pow (ry**2,-1) +
-Tz*Pow(rz,-1) +
Tyy*Pow (ry**2,-1) +
T1xpy**2*Pow (ry**2,-1) +
T1*pz*Pow(rz,-1)

8.1.33 DCSTA GIPNS 2-vector parabolic cylinder, y-axis aligned
The DCSTA GIPNS 2-vector y-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderY (px,py,pz,rx,ry,rz)
# Cylinder along y-axis with
# constant parabola cross-section in xz-plane.
return (
-2%px*Tx*Pow (rx**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow (rx**2,-1) +
T1xpx**2*Pow (rx**2,-1) +
T1*pz*Pow(rz,-1)

8.1.34 DCSTA GIPNS 2-vector parabolic cylinder, z-axis aligned
The DCSTA GIPNS 2-vector z-azis aligned parabolic cylinder is coded as:
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def GIPNS_PCylinderZ(px,py,pz,rx,ry,rz)
# Cylinder along z-axis with
# constant parabola cross-section in xy-plane.
return (
-2%px*Tx*Pow (rx**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow (rx**2,-1) +
T1xpx**2*Pow (rx**2,-1) +
T1xpy*Pow(ry,-1)

8.1.35 DCSTA GIPNS 2-vector hyperbolic cylinder, x-axis aligned
The DCSTA GIPNS 2-vector z-azxis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderX(px,py,pz,rx,ry,rz)
# Cylinder along x-axis with
# constant hyperbola cross-section in yz-plane
# opening up and down the y-axis.
return (

-Ty*2*py*Pow (ry**2,-1) +
Tz*2xpz*Pow (rz**2,-1) +
Tyy*Pow (ry**2,-1) +

-Tzz*Pow(rz**2,-1) +
T1xpy**2*Pow (ry**2,-1) +

-T1xpz**2*Pow (rz**2,-1) +
-T1

8.1.36 DCSTA GIPNS 2-vector hyperbolic cylinder, y-axis aligned
The DCSTA GIPNS 2-vector y-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderY(px,py,pz,rx,ry,rz)
# Cylinder along y-axis with
# constant hyperbola cross-section in xz-plane
# opening up and down the z-axis.
return (

-Tz*2*pz*Pow (rz**2,-1) +
Tx*2*px*Pow (rx**2,-1) +
Tzz*Pow(rz**2,-1) +

-Txx*Pow (rx**2,-1) +
Tlxpz*x*2*Pow (rz**2,-1) +
-Tlxpx**2xPow (rx**2,-1) +
-T1

8.1.37 DCSTA GIPNS 2-vector hyperbolic cylinder, z-axis aligned
The DCSTA GIPNS 2-vector z-azis aligned hyperbolic cylinder is coded as:



168 SECTION 8

def GIPNS_HCylinderZ(px,py,pz,rx,ry,rz)
# Cylinder along z-axis with
# constant hyperbola cross-section in xy-plane
# opening up and down the x-axis.
return (

-Tx*2*px*Pow (rx**2,-1) +
Ty*2xpy*Pow (ry**2,-1) +
Txx*Pow (rx**2,-1) +

-Tyy*Pow (ry**2,-1) +
T1xpx**2*Pow (rx**2,-1) +

-T1xpy**2*Pow (ry**2,-1) +

-T1

)

8.1.38 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to x-axis
The DCSTA GIPNS 2-vector parallel planes pair 1 x-axis is coded as:

def GIPNS_PPlanesPairX(px1,px2)
# Parallel planes pair, x=pxl and x=px2.
return ( Txx - (pxl+px2)*Tx + pxl*px2*T1 )

8.1.39 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to y-axis
The DCSTA GIPNS 2-vector parallel planes pair 1 y-axis is coded as:
def GIPNS_PPlanesPairY(pyl,py2)

# Parallel planes pair, y=pyl and y=py2.
return ( Tyy - (pyl+py2)*Ty + pyl*py2*T1 )

8.1.40 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to z-axis
The DCSTA GIPNS 2-vector parallel planes pair | z-axis is coded as:
def GIPNS_PPlanesPairZ(pzl,pz2)

# Parallel planes pair, z=pzl and z=pz2.
return ( Tzz - (pzl+pz2)*Tz + pzl*pz2*T1 )

8.1.41 DCSTA GIPNS 2-vector non-parallel planes pair, x-axis aligned
The DCSTA GIPNS 2-vector z-azis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairX(py,pz,ry,rz)

# The non-parallel planes pair aligned with x-axis
is a type of cylinder with constant cross section
that is a pair of lines in the yz-plane. The lines
intersect at (py,pz), and the slopes of the two
lines are +rz/ry and -rz/ry.
return (

-2xpy*Ty*Pow (ry**2,-1) +

2xpz*xTz*Pow (rz**2,-1) +

Tyy*Pow (ry**2,-1) +

-Tzz*Pow (rz**2,-1) +

Tlxpy**2xPow (ry**2,-1) +

-Tlxpz**2xPow (rz**2,-1)

H O H H R
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8.1.42 DCSTA GIPNS 2-vector non-parallel planes pair, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairY(px,pz,rx,rz)

# The non-parallel planes pair aligned with y-axis
is a type of cylinder with constant cross section
that is a pair of lines in the xz-plane. The lines
intersect at (px,pz), and the slopes of the two
lines are +rz/rx and -rz/rx.
return (

-2xpx*Tx*Pow (rx**2,-1) +

2xpzxTz*Pow (rz**2,-1) +

Txx*Pow (rx**2,-1) +

-Tzz*Pow(rz**2,-1) +

Tlxpx**2xPow (rx**2,-1) +

-Tl*xpz**2xPow (rz**2,-1)

#
#
#
#

8.1.43 DCSTA GIPNS 2-vector non-parallel planes pair, z-axis aligned

The DCSTA GIPNS 2-vector z-azis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairZ(px,py,rx,ry)

# The non-parallel planes pair aligned with z-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the xy-plane. The lines
# intersect at (px,py), and the slopes of the two
# lines are +ry/rx and -ry/rx.
return (

-2xpx*Tx*Pow (rx**2,-1) +

2xpy*Ty*Pow (ry**2,-1) +

Txx*Pow (rx**2,-1) +

-Tyy*Pow (ry**2,-1) +

Tlxpx**2xPow (rx**2,-1) +

-Tlxpy**2xPow (ry**2,-1)

8.1.44 CSTA1 GIPNS 1-vector hyperplane

The CSTA1 GIPNS 1-vector hyperplane (§6.4.3) is coded as:

def GIPNS_HPlanel(p,n)
# CSTA1 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( n + (pln)*eil )
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8.1.45 CSTA2 GIPNS 1-vector hyperplane
The CSTA2 GIPNS 1-vector hyperplane (§6.4.3) is coded as:

def GIPNS_HPlane2(p,n)
# CSTA2 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
p2 = (pllel)*e7 + (-plle2)*e8 + (-plle3)*e9 + (-plled)*ell
n2 = (nllel)*e7 + (-nlle2)*e8 + (-nlle3)*e9 + (-nlled)*ell
return ( n2 + (p2|n2)*ei2 )

8.1.46 DCSTA GIPNS 2-vector hyperplane
The DCSTA GIPNS 2-vector hyperplane (§7.3.2) is coded as:

def GIPNS_HPlane(p,n)
# DCSTA 2-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( GIPNS_HPlanel(p,n) GIPNS_HPlane2(p,n) )

8.1.47 CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (§6.4.5)
is coded as:

def GIPNS_HPSpherel(p,r)
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=Ix|r| makes imaginary hyperpseudosphere
return ( EV1(p) + Pow(2,-1)*r**2xeil )

8.1.48 CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (§6.4.5)
is coded as:

def GIPNS_HPSphere2(p,r)
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=Ix*|r| makes imaginary hyperpseudosphere
return ( EV2(p) + Pow(2,-1)*r**2%ei2 )

8.1.49 DCSTA GIPNS 2-vector hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperhyperboloid of one sheet (hyperpseudosphere) (§7.3.2)
is coded as:
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def GIPNS_HPSphere(p,r)
# DCSTA 2-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=Ix*|r| makes imaginary hyperpseudosphere
return ( GIPNS_HPSpherel(p,r) “GIPNS_HPSphere2(p,r) )

8.1.50 CSTA1l GIPNS 2-vector plane

The CSTA1 GIPNS 2-vector plane (§6.4.10) is coded as:

def GIPNS_Planel(p,da,db)
# p is any STAl1l point on the plane
# da is STA1l direction one of plane
# db is STA1l direction two of plane
# The STA1l plane bivector B is da~db

pl=7p
Bl = da~db
N1 = Pow(sqrt(scalar(B1| (el*Bl.rev()*el))),-1)*B1

D1 = ((1#N1*1)|I41.inv())
return ( D1 - ((p1|D1)~eil) )

8.1.51 CSTA2 GIPNS 2-vector plane

The CSTA2 GIPNS 2-vector plane (§6.4.10) is coded as:

def GIPNS_Plane2(p,da,db)
# p is any STA1l point on the plane
# da is STAl1l direction one of plane
# db is STA1l direction two of plane
p2 = (plel)*e7+(-ple2)*e8+(-ple3)*e9+(-pled) *el0
da2 = (dalel)*e7+(-dale2)*e8+(-dale3)*e9+(-dale4d)*el0
db2 = (dblel)*e7+(-dble2)*e8+(-dble3)*e9+(-dbled)*el0
B2 = da2~db2
N2 = Pow(sqrt(scalar(B2| (e7*B2.rev()*e7))),-1)*B2
D2 = (N2|I42.inv())
return ( D2 - ((p2|D2)~ei2) )

I

I

8.1.52 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane (§7.3.6) is coded as:

def GIPNS_Plane(p,da,db)
# p is any STAl1l point on the plane
# da is STA1l direction one of plane
# db is STA1l direction two of plane
return ( GIPNS_Planel(p,da,db) GIPNS_Plane2(p,da,db) )

The standard plane can be intersected with all other DCSTA GIPNS surface entities.
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8.1.53 CSTA1l GIPNS 3-vector line
The CSTA1 GIPNS 3-vector line (§6.4.11) is coded as:

def GIPNS_Linel(p,d)
# p is any STAl1l point on the line
# d is the STAl1 direction of line

dc = elxdxel
d1 = Pow(sqrt(scalar(dldc)),-1)*d
D1 = d1|(-I41)

return ( D1 + ((pID1)~eil) )

8.1.54 CSTA2 GIPNS 3-vector line
The CSTA2 GIPNS 3-vector line (§6.4.11) is coded as:

def GIPNS_Line2(p,d)
# p is any STAl1l point on the line
# d is the STAl1l direction of line

p2 = (plel)*e7+(-ple2)*e8+(-ple3)*e9+(-pled) *el0

dc = elxdxel

dl = Pow(sqrt(scalar(d|dc)),-1)*d

d2 = (dillel)*e7+(-dlle2)*e8+(-d1l|e3)*e9+(-dl]ed)*el0
D2 = d2|(-142)

return ( D2 + ((p2|D2)~ei2) )

8.1.55 DCSTA GIPNS 6-vector standard line
The DCSTA GIPNS 6-vector standard line (§7.3.7) is coded as:

def GIPNS_Line(p,d)
# p is any STAl point on the line
# d is the STAl1l direction of line
return ( GIPNS_Linel(p,d) "GIPNS_Line2(p,d) )

The standard line can be intersected with all other DCSTA GIPNS surface entities.

8.1.56 CSTA1 plane-line intersection
The CSTA1 plane-line intersection (§6.5.5) is coded as:

def GIPNS_PlaneLinelIntersectionl(p,l)
# Intersect GIPNS_Planel p and GIPNS_Linel 1
plwedge = (p~1)
if plwedge !'= 0: return eil
plmeet = (((p[I41.inv())~(11I41.inv()))|I41)
if plmeet == return 1
return ((elxplmeetxel) |p)~1

8.1.57 CSTAZ2 plane-line intersection
The CSTA2 plane-line intersection (§6.5.5) is coded as:
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def GIPNS_PlanelLinelIntersection2(p,l)
# Intersect GIPNS_Plane2 p and GIPNS_Line2 1
plwedge = (p~1)
if plwedge !'= 0: return ei2
plmeet = (((p[I42.inv())~(11I42.inv()))|I42)
if plmeet == return 1
return ((e7*plmeet*e7) |p)~1

8.1.58 CSTA1 GOPNS 2-vector point pair decomposition
The decomposition of a CSTA1 GOPNS 2-vector point pair (§6.5.3) is coded as:

def GOPNS_PointPairDecompl (pp,pm)
# pp is a CSTA1l GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA1l null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pplpp)))*(-eillpp).inv() )

8.1.59 CSTA2 GOPNS 2-vector point pair decomposition
The decomposition of a CSTA2 GOPNS 2-vector point pair (§6.5.3) is coded as:

def GOPNS_PointPairDecomp2 (pp,pm)
# pp is a CSTA2 GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA2 null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pplpp)))*(-ei2|pp).inv() )

8.1.60 CSTA1 GOPNS 2-vector flat point projection
The projection of the point of a CSTA1 GOPNS 2-vector flat point (§6.5.5) is coded as:

def GOPNS_FlatPointProji(fp)
# fp is a CSTA1l GOPNS 2-vector flat point
# returns the STAl vector projection of the point
E = eol”eil
return ( -(fpleol)*Pow(scalar(E|fp),-1) - eol )

8.1.61 CSTA2 GOPNS 2-vector flat point projection
The projection of the point of a CSTA2 GOPNS 2-vector flat point (§6.5.5) is coded as:

def GOPNS_FlatPointProj2(fp)
# fp is a CSTA2 GOPNS 2-vector flat point
# returns the STA2 vector projection of the point
E = e027ei2
return ( -(fpleo2)*Pow(scalar(E|fp),-1) - eo2 )

8.1.62 SA1l, STA1, and CSTA1 2-versor rotor
The CSTA1 2-versor spatial rotor (§2.6) is coded as:
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def Rotorl(axis,angle)

# Spatial rotor in SA1, STA1l, and CSTA1l, where

# axis is SA1 vector axis of rotation and

# angle is scalar angle of rotation in degrees.

axl = Pow(norm(axis),-1)*axis

ang = pi*Pow(180,-1)*angle

return (
cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax1|(-I31))

8.1.63 SA2, STA2, and CSTA2 2-versor rotor
The CSTA2 2-versor spatial rotor (§2.6) is coded as:

def Rotor2(axis,angle)
# Spatial rotor in SA2, STA2, and CSTA2, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees.
axl = Pow(norm(axis),-1)*axis

ax2 = (-axll|e2)*e8 + (-axl|e3)*e9 + (-axl|ed)*ell
ang = pi*Pow(180,-1)*angle
return (
cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax2| (-132))
)

8.1.64 DCSTA 4-versor rotor
The DCSTA 4-versor spatial rotor (§7.7.6) is coded as:

def Rotor(axis,angle)
# Spatial rotor in DCSTA, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees
return ( Rotorl(axis,angle) Rotor2(axis,angle) )

8.1.65 CSTA1 2-versor line rotor

The CSTA1 2-versor line rotor (§6.6.5) for the rotation around a line is coded as:

def LRotoril(p,d,a)
# Rotor around a line 1 by angle a in degrees
# line 1 is given by STAl1 point p and direction d
1 = GIPNS_Linel(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-elll) )

8.1.66 CSTAZ2 2-versor line rotor

The CSTA2 2-versor line rotor (§6.6.5) for the rotation around a line is coded as:
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def LRotor2(p,d,a)
1 = GIPNS_Line2(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-e7(1) )

8.1.67 DCSTA 4-versor line rotor
The DCSTA 4-versor line rotor (§7.7.6) for the rotation around a line is coded as:

def LRotor(p,d,a)
return LRotorl(p,d,a) LRotor2(p,d,a)

8.1.68 STA1 and CSTA1 2-versor hyperbolic rotor (boost operator)

The CSTA1 2-versor spacetime hyperbolic rotor (boost operator) (8§5.2.3) is coded as:

def HRotorl(b,d)
# STA1l and CSTA1l boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SAl1l direction vector of boost velocity
vl = Pow(sqrt(scalar(-d|d)),-1)*d
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(vi~el) )

The b is the natural speed [,. The d is the SA1 spatial velocity direction v that is
normalized as v1. The spatial velocity of the boost is v = fycv = ||v||V relative to an
observer ot =cte;. The r is the rapidity ¢, = atanh(Sy).

8.1.69 STA2 and CSTA2 2-versor hyperbolic rotor (boost operator)

The CSTA2 2-versor spacetime hyperbolic rotor (boost operator) (§6.6.8) is coded as:

def HRotor2(b,d)
# STA2 and CSTA2 boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
vl = Pow(sqrt(scalar(-d|d)),-1)*d
v2 = (-vlle2)*e8 + (-v1|e3)*e9 + (-vl|ed)*ell
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v2~e7) )

8.1.70 DCSTA 4-versor hyperbolic rotor (boost operator)
The DCSTA 4-versor spacetime hyperbolic rotor (boost operator) (§7.7.3) is coded as:

def HRotor(b,d)
# DCSTA boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SAl1l direction vector of boost velocity
return ( HRotorl(b,d) “HRotor2(b,d) )

For an anisotropic dilation (§7.7.9) of a quadric surface Q by factor d in direction d, then
speed b should be set to 3y =+/1 —d?, which may be an imaginary number.
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The anisotropic dilation of Q by a dilation factor 4 in an SA1 direction
v=vx*e2+vy*e3+vzxed is coded as:

((

HRotor (sqrt (1-d**2) ,v) *

Q=

HRotor (sqrt (1-d**2),v) .rev()
) |IDS) *IDS . inv()

The projection using IDS is the space projection (§7.7.2) into Go s DCSA, which discards
imaginary components that are by-products of the directed scaling operation. A good
example to try is Q=Ellipsoid(px,py,pz,rx,ry,rz).

8.1.71 CSTA1 2-versor translator

The CSTA1 2-versor spacetime translator (§6.6.4) is coded as:

def Translatoril(d)
# CSTA1 spacetime translator, where
# d is an STAl1l spacetime displacement vector.
dl =d
return ( 1 - Pow(2,-1)*(d1"eil) )

8.1.72 CSTAZ2 2-versor translator

The CSTA2 2-versor spacetime translator (§6.6.4) is coded as:

def Translator2(d)
# CSTA2 spacetime translator, where
# d is an STAl spacetime displacement vector.
d2 = (dlel)*e7 + (-dle2)*e8 + (-d|e3)*e9 + (-d|ed)*el0
return ( 1 - Pow(2,-1)*(d27ei2) )

8.1.73 DCSTA 4-versor translator

The DCSTA 4-versor spacetime translator (§7.7.7) is coded as:

def Translator(d)
# DCSTA spacetime translator, where
# d is an STAl1l spacetime displacement vector.
return ( Translatorl(d) Translator2(d) )

8.1.74 CSTA1 2-versor isotropic dilator

The CSTA1 2-versor spacetime isotropic dilator (§6.6.6) is coded as:

def Dilator1(d)
# CSTA1l isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(eil~eol) )
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8.1.75 CSTA2 2-versor isotropic dilator

The CSTA2 2-versor spacetime isotropic dilator (§6.6.6) is coded as:

def Dilator2(d)
# CSTA2 isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei2"e02) )

8.1.76 DCSTA 4-versor isotropic dilator

The DCSTA 4-versor spacetime isotropic dilator (§7.7.8) is coded as:

def Dilator(d)
# DCSTA isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Dilator1(d) Dilator2(d) )

The anisotropic dilator (§7.7.9) on quadric surface entities is implemented using the
hyperbolic rotor (§8.1.70).

8.2 Example computations

8.2.1 Reframe to new observer in STA

The observer position is ot = cte;, and an observable vt = (0 + v)t moves relative to o,
where

v = BvceQZ%ceg. (8.7)
We want to passively transform observable o, which is the conventional coordinate time ¢
observer, relative to the rest frame of the observable v with proper time 7. However, we
prefer not to passively transform ¢ into 7, and prefer to get a velocity subtraction in the
frame of 0. Solution: use a passive boost operation (§5.2.3) on o, followed by a spacetime
contraction.

o_rel_v = (
HRotor1( Rational(1,2), e2 ).rev()*
( c*xtxel )x
HRotor1( Rational(1,2), e2 )
)
normalized = c*t*Pow( scalar(o_rel_vl|el), -1 )*o_rel_v
normalized

normalized = ctel—%teg. (8.8)
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Observable o is seen to be moving with velocity v = —%ceg relative to observable v. The
spacetime contraction is a normalization of the conventional observer component o into
the normalized spacetime velocity value ¢y or spacetime position value ct~y,.

8.2.2 Collinear velocity addition in STA

A particle moves with velocity u= %ceg relative to another particle moving with velocity
V= %ceg relative to an observer o= ce;. The two velocities u and v are collinear, and if we
simply add the velocities, we may conclude that u relative to o is a velocity v+u= gceg.
However, this speed is greater than light speed ¢, which according to the physical theory
of special relativity is an impossible speed. Velocities cannot be simply added, and we
must use a reframe operation to reframe u relative to o. Relative to v = o + v, the
particle moving with velocity u is written ut = ot +ut = cte; + ut, where this o is v as the
observer and this time t is its proper time. We want this w reframed relative to observer
o of v=o0-+v. The solution is to apply to w the operation for the reverse of the reframe
relative to v that goes back to relative to its o, and this reframe is also seen as boosting
the particle w =0+ u by the velocity v relative to o.

u_rel_o = (
HRotor1( Rational(1,2), e2 )x*
( cxt*el + Rational(3,4)*c*xt*xe2 )x*
HRotor1( Rational(1,2), e2 ).rev()

)
normalized = c*t*Pow( scalar(u_rel_olel), -1 )*u_rel_o
normalized
. 10
normalized = cte1+ﬁcteg. (8.9)

The result is relativistic velocity addition, where the boost of velocities does not exceed
the speed of light c.

8.2.3 Velocity addition in STA

The velocities u and v need not be collinear, and the same operation of the previous
section (§8.2.2) for collinear velocities can be applied to reframe any velocity u relative to
v=o0+ Vv into u relative to 0. The result is the so-called velocity-addition formula, which
could also be called the velocity boost formula,

Urely —> Urelo = O+ Urelo (810)

= otudv (8.11)
u”0+\/1—”2—2”2u”+v

cYo+ v (8.12)

c2

where 0= c~y, and the Gy 3 SA metric gives

<>
I
Il

(8.13)

V2= -1 (8.14)
u-v = —|ul||v||cos(Guv)- (8.15)
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The notation u @ v can be read “u boosted by v” since this is the actual operation, but
this may be backwards compared to some other literature. In general, u® v+ v@u. Some
other identities are

u=ul"+u’ = (W-VFuAV)VI=(—u-V)V+(VAU)-v (8.16)
vl
L = vl 1
et (817)

V-8
When the boost velocity approaches light speed [|v|| — ¢, we get

|lul|cos(fuv)V+ v c(||ullcos(fuv) + )V .

udv = = =CV=V. 8.19
1+ HUHCOCS(Guv) c+ ||ul|cos(Ouv) (8.19)
For collinear u and v, then
ubv=avdv=vdu = % (8.20)
1 Bullivi
where as the boost velocity approaches light speed [|v| — ¢,
ubv — M:cﬁ:v. (8.21)
¢+ [[uf
For perpendicular u and v, then
2
udv = 1—Mu+V:iu+v (8.22)
c Vv

where as the boost velocity approaches light speed [|[v|]| — ¢, u/v% —0and u® v —v.
The velocity-addition formula is derived and discussed more in [9] and (§5.2.3).

8.2.4 Boost of an ellipsoid entity for contraction effect

Any DCSTA GIPNS 2-vector quadric surface entity can be boosted into a velocity in
spacetime. Boosting sets the quadric surface into motion at constant velocity and gives the
surface a length contraction effect. As an example of the contraction effect, we can boost
an ellipsoid to a natural speed 3y = V1 — d? for the dilation factor d. A good example is
to choose d =1/2 to squeeze the ellipsoid into one-half its length in the direction of the
velocity.

moving_ellipsoid = (

HRotor ( sqrt(l1-Rational(1,2)*%*2), e2 )x

GIPNS_Ellipsoid(0,0,0,10,10,10)*

HRotor ( sqrt(1-Rational(1,2)*x2), e2 ).rev()
)
print( N(V|moving_ellipsoid) )

The moving_ellipsoid is evaluated at a symbolic point V. The full symbolic output can
be long, therefore numeric output has been generated using N(). The result is printed
in plain text using print(). Output of this form can be graphed using Mayavi. For
graphing, it works well to use natural units, where c=1, so that the graph can be near the
origin. Mayavi seems to work best if graphing can be limited to a small cube around the
origin that is about 420 units on each axis. If Mayavi is installed and working, a small
mayavi.py python file can be created to graph this output (copied into surface) as:
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from __future__ import division
from numpy import *
from mayavi import mlab

mlab.figure(bgcolor=(1,1,1))
X, ¥y, z = mgrid[-20:20:100j, -20:20:100j, -20:20:100j]

# axes

cylx = y**2 + zx*x2 - 1/10

cyly = x**2 + zx*x2 - 1/10

cylz = y**2 + xx*x2 - 1/10
mlab.contour3d(x,y,z,cylx,contours=[0],opacity=0.25,color=(1,0,0))
mlab.contour3d(x,y,z,cyly,contours=[0],opacity=0.25,color=(0,1,0))
mlab.contour3d(x,y,z,cylz,contours=[0],opacity=0.25,color=(0,0,1))

# function for rendering a dot somewhere
def dotat(px,py,pz):
blackdot = (x-px)**2 + (y-py)**2 + (z-pz)**2 - 1/sqrt(5)
mlab.contour3d(
X, y, z, blackdot, contours=[0],
opacity=0.5, color=(0,0,0)
)

return

# plot some dots
dotat(5,0,0)
dotat(0,10,0)
dotat (0,0,10)

# Set the light speed (units per second)
# Use a small unit or else boosted moving surfaces move
# out of graphing range after only a few time units.
c=1
# Set the time.
# Boosted surfaces move natural-speed units per time unit.
# At t=20, a surface at speed c=1 moves out of graphing range.
t =0
# The numerical printed output, copied into here:
surface = (
0.03*cx*2xt**x2 - 0.0692820323027551*c*xt*x +
0.04*x**2 + 0.01*y**2 + 0.01*z**x2 - 0.999999999999999
)
# Mayavi rendering function
mlab.contour3d(
X, y, z, surface, contours=[0], opacity=0.5,
color=(0.0, 1.0, 1.0)
)
mlab.show ()
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The mayavi.py file is saved and then run from a command line as:

|ipython mayavi.py

y=10

b » € ey
@

Figure 8.1. Ellipsoid (sphere r =10) boosted to By =4/1— (%)2 in z-direction

Figure 8.1 shows a boosted ellipsoid at time ¢ = 0. The ellipsoid was initially at
the origin and spherical with radius r = r, = r, = r, = 10. The spherical ellipsoid was

boosted into a natural speed Sy =4/1— (%)2 for a dilation factor d =+ in the z-direction

2
v =1 =ey. The boosted sphere is squeezed by the boost into an ellipsoid that is length-
contracted to half-size in the z-direction with r, =5, while the y and z directions hold their
sizes with r, =7, =10. As the time ¢ is increased, the boosted sphere moves toward the
right along the z-axis. For natural units ¢= 1, the boosted sphere moves fy = /3 /2~0.866
units per time unit.

8.2.5 Boost of an ellipsoid entity for dilation

As an example of dilating a quadric surface by dilation factor d = 2 using the boost
operation, we can take a spherical ellipsoid with radius r =5 centered at 5(e;+e3+e4) and

boost it into an imaginary natural speed 8, =41 —d? in the unit direction %(82 +es3+

e4). Following the boost for dilation, the result is projected onto the spatial subalgebra
using the G5 anti-DCGA pseudoscalar Ips. The projection discards imaginary time
components and resets the entity at time ¢ =0. The dilation is coded as:

dilated_ellipsoid = ((
HRotor ( sqrt(1-2**2), e2+e3+ed )x*
GIPNS_Ellipsoid(5,5,5,5,5,5)%
HRotor ( sqrt(1-2**2), e2+e3+ed ).rev()
) |IDS) *IDS . inv ()
print( N(V[dilated_ellipsoid) )
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(62 +es+ e4)

£
V3

Figure 8.2. Ellipsoid (sphere r=5) dilated by factor d =2 in direction %(92 +es+ey)

Figure 8.2 shows the graph of the dilated ellipsoid. In the unit direction %(ez +esz+ey)

of dilation by factor d =2, the spherical ellipsoid is dilated from a diameter of 10 into a
diameter of 20. The spherical diameter remains 10 orthogonal to the direction of dilation.
The center point (5, 5, 5) of the original spherical ellipsoid is dilated into (10, 10, 10) as
the new center point of the dilated ellipsoid.

9 Conclusion

The G4 5 Double Conformal Space-Time Algebra (DCSTA) has been presented in this
paper as a straightforward extension of the Ggo Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA) [7][5][6][8]. DCSTA is a large, complicated algebra and this
paper may contain some mistakes and has probably overlooked some things that should
have been discussed. Nevertheless, this author feels that this paper substantially conveys
the basic ideas and concepts of DCSTA. Certainly, much further research can be done
into DCSTA and its applications.
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