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Abstract

This paper introduces the G4;8 Double Conformal Space-Time Algebra (DCSTA). G4;8
DCSTA is a straightforward extension of the G2;8 Double Conformal Space Algebra
(DCSA), which is a di�erent form of the G8;2 Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA). G4;8 DCSTA extends G2;8 DCSA with spacetime boost
operations and di�erential operators for di�erentiation with respect to the pseudospa-
tial time w= ct direction and time t. The spacetime boost operation can implement
anisotropic dilation (directed non-uniform scaling) of quadric surface entities. DCSTA
is a high-dimensional 12D embedding of the G1;3 Space-Time Algebra (STA) and is
a doubling of the G2;4 Conformal Space-Time Algebra (CSTA). The 2-vector quadric
surface entities of the DCSA subalgebra appear in DCSTA as quadric surfaces at zero
velocity that can be boosted into moving surfaces with constant velocities that display
the length contraction e�ect of special relativity. DCSTA inherits doubled forms of
all CSTA entities and versors. The doubled CSTA entities (standard DCSTA enti-
ties) include points, hypercones, hyperplanes, hyperpseudospheres, and other entities
formed as their intersections, such as planes, lines, spatial spheres and circles, and
spacetime hyperboloids (pseudospheres) and hyperbolas (pseudocircles). The doubled
CSTA versors (DCSTA versors) include rotor, hyperbolic rotor (boost), translator,
dilator, and their compositions such as the translated-rotor, translated-boost, and
translated-dilator. The DCSTA versors provide a complete set of spacetime transfor-
mation operators on all DCSTA entities. DCSTA inherits the DCSA 2-vector spatial
entities for Darboux cyclides (incl. parabolic and Dupin cyclides, general quadrics,
and ring torus) and gains Darboux pseudocyclides formed in spacetime with the
pseudospatial time dimension. All DCSTA entities can be re�ected in, and inter-
sected with, the standard DCSTA entities. To demonstrate G4;8 DCSTA as concrete
mathematics with possible applications, this paper includes sample code and example
calculations using the symbolic computer algebra system SymPy.
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1 Introduction

This original research monograph1.1 introduces the G4;8 Double Conformal Space-Time
Algebra (DCSTA) (�7), which is a straightforward extension of the G2;8 Double Con-
formal Space Algebra (DCSA) (�4) into spacetime. G2;8 DCSA is a di�erent form of
the G8;2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA). G8;2 DCGA
is introduced in the original research monograph [7] and in the published short paper
[8], and is discussed further in the papers [5] and [6]. All of the results of G8;2 DCGA
have a similar form in G2;8 DCSA, and also in G4;8 DCSTA at time w = ct = 0. G4;8
DCSTA is a high-dimensional 12D embedding of the G1;3 Space-Time Algebra (STA) (�5).
G1;3 STA is introduced by Hestenes in [16]. G4;8 DCSTA is an application of the G4;8
Geometric Algebra. Geometric Algebra is introduced by Hestenes and Sobczyk in [17].
Familiarity with Geometric Algebra and G8;2 DCGA [7] is assumed.
G4;8 DCSTA may o�er new mathematical methods for some applications. However, the

12D high-dimensionality of DCSTA incurs high computational cost and applications may
require an e�cient implementation [10] using optimized hardware and software [13] for
DCSTA. Other works on algebras similar to G4;8 DCSTA may exist in the mathematical
physics literature, but no speci�c works essentially the same as G4;8 DCSTA were known
by this author at the time of researching and writing this paper.

1.1. Revised version v5, Oct 4, 2016 .
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G4;8 DCSTA (�7) is a doubling extension of the G2;4 Conformal Space-Time Algebra
(CSTA) (�6). G2;4 CSTA is introduced by C.J.L. Doran and A.N. Lasenby in [3] as
the spacetime conformal group. G2;4 CSTA (�6) embeds G1;3 STA (�5) using stereographic
embedding and homogenization as discussed by Perwass [20] in the context of G4;1
Conformal Geometric Algebra (CGA) (chapters 1-3 in [25]) and as discussed (in French)
by Anglès [1].

This paper is logically structured into two parts as follows.
Part I of this work is comprised of the three sections on spatial algebras,

� G0;3 Space Algebra (SA) (�2)

� G1;4 Conformal Space Algebra (CSA) (�3)

� G2;8 Double Conformal Space Algebra (DCSA) (�4),

which are adequate as alternatives to G3 APS, G4;1 CGA, and G8;2 DCGA [7], respectively.
Part II of this work is comprised of the three sections on spacetime algebras,

� G1;3 Space-Time Algebra (STA) (�5)

� G2;4 Conformal Space-Time Algebra (CSTA) (�6)

� G4;8 Double Conformal Space-Time Algebra (DCSTA) (�7).

The algebras in Part I are spatial subalgebras of the corresponding spacetime algebras in
Part II. The material of Part I should probably be understood before reading Part II.

The following six introductory subsections de�ne the basis vector elements that are
used throughout all six algebras. The �rst three subsections are a breakdown of the basis
vector elements in DCSTA (�1.1) into the basis vector elements of its subalgebras CSTA
(�1.2) and STA (�1.3). The last three subsections are a buildup of the basis vector elements
in SA (�1.4) and CSA (�1.5) into DCSA (�1.6).

1.1 DCSTA basis vector elements

G4;8 Double Conformal Space-Time Algebra (DCSTA) D (�7) has a basis of twelve ortho-
normal unit vector elements ei : 1� i� 12 with metric matrix

mD = diag(1;¡1;¡1;¡1; 1;¡1; 1;¡1;¡1;¡1; 1;¡1)= [(mD)ij] = [ei � ej]: (1.1)

All basis vector elements are orthonormal unit vectors. For any two di�erent basis vector
elements u and v, their geometric product is uv=u^v.

1.2 CSTA basis vector elements

G2;4 Conformal Space-Time Algebra (CSTA) C (�6)[3] has the six basis vector elements

i : 0� i� 3, e+, and e¡,


i
2 =

�
1 : i2f0g
¡1 : i2f1; 2; 3g (1.2)

e+
2 = 1 (1.3)
e¡
2 = ¡1: (1.4)
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G2;4 Conformal Space-Time Algebra 1 (CSTA1) C1 (�6) has the six basis vector elements
ei : 1� i� 6,

ei
2 =

�
1 : i2f1; 5g
¡1 : i2f2; 3; 4; 6g: (1.5)

G2;4 Conformal Space-Time Algebra 2 (CSTA2) C2 (�6) has the six basis vector elements
ei : 7� i� 12,

ei
2 =

�
1 : i2f7; 11g
¡1 : i2f8; 9; 10; 12g: (1.6)

CSTA1 C1 and CSTA2 C2 (�6) are the two major subalgebras of DCSTA D (�7). Dis-
cussions of CSTA are mostly in terms of the generic CSTA C. CSTA C, CSTA1 C1, and
CSTA2 C2 correspond to each other as indicated in (1.7).

CSTA =� CSTA1 =� CSTA2
C =� C1 =� C2

0 =� e1 =� e7

1 =� e2 =� e8

2 =� e3 =� e9

3 =� e4 =� e10
e+ =� e5 =� e11
e¡ =� e6 =� e12

(1.7)

1.3 STA basis vector elements

G1;3 Space-Time Algebra (STA) M (�5)[16] has the five elements, called the Dirac
gammas, 
i : i2f0; 1; 2; 3; 5g,


i
2 =

8><>:
1 : i2f0g
¡1 : i2f1; 2; 3g
(
0
1
2
3)2= IM

2 =¡1 : i=5:
(1.8)

G1;3 Space-Time Algebra 1 (STA1)M1 (�5) has four basis vector elements ei : 1� i� 4,

ei
2 =

�
1 : i2f1g
¡1 : i2f2; 3; 4g: (1.9)

G1;3 Space-Time Algebra 2 (STA2)M2 (�5) has four basis vector elements ei : 7� i� 10,

ei
2 =

�
1 : i2f7g
¡1 : i2f8; 9; 10g: (1.10)

CSTA1 C1 and CSTA2 C2 (�6) embed the subalgebras STA1 M1 and STA2 M2 (�5),
respectively. The element 
5= IM is the STAM unit pseudoscalar (�5.1.2). STAM also
de�nes the Pauli sigmas �i,

�1=�x = 
1
0 (1.11)
�2=�y = 
2
0 (1.12)
�3=�z = 
3
0: (1.13)
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The G1;3 STAM (�5) elements 
0, 
1, 
2, 
3 that are introduced in [16] are used in all
general discussions of STA. The STAM elements can be identi�ed isomorphically with
either the STA1M1 or STA2M2 elements, per (1.7). The elements 
1, 
2, and 
3 can
also be denoted 
x, 
y, and 
z when emphasizing their usage as the conventional x, y,
and z spatial directions. The element 
0 is the pseudospatial time w= ct direction.

1.4 SA basis vector elements
G0;3 Space Algebra (SA) S (�2) has three basis vector elements 
i : 1� i� 3,


i
2 = ¡1 : i2f1; 2; 3g: (1.14)

G0;3 Space Algebra 1 (SA1) S1 (�2) has three basis vector elements ei : 2� i� 4,

ei
2 = ¡1 : i2f2; 3; 4g: (1.15)

G0;3 Space Algebra 2 (SA2) S2 (�2) has three basis vector elements ei : 8� i� 10,

ei
2 = ¡1 : i2f8; 9; 10g: (1.16)

SA S, SA1 S1, and SA2 S2 correspond with each other according to (1.7).

1.5 CSA basis vector elements
G1;4 Conformal Space Algebra (CSA) CS (�3) has �ve basis vector elements 
i : 1� i� 3,
e+, and e¡,


i
2 = ¡1 : i2f1; 2; 3g (1.17)

e+
2 = 1 (1.18)
e¡
2 = ¡1: (1.19)

G1;4 Conformal Space Algebra 1 (CSA1) CS1 (�3) has �ve basis vector elements ei :
2� i� 6,

ei
2 =

�
1 : i2f5g
¡1 : i2f2; 3; 4; 6g: (1.20)

G1;4 Conformal Space Algebra 2 (CSA2) CS2 (�3) has �ve basis vector elements ei :
8� i� 12,

ei
2 =

�
1 : i2f11g
¡1 : i2f8; 9; 10; 12g: (1.21)

CSA CS, CSA1 CS1, and CSA2 CS2 correspond with each other according to (1.7). G1;4
Conformal Space Algebra (CSA) CS (�3) is very similar to the well-known G4;1 Conformal
Geometric Algebra (CGA) with di�erences only in the signs of some expressions.

1.6 DCSA basis vector elements
G2;8 Double Conformal Space Algebra (DCSA) DS (�4) has the ten basis vector elements
of CS1 and CS2 (�1.5).
G2;8 DCSA (�4) is very similar to G8;2 DCGA [7][8][5][6], except for di�erences in the

signs of some expressions. G4;8 DCSTA (�7) becomes G2;8 DCSA (�4) when all times are
zero, w= ct=0.
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2 Space Algebra (SA)

G0;3 Space Algebra (SA) S is very similar to G3 Algebra of Physical Space (APS) [15].
Vectors in SA square negative (v2= v � v)� 0, which causes sign �ips in many formulas
adapted from G3 APS, G4;1 CGA (Conformal APS), or G8;2 DCGA. While G8;2 DCGA
embeds two Euclidean G3 APS algebras, G2;8 DCSA DS and G4;8 DCSTA D embed two
anti-Euclidean G0;3 SA algebras S1 and S2.

The subscript S denotes an element or operation in generic SA. The subscript S1
denotes an element or operation in SA1. The subscript S2 denotes an element or operation
in SA2. In most formulas, these subscripts can simply be substituted to write formulas in
SA, SA1, and SA2. Such duplication of similar formulas in each representation is avoided
unless it adds clarity to the discussion. In similar fashion, in STA (�5), STA1, and STA2,
the subscriptsM,M1, andM2 indicate elments in STA, STA1, and STA2.

The 3D spatial vectors in G0;31 SA are generally bold lowercase letters, such as p=pS.
The 4D spacetime vectors in G1;31 STA (�5) are generally bold italic lowercase letters,
such as p= pM.

2.1 SA unit pseudoscalar
The SA 3-vector unit pseudoscalar IS with signature (¡¡¡) is

IS = 
1
2
3 (2.1)
IS� = (¡1)3(3¡1)/2IS=¡IS (2.2)
IS
2 = ¡ISIS�=1 (2.3)

IS
¡1 = IS: (2.4)

The SA1 3-vector unit pseudoscalar IS1 with signature (¡¡¡) is

IS1 = e2e3e4: (2.5)

The SA2 3-vector unit pseudoscalar IS2 with signature (¡¡¡) is

IS2 = e8e9e10: (2.6)

The notation A� is the reverse of A [4][20]. The G0;3 SA unit pseudoscalar IS is its own
inverse and squares to 1 as a hyperbolic unit . In G3 APS, the unit pseudoscalar squares
to ¡1 and is an imaginary unit . This di�erence a�ects how the SA dualization operation
is de�ned.

The distinction between a k-blade and a k-vector is rarely made in this paper, and the
more-general term k-vector is used in most cases. A k-blade is any element that can be
factored into the outer product of k vectors. Blades include all 1-vectors, all pseudoscalars,
all CSA and CSTA entities, and all of the doubled �standard� entities in DCSA and
DCSTA. A k-vector is the sum of one or more k-blades.

2.2 SA dualization

The SA S dual AS�S of an SA multivector AS is

AS
� =AS

�S = ASIS�=¡ASIS¡1: (2.7)
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The SA S undual AS of a dual SA multivector AS�S is

AS = AS
� IS�=¡AS� IS (2.8)

The SA dual and undual operations are the same, and the SA dualization is an involution.
The notation AS denotes an element of the algebra denoted by S , which is SA. In

later sections, we will encounter the algebras denoted by M, C, and D, which are STA,
CSTA, and DCSTA, respectively. For the subalgebras S,M, and C of D, there are two
copies of them in D, which are denoted by S1 and S2 and similarly for other subalgebras
that have a double in DCSTA.

The explicit dualization notation AS�S denotes the dual of AS in algebra S using the
unit pseudoscalar IS of the algebra S. The implicit dualization notation AS

� denotes the
same dualization as indicated by the subscript S.

To introduce the notation further, the dualizations are

A� =

8>>><>>>:
AS
�S=AS

� =¡ASIS¡1 : SA S dualization (�2.2)
AM
�M=AM

� =AMIM
¡1 : STAM dualization (�5.2.1)

AC
�C=AC

�=ACIC
¡1 : CSTA C dualization (�6.6.1)

AD
�D=AD

� =ADID
¡1 : DCSTA D dualization (�7.7.1).

(2.9)

Duals are typically the result of division by the unit pseudoscalar. The SA dualization is
de�ned as division by the negative unit pseudoscalar, and the reason is explained in (�2.6)
on the SA rotor. These dualizations are discussed further in later sections.

2.3 SA test vector
The symbolic SA S test vector tS is de�ned on the basis of the Dirac gammas [16] as

t= tS = x
1+ y
2+ z
3: (2.10)

The symbolic SA1 S1 test vector tS1 is de�ned as

tS1 = xe2+ ye3+ ze4: (2.11)

The symbolic SA2 S2 test vector tS2 is de�ned as

tS2 = xe8+ ye9+ ze10: (2.12)

The symbolic scalars x, y, and z are the conventional coordinates in space. Numerical
scalars are denoted px, py, and pz for a vector

p = px
1+ py
2+ pz
3: (2.13)

This distinction between symbolic values and numerical values is helpful in symbolic
computations. Symbolic computations using a symbolic computer algebra software, such
as SymPy [24] with the GAlgebra [2] module, can assist in the study of DCSTA and other
high-dimensional Geometric Algebras.

A test vector, or other test entity, holds symbolic coordinates and parameters. A
non-test vector, or other non-test entity, holds numeric coordinates and parameters. In
symbolic calculations, a non-test entity, or simply an actual entity , can be evaluated
against a symbolic test entity to obtain the symbolic algebraic expression, or implicit
surface function, that is represented by the entity.

Space Algebra (SA) 13



2.4 SA spatial velocity vector

An SA S spatial velocity vector vS has the form

v=vS = vx
1+ vy
2+ vz
3= �cv̂: (2.14)

An SA1 S1 spatial velocity vector vS1 has the form

vS1 = vxe2+ vye3+ vze4= �cv̂S1: (2.15)

An SA2 S2 spatial velocity vector vS2 has the form

vS2 = vxe8+ vye9+ vze10= �cv̂S2: (2.16)

The scalars vx, vy, and vz are coordinate speeds in the conventional x, y, and z spatial
directions. Natural speed is �= v/c= kvk/c, j� j � 1. Light speed is c.

The vector units e1 and e7 are in STA1 and STA2 (�5.1.7), respectively, where they
serve as the unit directions for pseudospatial time w= ct. Pseudospatial time coordinate
w is measured in distance that light travels in time t. Clock time (coordinate time) is
t=w/c. In standard units of meters and seconds, c= 299792458 m/s, exactly. In natural
units, c = 1, which is convenient for testing calculations and graphing implicit surfaces
F (x; y; z)= 0.

In special relativity, the constant non-negative norm of an SA velocity

kvSk = vS �vS
y

q
= ¡vS2
p

= vx
2+ vy

2+ vz
2

p
= j�cj (2.17)

must not exceed light speed c

0�kvSk� c: (2.18)

The unit direction of velocity v is

v̂ = v/kvk: (2.19)

The conjugate vy is discussed by Perwass in [20]. The conjugate of any STA multivector
AM, including any SA multivector, is

AM
y = 
0AM
0: (2.20)

The conjugation formula (Eq. 2.20) is valid for any G1;q Geometric Algebra, where 
0=e1
and 
02=1. The conjugate takes the reverse AM� and re�ects it in 
0 (as a versor sandwich
product). The re�ection in 
0 has the e�ect of inverting the sign on any anti-Euclidean
vector v 2 G0;q1 . The conjugate of an SA vector is simply its negative, vy = ¡v. The
conjugate has the positive-de�nite property

AM �AM
y = AM

y �AM> 0 (2.21)
= kAMk2 (2.22)

that produces the squared norm (or squared magnitude) of AM. If A =/ 0 is null A2 =

0, then its conjugate Ay can still be used to obtain its norm kAk = A �Ay
p

and its
pseudoinverse

A+ = Ay/kAk2 (2.23)
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such that A �A+=A+ �A=1. The division A/kAk is called the normalization (or norm-
unit) of A and is especially useful since it is valid for all k-vectors, including null k-vectors.
The normalization is di�erent than the �modulus-unit� A/ jAj, for jAj=/ 0, where jAj2=A2

is the inde�nite squared modulus (or squared interval) of A that can be positive, negative
or zero. Both the norm-unit A/kAk and modulus-unit A/jAj have uses in this paper.

The notations as used by Hestenes in [16] are not adopted here and con�ict with the
notations as they are adopted here. In [16], the notation vy is called hermitian conjugation
and is the reverse of an element in STA. The reverse v� is the notation that is adopted
here. In [16], the notation v� is called space conjugation and is anti-Euclidean conjugation
in STA. The notation v� is adopted here as the dual of v. The conjugate vy is adopted
here, following Perwass in [20], and is discussed by this author in [9].

In general, a conjugation is an operation that selectively changes the signs on only
certain elements and there are many kinds of conjugations and notations. It is thought
that the notations that have been adopted here are the ones most commonly adopted in
the current literature on Geometric Algebra. The notations of Hestenes in [16] may be
found in physics literature.

2.5 SA spatial position vector
An SA S spatial position vector pS(t), as a function of time t, has the form

p(t)=pS(t) = px
1+ py
2+ pz
3=p0+vt: (2.24)

An SA1 S1 spatial position vector pS1 has the form

pS1(t) = pxe2+ pye3+ pze4: (2.25)

An SA2 S2 spatial position vector pS2 has the form

pS2 = pxe8+ pye9+ pze10: (2.26)

The scalars px, py, and pz are coordinate positions in the conventional x, y, and z spatial
directions. The vector p0 is the initial position at time t = 0, and v is the velocity. A
spatial vector p is the spatial position of a particle, observer, or other observable object.
For all time 8t, p(t) is the spatial path of the spacetime worldline of an observable moving
at contant velocity v. This paper only considers constant velocities in special relativity.

2.6 SA rotor
A rotation operator R, called a rotor , can be understood in terms of ratios (or products)
of unit vectors, which are called versors. The term versor , which seems to mean version
operator , was coined by William Rowan Hamilton in [14]. A rotor is isomorphic to
a quaternion versor as discussed at length by this author in [9]. The concept of versors is
generalized to k-versors in [17]. A k-versor is the product of k unit vectors. In DCSTA,
we will encounter 4-versors for rotation, translation, dilation, boost, and planar re�ection,
and 2-versors for inversions in hyperpseudospheres.

In SA, the unit bivector rotor elements are the ratios

i=k/j =� 
3/
2=¡
3
2 (2.27)
j= i/k =� 
1/
3=¡
1
3 (2.28)
k= j/i =� 
2/
1=¡
2
1: (2.29)
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The SA duals of the SA unit vector elements are


1
� = 
1IS�=¡
1IS=¡
1IS¡1=¡
1(
1
2
3)=¡
3
2=� i (2.30)

2
� = 
2IS�=¡
2IS=¡
2IS¡1=¡
2(
1
2
3)=¡
1
3=� j (2.31)

3
� = 
3IS

�=¡
3IS=¡
3IS¡1=¡
3(
1
2
3)=¡
2
1=�k: (2.32)

The SA dualization is de�ned such that the isomorphism (=�) to quaternion units is via
duals.

The dual of an SA vector xS is

x�=xS
� = ¡xSIS¡1: (2.33)

The dual SA vector x� is the rotor element or logarithm of a rotor R= ex
�, where

eA = exp(A) (2.34)

=
X
n=0

1
An

n!
(2.35)

=
X
n=0

1
A2n

(2n)!
+
X
n=0

1
A2n+1

(2n+1)!
(2.36)

= cosh(A)+ sinh(A) (2.37)

for any multivector A. For a scalar x, imaginary unit i = ¡1
p

, hyperbolic unit j2 = 1,
and null (nilpotent) unit "2=0, we also have the standard formulas

cosh(ix) = cos(x) (2.38)
sinh(ix) = i sin(x) (2.39)
cosh(jx) = cosh(x) (2.40)
sinh(jx) = j sinh(x) (2.41)
cosh("x) = 1 (2.42)
sinh("x) = "x: (2.43)

Given the SA unit vector

x̂= x̂S =
xS
kxSk

=
xS

¡xS2
p (2.44)

as the axis of rotation, and kxSk= 1

2
� as half the non-negative angle � of rotation, then

(x̂�)2=¡1 and x̂�=� ¡1
p

, and the rotor RS for the rotation is

R=RS = ex
�
= exp(x�)= cosh(x�)+ sinh(x�) (2.45)

= cosh
�
1
2
�x̂�
�
+ sinh

�
1
2
�x̂�
�

(2.46)

= cos
�
1
2
�

�
+ x̂� sin

�
1
2
�

�
(2.47)

= cos
�
�
2

�
+ sin

�
�
2

�
x̂SIS

� (2.48)

= exp
�
1
2
�x̂S
�
�
= e

1

2
�x̂S
�
: (2.49)
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The unit vector axis x̂S and unit pseudoscalar IS may be in SA1 or SA2 by changing
subscript S to S1 or S2 for rotors RS1 and RS2, respectively.

In G4;1 CGA, G1;4 CSA, and G2;4 CSTA, the isotropic dilatorD (�6.6.6) has a logarithm
unit that is isomorphic (=�) to a hyperbolic unit j, and the translator T (�6.6.4) has a
logarithm unit that is isomorphic to a null (nilpotent) unit ". The CSTA boost B (�6.6.8),
like a dilator D, has a logarithm unit that is isomorphic to a hyperbolic unit j and can
be used as a directed non-uniform (anisotropic) dilation operator (�7.7.9) in DCSTA.

The rotor operation, or versor �sandwich� operation, that rotates any SA multivector
AS around the axis x̂S by angle � is

AS
0 = RSASRS

¡1=RSASRS�: (2.50)

The SA multivector AS is typically a vector aS, but it can be any multivector in SA.

The sense of positive angle � rotation around an axis x̂ usually follows the right-hand
rule on a right-handed axes model. The sense of positive rotation around an axis follows
the similar left-hand rule on a left-handed axes model. The choice of axes model does not
a�ect the rotation mathematics, but it a�ects the orientation, or handedness, of the axes
and the interpretation of rotation results on the chosen axes model.

In general, the rotor operation is an example of a versor operation, and each ith
vector aijk, of the jth k-blade Ajk of the k-vector Ak= hAik of a multivector A in a Gp;q
Geometric Algebra n = p + q, is transformed by a (1 � m � n)-versor R as the versor
operation

A0 = RAR¡1 (2.51)

= R

 X
k=0

n

hAik

!
R¡1 (2.52)

= R

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

�
Ajk

1CCA
1CCCAR¡1 (2.53)

= R

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

� ^
i=1

k

aijk

!1CCA
1CCCAR¡1 (2.54)

=

0BBB@X
k=0

n

0BB@X
j=1

�
n
k

� ^
i=1

k

RaijkR¡1

!1CCA
1CCCA: (2.55)

For grade k = 0, the 0-vector hAi0 is de�ned as the scalar part of A, which is not
transformed by any versor operation since scalars commute with all multivectors. The
general versor R is called anm-versor [17], which is the product of m vectors with inverses.
This result is called versor outermorphism, which is discussed by Perwass in [20] and
by this author in [9].
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If R is a rotor, then the whole multivector A is rotated, as a rigid body of blades or
as a surface entity, vector by vector in the multivector and preserves the angles between
all vectors as a conformal transformation. Other angle-preserving (i.e. conformal) trans-
formations of surface points or geometric surface entities are uniform surface scaling
(isotropic dilation) and surface translation, which preserve the angles between surface
features. The conformal transformations, as versor operations, for dilation and translation
of surface points or entities require the embedding of surface representations or surface
points into the Gp+1;q+1 Conformal Geometric Algebra (CGA) or conformal space model.
The same conformal rotation versor R of the base algebra, the Gp;q Geometric Algebra
(GA), is also valid in the embedding of Gp;q GA into its higher-dimensional conformal
algebra Gp+1;q+1 CGA. In a CGA, some types of surfaces have a full representation as
a multivector-valued surface entity A, but general surfaces are represented point-wise as
embedded surface points that can be transformed by versor operations. This should be
familiar from books on CGA such as [4], where surface entities for �ats and rounds are the
types of surface entities available in G4;1 CGA. In G8;2 DCGA [7][5][6], we gain 2-vector
surface entities for quadrics, Dupin cyclides, and Darboux cyclides. In G4;8 DCSTA, we
gain 2-vector surface entities for quadrics that can be boosted and anisotropically dilated.
In G2;4 CSTA, we have entities for spacetime �ats and hyperbolics (pseudorounds). Still,
other general surfaces that do not have any multivector-valued entity A representation
in the algebra must be represented point-wise as meshes or clouds of surface points.
When they are available in a CGA, multivector-valued surface entities are powerful rep-
resentations of complete surfaces that have advantages over point-wise representations of
surfaces, and they can be transformed by versor operations (e.g., A0=RAR¡1) as versor
outermorphism, which preserves blades as transformed blades of the same grade that are
composed of transformed vectors.

The axis x̂ of a rotor R is a directional unit vector that represents a line through
the origin around which to rotate. A general line is represented by any point q on the
line and the unit direction x̂ of the line. The rotation of a point p around a general line
requires a composition of translations and rotation TRT�pTR�T�. The translation T�

translates by ¡q, which translates any point q on the line to the origin and translates
point p relatively as p ¡ q. The rotation R rotates around the unit direction x̂ of the
line, which is translated to the origin by T�. The translation T translates by q, which
translates the rotated point back to a position relative to the general line. The versor
TRT� is a translated rotor. See the CSTA 2-versor translated-rotor (�6.6.5).

3 Conformal Space Algebra (CSA)

The G1;4 Conformal Space Algebra (CSA) is very similar to G4;1 Conformal Geometric
Algebra (CGA) [7], with only some changes in signs. This section is a very straightforward
expanded adaptation of �2 �CGA1 and CGA2� in [7], with some additional notes on
di�erences between similar CSA and CGA entities.

All of the G1;4 CSA entities and versors can be doubled into the corresponding G2;8
Double Conformal Space Algebra (DCSA) (�4) entities and versors that are similar to
those in G8;2 Double Conformal Geometric Algebra (DCGA) [7].
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3.1 CSA point

3.1.1 Introduction

In the following discussion about the conformal embedding of G0;3 SA point p=pS (�2.5)
into G1;4 CSA point PCS=C(p), the generic G1;4 CSA CS algebra is used with vector units

1; 
2; 
3; e+; e¡ (�6.2.2). The discussion is similar in CSA1 CS1 with vector units e2; e3;
e4; e5; e6, and in CSA2 CS2 with vector units e8; e9; e10; e11; e12. Perwass [20] discusses
the conformal embedding, and some of his notation has been adopted here.

3.1.2 Stereographic embedding

In G1;4 Conformal Space Algebra (CSA), the conformal embedding of a SA point (�2.5)

pS=p = x
1+ y
2+ z
3 (3.1)

starts with a stereographic embedding of p onto an anti-Euclidean 3-hypersphere or 3-
sphere S0;3 using the stereographic 3-sphere south pole ¡e¡ (�6.2.2) as the origin of pro-
jecting rays. In G4;1 CGA [7], e+ is the stereographic 3-sphere S3 north pole for projecting
rays.

The signature of an SA unit vector p̂2=¡1 is negative (anti-Euclidean), and to form
a spherical geometry or metric, p̂ and the stereographic pole e¡ must have the same
signature. The choice is arbitrary to use either the north pole+e¡ or south pole¡e¡ as the
origin for projecting rays. But as shown below, if the south pole ¡e¡ is used, then it leads
to familiar de�nitions for the point at the origin eo
 (�6.2.2) and at in�nity e1
 (�6.2.3).

The stereographic embedding of p on the 3-sphere is the intersection of the ray (line)
from ¡e¡ to p with the 3-sphere (see [20], or Figure 1 in [7]). The vectors ¡e¡ and p are
perpendicular, and we can treat the embedding of p as similar to a 1D axis embedding
onto a stereographic 1-sphere or circle.

The identities

kpk = p �py
p

= ¡p2
p

= x2+ y2+ z2
p

(3.2)

p̂ =
p
kpk (3.3)

p = kpkp̂ (3.4)
p2 = ¡kpk2=¡(x2+ y2+ z2) (3.5)

are used in the following.
The stereographic embedding S of p= kpkp̂ is the intersection point (�; �)

S(p)=S(kpkp̂) = �p̂¡ �e¡ (3.6)

where the line through ¡e¡ and kpkp̂ intersect the unit 3-circle on the p̂e¡-hyperplane.
The Minkowski homogenization HM of S(p) is

HM(S(p)) = �p̂¡ �e¡¡ e+: (3.7)

The vectors e¡ and e+ are the basis of a Minkowski plane. It is an arbitrary choice to
add or subtract the homogeneous unit e+, but subtracting leads to familiar formulas for
eo
 and e1
. The anti-Euclidean signature of vectors in G0;31 SA leads to making many
opposite choices about the CSA embedding as compared to CGA that has Euclidean
vectors in G31 APS. By following a ray from ¡e¡ to a point p, it can be seen how the ray
intersects the 3-sphere, and the origin embeds to eo
= e¡¡ e+ and the point at in�nity
embeds to e1
=¡e¡¡ e+.
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For other points p that are not at the origin or in�nity, the values for � and � on a
unit circle are solved as follows. The initial relations are the unit circle

�2+ �2 = 1 (3.8)

and, by similar triangles, the line

1¡ �
�

=
1
kpk : (3.9)

Then, � is

�2 = 1¡ �2=(1+ �)(1¡ �)= ((1¡ �)kpk)2 (3.10)
(1+ �) = (1¡ �)kpk2 (3.11)

�kpk2+ � = kpk2¡ 1 (3.12)

� =
kpk2¡ 1
kpk2+1

(3.13)

and � is

� = (1¡ �)kpk (3.14)

=

�
1¡ kpk

2¡ 1
kpk2+1

�
kpk (3.15)

=

�
kpk2+1
kpk2+1

¡ kpk
2¡ 1

kpk2+1

�
kpk (3.16)

=
2kpk
kpk2+1

: (3.17)

The stereographic embedding of kpkp̂ , denoted S(kpkp̂), can now be written as

S(kpkp̂) = �p̂¡ �e¡ (3.18)

=

�
2kpk
kpk2+1

�
p̂¡

�
kpk2¡ 1
kpk2+1

�
e¡: (3.19)

3.1.3 Homogenization

The homogenization of S(kpkp̂), denoted HM(S(kpkp̂)), can be written as

P=HM(S(kpkp̂)) =

�
2kpk
kpk2+1

�
p̂¡

�
kpk2¡ 1
kpk2+1

�
e¡¡ e+: (3.20)

3.1.4 Conformal embedding

The point entity P is the conformal embedding of p. Since the point entity P is homoge-
neous, and kpk2+1 is never zero, it can be scaled by kpk2+1

2
to de�ne P as

P ' HM(S(kpkp̂)) (3.21)
= C(p)= C1;4(p) (3.22)

= kpkp̂¡ kpk
2¡ 1
2

e¡¡
kpk2+1

2
e+ (3.23)

= kpkp̂¡ kpk
2

2
(e¡+ e+)+

1
2
(e¡¡ e+) (3.24)

= p+
1
2
p2(e++ e¡)+

1
2
(¡e++ e¡): (3.25)
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3.1.5 Origin point

When kpk=0,

Pkpk=0 =
1
2
(¡e++ e¡)= eo
 (3.26)

representing the point at the origin eo
 (�6.2.2).

3.1.6 In�nity point

Dividing P by 1

2
p2 and taking the limit as kpk!1, we �nd that

Pkpk!1 = e++ e¡= e1
 (3.27)

represents the point at in�nity e1
 (�6.2.3). The vector e+ can be reinterpreted as the
stereographic north pole, and the vector e¡ can be reinterpreted as the homogeneous unit.

By taking inner products, it can be shown that conformal embedded points are null
vectors P2=0 on the null 4-cone [4][20] in G1;41 .

A frequently used inner product, worth remembering, is

eo
 � e1
 = ¡1: (3.28)

3.1.7 CSA point de�nition

The CSA embedding of SA vector p as CSA point P can now be de�ned as

P=PCS=PC1;4 = C(p)= C1;4(p)=p+
1
2
p2e1
+ eo
: (3.29)

The CSA point embedding C(p) is the same as the CSTA point embedding C(p) (�6.2.4)
of a spatial SA point p. G1;4 CSA is a subalgebra of G2;4 CSTA.

3.1.8 CSA point normalization

A normalized point P̂ has unit scale on the homogeneous component eo
 as

P̂ =
P

¡P � e1

: (3.30)

Points are assumed to be initially normalized as the embedding P = C(p). After per-
forming operations (�3.4) on a point (or other entity), a point (or other entity) may, in
general, no longer be normalized (have unit scale). Some operations do not preserve scale.

3.1.9 CSA point projection

The projection (inverse embedding) of a CSA point PCS back to an SA vector pS is

pS =
¡
P̂CS � IS

�
IS
¡1 (3.31)

where IS is the SA unit pseudoscalar (�2.1). P̂CS must be a normalized point (�3.1.8).

3.1.10 Distance between two points

The distance d(p;q) between two CSA points P= C(p) and Q= C(q) is

d(p;q) = 2P̂ � Q̂
q

(3.32)

= ¡(p¡q)2
p

: (3.33)
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In G4;1 CGA, distance is d = ¡2P̂ � Q̂
q

, with a di�erence in sign. The points P̂ and Q̂
must be normalized points (�3.1.8).

3.2 CSA GIPNS entities

A CSA point TCS=C(t)=C1;4(t) (�3.1) is on a spatial CSA Geometric Inner Product Null
Space (GIPNS) surface entity XCS if TCS �XCS=0 [20].

Using a CSTA spacetime point TC (�6.2.4) instead of a CSA spatial point TCS (�3.1)
causes a change in the meaning of the test TC �XCS, where XCS is then interpreted as a
CSTA spacetime entityXC=XCS. A round CSA surface entity XCS is a CSTA hyperbolic
hypersurface entityXC that grows in radius in space with time. A �at CSA surface entity
XCS is a �at CSTA hypersurface entity XC that gains the span of the pseudospatial time
dimension w
0.

3.2.1 CSA GIPNS sphere

The CSA GIPNS 1-vector sphere SCS, centered at CSA point PCS (�3.1) with radius r or
with surface point QCS, is de�ned as

SCS = PCS+
1
2
r2e1
 (3.34)

= PCS+(PCS �QCS)e1
 (3.35)

= PCS¡
1
2
(p¡q)2e1
: (3.36)

In G4;1 CGA [7], the sign on r2 in Eq. 3.34 is negative. However, Eqs. 3.35 and 3.36, for
a sphere SCS de�ned by center point PCS and surface point QCS, are the same in both
CGA and CSA.

For any point T= C(t) on sphere S at center P= C(p) with radius r,

d2(t;p)= 2T �P = r2 (3.37)

and

T �P¡ 1
2
r2 = (3.38)

T �
�
P+

1
2
r2e1


�
= (3.39)

T �S = 0: (3.40)

A sphere with unit scale Ŝ has a unit scale center point P̂, and

Ŝ
2
= ¡r2: (3.41)

As a CSTA spacetime entity�C=SCS, the sphere gains the span of w
0 and is a spacetime
hyperpseudosphere �C (�6.4.5) centered at PCS with initial radius r0 = r. If r = 0, then
it is a hypercone (�6.4.2) centered on PCS. The imaginary sphere with negative sign on
r2 (squared imaginary radius) becomes the imaginary hyperpseudosphere �C (�6.4.6) in
CSTA.
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3.2.2 CSA GIPNS plane

The CSA GIPNS 1-vector plane �CS, normal to unit vector n̂ at distance d from the
origin, or through point p, is de�ned as

�CS = n̂¡ de1
 (3.42)
= n̂+(p � n̂)e1
: (3.43)

In G4;1 CGA [7], the plane is n̂+de1, which is a di�erence in sign compared to Eq. 3.42.
However, Eq. 3.43 is the same in CGA and CSA.

A unit plane �̂ has a unit scale, normalized component n̂, and for a spatial plane

�̂
2
= �̂ � �̂ = ¡1: (3.44)

As a CSTA spacetime entity EC=�CS, the plane gains the span of w
0 and is a spacetime
hyperplane EC (�6.4.3) through point dn̂ or p in the 3D spacetime unit direction n̂�M

(�5.2.1) perpendicular to n̂ in spacetime.
Equation 3.43 for �CS can be obtained as the translation (�3.4.2) by p of the plane

n̂, which is through the origin, as

T n̂T� =

�
1¡ 1

2
pe1


�
n̂

�
1¡ 1

2
pe1


��
(3.45)

=

�
n̂+

1
2
pn̂e1


��
1+

1
2
pe1


�
(3.46)

= n̂+
1
2
n̂pe1
+

1
2
pn̂e1
 (3.47)

= n̂+
1
2
(n̂p+pn̂)e1
 (3.48)

= n̂+(p � n̂)e1
: (3.49)

The plane �CS is a sphere SCS (�3.2.1) through point dn̂ with center dn̂+ rn̂ and radius
r!1 as

SCS = C(dn̂+ rn̂)+
1
2
r2e1
 (3.50)

= (d+ r)n̂¡ 1
2
(d+ r)2e1
+ eo
+

1
2
r2e1
 (3.51)

= (d+ r)n̂¡ 1
2
(d2+2dr)e1
+ eo
 (3.52)

' n̂¡ 1
2
(d2+2dr)
(d+ r)

e1
+
eo


(d+ r)
; (3.53)

and using L'Hôpital's rule as

�CS = lim
r!1

SCS (3.54)

= lim
r!1

�
n̂¡ 1

2
@r(d2+2dr)
@r(d+ r)

e1
+
eo


(d+ r)

�
(3.55)

= lim
r!1

�
n̂¡ 1

2
2d
1
e1
+

eo

(d+ r)

�
(3.56)

= n̂¡ de1
: (3.57)
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Re�ection of a point P in a plane � is

P0 = �P�� (3.58)
= �P� (3.59)
= T n̂T�PT n̂T�; (3.60)

which is a translated re�ection in n̂. If there is no translation, then

P0 = n̂

�
p+

1
2
p2e1
+ eo


�
n̂ (3.61)

= n̂(pjjn̂+p?n̂)n̂+
1
2
p2n̂e1
n̂+ n̂eo
n̂ (3.62)

= (¡pjjn̂+p?n̂)+ 1
2
p2e1
+ eo
: (3.63)

In G4;1 CGA, this same re�ection in n̂ is slightly di�erent, and results in

P4;1
0 = (pjjn̂¡p?n̂)¡ 1

2
p2e1¡ eo; (3.64)

such that the result is scaled by ¡1 and is not normalized. Normalizing P4;1
0 (like �3.1.8)

and projecting (like �3.1.9) still gives the correct result. In G1;4 CSA, n̂ is naturally a
plane entity for the plane through the origin perpendicular to n̂ since the re�ection in n̂ is
the planar re�ection. In G4;1 CGA, n̂ is not naturally a plane entity, but is just a vector,
since the re�ection in n̂ is vector re�ection. It could be argued that G1;4 CSA is the more-
natural Conformal Geometric Algebra Gp+1;q+1 for conformal 3-space than is G4;1 CGA.

3.2.3 CSA GIPNS line

The CSA GIPNS 2-vector line LCS, in the direction of the unit vector d̂, perpendicular
to the SA unit bivector D̂= d̂�S =¡d̂IS¡1 formed by SA dualization (�2.2), and through
SA point p, is de�ned as

LCS = d̂�S¡
¡
p � d̂�S

�
e1
 (3.65)

= D̂¡ (p � D̂)e1
: (3.66)

The G4;1 CGA line entity L [7] has the same form as the CSA line LCS, with no di�erences
in signs. The SA unit pseudoscalar is IS= 
1
2
3 (�2.1). The SA unit bivector D̂ is the
planar direction passing through p. LCS can be obtained as a translation (�3.4.2) by p of
the line D̂, which is the line through the origin perpendicular to D̂, and is similar to the
translation of a plane through the origin (�3.2.2). The line LCS can also be obtained as
the intersection of two non-parallel CSA planes (�3.2.2) as

LCS = �CS1^�CS2: (3.67)

As a CSTA spacetime entity �C=LCS, the line gains the span of w
0 and is a spacetime
plane �C (�6.4.10) through p in the direction D= d̂
0= D̂IM.

3.2.4 CSA GIPNS circle

The CSA GIPNS 2-vector circle CCS is de�ned as

CCS = SCS ^�CS (3.68)
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which is the intersection of a CSA sphere SCS and CSA plane �CS. An intuitive construc-
tion uses a sphere centered at a point p with radius r0 and a plane that intersects the
sphere through the center p to form a circle of radius r0 in the plane.

As a CSTA spacetime entity SC = CCS, the circle gains the span of w
0 and is a
spacetime hyperboloid of one sheet (pseudosphere) SC = �C ^ EC (�6.4.8) centered on
p with initial radius r0 that grows with time in the spatial plane. The radius grows as
r = (w¡ pw)2+ r0

2
p

. In the spacetime of EC, the hyperpseudosphere SC is a spacetime
hyperboloid aligned around the time axis w
0. If SCS is an imaginary sphere, then SC=CCS
is a hyperboloid of two sheets (imaginary pseudosphere) (�6.4.9) in spacetime.

3.3 CSA GOPNS entities
A CSA point TCS=C(t)=C1;4(t) (�3.1) is on a CSA Geometric Outer Product Null Space
(GOPNS) surface entity X�CS if TCS ^X�CS=0 [20], where

X�CS=XCS
� = XCSICS

¡1=XCSICS (3.69)

is the CSA dual (�3.4.1) of the CSA GIPNS entity XCS (�3.2). An entity and its dual
entity represent the same geometric surface.

A CSA GOPNS entity can be directly formed as the wedge of up to �ve CSA points

X�CS =
^

PCSi; for 1� i� 5: (3.70)

3.3.1 CSA GOPNS sphere

The CSA GOPNS 4-vector sphere S�CS is the wedge of four non-coplanar CSA points PCSi
(�3.1) on the sphere

S�CS = PCS1^PCS2^PCS3^PCS4 (3.71)
= SCSIC

¡1=SCSICS (3.72)

and is the CSA dual (�3.4.1) of the CSA GIPNS 1-vector sphere SCS (�3.2.1).
The CSA unit pseudoscalar is ICS = 
1
2
3e+e¡ (�3.4.1), and the CSA dualization

and undualization are both multiplication with ICS = ICS
¡1 as an involution. In G4;1 CGA,

the dualization is an anti-involution. The SA dualization (�2.2) is also an involution by
multiplying with IS�=¡IS.

3.3.2 CSA GOPNS plane

The CSA GOPNS 4-vector plane ��CS is the wedge of three non-collinear CSA points
PCSi (�3.1) on the plane and the point e1


��CS = PCS1^PCS2^PCS3^ e1
 (3.73)
= �CSICS (3.74)

and is the CSA dual (�3.4.1) of CSA GIPNS 1-vector plane �CS (�3.2.2).

3.3.3 CSA GOPNS line

The CSA GOPNS 3-vector line L�CS is the wedge of two CSA points PCi (�3.1) on the
line and the point e1


L�CS = PCS1^PCS2^ e1
 (3.75)
= LCSICS (3.76)
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and is the CSA dual (�3.4.1) of the CSA GIPNS 2-vector line LCS (�3.2.3).

3.3.4 CSA GOPNS circle

The CSA GOPNS 3-vector circle C�CS is the wedge of three CSA points PCi (�3.1) on the
circle

C�CS = PCS1^PCS2^PCS3 (3.77)
= CCSICS (3.78)

and is the CSA dual (�3.4.1) of the CSA GIPNS 2-vector circle CCS (�3.2.4).

3.3.5 CSA GOPNS point pair

The CSA GOPNS 2-vector point pair 2�CS is the wedge of two �nite CSA points PCi (�3.1)

2�CS=2CS
� = PCS1^PCS2 (3.79)

= 2CSIC (3.80)

and is the CSA dual (�3.4.1) of the CSA GIPNS 3-vector point pair 2CS. If one of the
points is e1
, then it is a CSA GOPNS 2-vector �at point P�CS (�3.3.6).

The point pair decomposition [4]

P̂CS� =
2CS
� � (2CS

� )2
p

¡e1
 �2CS�
=(2CS

� � 2CS
� �2CS�

p
)(¡e1
 �2CS� )¡1 (3.81)

gives the two normalized (unit scale) �nite points P̂CS+ and P̂CS¡ of the point pair 2�CS.
The CSA point pair decomposition is the same form as the CSTA point pair decomposition
(Eq. 6.217).

3.3.6 CSA GOPNS �at point

The CSA GOPNS 2-vector �at point P�CS is the wedge of one �nite CSA point PCS (�3.1)
and the point e1


P�CS = PCS ^ e1
 (3.82)
= PCSIC (3.83)

and is the CSA dual (�3.4.1) of the CSA GIPNS 3-vector �at point PCS.
As explained in [4] in the context of G4;1 CGA, a CSA GIPNS 3-vector �at point PCS

can represent the intersection of a CSA GIPNS 1-vector plane �CS (�3.2.2) and CSA
GIPNS 2-vector line LCS (�3.2.3) as

PCS = �CS ^LCS: (3.84)

The CSA point PCS of CSA GOPNS 2-vector �at point P�CS is projected [4] as

pS= C1;4¡1(PCS) =
(eo
^ e1
) � (eo
 ^P�CS)
¡(eo
^ e1
) �P�CS

=
¡P�CS

(eo
^ e1
) �P�CS
� eo
¡ eo
 ; (3.85)

which is the same form as the CSTA �at point projection (Eq. 6.239).

3.3.7 CSA GOPNS point

The CSA GOPNS null 1-vector point PCS is the CSA null point (embedding) PCS=C(p)
(�3.1), which is also the CSA GIPNS null 1-vector point PCS.
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The CSA GOPNS null 4-vector point P�CS is

P�CS = PCSICS ; (3.86)

which is also the CSA GIPNS null 4-vector point P�CS. The CSA null 4-vector point P�CS

is usually taken into its undual as PCS=P�CSICS.
The CSTA null point embedding PCS= C(p) (�3.1) represents the implicit surface

(x¡ px)2+(y¡ py)2+(z¡ pz)2 = 0 (3.87)

of a sphere with radius r=0 centered at p= px
1+ py
2+ pz
3.
The CSTA point embedding PC = C(p) (�6.2.4) is the CSTA GIPNS null 1-vector

hypercone (�6.4.2) and is the CSTA GOPNS null 1-vector point (�6.5.2). The CSTA
GIPNS null 1-vector hypercone (point embedding) represents the implicit surface

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0 (3.88)

of a hypercone in spacetime that is centered at p=w
0+ x
1+ y
2+ z
3. The di�erent
metrics of G0;3 SA (�2) and G1;3 STA (�5) make a di�erence in the implicit surfaces
represented by their conformal point embeddings.

3.4 CSA operations

The rotor R (�3.4.3), dilator D (�3.4.5), and translator T (�3.4.2) are called versors
V 2 fR;D; T g. Their operation on a CSA entity X has the form X0= VXV ¡1, called a
versor operation. The versor V of the operation often has an exponential form which can
be expanded by Taylor series into circular trigonometric, hyperbolic trigonometric, or dual
number form.

3.4.1 CSA dualization

The G0;3 SA unit pseudoscalar IS (�2.1) is de�ned as

IS = 
1^ 
2^ 
3= 
1
2
3 (3.89)
IS
� = (¡1)3(3¡1)/2IS=¡IS (3.90)
IS
2 = ¡ISIS�=1 (3.91)

IS
¡1 = ¡IS�= IS (3.92)

and its negative is de�ned as the SA dualization operator (�2.2) on multivectors in G0;3
SA. A k-blade B2G0;3k is taken to its G0;3 SA dual B�S 2G0;33¡k of grade 3¡ k as

B�S = ¡BIS¡1=¡B � IS: (3.93)

Duals represent the same objects from two converse spatial spans, and duals have di�erent
behavior as operators or versors.

As a 1-versor, an SA unit vector x̂ acts as a re�ector in the plane through the origin
perpendicular to x̂. As a 2-versor, the SA dual bivector X̂ = x̂�S acts as a versor for
successive re�ections in two perpendicular planes for a rotation by � around x̂. The unit
bivector X̂ is the generator of rotations around x̂, and its exponential R= exp

¡ 1
2
�X̂
�
is

the rotor R for rotations around x̂ by angle � anticlockwise on right-handed axes.
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The G1;4 CSA unit pseudoscalar ICS is de�ned as

ICS = 
1
2
3e+e¡ (3.94)
ICS� = (¡1)5(5¡1)/2ICS= ICS (3.95)
ICS
2 = ICSICS� =1 (3.96)
ICS
¡1 = ICS� = ICS (3.97)

and is the dualization operator on CSA entities that takes CSA GIPNS entities to or from
CSA GOPNS entities. A CSA entity X2 G1;4k of grade k is taken to its CSA dual entity
X�CS 2 G1;45¡k of grade 5¡ k as

X�CS = XICS
¡1=X � ICS: (3.98)

The CSA 5-vector unit pseudoscalar ICS can be interpreted as the CSA GOPNS 5-vector
space entity that represents the entire 3D space of the vector point space G0;31 .

CSA dualization and undualization are both multiplication of any CSA entity with ICS.

3.4.2 CSA translator

A translator is a translat ion operator or versor .
The CSA 2-versor translator T , by an SA vector d= dx
1+ dy
2+ dz
3, is de�ned as

T = 1¡ 1
2
de1
 (3.99)

= e
¡1

2
de1
: (3.100)

The G1;4 CSA translator T has the same exact form as the G4;1 CGA translator, and is the
same as the CSTA translator (�6.6.4) for translation by an STA spacetime displacement
d. Any CSA entity X is translated by the SA vector d as

X = TXT�: (3.101)

Spatial translation is also de�ned by re�ection in two parallel CSA planes (�3.2.2) as

X0 = �2�1X�1�2 (3.102)

which translates by twice the vector d= (d2¡ d1)n̂, with common normal unit vector n̂
of each plane (they are parallel) and plane distances from origin d1 and d2 of planes �1

and �2, respectively. The translator T for translation by displacement 2d is

T = ¡�2�1 (3.103)
= ¡(n̂¡ d2e1
)(n̂¡ d1e1
) (3.104)
= ¡(¡1¡ d1n̂e1
+ d2n̂e1
) (3.105)
= 1¡ (d2¡ d1)n̂e1
 (3.106)
= 1¡de1
: (3.107)

A CSA point P=PCS= C(p) (�3.1) is translated by d as

C(p+d) = TPT� (3.108)

= T

�
p+

1
2
p2e1
+ eo


�
T�; (3.109)
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where the vector p transforms as a plane (�3.2.2)

TpT� =

�
1¡ 1

2
de1


�
p

�
1¡ 1

2
de1


��
(3.110)

= p+
1
2
dpe1
+

1
2
pde1
 (3.111)

= p+(p �d)e1
 ; (3.112)

and e1
 is translation invariant

T

�
1
2
p2e1


�
T� =

�
1¡ 1

2
de1


��
1
2
p2e1


��
1+

1
2
de1


�
(3.113)

=
1
2
p2e1
 ; (3.114)

and eo
 is translated as

Teo
T� =

�
1¡ 1

2
de1


�
eo


�
1+

1
2
de1


�
(3.115)

=

�
eo
¡

1
2
de1
eo


��
1+

1
2
de1


�
(3.116)

= eo
¡
1
2
de1
eo
+

1
2
eo
de1
¡

1
4
d2e1
eo
e1
 (3.117)

= eo
¡d(e1
 � eo
)¡
1
4
d2(¡2e1
) (3.118)

= d+
1
2
d2e1
+ eo
 (3.119)

= C(d); (3.120)

and �nally, adding gives

TPT� = p+(p �d)e1
+
1
2
p2e1
+d+

1
2
d2e1
+ eo
 (3.121)

= (p+d)+
1
2
(pd+dp+p2+d2)e1
+ eo
 (3.122)

= (p+d)+
1
2
(p+d)2e1
+ eo
 (3.123)

= C(p+d): (3.124)

A surface entity represents a set of points, and translating an entity represents translating
the set of surface points. A similar argument holds for rotation (�3.4.3) and dilation
(�3.4.5) of entities, and for the boost (�6.6.8) of entities in CSTA.

3.4.3 CSA rotor

A rotor is a rotation operator or versor . The CSA rotor R is the same as the SA rotor
(�2.6).

The CSA 2-versor rotor R, for rotation around unit vector axis n̂ by � radians, is
de�ned as

R = cos
�
1
2
�

�
+ sin

�
1
2
�

�
n̂�S (3.125)

= e
1

2
�n̂�S

= e
1

2
�N̂
: (3.126)
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The SA unit bivector N̂= n̂�S represents the plane of rotation. Any multivector in G0;3
SA or any G1;4 CSA entity X is rotated as

X0 = RXR� (3.127)
= RXR¡1 (3.128)

where R�, the reverse of R, is equal to the inverse R¡1. Rotation is also de�ned by
successive re�ections in two non-parallel CSA planes (�3.2.2) as

X0 = �2�1X�1�2 (3.129)

which rotatesX by twice the angle between the planes from�1 to�2. The axis of rotation
is the line of intersection LCS=�1^�2 (�3.2.3) of the two non-parallel planes, which can
be a line through the origin or a general line. The orientation of the rotation is by right-
hand rule on right-handed axes, or by left-hand rule on left-handed axes, around the line
from �1 toward �2.

3.4.4 CSA translated-rotor

The rotation of an entity E by angle � around an arbitrary line L (�3.2.3) through point
p with direction d̂ is a composition of translations (�3.4.2) and rotations (�3.4.3)

E0 = TRT�ETR�T� (3.130)
= Rd

pERd
p�; (3.131)

where

d =
1
2
�d̂ (3.132)

R = exp
�
�
2
d̂�S
�

(3.133)

= cos
�
�
2

�
+ sin

�
�
2

�
(¡d̂IS¡1)(�2:6) (3.134)

T = exp
�
¡1
2
pe1


�
(3.135)

= 1¡ 1
2
pe1
 ; (3.136)

and

Rd
p = TRT� (3.137)

= exp
�
�
2
T d̂�ST�

�
(3.138)

= exp
�
�
2

¡
d̂�S¡

¡
p � d̂�S

�
e1


�
(�3.2.3)

�
(3.139)

= exp
�
�
2
L̂

�
: (3.140)

30 Section 3



The CSA GIPNS 2-versor translated-rotor Rd
p, for rotation by angle � around the unit line

L̂ (�3.2.3), is de�ned as

Rd
p = exp

�
�
2
L̂

�
(3.141)

= cos
�
�
2

�
+ sin

�
�
2

�
L̂; (3.142)

where

L̂ = d̂�S ¡
¡
p � d̂�S

�
e1
: (3.143)

A unit line L̂ is a line with unit scale, when the line direction is a unit vector d̂. Then,

L̂
2
= ¡1: (3.144)

Alternatively, the line can be the axis-angle line

L =
�

2
L̂; (3.145)

and the translated-rotor is

RL = exp(L): (3.146)

3.4.5 CSA dilator

A dilator is a dilat ion operator or versor .
The CSA 2-versor isotropic dilator D, by dilation factor d, is de�ned as

D =
1
2
(1+ d)+

1
2
(1¡ d)e1
 ^ eo
 (3.147)

' 1+
(1¡ d)
(1+ d)

e1
 ^ eo
 (3.148)

' e
atanh

�
(1¡d)
(1+d)

�
e1
^eo


= e
¡1

2
ln(d)e1
^eo
: (3.149)

Any G1;4 CSA entity X is dilated by the factor d as

X0 = DXD�: (3.150)

The �rst form of D (Eq. 3.147) is the most applicable since it allows d < 0 and usually
gives the expected results in that case. The forms of D using atanh or ln cannot accept
d� 0 since those functions would return an in�nite result for d= 0 or complex numbers
which are not valid in a geometric algebra over real numbers.

It should be noted that a zero dilation factor d=0 is generally not valid . Finite surface
entities having eo
 or its dual eo
�CS as a term will dilate by factor 0 into eo
 or its dual
(up to scale), which is a valid result. All other entities dilate by factor 0 into the scalar
0, which is an invalid result. Dilation by factor 0 is valid on the CSA GIPNS sphere and
CGA point and their duals. Using d=0 in the �rst form of D gives

D =
1
2
+
1
2
e1
 ^ eo
 (3.151)
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which, as can be checked, dilates any normalized CSA GIPNS sphere S (�3.2.1) or CSA
point PCS (�3.1) into

DSD� = DPCSD�=Deo
D�= eo
: (3.152)

A DCSA entity must have the DCSA origin point eo or its dual eo�DS as a term for DCSA
dilation by factor d=0 to be valid. This is explained further in the section on the DCSA
GIPNS cyclide.

Dilation is also de�ned by inversions in two concentric spheres (�3.2.1) as

X0 = S2S1XS1S2 (3.153)

which dilates by d= r2
2

r1
2 , with radius r1 of S1 and radius r2 of S2. The dilator D is derived

from successive inversions in two spheres centered at the origin, but it is also possible for
the spheres to be centered at any point and to dilate relative to that point.

3.4.6 CSA spherical inversion

The inversion of point P = P̂ = C(p) = C(c + d) (�3.1) in sphere S (�3.2.1), at center
C= C(c) with radius r, where p is at displacement d from c, is

P0 = SPS�=SPS (3.154)

=

�
C+

1
2
r2e1


�
P

�
C+

1
2
r2e1


�
(3.155)

= CPC+
1
2
r2e1
PC+

1
2
r2CPe1
+

1
4
r4e1
Pe1
 (3.156)

= 2(C �P)C+
1
2
r2(e1
PC+CPe1
)+

1
4
r42(e1
 �P)e1
 (3.157)

= d2C+
1
2
r2(e1
(P �C+P^C)+ (C �P+C^P)e1
)¡

1
2
r4e1
 (3.158)

= ¡d2C+

�
r2C �P¡ 1

2
r4
�
e1
+

1
2
r2(e1
 � (P^C)+ (C^P) � e1
) (3.159)

= ¡d2C+

�
¡1
2
r2d2¡ 1

2
r4
�
e1
+

1
2
r2((C^P) � e1
+(C^P) � e1
) (3.160)

= ¡d2C¡ 1
2
(r2d2+ r4)e1
+ r2(C^P) � e1
 (3.161)

= ¡d2C¡ 1
2
(r2d2+ r4)e1
+ r2P¡ r2C (3.162)

= r2P¡ (d2+ r2)C¡ 1
2
(r2d2+ r4)e1
 (3.163)

= ¡d2c+ r2d+
1
2
(r2(c+d)2¡ (d2+ r2)c2¡ r2d2¡ r4)e1
¡d2eo
 (3.164)

' c+
r2d
¡d2 +

1
2
(r2cd+ r2dc¡d2c2¡ r4)

¡d2 e1
+ eo
 ; for kdk=/ 0; (3.165)

' c¡ r2d¡1+ 1
2
(¡r2cd¡1¡ r2d¡1c+ c2+ r4d¡2)e1
+ eo
 (3.166)

' c¡ r2d¡1+ 1
2
(c¡ r2d¡1)2e1
+ eo
 (3.167)

' c+ r2kdk¡1d̂+ 1
2
(c+ r2kdk¡1d̂)2e1
+ eo
: (3.168)
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The algebra looks involved, but the result is important. If p is on sphere S, then p=c+rd̂,
d= rd̂, and

r2kdk¡1d̂ = rd̂; (3.169)

such that points on the sphere are invariant, up to scale by r2 (Eq. 3.163), by inversion.
When r=1, d transforms to

r2kdk¡1d̂ = kdk¡1d̂; (3.170)

which is a displacement of inverse magnitude from the center c. This accounts for the
name inversion. Equation 3.162 shows that when P=C, then

SCS = ¡1
2
r4e1
: (3.171)

These results con�rm that inversions of points in spheres are correct. Now, consider a test
point T, GOPNS entity X�, and the outermorphism of their test by a sphere S

S(T^X�)S = (STS)^ (SX�S) (3.172)
= T0^

^
SPiS (3.173)

= T0^X�0: (3.174)

Since inversions of points are correct, the inversion ofX� into the entityX�0 is also correct.
Considering the GIPNS entity

X = X�ICS (3.175)
= X� � ICS ; (3.176)

then the inversion of the test is

S(T � (X� � ICS))S = S((T^X�) � ICS)S (3.177)
= S(T^X�)ICSS (3.178)
= S(T^X�)SICS: (3.179)

With these results, the CSA GIPNS sphere S (�3.2.1) can be de�ned as the CSA 1-versor
inversion operator (inversor) S for spherical inversion in the sphere S of any CSA entity
X. The inversion (inversor) operation is the versor sandwich product

X0 = SXS: (3.180)

In general, the round or hyperbolic entities de�ned in a Conformal Geometric Algebra
(CGA) Gp+1;q+1 are inversors, and the �at entities are re�ect ion operators (re�ectors). In
a Double Conformal Geometric Algebra (DCGA) G2p+2;2q+2, the doubled inversors and
re�ectors are DCGA 2-versor inversors and re�ectors.

The CSTA 1-vector hyperpseudosphere �C (�6.4.5) is an inversor for both spherical
inversion in space, and pseudospherical (hyperboloidal) inversion in a 3D spacetime. Inver-
sion in the CSTA 2-vector spacetime hyperboloid (pseudosphere) SC (�6.4.8) is also valid.
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In DCSTA, the 2-versors �D (�7.3.3) and �D (�7.3.4) are valid for the inversion of
doubled entities and all DCSTA 2-vector entities (7.5), including the DCSTA 2-vector
quadric and pseudoquadric surfaces, with di�erent results for the inversion of doubled
entities, quadrics, and pseudoquadrics.

3.4.7 CSA translated-dilator

The CSA 2-versor translated-dilator Dd
p, for isotropic dilation by factor d � 0 centered

around the unit-scale point P̂CS= C(p) (�3.1.8), is de�ned as

Dd
p = exp

�
1
2
ln(d)P̂�CS

�
; (3.181)

where the unit CSA GOPNS 2-vector �at point (�3.3.6) is

P̂�CS = P̂CS ^ e1
: (3.182)

The translated-dilator is derived as Dd
p = T pDdT p�, by translating (�3.4.2) the dilator

(�3.4.5) by p.

3.4.8 CSA motor

A motor is a mot ion operator . A rotation around an SA unit vector axis n̂, followed
by a translation parallel to n̂ are commutative operations. Either the translation or the
rotation can be done �rst, and the other second, to reach the same �nal position. This
commutative operation, being a screw or helical motion, can be seen physically without
mathematics. The motor is a special case where the commutative rotor and translator
can be composed into a single versor M with an exponential form as

M = RT =TR (3.183)

= e
1

2
�n̂�S

e
¡1

2
dn̂e1
= e

¡1

2
dn̂e1
e

1

2
�n̂�S (3.184)

= e
1

2
�n̂�S¡ 1

2
dn̂e1
 (3.185)

= e
¡1

2
n̂(�IS+de1
): (3.186)

The exponents or logarithms of commutative exponentials can be added. A motor can be
used to model smoothly-interpolated screw , twistor , or helical motions, performed in n
steps using the nth root of M

M
1

n = e
¡ 1

2n
n̂(�IS+de1
) (3.187)

applied at each step.

3.4.9 CSA intersection

CSA GIPNS intersection entities, which represent the surface intersections of two or more
CSA GIPNS entities, are formed by the wedge of the CSA GIPNS entities. The CSA
GIPNS circle is de�ned as a CSA GIPNS intersection entity CCS=SCS ^�CS.

Almost any combination of CSA GIPNS entities may be wedged to form a CSA GIPNS
intersection entity up to grade 4, except that the CSA GIPNS 2-vector line and circle enti-
ties that are coplanar cannot be intersected unless their common plane is �rst contracted
out of each of them, then the common plane is wedged back onto their intersection entity.
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Like any CSA GIPNS entity, a CSA GIPNS intersection entity X can be taken dual
as X�CS=X/ICS (�3.4.1) into its CSA GOPNS intersection entity X�CS.

De Morgan's law for the intersection X of two objects A and B is

X = not((notA) and (notB)) (3.188)

and translates into the CSA intersection

X�CS = (A�CS ^B�CS)�CS: (3.189)

This is just the creation of the CSA GOPNS intersection entityX�CS of two CGA GOPNS
entities A and B. In this case, A�CS and B�CS are the undual CSA GIPNS entities,
which can then be intersected by wedge product. The CSA GIPNS intersection X is then
dualized as the CGA GOPNS entityX�CS. The classical view of intersections is by working
with spanning objects, which are the CSA GOPNS entities.

3.5 CSA1 and CSA2 notations

The CSA1 and CSA2 spaces are used as exact copies of CSA. All that is needed is a little
notation to separate the two spaces.

Multivectors in the G0;3 SA1 subspace of G1;4 CSA1 use the subscript S1. For example,
an SA1 vector p in CSA1 is denoted

pS1 = pxe2+ pye3+ pze4: (3.190)

CSA1 entities use the subscript CS1. For example, the embedding of pS1 as a CSA1 point
PCS1 is denoted

PCS1 = C1(pS1) (3.191)

= pS1+
1
2
pS1
2 e11+ eo1 (3.192)

where

e11 = (e5+ e6) (3.193)

eo1 =
1
2
(¡e5+ e6): (3.194)

The CSA1 point embedding function has been named C1. Likewise, a CSA1 surface entity
is named XCS1. The CSA1 point at the origin eo1 and point at in�nity e11 are named
with su�x 1 to indicate their version as being the CSA1 and CSTA1 versions.

Multivectors in the G0;3 SA2 subspace of CSA2 space use the subscript S2 (e.g., pS2).
CSA2 entities use the subscript CS2 (e.g., XCS2).

With this notation, the CSA1 unit pseudoscalars are

IS1 = e2e3e4 (3.195)
ICS1 = e2e3e4e5e6 (3.196)

and the CSA2 unit pseudoscalars are

IS2 = e8e9e10 (3.197)
ICS2 = e8e9e10e11e12: (3.198)
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An SA2 vector p in CSA2 is denoted

pS2 = pxe8+ pye9+ pze10: (3.199)

The CSA2 point embedding is

PCS2 = C2(pS2) (3.200)

= pS2+
1
2
pS2
2 e12+ eo2 (3.201)

where

e12 = (e11+ e12) (3.202)

eo2 =
1
2
(¡e11+ e12): (3.203)

The CSA2 point at the origin eo2 and point at in�nity e12 are named with su�x 2 to
indicate their version as being the CSA2 and CSTA2 versions.

A versor O (rotor, dilator, translator, or motor) in CSA1 is denoted OCS1, and in CGA2
is denoted OCS2.

4 Double Conformal Space Algebra (DCSA)

The G2;8 Double Conformal Space Algebra (DCSA) is a doubling of the G1;4 Conformal
Space Algebra (CSA) (�3) and is the spatial subalgebra of G4;8 Double Conformal Space-
Time Algebra (DCSTA) (�7).
G2;8 DCSA is very similar to the G8;2 Double Conformal Geometric Algebra (DCGA)

that is introduced in [7], and this section is directly based on [7]. Compared to DCGA,
there are some changes in notation and some changes in signs to account for the changes
in signatures. The discussions on the DCSA entities include new details on how the
entities can be used within DCSTA. In DCSTA, the spatial DCSA entities gain the
ability to be boosted using the DCSTA boost operator (�7.7.3), and their inversions in
hyperpseudospheres (�7.3.3) and re�ections in hyperplanes (�7.3.2) are also possible.

4.1 DCSA point

4.1.1 DCSA point embedding

The standard DCSA null 2-vector point entity PDS is the embedding of a vector

p=pS = px
1+ py
2+ pz
3 (4.1)

as

PDS = D(p) (4.2)
= C1(pS1)^C2(pS2) (4.3)
= PCS1^PCS2 (4.4)
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where

pS1 = pxe2+ pye3+ pze4 (4.5)
pS2 = pxe8+ pye9+ pze10: (4.6)

The DCSA point PDS is the wedge (or geometric product) of a CSA1 point PCS1 with a
CSA2 point PCS2 (�3.5). All DCSA points are null 2-vectors, PDS2 =0.

CSA1 and CSA2 points and surface entities can be rotated, translated, and dilated
using CSA1 and CSA2 versors for these operations. The wedge of a CSA1 versor with its
copy CSA2 versor (rotor, translator, dilator, or motor) creates the DCSA versor on DCSA
points and surface entities.

4.1.2 DCSA origin point

The DCSA point at the origin eo is de�ned as

eo = eo1^ eo2: (4.7)

This is also the DCSTA origin point (�7.2.1.1). The CSA origin point eo
 (�3.1.5) in CSA1
eo1 and CSA2 eo2 (�3.5) are multiplied to form the DCSA origin point eo.

4.1.3 DCSA in�nity point

The DCSA point at in�nity e1 is de�ned as

e1 = e11^ e12: (4.8)

This is also the DCSTA in�nity point (�7.2.1.2). The CSA in�nity point e1
 (�3.1.6) in
CSA1 e11 and CSA2 e12 (�3.5) are multiplied to form the DCSA in�nity point e1.

As in CSA, the DCSA origin and in�nity points have the inner product

e1 � eo = ¡1: (4.9)

4.1.4 Distance between two DCSA points

The squared-squared distance d4 between two DCSA points PDS1 and PDS2 is

d4 = ¡4PDS1 �PDS2 (4.10)
= ¡4(PCS11^PCS12) � (PCS21^PCS22) (4.11)
= ¡4(PCS11 � ((PCS12 �PCS21)PCS22¡PCS21(PCS12 �PCS22))) (4.12)
= ¡4((PCS12 �PCS21)(PCS11 �PCS22)¡ (PCS11 �PCS21)(PCS12 �PCS22)) (4.13)

= ¡4
�
(0)(0)¡

�
d2

2

��
d2

2

��
: (4.14)

The squared distance d2 between points is also

d2 = 2
¡PDS1 � e12

(PDS1 � e12) � e11
� ¡PDS2 � e12

(PDS2 � e12) � e11
(4.15)

= 2PCS11 �PCS21 (4.16)

where each DCSA point is contracted and renormalized into a CSA1 point.
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4.1.5 DCSA point projection (inverse embedding)

The projection of a DCSA point PDS back to an SA1 vector p is

PCS1 ' PDS � e12 (4.17)

p =
(PCS1 � IS1)IS1¡1
¡PCS1 � e11

(4.18)

=
¡
P̂CS1 � IS1

�
IS1
¡1: (4.19)

4.1.6 DCSA point value-extraction elements

The DCSA null 2-vector point TDS =D(t) allows for the extraction of more polynomial
terms than only the x, y, z, and t2 =¡(x2+ y2+ z2) terms that the CSA null 1-vector
point TCS (�3.1) embeds. The terms that can be extracted from a point determine what
polynomial equations or entities can be represented as GIPNS entities that test against
the point.

When expanded, the DCSA point TDS=D(t) is

TDS =

�
tS1+

1
2
t2e11+ eo1

�
^
�
tS2+

1
2
t2e12+ eo2

�
(4.20)

= tS1^ tS2+ tS1^ eo2+ eo1^ tS2+ (4.21)
1
2
t2e11^ (tS2+ eo2)+

1
2
t2(tS1+ eo1)^ e12+

1
4
t4e1+ eo

where

t= tS1 = xe2+ ye3+ ze4 (4.22)
tS2 = xe8+ ye9+ ze10 (4.23)
t2 = ¡(x2+y2+z2) (4.24)
t4 = x4+ y4+ z4+2x2y2+2y2z2+2z2x2: (4.25)

Fully expanding, TDS is

TDS =
1
2
(xt2¡x)e2e11+

1
2
(xt2+x)e2e12+

1
2
(xt2¡x)e5e8+

1
2
(xt2+x)e6e8+ (4.26)

1
2
(yt2¡ y)e3e11+

1
2
(yt2+ y)e3e12+

1
2
(yt2¡ y)e5e9+

1
2
(yt2+ y)e6e9+

1
2
(zt2¡ z)e4e11+

1
2
(zt2+ z)e4e12+

1
2
(zt2¡ z)e5e10+

1
2
(zt2+ z)e6e10+

xye2e9+xye3e8+ yze3e10+ yze4e9+ xze2e10+xze4e8+

x2e2e8+ y2e3e9+ z2e4e10+
1
4
(t4¡ 1)e5e12+

1
4
(t4¡ 1)e6e11+

1
4
(t4¡ 2t2+1)e5e11+

1
4
(t4+2t2+1)e6e12:

The vector t, and its DCSA point embedding TDS=D(t), will be used as a test point for
position on surfaces.
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The DCSA 2-vector extraction elements Ts are de�ned as

Tx =
1
2
(e12^ e2+ e8^ e11) (4.27)

Ty =
1
2
(e12^ e3+ e9^ e11) (4.28)

Tz =
1
2
(e12^ e4+ e10^ e11) (4.29)

Tx2 = e8^ e2 (4.30)
Ty2 = e9^ e3 (4.31)
Tz2 = e10^ e4 (4.32)

Txy =
1
2
(e9^ e2+ e8^ e3) (4.33)

Tyz =
1
2
(e10^ e3+ e9^ e4) (4.34)

Tzx =
1
2
(e8^ e4+ e10^ e2) (4.35)

Txt2 = eo2^ e2+ e8^ eo1 (4.36)
Tyt2 = eo2^ e3+ e9^ eo1 (4.37)
Tzt2 = eo2^ e4+ e10^ eo1 (4.38)

T1 = ¡e1 (4.39)
Tt2 = eo2^ e11+ e12^ eo1 (4.40)
Tt4 = ¡4eo: (4.41)

The DCSA 2-vector extraction elements Ts are inner product extraction operators on the
DCSA point TDS. The value s can be extracted from point TDS as

s = Ts �TDS=TDS �Ts: (4.42)

The DCSA extraction operators Ts, which are a subset of the DCSTA extraction operators
(�7.2.3) with t= tM= tS, are used to de�ne most of the DCSA GIPNS 2-vector surface
entities.

In the metric of G2;8 DCSA,

t2= tS
2 = ¡(x2+ y2+ z2); (4.43)

which has the opposite sign of t2= tE2 in G8;2 DCGA. The G2;8 DCSA extraction operators
Tt2, Txt2, Tyt2, and Tzt2 each produce the opposite sign compared to the similar extraction
operator in G8;2 DCGA. These sign di�erences require sign changes in the de�nitions of
any entities that include these extraction elements.

Two properties of the extraction elements are

e1 �Ts =

�
0 : Ts=/ Tt4
4 : Ts=Tt4

(4.44)

eo �Ts =

�
0 : Ts=/ T1
1 : Ts=T1:

(4.45)
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The �rst property, about the point at in�nity e1, has the consequence that all DCSA
GIPNS 2-vector surface entities (�4.2.20) without a term in Tt4 are entities having the
surface point e1. In particular, the DCSA GIPNS 2-vector ellipsoid surface entity (�4.2.2)
is generally considered to be a �nite closed surface, yet in DCGA it always has the surface
point e1. Other surface entities can also unexpectedly have the surface point e1. This
possible problem about e1 will be mentioned again in the section on the DCSA GIPNS
2-vector ellipsoid entity E (�4.2.2). This possible problem about e1 will also be discussed
further in the section on inversions in spheres and on parabolic cyclides (�4.2.20.3). The
second property, about the point at the origin eo, does not pose any known problems.

The spherical inverse surface entity SES� of any surface entity E without a term in
Tt4 will always have the inversion sphere S (�4.2.3) center point PD as a surface point.
The point at in�nity e1 always re�ects into the inversion sphere center point PDS, or the
reverse. All open surfaces are expected to have the point e1, and their inverse surfaces
are expected to have the inversion sphere center point. Unexpectedly, the inverse surface
entity of the ellipsoid entity when re�ected in a sphere will always have a singular outlier
surface point at the inversion sphere center point (see Fig. 4.16). A singular outlier point
may be invisible in a surface plot.

4.2 DCSA GIPNS entities
Many of the DCSA 2-vector Geometric Inner Product Null Space (GIPNS) surface entities
are constructed using the value extractions Ts �TDS (�4.1.6) from the DCSA point entity
(�4.1). The DCSA GIPNS surface entities are the undual surface entities in DCSA since
the direct construction of DCSA Geometric Outer Product Null Space (GOPNS) surface
entities is limited to the wedge of up to four DCSA points, which cannot construct
all of the DCSA GOPNS surface entities. The DCSA GIPNS surface entities can be
rotated (�4.4.1), dilated (�4.4.2), and translated (�4.4.3) by DCSA versors, and they can
be intersected (�4.4.5) with the bi-CSA GIPNS surface entities.

A DCSA test point TDS that is on a DCSA GIPNS surface entity S must satisfy the
GIPNS condition

TDS �S = 0: (4.46)

The DCSA GIPNS k-vector surface entity S represents the set NIG(S2 G2;8k ) of all
3D vector test points t that are surface points

NIG(S2G2;8k ) =
�
t2 G0;31 : (D(t)=TDS) �S=0

	
: (4.47)

4.2.1 DCSA GIPNS toroid

The implicit quartic equation for a circular toroid (torus), which is positioned at the origin
and surrounds the z-axis, is

t4¡ 2t2(R2¡ r2)+ (R2¡ r2)2¡ 4R2(x2+ y2) = 0 (4.48)

where

t= tS = x
1+ y
2+ z
32G0;31 (4.49)

is a test point, R is the major radius, and r is the minor radius. The equation is true if
the test point t is on the toroid. The radius R is that of a circle around the origin in the
xy-plane. The radius r is that of circles centered on the circle of R and which span the
z-axis dimension for z=�r. The toroid spans x; y=�(R+ r).
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The DCSA GIPNS 2-vector toroid surface entity O is de�ned as

O = Tt4¡ 2(R2¡ r2)Tt2+(R2¡ r2)2T1¡ 4R2(Tx2+Ty2): (4.50)

A test DCSA point TDS = D(t) is on the toroid surface represented by O if TDS �O =
0: Using symbolic mathematics software, such as the Geometric Algebra Module [2] for
Sympy [24] by Alan Bromborsky et al., the inner product TDS �O generates the scalar
implicit surface function of the toroid when t is a variable symbolic vector. When t is a
speci�c vector, TDS �O is a test operation on the toroid for the speci�c point.

We can denote the DCSA-dual (�4.4.6) of O as O�DS, and de�ne it as

O�DS = O/IDS=OIDS
¡1 =¡O � IDS: (4.51)

The DCSA GOPNS 8-vector toroid surface entity is O�DS, where a test point t on the
surface must satisfy the GOPNS condition TDS ^O�DS=0. Since TDS is a 2-vector and
O�DS is an 8-vector, then TDS^O�DS is the DCSA 10-vector pseudoscalar implicit surface
function of the toroid when t is a variable symbolic vector. The undual operation (�4.4.6)
returns the DCSA GIPNS surface O = O�DS � IDS. The other DCSA GOPNS surface
entities will be discussed later in this paper.

Although the toroid O is created at the origin and aligned around the z-axis, it
can then be rotated, dilated, and translated away from the origin using DCSA versor
operations. Like all DCSA GIPNS surface entities, the DCSA GIPNS toroid can be
intersected with any bi-CSA GIPNS (2, 4, or 6)-vector surface, which are 2-vector spheres
and planes, 4-vector circles and lines, and 6-vector point-pairs.

Since the toroid O is constructed with an extraction term Tt4= ¡4eo, it is a DCSA
closed-surface entity that does not include e1 as a surface point, and it can be dilated
(�4.4.2) by a zero dilation factor d= 0 into eo. The inverse toroid entity, when re�ected
in a standard DCSA GIPNS 2-vector sphere (�4.2.3), does not have a singular outlier
surface point at the center point of the inversion sphere. The standard DCSA GIPNS 2-
vector sphere S (�4.2.3) also has these closed-surface characteristics, but the ellipsoid E
(�4.2.2) does not.

x

y

z

rotation R

25�

translation T

TROR�T�

Figure 4.1. DCSA toroid rotated and translated
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4.2.2 DCSA GIPNS ellipsoid

The implicit quadric equation for a principal axes-aligned ellipsoid is

(x¡ px)2
rx
2 +

(y¡ py)2
ry
2 +

(z ¡ px)2
rz
2 ¡ 1 = 0 (4.52)

where p = px
1 + py
2 + pz
3 (�2.5) is the position (or shifted origin, or center) of the
ellipsoid, and rx; ry; rz are the semi-diameters (often denoted a; b; c). Expanding the
squares, the equation can be written as

¡2pxx
rx
2 +

¡2pyy
ry
2 +

¡2pzz
rz
2 +

 
x2

rx
2 +

y2

ry
2 +

z2

rz
2

!
+

 
px
2

rx
2 +

py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
= 0: (4.53)

Using the DCSA point value-extraction elements (�4.1.6), an ellipsoid equation can be
constructed. This construction will be similar for the remaining surface entities that
follow.

The DCSA GIPNS 2-vector ellipsoid surface entity E is de�ned as

E =
¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

¡2pzTz
rz
2 + (4.54)

Tx2

rx
2 +

Ty2

ry
2 +

Tz2

rz
2 + 

px
2

rx
2 +

py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
T1:

A DCSA 2-vector point TDS=D(t) is tested against the DCSA 2-vector ellipsoid E as

TDS �E

8<: <0 : t is inside ellipsoid
=0 : t is on ellipsoid
>0 : t is outside ellipsoid.

(4.55)

It was �rst mentioned in Section 4.1.6, on the DCSA point TDS and value-extraction
operators Ts, that the ellipsoid entity E has the possible problem that it includes the
point at in�nity e1 as a surface point according to the test just given above. We could
de�ne the invariant test e1 �E=0 as an invalid test, or we could accept that e1 is a valid
surface point of the particular DCSA ellipsoid entity E but not of ellipsoids in general.

An inverse ellipsoid surface entity, which is an ellipsoid entity E that has been re�ected
in a standard DCSA 2-vector sphere S (�4.2.3) as SES�, will always have a singular
outlier surface point that is exactly the center point PDS of the inversion sphere S and
the test PDS � (SES�) = 0 will always hold true. The point e1 on the ellipsoid entity E
is re�ected into PDS. The inverse ellipsoid surface entity SES� is otherwise a correctly
formed surface entity of one of the types that should be expected, which is either a quartic
Darboux cyclide (�4.2.20) or a cubic parabolic cyclide (�4.2.20.3). The outlier point is
often invisible in surface plots. See Figure 4.16, which shows an ellipsoid re�ection that
produces a Darboux cyclide.
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Figure 4.2. DCSA ellipsoids rotated, translated, and intersected with planes

Figure 4.2 shows two ellipsoids that have been rotated (�4.4.1) and translated (�4.4.3)
into their intersecting positions using DCSA versor operations. The DCSA GIPNS ellip-
soid E1 (rx=4, ry=5, rz=3) is rotated 25� around the line n= 1

2
p (¡
1+
2), then rotated

45� around the z-axis, then translated by d= 10
1+ 10
2. The DCSA GIPNS ellipsoid
E2 (pz= 6, rx= 2, ry= 3, rz= 6) is rotated -35� around the line n= 1

2
p (¡
1+ 
2), then

rotated 35� around the z-axis, then translated by d=10
1+10
2. The ellipsoids intersect
in a curved ellipse which, unfortunately, could not be represented as an intersection entity.

Although not rigorously proved here, in tests performed by this author, the ellipsoid
and all other DCSA entities can be intersected with the standard DCSA sphere (�4.2.3),
plane (�4.2.5), line (�4.2.4), and circle (�4.2.6) entities (bi-CSA entities), but DCSA enti-
ties cannot be intersected in full generality.

The upper-left image in Figure 4.2 shows the ellipsoids with standard planes drawn.
The upper-right image shows the ellipsoids drawn with DCSA GIPNS plane �1 repre-
senting the plane z=0, and with the DCSA GIPNS plane �2 representing the plane z=0
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rotated 60� around the x-axis. The lower-left image shows the DCSA GIPNS intersection
entity E1^�1; the green elliptic cylinder H (�4.2.7) is an intersection entity component
and represents the ellipse in which they intersect. The lower-right image shows the DCSA
GIPNS intersection entity E2 ^ �2; the green hyperboloid of one sheet � (�4.2.11) and
the red non-parallel planes pair X (�4.2.16) are intersection entity components which are
also coincident and represent the intersection (�4.4.5).

4.2.3 DCSA GIPNS sphere

The standard DCSA GIPNS 2-vector sphere S will be de�ned as a bi-CSA sphere, not
the DCSA GIPNS ellipsoid E (�4.2.2) with equal semi-diameters r= rx= ry= rz.

The DCSA GIPNS ellipsoid E with r=rx=ry=rz can be reformulated into the DCSA
GIPNS 2-vector ellipsoid-based sphere entity � as

� = ¡2(pxTx+ pyTy+ pzTz)+Tx2+Ty2+Tz2+(px
2+ py

2+ pz
2¡ r2)T1 (4.56)

' (pxTx+ pyTy+ pzTz)¡
1
2
(px

2+ py
2+ pz

2)T1¡
1
2
(Tx2+Ty2+Tz2)+

1
2
r2T1: (4.57)

Taking r=0 suggests that the sphere � degenerates into some type of point entity. With
T1=¡e1, the middle term has a familiar CSA point (�3.1.7) form. However, if this were a
CSA point, the last term should reduce to eo, but it does not. The result here is that, the
sphere entity� with r=0 degenerates into a DCSA GIPNS non-null 2-vector point entity,
which is not the standard DCSA null 2-vector point that we might expect. The DCSA
GIPNS ellipsoid E can be reformulated into a kind of sphere entity � that degenerates
into a kind of non-null point entity when r=0. However, r=0 is invalid for an ellipsoid
entity E, and only in the limit r! 0 does E approach a point � with r=0. We can also
form a sphere in another way which does degenerate into a standard DCSA point.

The standard DCSA GIPNS 2-vector sphere surface entity S, also being called a bi-
CSA GIPNS 2-vector sphere, is de�ned as

S=SDS = SCS1^SCS2 (4.58)

where

SCS1 = PCS1+
1
2
r2e11 (4.59)

SCS2 = PCS2+
1
2
r2e12: (4.60)

The CSA1 GIPNS 1-vector sphere SCS1 and the CSA2 GIPNS 1-vector sphere SCS2
(�3.2.1), both representing the same sphere, with radius r at center position p = pS
in 3D anti-Euclidean SA space S (�2.5), are wedged to form the DCSA or bi-CSA GIPNS
sphere S. If r=0, the sphere is degenerated into a DCSA point

PDS = PCS1^PCS2 (4.61)

that would represent the center position of the sphere. This form of sphere allows greater
consistency, and it can also be intersected with any DCSA GIPNS entity. A sphere that
is formed using the DCSA GIPNS ellipsoid can only be intersected with bi-CSA GIPNS
entities. In general, the other bi-CSA GIPNS entities for lines (�4.2.4), circles (�4.2.6),
and planes (�4.2.5) follow this same pattern, that they are the wedge of the CSA1 and
CSA2 copies (�3.5) of the entity.
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A DCSA 2-vector point TDS =D(t) is tested against the standard DCSA GIPNS 2-
vector sphere S as

2

�
¡TDS � e12

(TDS � e12) � e11

�
�
�

¡S � e12

(S � e12) � e11

�8>><>>:
<0 : t is inside sphere
=0 : t is on sphere
>0 : t is outside sphere
>0 : =d2, squared tangent:

(4.62)

To determine inside or outside, this incidence test requires the bi-CSA point TDS (�4.1)
to be contracted into a CSA1 point (�3.1), and the bi-CSA sphere S to be contracted into
a CSA1 sphere (�3.2.1), and both are renormalized. The entity e12 is both a CSA2 point
and a CSA2 sphere of in�nite radius, and it serves as the contraction operator on both the
point and sphere into CSA1 entities, up to scale. The result is reduced to a CSA1 incidence
test. When the test is positive, it is the squared distance d2 from the point to the sphere
along any line tangent to the sphere surface. Similarly for other bi-CSA entities, they can
be contracted into CSA1 entities and then all the usual CSA tests are available on them.

4.2.4 DCSA GIPNS line

The DCSA GIPNS 4-vector line 1D surface entity L is de�ned as

L=LDS = LCS1^LCS2 (4.63)

where

LCS1 = DS1¡ (pS1 �DS1)e11 (4.64)
LCS2 = DS2¡ (pS2 �DS2)e12: (4.65)

This is the wedge of the line as represented in CSA1 with the same line as represented
in CSA2 (�3.2.3). It could also be called a bi-CSA GIPNS line entity. The D are unit
bivectors perpendicular to the line, and p is any sample point on the line. The SA undual
(�2.2) unit vector d=¡DIS, or dS1=¡DS1IS1 and dS2=¡DS2IS2, is in the direction of
the line.

4.2.5 DCSA GIPNS plane

The DCSA GIPNS 2-vector plane surface entity � is de�ned as

�=�DS = �CS1^�CS2 (4.66)

where

�CS1 = nS1¡ de11 (4.67)
�CS2 = nS2¡ de12: (4.68)

This is the wedge of the plane as represented in CSA1 with the same plane as represented
in CSA2 (�3.2.2). It could also be called a bi-CSA GIPNS plane entity. The vector n is
a unit vector perpendicular (normal) to the plane, and the scalar d is the distance of the
plane from the origin.

The DCSA GIPNS 4-vector line L (�4.2.4) can also be de�ned as the intersection of
two DCSA GIPNS planes as

L = �1^�2 (4.69)
= (n1S1¡ d1e11)^ (n1S2¡ d1e12)^ (n2S1¡ d2e11)^ (n2S2¡ d2e12) (4.70)
= ¡((n1S1¡ d1e11)^ (n2S1¡ d2e11))^ ((n1S2¡ d1e12)^ (n2S2¡ d2e12)) (4.71)
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' (n1S1^n2S1¡ (d2n1S1¡ d1n2S1)e11)^ (n1S2^n2S2¡ (d2n1S2¡ d1n2S2)e12) (4.72)
' (DS1¡ (pS1 �DS1)e11)^ (DS2¡ (pS2 �DS2)e12) (4.73)
' LCS1^LCS2; (4.74)

where

DS1 = n1S1^n2S1 (4.75)
DS2 = n1S2^n2S2 (4.76)

pS1 �DS1 = (pS1 �n1S1)n2S1¡ (pS1 �n2S1)n1S1 (4.77)
= ¡d1n2S1+ d2n1S1 (4.78)

pS2 �DS2 = (pS2 �n1S2)n2S2¡ (pS2 �n2S2)n1S2 (4.79)
= ¡d1n2S2+ d2n1S2 (4.80)

such that p is any point on both planes (the line), and D=d�S=¡dIS¡1 (�2.2) is the unit
bivector perpendicular to the line. The unit vector d=¡DIS points in the direction of
the line. Other bi-CSA GIPNS entities are formed similarly as the wedge of the entity in
CSA1 with the same entity in CSA2.

Some of the subscripting notation may seem confusing. For example, n1S1 is the �rst of
the two anti-Euclidean 3D unit vectors in G0;3 SA1 (�2.5), and this could also be denoted
as nS11. Recall that G0;3 SA1 S1 is the algebra with unit pseudoscalar IS1= e2e3e4, and it
is a subalgebra of G1;4 CSA1 CS1 with unit pseudoscalar ICS1=e2e3e4e5e6 (�3.5). The G1;4
CSA2 CS2 algebra uses notations n1S2 or nS12, where IS2=e8e9e10 and ICS2=e8e9e10e11e12
(�3.5). The subscripting indicates the index number for multiple entities sharing the same
name, and also the algebra in which the entity exists. Finally, n1S1 and n1S2 have the same
index number 1, so they represent the same 3D unit vector n copied or doubled into the
S1 and S2 anti-Euclidean subalgebras of CS1 CSA1 and CS2 CSA2, respectively.

4.2.6 DCSA GIPNS circle

A circle is the intersection of a sphere and plane. We can intersect a bi-CSA GIPNS 2-
vector plane � (�4.2.5) with either a bi-CSA GIPNS 2-vector sphere S (�4.2.3) or with a
spherical DCSA GIPNS 2-vector ellipsoid E (�4.2.2) and get two di�erent GIPNS 4-vector
circle entities. The �rst can be intersected again with any other entity, but the latter can
only be intersected again with another bi-CSA GIPNS entity.

Intersections (�4.4.5) are limited to an GIPNS intersection entity of maximum grade
8, so up to four 2-vector entities, two 4-vector entities, or a 4-vector entity and two 2-
vector GIPNS entities can be intersected, but only one of the intersecting entities can be
a DCSA GIPNS 2-vector Darboux cyclide (�4.2.20).

As the standard DCSA GIPNS 4-vector circle 1D surface entity C, we will de�ne it
as the bi-CSA GIPNS circle

C=CDS = SDS ^�DS (4.81)
= SCS1^SCS2^�CS1^�CS2 (4.82)
= ¡(SCS1^�CS1)^ (SCS2^�CS2) (4.83)
' CCS1^CCS2: (4.84)
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4.2.7 DCSA GIPNS elliptic cylinder

An axes-aligned elliptic cylinder is the limit of an ellipsoid as one of the semi-diameters
approaches 1. This limit eliminates the terms of the cylinder axis from the implicit
ellipsoid equation.

The x-axis aligned cylinder takes rx!1, reducing the ellipsoid equation to

(y¡ py)2
ry
2 +

(z¡ pz)2
rz
2 ¡ 1 = 0: (4.85)

Similarly, the y-axis and z-axis aligned cylinders are

(x¡ px)2
rx
2 +

(z¡ pz)2
rz
2 ¡ 1 = 0 (4.86)

(x¡ px)2
rx
2 +

(y¡ py)2
ry
2 ¡ 1 = 0 (4.87)

where p= px
1+ py
2+ pz
3 is the position (or shifted origin, or center) of the ellipsoid,
and rx; ry; rz are the semi-diameters (often denoted a; b; c).

The DCSA GIPNS 2-vector x,y,z-axis aligned cylinder surface entities Hjjfx;y;zg are
de�ned as

Hjjx =
¡2pyTy
ry
2 +

¡2pzTz
rz
2 +

Ty2

ry
2 +

Tz2

rz
2 +

 
py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
T1 (4.88)

Hjjy =
¡2pxTx
rx
2 +

¡2pzTz
rz
2 +

Tx2

rx
2 +

Tz2

rz
2 +

�
px
2

rx
2 +

pz
2

rz
2 ¡ 1

�
T1 (4.89)

Hjjz =
¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

Tx2

rx
2 +

Ty2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡ 1

!
T1: (4.90)

These elliptic cylinders are created as axes-aligned, but like all DCSA entities, they can
be rotated, dilated, and translated using DCSA versor operations (�4.4).

y

x

z

45�

H

TDHD�T�

TRHR�T�

Figure 4.3. DCSA elliptic cylinders
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Figure 4.3 shows a red DCSA GIPNS z-axis aligned elliptic cylinder H at the origin
with semi-diameters rx= 1 and ry= 3. The green cylinder is the red cylinder dilated by
factor 2 and translated 5
1¡5
2 using DCSA versors. The blue cylinder is the red cylinder
rotated 45� around the y-axis and translated ¡5
1+5
2.

4.2.8 DCSA GIPNS elliptic cone

An axis-aligned elliptic cone is an axis-aligned cylinder that is linearly scaled along the
axis.

The implicit quadric equation for an x-axis aligned cone is

(y¡ py)2
ry
2 +

(z ¡ pz)2
rz
2 ¡ (x¡ px)2

rx
2 = 0: (4.91)

where p= px
1+ py
2+ pz
3 is the position (or shifted origin, or center) of the cone apex,
and rx; ry; rz are the semi-diameters (often denoted a; b; c) of the ellipsoid upon which the
cone is based. When

(x¡ px)2
rx
2 = 1 (4.92)

the cross section of the cone is the size of the similar cylinder. When x = px the cross
section of the cone is degenerated into the cone apex point.

Similarly, the implicit equations for y-axis and z-axis aligned cones are

(x¡ px)2
rx
2 +

(z¡ pz)2
rz
2 ¡ (y¡ py)2

ry
2 = 0 (4.93)

(x¡ px)2
rx
2 +

(y¡ py)2
ry
2 ¡ (z ¡ pz)2

rz
2 = 0: (4.94)

The GIPNS cone entities are constructed similarly to the ellipsoid and cylinder entities.

The DCSA GIPNS 2-vector {x,y,z}-axis aligned elliptic cone surface entities Kjjfx;y;zg

are de�ned as

Kjjx = 2

 
pxTx
rx
2 ¡

pyTy
ry
2 ¡

pzTz
rz
2

!
¡ Tx2

rx
2 +

Ty2

ry
2 +

Tz2

rz
2 +

 
py
2

ry
2 +
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2

rz
2 ¡

px
2

rx
2

!
T1 (4.95)
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ry
2 ¡

pzTz
rz
2 ¡

pxTx
rx
2

!
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2
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2 ¡
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2
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2 +
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2
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2

!
T1 (4.96)

Kjjz = 2

 
pzTz
rz
2 ¡

pyTy
ry
2 ¡

pxTx
rx
2

!
+
Tx2

rx
2 +

Ty2

ry
2 ¡

Tz2

rz
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡

pz
2

rz
2

!
T1: (4.97)

These elliptic cones are created as axes-aligned, but they can be rotated, dilated, and
translated using DCSA versor operations (�4.4). All the DCSA surfaces can have general
position, but we initially de�ne them in axes-aligned position for simplicity. De�ning the
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surfaces in general position may be possible if the value-extraction operations Txy, Tyz,
and Tzx are employed.

x y

z

K

TDKD�T�

TRKR�T�

Figure 4.4. DCSA elliptic cones

Figure 4.4 shows some DCSA GIPNS cones positioned and transformed similar to the
elliptic cylinders of Figure 4.3. The dilation of a cone does not change the cone shape, but
it does dilate the cone center position to e�ectively translate a cone that is not initially
at the origin to be further from the origin by the dilation factor.

4.2.9 DCSA GIPNS elliptic paraboloid

The elliptic paraboloid has a cone-like shape that opens up or down. The other paraboloid
that would open the other way is imaginary with no real solution points.

The implicit quadric equation of a z-axis aligned elliptic paraboloid is

(x¡ px)2
rx
2 +

(y¡ py)2
ry
2 ¡ (z¡ pz)

rz
= 0: (4.98)

The surface opens up the z-axis for rz> 0, and opens down the z-axis for rz< 0. Similar
equations for x-axis and y-axis aligned elliptic paraboloids are

(z¡ pz)2
rz
2 +

(y¡ py)2
ry
2 ¡ (x¡ px)

rx
= 0 (4.99)

(x¡ px)2
rx
2 +

(z ¡ pz)2
rz
2 ¡ (y¡ py)

ry
= 0: (4.100)

Expanding the squares, the z-axis aligned equation is

¡2pxx
rx
2 +

¡2pyy
ry
2 +

¡z
rz

+
x2

rx
2 +

y2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 +

pz
rz

!
= 0 (4.101)
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and the x-axis and y-axis aligned equations are

¡2pzz
rz
2 +

¡2pyy
ry
2 +

¡x
rx

+
z2

rz
2 +

y2

ry
2 +

 
pz
2

rz
2 +

py
2

ry
2 +

px
rx

!
= 0 (4.102)

¡2pxx
rx
2 +

¡2pzz
rz
2 +

¡y
ry

+
x2

rx
2 +

z2

rz
2 +

�
px
2

rx
2 +

pz
2

rz
2 +

py
ry

�
= 0: (4.103)

The DCSA GIPNS 2-vector {x,y,z}-axis aligned elliptic paraboloid surface entities
V jjfx;y;zg are de�ned as

V jjx =
¡2pzTz
rz
2 +

¡2pyTy
ry
2 +

¡Tx
rx

+
Tz2

rz
2 +

Ty2

ry
2 +

 
pz
2

rz
2 +

py
2

ry
2 +

px
rx

!
T1 (4.104)

V jjy =
¡2pxTx
rx
2 +

¡2pzTz
rz
2 +

¡Ty
ry

+
Tx2
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2 +

Tz2

rz
2 +

�
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2

rx
2 +

pz
2

rz
2 +

py
ry

�
T1 (4.105)

V jjz ¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

¡Tz
rz

+
Tx2

rx
2 +

Ty2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 +

pz
rz

!
T1: (4.106)

A DCSA 2-vector point TDS=D(t) is tested against the DCSA 2-vector paraboloid V as

TDS �V

8<: <0 : t is inside paraboloid
=0 : t is on paraboloid
>0 : t is outside paraboloid.

(4.107)

This is similar to the ellipsoid incidence test, and this test is similar for many of the
surfaces.

z

yx

V

TRVR�T�

TDVD�T�

Figure 4.5. DCSA elliptic paraboloids

4.2.10 DCSA GIPNS hyperbolic paraboloid

The hyperbolic paraboloid has a saddle shape. The saddle can be mounted or aligned on
a saddle axis with another axis chosen as the up axis. The third axis may be called the
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straddle axis.

The implicit quadric equation of a hyperbolic paraboloid is

(x¡ px)2
rx
2 ¡ (y¡ py)2

ry
2 ¡ (z ¡ pz)

rz
= 0: (4.108)

This particular form of the equation has saddle x-axis, straddle y-axis, and up z-axis
for rz > 0 or up negative z-axis for rz < 0. By its similarity to the z-axis aligned elliptic
paraboloid with the elliptic y-axis inverted, this particular form can be seen as z-axis
aligned. Other forms can be made by transposing axes, or by rotation around diagonal
lines using DCSA rotor (�4.4.1) operations.

Expanding the squares, the equation is

¡2pxx
rx
2 +

2pyy

ry
2 +

¡z
rz

+
x2

rx
2 +
¡y2
ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 +

pz
rz

!
= 0: (4.109)

The DCSA GIPNS 2-vector z-axis aligned hyperbolic paraboloid surface entityM is de�ned
as

M =
¡2pxTx
rx
2 +

2pyTy
ry
2 +

¡Tz
rz

+
Tx2

rx
2 +
¡Ty2
ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 +

pz
rz

!
T1: (4.110)
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R2R1MR1
�R2

�

Figure 4.6. DCSA hyperbolic paraboloid rotated twice

Figure 4.6 shows the hyperbolic paraboloid entity M, which is centered on the origin
with parameters rx=ry=rz=1, and which was initially z-axis aligned. It was then rotated
twice. The �rst rotation was 45� around the blue z-axis, pointing nearly out of the page.
The second rotation was 25� around the line n= 1

2
p (¡
1+ 
2) pointing toward the lower-

right of the page. The rotations follow the right-hand rule on a right-handed axes model.
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4.2.11 DCSA GIPNS hyperboloid of one sheet

The hyperboloid of one sheet has a shape that is similar to an hourglass which continues
to open both upward and downward. The implicit quadric equation is

(x¡ px)2
rx
2 +

(y¡ py)2
ry
2 ¡ (z¡ pz)2

rz
2 ¡ 1 = 0: (4.111)

This particular form opens up and down the z-axis. Planes parallel to the z-axis cut
hyperbola sections. Planes perpendicular to the z-axis cut ellipse sections. At z = pz,
the ellipse section has a minimum size of the similar cylinder. Other forms can be made
by transposing axes, or by rotation around diagonal lines using DCSA rotor operations
(�4.4.1).

Expanding the squares, the equation is

¡2pxx
rx
2 +

¡2pyy
ry
2 +

2pzz

rz
2 +

x2

rx
2 +

y2

ry
2 +
¡z2
rz
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
= 0: (4.112)

The DCSA GIPNS 2-vector z-axis aligned hyperboloid of one sheet surface entity � is
de�ned as

� = 2

 
pzTz
rz
2 ¡

pxTx
rx
2 ¡

pyTy
ry
2

!
+
Tx2

rx
2 +

Ty2

ry
2 ¡

Tz2

rz
2 +
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2
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2 +

py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
T1: (4.113)
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Figure 4.7. Rotation of DCSA hyperboloid of one sheet

Figure 4.7 is an orthographic (parallel projection) view from above the zx-plane that
shows the hyperboloid � with rx=1, ry=2, rz=3, initially with green color, positioned
at px = 10, and aligned up and down the z-axis. It is then rotated using a DCSA rotor
R (�4.4.1) by 90� in 10� steps as its color fades to blue, with �nal position at pz = ¡10
and aligned up and down the x-axis. The rotation is counter-clockwise around the y-axis
coming out of the page on a right-handed system of axes. The x-axis is red and positive
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up, the y-axis is green (not visible), and the z-axis is blue and positive to the right. The
axes are drawn by rendering thin elliptic cylinder entities (�4.2.7). The right-hand rule,
holding the y-axis, provides orientation for this rotation. The hyperboloid is rotated about
the origin, around the y-axis, as a rigid body of points. In the symbolic computer algebra
system (CAS) Sympy [24], the hyperboloid equation itself, as a DCSA entity, was rotated
symbolically and graphed at each step using the MayaVi [21] data visualization software.

4.2.12 DCSA GIPNS hyperboloid of two sheets

The hyperboloid of two sheets has the shapes of two separate hyperbolic dishes; one
opens upward, and the other one opens downward. The shape is like an hourglass that
is pinched closed and the two halves are also separated by some distance. The implicit
quadric equation is

¡(x¡ px)
2

rx
2 ¡ (y¡ py)2

ry
2 +

(z¡ pz)2
rz
2 ¡ 1 = 0: (4.114)

This particular form has the two dishes opening up and down the z-axis. The dishes are
separated by distance 2rz centered at pz. At jz ¡ pz j= 2

p
rz, the sections perpendicular

to the z-axis are the size of the similar cylinder.
Expanding the squares, the equation is

2pxx

rx
2 +

2pyy

ry
2 ¡

2pzz

rz
2 ¡

x2

rx
2 ¡

y2

ry
2 +

z2

rz
2 +

 
¡px2
rx
2 +

¡py2

ry
2 +

pz
2

rz
2 ¡ 1

!
= 0: (4.115)

The DCSA GIPNS 2-vector z-axis aligned hyperboloid of two sheets surface entity � is
de�ned as

� = 2

 
pxTx
rx
2 +

pyTy
ry
2 ¡

pzTz
rz
2

!
¡ Tx2

rx
2 ¡

Ty2

ry
2 +

Tz2

rz
2 +

 
pz
2

rz
2 ¡

px
2

rx
2 ¡

py
2

ry
2 ¡ 1

!
T1: (4.116)
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Figure 4.8. Rotation of DCSA hyperboloid of two sheets
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Figure 4.8 shows a perspective view of the hyperboloid of two sheets � initially with
green color, centered at px=5, py=¡5, and with semi-diameters rx=1, ry=2, rz=3. The
black dots (small sphere entities) are the center positions as the surface is rotated around
the white line through the origin and the red point 5
1+ 10
2+5
3. The rotation is by
90� in 10� steps until it reaches the position of the blue surface. The �rst black dot is on
the xy-plane (blue plane), and then the black dots go under the blue plane along an arc
directly around the axis of rotation. The surface is carried along as a rigid body by the
rotation using a DCSA rotor operation (�4.4.1). The symbolic CAS Sympy was used for
each rotation step, where an exact symbolic equation of the hyperboloid was generated
by the rotated entity and graphed using MayaVi data visualization software.

4.2.13 DCSA GIPNS parabolic cylinder

The implicit quadric equation for the z-axis aligned parabolic cylinder is

(x¡ px)2
rx
2 ¡ (y¡ py)

ry
= 0: (4.117)

The z coordinate is free, which creates a type of cylinder with parabolic sections that
open up the y-axis for ry> 0, and open down the y-axis for ry< 0. The similar equations
for x-axis and y-axis aligned parabolic cylinders are

(y¡ py)2
ry
2 ¡ (z¡ pz)

rz
= 0 (4.118)

(x¡ px)2
rx
2 ¡ (z¡ pz)

rz
= 0 (4.119)

with parabolas that open up or down the z-axis. Other forms can be made by transposi-
tions or by using DCSA versor operations (�4.4).

Expanding the squares, the equations are

¡2pxx
rx
2 ¡ y

ry
+
x2

rx
2 +

�
px
2

rx
2 +

py
ry

�
= 0 (4.120)

¡2pyy
ry
2 ¡ z

rz
+
y2

ry
2 +

 
py
2

ry
2 +

pz
rz

!
= 0 (4.121)

¡2pxx
rx
2 ¡ z

rz
+
x2

rx
2 +

�
px
2

rx
2 +

pz
rz

�
= 0: (4.122)

The DCSA GIPNS 2-vector {x,y,z}-axis aligned parabolic cylinder surface entities
Bjjfx;y;zg are de�ned as

Bjjx =
¡2pyTy
ry
2 ¡ Tz

rz
+
Ty2

ry
2 +

 
py
2

ry
2 +

pz
rz

!
T1 (4.123)

Bjjy =
¡2pxTx
rx
2 ¡ Tz

rz
+
Tx2

rx
2 +

�
px
2

rx
2 +

pz
rz

�
T1 (4.124)

Bjjz =
¡2pxTx
rx
2 ¡ Ty

ry
+
Tx2

rx
2 +

�
px
2

rx
2 +

py
ry

�
T1: (4.125)
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These are created as axes-aligned surfaces, but can be rotated, dilated, and translated
using DCSA versor operations (�4.4).

x y

z

x

y

z

z

x

y

y

z

x

Bjjx

Bjjy

Bjjz

O

20�

40�
60�

Figure 4.9. DCSA parabolic cylinders and toroid rotated and translated

Figure 4.9 shows multiple perspective views of the DCSA GIPNS 2-vector parabolic
cylinders and toroid (�4.2.1) surface entities rendered together in one scene. The red
cylinder is x-axis aligned, ry=1, rz=1, rotated 20� around the x-axis, and then translated
by d=¡10
2 from the origin. The green cylinder is y-axis aligned, rx=2, rz=1, rotated
40� around the y-axis, and then translated by d= 10
1¡ 10
3 from the origin. The blue
cylinder is z-axis aligned, rx=4, ry=1, rotated 60� around the z-axis, and then translated
by d = ¡10
1 + 10
2 from the origin. The toroid, with R = 4 and r = 1, is rotated 25�

around the axis n= 1

2
p (¡
1+ 
2), and then translated by d= 10
1+ 10
2+ 10
3 from

the origin. The rotations follow the right-hand rule on right-handed axes. The rotation-
translations were performed as compositions of DCSA rotors (�4.4.1) and translators
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(�4.4.3). Symbolic CAS Sympy was used to generate exact equations of the transformed
entities, which were then graphed using the MayaVi data visualization software.

4.2.14 DCGA GIPNS hyperbolic cylinder

The implicit quadric equation for the z-axis aligned hyperbolic cylinder is

(x¡ px)2
rx
2 ¡ (y¡ py)2

ry
2 ¡ 1 = 0: (4.126)

The z coordinate is free, which creates a type of cylinder with hyperbolic sections that
open up and down the x-axis. The hyperbola branches are separated by distance 2rx
centered at p= px
1+ py
2+ z
3. The asymptotes are the lines

(y¡ py) = �ry
rx
(x¡ px) (4.127)

through (px; py), where in the limit as x!�1 the ¡1 becomes insigni�cant.

The similar equations for x-axis and y-axis aligned hyperbolic cylinders are

(y¡ py)2
ry
2 ¡ (z¡ pz)2

rz
2 ¡ 1 = 0 (4.128)

(z¡ pz)2
rz
2 ¡ (x¡ px)2

rx
2 ¡ 1 = 0 (4.129)

with hyperbolas that open up and down the y-axis or z-axis. Other forms can be made
by transpositions or by using DCSA versor operations (�4.4).

Expanding the squares, the equations for x; y; z-aligned hyperbolic cylinders are

¡2pyy
ry
2 +

2pzz

rz
2 +

y2

ry
2 ¡

z2

rz
2 +

 
py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
= 0 (4.130)

¡2pzz
rz
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2pxx
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2 +

z2

rz
2 ¡

x2

rx
2 +

�
pz
2

rz
2 ¡

px
2

rx
2 ¡ 1

�
= 0 (4.131)

¡2pxx
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2 +

2pyy
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2 +

x2

rx
2 ¡

y2

ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 ¡ 1

!
= 0: (4.132)

The DCSA GIPNS 2-vector {x,y,z}-axis aligned hyperbolic cylinder surface entities
Jjjfx;y;zg are de�ned as

Jjjx =
¡2pyTy
ry
2 +

2pzTz
rz
2 +

Ty2

ry
2 ¡

Tz2

rz
2 +

 
py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
T1 (4.133)

Jjjy =
¡2pzTz
rz
2 +

2pxTx
rx
2 +

Tz2

rz
2 ¡

Tx2

rx
2 +

�
pz
2

rz
2 ¡

px
2

rx
2 ¡ 1

�
T1 (4.134)

Jjjz =
¡2pxTx
rx
2 +

2pyTy
ry
2 +

Tx2

rx
2 ¡

Ty2

ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 ¡ 1

!
T1: (4.135)
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Figure 4.10. DCSA hyperbolic cylinder rotated and translated

Figure 4.10 shows the z-axis aligned hyperbolic cylinder, with initial parameters px=0,
py=0, rx= 1, and ry=2. The second rendering of it is rotated 60� around the z-axis and
then translated by d=¡10
1+ 10
2 using a composition of DCGA rotor R (�4.4.1) and
translator T (�4.4.3) operations.

4.2.15 DCSA GIPNS parallel planes pair

Parallel pairs of axes-aligned planes are represented by the simple quadratic equations in
one variable

(x¡ px1)(x¡ px2) = 0 (4.136)
(y¡ py1)(y¡ py2) = 0 (4.137)
(z ¡ pz1)(z¡ pz2) = 0: (4.138)

Each solution is a plane. Expanding the equations gives

x2¡ (px1+ px2)x+ px1px2 = 0 (4.139)
y2¡ (py1+ py2)y+ py1py2 = 0 (4.140)
z2¡ (pz1+ pz2)z+ pz1pz2 = 0: (4.141)

The DCSA GIPNS 2-vector parallel {x,y,z}-planes pair entities �?fx;y;zg are de�ned as

�?x = Tx2¡ (px1+ px2)Tx+ px1px2T1 (4.142)
�?y = Ty2¡ (py1+ py2)Ty+ py1py2T1 (4.143)
�?z = Tz2¡ (pz1+ pz2)Tz+ pz1pz2T1: (4.144)

These surfaces can also be described as being types of cylinders with cross sections being
two parallel lines.
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x y

Figure 4.11. DCSA parallel planes pairs rotated

Figure 4.11 shows the DCSA GIPNS parallel planes pair entities rotated using DCSA
rotor operations (�4.4.1). The red planes pair is initially perpendicular to the x-axis
through points px1= 4 and px2 = 8, then it is rotated 30� around the y-axis. The green
planes pair is initially perpendicular to the y-axis through points py1=¡5 and py2= 5,
then it is rotated 60� around the z-axis. The blue planes pair is initially perpendicular
to the z-axis through points pz1=¡10 and pz2=¡7, then it is rotated 90� around the x-
axis until it is perpendicular to the y-axis through the points py1= 10 and py2=7.

4.2.16 DCSA GIPNS non-parallel planes pair

The implicit quadric equation for a pair of intersecting, non-parallel planes that are
parallel to the z-axis is

(x¡ px)2
rx
2 ¡ (y¡ py)2

ry
2 = 0: (4.145)

This equation can be written as

(y¡ py) = �ry
rx
(x¡ px) (4.146)

with the z coordinate free to range. This surface can also be described as a kind of
cylinder with a cross section in plane z that is two lines with slopes � ry

rx
intersecting at

p= px
1+ py
2+ z
3.
Expanding the squares, the equation is

¡2pxx
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2 +

2pyy

ry
2 +

x2
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2 ¡

y2

ry
2 +

 
px
2
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2 ¡

py
2

ry
2

!
= 0: (4.147)

The DCSA GIPNS 2-vector {x,y,z}-axis aligned non-parallel planes pair entities Xjjfx;y;zg

are de�ned as

Xjjx =
¡2pyTy
ry
2 +

2pzTz
rz
2 +

Ty2

ry
2 ¡

Tz2

rz
2 +
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T1 (4.148)
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Xjjz =
¡2pxTx
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2 +

2pyTy
ry
2 +

Tx2

rx
2 ¡

Ty2

ry
2 +

 
px
2
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2 ¡

py
2
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2

!
T1: (4.150)
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Figure 4.12. DCSA non-parallel planes pair rotated

Figure 4.12 shows the entity Xjjz, initially having planes with slopes � ry

rx
= �1

2
that

cross at the origin point px=0, py=0 in the xy-plane. It is then rotated using a DCSA
rotor R (�4.4.1) around the y-axis by 70�. The line of crossing points was initially the z-
axis, but after rotation the crossing line is at 70� o� the z-axis, around the y-axis. Like
the other DCSA entities, the non-parallel planes pair entities can be transformed into
general positions using DCSA versor operations (�4.4).

4.2.17 DCSA GIPNS ellipse

The ellipse is a conic section, and like all conic sections it can be made as the intersection
(�4.4.5) of a plane (�4.2.5) and cone (�4.2.8), but we are not limited to intersecting
with cones. A simple ellipse representation is made as the intersection of a plane and
elliptic cylinder (�4.2.7). The parabola (�4.2.18) and hyperbola (�4.2.19) are also conic
sections, and their simple representations are as planes intersecting parabolic (�4.2.13)
and hyperbolic (�4.2.14) cylinders. We can just de�ne these conic sections as these plane
and cylinder intersections, but these conic sections could be formed by a wide variety of
other possible intersections.

The DCSA GIPNS 4-vector xy-plane ellipse 1D surface entity �jjxy is de�ned as

�jjxy = �z=0^Hjjz (4.151)

where the DCSA GIPNS 2-vector plane �z=0 (�4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector elliptic cylinder Hjjz (�4.2.7) is as previously de�ned and
directly represents an ellipse in the xy-plane. Other similar ellipse entities are the wedges
of other planes with other elliptic cylinders that are aligned di�erently.
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A DCSA GIPNS ellipse entity �, or its dual DCSA GOPNS ellipse entity ��DS= �IDS
¡1 ,

can be rotated, dilated, and translated using DCSA versor operations (�4.4), where versor
outermorphism is applied to the wedge of plane and cylinder that form the ellipse entity.
In versor operations on the ellipse entity, the plane and cylinder are each transformed by
the versor operations, and then the transformed plane and cylinder are intersected.

The invariant test e1 � �jjxy = 0 seems to indicate that the ellipse reaches to in�nity,
but this should be considered as an invalid test.

4.2.18 DCSA GIPNS parabola

The DCSA GIPNS 4-vector xy-plane parabola 1D surface entity �jjxy is de�ned as

�jjxy = �z=0^Bjjz (4.152)

where the DCSA GIPNS 2-vector plane �z=0 (�4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector parabolic cylinder Bjjz (�4.2.13) is as previously de�ned
and directly represents a parabola in the xy-plane. Other similar parabola entities are
the wedges of other planes with other parabolic cylinders that are aligned di�erently.

4.2.19 DCSA GIPNS hyperbola

The DCSA GIPNS 4-vector xy-plane hyperbola 1D surface entity � jjxy is de�ned as

� jjxy = �z=0^Jjjz (4.153)

where the DCSA GIPNS 2-vector plane �z=0 (�4.2.5) is the entity for the plane z = 0,
and the DCSA GIPNS 2-vector hyperbolic cylinder Jjjz (�4.2.14) is as previously de�ned
and directly represents a hyperbola in the xy-plane. Other similar hyperbola entities are
the wedges of other planes with other hyperbolic cylinders that are aligned di�erently.

4.2.20 DCSA GIPNS Darboux cyclide

The implicit quartic equation for a Darboux cyclide [19] surface is

At4+Bt2+ (4.154)
Cxt2+Dyt2+Ezt2+

Fx2+Gy2+Hz2+

Ixy+Jyz+Kzx+

Lx+My+Nz+O = 0

where t=x
1+ y
2+ z
3 is a test point and the A:::O are 15 real scalar constants. The
point t (�2.3) is on the cyclide surface if the equation holds good. The square

t2= tS
2 = ¡(x2+ y2+ z2) (4.155)

has the opposite sign compared to tE2 in G8;2 DCGA [7][8].
The DCSA GIPNS 2-vector Darboux cyclide surface entity 
 is de�ned as


 = ATt4+BTt2+ (4.156)
CTxt2+DTyt2+ETzt2+

FTx2+GTy2+HTz2+

ITxy+JTyz+KTzx+

LTx+MTy+NTz+OT1:
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All DCSA versor operations (�4.4) are valid on the Darboux cyclide entity 
 and its
dual 
�DS. The Darboux cyclide entity 
 can be intersected with DCGA GIPNS planes
(�4.2.5), spheres (�4.2.3), lines (�4.2.4), and circles (�4.2.6).

Entities with A =/ 0 have valid dilator operations (�4.4.2) with all dilation factors,
including dilation factor d= 0. If A=/ 0, then 
 dilates by factor 0 into ATt4=¡4Aeo,
which is a valid result representing the point at the origin. If A = 0, then 
 dilates by
factor 0 into scalar 0, which is an invalid result. Said di�erently, GIPNS entities that have
eo as a term dilate by factor 0 into eo (up to scale), and other GIPNS entities dilate by
factor 0 into scalar 0. The duals of such dilations are either eo�DS or 0.

It was �rst discussed in Section 4.1.6, on the DCSA pointTDS and extraction operators
Ts, and then mentioned again in the section on the DCSA GIPNS 2-vector ellipsoid surface
entity E, that any DCSA GIPNS 2-vector surface entity without a term in Tt4 has the
surface point e1. This includes some closed surfaces that would not be expected to have
the point e1.

The constant B and the constants F ;G;H allow alternative formulations of an entity

. If F =G=H, then F could be added to B to form a simpler entity having fewer terms
by eliminating F ; G; H. If an amount b is subtracted from each of F ; G; H, then it can
be added back as (B+ b), or the reverse. The surface represented by the entity 
 is not
a�ected by the speci�c choice of how to use B;F ;G;H, but other metrical properties could
be a�ected. Metrical properties include the scalar results returned by the inner products
of entities, which are often distance measures between surfaces.

The Darboux cyclide entity 
 is the most general form of DCSA GIPNS 2-vector
surface entity that can be de�ned using the DCSA point TDS value-extraction operators
s = Ts � TDS (�4.1.6). DCSA could be described as a conformal geometric algebra on
Darboux cyclide surface entities in 3D space. DCSA could also be G8;2 Darboux Cyclide
Space Algebra. All of the DCSA GIPNS 2-vector quadric surface entities and the toroid
entity, and also their inversive or cyclidic surface forms when re�ected in DCSA spheres
(�4.2.3), can be represented as instances of the Darboux cyclide entity 
.

An instance of the DCSA GIPNS 2-vector Darboux cyclide surface entity 
 can be
produced by one or more inversions in DCSA GIPNS 2-vector spheres Si (�4.2.3) of any
DCSA GIPNS 2-vector surface entity �. For example, the inversion of a DCSA GIPNS
2-vector quadric or toroid surface entity � in a DCSA GIPNS 2-vector sphere entity S is
the re�ection
=S�S�, which is an instance of the Darboux cyclide surface entity
 that
appears to be � re�ected in the sphere S. The sphere S can be visualized as a spherical
mirrored surface when � is located entirely outside S, and the cyclidic re�ection of � is
seen on the surface of S or inside of S. Successive inversions or re�ections of� in multiple
spheres Si transforms � into a succession of di�erent cyclide surface entities, all based on
the initial shape of �. The distinction between inversion and re�ection, which concerns
whether or not the orientation of the surface remains the same or becomes inside-out, is
not being made here.

Dual DCSA GOPNS 8-vector surface entities ��DS can also be re�ected in a sphere S,
or in its dual S�DS, to produce an instance of the dual DCSA GOPNS 8-vector Darboux
cyclide surface entity 
�DS.

A singular outlier surface point PDS will exist on the inverse surface entity S�S� of
any DCSA GIPNS 2-vector closed surface entity � without a term in Tt4 = ¡4eo. The
singular outlier surface point PDS is always the center point of the inversion sphere S.
The inverse surface entity S�S� of an open surface entity � that is known to reach
e1 is expected to have the point PDS, as it does. If � is a closed surface entity, then
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it does not actually reach to in�nity, and yet any such entity � without a term in Tt4
has the surface point e1 and has an inverse surface S�S� that has the inversion sphere
center point PDS as a singular outlier surface point. The inverse of point e1 is always the
inversion sphere center point PDS, or the reverse. A singular outlier surface point may be
invisible on a surface plot. In particular, for any DCSA GIPNS 2-vector ellipsoid surface
entity E, its inverse surface entity SES� has the inversion sphere S center point PDS as
an (invisible) singular outlier surface point. An unexpected e1 or outlier point PDS is a
possible problem for an application, but awareness of their existence may allow for a
workaround to mitigate any possible problem caused by their existence.

ring Dupin cyclide �

O S


Figure 4.13. Toroid O re�ected in sphere S, 
=SOS�

needle Dupin cyclide �

H S


Figure 4.14. Cylinder H re�ected in sphere S, 
=SHS�

K

S




horned Dupin cyclide ¡

Figure 4.15. Cone K re�ected in sphere S, 
=SKS�

S

PDE




outlier of 
e1

Figure 4.16. Ellipsoid E re�ected in sphere S, 
=SES�
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Figure 4.17. Hyperboloid of one sheet � re�ected in sphere S, 
=S�S�

Figure 4.18. Hyperboloid of two sheets � re�ected in sphere S, 
=S�S�

Figure 4.19. Paraboloid V re�ected in sphere S, 
=SVS�

Figure 4.20. Hyperbolic paraboloid M re�ected in sphere S, 
=SMS�

It is beyond the scope of this paper to analyze and de�ne every possible type of cyclide
that can be de�ned as instances of the Darboux cyclide entity 
. However, as an example
of what can be de�ned, we can consider the subsets of cyclides known as Dupin cyclides
and parabolic cyclides [11][23]. The Dupin cyclides can generalize the circular toroid
(torus) by creating cyclides based on torus inversion in a sphere. As shown in Figures
4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20, it is possible to de�ne many other speci�c
cyclide entities based on each of the quadric surfaces re�ected in spheres.
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4.2.20.1 DCSA GIPNS Dupin cyclide
The implicit quartic equation for a Dupin cyclide surface is

(¡t2+(b2¡ �2))2¡ 4(ax¡ c�)2¡ 4b2y2 = 0 (4.157)

where t=x
1+ y
2+ z
3 is a test point. Expanding this equation gives

t4¡ 2t2(b2¡ �2)+ (b2¡ �2)2¡ 4(a2x2¡ 2ac�x+ c2�2)¡ 4b2y2 = 0: (4.158)

The DCSA GIPNS 2-vector Dupin cyclide surface entity � is de�ned as

� = Tt4¡ 2Tt2(b2¡ �2)+ (4.159)
¡4a2Tx2¡ 4b2Ty2+
8ac�Tx+((b2¡ �2)2¡ 4c2�2)T1:

The scalar parameters of the surface are a; b; c; �, with b always squared. The Dupin
cyclide can be described as a surface that envelops a family of spheres de�ned by two
initial spheres of minor radii , r1 and r2, centered on a circle of major radius R. To gain
a more intuitive expression of the Dupin cyclide equation, we can de�ne the parameters as

a = R (4.160)

� =
1
2
(r1+ r2) (4.161)

c =
1
2
(r1¡ r2) (4.162)

b2 = a2¡ c2: (4.163)

The Dupin cyclide � is now de�ned by the three radii parameters, R; r1; r2. When
r=r1=r2, the Dupin cyclide � is exactly the same entity as the toroid O with parameters
R and r.

The DCSA GIPNS Dupin cyclide � has the following related points :

Center of initial sphere S1 with radius r1 : ¡R
1
Center of initial sphere S2 with radius r2 : +R
1

Center of ring or spindle hole in the cyclide : +c
1

Center of sphere enclosing entire cyclide : ¡c
1
Radius around ¡c
1 enclosing entire cyclide : �+R:

Twelve surface points on the Dupin cyclide � are:

2 surface points on S1 with radius r1 : ¡R
1� r1
1
2 surface points on S1 with radius r1 : ¡R
1� r1
3
2 surface points on S2 with radius r2 : +R
1� r2
1
2 surface points on S2 with radius r2 : +R
1� r2
3

2 surface points : ¡c
1� (�+R)
2

2 surface points : +c
1� (�¡R)
2:

The Dupin cyclide � is initially created having these 12 points. All DCSA versor opera-
tions are valid on the Dupin cyclide � and can be used to rotate, dilate, and translate it
into another general position.
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The type of cyclide or torus represented by � is determined by:

Ring cyclide when : (r1+ r2)< 2R

Spindle cyclide when : (r1+ r2)> 2R

Horn cyclide when : (r1+ r2)= 2R

Ring torus when : (r1= r2)<R

Spindle torus when : (r1= r2)>R

Horn torus when : (r1= r2)=R:

Figure 4.21. Ring cyclide �, (r1+ r2)< 2R

Figure 4.22. Spindle cyclide �, (r1+ r2)> 2R

Figure 4.23. Horn cyclide �, (r1+ r2)= 2R

Figures 4.21, 4.22, and 4.23 show three types of the Dupin cyclide �. The torus types,
not shown, are ordinary toroid surfaces and they are exactly the same entities as formed
by the toroid entity O. The inversion of a circular cylinder in a sphere can form a needle
cyclide [23], which is a ring cyclide having r1=0 or r2=0, r1=/ r2.

4.2.20.2 DCSA GIPNS horned Dupin cyclide

Double Conformal Space Algebra (DCSA) 65



The horned Dupin cyclide is a modi�cation of the Dupin cyclide that causes both of
the initial spheres to shrink until they meet in points. The horned Dupin cyclide is formed
by swapping � and c in the implicit equation of the Dupin cyclide. The parameters a; b;
c; � are de�ned as

a = R (4.164)

� =
1
2
(r1+ r2) (4.165)

c =
1
2
(r1¡ r2) (4.166)

b2 = a2¡ �2: (4.167)

The DCSA GIPNS 2-vector horned Dupin cyclide surface entity ¡ is de�ned as

¡ = Tt4¡ 2Tt2(b2¡ c2)+ (4.168)
¡4a2Tx2¡ 4b2Ty2+
8ac�Tx+((b2¡ c2)2¡ 4c2�2)T1:

The DCSA GIPNS horned Dupin cyclide ¡ has the following related points:

Center of initial sphere S1 with radius r1 : ¡R
1
Center of initial sphere S2 with radius r2 : +R
1

Center of ring or spindle hole in the cyclide : +c
1

Center of sphere enclosing entire cyclide : ¡c
1
Radius around ¡c
1 enclosing entire cyclide : �+R:

Twelve surface points on the horned Dupin cyclide ¡ are:

2 surface points on S1 with radius r1 : ¡R
1� r1
1
2 surface points on S1 with radius r1 : ¡R
1� r1
3
2 surface points on S2 with radius r2 : +R
1� r2
1
2 surface points on S2 with radius r2 : +R
1� r2
3

2 surface points : ¡�
1� (c+R)
2

2 surface points : +�
1� (c¡R)
2:

The horned Dupin cyclide ¡ is initially created having these 12 points. All DCSA versor
operations are valid on the horned Dupin cyclide ¡ and can be used to rotate, dilate, and
translate it into another general position.

The type of cyclide or torus represented by ¡ is determined by:

Horned ring cyclide when : (r1+ r2)< 2R

Horned spindle cyclide when : (r1+ r2)> 2R

Horned spheres (two tangent spheres) when : (r1+ r2)= 2R

Horned ring torus when : (r1= r2)<R

Horned spindle torus when : (r1= r2)>R

Horned spheres when : (r1= r2)=R:
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The horned spheres represents the union or product of two implicit surface functions for
two spheres of radius r1 and r2 that touch in a single tangent point, and it is an instance of
a spheres pair cyclide entity. A di�erent and more general spheres pair entity, the DCSA
GIPNS 2-vector spheres pair entity �, can be de�ned as the wedge of a CSA1 GIPNS
sphere S1CS1 and another CSA2 GIPNS sphere S2CS2 as � = S1CS1 ^ S2CS2 (�3.2.1). The
spheres pair � can be transformed by the DCSA versors and intersected with standard
DCSA spheres, planes, lines, and circles but not with any quadric or cyclidic surface
entities.

Figure 4.24. Horned ring cyclide ¡, (r1+ r2)< 2R

Figure 4.25. Horned spindle cyclide ¡, (r1+ r2)> 2R

Figure 4.26. Horned spheres cyclide ¡, (r1+ r2)= 2R

Figures 4.24, 4.25, and 4.26 show three types of the horned Dupin cyclide ¡. The three
other types with r1= r2, not shown, are symmetrical versions of the three types shown.
As de�ned, the Dupin cyclides are symmetrical across the planes y=0 and z=0, and are
also symmetrical across the plane x=0 only when r1= r2. The horned Dupin cyclides can
be formed as the inversions of circular cones in spheres.

All of the Dupin cyclide entities have term Tt4 = ¡4eo and are true closed surfaces
that do not have surface point e1. Therefore, the Dupin cyclide entities � and ¡, like
the standard sphere S and toroid O entities, are well-behaved entities that do not have a
singular outlier point at the inversion sphere center under inversion in a sphere.
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4.2.20.3 DCSA GIPNS parabolic cyclide
The DCSA GIPNS 2-vector parabolic cyclide surface entity 	 can be de�ned as

	 = BTt2+CTxt2+DTyt2+ETzt2+ (4.169)
FTx2+GTy2+HTz2+

ITxy+JTyz+KTzx+

LTx+MTy+NTz+OT1

with C;D; E not all zero. A degenerate parabolic cyclide has C =D=E =0. All DCSA
versor operations are valid on the parabolic cyclide entity 	, and it can be intersected
with the standard DCSA GIPNS sphere (�4.2.3), plane (�4.2.5), line (�4.2.4), and circle
(�4.2.6) entities that are de�ned as special bi-CGA entities.

The parabolic cyclide entity 	 is simply the Darboux cyclide entity 
 (�4.2.20) with
A=0, and it is a cubic surface entity. Without a term in Tt4=¡4eo, the surface entity 	
has surface point e1 and is generally an open-surface entity. The DCSA GIPNS 2-vector
ellipsoid entity E (�4.2.2) is a degenerate parabolic cyclide entity that becomes a closed-
surface entity with a singular outlier surface point at e1.

An instance of the DCSA 2-vector parabolic cyclide surface entity 	 can be produced
as the inversion of a DCSA GIPNS 2-vector Darboux cyclide surface entity 
 (�4.2.20)
in a standard DCSA GIPNS 2-vector sphere surface entity S (�4.2.3) that is centered on
a surface point of 
.

The inversion sphere S, with center point PDS=D(p) on the surface of an entity 
,
gives the inverse surface 	 as

	 = S
S�=(SCS1^SCS2)
(SCS2^SCS1)=SCS1SCS2
SCS2SCS1 (4.170)

=

�
PCS1+

1
2
r2e11

��
PCS2+

1
2
r2e12

�

SCS2SCS1: (4.171)

If expanded further with the surface point condition PDS � 
 = 0, then it is found that
(PDS=PCS1^PCS2) !e1, or that PDS goes to e1 and e1 goes to PDS. Surface points
of 
 that are outside S are brought inside S, and surface points of 
 that are inside S
are taken outside S.

A surface point D(p+d) of 
 is transformed by inversion in sphere S centered at p
with radius r as

SD(p+d)S¡1 =

8>>>>>><>>>>>>:

D
�
p+

r2

kdk2d
�

: kdk=/ 0
e1 : kdk! 0
D(p) : kdk!1
D(p+ kdk¡1d̂) : r=1
D(p+d) : kdk= r

(4.172)

S¡1 = S¡2S=
1
¡r4S=

1
r4
S�: (4.173)

The displacement d = kdkd̂ from the inversion sphere center p is transformed into the
inverse magnitude displacement kdk¡1d̂ when the inversion sphere has radius r = 1. As
an inversion operator , an inversion sphere S could be called an inversor , especially if it
has radius r=1 where S2=¡1 as a proper versor with unit magnitude.

In general, an inversion sphere S can have any center point PDS and any radius r. If
r=0, then S=PDS, which is a �nite point that could be eo. An in�nite radius r=1 is
represented by S= e1. Inversion in any point S=PDS or S= e1 sends everything into
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the point and produces the point S, unless the point S is a surface point of 
 and then
any point sent into itself produces the nil scalar 0 result for the entire surface inversion.

Open surfaces	 that extend out to in�nity e1 are the only surfaces that re�ect S	S�

continuously into the center point PDS of an inversion sphere S. Conversely, by placing
the center point PDS of an inversion sphere S on any surface 
 and then re�ecting S
S�

the surface outward, the resulting open surface 	 = S
S� extends out to in�nity e1
and must be a plane or curved sheet that is either a parabolic cyclide 	 or a degenerate
parabolic cyclide that is one of the quadric surfaces. Quadric surfaces are degenerate
parabolic cyclides, and all other curved-sheet cubic surface entities are instances of the
parabolic cyclide entity.

Sphere, plane, line, and circle entities can be created as the standard DCSA GIPNS
sphere, plane, line, and circle entities S (�4.2.3), � (�4.2.5), L (�4.2.4), C (�4.2.6) which
are de�ned as bi-CSA entities. Sphere, plane, line, and circle entities can also be created as
non-standard entities that are instances of degenerate parabolic cyclides using only linear
and quadratic extraction terms (�4.1.6). Only the standard sphere, plane, line, and circle
entities operate as inversion or re�ection operators. All DCSA surface entities � can be
re�ected in the standard sphere S, plane�, line L, and circleC. Re�ection in a line L�L�

rotates � by 180� around the line. The results of inversion or re�ection operations on
standard and non-standard sphere, plane, line, and circle entities in the standard ones are
not the same. Re�ections and inversions of the standard entities produce another one of
the standard entities. Re�ections and inversions of the non-standard entities can produce
cubic surfaces that represent the expected surfaces but which also have a singular outlier
surface point at the inversion sphere center point. All parabolic cyclides and degenerate
parabolic cyclides have the point e1 which re�ects into an inversion sphere center point.

	

z

y

x

S

O

Figure 4.27. Toroid O on inversion sphere S center PDS= eo, 	=SOS�
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zx

PDS

S

e1

E	

outlier of 	

outlier of E

PDS=Se1S�

e1=SPDSS�

Figure 4.28. Ellipsoid E on inversion sphere S center PDS=D(¡10
2), 	=SES�

4.3 DCSA GOPNS entities

Up to four DCSA points (�4.1) can be wedged to form DCSA geometric outer product null
space (GOPNS) 4,6,8-vector surface entities of the surface types available in CSA (�3.3).
Unfortunately, the wedge of more than four points, as required for the quadric surfaces,
does not work with DCSA points.

The DCSA GOPNS surface entities for quadric surfaces and the toroid would require
more than four points to de�ne them. For quadric surfaces in general position, it takes 5
points in 2D, and 9 points in 3D to de�ne a quadric surface. If limited to principal axes-
aligned surfaces, it still requires 6 points in 3D to de�ne a quadric surface, as in G6;3
Quadric Geometric Algebra (QGA) [27][9][18]. Therefore, it seems that it is not possible
in DCSA to directly represent the DCSA GOPNS quadric surfaces as the wedge of DCSA
surface points. When more than four DCSA surface points are required to de�ne a surface,
then more complicated formulas are still possible but they resolve back to the GIPNS
entities.

In general, we can always obtain a DCSA GOPNS surface entity S�DS by taking the
DCSA dual (�4.4.6) of a DCSA GIPNS surface entity S as S�DS=SIDS

¡1 . All DCSA versor
operations (�4.4) are valid on both the DCSA GIPNS entities and their dual DCSA
GOPNS entities.
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The following four subsections de�ne the four DCSA GOPNS surface entities which
can be constructed as wedges of up four DCSA surface points. These four DCSA GOPNS
surface entities are just the DCSA analogues of the CSA GOPNS surface entities.

A DCSA test point TDS that is on a DCSA GOPNS surface entity S�DS must satisfy
the GOPNS condition

TDS ^S�DS = 0: (4.174)

The DCSA GOPNS k-vector surface entity S�DS represents the set NOG(S�DS2G2;8k )
of all 3D vector test points t that are surface points

NOG(S
�DS 2G2;8k ) =

�
t2 G0;31 : (D(t)=TDS)^S�DS=0

	
: (4.175)

4.3.1 DCSA GOPNS sphere

The DCSA GOPNS 8-vector sphere S�DS is de�ned as the wedge of four DCSA points
PDSi (�4.1) on the sphere as

S�DS = PDS1^PDS2^PDS3^PDS4 (4.176)
= SIDS

¡1 (4.177)

and is the DCSA dual of the DCSA GIPNS 2-vector sphere S (�4.2.3).

4.3.2 DCSA GOPNS plane

The DCSA GOPNS 8-vector plane ��DS is de�ned as the wedge of three DCSA points
PDSi (�4.1) on the plane and the DCSA point at in�nity e1 as

��DS = PDS1^PDS2^PDS3^ e1 (4.178)
= �IDS

¡1 (4.179)

and is the DCSA dual of the DCSA GIPNS 2-vector plane � (�4.2.5).

4.3.3 DCSA GOPNS line

The DCSA GOPNS 6-vector line L�DS is de�ned as the wedge of two DCSA points PDSi
(�4.1) on the line and the DCSA point at in�nity e1 as

L�DS = PDS1^PDS2^ e1 (4.180)
= LIDS

¡1 (4.181)

and is the DCSA dual of the DCSA GIPNS 4-vector line L (�4.2.4).

4.3.4 DCSA GOPNS circle

The DCSA GOPNS 6-vector circle C�DS is de�ned as the wedge of three DCSA points
PDSi (�4.1) on the circle as

C�DS = PDS1^PDS2^PDS3 (4.182)
= CIDS

¡1 (4.183)
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and is the DCSA dual of the DCSA GIPNS 4-vector circle C (�4.2.6).

4.4 DCSA operations

Any CSA1 versor VCS1 and its copy CSA2 versor VCS2 are multiplied to form the corre-
sponding doubled DCSA versor VDS as

VDS = VCS1^VCS2 (4.184)
= VCS1VCS2: (4.185)

In theory, a DCSA versor VDS can operate on any DCSA entity X using the versor
�sandwich� operation

X0 = VDSXVDS� (4.186)

to produce the transformed entityX0 as expected for the operation, which can be rotation
(�4.4.1), dilation (�4.4.2), translation (�4.4.3), or a composition of these operations.

In practice, the DCSA versor operations can be extremely slow, depending on the
particular software and hardware that is employed for computations. However, a large
speed-up may be gained by using the CSA versors for rotation (�3.4.3), dilation (�3.4.5),
and translation (�3.4.2), or a composition of these operations, directly on any DCSA entity
X as a succession of CSA operations,

X0 = VDSXVDS
� (extremely slow DCSA computations) (4.187)

= VCS1(VCS2XVCS2
� )VCS1

� (much faster CSA computations): (4.188)

The only di�erence is to take advantage of the associativity of the geometric and outer
products. The speed-up can be very large, turning an impractical DCSA versor operation
into a practical succession of CSA versor operations. Taking advantage of associativity
can also speed up the DCSTA versor operations (�7.7).

Practical applications may become increasingly feasible with advances in Geometric
Algebra Computing for Heterogeneous Systems [13] and with advances in Embedded
Coprocessors for Native Execution of Geometric Algebra Operations [12].

4.4.1 DCSA rotor

The DCSA 4-versor rotor R is de�ned as

R = RCS1^RCS2: (4.189)

The CSA rotors (�3.4.3) for the same rotation operation in CSA1 and CSA2 are wedged
as the DCSA rotor R. All DCSA entities X, including both GIPNS and GOPNS, can be
generally rotated around any axis by any angle by the DCSA rotor operation

X0 = RXR�: (4.190)
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The CSA translated-rotor (�3.4.4) can be doubled into the DCSA translated-rotor.

4.4.2 DCSA dilator

The DCSA 4-versor dilator D is de�ned as

D = DCS1^DCS2: (4.191)

The CSA dilators (�3.4.5) for the same dilation operation in CSA1 and CSA2 are wedged
as the DCSA dilator D. All DCSA entities X, including both GIPNS and GOPNS, can
be dilated by the DCSA dilator operation

X0 = DXD�: (4.192)

Keep in mind that dilation also dilates the position of an entity, which may cause an
unexpected translational movement. To scale an entity, it should be translated to be
centered on the origin, dilated around the origin, and then translated back. The CSA
translated-dilator (�3.4.7) can be doubled into the DCSA translated-dilator.

4.4.3 DCSA translator

The DCSA 4-versor translator T is de�ned as

T = TCS1^TCS2: (4.193)

The CSA translators (�3.4.2) for the same translation operation in CSA1 and CSA2 are
wedged as the DCSA translator T . All DCSA entities X, including both GIPNS and
GOPNS, can be translated by the DCSA translator operation

X0 = TXT�: (4.194)

4.4.4 DCSA motor

The DCSA 4-versor motor M is de�ned as

M = MCS1^MCS2: (4.195)

The CSA motors (�3.4.8) for the same motion operation in CSA1 and CSA2 are wedged
as the DCSA motor M . All DCSA entities X, including both GIPNS and GOPNS, can
be moved by the DCSA motor operation

X0 = MXM�: (4.196)

All versors can be translated by the translators, including the motor.
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4.4.5 DCSA intersection

Inversions in the standard DCSA GIPNS 2-vector sphere S (�4.2.3), and re�ections in
the standard DCSA GIPNS 2-vector plane � (�4.2.5) are valid operations on all DCSA
GIPNS entities. The dilator D (�4.4.2) operation is de�ned by inversions in spheres. The
rotor R (�4.4.1) operation is de�ned by re�ections in planes. These are operations that
are known to work correctly, based on inversions and re�ections.

If any DCSA GIPNS 2-vector entity � (�4.2.20) and sphere S (�4.2.3) are intersecting
in curve X on S, then the inversion of � in the sphere 
=S�S� is also intersecting with
both � and S through the same intersection X. If entity � and plane � (�4.2.5) are
intersecting, then the re�ection of � in the plane ���� is also intersecting with both
� and � through the same intersection. Planar re�ection is a special case of spherical
inversion when the sphere radius r!1 and S!� through three plane points. As �
becomes a sphere S2 or plane � denoted by �! S2j�, then 
!�jS2, and X!C to
form a circular intersection, but 
 and X have various possible surface and curve shapes
when �=/ S2j�.

For the inversion, we have


 = S�S�=(S ��+S��+S^�)S� (4.197)
= (S ��)S�+(��S)S¡S2(�^S)SS¡2 (4.198)

= (S ��)S�+ 1
2
(�S¡S�)S¡S2PS?(�) (4.199)

= 2(S ��)S�+�S2¡ 2S2PS?(�) (4.200)
X=
^S = S2(�^S)¡ 2S2PS?(�)S=¡S2(�^S): (4.201)

This expression of X implies that X represents something in common with both � and 

in relation to S. That something is their intersection, and X is the entity that constructs
and represents their intersection.

The product � is the commutator product on 2-vectors that produces another 2-
vector. The operation PS?(�)=(�^S)S¡1 is the perpendicular projection or rejection of
� from S, and PS(�)=(� �S)S¡1 is the parallel projection of� on S [17]. The operation
PS�(�) = (�� S)S¡1 is another projection of � on S. For 2-vectors, S��=¡�� S,
but S^�=�^S. Note that S�=¡S=¡S2S¡1, and S2=¡r4 where r is the radius of
sphere S. If r!1, then S!�, S2!�2=¡1, and X=
^S=�^S.

The pair of inverse surface entities � and 
 could also be de�ned as

� = �SS¡1=PS(�)+PS�(�)+PS?(�) (4.202)

 = S�S¡1=PS(�)¡PS�(�)+PS?(�) (4.203)

and then X=
^S=�^S exactly, but 
=S�S� will be assumed henceforth.

The test for a point TDS on the intersection entity X is

TDS �X = TDS � (
^S)=¡S2TDS � (�^S) (4.204)

where if TDS � X = 0, then the point TDS is on the intersection of all three surfaces
represented by S;�, and 
.
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The DCSA GIPNS 4-vector intersection entityX=�^S is derived from the inversion
of � in S. Proving this precisely may be simple if certain algebraic steps are taken
correctly. �;
, and X are generally not blades, and TDS is a null 2-blade. Most of the
usual algebraic identities are valid only on blades that are the product of non-null vectors
or blades. Therefore, the algebraic steps leading to a clear proof may require unusual
identities or other results.

DCSA GIPNS intersection entities �^�, �^L, and �^C, for intersections of any
DCSA GIPNS entity � with the standard DCSA GIPNS 2-vector plane � (�4.2.5), 4-
vector line L (�4.2.4), and 4-vector circle C (�4.2.6), are also derived from re�ections or
inversions. Line L =�1 ^�2 and circle C = S ^� are just intersections of sphere and
plane entities.

In DCSA, inversions or re�ections work only in the standard DCSA 2-vector sphere
S (�4.2.3) and plane � (�4.2.5). In DCSTA, inversions or re�ections work only in the
standard DCSTA 2-vector hyperpseudospheres �D (�7.3.3) and �D (�7.3.4), and in the
DCSTA 2-vector hyperplane ED (�7.3.2). Inversions do not work in other DCSA entities,
and therefore other entities cannot form intersection entities with each other. For example,
the DCSA GIPNS 2-vector quadric surface entities do not work as inversion or re�ection
operators, and therefore they cannot form intersection entities with each other. The
intersection of two entities depends on at least one of them being a valid inversion operator
on the other entity.

In symbolic calculations, the simplest intersection entities, such as X = � ^ S, are
4-vectors with many 4-blade terms or components. The scalar magnitude of each 4-
blade is an implicit surface function for a surface that is coincident with the intersection
represented by �^S. Not every blade holds a unique implicit surface function, but the
number of unique functions can exceed ten. Figures 4.29 and 4.30 are plots of intersections
that are showing all of the unique implicit surfaces that are extracted from the blades of
the intersection entities.

The foregoing discussion has not given any rigorous proof of the correctness of the
intersection entities. G2;8 DCSA is a large and complicated pseudo-Euclidean algebra, and
there could be unforeseen cases where intersections do not work as expected. Therefore,
the following box serves as a mild warning before continuing.

Although not rigorously proved here, the intersection tests performed by this author sup-
ported the following claims given in this subsection about DCSA intersection. Detailed
examinations of ellipsoid-plane and ellipsoid-sphere intersections are shown in Figures
4.29 and 4.30. These claims should be considered preliminary, and require additional
research to prove for certain what intersections are valid or invalid.

The set S = fS;�g of standard bi-CSA GIPNS entities includes all instances of the
DCSA GIPNS 2-vector sphere S (�4.2.3) and plane � (�4.2.5). These two entities are
de�ned in previous sections on them. The DCSA GIPNS 4-vector line L=�1^�2 (�4.2.4)
and circle C=S^� (�4.2.6) are extended standard bi-CSA GIPNS entities that are the
intersections of spheres and planes.

The DCSA GIPNS intersection entity X is the wedge of 2� n � 4 standard bi-CSA
GIPNS entities Bi2S, or is the wedge of 1�n�3 entities Bi2S and one DCSA GIPNS
2-vector entity Ah2i 2/ S that is not a standard bi-CSA GIPNS entity. Only one DCSA
GIPNS 2-vector Darboux cyclide surface entityAh2i=
 (�4.2.20) (or any degenerate) can
be included in a wedge that forms an intersection entity X. Unfortunately, the Darboux
cyclide entities, including the quadric surfaces, cannot be intersected directly with each
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other by wedge products since they are invalid inversion operators. These claims are
summarized by the following de�nition.

The DCSA GIPNS intersection entity X of grade 4� k� 8 is de�ned as

Xh4�k�8i =

8>>><>>>:
V
i=1

2�n�4
Bi : Bi2S and S = fS;�g

Ah2i^
V
i=1

1�n�3
Bi : Ah2i2/ S and Bi2S:

(4.205)

The maximum grade for a valid intersection entity X is grade 8. The grade of the wedges
is divisible by 2, making the next grade above 8 to be 10, proportional to the DCSA unit
pseudoscalar IDS. No valid entity is a pseudoscalar, unless the whole 3D space is considered
to be a �at entity.

Figure 4.29. Intersection of ellipsoid and plane in general positions
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Figure 4.29 shows the details of a DCSA GIPNS 4-vector intersection entity E ^ �
representing the intersection of a DCSA GIPNS 2-vector ellipsoid E (�4.2.2) and DCSA
GIPNS 2-vector plane � (�4.2.5), both rotated and translated di�erently into general
positions that have an intersection. The red ellipsoid E has initial parameters rx = 5,
ry=7, rz=9, px=1, py=¡2, pz=3, and is then rotated 30� around the blue z-axis. The
Sympy test code for the ellipsoid was:

Rotor(e4,30*pi*Pow(180,-1))*
GIPNS_Ellipsoid(1,-2,3,5,7,9)*
Rotor(e4,30*pi*Pow(180,-1)).rev()

The black dot is the ellipsoid center position. The blue plane � is initially perpendicular
to the x-axis through the origin, then transformed according to the following code:

Rotor(e2,30*pi*Pow(180,-1))*
Translator(-4*e3)*
Rotor(e4,-60*pi*Pow(180,-1))*
GIPNS_Plane(e2,0)*
Rotor(e4,-60*pi*Pow(180,-1)).rev()*
Translator(-4*e3).rev()*
Rotor(e2,30*pi*Pow(180,-1)).rev()

Their DCSA GIPNS intersection is X=E^�. The various images in Figure 4.29 show
components ofX that represent other surfaces that are all coincident with the intersection
of the ellipsoid and plane. There were ten unique components in X. These components
are cylinders, hyperboloids, and a cone. The intersection entity X represents the locus
of points that are simultaneously located on all ten of these surfaces, which is an ellipse-
shaped intersection of the ellipsoid and plane.
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Figure 4.30. Intersection of ellipsoid and sphere in general positions

Figure 4.30 shows the same red DCSA GIPNS ellipsoid E as in Figure 4.29, but now
intersected with a blue DCSA GIPNS sphere S of radius r=5 at position 
1+5
2+3
3=�
e2+5e3+3e4. The DCSA GIPNS intersection entity is now X=E^S. The shape of the
intersection appears like a curved ellipse or curved circle. The components of the entity
X represent 15 other unique surfaces that are also coincident with the intersection of E
and S. The images of Figure 4.30 show how each of these 15 surfaces intersect with the
intersection of E and S. Some of these surfaces are unusually shaped, and some have
two sheets. The DCSA GIPNS intersection entity X represents the simultaneous locus
or intersection of all of the involved surfaces and appears to be a valid intersection entity
for the ellipsoid and sphere.

The DCSA GIPNS 2-vector quadric surface entities, of the types not available in CSA,
could not be wedged with each other to form valid intersection entities - incorrect or
invalid intersection entities resulted from their wedge. More generally, the DCSA GIPNS
Darboux cyclide entities 
 cannot be intersected with each other by wedge products,
but one can be intersected with standard bi-CSA GIPNS entities. As a curiosity, it was
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noticed that the sum and the di�erence of two intersecting DCSA GIPNS quadric surface
entities represent two more coincident intersecting surfaces.

Figure 4.31. Intersection �^� of ring Dupin cyclide � and plane �

4.4.6 DCSA dualization

The DCSA unit pseudoscalar IDS is de�ned as

IDS = ICS1^ ICS2 (4.206)
= e2e3e4e5e6e8e9e10e11e12 (4.207)

and is the DCSA dualization operator on all DCSA entities.
Properties of IDS include

IDS� = (¡1)10(10¡1)/2IDS=¡IDS (4.208)
IDS
2 = ¡IDSIDS� =¡1 (4.209)
IDS
¡1 = IDS� =¡IDS: (4.210)

Double Conformal Space Algebra (DCSA) 79



According to the sign rule (¡1)r(10¡1) for the commutation of the inner product of two
blades, the DCSA unit pseudoscalar IDS commutes with blades of even grade r, such as
the DCSA 2-vector points, DCSA GIPNS 2,4,6,8-vector surfaces, and their dual DCSA
GOPNS surfaces.

A DCSA GIPNS k-vector surface entity X is dualized into its dual DCSA GOPNS
(10¡ k)-vector surface entity X�DS as

X�DS = X/IDS=¡X � IDS: (4.211)

A DCSA GOPNS k-vector surface entityX�DS is undualized into its undual DCSA GIPNS
(10¡ k)-vector surface entity X as

X = X�DSIDS=X�DS � IDS: (4.212)

This de�nition of dual and undual preserves the sign on the entities, otherwise the dual
applied twice changes signs.

It is understandable that many authors may call the GIPNS entities dual and the
GOPNS entities direct , standard , or undual , but since in DCSA we cannot wedge DCSA
points into all of the GOPNS entities, the GIPNS entities are considered the undual
entities and the GOPNS entities are the dual entities. Most of the DCSA GOPNS entities
can only be obtained by the dualization operation as duals.

In DCSTA, a DCSA (or DCSTA) GIPNS 2-vector quadric entity X (at zero velocity)
and its DCSTA dual (�7.7.1), the DCSTA GOPNS (12¡2)-vector quadric entity X�D, are
independent of time w= ct, but the DCSA dual, the DCSA GOPNS (10¡2)-vector entity
X�DS, is at w = ct= 0. A DCSA quadric X that has been boosted (�7.7.3) is a DCSTA
quadric X that moves with the velocity of the boost and is length-contracted, consistent
with special relativity length contraction L = 1¡ �2

p
L0. The DCSA GIPNS 2-vector

cubic and quartic entities are dependent on time w as DCSTA entities, but their DCSA
duals are at time w=0.

4.5 DCSA computing using Gaalop
In [7], G8;2 DCGA computing using Gaalop is discussed, and listings of sample code are
included. The computations are nearly the same for G2;8 DCSA, with just a few changes
in signs.

4.6 Concluding remarks on DCSA
In conclusion, this section on G2;8 DCSA is directly based on [7] and there are actually very
few di�erences between G2;8 DCSA and G8;2 DCGA other than sign changes. Therefore,
this section has been quite redundant but is included for completeness. Charges of self-
plagiarism shall be dismissed.

An important di�erence between DCSA and DCGA is apparent in vector re�ections.
In G3 Algebra of Physical Space (APS), the re�ection of vector v in unit vector û is

û(vjjû+v?û)û = vjjû¡v?û; (4.213)

and in G0;3 Space Algebra (SA), the re�ection is

û(vjjû+v?û)û = ¡vjjû+v?û: (4.214)
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The APS re�ection ûvû re�ects v in line û, but the SA re�ection ûvû re�ects v in the
plane û that is through the origin and orthogonal to vector û.

In APS, a unit vector û, according to its action as a re�ection operator, naturally
represents a line through the origin in direction û. In CGA, û is a CGA GIPNS plane
entity�= û, or it can form a CGA GOPNS line entity L�= û^E= û^e1^eo. Although
û is naturally an APS line entity according to its action as a re�ection operator, û is
not a CGA line entity. By the re�ection operation, there appears to be an incongruency
between APS and CGA, where û is a line entity in APS and a plane entity in CGA.

In SA, a unit vector û, according to its action as a re�ection operator, naturally
represents a plane through the origin perpendicular to û. In CSA, û is a CSA GIPNS
plane entity �= û. In SA and CSA, û is a plane entity.

On the other hand, re�ection could be de�ned as

û(vjjû+v?û)û¡1 = vjjû¡v?û; (4.215)

which is re�ection in the line û in APS and SA. However, using the inverse is often avoided
in favor of using the reverse û�= û, which makes a di�erence. More arguments could be
made on speci�c formulas for re�ections in planes or in lines, but these remarks conclude
here.

5 Space-Time Algebra (STA)

Space-Time Algebra (STA) is introduced in the book Space-Time Algebra by David
Hestenes [16]. STA is also called Dirac Algebra (DA). As explained in [16], the space-
time split generates a Pauli Algebra (PA) on a unit bivector basis. DCSTA contains two
STAM subalgebras, STA1M1 and STA2M2.

TheM is forMinkowski spacetime (1;3) and is the subscript that denotes an element
or operation in STA. The subscriptM1 denotes an element or operation in STA1. The
subscriptM2 denotes an element or operation in STA2.

5.1 STA elements

5.1.1 Dirac gammas and Pauli sigmas in STA

The Dirac gammas and Pauli sigmas can be de�ned in STA1 as


i =

�
ei+1 : i2f0; 1; 2; 3g

0
1
2
3 : i=5

(5.1)

�1=�x = 
1
0 (5.2)
�2=�y = 
2
0 (5.3)
�3=�z = 
3
0: (5.4)

The STA elements can also be de�ned similarly in STA2. The Dirac gammas and Pauli
sigmas are represented as matrices in other literature, but they have multivector repre-
sentations in STA. See reference [16] for more information about these representations.
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The gammas are used to denote elements in STA M, but it should be understood
that all discussions of STAM apply similarly in STA1M1 and STA2M2 by changing
subscripting and elements

STA =� STA1 =� STA2
M =� M1

=� M2


0 =� e1 =� e7

1 =� e2 =� e8

2 =� e3 =� e9

3 =� e4 =� e10:

(5.5)

5.1.2 STA unit pseudoscalar

The G1;3 STA 4-vector unit pseudoscalar IM with signature (+¡¡¡) is

IM = 
0
1
2
3= 
5 (5.6)
IM� = (¡1)4(4¡1)/2IM= IM (5.7)
IM
2 = ¡1 (5.8)
IM
¡1 = ¡IM=¡IM� : (5.9)

The G1;3 STA1 4-vector unit pseudoscalar IM1 with signature (+¡¡¡) is

IM1 = e1e2e3e4: (5.10)

The G1;3 STA2 4-vector unit pseudoscalar IM2 with signature (+¡¡¡) is

IM2 = e7e8e9e10: (5.11)

5.1.3 STA test vector

The symbolic STA test vector tM is de�ned on the basis of the Dirac gammas [16] as

t= tM = w
0+ x
1+ y
2+ z
3= ct
0+ tS=oMt+ tS: (5.12)

The symbolic STA1 test vector tM1 is de�ned as

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1: (5.13)

The symbolic STA2 test vector tM2 is de�ned as

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2: (5.14)

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
observer with coordinate time t is identi�ed with the worldline oMt= ct
0.

The symbolic test vector tM is useful in symbolic computations and will be embedded
as the G2;4 CSTA test point TC. G2;4 CSTA1 and CSTA2 test points TC1 and TC2, respec-
tively, are multiplied to form the G4;8 DCSTA test point TD = TC1TC2 = TC1 ^ TC2. The
DCSTA point 2-vector value-extraction elements Ts are de�ned as inner product operators
that extract values s from TD as s=Ts �TD. Linear combinations of the elements Ts form
the 2-vector DCSTA entities for quadric surfaces and cyclides.

5.1.4 STA observer

An STA M observer position (or worldline) oMt at the observer's proper (coordinate)
time t is

ot=oMt = ct
0: (5.15)
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For all times t, ot symbolically represents the worldline of the observer that passes through
the origin of spacetime. An observable worldline can be represented non-symbolically in
G2;4 CSTA as a CSTA GIPNS 3-vector line entity LC (�6.4.11).

An STA1M1 observer position oM1t has the form

oM1t = cte1: (5.16)

An STA2M2 observer position oM2t has the form

oM2t = cte7: (5.17)

An STA translated-observer position oM
p0(t), translated by spatial position p0, has the form

op0(t)=oM
p0(t) = oMt+p0= ct
0+p0: (5.18)

The observer worldline oMt of a translated-observer worldline oM
p0(t) is

oMt = o_M
p0(t)=

doM
p0(t)
dt

t= ct
0: (5.19)

For a translated-observer position oM
p0(t), its spacetime velocity is oM. The translated-

observer oM
p0(t) represents the observer oMt at p0 and is the proper observer of any

observable with initial position p0 at time t=0. Boosts, spacetime contractions (dilations),
and other spacetime transformations can be translated relative to p0 (e.g., translated-
boost, translated-dilator) when transforming an observable with initial position p0.

In special relativity, the observer oMt and an observable particle pM that is being
observed must coincide at the observer's proper time t = 0 (i.e., their worldlines should
intersect in p0 at time t= 0). If the particle and observer do not coincide at t= 0, then
the particle has an initial spatial position p0 at t=0 and

pM(t) = oMt+p0+vSt: (5.20)

The translated-observer oM
p0(t)=oMt+p0 and particle then coincide at t=0, and oM

p0(t)
can be called the proper observer of pM(t). Hyperbolic rotations (boosts) that transform
a particle must be relative to a proper observer that is coincident with the particle at
t= 0, which is the translated-observer oM

p0(t). The translated-boost (�6.6.9) relative to a
translated-observer oM

p0(t) is similar to a rotation around a general line through a shifted
or translated origin. A translated-boost is achieved as a translation of p0 to the origin
(translaton by ¡p0), then a boost relative to oMt, and then a translation back by p0. The
translated-boost can be followed by a translated-dilation (�6.6.7) around p0 with dilation
factor 1 / 
 for a spacetime contraction that exits the old observer frame of coordinate
time t and enters the new observer frame of proper time � (
=dt/d� ), where � becomes
the new coordinate time. The value of 
 depends on the particular boosts and velocities
involved, according to velocity additions or subtractions, where o= 
c
0 such that 
 can
always be extracted (after any number of boosts) from a spacetime velocity v = o + v

as v � 
0/c= 
. For one simple boost, 
 is the Lorentz factor 
 = 1/ 1¡ �2
p

, but 
 is
di�erent after successive boosts.

5.1.5 STA spatial velocity
An STA spatial velocity vS has the form

v=vS = vx
1+ vy
2+ vz
3= �cv̂: (5.21)

An STA1 spatial velocity vS1 has the form

vS1 = vxe2+ vye3+ vze4: (5.22)
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An STA2 spatial velocity vS2 has the form

vS2 = vxe8+ vye9+ vze10: (5.23)

STA spatial velocities are the same as SA spatial velocities. The vx, vy, and vz are coor-
dinate speeds in the conventional x, y, and z directions.

The non-negative norm of an SA spatial velocity vS is the speed

kvSk = ¡vS2
p

= vx
2+ vy

2+ vz
2

p
: (5.24)

In special relativity, speed cannot exceed light speed c,

0�kvSk� c: (5.25)

The unit direction of an STA or SA spatial velocity vS is

v̂S =
vS
kvSk

: (5.26)

5.1.6 STA spatial position
An STA spatial position pS has the form

p(t)=pS(t) = p0+vSt=p0+ �cv̂St= px
1+ py
2+ pz
3: (5.27)

An STA1 spatial position pS1 has the form

pS1(t) = p0S1+vS1t=p0S1+ �cv̂S1t= pxe2+ pye3+ pze3: (5.28)

An STA2 spatial position pS2 has the form

pS2(t) = p0S2+vS2t=p0S2+ �cv̂S2t= pxe8+ pye9+ pze10: (5.29)

In special relativity, the time t is called the coordinate time and is the proper time of
the observer oM. The spatial position pS is relative to the observer oM (�5.1.4) as the
spacetime position (�5.1.8)

pM(t) = oMt+pS(t)=oMt+(p0+vSt) (5.30)
= (oMt+p0)+vSt=oM

p0(t)+vSt (5.31)
= p0+(oM+vS)t=p0+vMt: (5.32)

The spacetime velocity is vM (�5.1.7). The spacetime position pM (�5.1.8) is relative to
the translated-observer oM

p0(t) (�5.1.4) such that pM=p0 at time t=0.

5.1.7 STA spacetime velocity
An STA spacetime velocity vM has the form

v=vM = oM+vS= c
0+ �cv̂S= c
0+(vx
1+ vy
2+ vz
3): (5.33)

An STA1 spacetime velocity vM1 has the normalized form

vM1 = oM1+vS1= ce1+ �cv̂S1= ce1+(vxe2+ vye3+ vze4): (5.34)

An STA2 spacetime velocity vM2 has the normalized form

vM2 = oM2+vS2= ce7+ �cv̂S2= ce7+(vxe8+ vye9+ vze10): (5.35)

In special relativity, a spacetime velocity vM is the sum of an observer spacetime velocity
oM and a spatial velocity vS relative to the observer, where 0�kvSk� c.

The modulus of an STA spacetime velocity vM is

jvMj = vM
2

p
= c2+vS

2
p

= c2¡kvSk2
p

: (5.36)
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The square of a spacetime velocity v2= c2¡kvk2 may be positive, negative, or zero and
represents a relative comparison of light speed to spatial speed. A spacetime velocity with
positive signature 0<v2 is timelike, with negative signature v2< 0 is spacelike, and with
null signature v2=0 is lightlike.

The conjugate of an STA spacetime velocity vM is

vM
y = 
0vM
0=oM¡vS: (5.37)

The norm of an STA spacetime velocity vM is

kvMk = vM �vM
y

q
= vM � (
0vM
0)
p

= c2¡vS2
p

= c2+ kvSk2
p

: (5.38)

The unit , or modulus-unit , of an STA spacetime velocity vM is

v̂M=
vM
jvMj

=
vM

oM
2 +vS

2
p =

vM

c2¡ vx2¡ vy2¡ vz2
p : (5.39)

The norm-unit of an STA spacetime velocity vM is
vM
kvMk

=
vM

oM
2 ¡vS2

p =
vM

c2+ vx
2+ vy

2+ vz
2

p : (5.40)

The overhat is on the modulus-unit of an STA spacetime vector a with aw=/ 0 as â, but the
overhat is on the norm-unit of an SA spatial vector a with aw=0 as â. In some contexts, it
is explicitly noted when the overhat notation on spacetime vectors is taking the norm-unit.

There are two times associated with a spacetime velocity v = o+ v. The coordinate
time of v, denoted tcv,

tcv = tpo= t (5.41)

is the proper time tpo of the observer o= c
0 of v. The time t is the conventional notation
for coordinate time. The observable v has spacetime position vt (assuming p0=0, �5.1.8)
in the frame of o. The proper time of v, denoted tpv,

tpv = tcov= � (5.42)

is the coordinate time tcov of the observer ov=�o, which is v actively transformed relative
to itself in its own rest frame as (see Fig. 5.1 in �5.2.3)

ov = (v	v)/
v¡1 (5.43)
= (
vv	v): (5.44)

The time � is the conventional notation for proper time. The transformations of time by
boosts can be cause for confusion. The notations tcv and tpv may help avoid some confu-
sion. The (additive) �active� boosts Bv passively transform a new proper time parameter
tpv = � back into the old coordinate time tpo= t. The (subtractive or relative) �passive�
boosts Bv� passively transform the same old coordinate time parameter tpo= t into a new
proper time tpv= � . The �active� and �passive� boosts transform times in reverse of each
other.

5.1.8 STA spacetime position

The STA spacetime position pM of SA spatial position pS relative to observer oMt is

p(t)= pM(t) = oMt+pS(t)= ct
0+(p0+vSt) (5.45)
= (oMt+p0)+vSt=oM

p0(t)+vSt (5.46)
= p0+(oM+vS)t=p0+vMt: (5.47)
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In special relativity, if the initial position p0=/ 0, then the proper observer that coincides
with pM at t= 0 is the translated observer oM

p0(t). A spacetime boost of pM should be
relative to the proper observer oM

p0(t) by using a translated-boost around p0. CSTA has
a versor for translated-boosts (�6.6.9).

The time t derivative of pM is

p_M = @tpM=
@pM
@t

=oM+vS=vM: (5.48)

The modulus-unit

p̂M =
pM
jpMj

=
pM

pM
2

p =
pM

(ct)2¡kpSk2
p =

pM

pw
2 ¡ px2¡ py2 ¡ pz2

p (5.49)

and the norm-unit
pM
kpMk

=
pM

pM � pM
y

q =
pM

(ct)2+ kpSk2
p =

pM

pw
2 + px

2+ py
2+ pz

2
p (5.50)

of an STA spacetime position pM are similar to those of an STA spacetime velocity vM.
The square of a spacetime position pM

2 is the spacetime interval between the origin
of spacetime and pM. Likewise, (pM2¡ pM1)

2 is the spacetime interval between pM1 and
pM2. The passive boost of a spacetime position pM to become relative to the frame of a
new observer preserves the spacetime interval pM2 .

5.2 STA operations
5.2.1 STA dualization
The STA dual AM�M of an STA multivector AM is

AM
� =AM

�M = AMIM
¡1=¡AMIM: (5.51)

The STA undual AM of an STA multivector AM�M is

AM = AM
� IM=AMIM

¡1IM: (5.52)

The STA unit pseudoscalar IM (�5.1.2) is

IM = 
0
1
2
3 (5.53)
IM
¡1 = ¡IM=¡IM� : (5.54)

5.2.2 STA rotor
The STA spatial rotation operator, or rotor , RM=RS is the SA rotor RS (�2.6).

The STA 2-versor spatial rotor RS for rotation in SA space around the SA unit vector
axis x̂S by angle � is

RS = e
1

2
�x̂S
�S
= e

1

2
�x̂SIS

�
(5.55)

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
x̂SIS� (5.56)

= cos
�
1
2
�

�
¡ sin

�
1
2
�

�
x̂SIS

¡1: (5.57)

The rotor operation

AM
0 = RSAMRS

� (5.58)

rotates any multivector AM in STA as expected in the spatial SA components, but leaves
the STA timelike components unchanged.
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5.2.3 STA spacetime boost

5.2.3.1 Introduction
Although it would be su�cient to just de�ne the boost operator

BM=Bv = e
1

2
'v̂
0 (5.59)

for a boost by spacetime velocity

v = o+v= c
0+ �cv̂ (5.60)

with natural speed �= �v and rapidity

'= 'v = atanh(�v)= atanh(kvk/c); (5.61)

this section also attempts to discuss some of the basics of active and passive boosts, and
velocity addition and subtraction.

5.2.3.2 The exponential function
The following functions and identities are frequently used to de�ne versors.

exp(A)= eA =
X
n=0

1
An

n!
= cosh(A)+ sinh(A); where A is any multivector [15] (5.62)

cosh(A) =
X
n=0

1
A2n

(2n)!
=
eA+ e¡A

2
(5.63)

sinh(A) =
X
n=0

1
A2n+1

(2n+1)!
=
eA¡ e¡A

2
(5.64)

tanh(A) =
sinh(A)
cosh(A)

=
eA¡ e¡A
eA+ e¡A

(5.65)

cosh(iA) = cos(A); where i2=¡1 and iA=Ai (5.66)
sinh(iA) = i sin(A) (5.67)

cosh(jA) = cosh(A); where j2=1 and jA=Aj (5.68)
sinh(jA) = j sinh(A) (5.69)

cosh("A) = 1; where "2=0 and "A=A" (5.70)
sinh("A) = "A (5.71)

cosh
�
1
2
atanh(�v)

�
=

(1+ �v)+ 1¡ �v2
p

2 1+ �v
p

1¡ �v24
p ; for ¡1< �v< 1 (5.72)

sinh
�
1
2
atanh(�v)

�
=

(1+ �v)¡ 1¡ �v2
p

2 1+ �v
p

1¡ �v24
p ; for ¡1< �v< 1 (5.73)

cosh(atanh(�v)) =
1

1¡ �v2
p ; for ¡1< �v< 1 (5.74)

sinh(atanh(�v)) =
�v

1¡ �v2
p ; for ¡1< �v< 1 (5.75)

cosh(2atanh(�v)) =
1+ �v

2

1¡ �v2
; for ¡1< �v< 1 (5.76)

sinh(2atanh(�v)) =
2�v
1¡ �v2

; for ¡1< �v< 1 (5.77)
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G1;01 time
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(v̂
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'v= ath
�
rise
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�
= ath(�v)

u�v

c'v

o 
vo= 
vc
0


vc'v
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o


u

o


v

c


v
'v


v
2v

t= tcv= tcvy= tpo
� = tpv= tpvy= tpo/
v

ovy=Bvy
�vyBvy=o/
v

ov=Bv
�vBv=o/
v

¡
2v


vv


2vy


vy

vy=o¡v

v=o+v


vv= 
v�vcv̂


v
2v= 
v

2�vcv̂

¡v

¡
v

v= �vcv̂
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0
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0+ �vcv̂
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3
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v=1/ 1¡ �v
2

p

v=dtpo/dtpv=dt/d�

v=BvovBv
�=Bv(o/
v)Bv

�


vv=BvoBv
�= 
vc
0+ 
v�vv̂

Observable velocity:

Active � and passive 	 boosts:
(o�v)tpv=(BvoBv

�)tpv= 
vvtpv=vtpo

(o	v)tcv=(Bv
�oBv)tcv= 
vv

ytcv=vytpo

Observer:
o= c
0

Bv=(
vv/o)
1/2=(
v+ 
v�vv̂
0)

1/2

Bvy=Bv
�

u	v

u�v=
ujjv̂+ 1¡ kvk2

c2

r
u?v̂+v

1¡ u �v
c2

u	v=
ujjv̂+ 1¡ kvk2

c2

r
u?v̂¡v

1+
u �v
c2


u�v=
dtpo
dtpv

= 
v
¡
1¡ u �v

c2

�
; 
u	v=

dtpv
dtpo

= 
v
¡
1+

u �v
c2

� (u�v)� =(BvuBv
�)� = 
u�v(o+u�v)� =(o+u�v)t

(u	v)t=(Bv
�uBv)t= 
u	v(o+u	v)t=(o+u	v)�

Bv= exp((1/2)'vv̂
0)= ch
�
1

2
'v

�
+ sh

�
1

2
'v

�
v̂
0

�u=
¡1
2


u=1/ 1¡ �u
2

pu=o+u= c
0+ �ucû

Figure 5.1. Spacetime diagram of observables o, v, and u

Figure 5.1 shows the spacetime diagram of spacetime velocities for observer o, boost
observable v, and observable u. The time axis is horizontal and the space axis is ver-
tical. The hyperbolic angle (rapidity) ' is positive anticlockwise. This orientation of the
spacetime diagram of hyperbolic rotations by ' is analogous to circular rotations by an
angle �. By circular rotations, points are translated along a circle through a circular arc
r�. By hyperbolic rotations, points are translated along a hyperbola through a hyperbolic
arc r'. For both circular and hyperbolic rotations, the radius r is an invariant distance
(interval) from the origin to a point. A circular radius is a positive real scalar r, and a real
hyperbolic radius (pseudoradius) is r2

n
c



; c; 
c

o
for the hyperbolas of constant spacetime

interval that are shown in the �gure. The boost operator Bv rotates from o toward v
by 'v, which corresponds to a change of speed by �vc in the direction v̂. The speed �vc
of a worldline is its slope in the diagram, 
v is the Lorentz (time dilation) factor, and c
is the speed of light. In the rest frame of an observable, the observable is the observer
having proper time � , zero spatial speed �c=0, and a worldline o� = c�
0. An observable
worldline vt that is hyperbolically rotated into the time axis by a passive boost

Bv
�(vt)Bv = Bv

�vBvt=ot/
v=o� (5.78)

gives the proper time � rest frame worldline o� of the observable v relative to the observer
ot/
v. A hyperbolic rotation (boost) of an observable velocity

u = o+u= c
0+ �ucû; for 0� �u< 1; (5.79)

preserves its spacetime interval

ru = juj= u2
p

= c2¡ �u2c2
p

= c 1¡ �u
p

= c/
u (5.80)
= jBvuBv�j= jBv�uBvj= jujjBvûBv�j= jujjBv�ûBvj; for u2=/ 0; (5.81)
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such that all boosted vectors remain on their hyperbola of constant spacetime interval.
A null vector (at light speed) u2= 0 is not on any hyperbola and cannot be boosted. A
hyperbolic rotation by a negative hyperbolic angle is a passive transformation from current
reference frame with time t into a new frame with time � at the positive angle of rotation,
representing a relativistic velocity subtraction u	v. A hyperbolic rotation by a positive
hyperbolic angle is an active transformation of a velocity vector into the boosted frame
of the boost observable v with new coordinate time � , representing a relativistic velocity
addition u � v. After a passive boost, the time is t, which passively transforms into a
relative � . After an active boost, the time is � , which passively transforms into a relative
t. The passive boost of a position p that has an initial position p0

p(t) = p0+ p_ t=p0+(o+p_ )t (5.82)

is valid, but it should be performed using a translated-boost (�6.6.9) as

C¡1(Bvp0�C(p)Bvp0) = p0+Bv�p_Bvt (5.83)
= p0+Bv�(o+p_ )Bvt (5.84)
= p0+ 
p_	v(o+p_ 	v)t (5.85)
= p0+(o+p_ 	v)� ; (5.86)

which preserves the initial position p0 at time t= � =0.

5.2.3.3 Derivation of boost operator
An �active� boost operation is a hyperbolic rotation operation in spacetime (Fig. 5.1)

that passively turns (transforms) an observer spacetime velocity

o = c
0; (5.87)

which has zero spatial velocity in its own frame with coordinate time t, into a relative
spacetime velocity

o0 = BvoBv�=Bvy
�oBvy (5.88)

= o�v=o	vy (5.89)
= 
vv= 
v(o+v) (5.90)
= 
vc
0+ 
v�vcv̂ (5.91)

that is relative to (	) the new observer vy=o¡v with proper time � = tvy, consistent with
special relativity. The �active� boost operator is Bv, which is a �passive� boost operator
Bvy
� . Boosts operate on spacetime velocities, not on positions. Following a velocity boost,

the new time parameter , which is to be multiplied into a transformed velocity o0 as a
spacetime displacement o0� , is the proper time � of vy, not the coordinate time t of o.
The time and spatial displacement of o0� is passively transformed into coordinate time
t= 
v� and spatial displacement d= 
v�v=vt as seen by the coordinate time t observer
o and corresponds to (but is not) a time � and displacement seen by vy. That is,

o0� = (
vc
0+ 
v�vcv̂)� (5.92)
= ct
0+ �vctv̂ (5.93)
= ot+vt (5.94)
= ot+d: (5.95)
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A boost can be applied to any spacetime velocity, but its boosted speed can never exceed
light speed c relative to any observer.

To derive the boost operator, we can start by de�ning the ratio of spacetime velocities
of an observable (particle) v to its coordinate time t observer o as the hyperbolic biradial
v/o=vo¡1 (�v by o�). The term biradial was coined by Hamilton in his original work
on Quaternions [14].

The hyperbolic biradial

H = vo¡1=
jv j
jojv/o=

c2+v2
p

c
Ĥ (5.96)

= 1¡ kvk
2

c2

r
Ĥ = 1¡ �v2

p
Ĥ =

1

v
Ĥ (5.97)

is an operator that turns the spacetime velocity of the observer o into the spacetime
velocity of the boost particle

v = o+v (5.98)

as the one-sided versor operation

v = Ho: (5.99)

The natural speed �v of the velocity v is

�v =
kvk
c

=
v �vy
p

c
=
¡v2
p

c
=
v
c
: (5.100)

The Lorentz factor (spacetime dilation factor) 
v of the velocity v is


v =
1

1¡ �v2
p =

dt
d�
; (5.101)

where t= tcv= tpo is the coordinate time of v and � = tpv is the proper time of v.

The interval (pseudodistance) c� is the hyperbolic arc length along the worldline of v

cd� = jv jdt= v2
p

dt= c2¡ �v2c2
p

dt=
c

v
dt (5.102)

� =

Z
0

t 1

v
dt=

t

v
; where � =0 when t=0: (5.103)

Maximum c� is when �v=0, such that inertial observers experience maximum time.

The length contraction, to length L from an initial length L0 in the direction of boost
velocity v, is given by

L =
L0

v

=L0 1¡ �v2
p

: (5.104)
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The dilation factor of the velocity v is

d =
1

v
= 1¡ �v2
p

: (5.105)

For a dilation factor d, the required natural speed is �v= 1¡ d2
p

. For d� 1, the dilation
factor d can be called the spacetime contraction factor , which is the usual case. For
d > 1, then �v is an imaginary natural speed and it is possible to dilate lengths instead
of contract lengths, but dilated lengths are only geometrical e�ects, not physics e�ects.

The hyperbolic versor Ĥ is the unit hyperbolic biradial

Ĥ = 
vH = 
vvo¡1=

v
c
v
0 (5.106)

=

v
c
(v � 
0+v^ 
0)= 
v+


v
c
v
0 (5.107)

= 
v+ 
v
kvk
c
v̂
0= 
v+ 
v�vv̂
0 (5.108)

= cosh('v)+ sinh('v)v̂
0= exp('vv̂
0)= e'vv̂
0; (5.109)

where

j2=(v̂
0)2=(v̂^ 
0)2 = 1 (5.110)

v = cosh('v) (5.111)


v�v = sinh('v) (5.112)

�v = tanh('v)=
sinh('v)
cosh('v)

(5.113)

'v = atanh(�v): (5.114)

Using half of the hyperbolic angle (rapidity) 'v, the hyperbolic rotation operator (hyperbolic
rotor or boost operator) Bv is the square root of the hyperbolic versor

Bv= Ĥ
1

2 = exp
�
1
2
'vv̂
0

�
= e

1

2
'vv̂
0 (5.115)

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂
0 (5.116)

=
(1+ �v)+ 1¡ �v2

p
2 1+ �v
p

1¡ �v24
p +

(1+ �v)¡ 1¡ �v2
p

2 1+ �v
p

1¡ �v24
p v̂
0 for ¡1< �v< 1: (5.117)

The hyperbolic rotation by a natural speed j�vj=1, corresponding to rapidity j'vj=1, is
invalid since it represents reaching the light speed asymptote l= c
0+ cv̂ (a null vector),
which can never be reached on the hyperbola of constant (invariant) spacetime interval.

While the hyperbolic versor Ĥ is a one-sided versor, the hyperbolic rotor (boost) Bv is
a two-sided versor or �sandwiching� versor with its reverse Bv�=Bv

¡1, such that

v = Ĥo/
v=Bv
2o/
v (5.118)

= BvoBv�/
v: (5.119)
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The one-sided versor operation is valid only for collinear (coplanar in spacetime) velocity
boosts, while the two-sided versor operation is valid for general boosts of any velocity
that need not be collinear with v. This is similar to the di�erence in quaternion rotations
between planar rotation using the one-sided versor operation e�n̂r?n̂ and conical rotation

using the two-sided versor �sandwich� operation e
1

2
�n̂
re
¡1

2
�n̂
= rjjn̂+ e�n̂r?n̂.

Although boosts are generally valid on spacetime velocities and not generally valid
on spacetime positions since the time after a velocity boost is subject to interpretation,
it is valid to passively boost a spacetime position of the form ut=(o+u)t, which is the
product of the spacetime velocity u and its coordinate time t= tpo= tcu. After a passive
boost, the time to be applied to the boosted velocity is still t, which can be correctly
factored out of the passive boost operation as

Bv
�(ut)Bv = Bv

�uBvt: (5.120)

The passive boost is interpreted as transforming coordinate time t into the proper time �=
tpv of v, and transforming distance into the distance relative to observable v. Evaluating
this passive position boost gives some useful results, as follows.

Bv�uBvt = e
¡1

2
v̂
0(o+u)e

1

2
v̂
0t=(u	v)t (5.121)

= (
vv/o)
¡1

2(c
0+u
jjv̂+u?v̂)(
vv/o)

1

2t (5.122)
= (c
0+u

jjv̂)(
vv/o)t+u?v̂t (5.123)
= (c
0+u

jjv̂)(
v+ 
v�vv̂
0)t+u?v̂t (5.124)
= (
vc
0¡ 
v�vcv̂+ 
vu

jjv̂+ 
v�vu
jjv̂v̂
0)t+u?v̂t (5.125)

=

��

v+

1
c

v�vu

jjv̂v̂

�
c
0+ 
vu

jjv̂+u?v̂¡ 
v�vcv̂
�
t (5.126)

= (o0+u0)t=(
u	vo+ 
u	vu	v)t: (5.127)

The time transformation is

� = 
u	vt (5.128)

=

�

v+

1
c

v�vu

jjv̂v̂

�
t (5.129)

= 
v

�
1+

1
c
�v(u � v̂)v̂¡1v̂

�
t (5.130)

= 
v

�
1+

1
c
kvk
c
(u �v)
kvk

�
t (5.131)

= 
v

�
1+

u �v
c2

�
t: (5.132)

The distance transformation is

u0t = (
u	vu	v)t (5.133)
= (u	v)� (5.134)

=

vujjv̂+u?v̂¡ 
v�vcv̂


u	v
� (5.135)

=

vujjv̂+u?v̂¡ 
vv


u	v
� (5.136)

=
ujjv̂+ 1¡ �v2

p
u?v̂¡v

1+
u �v
c2

� : (5.137)
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Summary of useful results:

ut = (o+u)t=(c
0+ �ucû)t (5.138)
vt = (o+v)t=(c
0+ �vcv̂)t (5.139)
t = tpo= tcv= tcu= tcu	v= tcu�v (5.140)
� = tpv= tcu�v= tcu	v (5.141)

Bv�uBvt = (u	v)t=(
u	vo+ 
u	vu	v)t=(o+u	v)� (5.142)
BvuBv�� = (u�v)� =(
u�vo+ 
u�vu�v)� =(o+u�v)t (5.143)


u	v = 
v
�
1+

u �v
c2

�
(5.144)


u�v = 
v
�
1¡ u �v

c2

�
(5.145)

u	v� =
ujjv̂+ 1¡ �v2

p
u?v̂¡v

1+
u �v
c2

� =
(u �v)v¡1+ 1¡ �v2

p
(u^v)v¡1¡v

1+
u �v
c2

� (5.146)

u�vt =
ujjv̂+ 1¡ �v2

p
u?v̂+v

1¡ u �v
c2

t=
(u �v)v¡1+ 1¡ �v2

p
(u^v)v¡1+v

1¡ u �v
c2

t: (5.147)

5.2.3.4 Active boost
The �active� boost u�v of spacetime velocity

u = o+u= c
0+ �ucû (5.148)
tcu = t= tpo; (5.149)

by spacetime velocity

v = o+v= c
0+ �vcv̂ (5.150)
tcv = t= tpo (5.151)
tpv = � ; (5.152)

is the �active� boost operation

u�v = BvuBv�=Bvy
�uBvy (5.153)

= (
vv/o)
1

2u(
vv/o)
¡1

2 =(
vyv
y/o)

¡1

2u(
vyv
y/o)

1

2 (5.154)

= exp
�
1
2
'v̂
0

�
u exp

�
1
2
'
0v̂

�
= exp

�
1
2
'
0v̂y

�
u exp

�
1
2
'v̂y
0

�
(5.155)

= u�v = u	vy (5.156)
= u� (o+v) = u	 (o¡v) (5.157)
= 
u�vo+ 
u�vu�v = 
u	vyo+ 
u	vyu	vy (5.158)

= 
u�vc
0+ 
u�v�u�vcu�v = 
u	vyc
0+ 
u	vy�u	vycu	vy: (5.159)

The hyperbolic angle (rapidity) is

'= 'v= 'vy = atanh(�v)= atanh
�
jvj
joj

�
= atanh

�
v
c

�
= atanh

�
rise
run

�
(5.160)

'vyv
y = ¡'vv: (5.161)

The Lorentz factor for v is


v= 
vy =
1

1¡ kvk2

c2

q =
1

1¡ �v2
p : (5.162)
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The spacetime dilation factor is


u�v= 
u	vy = 
v
�
1¡ u �v

c2

�
: (5.163)

The spatial relativistic velocity addition is

u�v=u	vy =
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

: (5.164)

The natural speed of the spatial velocity addition u�v is

�u�v= �u	vy =
ku�vk

c
=

(u�v) � (u�v)y
p

c
: (5.165)

For parallel velocities ujjv, then

�u�v =
�u+ �v
1+ �u�v

; for ujjv;u= �ucv̂: (5.166)

For perpendicular velocities u?v, then

�u�v = (1¡ �v2)�u2+ �v
2

p
for u?v: (5.167)

5.2.3.5 Time transformations for active boost
Although u � v and u 	 vy are the same spacetime velocities u � v = u 	 vy, their

associated time transformations are di�erent. For u�v, the boost operator is (
vv/o)
1

2

and v/o transforms time t into � internal to the boost operator, and then 
v transforms
time � back into t external to the boost operator. Therefore, the time is � for u�v and
the displacement is

(u�v)� = (o+u�v)
u�v� (5.168)
= (o+u�v)t (5.169)

that passively transforms � into t. For u 	 vy, the boost operator is (
vyvy/o)
¡1

2 and
time transformations are reciprocal such that time � transforms into t internal to the
boost operator, and then time t transforms back into � external to the boost operator.
Therefore, the time is t for u	 vy and the displacement is

(u	vy)t = (o+u	vy)
u	vyt (5.170)
= (o+u	vy)� (5.171)

that passively transforms t into � .
An �active� boost (u�v)� passively transforms time � into t= 
u�v� , from the frame

of v into the frame of o. The boost u� v adds/moves u into the frame of v with time
� = tpv that passively transforms to coordinate time t = tpo such that observer o sees
a dilated time t = 
u�v� and a velocity addition 
u�v�u � v = tu � v. The spacetime
contraction (u�v/
u�v)t is an active velocity addition in the frame of o.

A �passive� boost (u 	 vy)t passively transforms time t into � = 
u	vyt, from the
frame of o into the frame of vy. The boost u	 vy subtracts/moves u from the frame of
vy into the frame of o with time t= tpo that passively transforms to time � = tpvy such
that observer vy sees a relative dilated time � = 
u	vyt and a relative velocity subtraction

u	vytu	vy= �u	vy. The spacetime contraction (u	vy/
u	vy)t is an active velocity
subtraction in the frame of o.
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5.2.3.6 Passive boost
The �passive� boost is the reverse of the �active� boost. Therefore, the following is very

similar to the �active� boost, but with everything going in reverse.
The �passive� boost u	v of spacetime velocity

u = o+u= c
0+ �ucû (5.172)
tcu = t= tpo; (5.173)

by spacetime velocity

v = o+v= c
0+ �vcv̂ (5.174)
tcv = t= tpo; (5.175)

is the �passive� boost operation

u	v = Bv�uBv=BvyuBvy
� (5.176)

= (
vv/o)
¡1

2u(
vv/o)
1

2 =(
vyv
y/o)

1

2u(
vyv
y/o)

¡1

2 (5.177)

= exp
�
1
2
'
0v̂

�
u exp

�
1
2
'v̂
0

�
= exp

�
1
2
'v̂y
0

�
u exp

�
1
2
'
0v̂y

�
(5.178)

= u	v = u�vy (5.179)
= u	 (o+v) = u� (o¡v) (5.180)
= 
u	vo+ 
u	vu	v = 
u�vyo+ 
u�vyu�vy (5.181)

= 
u	vc
0+ 
u	v�u	vcu	v = 
u�vyc
0+ 
u�vy�u�vycu�vy: (5.182)

The hyperbolic angle (rapidity) is

'= 'v= 'vy = atanh(�v)= atanh
�
jvj
joj

�
= atanh

�
v
c

�
= atanh

�
rise
run

�
(5.183)

'vyv
y = ¡'vv: (5.184)

The Lorentz factor for v is


v= 
vy =
1

1¡ kvk2

c2

q =
1

1¡ �v2
p : (5.185)

The spacetime dilation factor is


u�v= 
u	vy = 
v
�
1¡ u �v

c2

�
: (5.186)

The spatial relativistic velocity subtraction is

u	v=u�vy =
ujjv̂+ 1¡ kvk2

c2

q
u?v̂¡v

1+
u �v
c2

: (5.187)

The natural speed of the spatial velocity subtraction u	v is

�u	v= �u�vy =
ku	vk

c
=

(u	v) � (u	v)y
p

c
: (5.188)
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For parallel velocities ujjv, then

�u	v =
�u¡ �v
1¡ �u�v

for ujjv;u= �ucv̂: (5.189)

For perpendicular velocities u?v, then

�u	v = (1¡ �v2)�u2+ �v
2

p
for u?v: (5.190)

5.2.3.7 Time transformations for passive boost
Although u 	 v and u � vy are the same spacetime velocities u 	 v = u � vy, their

associated time transformations are di�erent. For u	v, the boost operator is (
vv/o)¡
1

2

and the reciprocal of v /o transforms time � into t internal to the boost operator, and
then the reciprocal of 
v transforms time t back into � external to the boost operator.
Therefore, the time is t for u	 v and the displacement is

(u	v)t = (o+u	v)
u	vt (5.191)
= (o+u	v)� (5.192)

that passively transforms t into � . For u�vy, the boost operator is (
vyvy/o)
1

2 and time
t transforms into � internal to the boost operator, and then time � transforms back into
t external to the boost operator. Therefore, the time is � for u�vy and the displacement is

(u�vy)� = (o+u�vy)
u�vy� (5.193)
= (o+u�vy)t (5.194)

that passively transforms � into t.
A �passive� boost (u 	 v)t passively transforms time t into � = 
u	vt, from the

frame of o into the frame of v. The boost u 	 v subtracts/moves u from the frame of
v into the frame of o with time t = tpo that passively transforms to time � = tpv such
that observer v sees a relative dilated time � = 
u	vt and a relative velocity subtraction

u	vtu 	 v = �u 	 v. The spacetime contraction (u 	 v / 
u	v)t is an active velocity
subtraction in the frame of o.

An �active� boost (u�vy)� passively transforms time � into t= 
u�vy� , from the frame
of vy into the frame of o. The boost u�vy adds/moves u into the frame of vy with time
� = tpvy that passively transforms to coordinate time t= tpo such that observer o sees a
dilated time t= 
u�vy� and a velocity addition 
u�vy�u� vy = tu� vy. The spacetime
contraction (u�vy/
u�vy)t is an active velocity addition in the frame of o.

5.2.3.8 Generalization of spacetime contraction operation
A spacetime velocity u that has been boosted successively has the general form

u0 = 
c
0+ 
�cû0: (5.195)

In general, the spacetime contraction is

u00 = u0/
= c
u0

u0 � 
0
: (5.196)

The spacetime velocity u00 can be interpreted as some combination of active velocity
additions and subtractions in the frame of observer o. Or, u00 can be interpreted as
a spacetime velocity transformed into the frame of a new observer v ! ov with time
� = tpv= tcu00.
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If u = o+ u is in the contracted frame of observable v = o+ v with proper time � ,
where u sees v as its observer o, but v sees its observer o as the coordinate time t observer,
then u can be transformed into the contracted frame of the coordinate time t observer as
the active velocity addition with spacetime contraction

u�v/
u�v = BvuBv�/
u�v (5.197)
=
¡

u�vc
0+ 
u�v�u�vcu�v

�
/
u�v (5.198)

= o+u�v (5.199)

= o+
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

: (5.200)

The transformation of this back into the contracted frame of v is

Bv�(u�v/
u�v)Bv/
 = Bv�(o+u�v)Bv/
u�v	v (5.201)
= (
u�v	vo+ 
u�v	vu�v	v)/
u�v	v (5.202)
= o+u=u: (5.203)

where

u�v	v = u (5.204)

but


u�v	v =/ 
u (5.205)
= 
u�v

¡1 : (5.206)

The generalization, for transformation into the new contracted frame after passive boosts
of u, is to divide by the general spacetime contraction factor


 =
u0 � 
0
c

(5.207)

as

u00 = u0/
= c
u0

u0 � 
0
=o+u0 (5.208)

where o represents the new observer with new coordinate time tpo= tcu00.

5.2.3.9 Approximations
For boost speed kvk� c and initial speed kuk� c, an active boost is approximately

an addition of velocities

u�v � u+v; for kuk; kvk� c: (5.209)

and a passive boost is approximately the subtraction of velocities

u	v � u¡v; for kuk; kvk� c: (5.210)

For a very small speed (v= �vc)� c, then �v� 1 and the rapidity 'v is approximately
equal to �v

'v = atanh(�v) (5.211)
� �v; for �v� 1: (5.212)
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For �v� 1, the proper velocity (celerity) 'vcv̂ is approximately equal to velocity

'vcv̂ � (�vcv̂=v); for �v� 1: (5.213)

For a small speed v� c, the Lorentz factor 
v=1/ 1¡ v2/c2
p

� 1.
Using the hyperbolic function composition identities, it can be shown that the boost

operator that applies the boost �v twice successively, and adds the rapidity 2'v, is

BvBv=B�vB�v =
1

1¡ �v2
p +

�v

1¡ �v2
p v̂
0 (5.214)

and the boost operator that applies the boost 1

2
�v twice successively is

B1

2
�v
B1

2
�v

=
2

4¡ �v2
p +

�v

4¡ �v2
p v̂
0: (5.215)

The double boost operator B�vB�v can be de�ned as successive re�ections in two space-
time planes through the origin, where the �rst plane contains the observer o and the
second plane contains the boost observable (particle) v. The two planes bound the hyper-
bolic angle 'v that turns from the �rst plane at �o=0 into the second plane at �v, toward
the direction in space of the boost velocity v.

For very small �v� c, then 'v= atanh(�v)� �v and then

Bv = e
1

2
'vv̂
0= e

1

4
'vv̂
0e

1

4
'vv̂
0=B1

2
'v
B1

2
'v

(5.216)

� 2

4¡ �v2
p +

�v

4¡ �v2
p v̂
0=B1

2
�v
B1

2
�v

(5.217)

� e
1

2
�vv̂
0= cosh

�
1
2
�v

�
+ sinh

�
1
2
�v

�
v̂
0 (5.218)

The good approximation of Bv for very small �v� c is

Bv �
2

4¡ �v2
p +

�v

4¡ �v2
p v̂
0: (5.219)

6 Conformal Space-Time Algebra (CSTA)

G2;4 Conformal Space-Time Algebra (CSTA) is introduced in [3] as the spacetime con-
formal group.
G2;4 CSTA is a straightforward extension and adaptation of the G4;1 Conformal Geo-

metric Algebra (CGA). CGA is introduced by Hestenes, Li, and Rockwood in [25].
CGA is also discussed by Perwass in [20], and by Dorst, Fontijne, and Mann in [4].
G4;8 Double Conformal Space-Time Algebra (DCSTA) D contains two copies of G2;4

CSTA C, which are called CSTA1 C1 and CSTA2 C2. Elements and operations in CSTA1
are subscripted with C1. Elements and operations in CSTA2 are subscripted with C2.
Elements and operations in generic CSTA are subscripted with C.

Most formulas are expressed in CSTA C and written explicitly in CSTA1 C1 and
CSTA2 C2 only when helpful to see how the particular CSTA1 and CSTA2 elements are
used in formulas. Most formulas in CSTA can be written in CSTA1 and CSTA2 by just
changing subscripts. CSTA uses the origin eo
 and in�nity e1
 points and the Dirac
gammas 
0; 
1; 
2; 
3 for the timelike w = ct and spatial x; y; z axes, respectively. The
generic CSTA point embedding is PC= C(pM).
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6.1 CSTA unit pseudoscalar
The G2;4 CSTA 6-vector unit pseudoscalar IC with signature (+¡¡¡+¡) is

IC = IM(e1
 ^ eo
)= 
0IS(e1
 ^ eo
)= 
0
1
2
3(e1
 ^ eo
)= 
0
1
2
3e+e¡ (6.1)
IC� = (¡1)6(6¡1)/2IC=¡IC (6.2)
IC
2 = ¡1 (6.3)

IC
¡1 = ¡IC= IC�: (6.4)

The G2;4 CSTA1 6-vector unit pseudoscalar IC1 with signature (+¡¡¡+¡) is

IC1 = IM1(e11^ eo1)= e1IS1(e11^ eo1)= e1e2e3e4(e11^ eo1)= e1e2e3e4e5e6: (6.5)

The G2;4 CSTA2 6-vector unit pseudoscalar IC2 with signature (+¡¡¡+¡) is

IC2 = IM2(e12^ eo2)= e7IS2(e12^ eo2)= e7e8e9e10(e12^ eo2)= e7e8e9e10e11e12: (6.6)

6.2 CSTA point
The CSTA null 1-vector point entity is very similar to the CGA null 1-vector point entity.
The following subsections de�ne the CSTA points at the origin and at in�nity, and the
CSTA point embedding.

6.2.1 Stereographic embedding and homogenization

The embedding of an G1;3 STA position vector pM into a G2;4 CSTA null 1-vector point PC
is done in exactly the same way a G3 APS point p is embedded into a G4;1 CGA point PC.
There are many references that explain the stereographic embedding and homogenization,
such as Perwass [20], Rosenhahn [22], and the paper on G8;2 DCGA [7].

6.2.2 CSTA point at the origin

The CSTA null 1-vector point at the origin is de�ned as

eo
 =
1
2
(¡e++ e¡) (6.7)

where e+ is the stereographic unit and e¡ is the homogeneous unit, and

e+ =

�
e5 : in CSTA1
e11 : in CSTA2

(6.8)

e¡ =

�
e6 : in CSTA1
e12 : in CSTA2.

(6.9)

The CSTA1 null 1-vector point at the origin is de�ned as

eo1 =
1
2
(¡e5+ e6): (6.10)

The CSTA2 null 1-vector point at the origin is de�ned as

eo2 =
1
2
(¡e11+ e12): (6.11)

The CSTA null 1-vector point at the origin eo
 represents either eo1 or eo2.

6.2.3 CSTA point at in�nity

The CSTA null 1-vector point at in�nity is de�ned as

e1
 = e++ e¡: (6.12)
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The CSTA1 null 1-vector point at in�nity is de�ned as

e11 = e5+ e6: (6.13)

The CSTA2 null 1-vector point at in�nity is de�ned as

e12 = e11+ e12: (6.14)

The CSTA null 1-vector point at in�nity e1
 represents either e11 or e12.

6.2.4 CSTA point embedding

The generic CSTA null 1-vector point PC entity is the embedding of an STA position pM as

PC= C(pM) = pM+
1
2
pM
2 e1
+ eo
: (6.15)

The CSTA1 null 1-vector point PC1 entity is the embedding of an STA1 position pM1 as

PC1= C(pM1) = pM1+
1
2
pM1
2 e11+ eo1: (6.16)

The CSTA2 null 1-vector point PC2 entity is the embedding of an STA2 position pM2 as

PC2= C(pM2) = pM2+
1
2
pM2
2 e12+ eo2: (6.17)

The embedding function C is implemented as a piecewise embedding function that embeds
an STA, STA1, or STA2 vector into the corresponding CSTA, CSTA1, or CSTA2 point.
The generic CSTA embedding will used to avoid duplication in generic discussions that
can apply just as well in either CSTA1 or CSTA2 by only changing the subscripts accord-
ingly.

The CSTA point PC is similar to a CGA point PC as in [7] when PC is the embedding
of a spatial point pM=pS and we hold w= ct=0, which gives the G1;4 CSA null 1-vector
point PCS.

As a GOPNS entity, a CSTA point PC simply represents the point (�6.5.2), as
expected.

As a GIPNS entity, a �nite CSTA point PC, excluding e1
, actually represents a
hypercone (�6.4.2) in spacetime of the form

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0 (6.18)

where

pM = pw
0+ px
1+ py
2+ pz
3= pw
0+pS: (6.19)

In general, a hypersurface in an n-D space has an (n¡1)-D surface. A cone or other surface
in 3D space has a 2D surface, but a hypercone or other hypersurface in 4D spacetime has
a 3D surface. A hypersurface is treated and conceptualized in most respects the same as
a 2D surface, but it embeds extended dimensions and its mathematical forms contain an
additional term per extended dimension.

The hypercone is a result of the Minkowski spacetime metric (1; 3), which can be
seen in the hypercone equation. For comparison to G4;1 CGA, a CGA point embeds a 3D
Euclidean vector with metric (3;0) and represents an implicit surface equation of a sphere
with zero radius

(x¡ px)2+(y¡ py)2+(z ¡ pz)2 = 0: (6.20)
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In 3D spacetime with only two spatial dimensions by holding z ¡ pz = 0, the hypercone
reduces to the circular cone

(x¡ px)2+(y¡ py)2¡ (w¡ pw)2 = 0 (6.21)

which is an expanding circle in the xy-plane as the time-like coordinate w= ct increases
past pw. The hypercone is an expanding sphere in space that is expanding with time t in
radius

r = w¡ pw= ct¡ pw (6.22)

at the speed of light c. The point begins expanding after time t= pw/c and is contracting
before that time.

A CSTA point, as an expanding sphere, represents a light-cone in spacetime that is
centered at the vertex point pM. In spacetime, the light-cone is a spherical hypercone,
which is a cone with a 3D hypersurface. A surface is usually 2D, but a hypersurface is
imagined as a surface while it is actually a higher-dimensional space. The light-cone is
often depicted as a cone in a 3D spacetime of two spatial dimensions and a time-like
dimension, wherein the cone is a circular wave front of light that expands in space as time
t increases. The expanding radius r= ct¡ pw of the wave front is centered at a point light
source pM. A CSTA point represents a spherical wave front of light in space, or light-
cone in spacetime, centered at a point light source pM that �ashes at time t= pw/c.

6.2.5 CSTA point normalization

A homogeneous CSTA point embedding with scalar weight s is

sPC= sC(pM) = spM+ s
1
2
pM
2 e1
+ seo
: (6.23)

A normalized point is scaled to weight s=1.
The normalization of a weighted CSTA point sPC is

PC =
(sPC)

¡(sPC) � e1

=
sPC
s
: (6.24)

Many formulas require points and other entities to be unit weight. The normalization of
an entity can be particular to the type of the entity.

A normalized point can be denoted

P̂C =
PC

¡PC � e1

: (6.25)

6.2.6 CSTA point projection (inverse embedding)

The projection of CSTA point PC= C(pM) to STA position pM is

pM= C¡1(PC) =

�
PC

¡PC � e1

� IM

�
IM
¡1 (6.26)

=
¡
P̂C � IM

�
IM
¡1: (6.27)

6.2.7 CSTA test point

The symbolic CSTA test point TC = C(tM) is the embedding of the symbolic STA test
vector

tM = w
0+x
1+ y
2+ z
3= ct
0+ tS=oMt+ tS: (6.28)
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The symbolic CSTA1 test point TC1=C(tM1) is the embedding of the symbolic STA1 test
vector

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1: (6.29)

The symbolic CSTA2 test point TC2=C(tM2) is the embedding of the symbolic STA2 test
vector

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2: (6.30)

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
time-like coordinate w = c t represents the distance traveled by light in time t. The
observer , as de�ned for special relativity, is identi�ed as the symbolic time-like velocity
oM.

CSTA1 and CSTA2 test points TC1 and TC2, respectively, are wedged to form the G4;8
DCSTA test point TD = TC1 ^ TC2. The DCSTA point value-extraction elements Ts are
de�ned as elements that extract values from the DCSTA test point TD as s=TD �Ts.

6.3 CSTA point value-extraction elements
The CSTA 1-vector point value-extraction elements Cs extract the value s from a test
point TC= C(tM) as s=TC �Cs. The CSTA value-extraction elements are

C1 = ¡e1
 (6.31)
Cw = 
0 (6.32)

Ct =
1
c
Cw (6.33)

Cx = ¡
1 (6.34)
Cy = ¡
2 (6.35)
Cz = ¡
3 (6.36)
Ct2 = ¡2eo
: (6.37)

These elements are straightforward to verify. When w= ct, the extraction Ct gives t. The
extraction

TC �Ct2 = tM
2 = jtMj2=w2¡ r2=(ct)2¡x2¡ y2¡ z2 (6.38)

is the squared modulus, or interval from the origin, of the STA test vector tM.
The CSTA geometric inner product null space (GIPNS) 1-vector surface entities can

be de�ned in terms of these extraction elements by writing their implicit surface functions.
Two of these entities are the CSTA GIPNS 1-vector hyperplane EC and the CSTA GIPNS
1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C. A hyperhyperboloid can
degenerate into a hypercone, which is a CSTA GIPNS null 1-vector point entity PC.
The CSTA GIPNS 1-vector entities �C and EC are similar in form to the CGA sphere
S and plane �. The other CSTA GIPNS entities are of grades 2 to 5 and are formed as
intersections (wedges) of hyperpseudospheres and hyperplanes or by speci�c formulas.

6.4 CSTA GIPNS entities
The G2;4 CSTA GIPNS entities are similar to G4;1 CGA GIPNS entities, but with some
changes to account for the anti-Euclidean signature of G0;3 SA and the pseudo-Euclidean
spacetime signature of G1;3 STA in a 4-D spacetime. The CSTA GIPNS entities of forms
similar to CGA GIPNS entities are representing hypersurfaces in 4-D spacetime.
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6.4.1 Geometric inner product null space (GIPNS)

Geometric inner product null space (GIPNS) entities are introduced by Perwass in [20],
and are reviewed by this author in [7] and [9].

6.4.2 CSTA GIPNS 1-vector hypercone

The implicit quadric surface equation for a circular hypercone is

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0: (6.39)

The CSTA GIPNS null 1-vector hypercone KC is the point embedding

KC = PC= C(pM) (6.40)

with center vertex point pM. The hypercone is a sphere in space that expands from a
point at pM with squared radius

r2 = (w¡ pw)2=(ct¡ pw)2: (6.41)

6.4.3 CSTA GIPNS 1-vector hyperplane

A hyperplane is a linear subspace of dimension (n¡ 1) in a space of dimension n. In 4D
spacetime, a hyperplane is a 3D subspace. The hyperplane space can be a Minkowski
spacetime (1; 2) or an anti-Euclidean space (0; 3).

An implicit surface equation for a hyperplane in spacetime through the origin can be
written

tM �nM = (6.42)
nww¡nxx¡nyy¡nzz = 0: (6.43)

The STA vector

nM = nw
0+nx
1+ny
2+nz
3 (6.44)

is the normal vector to the hyperplane. Only the direction of nM is signi�cant, and its
magnitude can be arbitrary. However, as a normalization of the scale, normal vectors with
unit magnitudes (norms) n/ n �ny

p
are sometimes required. The STA test vector tM is

tM = w
0+ x
1+ y
2+ z
3: (6.45)

The equation holds good for any point tM on the hyperplane through the origin orthogonal
to nM. Using the CSTA point value-extraction elements (�6.3), the hyperplane implicit
surface function can be written as the CSTA GIPNS entity

nww¡nxx¡nyy¡nzz ! (6.46)
nwCw¡nxCx¡nyCy¡nzCz = (6.47)
nw
0+nx
1+ny
2+nz
3 = (6.48)

nM : (6.49)

The CSTA GIPNS 1-vector hyperplane EC through the origin with normal vector nM is
de�ned as

EC = nM: (6.50)

Conformal Space-Time Algebra (CSTA) 103



The hyperplane through the origin nM can be translated from the origin to a point dM
using the translator (�6.6.4) operation

TCnMTC� = (6.51)�
1¡ 1

2
dMe1


�
nM

�
1¡ 1

2
e1
dM

�
= (6.52)

nM+(dM �nM)e1
 : (6.53)

The CSTA GIPNS 1-vector hyperplane EC through the point pM with normal vector nM
is de�ned as

EC = nM+(pM �nM)e1
 (6.54)
' EC

�IC (6.55)

and is equal to the CSTA undual of the dual CSTA GOPNS 5-vector hyperplane EC�

(�6.5.13) up to a homogeneous scalar factor. The normal vector nM can have any mag-
nitude, and pM can be any point on the hyperplane. The hyperplane EC has a form that
is similar to a G4;1 CGA plane �, and when we hold w= ct=0, then the form gives the
G1;4 CSA GIPNS 1-vector plane �CS=nS+(pS �nS)e1
.

If nM is normal (perpendicular) to the hyperplane and also a point on the hyperplane,
then the hyperplane can be de�ned as

EC = nM+nM
2 e1
 (6.56)

= nM+ d2e1
 (6.57)

where d= nM
2

p
is the hyperbolic distance (modulus) of nM from the origin. The modulus

d may be a real or imaginary number, but the spacetime interval d2 of nM from the origin
is a real scalar. For nM both normal to and on the hyperplane, the squared modulus
d2 = pM � nM from the origin, as well as d itself, is constant for all points pM on the
hyperplane. By using the squared modulus d2, it is possible to avoid imaginary numbers.
The actual magnitude of nM does not a�ect the representation of the hyperplane surface
since the hyperplane entity is a homogeneous entity that may be arbitrarily scaled by any
non-zero scalar without a�ecting the surface that is represented. The scaling of entities
a�ects metrical distance calculations between entities, and the formulas for distances
between entities must include methods for normalizing the scale of entities.

The hyperplane EC is the set of STA points tM

NIG(EC) = f tM : C(tM) �EC=0 g (6.58)

of the geometric inner product null space of EC, denoted NIG(EC) [20]. A similar set
holds for all other GIPNS entities.

If nM is a null vector, then the hyperplane EC degenerates into the representation of
a CSTA GIPNS null 1-vector light-line (null line) entity LC (�6.4.4) parallel to nM and
through the point pM. The null line entity LC includes the point at in�nity e1
 on the line.

The intersections of two, three, four, or �ve hyperplanes ECi can de�ne entities for
planes, lines, �at points, and the point at in�nity, respectively as follows:

Two hyperplanes intersect as a CSTA GIPNS 2-vector plane �C (�6.4.10)

EC1^EC2 = (6.59)
(n1+ d1

2e1
)^ (n2+ d2
2e1
) = (6.60)

n1^n2+(d2
2n1¡ d12n2)e1
 = (6.61)

D�M¡ (pM �D�M)e1
 = �C (6.62)
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where D�M=n1^n2 is the STA dual of the plane �C direction bivector D.
Three hyperplanes intersect as a CSTA GIPNS 3-vector line LC (�6.4.11)

EC1^EC2^EC3 = (6.63)
(n1^n2+(d2

2n1¡ d12n2)e1
)^ (n3+ d3
2e1
) = (6.64)

n1^n2^n3+(d2
2n1¡ d12n2)^ e1
^n3+ d3

2n1^n2^ e1
 = (6.65)
n1^n2^n3+(d1

2n2^n3¡ d22n1^n3+ d3
2n1^n2)e1
 = (6.66)

d�M+(pM �d�M)e1
 = LC (6.67)

where d�M=n1^n2^n3 is the STA dual of the line LC direction vector d.
Four hyperplanes intersect as a CST GIPNS 4-vector �at point (�6.4.16)

EC1^EC2^EC3^EC4 = (6.68)
(n1^n2^n3+(d1

2n2^n3¡ d22n1^n3+ d3
2n1^n2)e1
)^ (n4+ d4

2e1
) = (6.69)
�IM¡�(pM � IM)e1
 ' (6.70)

IM+ pM
� e1
 = PC: (6.71)

The CSTA dual of the �at point is

(IM+ pM
� e1
)IC

¡1 = (6.72)
e1
 ^PC = PC

�: (6.73)

Five hyperplanes intersect as the CSTA GIPNS 5-vector point at in�nity e1

? (�6.4.17)

EC1^EC2^EC3^EC4^EC5 = (6.74)
(IM+ pM

� e1
)^ (n5+ d5
2e1
) = (6.75)

pM
� ^ e1
 ^n5+ d5

2IM^ e1
 ' (6.76)
IM^ e1
 = (6.77)

IM^ e++ IM^ e¡ = (6.78)
¡IC � e¡¡ IC � e+ = (6.79)

¡IC � e1
 = (6.80)
¡(¡1)1(6¡1)e1
 � IC = (6.81)

e1
IC = e1

? : (6.82)

6.4.4 CSTA GIPNS null 1-vector light-line (null line)

As a CSTA GIPNS entity, a null vector nM=�(
0+ n̂) represents the line through the
origin in the direction of nM. This is a degenerate case of the hyperplane EC (�6.4.3)
with null vector nM as the hyperplane normal vector.

The CSTA GIPNS null 1-vector light-line (null line) LC through the origin in the
direction of the null vector nM is de�ned as

LC = nM: (6.83)

The null line LC=nM can be translated in spacetime from the origin to an arbitrary point
pM using a translation operation (�6.6.4). The CSTA GIPNS null 1-vector null line LC
through the point pM in the direction of null vector nM is de�ned, via translation, as

LC = nM+(pM �nM)e1
: (6.84)
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The null line LC includes the point at in�nity e1
 on the line.

6.4.5 CSTA GIPNS 1-vector hyperhyperboloid of one sheet

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0 (6.85)

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)2

p
= r0

2+(ct¡ pw)2
p

(6.86)

and center position

pM = pw
0+ px
1+ py
2+ pz
3= pw
0+pS (6.87)

in 4-D spacetime.
When w¡ pw=0, the surface is a sphere with radius r0. The circular hyperhyperboloid

of one sheet can also be called a hyperpseudosphere. Like a sphere, a hyperpseudosphere
does not include the point at in�nity.

In 3-D spacetime with only two spatial dimensions by holding (z¡ pz)=0, the circular
hyperhyperboloid of one sheet reduces to the circular hyperboloid of one sheet

(x¡ px)2
r0
2 +

(y¡ py)2
r0
2 ¡ (w¡ pw)2

r0
2 = 1: (6.88)

When (w ¡ pw) = 0, the hyperboloid of one sheet is a circle in the xy-plane with initial
radius r0 at initial time t = pw / c, or w = pw. The circle radius r = r0

2+(w¡ pw)2
p

is
expanding after time t= pw/c and is contracting before that time. The radius is expanding
with time t at the rate

r_ =
@r
@t

=
1
2
r¡12(ct¡ pw)c=

ct¡ pw
r

c=
ct¡ pw

(ct¡ pw)2+ r0
2

p c: (6.89)

The initial rate at time t= pw/c is r_(pw/c) = 0 and increases to r_(1) = c as t!1. In
natural units, c=1 and the hyperhyperboloid of one sheet is asymptotically the hypercone
of a spherically expanding point PC. The acceleration of the radius r is

r�=
@r_
@t

= @t
ct¡ pw

r
c=

cr¡ r_(ct¡ pw)
r2

c=
c2¡ r_2
r

: (6.90)

The initial acceleration at t= pw/c is r�(pw/c)= c2/r0 and decreases to r�(1)=0 as t!1.
In natural units, c=1 and r� is a measure of circular, or spherical, curvature at time t.

Using the CSTA point value-extraction elements (�6.3) the hyperhyperboloid of one
sheet implicit surface function entity can be written

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ px)2 ! (6.91)

(r0
2+ pM

2 )C1+Ct2¡ 2pwCw+2pxCx+2pyCy+2pzCz = (6.92)
¡(r02+ pM2 )e1
¡ 2eo
¡ 2pw
0¡ 2px
1¡ 2py
2¡ 2pz
3 = (6.93)

¡2pM¡ (r02+ pM2 )e1
¡ 2eo
 : (6.94)

Normalizing eo
 by scaling ¡1/2 gives

pM+
1
2
(r0
2+ pM

2 )e1
+ eo
 = (6.95)

PC+
1
2
r0
2e1
 : (6.96)
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The CSTA GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C in
spacetime with initial radius r0 centered at CSTA point PC= C(pM) is de�ned as

�C = PC+
1
2
r0
2e1
 (6.97)

' �C
�IC (6.98)

and equals the CSTA undual of the dual CSTA GOPNS 5-vector hyperpseudosphere �C�

up to a homogeneous scalar factor.
The CSTA hyperpseudosphere �C is similar to a CGA sphere S discussed in [7] when

PC = C(pS) is the embedding of a spatial point pM = pS with w = ct = 0, which gives
the G1;4 CSA GIPNS 1-vector sphere SCS = PCS +

1

2
r2e1
. When r0 = 0, �C =KC is a

hypercone, which is the CSTA point embedding PC=KC as a GIPNS entity.
Two hyperpseudospheres can intersect in a growing spatial circle, which is a CSTA

GIPNS 2-vector spacetime hyperboloid or pseudosphere SC. Three hyperpseudospheres
can intersect in a growing spatial point pair, which is a CSTA GIPNS 3-vector spacetime
hyperbola or pseudocircle CC. Four hyperpseudospheres can intersect in a CSTA GIPNS
4-vector spacetime point pair PC.

6.4.6 CSTA GIPNS 1-vector hyperhyperboloid of two sheets

The implicit quadric surface equation for a circular hyperhyperboloid of two sheets is

¡r02+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z ¡ pz)2 = 0: (6.99)

The CSTA GIPNS 1-vector hyperhyperboloid of two sheets (imaginary hyperpseudosphere)
is

�C = PC¡
1
2
r0
2e1
: (6.100)

The imaginary radius is ¡1
p

r0.
The intersection of �C and hyperplane EC= 
0+ pwe1
 holds w= pw and produces an

imaginary sphere. The intersection of �C and hyperplaneEC=
3¡ pze1
 holds z= pz and
produces a hyperboloid of two sheets in wxy-spacetime opening up and down the w-axis.
The intersection of �C and spacetime plane �C produces a hyperbola in the spacetime
plane that opens up and down the time axis.

6.4.7 CSTA GIPNS 2-vector spatial sphere

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0: (6.101)

If we set the time coordinate w, then we get the implicit surface equation for a sphere in
xyz-space

(x¡ px)2+(y¡ py)2+(z ¡ pz)2¡ r2 = 0 (6.102)

with radius

r = r0
2+(w¡ pw)2

p
: (6.103)

To set w, we can intersect a hyperpseudosphere

�C = PC+
1
2
r0
2e1
 (6.104)
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with radius r0 centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)= C(pw
0+pS) (6.105)

with the hyperplane

EC = 
0+we1
 (6.106)

of xyz-space at w. The sphere of radius r0 centered at pS is at the time w= pw.
The CSTA GIPNS 2-vector sphere SC centered at PC = C(pM) with radius r0 is the

intersection

SC = �C^EC (6.107)

=

�
PC+

1
2
r0
2e1


�
^ (
0+(pM � 
0)e1
) (6.108)

=

�
PC+

1
2
r0
2e1


�
^ (
0+ pwe1
) (6.109)

' SC
�IC (6.110)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector sphere SC� up to
a homogeneous scalar factor.

6.4.8 CSTA GIPNS 2-vector spacetime hyperboloid of one sheet

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0: (6.111)

If we set one spatial coordinate, for instance z, then we get the implicit surface equation
for a circular hyperboloid of one sheet in wxy-spacetime

(x¡ px)2+(y¡ py)2¡ (w¡ pw)2¡ (r02¡ (z¡ pz)2) = (6.112)
(x¡ px)2

r2
+
(y¡ py)2

r2
¡ (w¡ pw)2

r2
¡ 1 = 0 (6.113)

with central radius

r = r0
2¡ (z¡ pz)2

p
(6.114)

and circular conic section radius at w; z

rc = (w¡ pw)2+(r0
2¡ (z ¡ pz)2)

p
= (w¡ pw)2+ r2
p

: (6.115)

The spacetime hyperboloid of one sheet is also called a pseudosphere. Like a sphere, a
pseudosphere does not include the point at in�nity. The pseudosphere in wxy-spacetime
is a circle in xy-space that changes in radius with w; z. To set z, we can intersect a
hyperpseudosphere

�C = PC+
1
2
r0
2e1
 (6.116)

with radius r0 centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)= C(pw
0+pS) (6.117)

with the hyperplane

EC = z
3¡ z2e1
 (6.118)
' 
3¡ ze1
 (6.119)
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of wxy-space at z
3. To have pseudosphere central radius r0, set z = pz. The xy-plane
circle of radius r0 centered at pS is at the time w = pw. More generally, the hyperplane
can be through point pM with spatial normal vector nS as

EC = nS+(pM �nS)e1: (6.120)

The CSTA GIPNS 2-vector spacetime hyperboloid of one sheet (pseudosphere) SC centered
at PC=C(pM) with central radius r0 in the spatial plane orthogonal to normal vector nS
is the intersection

SC = �C^EC (6.121)

=

�
PC+

1
2
r0
2e1

�
^ (nS+(pM �nS)e1) (6.122)

' SC
�IC (6.123)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector pseudosphere SC�

up to a homogeneous scalar factor.
The CSTA GIPNS null 2-vector spacetime cone (null cone) is the pseudosphere SC

with central radius r=0.
The spacetime hyperboloid of one sheet is always in a 3D spacetime and is not a purely

spatial surface. The spatial part is circles in planes parallel to the nS� -plane centered at
pS with radius rc = (w¡ pw)2+ r0

2
p

. The CSTA GIPNS 3-vector circle entity CC with
radius r0 is obtained by another intersection with the hyperplane at pw
0.

6.4.9 CSTA GIPNS 2-vector spacetime hyperboloid of two sheets

The CSTA GIPNS 2-vector spacetime hyperboloid of two sheets (imaginary pseudosphere)
SC centered at PC=C(pM) with central radius r0 in the spatial plane orthogonal to normal
vector nS is the intersection

SC = �C ^EC (6.124)

=

�
PC¡

1
2
r0
2e1

�
^ (nS+(pM �nS)e1) (6.125)

' SC
�IC (6.126)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector imaginary pseu-
dosphere SC� up to a homogeneous scalar factor. The two sheets open up and down the
w-axis and have circular sections in the nS� -plane.

6.4.10 CSTA GIPNS 2-vector plane

A plane in spacetime can be de�ned by two orthogonal unit-norm direction vectors

dM1 =
dM1

kdM1k
= dw1
0+ dx1
1+ dy1
2+ dz1
3 (6.127)

dM2 =
dM2

kdM2k
= dw2
0+ dx2
1+ dy2
2+ dz2
3 (6.128)

dM1 �dM2

y = 0 (6.129)

and a point

pM = pw
0+ px
1+ py
2+ pz
3 (6.130)
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on the plane. The direction of the plane is represented by the normalized unit bivector

D = dM1^dM2 (6.131)

=
D

D �Dy
p =

D

D � (
0D�
0)
p : (6.132)

The notation AM
y = 
0AM� 
0 is the anti-Euclidean space conjugation, or SA space con-

jugation, which is necessary for the case where D is a null bivector. For blade AM in
spacetime, the conjugate [20] has the property

AM �AMy = AM �
¡

0AM
0

�
= kAMk2: (6.133)

Any test point

tM = w
0+ x
1+ y
2+ z
3 (6.134)

on the plane must satisfy the plane equation

(tM¡ pM)^D = 0 (6.135)

which can also be written in the dual form

(tM¡ pM) �D�M = tM �D�M¡ pM �D�M=0: (6.136)

The dual form plane equation is vector-valued and the components represent a system of
implicit surface equations for an intersection of hyperplanes that gives the plane.

The CSTA GIPNS 2-vector plane �C through point pM in the planar direction of the
unit bivector D in spacetime can be de�ned as

�C = D�M¡ (pM �D�M)^ e1
 (6.137)
' �C

�IC (6.138)

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector plane �C
� up to

a homogeneous scalar factor.
The CSTA translation operation on any CSTA entity can be de�ned as its succes-

sive re�ections in two parallel CSTA planes. The CSTA 2-versor translator (translation
operator) TC can be de�ned by two parallel planes �C1 and �C2 that are separated by a
spacetime displacement vector 1

2
dM from �C1 to �C2 as

TC = �C2�C1: (6.139)

The translator versor operation on a CSTA point PC= C(pM), for example, is

PC
0 = TCPCTC�=�C2�C1PC�C1

��C2
� = C(pM+dM): (6.140)

The successive re�ections in two parallel planes translates by twice the spacetime dis-
placement between the parallel planes.

The rotor (spatial rotation operator) RS for a rotation by twice the angle between
two non-parallel spatial planes �C1 and �C2 can be de�ned as

RS = �C2�C1: (6.141)

The spatial rotation operator RS is equivalent to the SA rotor and is the same spatial rotor
that is used in STA and CSTA. The spatial rotor RS can spatially rotate any multivector
by versor outermorphism [20] that rotates all vectors within outer products.
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The double boost operator BvBv, where Bv = (
vv /o)
1

2 and v = c
0 + �vcv̂, that
adds the double rapidity 2'v = 2atanh(�v) in the direction of v can be de�ned as the
successive re�ections in two non-parallel spacetime planes. The �rst plane �C1 should
represent the observer as a plane through the origin and observer o that spans the time
axis and another spatial axis perpendicular to v. The second plane �C2 should represent
the boost velocity v=o+v by passing through the origin and v and spanning the same
direction perpendicular to v as the �rst plane. The planes should be unit scale by using
unit bivectors to de�ne the plane directions. The two planes contain the hyperbolic angle
'v that turns positive from �C1 toward �C2 into the direction of v. The double boost
BvBv of a spacetime velocity u is obtained by the successive re�ections

u 0 = �C2�C1u�C1
��C2

� =BvBvuBv�Bv�: (6.142)

6.4.11 CSTA GIPNS 3-vector line

6.4.11.1 Implicit surface equation of line
An implicit equation for a line in spacetime through two points can be written as

(t¡ p1) � (p2¡ p1)�M = 0 (6.143)

where t is the CSTA test point. The equation holds good for any t on the line of the two
points p1 and p2. The unit norm direction d of the line can be written as

d =
p2¡ p1

(p2¡ p1) � (p2¡ p1)y
p (6.144)

=
p2¡ p1

(p2¡ p1) � (
0(p2¡ p1)
0)
p (6.145)

=
p2¡ p1
kp2¡ p1k

: (6.146)

The unit norm trivector dual to the line direction is

d�M = dIM
¡1: (6.147)

The implicit equation can be rewritten as

(t¡ p) �d�M = (6.148)
t �d�M¡ p �d�M = 0 (6.149)

where p is any point on the line.

6.4.11.2 De�nition of line entity
The CSTA 3-vector line entity LC through point pM in the direction of unit norm

vector dM can be de�ned as

LC = d�M+(pM �d�M)^ e1
 (6.150)
' LC

�IC (6.151)

which is equal to the CSTA undual of the dual CSTA GOPNS 3-vector line LC� (�6.5.6)
up to a homogeneous scalar factor. If the line direction d is a null vector, then the line
entity LC is a null 3-vector representing a null line (light-line), otherwise it is a non-null
3-vector representing a timelike or spacelike line. The point at in�nity e1
 is on all 3-
vector lines LC.
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6.4.11.3 Observable representation
The observable worldline

pM
p0(t) = p0+vt (6.152)

= p0+ot+vt (6.153)
= oM

p0(t)+vt; (6.154)

which intersects the worldline of the translated observer oM
p0(t) at

p0 = ox
1+ oy
2+ oz
3 (6.155)

when the coordinate time is t= tpo= tcv=0, can be represented as the CSTA GIPNS 3-
vector line Lp that is constructed as

Lp = v�M+(p0 �v�M)^ e1
: (6.156)

The observable worldline Lp can be operated on by all of the CSTA versors. For example,
the translated-boost BCu

p0 (�6.6.9) of Lp can boost Lp into the frame of u = o_M
p0(t) + u

with proper time � = tpu= tcv�u relative to the translated-observer oM
p0(t) as a relativistic

velocity addition v � u while the initial position remains p0. Other, even more compli-
cated, spacetime transformations can be achieved by compositions of the CSTA versors
applied to an observable line Lp.

The position point PC
p0(t) of the observable Lp at time t is represented by the CSTA

GIPNS 4-vector �at point (�6.4.16)

PC = Lp^EC (6.157)
' (PC

p0(t)^ e1
)IC (6.158)

with time hyperplane

EC = 
0+ te1: (6.159)

The �at point projection (Eq. 6.239) of the CSTA GOPNS 2-vector �at point PC�'PCIC
¡1

(�6.5.5) can project the CSTA position point PC
p0(t) as the STA position vector pM

p0(t).
The rapidity of Lp is given by

' = acosh

 
Lp � (
1
2
3)

Lp
2

p !
(6.160)

and the natural speed � of Lp is

� = tanh('): (6.161)

The formula for rapidity ' is similar to the standard formula for the angle � between two
Euclidean plane vectors v and u, �= acos

�
u �v
kukkvk

�
, except that this plane is a Minkowski

spacetime plane with hyperbolic angle '.
The spacetime velocity v of Lp is the line direction

v=d = ((Lp � IM)IM¡1)IM=Lp � IM: (6.162)

If the observableLp is boosted by translated-boost operations, then v is boosted according
to all the same results and interpretations as v boosted by STA boost operations centered
on the observer o.
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One advantage of using the CSTA worldline representation Lp is the ability to easily
incorporate initial positions p0 and use translated spacetime operations with the CSTA
translator (�6.6.4). Other advantages may include the ability to compute various inter-
sections of a worldline with other CSTA spacetime entities.

6.4.12 CSTA GIPNS 3-vector spatial circle

The CSTA GIPNS 1-vector hyperpseudosphere with radius r0

�C = PC+
1
2
r0
2e1
 (6.163)

centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3) (6.164)

can be intersected with two CSTA GIPNS 1-vector hyperplanes

EC1 = nS+(pM �nS)e1
 (6.165)
EC2 = 
0+(pM � 
0)e1
 (6.166)

to obtain a circle with radius r0 centered at pM in the spatial plane through pM with
direction bivector NS=nS

� =¡nSIS¡1.
The CSTA GIPNS 3-vector circle entity CC centered at pM with radius r0 at time pw

in the plane of bivector NS=nS
� =¡nSIS¡1 dual to normal vector nS can be formed as

CC = �C^EC1^EC2 (6.167)
= SC^EC2 (6.168)

Without setting the time w= pw by intersecting EC2, the circle changes radius with time
as the CSTA GIPNS 2-vector hyperboloid (pseudosphere) SC=�C^EC1 (�6.4.8).

The CSTA GIPNS 3-vector circle CC can also be represented as the intersection of
the CSTA GIPNS 1-vector hyperpseudosphere �C and CSTA GIPNS 2-vector plane �C as

CC = �C^�C (6.169)

where the hyperpseudosphere �C is the same as above and sets the center pM and radius
r0, and the plane �C with spatial direction bivector NS through point pM is

�C = D�M¡ (pM �D�M)^ e1
 (6.170)
= NS

�M¡ (pM �NS
�M)^ e1
 (6.171)

= EC1^EC2: (6.172)

The CSTA GIPNS 3-vector circle CC is equal to the CSTA undual of the dual CSTA
GOPNS 3-vector circle CC�

CC ' CC
�IC (6.173)

up to a homogeneous scalar factor.
A CSTA GIPNS 3-vector circle CC can also be formed as the intersection of a CSTA

GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA GIPNS 1-vector hyperconeKC
and CSTA GIPNS 2-vector spatial plane �C as

CC = �C ^�C (6.174)
= KC ^�C: (6.175)
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6.4.13 CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle)

The circleCC with radius r0 centered at pM= pw
0+pS in spatial planeNS=nS
� is formed

by intersecting the plane �C of NS through pM with the hyperpseudosphere �C of radius
r0 at pM. Similarly, the pseudocircle CC with central radius r0 centered at pM= pw
0+pS
in Minkowski spacetime planeDM=
0dS is formed by intersecting the plane�C of DM
through pM with the hyperpseudosphere �C of radius r0 at pM. The hyperbola opens
up and down the spatial vector axis dS for a hyperpseudosphere �C, and it opens up and
down the time axis 
0 for an imaginary hyperpseudosphere �C.

The CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can be de�ned as

CC = �C^�C (6.176)

where the hyperpseudosphere �C sets the central position PC= C(pM) and initial radius
r0 as

�C = PC+
1
2
r0e1
 (6.177)

and the plane�C sets the Minkowski spacetime planeD= 
0dS of spatial unit direction
vector dS and time direction 
0 as

�C = D�M¡ (pM �D�M)^ e1
: (6.178)

The hyperbola can be visualized as a point pair on the spatial line dS, centered on pS, and
separated by an initial distance 2r = 2r0 at time w = pw. As time w changes away from
the initial time pw, the radius r increases to r= r0

2+(w¡ pw)2
p

. The CSTA GIPNS 4-
vector spacetime point pair can be obtained as

2C = SC^EC (6.179)

where EC is the xyz-space hyperplane

EC = 
0+we1
 (6.180)

at the time w for the point pair with radius r around pS on the line direction dS. The
hyperplane sets the time w component of the points in the spacetime point pair. The
points appear to move apart spatially with time away from pw.

A CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can also be formed
as the intersection of a CSTA GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA
GIPNS 1-vector hypercone KC and CSTA GIPNS 2-vector spacetime plane �C as

CC = �C^�C (6.181)
= KC^�C (6.182)

which open up and down the time w-axis.

6.4.14 CSTA GIPNS 4-vector point pair

The CSTA GIPNS 4-vector point pair 2C is

2C = ¡PC1 �PC2� (6.183)
= ¡PC1 � (PC2IC¡1)=PC1 � (PC2IC)= (PC1^PC2)IC (6.184)
= 2C

�IC (6.185)
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which is exactly the CSTA undual of the dual CSTA GOPNS 2-vector point pair 2C�.
If the two points are relatively lightlike, then the point pair is actually the CSTA

GIPNS null 4-vector light-line (null line) LC that is exactly undual to the dual CSTA
GOPNS null 2-vector light-line (null line) LC� (�6.5.4). The point pair 2C of two not
relatively lightlike points is non-null .

If one of the two points is e1
, then the point pair is actually the CSTA GIPNS 4-
vector �at point PC that is exactly undual to the dual CSTA GOPNS 2-vector �at point
PC
� (�6.5.5). A �at point is non-null.

6.4.15 CSTA GIPNS null 4-vector light-line (null line)

The CSTA GIPNS null 4-vector null line (light-line) LC is exactly the undual LC=LC�IC
of the dual CSTA GOPNS null 2-vector null line (light-line) LC� (�6.5.4).

The CSTA GIPNS null 4-vector light-line (null line) LC is

LC = ¡PL1 �PL2� (6.186)
= ¡PL1 � (PL2IC¡1)=PL1 � (PL2IC)= (PL1^PL2)IC (6.187)
= LC�IC (6.188)

where PLi = C(pMi) = C(pwi
0 + pSi) denotes points that are relatively lightlike in
spacetime positions. The two relatively lightlike points PL1 and PL2 are on a light-line
in spacetime having equal changes in time components jpw1¡ pw2j to space components
kpS1¡pS2k,

jpw1¡ pw2j
kpS1¡pS2k

= 1 (6.189)

@tkpS1¡pS2k= @tjpw1¡ pw2j = c: (6.190)

Light speed c is required to travel between the two points, or any two points on a light-
line, in spacetime. The vector pM1¡ pM2 is a null vector in spacetime, and any two points
in spacetime with a null di�erence vector are relatively lightlike.

A null 4-vector light-line LC can be converted into a non-null 3-vector line LC as

LC = (LC� ^ e1
)IC=LC
�IC: (6.191)

6.4.16 CSTA GIPNS 4-vector �at point

The CSTA GIPNS 4-vector �at point PC is

PC = ¡PC � e1

� (6.192)

= ¡PC � (e1
IC
¡1)=PC � (e1
IC)= (PC^ e1
)IC (6.193)

= PC
�IC (6.194)

which is exactly the undual of the dual CSTA GOPNS 2-vector �at point PC�.
A �at spatial point PC= C(pS)^ e1
 at w=0 can be represented as the intersection

of a CSTA GIPNS 2-vector plane �C and CSTA GIPNS 3-vector line LC that are in the
common xyz-space hyperplane at any times in spacetime as

PC = 
0^ (
0 ��C)^ (
0 �LC) (6.195)
= PC

�IC (6.196)
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where the common hyperplane of xyz-space EC = 
0 is contracted out of the plane and
line before they are intersected, and then 
0 is intersected back into the result. The time
components of the plane and line do not a�ect the result, which is spatial intersection
at w= 0. The �at spatial point PC can exactly match the undual PC�IC. The �at spatial
point represents the point PC of intersection on the plane where the line passes through,
and it also represents e1 where the plane and line also intersect. A �at spacetime point
as intersections may also be possible but is not considered here.

6.4.17 CSTA GIPNS 5-vector point

The CSTA null 1-vector point embedding PC= C(pM) is the
� CSTA GIPNS null 1-vector hypercone PC centered at pM

� CSTA GOPNS null 1-vector point PC representing the point pM.

Therefore, the CSTA GIPNS null 5-vector point PC? is the undual

PC
? = PCIC (6.197)

which also introduces a notation for the undual operation. The undual notation has been
omitted on other undual entities. For the 5-vector point, the undual notation avoids a
notational con�ict since PC is the dual, not PC�.

For STA vectors, the undual is


0
? = 
0IM= 
1
2
3 (6.198)

1
? = 
1IM= 
0
2
3 (6.199)

2
? = 
2IM= 
0
3
1 (6.200)

3
? = 
3IM= 
0
1
2 (6.201)

which is consistent, in this case, with Hodge dual that is denoted ?A in other literature.
The CSTA GIPNS null 5-vector point PC? can also be represented as the intersection

of a hypercone PC with the four hyperplanes ECi through the hypercone vertex pM as

PC
? = PC^EC1^EC2^EC3^EC4 (6.202)

where

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3) (6.203)
EC1 = 
0+ pwe1
 (6.204)
EC2 = ¡
1+ pxe1
 (6.205)
EC3 = ¡
2+ pye1
 (6.206)
EC4 = ¡
3+ pze1
: (6.207)

Each hyperplane �xes one coordinate to hold a value.

6.5 CSTA GOPNS entities
In G2;4 CSTA, �ve or less points can be wedged into CSTA GOPNS entities, allowing a
greater variety of entities than in G4;1 CGA, which uses four or less points. The CSTA 6-
vector unit pseudoscalar and the CGA 5-vector unit pseudoscalar are dualization oper-
ators that can also be interpreted as GOPNS entities that represent the whole 4-D
spacetime in CSTA or the whole 3-D space CGA.
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The familiar �at and round GOPNS entities of G4;1 CGA have a similar representation
in G2;4 CSTA as the wedge four or less points that are the embeddings of spatial points
PC = C(pS). These �at and round CGA-like entities are at w = ct = 0 in spacetime
unless translated to time w =/ 0, and can be constructed as the intersections of CSTA
GIPNS �at and hyperbolic entities with the CSTA GIPNS hyperplane 
0 + we1 for
time w. These CGA-like entities are the entities of the G1;4 Conformal Space Algebra
(CSA) that is without time components. G1;4 CSA is similar to G4;1 CGA, except that
there are di�erences in the signs of some similar CGA expressions. For example, the
distance between two G1;4 CSA points is d = 2PCS1 �PCS2

p
, while in G4;1 CGA it is

d= ¡2PC1 �PC2
p

. As a subalgebra of CSTA, the CSA versors are the CSTA versors for
spatial operations, which excludes the spacetime boost versors. The dilator operation,
or successive inversions in two concentric spheres for a dilation by factor r22 / r12, can
isotropically dilate CSA entities in space and time. The translator operation, or successive
re�ections in parallel spacetime planes, can translate CSA entities in space and time. The
rotor operation, or successive re�ections in non-parallel spatial planes, can rotate CSA
entities in space, leaving the time una�ected.

The GOPNS entities are called dual to the undual GIPNS entities, but this naming
is quite often reversed in other literature. This naming is chosen to be consistent with
DCSTA entities, where the DCSTA GIPNS entities are unduals and the DCSTA GOPNS
entities are duals.

6.5.1 Geometric outer product null space (GOPNS)

Geometric outer product null space (GOPNS) entities are introduced by Perwass in [20],
and are reviewed by this author in [7] and [9].

The G2;4 CSTA unit pseudoscalar IC is grade 6, and it can be interpreted to be a
GOPNS 6-vector entity that represents the entire 4D spacetime. Otherwise, the CSTA
GOPNS surface entities are formed as the wedge of �ve or less CSTA GOPNS null 1-
vector points

V
PCi (�6.5.2) on the surface that span the surface. In G4;1 CGA, the CGA

GOPNS entities are formed as the wedge of four or less points. Compared to CGA, CSTA
has a larger set of GOPNS entities.

The subset of G2;4 CSTA GOPNS entities that are similar to G4;1 CGA GOPNS entities
are the G1;4 CSA GOPNS entities, which are de�ned as the wedge of four or less CSTA
spatial points PCi = C(pSi), or G1;4 CSA null 1-vector points PCSi = C(pSi), that are on
the surface and that also span the surface of the entity. The CSA GOPNS entities are
constructed as wedges of spatial points by the same forms as in G4;1 CGA. The spatial
CSA entities are located at time w= ct=0 in the CSTA spacetime, but can be translated
(�6.6.4) to exist at any time w = ct = pw. The G1;4 CSA entities and G4;1 CGA entities
represent the same surfaces, but there are some sign changes. For example, the distance
d between two spatial points PCS1 and PCS2 is now

d = 2PCS1 �PCS2
p

(6.208)

while in ordinary G4;1 CGA, d= ¡2PC1 �PC2
p

.

6.5.2 CSTA GOPNS 1-vector point

As a GOPNS entity, the CSTA null 1-vector point embedding PC= C(pM) represents
the point of the embedded STA position pM. The GOPNS test

TC ^PC = 0 (6.209)
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holds good if and only if (i�)

TC � PC: (6.210)

As a GIPNS entity, a point PC represents a null hypercone (�6.4.2) in spacetime. The
GIPNS test

TC �PC = 0 (6.211)

holds good for any point TC on the hypercone with vertex PC. A point TC on the hypercone
is a point that is located at a lightlike (null vector) displacement from the vertex PC. The
hypercone is a sphere in space, centered at PC, with time-varying radius r = w ¡ pw =
ct¡ pw.

A CSTA null 1-vector point embedding PC= C(pM) represents

TC �PC =

�
null hypercone centered at vertex pM : � is �
null point at pM: : � is ^ (6.212)

6.5.3 CSTA GOPNS 2-vector point pair

The CSTA GOPNS 2-vector point pair 2C� is the wedge of two �nite CSTA points that
are not relatively lightlike (i.e., (pM2¡ pM1)

2=/ 0)

2C
� = PC1^PC2 (6.213)
= 2CIC

¡1 (6.214)

and is the CSTA dual of the CSTAGIPNS 4-vector point pair 2C. Two points are relatively
lightlike if they are separated by a null vector displacement. The GOPNS test

TC �2C� = 0 (6.215)

holds good for the point pair 2C� of two �nite points that are not relatively lightlike if and
only if (i�)

TC 2 fPC1;PC2g: (6.216)

A valid point pair 2C� represents the two distinct points as a single entity.
The point pair decomposition [4]

P̂C� =
2C
� � (2C

�)2
p

¡e1
 �2C�
=(2C

� � 2C
� �2C�

p
)(¡e1
 �2C�)¡1 (6.217)

gives the two normalized (unit scale) �nite points P̂C+ and P̂C¡ of the point pair 2C�.
A light-line (null line) LC� =PL1 ^PL2 (�6.5.4) is the wedge of two relatively lightlike

points PLi and represents the line of the two points, excluding e1
. A �at point PC�=PC^
e1
 (�6.5.5) is the wedge of one �nite point PC and the point at in�nity e1
.

6.5.4 CSTA GOPNS 2-vector light-line (null line)

An STA null lightlike position vector lM relative to the origin has the form

lM = ct(
0+ n̂S)=w(
0+ n̂S)= ctnM: (6.218)
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It can be veri�ed that a vector of the form of nM= 
0+ n̂S is a null vector nM2 =0, where
n̂S is any spatial unit direction vector. A lightlike position relative to an STA position
vector pM is

pL = pM+ lM: (6.219)

Let any three collinear positions pLi and their CSTA point embeddings PLi be

PL1= C(pL1) = C(pM+w1nM)= C(pM+ ct1nM) (6.220)
PL2= C(pL2) = C(pM+w2nM)= C(pM+ ct2nM) (6.221)
PL3= C(pL3) = C(pM+w3nM)= C(pM+ ct3nM): (6.222)

These three points, called relatively lightlike points, are along a light-line in the null
direction nM on a light-cone with vertex pM. Two points, pL1 and pL2, are relatively
lightlike if their di�erence vector lM= c(t2¡ t1)nM= pL2¡ pL1 is a null vector nM2 = 0.
It can be veri�ed that for any three collinear relatively lightlike points

PL1^PL2^PL3 = 0: (6.223)

Therefore, the light-line LC in the direction of nM through the point pM is characterized
by the wedge of any two points on the light-line. The point at in�nity e1
 is not a point
on a light-line that is represented like a point pair.

The CSTA GOPNS null 2-vector light-line LC is the wedge of any two relatively light-
like points on the light-line

LC� = PL1^PL2 (6.224)
' LCIC¡1 (6.225)

and is the CSTA dual of the CSTA null 4-vector light-line LC up to a homogeneous scalar
factor.

The light-line LC� does not include the point at in�nity e1
. A light-line exists only in
spacetime. In general, the two points of LC� are along a light-line, which is a line through
spacetime with slope m=�1 of time to space distance on a light-cone. A light-line is also
called a null line since

(LC�)2 = 0: (6.226)

For any two coplanar light-lines LC1� and LC2� , the lines share a light-cone vertex pM and

LC1� ^LC2� = 0 (6.227)

which is a result that holds in general for all coplanar lines.
A light-line LC� is a special type of line that requires only two points to de�ne the line.

A light-line is also called a lightlike line. Other lines in spacetime are timelike or spacelike
lines and require the wedge of three collinear points to de�ne them as GOPNS entities.

The CSTA GOPNS 3-vector line LC� (�6.5.6) always includes e1
 on the line. A light-
line LC� can be extended to include e1
 as a null 3-vector line LC�. A lightlike line LC� is
converted into a CSTA GOPNS null 3-vector line LC� as

LC
� = LC� ^ e1
: (6.228)

See also, the CSTA GIPNS null 1-vector light-line (null line) (�6.4.4), which also includes
e1
 on the null line.

The two points of a lightlike line LC� cannot be decomposed from the line entity.
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6.5.5 CSTA GOPNS 2-vector �at point

A CSTA �at point PC
� is the wedge of a �nite CSTA point PC and the CSTA point at

in�nity e1


PC
� = PC ^ e1
= C(pM)^ e1
 (6.229)
' PCIC

¡1 (6.230)

and equals the CSTA dual of the CSTA 4-vector �at point PC up to a homogeneous scalar
factor.

As introduced in [4] in the context of G4;1 CGA, a �at point is the intersection point
of a plane and line in space. However, a plane and line both also include the point at
in�nity. Therefore, a �at point represents the two points where a line and plane intersect
in space. In G2;4 CSTA, a line and plane are in spacetime and may intersect at a spacetime
�at point. The CSTA GIPNS 2-vector plane �C is the intersection of two hyperplanes

�C = EC1^EC2 (6.231)

and the CSTA GIPNS 3-vector line LC is the intersection of three hyperplanes

LC = EC3^EC4^EC5: (6.232)

In CGA, the intersection of a line and plane is simply L^�, but this form cannot work as
simply in CSTA. There can be zero, one, or two hyperplanes that are the same in the line
and plane. If zero are the same, then �C ^LC=/ 0 and the intersection is �C ^LC' e1


?

(�6.4.17). If two are the same, then LC = �C ^ EC and the intersection is LC. If one
hyperplane is the same, then the intersection is a �nite spacetime point PC and e1
, which
are represented as a CSTA GOPNS 2-vector �at point PC�=PC^ e1
. In all three cases,
a line and plane intersect at e1
.

Assume, for now, that there is only one common hyperplane

EC=EC1=EC3 = nM+(pM �nM)e1
: (6.233)

We expect to obtain a CSTA GIPNS 4-vector �at point PC as the intersection of the
CSTA GIPNS 3-vector line LC and CSTA GIPNS 2-vector plane �C. If we contract EC
into the line or the plane and then wedge them, then we get the 4-vector �at point. The
pseudoscalar of the spacetime projections of�C andLC is IM, which can be used to project
their directional blades. The conjugate normal vector nM

y of the common hyperplane EC
is given by the spacetime meet product _M of the plane and line as

nM
y = (�C_MLC)y (6.234)

= 
0(((�C � IM¡1)^ (LC � IM¡1)) � IM)
0: (6.235)

The conjugate normal vector nM
y can be used to contract EC in either the plane or line,

which then allows intersections of the plane and line to be formed as the two �at points

PC1 = (nM
y ��C)^LC (6.236)

PC2 = �C ^ (nM
y �LC): (6.237)

For one common hyperplane EC, as assumed, then PC1=�PC2. Now, if two hyperplanes
are common in the plane and line, then the spacetime meet produces zero and the �at
points are zero. These results allow the following de�nition for the intersection �C \LC
of a line and plane.
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The CSTA GIPNS intersection �C \ LC of a CSTA GIPNS 2-vector plane �C and
CSTA GIPNS 3-vector line LC can be de�ned as

�C\LC=

8<:�C ^LC' e1

? : �C ^LC=/ 0

PC1=�PC2 : �C ^LC=0;�C_MLC=/ 0
LC : �C ^LC=0;�C_MLC=0:

(6.238)

The intersection is valid for any null or non-null 3-vector line LC and any spacetime plane
�C.

The point PC of a �at point PC�=PCIC
¡1 is projected [4] as

pM= C¡1(PC) =
(eo
^ e1
) � (eo
 ^PC�)
¡(eo
 ^ e1
) �PC�

=
¡PC�

(eo
^ e1
) �PC�
� eo
¡ eo
: (6.239)

6.5.6 CSTA GOPNS 3-vector line
The CSTA GOPNS line LC� is similar to the CGA GOPNS line L� discussed in [7]. In
general, any line in spacetime can be represented as the wedge of three well-chosen points
on the line. A CSTA GOPNS 2-vector lightlike line LC� (�6.5.4) is represented by the wedge
of just two points but it does not include the point at in�nity e1
 on the line.

A CSTA GOPNS null 3-vector lightlike line LC� is the wedge of any two relatively
lightlike points PLi on the line and the CSTA point at in�nity e1


LC
� = PL1^PL2^ e1
=LC� ^ e1
: (6.240)

A CSTA GOPNS non-null 3-vector timelike or spacelike line LC� can be the wedge of
any two points PCi on the line and the CSTA point at in�nity e1
 or the wedge of any
three collinear points PCi on the line

LC
� = PC1^PC2^ e1
 (6.241)
' PC1^PC2^PC3 (6.242)
' LCIC

¡1 (6.243)

and is equal to the CSTA dual of the CSTA GIPNS 3-vector line LC (�6.4.11) up to a
homogeneous scalar factor.

The 3-vector line entity can be used to represent an observable (�6.4.11).

6.5.7 CSTA GOPNS 3-vector spatial circle

The system of implicit surface equations for a spatial circle with radius r0 centered at
(px; py; pz) in the xy-plane at z= pz is

(x¡ px)2+(y¡ py)2¡ r02 = 0 (6.244)
z ¡ pz = 0 (6.245)
w¡ pw = 0: (6.246)

The CSTA spatial circle entity CC represents a system of implicit surface equations of this
form for the intersection of a circular cylinder and plane. The center position of the circle

pM = pw
0+ px
1+ py
2+ pz
3 (6.247)

includes a time component pw
0 that indicates when the circle exists.
The CSTA GOPNS spatial circle CC� is similar to the CGA GOPNS circle C� discussed

in [7] and is the wedge of any three points on the circle in space at the same time. Three
points are always coplanar cocircular points. Three collinear points are on a circle of
in�nite radius, which is a line.
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The CSTA GOPNS 3-vector spatial circle CC� is the wedge of any three CSTA points
PCi= C(pw
0+pSi) at the same time pw on the circle

CC
� = PC1^PC2^PC3 (6.248)
' CCIC

¡1 (6.249)

and is the CSTA dual of the CSTA GIPNS 3-vector spatial circle CC up to a homogeneous
scalar factor.

The wedge of three points that are not all at the same time may produce a spacetime
hyperbola (�6.5.8). The circle is produced for three points at the same time.

6.5.8 CSTA GOPNS 3-vector spacetime hyperbola (pseudocircle)

The system of implicit surface equations for a spacetime circular hyperbola in the xw-
plane centered at (pw; px; py; pz), with central radius r, opening up and down the w-axis is

(x¡ px)2+ r2¡ (w¡ pw)2 = 0 (6.250)
y¡ py = 0 (6.251)
z¡ pz = 0: (6.252)

The spacetime circular hyperbola can also be called a pseudocircle. The CSTA pseudo-
circle entity represents a system of implicit surface equations of this form. This hyperbola
is not general, but circular. To get the expected shape, the points have to be chosen
carefully. At x= px, w= pw�r. At w= pw+ 2

p
r, x= px� r. The axes may be transposed.

Spatial rotations, spacetime translations, and spacetime isotropic dilations permit the
pseudocircle to be in any Minkowski space-time plane, at any spacetime center point,
and with any central radius. The hyperbola is generally a conic section of a related
circular hyperboloid (�6.5.10) cut through a spacetime plane and has lightlike asymptotes.
By cutting the related hyperboloid in di�erent spacetime planes, it is possible to get
hyperbolas that open up and down the time or space axis. The hyperboloids are w-axis
(time-axis) aligned with circles in the xy-planes.

The CSTA GOPNS 3-vector spacetime circular hyperbola CC� is the wedge of any three
non-collinear CSTA spacetime points PCi= C(pMi) on the spacetime circular hyperbola

CC
� = PC1^PC2^PC3 (6.253)
' CCIC

¡1 (6.254)

and is the CSTA dual of the CSTA GIPNS 3-vector spacetime hyperbola CC up to a
homogeneous scalar factor. Similar to a circle, the point at in�nity e1
 is not a point on
the pseudocircle.

The spacetime hyperbola CC� becomes a light-line pair of a light-cone when the three
non-collinear points are relatively lightlike points PLi (�6.5.4). The points are relatively
lightlike when any two points are relatively lightlike, forming one of the light-lines. The
perpendicular line through the third point is the other light-line. The light-cone vertex is
the point of intersection of the two light-lines, which could be one of the points.

In general, the wedge of three non-collinear CSTA spatial points PCi=C(pSi) produces
a spatial circle (�6.5.7) at w= ct=0.

6.5.9 CSTA GOPNS 4-vector spatial sphere

The CSTA GOPNS spatial sphere SC� is similar to the CGA GOPNS sphere S� discussed
in [7].
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The CSTA GOPNS 4-vector spatial sphere SC� is the wedge of four CSTA spatial points
PCi= C(pSi) on the sphere surface that span the sphere

SC
� = PC1^PC2^PC3^PC4 (6.255)
' SCIC

¡1 (6.256)

and is the CSTA dual of the CSTA GIPNS 2-vector spatial sphere SC up to a homogeneous
scalar factor. To span the sphere, the points cannot be all coplanar. The spatial sphere SC�

holds w= ct=0 and is a sphere in space that exists at time t=0, but it can be translated
to any time w= pw (or to any spacetime position) using the CSTA translator (�6.6.4).

6.5.10 CSTA GOPNS 4-vector spacetime hyperboloid (pseudosphere)

The implicit quadric surface equation of a spacetime circular hyperboloid of one sheet with
circular sections in the xy-plane and central radius r is

(w¡ pw)2+ r2¡ (x¡ px)2¡ (y¡ py) = 0: (6.257)

The spacetime circular hyperboloid can also be called a pseudosphere. Spatial rotations,
spacetime translations, and spacetime isotropic dilations permit the pseudosphere to be
in any spatial plane, at any spacetime center point, and with any central radius.

The CSTA GOPNS 4-vector spacetime circular hyperboloid of one sheet (pseudos-
phere) SC� is the wedge of four CSTA spacetime points PCi= C(pMi) on the surface that
span the surface

SC
� = PC1^PC2^PC3^PC4 (6.258)
' LC1� ^LC2� (6.259)
' SCIC

¡1 (6.260)

and is the CSTA dual of the CSTA GIPNS 2-vector spacetime circular hyperboloid of one
sheet SC up to a homogeneous scalar factor. Similar to a sphere, the point at in�nity e1


is not a point on the pseudosphere. Two non-coplanar light-lines LC1� and LC2� can span a
pseudosphere as asymptotes that are tangent to the hyperboloid.

The pseudosphere SC� becomes a light-cone, also called a null cone, when the four
points are relatively lightlike points PLi. The points are relatively lightlike when any three
points are relatively lightlike to the fourth point, which is the vertex center point of the
light-cone. The wedge of the light-cone vertex and another point is a light-line LC�, and
the light-cone is spanned by three light-lines sharing the vertex.

In general, the wedge of four non-coplanar CSTA spatial points PCi= C(pSi) produces
a spatial sphere that holds w= ct=0.

It is also possible to produce the CSTA GOPNS 4-vector spacetime hyperboloid of two
sheets (imaginary pseudosphere) as the wedge of four well-chosen points that span the
surface.

6.5.11 CSTA GOPNS 4-vector plane

The CSTA GOPNS plane �C
� is similar to the CGA GOPNS plane �� discussed in [7]. In

CGA, a plane �� is the wedge of any four coplanar non-collinear non-cocircular points
on the plane. The four well-chosen points that de�ne a plane in CGA are nearly the same
for �C

�, but light-lines LC� (�6.5.4) introduce an additional constraint on the choice of the
four coplanar points in spacetime.
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Three non-collinear finite points PCi are co(pseudo)circular and define a finite
(pseudo)circle CC�. The fourth point can be the point at in�nity e1
 or some other
coplanar non-co(pseudo)circular �nite point PC4.

Three collinear, not relatively lightlike, �nite points PCi de�ne a line LC�. The fourth
point cannot be the point at in�nity e1
 since it is collinear. The fourth point can be
some other non-collinear �nite point PC4.

Two relatively lightlike �nite points PLi de�ne a light-line LC�. The other two points can
be e1
 and a coplanar non-collinear �nite point PC4. The other two points can also be not
relatively lightlike �nite points PC3 and PC4 that are coplanar non-collinear points to LC�.

The CSTA GOPNS 4-vector plane �C
� is the wedge of four well-chosen points PCi on

the plane in space or spacetime

�C
� = PC1^PC2^PC3^PC4=CC ^PC4 (6.261)
' PC1^PC2^PC3^ e1
=CC^ e1
 (6.262)
' LC

� ^PC4 (6.263)
' LC� ^ e1
 ^PC4 (6.264)
' LC� ^PC3^PC4 (6.265)
' �CIC

¡1 (6.266)

and is the CSTA dual of the CSTA GIPNS 2-vector plane �C (�6.4.10) up to a homoge-
neous scalar factor. The four points must be well-chosen as explained above.

The entity �C
� is a plane in space that holds w= ct= 0 when its points PCi= C(pSi)

are the embeddings of spatial points pSi in 3D SA space. In the general case of points
PCi = C(pMi) in spacetime, the entity �C

� is a plane in spacetime. The plane entity is
generally valid in both space and spacetime.

As explained in �6.4.10, the rotor RC, translator TC, and boost BC can be de�ned as
re�ections in planes. Re�ections in either the GIPNS plane �C or GOPNS plane �C

�

are both valid on all entities. The dilator DC (�6.6.6) can be de�ned as inversions in
hyperpseudospheres (�6.4.5).

6.5.12 CSTA GOPNS 5-vector hyperhyperboloid

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet (hyper-
pseudosphere) is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ px)2 = 0 (6.267)

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)2

p
= r0

2+(ct¡ pw)2
p

(6.268)

and center position

pM = pw
0+ px
1+ py
2+ pz
3 (6.269)

in spacetime.
The hyperhyperboloid can be spanned by �ve surface points that do not form entities

for any (pseudo)sphere, plane, line, or (pseudo)circle. Planes and lines are avoided by
excluding the point at in�nity. Spheres and circles are avoided by using only one or
two points in any circle on the surface. The choice of points is otherwise arbitrary. For
example, using an arbitrary scalar l=/ 0, three values of time

w 2 fpw+ l; pw+2l; pw¡ 3lg (6.270)
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and corresponding values of radius

r 2
n

r0
2+ l2

p
; r0

2+4l2
p

; r0
2+9l2

p o
(6.271)

can be chosen. Then, use at most two surface points per value of w. The hyperhyperboloid,
a sphere that expands with time, has the �ve surface points that span the surface

PC1 = C
�
pM+ l
0+ r0

2+ l2
p


1
�

(6.272)

PC2 = C
�
pM+2l
0¡ r0

2+4l2
p


2
�

(6.273)

PC3 = C
�
pM+2l
0¡ r0

2+4l2
p


3

�
(6.274)

PC4 = C
�
pM¡ 3l
0+ r0

2+9l2
p


1
�

(6.275)

PC5 = C
�
pM¡ 3l
0+ r0

2+9l2
p


2
�
: (6.276)

These points are just an example of �ve well-chosen points on the surface that span the
surface, and other points could be chosen.

The CSTA GOPNS 5-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C� is
the wedge of �ve CSTA points PCi on the surface that span the surface

�C
� = PC1^PC2^PC3^PC4^PC5 (6.277)
' �CIC

¡1 (6.278)

and is the CSTA dual of the CSTA GIPNS 1-vector hyperhyperboloid �C up to a homo-
geneous scalar factor.

The hyperhyperboloid with r0 = 0 degenerates into the CSTA GOPNS null 5-vector
hypercone PC�=�C�(pM; r0= 0). The CSTA GIPNS null 1-vector hypercone PC =KC at
pM is the point embedding PC = C(pM). The undual PC? = PCIC = PC

�ICIC = ¡PC� is the
CSTA GIPNS null 5-vector point PC?.

It is also possible to produce the CSTA GOPNS 5-vector hyperhyperboloid of two sheets
(imaginary hyperpseudosphere) �C� as the wedge of �ve well-chosen points that span the
surface.

6.5.13 CSTA GOPNS 5-vector hyperplane

A hyperplane is a subspace of dimension (n¡ 1) in a space of dimension n. In 4D space-
time, a hyperplane is a 3D subspace at a �xed coordinate along a fourth perpendicular
axis. Intersecting with a hyperplane serves to set or �x one coordinate. The signature of
the hyperplane space can be (2; 1) or (3; 0).

The wedge of three non-collinear CSTA points PCi= C(pMi) spans a spatial circle or
spacetime pseudocircle CC�. Adding the CSTA point at in�nity e1
, then the four CSTA
points span a spatial plane or spacetime plane�C

�. Adding a �fth CSTA point that is non-
coplanar to the other four points, then the �ve points span a 3D space. The wedge of �ve
well-chosen CSTA points is the CSTA GOPNS 5-vector hyperplane EC� that represents a
3D subspace of the 4D spacetime.

The CSTA GOPNS 5-vector hyperplane EC� is the wedge the CSTA point at in�nity
e1
 and four CSTA points PCi on the surface that span the hyperplane

EC
� = PC1^PC2^PC3^PC4^ e1
 (6.279)
= ECIC

¡1 (6.280)
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and is the CSTA dual of the CSTA GIPNS 1-vector hyperplane EC (�6.4.3) up to a
homogeneous scalar factor.

6.6 CSTA operations

6.6.1 CSTA dualization

The CSTA dual AC�C of a CSTA multivector AC is

AC
�C = ACIC

¡1=ACIC�: (6.281)

The CSTA undual AC of a CSTA multivector AC�C is

AC = AC
�CIC=ACIC

¡1IC: (6.282)

The CSTA unit pseudoscalar IC (�6.1) is

IC = 
0
1
2
3e+e¡ (6.283)
IC
¡1 = ¡IC= IC�: (6.284)

6.6.2 CSTA spatial projection

The G1;4 CSA1 spatial projection ACS1 of a G2;4 CSTA1 multivector AC1 is

ACS1 = (AC1 � ICS1)ICS1¡1 (6.285)

where the G1;4 Conformal Space Algebra 1 (CSA1) unit pseudoscalar ICS1 is

ICS1 = e1 � IC1= IS1e5e6: (6.286)

The G1;4 CSA2 spatial projection ACS2 of a G2;4 CSTA2 multivector AC2 is

ACS2 = (AC2 � ICS2)ICS2¡1 (6.287)

where the G1;4 Conformal Space Algebra 2 (CSA2) unit pseudoscalar ICS2 is

ICS2 = e7 � IC2= IS2e11e12: (6.288)

The spatial projections ACS drop the time components of AC, and may be useful for
extracting geometrical results in space.

6.6.3 CSTA spatial rotor

The spatial rotor R is the same in G0;3 SA S, G1;3 STAM, G1;4 CSA CS, and G2;4 CSTA C.
The CSTA 2-versor spatial rotor RC is equal to the SA rotor RS

R=RS=RM=RCS=RC = e
1

2
�n̂S
�S

(6.289)

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
n̂SIS� (6.290)

where the SA unit vector n̂S is the axis of rotation, and � is the angle of rotation around
the axis by the right-hand rule on a system of right-handed axes. The rotor operation
RCACRC� on any CSTA entity AC spatially rotates the entity in the usual way in space,
leaving any time component unchanged.
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The CSTA rotor operation that spatially rotates any CSTA entity AC by angle �
around SA axis n̂S is de�ned as

AC
0 = RCACRC�: (6.291)

The rotor R can be de�ned as

R = �C2�C1; (6.292)

which is the successive reflections in two non-parallel spatial CSTA GIPNS planes
(�6.4.10) that intersect in the rotation axis n̂S through the origin. The angle of rota-
tion � is twice the angle subtended by the two planes. More generally, the two spatial
planes can intersect in an arbitrary spatial CSA GIPNS 2-vector line

LCS = ¡
0 �LC (6.293)
= (¡
0 ��C2)^ (¡
0 ��C1) (6.294)
= �CS2^�CS1 (6.295)

as the rotation axis (�6.6.5).
As a 2-versor, the rotor R can also be de�ned as

R = EC2EC1; (6.296)

which is the successive re�ections in two non-parallel CSTA GIPNS 1-vector hyperplanes
(�6.4.3). The rotation is by twice the angle subtended by the two spatial hyperplane
normal vectors, from nS1 toward nS2. The right-handed rotation axis is the SA undual
n=¡(nS2^nS1)IS. If the two hyperplanes are both centered on pS, then the rotation axis
is the line through pS in the direction of n.

6.6.4 CSTA translator

The CSTA 2-versor translator TC, adapted from the CGA translator, is de�ned as

TC = e
¡1

2
dMe1
 (6.297)

= 1¡ 1
2
dM^ e1
: (6.298)

The translation vector dM is an STA spacetime displacement vector. Translations through
space and of time are possible.

The CSTA translator operation that translates CSTA entity AC in spacetime by STA
spacetime displacement dM is the two-sided versor �sandwich� operation

AC
0 = TCACTC�: (6.299)

The translator TC can be de�ned as

TC = EC2EC1; (6.300)

which is the successive re�ections in two parallel CSTA GIPNS 1-vector hyperplanes
(�6.4.3). The translation is by twice the spacetime displacement between the two hyper-
planes. As a proof, assume that the translation direction n is unit modulus

n= n̂ =
dM

dM
2

p =
dM
jdMj

; for dM2 =/ 0; (6.301)

n2 = 1; (6.302)
n¡1 = n; (6.303)
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and that p1 is a point on hyperplane EC1, and p2 is a point on EC2 (n.b., jdMj2C). Then,

EC2EC1 = (n+(p2 �n)e1
)(n+(p1 �n)e1
) (6.304)
= n2+(p1 �n)ne1
¡ (p2 �n)ne1
 (6.305)
= n2¡ ((p2¡ p1) �n)ne1
 (6.306)
= n¡2(n2¡ ((p2¡ p1) �n)ne1
) (6.307)
= 1¡ ((p2¡ p1) �n)n¡1e1
 (6.308)
= 1¡ (Pn(p2)¡Pn(p1))e1
 (6.309)
= 1¡dM^ e1
: (6.310)

The translator (RHS Eq. 6.310) is also valid for a null translation vector dM2 = 0, even
though the computation of its unit direction n = n̂ is invalid. The translator does not
depend on n when dM is a given, rather than computed by the projections Pn. Equation
6.306 degenerates to 0 when (n = dM)2 = 0, and the theory of re�ections in parallel
hyperplanes fails for translation in null spaces. The translator extends the theory of
re�ections in parallel hyperplanes for translation in non-null and null spaces.

Similar to re�ections in two hyperplanes, the translator TC can also be de�ned as

TC = �C2�C1; (6.311)

which is the successive re�ections in two parallel CSTA GIPNS 2-vector planes (�6.4.10)
that are separated by 1

2
dM, half the spacetime displacement dM of the translator. The

translation is by twice the spacetime displacement between the planes. The orientation
of the displacement dM is from �C1 toward �C2. As a proof, consider two planes having
the same unit directional 2-blade

D= D̂ =
D

DD
p =

D
jD j ; for D2=/ 0; (6.312)

for parallel planes passing through two di�erent points p1 and p2 (n.b., jD j 2C). Then,

�C2�C1 = (D�M¡ (p2 �D�M)e1
)(D�M¡ (p1 �D�M)e1
) (6.313)
= (D�M)2¡D�M(p1 �D�M)e1
¡ (p2 �D�M)e1
D�M (6.314)
= (D�M)2+(p1 �D�M)D�Me1
¡ (p2 �D�M)D�Me1
 (6.315)
= (D�M)2¡ ((p2¡ p1) �D�M)D�Me1
 (6.316)
= (D�M)¡2((D�M)2¡ ((p2¡ p1) �D�M)D�Me1
) (6.317)
= 1¡ ((p2¡ p1) �D�M)(D�M)¡1e1
 (6.318)
= 1¡ ((PD�M(p2)¡PD�M(p1))e1
 (6.319)
= 1¡dM^ e1
: (6.320)

This result is the translator, which is valid for any given spacetime displacement dM, but
the theory of re�ections in planes fails when D2= 0 for translation in a null space. The
translator extends the re�ections theory for translations in non-null and null spaces.

Since the scale of hyperplane EC and plane �C entities does not a�ect the surface
representation, it is not necessary to use unit directions n and D. Therefore, when these
directions are not null directions, the re�ections in hyperplanes and planes are valid, and
complex (imaginary) numbers C can be avoided. As a normalization, it is useful to use
unit norm directions.
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6.6.5 CSTA translated-rotor

The CSTA translated-rotor (spatial line rotor) RC
p = LC for rotation by angle � = 2kdk

around spatial line LCS = ¡
0 � LC through point pM = pS = p with unit direction
d= d̂S= d̂ is de�ned as

Rd
p=LC = TpRdTp

� (6.321)

= e
¡1

2
pe1
ed

�S
e
1

2
pe1
 (6.322)

= cos
�
�
2

�
+ sin

�
�
2

�
Tpd̂

�STp� (6.323)

= cos
�
�
2

�
+ sin

�
�
2

�¡
d̂S
�S¡

¡
pS � d̂S�S

�
^ e1


�
(6.324)

= e
1

2
�LCS (6.325)

= e
¡1

2
�
0�LC (6.326)

= cos
�
�
2

�
+ sin

�
�
2

�
(¡
0 �LC): (6.327)

The G1;4 CSA GIPNS 2-vector spatial line LCS has the form of the G4;1 CGA line L [7].
The G2;4 CSTA GIPNS 3-vector spacetime line (�6.4.11)

LC = d�M+(pM �d�M)e1
 (6.328)

should be a purely spatial line, with a spatial unit vector direction d=dM= d̂S through
a spatial point pM= pS. The direction of rotation follows the right-hand rule, which is
anticlockwise � radians around the spatial direction d= d̂S.

To understand how the spatial line rotor LC is derived, consider the following. The
STA dual of the unit spatial direction d= d̂S of the line LC is

d�M = (6.329)
d̂SIM

¡1 = (6.330)
¡d̂SIM = (6.331)

0d̂SIS : (6.332)

Therefore, the line LC in spatial direction d= d̂S through spatial point pM=pS is

LC = 
0d̂SIS+
¡
pS �

¡

0^

¡
d̂SIS

���
^ e1
 (6.333)

= 
0^
¡
d̂SIS

�
¡ 
0^

¡
pS �

¡
d̂SIS

��
^ e1
: (6.334)

The spatial line rotor LC uses the generator

¡
0 �LC = (6.335)
¡
¡
d̂SIS¡

¡
pS �

¡
d̂SIS

��
^ e1


�
= (6.336)

d̂S
�S¡

¡
pS � d̂S�S

�
^ e1
 = LCS=L (6.337)

which has the same form as a spatial G4;1 CGA GIPNS 2-vector line L, but is a line entity
in the similar G1;4 Conformal Space Algebra (CSA) CS. If the line L were at (or through)
the origin, then it would be L= d̂S

�S, which should be a unit bivector as a rotor generator.
Therefore, d= d̂S should be a unit SA direction. But, the line L is translated from the
origin to point pS as

L = Tpd̂S
�STp�= d̂S

�S¡
¡
pS � d̂S�S

�
^ e1
 (6.338)
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by CSTA translator Tp (�6.6.4) for translation by pS.
The SA dualization (�2.2) of an SA unit direction vector d̂S is de�ned to create a

rotor unit bivector generator d̂S
�S (�2.6) that is isomorphic to a quaternion versor without

a reversal in orientation or sign and obeying the usual right-hand rule for rotation orien-
tation around an axis d̂S through the origin.

Now, consider a rotor R and translators T and T� by pS and ¡pS, respectively,

R = e
1

2
�d̂S
�S

(6.339)

T = e
¡1

2
pS^e1
 (6.340)

T� = e
1

2
pS^e1
 (6.341)

and their composition that translates pS to the origin, then rotates around the line of
the unit vector d̂S through the origin, and then translates the origin back to pS, which is
applied to an entity E as

TRT�ETR�T� : (6.342)

The versor TRT� is a spatially translated rotor

TRT� = (6.343)

T

�
cos
�
1
2
�

�
+ sin

�
1
2
�

�
d̂S
�S
�
T� = (6.344)

cos
�
1
2
�

�
+ sin

�
1
2
�

�
T d̂S

�ST� = (6.345)

cos
�
1
2
�

�
+ sin

�
1
2
�

�
L = (6.346)

e
1

2
�L

= (6.347)

e
1

2
�(¡
0�LC) = LC: (6.348)

This composition, the translated rotor LC, is a versor for rotation around the spatial line
LC by the angle �. The spatial line LC should be unit scale, with the spatial line direction
given by a unit vector d= d̂S that passes through the spatial point pM=pS.

All of the CSTA GIPNS 1-vector entities can be transformed by the CSTA versors
that are de�ned in this section, including LC in this subsection. All of the CSTA GIPNS
k-vector entities can be constructed as the wedge, or intersection, of �ve or less CSTA
GIPNS 1-vector entities. By versor outermorphism, all of the CSTA GIPNS k-vector
entities can be correctly transformed by the CSTA versors. By the CSTA dualization
transformation of the CSTA GIPNS entities into CSTA GOPNS entities, all of the CSTA
GOPNS k-vector entities can also be correctly transformed by the CSTA versors.

6.6.6 CSTA isotropic dilator
The CSTA 2-versor isotropic dilator DC, adapted from the CGA dilator, is de�ned as

DC =
1
2
(1+ d)+

1
2
(1¡ d)e1
 ^ eo
: (6.349)

The scalar d is the dilation factor . The CSTA isotropic dilator DC is a spacetime dilator ,
which includes the dilation of the time and space components of an entity by the factor d.

The CSTA isotropic dilation operation that isotropically dilates CSTA entity AC by
factor d in spacetime is the two-sided versor �sandwich� operation

AC
0 = DCACDC�: (6.350)
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It can be veri�ed algebraically that the dilator DC correctly dilates by factor d any CSTA
GIPNS 1-vector entity. By versor outermorphism, DC also correctly dilates any CSTA
GIPNS k-vector entity, which can always be formed as the wedge of k CSTA GIPNS 1-
vector entities. By CSTA dualization of GIPNS entities to GOPNS entities, all CSTA
GOPNS entities are also dilated correctly by the dilator.

The dilatorDC can be derived from successive inversions in two CSTA GIPNS 1-vector
hyperpseudospheres �C1 and �C2 (�6.4.5) centered on the origin eo
 with radius r1=1 and
r2= d
p

, respectively, as

DC = ¡�C2�C1'�C2�C1: (6.351)

The minus sign can be dropped since it cancels in the versor operation. DC dilates relative
to (around) the origin eo
, but it can be translated by pM using a translator TC to make
the CSTA translated-dilator DC

p (�6.6.7) around point PC= C(pM).

6.6.7 CSTA translated-dilator

The CSTA 2-versor translated-dilator DC
p that dilates by factor d around PC= C(pM) is

DC
p = TCDCTC

� (6.352)

= TC

�
1
2
(1+ d)+

1
2
(1¡ d)e1
^ eo


�
TC� (6.353)

=
1
2
(1+ d)+

1
2
(1¡ d)TC(e1
^ eo
)TC� (6.354)

=
1
2
(1+ d)+

1
2
(1¡ d)

¡
e1
 ^ P̂C

�
: (6.355)

The �at point (�6.5.5) in reverse orientation

P̂C
�
= e1
 ^ P̂C (6.356)

should be unit scale ¡
P̂C
��2 = P̂CP̂C=1 (6.357)

P̂C =
PC

¡PC � e1

: (6.358)

The orientation of P̂C
�
is important since its reverse makes reverse operations. For d> 0,

the translated dilator can also be formulated as

DC
p = e

atanh
�
1¡d
1+d

�
e1
^P̂C (6.359)

= e
¡1

2
ln(d)e1
^P̂C: (6.360)

Using the unit scale �at point in standard orientation P̂C = P̂C ^ e1
 (per �6.5.5), the
translated dilator can be written as

DC
p = e

1

2
ln(d)P̂C (6.361)

= cosh
�
1
2
ln(d)

�
+ sinh

�
1
2
ln(d)

�
P̂C, for d> 0: (6.362)

The translated-dilator DC
p can be derived from successive inversions in two CSTA GIPNS

1-vector hyperpseudospheres �C1 and �C2 (�6.4.5) centered on PC = C(pM) with radius
r1=1 and r2= d

p
, respectively, as

DC
p = ¡�C2�C1'�C2�C1 (6.363)
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The minus sign can be dropped since it cancels in a versor operation. Any CSTA entity
E with center position pM can be dilated in situ as

E0 = DC
pEDC

p�: (6.364)

The identity

atanh
�
1¡ d
1+ d

�
= ¡1

2
ln(d); (6.365)

which can also be written as

ln(d) = 2 atanh
�
d¡ 1
d+1

�
; (6.366)

may not be familiar, but can be derived or veri�ed as follows.

d+1

d¡ 1

y=mx

(d+1)2¡ (d¡ 1)2=4d

m=
rise
run =

d¡ 1
d+1

y

x

x2¡ y2=4d= r2

Area
A=

'

2
r2= '2d

Arc 'r= '2 d
p

r=2 d
pd

0

Figure 6.1. Area A= 'r2/2= '2d of hyperbolic angle '

Referring to Figure 6.1, and noting the analogy between the trigonometry of circles
and the trigonometry of hyperbolas (spacetime pseudocircles), then

2 atanh
�
d¡ 1
d+1

�
= (6.367)

2 atanh
�
r sinh(')
r cosh(')

�
=2'=2

1
2d
A = (6.368)

1
d

Z
0

d¡1�
4d+ y2

p
¡ d+1
d¡ 1 y

�
dy = (6.369)

1
d

��
y
2

4d+ y2
p

+
4d
2
ln
�
y+ 4d+ y2

p ��[26]
¡
�
d+1
d¡ 1

�
y2

2

�
0

d¡1
= (6.370)

1
d

�
4d
2
ln(d¡ 1+ d+1)

�
¡ 1
d

�
4d
2
ln
¡
2 d
p ��

= (6.371)

2ln(2d)¡ 2ln
¡
2 d
p �

=2ln
�

2d

2 d
p

�
=2 ln

¡
d
p �

= ln(d) (6.372)
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6.6.8 CSTA spacetime boost

CSTA inherits the STA boost operator BM (�5.2.3) as the CSTA boost operator BC=BM.
The boost BC =Bv by a spacetime velocity v = o+ v (with proper time � = tpv) can be
applied to any CSTA spacetime surface entity. An STA spacetime surface point p (with
coordinate time t = tcu = tpo) of a CSTA spacetime entity E represents an observable
spacetime position of the form

p(t) = p0+ p_ t (6.373)
= p0+(o+p_ )t: (6.374)

The boost of the entity BvEBv� is congruent to the set of all boosted surface points
BvpBv�. For GIPNS entity E, the set of spacetime surface points is

NIG(E) = f p : C(p) �E=0 g (6.375)

and the set of the boosted entity is

NIG(BvEBv�) = f BvpBv� : C(BvpBv�) � (BvEBv�)= 0 g: (6.376)

A point p is boosted as

BvpBv� = Bv(p0+ p_ t)Bv�= p�v (6.377)
= Bvy

� (p0+ot+p_ t)Bvy= p	vy (6.378)
= Bvy

� (¡o+o+p0)Bvy+Bvy
� (o+p_ )Bvyt (6.379)

= ¡Bvy� oBvy+Bvy
� (o+p0)Bvy+Bvy

� (o+p_ )Bvyt (6.380)
= ¡
v(o+v)+ 
p0	vy(o+p0	vy)+ 
p_	vy(o+p_ 	vy)t (6.381)
= p0	vy+(p_ 	vy)t (6.382)
= p0	vy+(o+p_ 	vy)� (6.383)
= p0�v+(o+p_ �v)t: (6.384)

This boost can be interpreted at least two ways: (Eq. 6.383) as p relative to vy= o¡ v
and expressed in the frame of vy as a passive change of frame, or (Eq. 6.384) as p
actively boosted up into the frame of v = o + v but passively expressed in the frame
of o as an active relativistic velocity addition. The boost of a spacetime surface entity
BvEBv�, representing the set of all boosted spacetime surface points BvpBv�, has a similar
interpretation: that the entity is either (Eq. 6.383) relative to vy in its frame as a passive
frame change, or (Eq. 6.384) boosted up into the frame of v but expressed (viewed) in
the frame of o as an active relativistic velocity addition.

The CSTA boost operator BC for a natural speed �v in the SA unit direction v̂S is
de�ned as

BC=BM=Bv = (
vv/o)
1

2 = e
1

2
'vv̂S
0 (6.385)

= exp
�
1
2
'vv̂S
0

�
(6.386)

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S ^ 
0: (6.387)

For more information, see the STA boost operator (�5.2.3).
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6.6.9 CSTA translated-boost
The CSTA 2-versor translated-boost BCd by '= atanh(�) in direction v̂ centered at dM is
de�ned as

BC
d=TCBCTC� = e

¡1

2
dMe1
e

1

2
'v̂
0e

1

2
dMe1
 (6.388)

= cosh
�
1
2
'

�
+ sin

�
1
2
'

�
e
¡1

2
dMe1
v̂
0e

1

2
dMe1
 (6.389)

= cosh
�
1
2
'

�
+ sin

�
1
2
'

�
(v̂
0¡ (dM � (v̂
0))e1
) (6.390)

= e
1

2
'(v̂
0¡(dM�(v̂
0))e1
) (6.391)

= e
1

2
'�C (6.392)

where the plane (�6.4.10)

�C = D�M¡ (pM �D�M)e1
 (6.393)

has unit bivector direction D= v̂
0IM through point pM=dM.

6.6.10 CSTA di�erential operators
Some of the CSTA point value-extraction elements Cs (�6.3) have inverses. These inverses
allow the following CSTA 2-vector di�erential elements to be de�ned as

Dw
C = C1Cw

¡1= 
0^ e1
 (6.394)
Dt
C = C1Ct

¡1= c
0^ e1
 (6.395)
Dx
C = C1Cx

¡1= 
1^ e1
 (6.396)
Dy
C = C1Cy

¡1= 
2^ e1
 (6.397)
Dz
C = C1Cz

¡1= 
3^ e1
: (6.398)

The CSTA di�erential elements are free vectors [4], which are translation-invariant and
represent directions without location.

Using the commutator product �, the CSTA di�erential operators are de�ned as

@w
C =

@
@w

=Dw
C � (6.399)

@t
C =

@
@t
=Dt

C� (6.400)

@x
C =

@
@x

=Dx
C� (6.401)

@y
C =

@
@y

=Dy
C� (6.402)

@z
C =

@
@z

=Dz
C� : (6.403)

The di�erential elements and operators in CSTA1 and CSTA2 can be denoted Ds
C1 and

@s
C1, and Ds

C2 and @s
C2, respectively. The CSTA di�erential operators can be used for entity

analysis. A di�erent, but similar, set of di�erential elements and operators are de�ned in
DCSTA (�7.8.1).

A CSTA directional derivative operator Dn
C � , in the direction of a vector

nM = nw
0+nx
1+ny
2+nz
3; (6.404)

can be formed as the linear combination

Dn
C � = (nwDw

C +nxDx
C+nyDy

C+nzDz
C)� : (6.405)
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The simplest example of using a CSTA di�erential operator Dn
C � is to take the derivative

of any CSTA GIPNS 1-vector entity �C in the n-direction as

@n
C�C =

@�C
@n

=Dn
C ��C: (6.406)

7 Double Conformal Space-Time Algebra (DCSTA)
The G4;8 Double Conformal Space-Time Algebra (DCSTA) is a straightforward extension
of the G2;8 Double Conformal Space Algebra (DCSA), which is similar to the G8;2 Double
Conformal / Darboux Cyclide Geometric Algebra (DCGA) that is introduced in the
original research monograph [7] and in the published short paper [8], and discussed further
in the papers [5] and [6]. There are only some di�erences in signs between G2;8 DCSA
and G8;2 DCGA, such that all the results of DCGA transfer to DCSA with only some sign
changes.

The key idea of DCSTA is that any CSTA1 entity or versor AC1 and its double AC2 in
CSTA2 can be multiplied to form the corresponding DCSTA entity or versor AD, where

AD = AC1AC2=AC1^AC2: (7.1)

According to the outermorphism property for transformation operators [20], or versors
that operate as the two-sided versor �sandwich� operation, any doubled versor VD, which
can be for rotation RD (�7.7.6), translation TD (�7.7.7), dilation DD (�7.7.8), boost BD
(�7.7.3), or any of their compositions, operates on a doubled entity ED as

ED
0 = VDEDVD� (7.2)
= VC1VC2(EC1^EC2)VC2�VC1� (7.3)
= (VC1VC2EC1VC2

�VC1
�)^ (VC1VC2EC2VC2�VC1�) (7.4)

= (VC1EC1VC1
�)^ (VC2EC2VC2�) (7.5)

= EC1
0 ^EC20 =EC1

0 EC2
0 : (7.6)

Therefore, the CSTA1 entity EC1 is correctly transformed by the CSTA1 versor VC1, and
similarly for the CSTA2 entity EC2. The product of the two correctly transformed CSTA
entities is the correctly transformed DCSTA entity. For example, the DCSTA point entity
PD (�7.2) is correctly transformed by all of the DCSTA versors. The DCSTA point value-
extraction elements Ts (�7.2.3) extract correctly transformed values from a point PD,
leading to the ability to form entities in the general form of Darboux cyclides that can be
correctly transformed by all of the DCSTA versors.

As a subalgebra of DCSTA, all the results of DCSA (or DCGA) are available in
DCSTA. DCSTA extends DCSA with the pseudospatial time axis (w= ct)
0, a variety of
spacetime entities, and the spacetime boost (hyperbolic rotor) operator. In DCSTA, the
DCSA GIPNS 2-vector quadric surfaces are surfaces in spacetime at zero velocity that can
be boosted into any velocity. The boosted quadric surfaces display spacetime contraction
e�ects.

DCSTA includes many operations on quadric surface entities, including

� Rotation in space

� Translation in spacetime

� Isotropic dilation in spacetime

� Anisotropic dilation (directed length dilation) in space
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� Spacetime active boosts of velocity with length contraction e�ect

� Spacetime passive boosts relative to a new observer frame

� Intersection with standard entities that are doubled CSTA entities.

The general DCSTA GIPNS 2-vector surface entity
 (�7.5) has the general form of a Dar-
boux cyclide in spacetime, which has degenerate forms that include Dupin cyclides, horned
Dupin cyclides, parabolic cyclides, and the quadric surfaces. In DCSTA, the Darboux
cyclide surface entities can be formed, similar to in DCSA or DCGA, as linear combi-
nations of the spatial DCSTA point value-extraction elements Ts (�7.2.3) that represent
spatial cyclide surfaces in the 3D G0;3 SA space (at zero velocity). Darboux cyclide enti-
ties can also be formed from spacetime value-extraction elements to represent spacetime
cyclides in a 3D G1;2 STA spacetime, where the spacetime cyclides are called pseudocy-
clides, pseudoquadrics, etc.

The DCSTA quadric surfaces support anisotropic length contraction and dilation
(�7.7.9) since these forms can be written in terms of the DCSTA value-extraction ele-
ments. On the other hand, the higher-degree surfaces, which include cubic parabolic
cyclides and quartic Darboux and Dupin cyclides, do not support anisotropic length
contraction and dilation forms. Any DCSTA GIPNS 2-vector surface entity 
 represents
an implicit surface function in spacetime F (w; x; y; z) and supports function di�erentia-
tion @nF (or 2F@nF for doubled entitiesED≘F 2) using the di�erential operations (�7.8) for

� Di�erentiation with respect to w= ct, t, x, y, or z

� Directional derivative with respect to a unit-norm direction n in spacetime.

The DCSTA forms of conic sections can also support the operations for

� Orthographic projection

� Perspective projection

as discussed in the paper [5].

7.1 DCSTA unit pseudoscalar
The DCSTA 12-vector unit pseudoscalar ID with signature (+¡¡¡+¡+¡¡¡+¡) is

ID = IC1^ IC2=
^
i=1

12

ei (7.7)

= ID
�= ID

¡1 (7.8)
ID
2 = 1: (7.9)

7.2 DCSTA point

7.2.1 DCSTA point embedding

The DCSTA null 2-vector point embedding PD=D(p) of STA position vector

p= pM = pw
0+ px
1+ py
2+ pz
3 (7.10)
= pw
0+pS (7.11)
= p0+ p_ t (7.12)
= p0+(o+p_ )t (7.13)
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is de�ned as the doubling of the CSTA point PC= C(p) as

PD = C(pM1)^C(pM2) (7.14)
= PC1^PC2 (7.15)
= D(p) (7.16)

where

pM1 = pwe1+ pxe2+ pye3+ pze4= pwe1+pS1 (7.17)
pM2 = pwe7+ pxe8+ pye9+ pze10= pwe7+pS2: (7.18)

In general, the doubled CSTA entities, as DCSTA entities, represent the same entities as
de�ned in CSTA (�6).

7.2.1.1 DCSTA origin point
The DCSTA null 2-vector point at the origin is

eo = eo1^ eo2: (7.19)

7.2.1.2 DCSTA in�nity point
The DCSTA null 2-vector point at in�nity is

e1 = e11^ e12: (7.20)

7.2.1.3 DCSTA point is DCSTA GIPNS hypercone
As a GIPNS entity, the DCSTA point embedding PD =D(p) represents a spacetime

hypercone (lightcone) centered on vertex p and is the DCSTA GIPNS null 2-vector stan-
dard hypercone PD=KD.

7.2.1.4 DCSTA point is DCSTA GOPNS point
As a GOPNS entity, the DCSTA point embedding PD=D(p) represents the point p

and is the DCSTA GOPNS null 2-vector standard point PD.
A point embedding PD=D(p) will often be called a point , but it should be understood

that it is a GOPNS point and not a GIPNS point. For the purpose of testing any GIPNS
or GOPNS surface entity for a surface point p, the point embedding PD = D(p) is the
test point entity . Point p is on the surface of GIPNS entity E i� D(p) �E = 0. Point p
is on the surface of GOPNS entity E� i� D(p)^E�=0.

7.2.2 DCSTA point projection (inverse embedding)
The projection of DCSTA point PD back to STA1 vector pM1 is

pM1 = C¡1(PD � e12) (7.21)

=

�
PD � e12

¡(PD � e12) � e11
� IM1

�
� IM1
¡1 : (7.22)

The projection of DCSTA point PD back to STA2 vector pM2 is

pM2 = C¡1(PD � e11) (7.23)

=

�
PD � e11

¡(PD � e11) � e12
� IM2

�
� IM2
¡1 : (7.24)

7.2.3 DCSTA point value-extraction elements
The DCSTA test point TD=D(t) is the point embedding of the STA test vector

t = w
0+ x
1+ y
2+ z
3 (7.25)
= ct
0+x
1+ y
2+ z
3: (7.26)
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The DCSTA 2-vector extraction elements Ts are de�ned as

Tw =
1
2
(e1^ e12+ e11^ e7) (7.27)

Tt =
1
c
Tw (7.28)

Tx =
1
2
(e12^ e2+ e8^ e11) (7.29)

Ty =
1
2
(e12^ e3+ e9^ e11) (7.30)

Tz =
1
2
(e12^ e4+ e10^ e11) (7.31)

Tw2 = e7^ e1 (7.32)

Tt2 =
1
c2
Tw2 (7.33)

Tx2 = e8^ e2 (7.34)
Ty2 = e9^ e3 (7.35)
Tz2 = e10^ e4 (7.36)

Twx =
1
2
(e1^ e8+ e2^ e7) (7.37)

Twy =
1
2
(e1^ e9+ e3^ e7) (7.38)

Twz =
1
2
(e1^ e10+ e4^ e7) (7.39)

Ttx =
1
c
Twx (7.40)

Tty =
1
c
Twy (7.41)

Ttz =
1
c
Twz (7.42)

Txy =
1
2
(e9^ e2+ e8^ e3) (7.43)

Tyz =
1
2
(e10^ e3+ e9^ e4) (7.44)

Tzx =
1
2
(e8^ e4+ e10^ e2) (7.45)

Twt2 = e1^ eo2+ eo1^ e7 (7.46)

Ttt2 =
1
c
Twt2 (7.47)

Txt2 = eo2^ e2+ e8^ eo1 (7.48)
Tyt2 = eo2^ e3+ e9^ eo1 (7.49)
Tzt2 = eo2^ e4+ e10^ eo1 (7.50)

T1 = ¡e1 (7.51)
Tt2 = eo2^ e11+ e12^ eo1 (7.52)
Tt4 = ¡4eo: (7.53)

The value s is extracted from a point TD as

s = Ts �TD=TD �Ts: (7.54)

The DCSTA 2-vector extraction elements Ts are inner product extraction operators .
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The DCSTA 2-vector extraction elements Ts are used to de�ne the DCSTA GIPNS
2-vector entities that are similar to those that can be de�ned in DCSA or DCGA. The
general DCSTA GIPNS 2-vector spacetime surface entity 
 is a linear combination of the
DCSTA extraction elements Ts. For example, an ellipsoid entity E can be de�ned as

E = Tx2/a
2+Ty2/b

2+Tz2/c
2¡ T1: (7.55)

In general, any DCSTA GIPNS 2-vector spatial quadric entity Q, formed similarly to the
ellipsoid entity E as a linear combination of spatial extraction elements Ts, is independent
of time w = c t and exists for all time at its current spatial position, which can be
translated using the DCSTA translator (�7.7.7). A spatial quadric surface entity Q is
�pseudocylindrical� with the pseudospatial time w-axis as a type of hypercylinder entity.
The interpretation in spacetime is that the spatial quadric Q is at zero velocity � = 0.
The DCSTA 4-versor boost operator Bv (�7.7.3) can actively boost any spatial quadric
Q into any velocity v = �vcv̂ (into the rest frame of v = o + v) as a spacetime quadric
Q = BvQBv�. Only a DCSTA GIPNS 2-vector spatial quadric surface entity Q can be
formed independently of time w= ct as a linear combination of spatial extraction elements
Ts. The DCSTA GIPNS 2-vector cubic (parabolic cyclide) and quartic (Darboux and
Dupin cyclide) entities use the extraction elements Ts that include t as its square t2 or
square square t4 and are dependent on time w=ct, with the interpretation that the spatial
cubic and quartic entities exist at time w= ct=0 or are translated to exist at some time
w= pw= ctw.

7.2.4 DCSTA point value-extraction pseudo-inverse elements
The pseudo-inverse of A is denoted A+ and has the relation

A �A+ = 1: (7.56)

If A¡1 exists, it may be equal to A+. The inverse or pseudo-inverse of an extraction element
Ts can be useful for formulating certain other elements and operators, such as pseudo-
integral operators (�7.9). The pseudo-inverses of some of the extraction elements are

Tw2
¡1=Tw2

+ = ¡Tw2 (7.57)
Tt2
¡1=Tt2

+ = ¡c2Tw2 (7.58)
Tx2
¡1=Tx2

+ = ¡Tx2 (7.59)
Ty2
¡1=Ty2

+ = ¡Ty2 (7.60)
Tz2
¡1=Tz2

+ = ¡Tz2 (7.61)

Tw
+ = Twt2 (7.62)

Tt
+ = c2Ttt2 (7.63)

Tx
+ = ¡Txt2 (7.64)

Ty
+ = ¡Tyt2 (7.65)

Tz
+ = ¡Tzt2 (7.66)

Twx
+ = 2Twx (7.67)

Twy
+ = 2Twy (7.68)

Twz
+ = 2Twz (7.69)
Ttx
+ = 2c2Ttx (7.70)

Tty
+ = 2c2Tty (7.71)

Ttz
+ = 2c2Ttz (7.72)
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Txy
+ = ¡2Txy (7.73)

Tyz
+ = ¡2Tyz (7.74)

Tzx
+ = ¡2Tzx (7.75)

T1
+ = ¡1

4
Tt4 (7.76)

Tt2
+ = ¡1

2
Tt2 (7.77)

Tt4
+ = ¡1

4
T1: (7.78)

7.3 DCSTA GIPNS standard entities
The DCSTA GIPNS standard surface entities are the doubling of the CSTA GIPNS
entities. The wedge of corresponding CSTA1 and CSTA2 GIPNS entities, XC1 and XC2,
forms the DCSTA GIPNS standard entityXD=XC1^XC2 representing the same surface.
The following subsections provide some explicit examples of the doubling.

The DCSTA GIPNS standard entities have special properties and can act as operators
for re�ections and intersections. All DCSTA entities can be re�ected in the standard
entities. The re�ection in a standard sphere is called inversion in a sphere. All DCSTA
entities can be intersected with standard entities. A DCSTA GIPNS intersection entity is
a wedge of GIPNS entities, similar to a DCGA GIPNS intersection entity and with similar
limitations on what combinations of entities can be wedged to form a valid intersection
entity. The basic examples of intersection entities are the DCSTA GIPNS 6-vector stan-
dard line LD = �D ^ ED (�7.3.7) and DCSTA GIPNS 6-vector standard (pseudo)circle
CD=�D^�D (�7.3.8).

Any DCSTA k-vector standard entity, as a doubling of a CSTA entity, is a k-blade
since it can be factored into the outer product of k vectors. The DCSTA non-standard
entities (�7.5) are generally not blades.

7.3.1 DCSTA GIPNS null 2-vector hypercone

The DCSTA GIPNS null 2-vector standard hypercone KD is de�ned as

KD = KC1^KC2=PC1^PC2=PD (7.79)

which is the wedge of the same point embedding (hypercone) (�6.2) in CSTA1 and CSTA2.

7.3.2 DCSTA GIPNS 2-vector standard hyperplane

The DCSTA GIPNS 2-vector standard hyperplane ED is de�ned as

ED = EC1^EC2 (7.80)

which is the wedge of the same hyperplane (�6.4.3) embedded in CSTA1 and CSTA2.

7.3.3 DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet (hyperpseudosphere)
�D is de�ned as

�D = �C1^�C2 (7.81)

which is the wedge of the same hyperpseudosphere (�6.4.5) embedded in CSTA1 and
CSTA2.
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7.3.4 DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets

The DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets (imaginary hyper-
pseudosphere) �D is de�ned as

�D = �C1^�C2 (7.82)

which is the wedge of the same imaginary hyperpseudosphere (�6.4.6) embedded in CSTA1
and CSTA2.

7.3.5 DCSTA GIPNS 4-vector standard sphere or pseudosphere

The DCSTA GIPNS 4-vector standard sphere or pseudosphere SD is de�ned as

SD = SC1^SC2 (7.83)

which is the wedge of the same sphere (�6.4.7) or pseudosphere (�6.4.8) embedded in
CSTA1 and CSTA2.

7.3.6 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane �D is de�ned as

�D = �C1^�C2 (7.84)

which is the wedge of the same plane (�6.4.10) embedded in CSTA1 and CSTA2.

7.3.7 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line LD is de�ned as

LD = LC1^LC2 (7.85)

which is the wedge of the same line (�6.4.11) embedded in CSTA1 and CSTA2.

7.3.8 DCSTA GIPNS 6-vector standard circle or pseudocircle

The DCSTA GIPNS 6-vector standard circle or pseudocircle CD is de�ned as

CD = CC1^CC2 (7.86)

which is the wedge of the same circle (�6.4.12) or pseudocircle (�6.4.13) embedded in
CSTA1 and CSTA2.

7.3.9 DCSTA GIPNS 8-vector standard point pair

The DCSTA GIPNS 8-vector standard point pair 2D is de�ned as

2D = 2C1^2C2 (7.87)

which is the wedge of the same point pair (�6.4.14) embedded in CSTA1 and CSTA2.

7.3.10 DCSTA GIPNS null 10-vector standard point

The DCSTA GIPNS null 10-vector standard point PD? is de�ned as

PD
? = PC1

? ^PC2? (7.88)

which is the wedge of the same GIPNS point (�6.4.17) embedded in CSTA1 and CSTA2.
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7.4 DCSTA GOPNS standard entities
The DCSTA GOPNS (12¡ k)-blade standard entity X�D is the DCSTA dual (�7.7.1) of
the DCSTA GIPNS k-blade standard entity X (�7.3),

X�D = XID; (7.89)

which represents the same surface.
Any DCSTA GOPNS (12¡ k)-blade standard entity X�D can also be formed as the

wedge of (12¡ k)/2 DCSTA GOPNS null 2-vector points (�7.2) by the same formulas as
in CSTA (�6.5),

X�D =
^

PDi; for 1� i� 6: (7.90)

Only the DCSTA GOPNS standard entities can be formed as the wedge of DCSTA points.
The DCSTA GOPNS 10-vector non-standard entities (�7.5) are generally not blades and
cannot be formed as the wedge of DCSTA points.

7.5 DCSTA GIPNS 2-vector non-standard surface entities
The DCSTA GIPNS 2-vector non-standard surface entities 
 are de�ned as linear com-
binations


 =
X

�iTi (7.91)

of the DCSTA 2-vector value-extraction elements Ts (�7.2.3).
In a straightforward way, an entity 
, which has the general form of a spacetime

Darboux (pseudo)cyclide, is formulated in terms of the value-extraction elements Ts to
represent an implicit surface function

F (w; x; y; z) = TD �
: (7.92)

A pseudocyclide or pseudoquadric has the form of a spatial cyclide or quadric, but one of
the spatial axes is replaced by the pseudospatial time w-axis.

In terms of the value-extraction elements Ts, these entities 
 are de�ned exactly as
they are in the G8;2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA)
that is introduced in [7]. The reader should refer to [7] for additional details that are not
repeated in this paper.

Any DCSTA GIPNS 2-vector non-standard surface entity 
, or its dual GOPNS 10-
vector entity


�D = 
ID; (7.93)

can be translated in spacetime using the DCSTA translator TD (�7.7.7), spatially rotated
in space using the DCSTA spatial rotor RD (�7.7.6), and isotropically dilated in spacetime
using the DCSTA isotropic dilator DD (�7.7.8).

Any DCSTA GIPNS 2-vector, or dual GOPNS 10-vector, non-standard quadric sur-
face entity Q can also be boosted in spacetime using the DCSTA spacetime boost operator
(�7.7.3) with the interpretation that the quadric surface relativistically gains the space-
time velocity v of the active boost Bv. A spatial quadric surface (at zero velocity)Q=QDS
at position p can also be anisotropically dilated (�7.7.9) in position p by a factor d
in a speci�c direction v̂ in space using the DCSTA translated-boost BDv

p (�7.7.4) with
an imaginary natural boost speed �v that is followed by a DCSTA spatial projection
Q0=(Q � IDS)IDS¡1 (�7.7.2). The spatial projection discards all time components to recover
a spatial quadric surface Q0 that is again at zero velocity.
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7.6 DCSTA conic section entities
It should be straightforward to adapt the DCGA conic sections into DCSTA and its spatial
subalgebra DCSA. The reader is referred to the paper [5] for details on conic sections in
DCGA and possible applications that include orthographic and perspective projection of
conic sections.

7.7 DCSTA operations

7.7.1 DCSTA dualization

The dual DCSTA GOPNS (12¡ k)-vector surface entity Q�D of any DCSTA GIPNS k-
vector surface entity Q is obtained by the DCSTA dualization as

Q�D = QID=Q � ID: (7.94)

The undual operation is

Q = Q�D � ID: (7.95)

The dual and undual operations are the repeated application of the same dualization
operation. Therefore, DCSTA dualization is an involution.

The DCSTA GIPNS k-vector surface entity Q and its dual DCSTA GOPNS (12¡ k)-
vector surface entity Q�D represent the same surface.

7.7.2 DCSTA spatial projection

The DCSTA spatial projection of a DCSTA entity 
D is de�ned as


DS = (
D � IDS)IDS¡1 ; (7.96)

which is the projection into the G2;8 DCSA subalgebra, where

IDS = (e1^ e7) � ID= IS1e5e6IS2e11e12 (7.97)
= ¡IDS� =¡IDS¡1 (7.98)

is the DCSA unit pseudoscalar. The projection produces the G2;8 DCSA entity 
DS
representing the G4;8 DCSTA entity 
D at time w= ct=0.

The DCSA null 2-vector point is de�ned as

PDS = DS(pS) (7.99)
= CS1(pS1)^CS2(pS2)= CS1(pS1)CS2(pS2) (7.100)
= C1(pS1)^C2(pS2)= C1(pS1)C2(pS2) (7.101)
= D(pS) (7.102)

=

�
pS1+

1
2
pS1
2 e11+ eo1

�
^
�
pS2+

1
2
pS2
2 e12+ eo2

�
; (7.103)

which is just the doubled embedding of a G0;3 SA spatial point of the form

pS = px
1+ py
2+ pz
3 (7.104)

without a time w= pw component .
The DCSA GIPNS entity 
DS, or dual GOPNS entity 
DS�DS, that is produced by the

DCSTA spatial projection should be tested against only spatial DCSA pointsPDS=D(pS)
that represent spatial positions at time w= ct=0.
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The DCSTA spatial projection is speci�cally de�ned for the spatial projection of any
DCSTA GIPNS 2-vector quadric surface entity Q (�7.5) as

Q=QDS = (Q � IDS)IDS¡1 ; (7.105)

which is a DCSA quadric surface entity that represents the DCSTA quadric Q at time
w= ct=0. The DCSTA anisotropic (directed or non-uniform) dilation operation (�7.7.9)
is de�ned for any DCSA quadric entity Q formed as a linear combination of quadric
extraction elements Ts (�7.2.3) without a time component. The anisotropic dilation is
implemented as a boost by a natural speed � = 1¡ d2

p
that may be imaginary for a

dilation factor d > 1. Directed dilation using an imaginary � results in imaginary time
components that are only artifacts of the directed dilation operation and should usually
be discarded. The DCSTA spatial projection of a DCSTA quadric Q, which may be a
spatial DCSA quadric Q that has been boosted for directed dilation, discards any time
components and produces the quadric at time w = ct = 0 as a DCSA quadric Q. The
DCSA quadric Q is again a DCSTA quadric Q at zero velocity �=0.

7.7.3 DCSTA spacetime boost

The DCSTA 4-versor boost operator is de�ned as

BD = BC1^BC2; (7.106)

which is the doubling of the CSTA 2-versor boost BC (�6.6.8) in CSTA1 and CSTA2.
For a DCSTA 4-versor boost, the notation Bv is de�ned as

Bv=BDv = BC1v^BC2v (7.107)

= exp
�
1
2
'vv̂S1e1

�
^ exp

�
1
2
'vv̂S2e7

�
; (7.108)

which is an active boost into the frame of the observable spacetime velocity

v = o+v (7.109)
= c
0+ �vcv̂: (7.110)

The observable worldline vt, with initial position p0 = 0 (the spacetime origin) at time
t= 0, is also being called the observable v or the frame v. The frame of v is carried at
the position vt of the observable.

All DCSTA entities can be boosted. A boosted surface entity represents the set of all
boosted surface points. For a full discussion of the boost operator, see the CSTA boost
BC (�6.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q (�7.5) is boosted as

Q0 = BDQBD�: (7.111)

The quadric surface Q should have initial position p0=0 at time w= ct=0. If p0=/ 0 at
time w=ct=0, then the quadric Q with position p=p0 can be boosted using the DCSTA
4-versor translated-boost operator (�7.7.4)

BD
p0 = BC1

p0BC2
p0 (7.112)

that is centered on the initial position p0. The translated-boost of Q is

Q0 = BD
p0QBD

p0�; (7.113)
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where the position of Q0 is preserved as p=p0 at time w= ct=0.
Since entities are homogeneous and any general spacetime dilation factor 
 of the

boosts can always be divided out (as a normalization of the entity) without a�ecting
the surface representation, the boost of a quadric surface has the interpretation that
the quadric surface undergoes a relativistic velocity addition for an active boost and
a relativistic velocity subtraction for a passive boost. A boosted quadric displays the
spacetime (length) contraction e�ect of the boost, which is possible since general quadrics
can be represented by the DCSTA extraction elements Ts (�7.2.3). For active boosts
Bv, the length contraction of displacements is as seen by the observable v = o + v in
its contracted spacetime frame. For passive boosts Bv� =B¡v, the length contraction of
displacements is as seen by the observable vy= o¡ v in its contracted spacetime frame,
as if the boost is the active boost B¡v. The boost is viewed in the active orientation,
and the quadric is boosted up into the frame of the active boost observable v=o+v for
Bv, or the frame of the active boost observable vy=o¡v for Bv�=Bvy=B¡v. In either
case, the length contraction factor is the same, 1/
v=1/
¡v= 1¡ �v2

p
, and the quadric

surface relativistically gains the velocity v or ¡v of the frame it is boosted into.
For example, consider a spatial quadricQ=QDS that is initially at zero velocity �0=0

and at position p0= 0 (the origin) in the rest frame of the conventional coordinate time
t observable o. It is then boosted as

Q = BvQBv�=Q�v: (7.114)

Q is Q boosted or moved into the rest frame of v = o+ v. Local to the frame of v, Q
is still at the origin and still at rest as it was in the frame of o. Q is carried along in
the frame of v at the frame velocity v= �vcv̂ and with position displacement vt in the
frame of coordinate time t observable o. Since the entity Q is homogeneous, it displays
as the contracted quadric, by contraction factor 1¡ �v2

p
in direction v̂, as seen by the

observable v in its own contracted frame, but Q moves with coordinate time t in the
frame of observable o at the velocity v as seen by o while Q is carried at rest and at the
origin in the frame of v that moves at velocity v.

The boosted quadric surface Q can be symbolically evaluated [24] for its implicit
surface function F as

D(tM) �Q = F (w; x; y; z); (7.115)

which can be graphed in xyz-space at any selected time w= ct. The graph of Q should
show it to be centered in space at a position consistent with the elapsed coordinate time
t in the frame of the observable o, and the shape of the quadric surface should show a
length contraction e�ect consistent with the speed of the boost that has been applied.

7.7.4 DCSTA translated-boost

The DCSTA 4-versor translated-boost operator BDv
p is the doubling of the CSTA 2-versor

translated-boost BCv
p (�6.6.9) and de�ned as

BDv
p = BC1v

p ^BC2v
p =BC1v

p BC2v
p (7.116)

= exp
�
1
2
'v�C1

�
^ exp

�
1
2
'v�C2

�
; (7.117)

where

�C1 = DC1
�M1¡ (p0S1 �DC1

�M1

)e11 (7.118)
�C2 = DC2

�M2¡ (p0S2 �DC2
�M2

)e12 (7.119)
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and

DC1 = v̂S1e1IM1 (7.120)
DC2 = v̂S2e7IM2 (7.121)
pS1 = pxe2+ pye3+ pze4 (7.122)
pS2 = pxe8+ pye9+ pze10: (7.123)

The translated-boost is centered on the spatial point

p=p0 = px
1+ py
2+ pz
3 (7.124)

and actively boosts into the rest frame of the translated observable with worldline

vp0(t) = p0+(o+v)t (7.125)
= p0+(c
0+ �vcv̂)t: (7.126)

If p0=0, then BDv
p0 =BDv (�7.7.3).

For example, the point p0=p can be the center position p of a spatial quadric surface
Q, or it can be the initial point p0 at time w=ct=0 of a DCSTA GIPNS 6-vector standard
line LD (�7.3.7) that represents an observable worldline.

The translated-boost operator BDv
p is used in the de�nition of the DCSTA anisotropic

dilation operation (�7.7.9), which is valid for the directed scaling of DCSTA quadric
surface entities.

7.7.5 DCSTA spacetime reframe (reverse boost)

The DCSTA reframe operation is the reversed application of the active boost operation
(�7.7.3) and is often interpreted as a passive transformation relative to a new frame of
reference. For a full discussion of the boost operator, see the CSTA boost (�6.6.8).

A DCSTA GIPNS 2-vector quadric surface entity Q (�7.5) is reframed (passively
transformed) into (relative to) the frame of observable v=o+v as

Q0 = Bv�QBv=Q	v (7.127)
= B¡vQB¡v� =BvyQBvy

� =Q�vy: (7.128)

One way to interpret the reframe is that Q is initially (being carried) in the frame of
v=o+v, where it sees v as its conventional coordinate time � = tpv observer ov, and it
is actively boosted down or moved into the frame of the actual coordinate time t = tpo
observer o as Q0. From the perspective of observer o, Q0 relativistically loses the velocity
v as a velocity subtraction.

Another way to interpret the reframe is that Q is initially in the frame of o, and it is
actively boosted up into the frame of vy= o¡v. The frame of v= o+ v and the frame
of vy are conjugate frames that carry boosted entities in opposite directions with the
same proper time � = tpv = tpvy relative to the coordinate time t= tpo of observer o. In
many respects, conjugate frames are the same frame, and they also see the same length
contraction factor 1¡ �v2

p
. Entities that are actively boosted or moved into the frame

of vy are how entities carried in the frame of o appear to v when they are passively
transformed (not actively boosted or moved) into the frame of v by a relative or passive
boost.

If an entity Q has an initial position p0=/ 0 at time w=ct=0, then a passive translated-
boost Bv

p0� (�7.7.4) should be used.
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7.7.6 DCSTA rotor

The DCSTA 4-versor rotor RD is de�ned as

RD = RC1^RC2 (7.129)

which is the wedge of the same rotor (�6.6.3) in CSTA1 and CSTA2.
Any DCSTA entity Q is rotated by the rotor operation

Q0 = RDQRD
�: (7.130)

The CSTA 2-versor line rotor (translated rotor) RC
p=LC (�6.6.5) can also be doubled into

the DCSTA 4-versor translated rotor RD
p =LD=LC1^LC2.

7.7.7 DCSTA translator

The DCSTA 4-versor translator TD is de�ned as

TD = TC1^TC2 (7.131)

which is the wedge of the same translator (�6.6.4) in CSTA1 and CSTA2.
A DCSTA entity Q is translated by the translator operation

Q0 = TDQTD
�: (7.132)

7.7.8 DCSTA isotropic dilator

The DCSTA 4-versor isotropic dilator DD is de�ned as

DD = DC1^DC2 (7.133)

which is the wedge of the same isotropic dilator (�6.6.6) in CSTA1 and CSTA2.
A DCSTA entity Q is isotropically dilated by the dilator operation

Q0 = DDQDD
�: (7.134)

The DCSTA 4-versor translated dilator DD
p that dilates relative to the center point pM is

the doubling of the CSTA 2-versor translated dilator DC
p (�6.6.7) as

DD
p = DC1

p ^DC2
p : (7.135)

7.7.9 DCSTA anisotropic dilator

7.7.9.1 Introduction
A spatial DCSTA GIPNS 2-vector quadric surface entity Q (�7.5) at center position

p=p0=pS = px
1+ py
2+ pz
3; (7.136)

formed similar to a DCGA GIPNS 2-vector quadric as a linear combination of quadratic
DCSTA point value-extraction elements Ts (�7.2.3) without time components, can be
anisotropically dilated (for non-uniform, directed scaling) in situ at p = p0, by dilation
factor d in a unit direction v̂= v̂S, as a translated-boost BDv

p (�7.7.4) that is followed by
a DCSTA spatial projection using IDS (�7.7.2). The natural speed �v of the translated-
boost, for the dilation factor d, is

�v = 1¡ d2
p

; (7.137)
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which is an imaginary number for d> 1. The rapidity of the translated-boost is

'v = atanh(�v)= atanh
¡

1¡ d2
p �

; (7.138)

which can also be imaginary when �v is imaginary. The translated-boost spacetime
velocity is

v = o+v= c
0+ �vcv̂; (7.139)

which can be an imaginary spacetime velocity when �v is imaginary. A spatial quadric Q
(at zero velocity) is boosted by the translated-boost BDv

p to be in the moving observable
frame as Q and is carried along the observable worldline at velocity v with position

vp0(t) = p0+(o+v)t (7.140)
= p0+(c
+ �vcv̂)t: (7.141)

The observed dilation of quadric surface Q in the moving frame as Q is by factor

d = 1¡ �v2
p

(7.142)

in the direction v̂, where d > 1 for imaginary �v. The length dilation in the direction v̂
of the boost follows from the standard formula for special relativity length contraction

L =
L0

v

=L0 1¡ �v2
p

=L0d: (7.143)

The moving, and anisotropically dilated, quadric Q can be evaluated at time w= ct=0
to observe the anisotropic dilation at its position p. By projecting Q into the spatial
G2;8 DCSA subalgebra, an anisotropically dilated spatial quadric Q0 at zero velocity is
recovered.

7.7.9.2 De�nition
The DCSTA anisotropic dilator operation, on a spatial DCSTA GIPNS 2-vector

quadric surface Q (�7.5) with position p, for dilation factor d in the direction v̂, is
de�ned as

Q0=QDS
0 = ((BDv

p QBDv
p�) � IDS)IDS¡1 (7.144)

= (Q � IDS)IDS¡1 ; (7.145)

where the observable of the translated-boost (�7.7.4) is

vp(t) = p+(o+v)t (7.146)
= p+(c
0+ �vcv̂)t (7.147)

with

�v = 1¡ d2
p

(7.148)
'v = atanh(�v) (7.149)
p = px
1+ py
2+ pz
3: (7.150)

7.7.9.3 Discussion
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The dilated entity QDS0 can be symbolically evaluated as an implicit surface function

F (x; y; z) = TD �QDS (7.151)

that graphs at position p as anisotropically dilated in the unit direction v̂S by factor d.
The spatial quadric Q0 has zero velocity and exists at all times at the same position

p. If Q0 should exist only at a speci�c time w = pw, then this can be represented as an
intersection of Q0 with a DCSTA 2-vector standard hyperplane ED (�7.3.2),

ED = EC1^EC2 (7.152)
EC1 = pwe1+ pw

2 e11 (7.153)
EC2 = pwe7+ pw

2 e12; (7.154)

that �xes the time w= ct= pw. The intersection is the GIPNS 4-vector intersection entity

Qh4i
0 w=pw = Q0^ED: (7.155)

The entity Qh4i
0 w=pw can be translated in spacetime using the DCSTA translator (�7.7.7).

The entity Q0 can subsequently be boosted from zero velocity into a real velocity
v=vS= �vcv̂S with natural speed 0��v<1 by the action of an active DCSTA translated-
boost operation (�7.7.4)

Qv
0 = BDv

p Q0BDv
p�: (7.156)

The boosted quadric entity Qv
0 exists at all times t, but its spacetime position

pp(t) = p+ p_ t (7.157)
= p+(o+p_ )t (7.158)
= p+(o+v)t (7.159)

has velocity v relative to the observer o, and its geometric surface shape undergoes a
contraction by factor d= 1¡ �v2

p
along the direction of its velocity v. The contraction

is consistent with special relativity.

7.8 DCSTA di�erential calculus

The DCSTA di�erential calculus is a straightforward extension of the DCGA di�erential
calculus that is introduced in the paper [6].

7.8.1 DCSTA di�erential elements

Some of the DCSTA point value-extraction elements Ts (�7.2.3) have inverses. These
inverses allow the following DCSTA 2-vector di�erential elements to be de�ned as

Dw = 2TwTw2
¡1 (7.160)

Dt = 2TtTt2
¡1 (7.161)

Dx = 2TxTx2
¡1 (7.162)

Dy = 2TyTy2
¡1 (7.163)

Dz = 2TzTz2
¡1: (7.164)
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7.8.2 DCSTA antisymmetric di�erential operators

The DCSTA antisymmetric di�erential operators are de�ned as

@w=
@
@w

= Dw� (7.165)

@t=
@
@t

= Dt� (7.166)

@x=
@
@x

= Dx� (7.167)

@y=
@
@y

= Dy� (7.168)

@z=
@
@z

= Dz� (7.169)

where the symbol � is the antisymmetric commutator product . For any multivectors A
and B, the commutator product is

A�B =
1
2
(AB ¡BA)=¡B �A: (7.170)

Any DCSTA GIPNS 2-vector surface entity 
 (�7.5), de�ned in terms of the extraction
elements Ts (�7.2.3), can be di�erentiated as

@n
=
@

@n

= Dn�
; (7.171)

where Dn is one of the di�erential elements or is a linear combination of di�erential
elements (�7.8.1).

Higher-order mixed partial derivatives can also be computed as successive di�erential
operations. For example,

d2

@x@y

= Dx� (Dy�
)=Dy� (Dx�
): (7.172)

As required of partial di�erential operators, the sequence in which the derivatives are
computed does not a�ect the result.

7.8.3 DCSTA directional derivative operator

The DCSTA n-directional derivative operator is de�ned as

@n=
@

@n
= (nwDw+nxDx+nyDy+nzDz)� (7.173)

where n is a unit norm spacetime direction

n =
n
knk =

n

n �ny
p =nw
0+nx
1+ny
2+nz
3: (7.174)

7.8.4 DCSTA time derivative operator

The DCSTA time t derivative operator is

@t=
@
@t

= Dt� : (7.175)

The time t derivative of any DCSTA GIPNS 2-vector spacetime entity 
 (�7.5) is


_ = @t
=
@

@t

= Dt�
: (7.176)
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The DCSTA 2-vector spacetime entity 
 (�7.5) is the most general DCSTA GIPNS 2-
vector non-standard surface entity that is formed as a linear combination of the DCSTA
2-vector extraction elements Ts (�7.2.3).

7.9 DCSTA pseudo-integral calculus
In the paper [6], the DCGA pseudo-integral calculus is introduced. A straightforward
adaptation and extension into DCSTA is possible by using the DCSTA extraction pseudo-
inverse elements Ts

+ (�7.2.4).

8 DCSTA computing with SymPy

DCSTA computing with SymPy (http://sympy.org) [24] is possible by using
the Geometric Algebra Module for Sympy (GAlgebra) by Alan Bromborsky
(https://github.com/brombo/galgebra) [2]. This section provides sample code listings and
example computations in DCSTA using GAlgebra. The Anaconda and SciPy python
distributions both include SymPy and the Mayavi [21] data visualization package. The
current version of the GAlgebra module for SymPy can be downloaded and installed from
GitHub. The Jupyter Notebook web application (http://jupyter.org) is recommended
for running the sample code and example computations.

8.1 Sample code
The sample code that is listed in the following subsections can be inserted into cells of
a Jupyter notebook �le and executed in the order listed. The sample code initializes
the GAlgebra modules and de�nes functions and symbols for DCSTA computing. The
example computations use the functions and symbols that are de�ned in the sample code.
The sample code is provided as is for experimental testing and educational purposes only!

8.1.1 Imports

Import the SymPy and GAlgebra modules:

from sympy import *
from sympy.printing import *
from galgebra.ga import *
from galgebra.mv import *
from galgebra.lt import *
from galgebra.metric import *
from galgebra.printer import *
init_printing()

8.1.2 Basis vectors

G4;8 DCSTA requires twelve unit vectors (�1), which can be setup as follows:

(e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12) = MV.setup(
'e*1|2|3|4|5|6|7|8|9|10|11|12',
metric=[1,-1,-1,-1,1,-1, 1,-1,-1,-1,1,-1]

)
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8.1.3 Points at the origin and at in�nity
The CSTA1, CSTA2 (�6.2), and DCSTA (�7.2) points at the origin and at in�nity are
de�ned as follows:
(eo1,ei1,eo2,ei2,eo,ei) = symbols(

'e_o1 e_i1 e_o2 e_i2 e_o e_i'
)
# CSTA1 points
eo1 = Pow(2,-1)*(-e5+e6)
ei1 = (e5+e6)
# CSTA2 points
eo2 = Pow(2,-1)*(-e11+e12)
ei2 = (e11+e12)
# DCSTA points
eo = eo1^eo2
ei = ei1^ei2

8.1.4 Unit pseudoscalars
The unit pseudoscalars in G0;3 SA1 (�2.1), G1;3 STA1 (�5.1.2), G2;4 CSTA1 (�6.1), G0;3
SA2, G1;3 STA2, G2;4 CSTA2, and G4;8 DCSTA (�7.1), respectively, are de�ned as follows:

(I31,I41,I61,I32,I42,I62,ID IDS) = symbols(
'I_31 I_41 I_61 I_32 I_42 I_62 I_D I_DS'

)
# SA1 unit pseudoscalar
I31 = e2^e3^e4
# STA1 unit pseudoscalar
I41 = e1^I31
# CSTA1 unit pseudoscalar
I61 = I41^ei1^eo1
# SA2 unit pseudoscalar
I32 = e8^e9^e10
# STA2 unit pseudoscalar
I42 = e7^I32
# CSTA2 unit pseudoscalar
I62 = I42^ei2^eo2
# DCSTA unit pseudoscalar
ID = I61^I62
# G2,8 DCSA (spatial) unit pseudoscalar
IDS = (e1^e7)|ID

The last value, IDS, is the G2;8 DCSA unit pseudoscalar for an algebra that is very
similar to G8;2 DCGA. The IDS unit pseudoscalar is used to project entities (�7.7.2) into
a purely spatial algebra that drops the two time dimensions e1 and e7. When these time
dimensions are dropped, or rejected, by a projection of an entity onto IDS, then the entity
is e�ectively located at w= ct=0 in spacetime as a spatial DCSA entity that should be
tested against spatial DCSA points. The projection onto IDS is useful after a directed
scaling (anisotropic dilation) of a quadric surface (�7.7.9).

8.1.5 Point embeddings
CSTA1 point embedding (�6.2):
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def EV1(v):
# Embed STA1 vector v as CSTA1 point.
v1 = v
return ( v1 + Pow(2,-1)*(v1*v1)*ei1 + eo1 )

CSTA2 point embedding (�6.2):

def EV2(v):
# Embed STA1 vector v as CSTA2 point.
# STA1 vector v is converted to an STA2 vector v2.
v2 = (v|e1)*e7 - ( (v|e2)*e8 + (v|e3)*e9 + (v|e4)*e10 )
return ( v2 + Pow(2,-1)*(v2*v2)*ei2 + eo2 )

DCSTA point embedding (�7.2):

def EV(v):
# Embed STA1 vector v as DCSTA point.
return ( EV1(v)^EV2(v) )

8.1.6 Point projections
CSTA1 point projection (�6.2.6) to an STA1 vector:

def PV1(V1):
# Project CSTA1 point to STA1 vector.
# 1) Normalize point.
# 2) Use multivector projection to project vector part.
return Pow(scalar(-V1|ei1),-1)*(V1|I41)*I41.inv()

CSTA2 point projection (�6.2.6) to an STA1 vector:

def PV2(V2):
# Project CSTA2 point to STA1 vector.
# 1) Normalize point.
# 2) Use multivector projection to project vector part.
# 3) Convert into main STA1 space.
v2 = Pow(scalar(-V2|ei2),-1)*(V2|I42)*I42.inv()
return ( (v2|e7)*e1 + (-v2|e8)*e2 + (-v2|e9)*e3 + (-v2|e10)*e4 )

DCSTA point projection (�7.2.2) to an STA1 vector:

def PV(V):
# Project DCSTA point V to an STA1 vector.
# 1) Contract DCSTA point into CSTA1 point using ei2.
# 2) Project CSTA1 point V1 to an STA1 vector.
V1 = V|ei2
return PV1(V1)

8.1.7 Symbolic vectors and points
Symbols for coordinates, parameters, and vectors:

w,x,y,z,c,t,g,b = symbols('w x y z c t g b')
pw,px,py,pz = symbols('p_w p_x p_y p_z')
rx,ry,rz = symbols('r_x r_y r_z')
nw,nx,ny,nz = symbols('n_w n_x n_y n_z')
vx,vy,vz = symbols('v_x v_y v_z')
v,v1,v2,V,V1,V2 = symbols('v v1 v2 V V1 V2')
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The pw,px,py,pz are used as symbolic position coordinates for the center position of
surface entities. The rx,ry,rz are used as symbolic radii parameters of implicit quadric
surface functions. The nw,nx,ny,nz may be used as symbolic coordinates of a normalized
unit vector n. The vx,vy,vz may be used to hold the velocity components of a velocity
vector v. The symbol c is used as the symbolic speed of light, and symbol t is time.

Symbolic values, vectors, and points:

w = c*t
v = w*e1 + x*e2 + y*e3 + z*e4
v1 = v
v2 = w*e7 + x*e8 + y*e9 + z*e10
V1 = EV1(v)
V2 = EV2(v)
V = EV(v)

The embedding of the symbolic STA1 and STA2 vectors v1 and v2 are symbolic CSTA1
and CSTA2 points V1 and V2, respectively. The DCSTA embedding of a symbolic STA1
vector v is the symbolic DCSTA point V. In symbolic calculations, these symbolic point
embeddings V1, V2, and V are useful to check results.

8.1.8 CSTA extraction elements

A CSTA point value-extraction element Cs (�6.3) extracts the value s from an embedded
CSTA point TC= C(tM) as

s = TC �Cs: (8.1)

C11,C1t,C1w,C1x,C1y,C1z,C1t2 = symbols(
'C1_1 C1_t C1_w C1_x C1_y C1_z C1_t2'

)
C21,C2t,C2w,C2x,C2y,C2z,C2t2 = symbols(

'C2_1 C2_t C2_w C2_x C2_y C2_z C2_t2'
)
# CSTA1 (C1) point value-extraction elements
C11 = -ei1
C1w = e1
C1t = Pow(c,-1)*C1w
C1x = -e2
C1y = -e3
C1z = -e4
C1t2 = -2*eo1
# CSTA2 (C2) point value-extraction elements
C21 = -ei2
C2w = e7
C2t = Pow(c,-1)*C2w
C2x = -e8
C2y = -e9
C2z = -e10
C2t2 = -2*eo2
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For example, in CSTA1, the element symbol C1t2 extracts tM2 from an embedded point TC.

8.1.9 CSTA di�erential elements

Using the commutator product �, a CSTA di�erential element Dn
C (�6.6.10) can take a

partial derivative of an implicit surface function that is represented by a CSTA entity E as

@n
CE =

@E
@n

=Dn
C �E: (8.2)

The simplest example is when E is any CSTA GIPNS 1-vector entity. The CSTA di�er-
ential element Dn

C , for di�erentiating in the direction n, can be a linear combination of
the CSTA di�erential elements.

C1Dw,C1Dt,C1Dx,C1Dy,C1Dz,C2Dw,C2Dt,C2Dx,C2Dy,C2Dz = symbols(
'C1Dw C1Dt C1Dx C1Dy C1Dz C2Dw C2Dt C2Dx C2Dy C2Dz'

)
# CSTA1 (C1) differential elements
C1Dw = C11*C1w.inv()
C1Dt = C11*C1t.inv()
C1Dx = C11*C1x.inv()
C1Dy = C11*C1y.inv()
C1Dz = C11*C1z.inv()
# CSTA2 (C2) differential elements
C2Dw = C21*C2w.inv()
C2Dt = C21*C2t.inv()
C2Dx = C21*C2x.inv()
C2Dy = C21*C2y.inv()
C2Dz = C21*C2z.inv()

8.1.10 DCSTA extraction elements

The DCSTA point value-extraction elements Ts (�7.2.3) are used to extract the value s
from a DCSTA point TD as

s = TD �Ts: (8.3)

The extraction elements are de�ned in code as:
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(
Tw,Tx,Ty,Tz,
Tww,Txx,Tyy,Tzz,
Txy,Tyz,Tzx,Twx,Twy,Twz,
Twt2,Txt2,Tyt2,Tzt2,
Tt,Ttt,Ttx,Tty,Ttz,Ttt2,
T1,Tt2,Tt4

) = symbols(
'Tw Tx Ty Tz '
'Tww Txx Tyy Tzz '
'Txy Tyz Tzx Twx Twy Twz '
'Twt2 Txt2 Tyt2 Tzt2 '
'Tt Ttt Ttx Tty Ttz Ttt2 '
'T1 Tt2 Tt4'

)
# Coordinates; linear extractions
Tw = Pow(2,-1)*((e1^ei2)+(ei1^e7))
Tt = Pow(c,-1)*Tw
Tx = -Pow(2,-1)*((e2^ei2)+(ei1^e8))
Ty = -Pow(2,-1)*((e3^ei2)+(ei1^e9))
Tz = -Pow(2,-1)*((e4^ei2)+(ei1^e10))
# Squares; quadratic extractons
Tww = e7^e1
Ttt = Pow(c,-2)*Tww
Txx = e8^e2
Tyy = e9^e3
Tzz = e10^e4
# Cross terms; quadratic extractions
Twx = Pow(2,-1)*((e1^e8)+(e2^e7))
Twy = Pow(2,-1)*((e1^e9)+(e3^e7))
Twz = Pow(2,-1)*((e1^e10)+(e4^e7))
Ttx = Pow(c,-1)*Twx
Tty = Pow(c,-1)*Twy
Ttz = Pow(c,-1)*Twz
Txy = Pow(2,-1)*((e8^e3)+(e9^e2))
Tyz = Pow(2,-1)*((e10^e3)+(e9^e4))
Tzx = Pow(2,-1)*((e10^e2)+(e8^e4))
# Coordinates * squared test vector; cubic extractions
Twt2 = (e1^eo2)+(eo1^e7)
Ttt2 = Pow(c,-1)*Twt2
Txt2 = (eo2^e2)+(e8^eo1)
Tyt2 = (eo2^e3)+(e9^eo1)
Tzt2 = (eo2^e4)+(e10^eo1)
# Unit scalar extraction
T1 = -ei
# Squared test vector; quadratic extraction
Tt2 = (eo2^ei1)+(ei2^eo1)
# Squared squared test vector; quartic extraction
Tt4 = -4*eo
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8.1.11 DCSTA extraction pseudo-inverse elements

A DCSTA extraction pseudo-inverse element (�7.2.4) has the property

Ts �Ts+ = 1: (8.4)

The extraction pseudo-inverse elements are de�ned in code as:

(
iTww,iTxx,iTyy,iTzz,iTtt,
iTw,iTx,iTy,iTz,iTt,
iTxy,iTyz,iTzx,iTwx,iTwy,iTwz,iTtx,iTty,iTtz,
iT1,iTt2,iTt4 ) = symbols(
'i_Tww i_Txx i_Tyy i_Tzz i_Ttt '
'i_Tw i_Tx i_Ty i_Tz iTt '
'i_Txy i_Tyz i_Tzx i_Twx i_Twy i_Twz i_Ttx i_Tty i_Ttz '
'i_T1 i_Tt2 i_Tt4'

)
iTww = -Tww
iTxx = -Txx
iTyy = -Tyy
iTzz = -Tzz
iTtt = -Pow(c,2)*Tww
iTw = Twt2
iTx = -Txt2
iTy = -Tyt2
iTz = -Tzt2
iTt = Pow(c,2)*Ttt2
iTxy = -2*Txy
iTyz = -2*Tyz
iTzx = -2*Tzx
iTwx = 2*Twx
iTwy = 2*Twy
iTwz = 2*Twz
iTtx = 2*Pow(c,2)*Ttx
iTty = 2*Pow(c,2)*Tty
iTtz = 2*Pow(c,2)*Ttz
iT1 = -Pow(4,-1)*Tt4
iTt2 = -Pow(2,-1)*Tt2
iTt4 = -Pow(4,-1)*T1

8.1.12 DCSTA di�erential elements

The DCSTA di�erential (�7.8.1) and pseudo-integral elements (�7.9) are:
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(
Dw,Dx,Dy,Dz,Dt,
Iw,Ix,Iy,Iz,It

) = symbols(
'D_w D_x D_y D_z D_t '
'I_w I_x I_y I_z I_t'

)
# Differential elements
Dw = 2*Tw*Tww.inv()
Dx = 2*Tx*Txx.inv()
Dy = 2*Ty*Tyy.inv()
Dz = 2*Tz*Tzz.inv()
Dt = 2*Tt*Ttt.inv()
# Pseudo-integral elements
Iw = Pow(2,-1)*Tww*iTw
Ix = Pow(2,-1)*Txx*iTx
Iy = Pow(2,-1)*Tyy*iTy
Iz = Pow(2,-1)*Tzz*iTz
It = Pow(2,-1)*Ttt*iTt

In recent versions of the GAlgebra module [2], the commutator product A�B is coded
as (A>>B), and the anti-commutator product A�� B is coded as (A<<B). The parentheses
are required to ensure that the precedence rules for Python operators do not interfere. For
example, the derivative of a DCSTA GIPNS 2-vector surface entity 
 (�7.5) with respect
to t is written @t
=
_ =Dt�
, and if 
 is assigned to variable E, then the derivative
is coded as (Dt>>E) and evaluated symbolically as (V|(Dt>>E)). The operation (A|B)
is the inner product.

8.1.13 DCSTA directional derivative operator

The DCSTA n-directional derivative operator (�7.8.3) is de�ned in code as:

def Dn(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Dw + x*Dx + y*Dy + z*Dz)

Only the direction of the spacetime vector

n = we1+xe2+ ye3+ ze3 (8.5)

is signi�cant. The n-directional derivative uses the norm-unit of n, which is

n
knk =

n

nw
2 +nx

2+ny
2+nz

2
p : (8.6)

The directional derivative of a DCSTA GIPNS 2-vector surface entity E (�7.5) is coded
as (Dn(w,x,y,z)>>E).

8.1.14 DCSTA pseudo-integral operator

The DCSTA n-directional pseudo-integral operator (�7.9) is de�ned in code as:
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def In(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Iw + x*Ix + y*Iy + z*Iz)

The directional pseudo-integral of a DCSTA GIPNS 2-vector surface entity E (�7.5) is
coded as (In(w,x,y,z)>>E).

8.1.15 DCSTA GIPNS 2-vector surface entities

The following subsections de�ne, in code, many of the same surface entities that are
discussed in the paper on G8;2 DCGA [7]. The most general DCSTA GIPNS 2-vector
surface entity 
 (�7.5) is the linear combination of the value-extraction elements Ts
(�8.1.10). The value-extraction elements can form a general DCSTA GIPNS 2-vector
quadric surface entityQ that supports anisotropic dilations (�7.7.9). The value-extraction
elements Ts (�7.2.3) can form particular cubic surfaces known as parabolic cyclides and
particular quartic surfaces known as Dupin and Darboux cyclides that do not support
anisotropic dilations. All of the DCSTA GIPNS 2-vector surfaces 
 can be boosted
(�7.7.3) into a velocity in spacetime, but only the quadric surface entities can correctly
display length contraction or dilation e�ects.

8.1.16 DCSTA GIPNS 2-vector toroid

The DCSTA GIPNS 2-vector toroid is coded as:

def GIPNS_Toroid(R,r):
# Torus centered at the origin circling the z-axis.
# R is the major radius
# r is the minor radius
# R=0 degenerates into exactly -4*Sphere(0,r)
# R=r=0 degenerates into exactly -4*eo
# r=0 degenerates into non-standard circle radius R
# Note, -Tt2 since signatures are negative
return (

Tt4 +
-Tt2*2*(R**2 - r**2) +
T1*(R**2 - r**2)**2 +
(Txx + Tyy)*(-4)*R**2

)

The Toroid is evaluated at w= ct=0 to obtain the same torus as in G8;2 DCGA:

EV(c*0*e1+x*e2+y*e3+z*e4)|GIPNS_Toroid(R,r)

At other times t=/ 0, the minor radius r of the toroid grows with time t, which could be
researched further. For instance, the toroid with major radius R and minor radius r=0,
which is a circle of radius R, will grow (at the natural speed of light c=1) into the toroid
with major radius R and minor radius r =R at time w = ct=R, which is a horn torus.
In spacetime, the toroid entity is a toroidal wavefront starting from a circle, and if also
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R=0 then it is exactly a spherical wavefront or lightcone as the GIPNS hypercone ¡4eo
(GOPNS origin point).

8.1.17 DCSTA GIPNS 2-vector Dupin cyclide

The DCSTA GIPNS 2-vector Dupin cyclide � is coded as:

def GIPNS_DupinCyclide(R,r1,r2):
# DupinCyclide generalizes the torus.
# Types of cyclide:
# Ring cyclide when (r1+r2)<2R
# Spindle cyclide when (r1+r2)>2R
# Types of torus:
# Horn torus when (r1=r2)=R
# Ring torus when (r1=r2)<R
# Spindle torus when (r1=r2)>R
#
# R is major radius in the xy-plane.
# r1 and r2 are minor radii.
# r1 is the radius of sphere centered at x=+R.
# r2 is the radius of sphere centered at x=-R.
# When r1=r2, we get exactly a Toroid(R,r=r1=r2).
# When r1+r2=2R, we get the union of two spheres
# that touch in a tangent point, exactly.
#
# Note: -Tt2 since signatures are negative.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-c**2)
return (

Tt4 +
-2*(b**2-u**2)*Tt2 +
(b**2-u**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

The DupinCyclide is evaluated at t=0 to obtain the same Dupin cyclide as in G8;2 DCGA:

EV(c*0*e1+x*e2+y*e3+z*e4)|DupinCyclide(R,r1,r2)

Similar to the Toroid, the minor radii of the DupinCyclide grow with time in spacetime.

8.1.18 DCSTA GIPNS 2-vector horned Dupin cyclide

The DCSTA GIPNS 2-vector horned Dupin cyclide ¡ is coded as:
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def GIPNS_HornedDupinCyclide(R,r1,r2):
# Compared to DupinCyclide, just exchange values of
# u and c to get horned Dupin cyclide.
# For r1=r2: symmetrical, with horn points on y-axis.
# For (r1+r2)<2R: horned ring cyclide.
# For (r1+r2)>2R: horned spindle cyclide.
# For (r1+r2)=2R: union of two spheres exactly.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-u**2)
return (

Tt4 +
-2*(b**2-c**2)*Tt2 +
(b**2-c**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

Similar to the Toroid, the minor radii of the HornedDupinCyclide grow with time in
spacetime. When r1= r2 and some time w = ct= pw is chosen, it is possible to produce
an ovoidal ring cyclide called a Blum cyclide of the form

A(x2+ y2+ z2)2+Fx2+Gy2+Hz2+O = 0

with scalar coe�cients A;F ;G;H;O. When r1=/ r2, an asymmetrical form of the ovoidal
ring cyclide can be produced. As time w increases from w=0 to w= pw, the radius at the
horn points increases to pw when c=1. The rate of radius increase at the horn points is
at light speed c.

8.1.19 DCSTA GIPNS 2-vector ellipsoid

The DCSTA GIPNS 2-vector ellipsoid is coded as:

def GIPNS_Ellipsoid(px,py,pz,rx,ry,rz):
# Axis-aligned ellipsoid.
return (

Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-Tx*2*px*Pow(rx**2,-1) +
-Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)
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An ellipsoid, or any other quadric surface entity (�7.5), that has an initial position (px;
py; pz) can be boosted using a translated-boost (�7.7.4). After the boost operation(s) on
a quadric surface entity, the boosted entity can be evaluated at any time t, where the
entity has a moving position and displays a length contraction e�ect.

8.1.20 DCSTA GIPNS 2-vector elliptic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic cylinder.
return (

T1*(py**2*Pow(ry**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

8.1.21 DCSTA GIPNS 2-vector elliptic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

8.1.22 DCSTA GIPNS 2-vector elliptic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+py**2*Pow(ry**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1)

)

8.1.23 DCSTA GIPNS 2-vector elliptic cone, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cone is coded as:

162 Section 8



def GIPNS_ConeX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic cone.
return (

-T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

8.1.24 DCSTA GIPNS 2-vector elliptic cone, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cone is coded as:

def GIPNS_ConeY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

8.1.25 DCSTA GIPNS 2-vector elliptic cone, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cone is coded as:

def GIPNS_ConeZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1)

)
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8.1.26 DCSTA GIPNS 2-vector elliptic paraboloid, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidX(px,py,pz,rx,ry,rz):
# x-axis aligned elliptic paraboloid.
return (

-2*pz*Tz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tx*Pow(rx,-1) +
Tzz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*px*Pow(rx,-1)

)

8.1.27 DCSTA GIPNS 2-vector elliptic paraboloid, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidY(px,py,pz,rx,ry,rz):
# y-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py*Pow(ry,-1)

)

8.1.28 DCSTA GIPNS 2-vector elliptic paraboloid, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidZ(px,py,pz,rx,ry,rz):
# z-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)
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8.1.29 DCSTA GIPNS 2-vector hyperbolic paraboloid

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic paraboloid is coded as:

def GIPNS_HParaboloidZ(px,py,pz,rx,ry,rz):
# z-axis aligned hyperbolic paraboloid.
# A saddle-like shape
# that "saddles" x-axis
# and "straddles" y-axis
# with "up" direction as z-axis.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

8.1.30 DCSTA GIPNS 2-vector hyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperboloid of one sheet is coded as:

def GIPNS_Hyperboloid1(px,py,pz,rx,ry,rz):
# z-axis aligned hyperboloid of one sheet.
# An hourglass-like shape that
# is elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

8.1.31 DCSTA GIPNS 2-vector hyperboloid of two sheets

The DCSTA GIPNS 2-vector hyperboloid of two sheets is coded as:
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def GIPNS_Hyperboloid2(px,py,pz,rx,ry,rz):
# z-axis aligned hyperboloid of two sheets.
# A shape like two dishes that
# are elliptic in the xy-plane
# and hyperbolic in xz and yz planes.
return (

Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)

8.1.32 DCSTA GIPNS 2-vector parabolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderX(px,py,pz,rx,ry,rz):
# Cylinder along x-axis with
# constant parabola cross-section in yz-plane.
return (

-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Tyy*Pow(ry**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

8.1.33 DCSTA GIPNS 2-vector parabolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderY(px,py,pz,rx,ry,rz):
# Cylinder along y-axis with
# constant parabola cross-section in xz-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz*Pow(rz,-1)

)

8.1.34 DCSTA GIPNS 2-vector parabolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned parabolic cylinder is coded as:
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def GIPNS_PCylinderZ(px,py,pz,rx,ry,rz):
# Cylinder along z-axis with
# constant parabola cross-section in xy-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py*Pow(ry,-1)

)

8.1.35 DCSTA GIPNS 2-vector hyperbolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderX(px,py,pz,rx,ry,rz):
# Cylinder along x-axis with
# constant hyperbola cross-section in yz-plane
# opening up and down the y-axis.
return (

-Ty*2*py*Pow(ry**2,-1) +
Tz*2*pz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

8.1.36 DCSTA GIPNS 2-vector hyperbolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderY(px,py,pz,rx,ry,rz):
# Cylinder along y-axis with
# constant hyperbola cross-section in xz-plane
# opening up and down the z-axis.
return (

-Tz*2*pz*Pow(rz**2,-1) +
Tx*2*px*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1

)

8.1.37 DCSTA GIPNS 2-vector hyperbolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic cylinder is coded as:
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def GIPNS_HCylinderZ(px,py,pz,rx,ry,rz):
# Cylinder along z-axis with
# constant hyperbola cross-section in xy-plane
# opening up and down the x-axis.
return (

-Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
-T1

)

8.1.38 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to x-axis
The DCSTA GIPNS 2-vector parallel planes pair ?x-axis is coded as:

def GIPNS_PPlanesPairX(px1,px2):
# Parallel planes pair, x=px1 and x=px2.
return ( Txx - (px1+px2)*Tx + px1*px2*T1 )

8.1.39 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to y-axis
The DCSTA GIPNS 2-vector parallel planes pair ?y-axis is coded as:

def GIPNS_PPlanesPairY(py1,py2):
# Parallel planes pair, y=py1 and y=py2.
return ( Tyy - (py1+py2)*Ty + py1*py2*T1 )

8.1.40 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to z-axis
The DCSTA GIPNS 2-vector parallel planes pair ?z-axis is coded as:

def GIPNS_PPlanesPairZ(pz1,pz2):
# Parallel planes pair, z=pz1 and z=pz2.
return ( Tzz - (pz1+pz2)*Tz + pz1*pz2*T1 )

8.1.41 DCSTA GIPNS 2-vector non-parallel planes pair, x-axis aligned
The DCSTA GIPNS 2-vector x-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairX(py,pz,ry,rz):
# The non-parallel planes pair aligned with x-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the yz-plane. The lines
# intersect at (py,pz), and the slopes of the two
# lines are +rz/ry and -rz/ry.
return (

-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)
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8.1.42 DCSTA GIPNS 2-vector non-parallel planes pair, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairY(px,pz,rx,rz):
# The non-parallel planes pair aligned with y-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the xz-plane. The lines
# intersect at (px,pz), and the slopes of the two
# lines are +rz/rx and -rz/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)

8.1.43 DCSTA GIPNS 2-vector non-parallel planes pair, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairZ(px,py,rx,ry):
# The non-parallel planes pair aligned with z-axis
# is a type of cylinder with constant cross section
# that is a pair of lines in the xy-plane. The lines
# intersect at (px,py), and the slopes of the two
# lines are +ry/rx and -ry/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1)

)

8.1.44 CSTA1 GIPNS 1-vector hyperplane

The CSTA1 GIPNS 1-vector hyperplane (�6.4.3) is coded as:

def GIPNS_HPlane1(p,n):
# CSTA1 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( n + (p|n)*ei1 )
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8.1.45 CSTA2 GIPNS 1-vector hyperplane

The CSTA2 GIPNS 1-vector hyperplane (�6.4.3) is coded as:

def GIPNS_HPlane2(p,n):
# CSTA2 1-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
p2 = (p1|e1)*e7 + (-p1|e2)*e8 + (-p1|e3)*e9 + (-p1|e4)*e10
n2 = (n1|e1)*e7 + (-n1|e2)*e8 + (-n1|e3)*e9 + (-n1|e4)*e10
return ( n2 + (p2|n2)*ei2 )

8.1.46 DCSTA GIPNS 2-vector hyperplane

The DCSTA GIPNS 2-vector hyperplane (�7.3.2) is coded as:

def GIPNS_HPlane(p,n):
# DCSTA 2-vector hyperplane
# p is any point on the hyperplane
# n is the normal vector
# the magnitude of n is not significant
return ( GIPNS_HPlane1(p,n)^GIPNS_HPlane2(p,n) )

8.1.47 CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�6.4.5)
is coded as:

def GIPNS_HPSphere1(p,r):
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( EV1(p) + Pow(2,-1)*r**2*ei1 )

8.1.48 CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�6.4.5)
is coded as:

def GIPNS_HPSphere2(p,r):
# CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( EV2(p) + Pow(2,-1)*r**2*ei2 )

8.1.49 DCSTA GIPNS 2-vector hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperhyperboloid of one sheet (hyperpseudosphere) (�7.3.2)
is coded as:
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def GIPNS_HPSphere(p,r):
# DCSTA 2-vector hyperpseudosphere (hyperhyperboloid)
# p is the STA center point
# r is the radius
# imaginary radius r=I*|r| makes imaginary hyperpseudosphere
return ( GIPNS_HPSphere1(p,r)^GIPNS_HPSphere2(p,r) )

8.1.50 CSTA1 GIPNS 2-vector plane

The CSTA1 GIPNS 2-vector plane (�6.4.10) is coded as:

def GIPNS_Plane1(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
# The STA1 plane bivector B is da^db
p1 = p
B1 = da^db
N1 = Pow(sqrt(scalar(B1|(e1*B1.rev()*e1))),-1)*B1
D1 = ((1*N1*1)|I41.inv())
return ( D1 - ((p1|D1)^ei1) )

8.1.51 CSTA2 GIPNS 2-vector plane

The CSTA2 GIPNS 2-vector plane (�6.4.10) is coded as:

def GIPNS_Plane2(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
da2 = (da|e1)*e7+(-da|e2)*e8+(-da|e3)*e9+(-da|e4)*e10
db2 = (db|e1)*e7+(-db|e2)*e8+(-db|e3)*e9+(-db|e4)*e10
B2 = da2^db2
N2 = Pow(sqrt(scalar(B2|(e7*B2.rev()*e7))),-1)*B2
D2 = (N2|I42.inv())
return ( D2 - ((p2|D2)^ei2) )

8.1.52 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane (�7.3.6) is coded as:

def GIPNS_Plane(p,da,db):
# p is any STA1 point on the plane
# da is STA1 direction one of plane
# db is STA1 direction two of plane
return ( GIPNS_Plane1(p,da,db)^GIPNS_Plane2(p,da,db) )

The standard plane can be intersected with all other DCSTA GIPNS surface entities.
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8.1.53 CSTA1 GIPNS 3-vector line

The CSTA1 GIPNS 3-vector line (�6.4.11) is coded as:

def GIPNS_Line1(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
D1 = d1|(-I41)
return ( D1 + ((p|D1)^ei1) )

8.1.54 CSTA2 GIPNS 3-vector line

The CSTA2 GIPNS 3-vector line (�6.4.11) is coded as:

def GIPNS_Line2(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
d2 = (d1|e1)*e7+(-d1|e2)*e8+(-d1|e3)*e9+(-d1|e4)*e10
D2 = d2|(-I42)
return ( D2 + ((p2|D2)^ei2) )

8.1.55 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line (�7.3.7) is coded as:

def GIPNS_Line(p,d):
# p is any STA1 point on the line
# d is the STA1 direction of line
return ( GIPNS_Line1(p,d)^GIPNS_Line2(p,d) )

The standard line can be intersected with all other DCSTA GIPNS surface entities.

8.1.56 CSTA1 plane-line intersection

The CSTA1 plane-line intersection (�6.5.5) is coded as:

def GIPNS_PlaneLineIntersection1(p,l):
# Intersect GIPNS_Plane1 p and GIPNS_Line1 l
plwedge = (p^l)
if plwedge != 0: return ei1
plmeet = (((p|I41.inv())^(l|I41.inv()))|I41)
if plmeet == 0: return l
return ((e1*plmeet*e1)|p)^l

8.1.57 CSTA2 plane-line intersection

The CSTA2 plane-line intersection (�6.5.5) is coded as:
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def GIPNS_PlaneLineIntersection2(p,l):
# Intersect GIPNS_Plane2 p and GIPNS_Line2 l
plwedge = (p^l)
if plwedge != 0: return ei2
plmeet = (((p|I42.inv())^(l|I42.inv()))|I42)
if plmeet == 0: return l
return ((e7*plmeet*e7)|p)^l

8.1.58 CSTA1 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA1 GOPNS 2-vector point pair (�6.5.3) is coded as:

def GOPNS_PointPairDecomp1(pp,pm):
# pp is a CSTA1 GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA1 null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pp|pp)))*(-ei1|pp).inv() )

8.1.59 CSTA2 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA2 GOPNS 2-vector point pair (�6.5.3) is coded as:

def GOPNS_PointPairDecomp2(pp,pm):
# pp is a CSTA2 GOPNS 2-vector point pair
# pm is -1 or 1 to select a point of the pair
# returns a CSTA2 null 1-vector point entity
return ( (pp + pm*sqrt(scalar(pp|pp)))*(-ei2|pp).inv() )

8.1.60 CSTA1 GOPNS 2-vector �at point projection

The projection of the point of a CSTA1 GOPNS 2-vector �at point (�6.5.5) is coded as:

def GOPNS_FlatPointProj1(fp):
# fp is a CSTA1 GOPNS 2-vector flat point
# returns the STA1 vector projection of the point
E = eo1^ei1
return ( -(fp|eo1)*Pow(scalar(E|fp),-1) - eo1 )

8.1.61 CSTA2 GOPNS 2-vector �at point projection

The projection of the point of a CSTA2 GOPNS 2-vector �at point (�6.5.5) is coded as:

def GOPNS_FlatPointProj2(fp):
# fp is a CSTA2 GOPNS 2-vector flat point
# returns the STA2 vector projection of the point
E = eo2^ei2
return ( -(fp|eo2)*Pow(scalar(E|fp),-1) - eo2 )

8.1.62 SA1, STA1, and CSTA1 2-versor rotor

The CSTA1 2-versor spatial rotor (�2.6) is coded as:
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def Rotor1(axis,angle):
# Spatial rotor in SA1, STA1, and CSTA1, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax1|(-I31))

)

8.1.63 SA2, STA2, and CSTA2 2-versor rotor

The CSTA2 2-versor spatial rotor (�2.6) is coded as:

def Rotor2(axis,angle):
# Spatial rotor in SA2, STA2, and CSTA2, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ax2 = (-ax1|e2)*e8 + (-ax1|e3)*e9 + (-ax1|e4)*e10
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax2|(-I32))

)

8.1.64 DCSTA 4-versor rotor

The DCSTA 4-versor spatial rotor (�7.7.6) is coded as:

def Rotor(axis,angle):
# Spatial rotor in DCSTA, where
# axis is SA1 vector axis of rotation and
# angle is scalar angle of rotation in degrees
return ( Rotor1(axis,angle)^Rotor2(axis,angle) )

8.1.65 CSTA1 2-versor line rotor

The CSTA1 2-versor line rotor (�6.6.5) for the rotation around a line is coded as:

def LRotor1(p,d,a):
# Rotor around a line l by angle a in degrees
# line l is given by STA1 point p and direction d
l = GIPNS_Line1(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-e1|l) )

8.1.66 CSTA2 2-versor line rotor

The CSTA2 2-versor line rotor (�6.6.5) for the rotation around a line is coded as:
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def LRotor2(p,d,a):
l = GIPNS_Line2(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return ( cos(t) + sin(t)*(-e7|l) )

8.1.67 DCSTA 4-versor line rotor

The DCSTA 4-versor line rotor (�7.7.6) for the rotation around a line is coded as:

def LRotor(p,d,a):
return LRotor1(p,d,a)^LRotor2(p,d,a)

8.1.68 STA1 and CSTA1 2-versor hyperbolic rotor (boost operator)

The CSTA1 2-versor spacetime hyperbolic rotor (boost operator) (�5.2.3) is coded as:

def HRotor1(b,d):
# STA1 and CSTA1 boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
v1 = Pow(sqrt(scalar(-d|d)),-1)*d
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v1^e1) )

The b is the natural speed �v. The d is the SA1 spatial velocity direction v̂ that is
normalized as v1. The spatial velocity of the boost is v = �vcv̂ = kvkv̂ relative to an
observer ot= cte1. The r is the rapidity 'v= atanh(�v).

8.1.69 STA2 and CSTA2 2-versor hyperbolic rotor (boost operator)

The CSTA2 2-versor spacetime hyperbolic rotor (boost operator) (�6.6.8) is coded as:

def HRotor2(b,d):
# STA2 and CSTA2 boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
v1 = Pow(sqrt(scalar(-d|d)),-1)*d
v2 = (-v1|e2)*e8 + (-v1|e3)*e9 + (-v1|e4)*e10
r = atanh(b)
return ( cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v2^e7) )

8.1.70 DCSTA 4-versor hyperbolic rotor (boost operator)

The DCSTA 4-versor spacetime hyperbolic rotor (boost operator) (�7.7.3) is coded as:

def HRotor(b,d):
# DCSTA boost operator, where
# 0<=b<=1 is scalar natural speed of boost and
# d is SA1 direction vector of boost velocity
return ( HRotor1(b,d)^HRotor2(b,d) )

For an anisotropic dilation (�7.7.9) of a quadric surface Q by factor d in direction d, then
speed b should be set to �v= 1¡ d2

p
, which may be an imaginary number.
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The anisotropic dilation of Q by a dilation factor d in an SA1 direction
v=vx*e2+vy*e3+vz*e4 is coded as:

((
HRotor(sqrt(1-d**2),v)*
Q*
HRotor(sqrt(1-d**2),v).rev()

)|IDS)*IDS.inv()

The projection using IDS is the space projection (�7.7.2) into G2;8 DCSA, which discards
imaginary components that are by-products of the directed scaling operation. A good
example to try is Q=Ellipsoid(px,py,pz,rx,ry,rz).

8.1.71 CSTA1 2-versor translator

The CSTA1 2-versor spacetime translator (�6.6.4) is coded as:

def Translator1(d):
# CSTA1 spacetime translator, where
# d is an STA1 spacetime displacement vector.
d1 = d
return ( 1 - Pow(2,-1)*(d1^ei1) )

8.1.72 CSTA2 2-versor translator

The CSTA2 2-versor spacetime translator (�6.6.4) is coded as:

def Translator2(d):
# CSTA2 spacetime translator, where
# d is an STA1 spacetime displacement vector.
d2 = (d|e1)*e7 + (-d|e2)*e8 + (-d|e3)*e9 + (-d|e4)*e10
return ( 1 - Pow(2,-1)*(d2^ei2) )

8.1.73 DCSTA 4-versor translator

The DCSTA 4-versor spacetime translator (�7.7.7) is coded as:

def Translator(d):
# DCSTA spacetime translator, where
# d is an STA1 spacetime displacement vector.
return ( Translator1(d)^Translator2(d) )

8.1.74 CSTA1 2-versor isotropic dilator

The CSTA1 2-versor spacetime isotropic dilator (�6.6.6) is coded as:

def Dilator1(d):
# CSTA1 isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei1^eo1) )
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8.1.75 CSTA2 2-versor isotropic dilator

The CSTA2 2-versor spacetime isotropic dilator (�6.6.6) is coded as:

def Dilator2(d):
# CSTA2 isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei2^eo2) )

8.1.76 DCSTA 4-versor isotropic dilator

The DCSTA 4-versor spacetime isotropic dilator (�7.7.8) is coded as:

def Dilator(d):
# DCSTA isotropic dilator, where
# d is the scalar dilation factor.
# Note: dilation factor d=0 is not generally valid.
return ( Dilator1(d)^Dilator2(d) )

The anisotropic dilator (�7.7.9) on quadric surface entities is implemented using the
hyperbolic rotor (�8.1.70).

8.2 Example computations

8.2.1 Reframe to new observer in STA

The observer position is ot= cte1, and an observable vt= (o+ v)t moves relative to o,
where

v = �vce2=
1
2
ce2: (8.7)

We want to passively transform observable o, which is the conventional coordinate time t
observer, relative to the rest frame of the observable v with proper time � . However, we
prefer not to passively transform t into � , and prefer to get a velocity subtraction in the
frame of o. Solution: use a passive boost operation (�5.2.3) on o, followed by a spacetime
contraction.

o_rel_v = (
HRotor1( Rational(1,2), e2 ).rev()*
( c*t*e1 )*
HRotor1( Rational(1,2), e2 )

)
normalized = c*t*Pow( scalar(o_rel_v|e1), -1 )*o_rel_v
normalized

normalized = cte1¡
ct
2
e2: (8.8)

DCSTA computing with SymPy 177



Observable o is seen to be moving with velocity v=¡1

2
ce2 relative to observable v. The

spacetime contraction is a normalization of the conventional observer component o into
the normalized spacetime velocity value c
0 or spacetime position value ct
0.

8.2.2 Collinear velocity addition in STA

A particle moves with velocity u= 3

4
ce2 relative to another particle moving with velocity

v=
1

2
ce2 relative to an observer o= ce1. The two velocities u and v are collinear, and if we

simply add the velocities, we may conclude that u relative to o is a velocity v+u= 5

4
ce2.

However, this speed is greater than light speed c, which according to the physical theory
of special relativity is an impossible speed. Velocities cannot be simply added, and we
must use a reframe operation to reframe u relative to o. Relative to v = o + v, the
particle moving with velocity u is written ut=ot+ut= cte1+ut, where this o is v as the
observer and this time t is its proper time. We want this u reframed relative to observer
o of v=o+v. The solution is to apply to u the operation for the reverse of the reframe
relative to v that goes back to relative to its o, and this reframe is also seen as boosting
the particle u=o+u by the velocity v relative to o.

u_rel_o = (
HRotor1( Rational(1,2), e2 )*
( c*t*e1 + Rational(3,4)*c*t*e2 )*
HRotor1( Rational(1,2), e2 ).rev()

)
normalized = c*t*Pow( scalar(u_rel_o|e1), -1 )*u_rel_o
normalized

normalized = cte1+
10
11
cte2: (8.9)

The result is relativistic velocity addition, where the boost of velocities does not exceed
the speed of light c.

8.2.3 Velocity addition in STA

The velocities u and v need not be collinear, and the same operation of the previous
section (�8.2.2) for collinear velocities can be applied to reframe any velocity u relative to
v=o+v into u relative to o. The result is the so-called velocity-addition formula, which
could also be called the velocity boost formula,

urelv!urelo = o+urelo (8.10)
= o+u�v (8.11)

c
0+
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

(8.12)

where o= c
0, and the G0;3 SA metric gives

v̂ =
v
kvk =

v

¡v2
p (8.13)

v̂2 = ¡1 (8.14)
u �v = ¡kukkvkcos(�uv): (8.15)
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The notation u� v can be read �u boosted by v� since this is the actual operation, but
this may be backwards compared to some other literature. In general, u�v=/ v�u. Some
other identities are

u=ujjv̂+u?v̂ = (u � v̂+u^ v̂)v̂¡1=(¡u � v̂)v̂+(v̂^u) � v̂ (8.16)

�v =
kvk
c

(8.17)


v =
1

1¡ �v2
p : (8.18)

When the boost velocity approaches light speed kvk! c, we get

u�v =
kukcos(�uv)v̂+ cv̂

1+
kukcos(�uv)

c

=
c(kukcos(�uv)+ c)v̂
c+ kukcos(�uv)

= cv̂=v: (8.19)

For collinear u and v, then

u�v=�v�v=v�u =
u+v

1+
kukkvk
c2

(8.20)

where as the boost velocity approaches light speed kvk! c,

u�v ! c(kuk+ c)û
c+ kuk = cû=v: (8.21)

For perpendicular u and v, then

u�v = 1¡ kvk
2

c2

r
u+v=

1

v
u+v (8.22)

where as the boost velocity approaches light speed kvk ! c, u/ 
v! 0 and u � v! v.
The velocity-addition formula is derived and discussed more in [9] and (�5.2.3).

8.2.4 Boost of an ellipsoid entity for contraction e�ect

Any DCSTA GIPNS 2-vector quadric surface entity can be boosted into a velocity in
spacetime. Boosting sets the quadric surface into motion at constant velocity and gives the
surface a length contraction e�ect. As an example of the contraction e�ect, we can boost
an ellipsoid to a natural speed �v= 1¡ d2

p
for the dilation factor d. A good example is

to choose d= 1/2 to squeeze the ellipsoid into one-half its length in the direction of the
velocity.

moving_ellipsoid = (
HRotor( sqrt(1-Rational(1,2)**2), e2 )*
GIPNS_Ellipsoid(0,0,0,10,10,10)*
HRotor( sqrt(1-Rational(1,2)**2), e2 ).rev()

)
print( N(V|moving_ellipsoid) )

The moving_ellipsoid is evaluated at a symbolic point V. The full symbolic output can
be long, therefore numeric output has been generated using N(). The result is printed
in plain text using print(). Output of this form can be graphed using Mayavi . For
graphing, it works well to use natural units, where c=1, so that the graph can be near the
origin. Mayavi seems to work best if graphing can be limited to a small cube around the
origin that is about �20 units on each axis. If Mayavi is installed and working, a small
mayavi.py python �le can be created to graph this output (copied into surface) as:
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from __future__ import division
from numpy import *
from mayavi import mlab

mlab.figure(bgcolor=(1,1,1))
x, y, z = mgrid[-20:20:100j, -20:20:100j, -20:20:100j]

# axes
cylx = y**2 + z**2 - 1/10
cyly = x**2 + z**2 - 1/10
cylz = y**2 + x**2 - 1/10
mlab.contour3d(x,y,z,cylx,contours=[0],opacity=0.25,color=(1,0,0))
mlab.contour3d(x,y,z,cyly,contours=[0],opacity=0.25,color=(0,1,0))
mlab.contour3d(x,y,z,cylz,contours=[0],opacity=0.25,color=(0,0,1))

# function for rendering a dot somewhere
def dotat(px,py,pz):

blackdot = (x-px)**2 + (y-py)**2 + (z-pz)**2 - 1/sqrt(5)
mlab.contour3d(

x, y, z, blackdot, contours=[0],
opacity=0.5, color=(0,0,0)

)
return

# plot some dots
dotat(5,0,0)
dotat(0,10,0)
dotat(0,0,10)

# Set the light speed (units per second)
# Use a small unit or else boosted moving surfaces move
# out of graphing range after only a few time units.
c = 1
# Set the time.
# Boosted surfaces move natural-speed units per time unit.
# At t=20, a surface at speed c=1 moves out of graphing range.
t = 0
# The numerical printed output, copied into here:
surface = (

0.03*c**2*t**2 - 0.0692820323027551*c*t*x +
0.04*x**2 + 0.01*y**2 + 0.01*z**2 - 0.999999999999999

)
# Mayavi rendering function
mlab.contour3d(

x, y, z, surface, contours=[0], opacity=0.5,
color=(0.0, 1.0, 1.0)

)
mlab.show()
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The mayavi.py �le is saved and then run from a command line as:

ipython mayavi.py

y: e3

x: e2
x=5

y= 10

Figure 8.1. Ellipsoid (sphere r= 10) boosted to �v= 1¡
¡ 1
2

�
2

q
in x-direction

Figure 8.1 shows a boosted ellipsoid at time t = 0. The ellipsoid was initially at
the origin and spherical with radius r = rx = ry = rz = 10. The spherical ellipsoid was

boosted into a natural speed �v= 1¡
¡ 1
2

�
2

q
for a dilation factor d= 1

2
in the x-direction

v̂= 
1= e2. The boosted sphere is squeezed by the boost into an ellipsoid that is length-
contracted to half-size in the x-direction with rx=5, while the y and z directions hold their
sizes with ry= rz= 10. As the time t is increased, the boosted sphere moves toward the
right along the x-axis. For natural units c=1, the boosted sphere moves �v= 3

p
/2�0.866

units per time unit.

8.2.5 Boost of an ellipsoid entity for dilation
As an example of dilating a quadric surface by dilation factor d = 2 using the boost
operation, we can take a spherical ellipsoid with radius r=5 centered at 5(e2+e3+e4) and
boost it into an imaginary natural speed �v= 1¡ d2

p
in the unit direction 1

3
p (e2+ e3+

e4). Following the boost for dilation, the result is projected onto the spatial subalgebra
using the G2;8 anti-DCGA pseudoscalar IDS. The projection discards imaginary time
components and resets the entity at time t=0. The dilation is coded as:

dilated_ellipsoid = ((
HRotor( sqrt(1-2**2), e2+e3+e4 )*
GIPNS_Ellipsoid(5,5,5,5,5,5)*
HRotor( sqrt(1-2**2), e2+e3+e4 ).rev()

)|IDS)*IDS.inv()
print( N(V|dilated_ellipsoid) )
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1

3
p (e2+ e3+ e4)

y: e3

x: e2

z: e4

(10,10,10)

10

10

y=5

z=5

x=5

o

Figure 8.2. Ellipsoid (sphere r=5) dilated by factor d=2 in direction 1

3
p (e2+ e3+ e4)

Figure 8.2 shows the graph of the dilated ellipsoid. In the unit direction 1

3
p (e2+e3+e4)

of dilation by factor d= 2, the spherical ellipsoid is dilated from a diameter of 10 into a
diameter of 20. The spherical diameter remains 10 orthogonal to the direction of dilation.
The center point (5; 5; 5) of the original spherical ellipsoid is dilated into (10; 10; 10) as
the new center point of the dilated ellipsoid.

9 Conclusion
The G4;8 Double Conformal Space-Time Algebra (DCSTA) has been presented in this
paper as a straightforward extension of the G8;2 Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA) [7][5][6][8]. DCSTA is a large, complicated algebra and this
paper may contain some mistakes and has probably overlooked some things that should
have been discussed. Nevertheless, this author feels that this paper substantially conveys
the basic ideas and concepts of DCSTA. Certainly, much further research can be done
into DCSTA and its applications.
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