
Double Conformal Space-Time Algebra
by Robert Benjamin Easter

Abstract

This paper introduces the G4;8 Double Conformal Space-Time Algebra (DCSTA).
G4;8 DCSTA is a straightforward extension of the G8;2 Double Conformal / Darboux
Cyclide Geometric Algebra (DCGA). G4;8 DCSTA extends G8;2 DCGA with space-
time boost operations and di�erential operators for di�erentiation with respect to the
time-like w= ct direction and time t. The spacetime boost operation can implement
anisotropic dilation (directed non-uniform scaling) of quadric surface entities. Quadric
surface entities can be boosted into moving surfaces with constant velocities that
display the length contraction e�ect of special relativity. To demonstrate G4;8 DCSTA
as concrete mathematics with possible applications, this paper includes sample code
and example calculations using the symbolic computer algebra system SymPy .

Keywords: conformal geometric algebra, space-time algebra, Cli�ord algebra

A.M.S. subject classi�cation: 15A66, 83A05, 53A30, 14J70, 51K05

1 Introduction

This paper1 introduces the G4;8 Double Conformal Space-Time Algebra (DCSTA), which
is a straightforward extension of the G8;2 Double Conformal / Darboux Cyclide Geometric
Algebra (DCGA) into spacetime. G8;2 DCGA is introduced in the paper [6] and discussed
further in the papers [4] and [5].
G4;8 DCSTA may o�er new mathematical methods for some applications. However,

the high-dimensionality of DCSTA incurs high computational cost and applications may
require an e�cient implementation using optimized hardware and software for DCSTA.
Other works on algebras similar to G4;8 DCSTA may exist in the mathematical physics
literature, but no speci�c works essentially the same as G4;8 DCSTA were known by this
author at the time of researching and writing this paper.
G4;8 DCSTA is an application of the G4;8 Geometric Algebra. Geometric Algebra is

introduced in the book [10] by Hestenes and Sobczyk.
G4;8 DCSTA contains two copies of the G2;4 Conformal Space-Time Algebra (CSTA).

G2;4 CSTA is introduced by C.J.L. Doran and A.N. Lasenby in [2] as the spacetime
conformal group. G2;4 CSTA embeds the G1;3 Space-Time Algebra (STA). G1;3 STA is
introduced by Hestenes in [9].
G4;8 DCSTA has twelve unit vector elements ei: 1� i� 12 with metric signature

[1;¡1;¡1;¡1; 1;¡1; 1;¡1;¡1;¡1; 1;¡1]:

The �rst six elements are in the G2;4 Conformal Space-Time Algebra 1 (CSTA1)

ei
2 =

�
1 : i2f1; 5g
¡1 : i2f2; 3; 4; 6g:

1. Revised version v2, February 24, 2016 , submitted to http://vixra.org/author/robert_b_easter. This
version may be superseded at the above link by newer revised versions.

1

The next six elements are in the G2;4 Conformal Space-Time Algebra 2 (CSTA2)

ei
2 =

�
1 : i2f7; 11g
¡1 : i2f8; 9; 10; 12g:

G2;4 CSTA1 embeds the four elements of the G1;3 Space-Time Algebra 1 (STA1)

ei
2 =

�
1 : i2f1g
¡1 : i2f2; 3; 4g:

G2;4 CSTA2 embeds the four elements of the G1;3 Space-Time Algebra 2 (STA2)

ei
2 =

�
1 : i2f7g
¡1 : i2f8; 9; 10g:

G1;3 STA1 contains the three elements of the G0;3 Space Algebra 1 (SA1)

ei
2: i2f2; 3; 4g = ¡1:

G1;3 STA2 contains the three elements of the G0;3 Space Algebra 2 (SA2)

ei
2: i2f8; 9; 10g = ¡1:

The STA elements, the Dirac gammas
i and Pauli sigmas �i, can be de�ned in STA1 as

i =

�
ei+1 : i2f0; 1; 2; 3g

0
1
2
3 : i=5

�1=�x =
1
0

�2=�y =
2
0

�3=�z =
3
0:

The STA elements
0,
1,
2, and
3 that are introduced in [9] are used in all general
discussions of STA. The STA elements can be identi�ed with either the STA1 or STA2
elements. The elements
1,
2, and
3 can also be denoted
x,
y, and
z when empha-
sizing their usage as the conventional x, y, and z spatial directions.

2 Space Algebra (SA)

The G0;3 Space Algebra (SA) is very similar to the G3 Algebra of Physical Space (APS).
Vectors in SA square negative, which causes sign �ips in many formulas adapted from
APS or DCGA. While DCGA has two Euclidean G3 APS spaces, DCSTA has two anti-
Euclidean G0;3 SA spaces.

The subscript S denotes an element or operation in generic SA. The subscript S1
denotes an element or operation in SA1. The subscript S2 denotes an element or operation
in SA2. In most formulas, these subscripts can simply be substituted to write formulas in
SA, SA1, and SA2. Such duplication of similar formulas in each representation is avoided
unless it adds clarity to the discussion.

The 3-D spatial vectors in G0;3 SA are generally bold lowercase letters, such as p=pS.
The 4-D spacetime vectors in G1;3 STA are generally bold italic lowercase letters, such
as p= pM.

2 Section 2

2.1 SA unit pseudoscalar
The SA 3-vector unit pseudoscalar IS with signature (¡¡¡) is

IS =
1
2
3

IS� = (¡1)3(3¡1)/2IS=¡IS
IS
2 = ¡ISIS�=1

IS
¡1 = IS:

The SA1 3-vector unit pseudoscalar IS1 with signature (¡¡¡) is

IS1 = e2e3e4:

The SA2 3-vector unit pseudoscalar IS2 with signature (¡¡¡) is

IS2 = e8e9e10:

The notation A� is the reverse of A. The G0;3 SA unit pseudoscalar IS is its own inverse
and squares to 1 as a hyperbolic unit . In G3 APS, the unit pseudoscalar squares to ¡1 and
is an imaginary unit . This di�erence a�ects how the SA dualization operations are de�ned.

2.2 SA dualization
The SA dual AS�S of an SA multivector AS is

AS
� =AS

�S = ASIS�=¡ASIS=¡ASIS¡1:

The SA undual AS of a dual SA multivector AS�S is

AS = AS
� IS�=ASIS�IS�=ASISIS

¡1

The SA dual and undual operations are the same, and the SA dualization is an involution.
The notation AS denotes an element of the algebra denoted by S , which is SA. In

later sections, we will encounter the algebras denoted by M, C, and D, which are STA,
CSTA, and DCSTA, respectively. For the subalgebras S, M, and C of D, there are two
copies of them in D, which are denoted by S1 and S2 and similarly for other subalgebras
that have a double in DCSTA. For example, the Pauli subalgebra of STA is denoted P,
and there are P1 in M1 and P2 in M2.

The explicit dualization notation AS�S denotes the dual of AS in subspace S using the
unit pseudoscalar IS of the subspace S. The implicit dualization notation AS� denotes the
same dualization as indicated by the subscript S.

To introduce the notation further, the explicit dualizations are

A� =

8>>><>>>:
AS
�S=AS

� =¡ASIS¡1 : SA dualization
AM
�M=AM

� =AMIM
¡1 : STA dualization

AC
�C=AC

�=ACIC
¡1 : CSTA dualization

AD
�D=AD

� =ADID
¡1 : DCSTA dualization.

Duals are typically the result of division by the unit pseudoscalar. The SA dualization is
de�ned as division by the negative unit pseudoscalar, and the reason is explained in (�2.6)
on the SA rotor. These dualizations are discussed further in later sections.

Space Algebra (SA) 3

2.3 SA test vector
The symbolic SA test vector tS is de�ned on the basis of the Dirac gammas [9] as

t= tS = x
1+ y
2+ z
3:

The symbolic SA1 test vector tS1 is de�ned as

tS1 = xe2+ ye3+ ze4:

The symbolic SA2 test vector tS2 is de�ned as

tS2 = xe8+ ye9+ ze10:

The symbolic scalars x, y, and z are the conventional coordinates in space. Numerical
scalars are denoted px, py, and pz for a vector p. This distinction between symbolic values
and numerical values is helpful in symbolic computations. Symbolic computations using
a symbolic computer algebra software, such as SymPy [13] with the GAlgebra [1] module,
can assist in the study of DCSTA and other high-dimensional Geometric Algebras.

A test vector, or other test entity, holds symbolic coordinates and parameters. A non-
test vector, or other non-test entity, holds numeric coordinates and parameters. A non-
test entity, or simply an actual entity , can be evaluated against a symbolic test entity to
obtain the symbolic algebraic expression, or implicit surface function, that is represented
by the entity.

2.4 SA spatial velocity vector
An SA spatial velocity vector vS has the form

v=vS = vx
1+ vy
2+ vz
3:

An SA1 spatial velocity vector vS1 has the form

vS1 = vxe2+ vye3+ vze4:

An SA2 spatial velocity vector vS2 has the form

vS2 = vxe8+ vye9+ vze10:

The scalars vx, vy, and vz are coordinate speeds in the conventional x, y, and z spatial
directions.

The vector units e1 and e7 are in STA1 and STA2, respectively, where they serve as
the unit directions for light at coordinate speed vw = c in the conventional w = ct time
direction. Time is measured in distance that light travels, and clock time is a rescaling of
time by dividing out the constant speed of light c.

In special relativity, the non-negative norm of an SA velocity

kvSk = vS �vS
y

q
= ¡vS2
p

= vx
2+ vy

2+ vz
2

p
must not exceed light speed c

0�kvSk� c:

The conjugate vy is discussed by Perwass in [11] as anti-Euclidean subspace conjugation.

4 Section 2

The notations as used by Hestenes in [9] are not adopted here and con�ict with the
notations as they are adopted here. In [9], the notation vy is called hermitian conjugation
and is the reverse of an element in STA. The reverse v� is the notation that is adopted
here. In [9], the notation v� is called space conjugation and is anti-Euclidean subspace
conjugation in STA. The notation v� is adopted here as the dual of v. The conjugate vy

is adopted here, following Perwass in [11], and is discussed by this author in [7].
In general, a conjugation is an operation that selectively changes the signs on only

certain elements and there are many kinds of conjugations and notations. It is thought
that the notations that have been adopted here are the ones most commonly adopted in
the current literature on Geometric Algebra. The notations of Hestenes in [9] are widely
adopted in physics literature.

The conjugate, or space conjugation, of any STA multivector AM, including any SA
multivector, is

AM
y =
0AM
0:

This conjugation formula is valid for any G1;q Geometric Algebra, where
0= e1.

2.5 SA spatial position vector
An SA spatial position vector pS has the form

p=pS = px
1+ py
2+ pz
3:

An SA1 spatial position vector pS1 has the form

pS1 = pxe2+ pye3+ pze4:

An SA2 spatial position vector pS2 has the form

pS2 = pxe8+ pye9+ pze10:

The scalars px, py, and pz are coordinate positions in the conventional x, y, and z spatial
directions.

The vector units e1 and e7 are in STA1 and STA2, respectively, where they serve as
the unit directions for light at coordinate position pw=vwt= ct in the conventional w= ct
time direction.

In special relativity, an SA position vector has the form

pS = vSt

where pS = 0 at time t = 0. This notation follows the simple statement, position is the
product of velocity and time.

2.6 SA rotor
A rotation operator R, called a rotor , can be understood in terms of ratios, or products,
of unit vectors, which are called versors. A rotor is isomorphic to a quaternion versor
as discussed at length by this author in [7]. The concept of versors is generalized to k-
versors in [10]. A k-versor is the product of k unit vectors. In DCSTA, we will encounter
4-versors for rotation, translation, dilation, and boost.

Space Algebra (SA) 5

In SA, the unit bivector rotor elements are the ratios

i=k/j)
3/
2=¡
3
2
j= i/k)
1/
3=¡
1
3
k= j/i)
2/
1=¡
2
1:

The SA duals of the SA unit vector elements are

1
� =
1IS

�=¡
1IS=¡
1IS¡1=¡
1(
1
2
3)=¡
3
2) i

2
� =
2IS

�=¡
2IS=¡
2IS¡1=¡
2(
1
2
3)=¡
1
3) j

3
� =
3IS

�=¡
3IS=¡
3IS¡1=¡
3(
1
2
3)=¡
2
1)k:

The SA dualization is de�ned such that the isomorphism to quaternion units is via duals.
The dual of an SA vector xS is

x�=xS
� = ¡xSIS¡1:

The dual SA vector x� is the rotor element or logarithm of a rotor R= e
1

2
x�.

Given the SA unit vector

x̂= x̂S =
xS
kxSk

=
xS

¡xS2
p

as the axis of rotation, and �=kxSk as the non-negative angle of rotation, then the rotor
RS for the rotation is

RS = e
1

2
x�
= e

1

2
�x̂S
�
= e

1

2
�x̂SIS

�

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
x̂SIS�

= cos
�
1
2
�

�
¡ sin

�
1
2
�

�
x̂SIS

¡1

where (x̂S�)2=¡1. The axis x̂S and pseudoscalar IS may be in SA1 or SA2 by changing
subscript S to subscript S1 or S2, respectively.

The rotor operation that rotates the SA multivectorAS around the axis x̂S by angle � is

AS
0 = RSASRS

¡1=RSASRS�:

The SA multivector AS is typically a vector aS, but it can be any multivector in SA. The
vectors ai;j of any k(i)-blade, k(i)2f1; 2; 3g

Ai =
^
j=1

k(i)

ai;j

that is a term of

AS =
X
i

Ai

are each rotated

AS
0 =RSASRS

¡1 =
X
i

 ^
j=1

k(i)

(RSai;jRS
¡1)

!
by the rotor operation by a process called versor outermorphism, which is discussed by
Perwass in [11] and by this author in[7].

6 Section 2

The sense of positive rotation around an axis usually follows the right-hand rule on a
right-handed axes model. The sense of positive rotation around an axis follows the similar
left-hand rule on a left-handed axes model. The choice of axes model does not a�ect the
rotation mathematics, but it a�ects the orientation, or handedness, of the axes and the
interpretation of rotation results on the chosen axes model.

3 Space-Time Algebra (STA)
Space-Time Algebra (STA) is introduced in the book Space-Time Algebra by David
Hestenes [9]. STA is also called Dirac Algebra (DA). As explained in [9], the spacetime
split generates a Pauli Algebra (PA) on a unit bivector basis that could be used instead
of, or in addition to, the Space Algebra (SA). PA is isomorphic to G3 APS. DCSTA
contains two STA subalgebras, STA1 and STA2.

TheM is forMinkowski spacetime (1;3) and is the subscript that denotes an element
or operation in STA. The subscript M1 denotes an element or operation in STA1. The
subscript M2 denotes an element or operation in STA2.

3.1 STA elements

3.1.1 Dirac gammas and Pauli sigmas in STA

The Dirac gammas and Pauli sigmas can be de�ned in STA1 as

i =

�
ei+1 : i2f0; 1; 2; 3g

0
1
2
3 : i=5

�1=�x =
1
0

�2=�y =
2
0

�3=�z =
3
0:

The STA elements can also be de�ned similarly in STA2. The Dirac gammas and Pauli
sigmas are represented as matrices in other literature, but they have multivector repre-
sentations in STA. See reference [9] for more information about these representations.

The gammas are used to denote elements in STA subscripted M, but it should be
understood that all discussions of STA apply similarly in STA1 and STA2 by changing
subscripting and elements

STA , STA1 , STA2
M , M1 , M2

0 , e1 , e7

1 , e2 , e8

2 , e3 , e9

3 , e4 , e10:

3.1.2 STA unit pseudoscalar

The G1;3 STA 4-vector unit pseudoscalar IM with signature (+¡¡¡) is

IM =
0
1
2
3=
5

IM� = (¡1)4(4¡1)/2IM= IM

IM
2 = ¡1
IM
¡1 = ¡IM=¡IM� :

Space-Time Algebra (STA) 7

The G1;3 STA1 4-vector unit pseudoscalar IM1 with signature (+¡¡¡) is

IM1 = e1e2e3e4:

The G1;3 STA2 4-vector unit pseudoscalar IM2 with signature (+¡¡¡) is

IM2 = e7e8e9e10:

The Pauli Algebra 1 (PA1) and Pauli Algebra 2 (PA2) are denoted by P1 and P2,
respectively. The unit pseudoscalars of PA1 and PA2 are

IP1 = �P11�P21�P31=(e2e1)(e3e1)(e4e1)= IM1

IP2 = �P12�P22�P32=(e8e7)(e9e7)(e10e7)= IM2:

3.1.3 STA test vector

The symbolic STA test vector tM is de�ned on the basis of the Dirac gammas [9] as

t= tM = w
0+ x
1+ y
2+ z
3= ct
0+ tS=oMt+ tS:

The symbolic STA1 test vector tM1 is de�ned as

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1:

The symbolic STA2 test vector tM2 is de�ned as

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2:

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
timelike coordinate w=ct is the coordinate position of light at light speed c at time t. The
observer , as de�ned in the theory of special relativity, is identi�ed as the symbolic
timelike velocity oM.

The symbolic test vector tM is useful in symbolic computations and will be embedded
as the G2;4 CSTA test point TC. CSTA1 and CSTA2 test points TC1 and TC2, respectively,
are wedged to form the G4;8 DCSTA test point TD=TC1^TC2. The DCSTA point value-
extraction elements Ts are de�ned as elements that extract values from the DCSTA test
point TD as s=TD �Ts.

3.1.4 STA observer

An STA observer oM has the normalized form

o=oM = c
0:

An STA1 observer oM1 has the normalized form

oM1 = ce1:

An STA2 observer oM2 has the normalized form

oM2 = ce7:

In special relativity, the observer is a timelike spacetime velocity, where c is the
speed of light. An STA observer oM can be written on the basis of the Dirac gammas as

o=oM = c
0:

8 Section 3

In International Standard (SI) measurement units, c= 299; 792; 458m/s. In natural units,
which are often convenient for testing calculations on a smaller unit scale, c=1.

3.1.5 STA spatial velocity

An STA spatial velocity vS has the form

v=vS = vx
1+ vy
2+ vz
3:

An STA1 spatial velocity vS1 has the form

vS1 = vxe2+ vye3+ vze4:

An STA2 spatial velocity vS2 has the form

vS2 = vxe8+ vye9+ vze10:

STA spatial velocities are the same as SA spatial velocities. The vx, vy, and vz are coor-
dinate speeds in the conventional x, y, and z directions.

The non-negative norm of an SA spatial velocity vS is

kvSk = ¡vS2
p

= vx
2+ vy

2+ vz
2

p
:

In special relativity,

0�kvSk� c:

The unit direction of an STA or SA spatial velocity vS is

v̂S =
vS
kvSk

:

3.1.6 STA spatial position

An STA spatial position pS has the form

p=pS=vSt = (vx
1+ vy
2+ vz
3)t= px
1+ py
2+ pz
3:

An STA1 spatial position pS1 has the form

pS1=vS1t = (vxe2+ vye3+ vze3)t= pxe2+ pye3+ pze3:

An STA2 spatial position pS2 has the form

pS2=vS2t = (vxe8+ vye9+ vze10)t= pxe8+ pye9+ pze10:

In special relativity, the time t is the proper time of the observer oM, and the spatial
position must be pS=0 at t=0.

3.1.7 STA spacetime velocity

An STA spacetime velocity vM has the normalized form

v=vM = oM+vS= c
0+(vx
1+ vy
2+ vz
3):

An STA1 spacetime velocity vM1 has the normalized form

vM1 = oM1+vS1= ce1+(vxe2+ vye3+ vze4):

Space-Time Algebra (STA) 9

An STA2 spacetime velocity vM2 has the normalized form

vM2 = oM2+vS2= ce7+(vxe8+ vye9+ vze10):

In special relativity, a spacetime velocity vM is the sum of an observer spacetime
velocity oM and a spatial velocity vS relative to the observer, where 0�kvSk� c.

The modulus of an STA spacetime velocity vM is

jvMj = vM
2

p
= c2+vS

2
p

= c2¡kvSk2
p

:

The square of a spacetime velocity v2= c2¡kvk2 may be positive or negative, and is said
to have Minkowski signature or metric (1;3). A spacetime velocity with positive signature
0<v2 is timelike, with negative signature v2<0 is spacelike, and with null signature v2=0
is lightlike.

The conjugate of an STA spacetime velocity vM is

vM
y =
0vM
0:

The norm of an STA spacetime velocity vM is

kvMk = vM �vM
y

q
= vM � (
0vM
0)
p

= c2¡vS2
p

= c2+ kvSk2
p

:

The unit , or modulus-unit , of an STA spacetime velocity vM is

v̂M=
vM
jvMj

=
vM

oM
2 +vS

2
p =

vM

c2¡ vx2¡ vy2¡ vz2
p :

The norm-unit of an STA spacetime velocity vM is
vM
kvMk

=
vM

oM
2 ¡vS2

p =
vM

c2+ vx
2+ vy

2+ vz
2

p :

The overhat is on the modulus-unit of an STA spacetime vector a with aw=/ 0 as â, but the
overhat is on the norm-unit of an SA spatial vector a with aw=0 as â. In some contexts, it
is explicitly noted when the overhat notation on spacetime vectors is taking the norm-unit.

3.1.8 STA spacetime position

An STA spacetime position pM has the normalized form

p= pM=vMt = (oM+vS)t=oMt+pS:

In special relativity, the spacetime position must be pM = 0 at time t = 0. A
spacetime position is sometimes called a particle.

The overdot notation p_M = vM denotes the time t derivative of spacetime position
pM=vMt, where

p_M = @tpM=
@pM
@t

=
@
@t
vMt=vM:

The modulus-unit

p̂M =
pM
jpMj

=
pM

pM
2

p =
pM

(ct)2¡kpSk2
p =

pM

pw
2 ¡ px

2¡ py
2 ¡ pz

2
p

and the norm-unit
pM
kpMk

=
pM

pM � pMy
q =

pM

(ct)2+ kpSk2
p =

pM

pw
2 + px

2+ py
2+ pz

2
p

10 Section 3

of an STA spacetime position pM are similar to those of an STA spacetime velocity vM.

3.2 STA operations

3.2.1 STA spacetime velocity normalization

After boost operations BMvMBM� or a projection vM=C¡1(VC), an STA velocity vM may
require a normalization of the observer as

vM
0 = c

vM
vM �
0

= c
0+vS=oM+vS:

The normalization brings vM into the normalized form vM
0 . The prime mark may be

dropped following normalization. Normalization scales the observer spacetime velocity
oM into the normalized form

oM = c
0

where time t is the observer's proper time. The observer spacetime position has the
normalized form

oMt = ct
0:

3.2.2 STA spacetime position normalization

After boost operations BMpMBM� or a projection pM= C¡1(PC), an STA position pM=
vMt may require a normalization of the observer as

pM
0 = ct

pM
pM �
0

= ct
0+vSt=(oM+vS)t:

The normalization brings pM into the normalized form pM
0 . The prime mark may be

dropped following normalization. Normalization scales the observer spacetime position
oMt into the normalized form

oMt = ct
0

where time t is the observer's proper time.

3.2.3 STA dualization

The STA dual AM�M of an STA multivector AM is

AM
� =AM

�M = AMIM
¡1=¡AMIM:

The STA undual AM of an STA multivector AM�M is

AM = AM
� IM=AMIM

¡1IM:

The STA dualization is de�ned such that, if AM is a unit polar bivector of the Pauli
Algebra (PA) in terms of the Pauli units �x; �y; �z, then its dual is the unit axial
bivector rotor element that generates rotations around AM. The PA dualization in STA
is isomorphic to the G3 APS dualization.

Space-Time Algebra (STA) 11

In APS, a vector n and its dual pseudovector n�=nI¡1=ne3e2e1 are polar and axial
elements, respectively. An APS rotor R for a rotation around a unit vector axis n by an
angle � is

R = e
1

2
�n�

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
n�:

The APS rotor operation is p0 = RpR�. The PA units and dualization in STA work
similarly to the APS units and dualization by direct substitution of units.

The choice to use either SA or PA may depend on the application or personal prefer-
ence. Theorems and formulas in PA, or APS, may require some sign changes when adapted
into SA. PA has a bivector basis, while SA has a vector basis.

3.2.4 STA rotor

The STA spatial rotation operator, or rotor , RM=RS is the SA rotor RS (�2.6).
The STA 2-versor spatial rotor RS for rotation in SA space around the SA unit vector

axis x̂S by angle � is

RS = e
1

2
�x̂S
�S
= e

1

2
�x̂SIS

�

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
x̂SIS�

= cos
�
1
2
�

�
¡ sin

�
1
2
�

�
x̂SIS

¡1:

The rotor operation

AM
0 = RSAMRS�

rotates any multivector AM in STA as expected in the spatial SA components, but leaves
the STA timelike components unchanged.

In PA, the timelike component w
0 becomes a scalar w
0
0 = w = ct and is also
una�ected by spatial rotations. The PA rotor is the same rotor RP=RS, but arrived at as

RP = e
1

2
�x̂P
�P
= e

1

2
�x̂PIP

¡1
= e

1

2
�x̂S
0IM

¡1
= e

¡1

2
�x̂S
0IM= e

¡1

2
�x̂SIS= e

1

2
�x̂SIS

�
:

3.2.5 STA spacetime boost

In this section, the STA boost operator B is derived. In the derivation, subscripting with
M and S is omitted, but the notation should be understood in context.

An STA boost operation is a hyperbolic rotation operation that can turn an STA
observer with spacetime velocity

o = c
0

into a moving observer, or particle, with spacetime velocity

v = o+v= c
0+ kvkv̂

that is consistent with special relativity. A boost can also be applied to a particle
that is already moving to change the velocity of the particle, but a boost can never increase
the speed of a particle to greater than light speed c relative to any observer.

To derive the boost operation, we can start by de�ning the ratio of spacetime velocities
of a particle v and its observer o as the hyperbolic biradial v/o= vo¡1 (�v by o�). The
term biradial was coined by Hamilton in his original work on Quaternions [8].

12 Section 3

The hyperbolic biradial

H = vo¡1=
jv j
jojv/o=

c2+v2
p

c
Ĥ

= 1¡ kvk
2

c2

r
Ĥ = 1¡ �v

2
p

Ĥ =
1

v
Ĥ

is an operator that turns the spacetime velocity of the observer o into the spacetime boost
velocity of the boost particle

p1 = vt=(o+v)t

that is relative to the same observer o by the one-sided versor operation

v = Ho:

The natural speed �v of the velocity v is

�v =
kvk
c
:

The Lorentz factor
v of the velocity v is

v =
1

1¡ �v
2

p :

The length contraction, to length L from an initial length L0 in the direction of boost
velocity v, is given by

L =
L0

v

=L0 1¡ �v
2

p
:

The dilation factor of the velocity v is

d =
1

v
= 1¡ �v

2
p

:

For a dilation factor d, the required natural speed is �v= 1¡ d2
p

. For d�1, dilation can
be called contraction, which is the usual case. For 1<d, then �v is an imaginary natural
speed and it is possible to dilate lengths instead of contract lengths, but dilated lengths
are only geometrical e�ects, not physics e�ects.

The hyperbolic versor Ĥ is the unit hyperbolic biradial

Ĥ =
vH =
vvo
¡1=

v
c
v
0

=

v
c
(v �
0+v^
0)=
v+

v
c
v
0

=
v+
v
kvk
c
v̂
0=
v+
v�vv̂
0

= cosh('v)+ sinh('v)v̂
0= e'vv̂
0

where

(v̂
0)2=(v̂^
0)2 = 1

v = cosh('v)

v�v = sinh('v)

�v = tanh('v)=
sinh('v)
cosh('v)

'v = atanh(�v):

Space-Time Algebra (STA) 13

Using half the rapidity 1

2
'v, the boost operator B is

B= Ĥ
1

2 = e
1

2
'vv̂
0

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂
0

=
(1+ �v)+ 1¡ �v

2
p

2 1+ �v
p

1¡ �v
24

p +
(1+ �v)¡ 1¡ �v

2
p

2 1+ �v
p

1¡ �v
24

p v̂
0

' 1
2

�
1+ �v+ 1¡ �v

2
p �

+
1
2

�
1+ �v¡ 1¡ �v

2
p �

v̂
0: (1)

This last form (1) of B is valid for �v=1 and may be more numerically stable than the
hyperbolic functions for �v! 1, where the hyperbolic functions approach 1. However,
(1) is valid only for ¡1< �v� 1 and dilations using imaginary speeds and rapidities do
not work with (1).

The STA boost operation B(ut)B¡1 on STA position p0=ut relative to observer o

p0=ut = (o+u)t=(c
0+ kukû)t

is

p0
0 =(ut)0 = B(ut)B¡1=B(ut)B�= tBuB�=u0t

where B� is the reverse of B

B� = e
1

2
'v
0v̂= e

¡1

2
'vv̂
0=B¡1:

The STA position normalization of the boosted STA position p00 is

p0
00 = ct

p0
0

p0
0 �
0

= c
u0

u0 �
0
t=u00t=(o+u00)t:

The time t is the proper time of the observer o. The normalized boosted position p000 has
its initial spacetime velocity u boosted by the spatial boost velocity v relative to the
observer o. For boost speed kvk� c and initial speed kuk� c, the boost is approximately
an addition of velocities

u00 � u+v=o+u+v:

For u=0, or u=o, the normalized boosted position p000 is exactly

p0
00=u00t = (o+v)t=vt= p1

which is the observer ot boosted into the boost particle p1. The double prime marks can
be dropped if the new p0 and its observer o are understood.

In special relativity, the �velocity addition� operation, or formula, is the spatial
velocity part u00 of a normalized boost operation p000. The boost of a velocity u by a boost
velocity v, both relative to an observer o, is denoted u00 = u � v and is such that light
speed c can never be exceeded, 0�ku�vk� c. For low speeds, u�v�u+v.

The STA boost operator BM for a boost by natural speed �v in the SA unit spatial
direction v̂S relative to the observer oM= c
0 is de�ned as

BM = e
1

2
'vv̂S
0

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S ^
0

14 Section 3

where the spacetime boost velocity vM of the boost operator BM is

vM = oM+vS= c
0+ kvSkv̂S= c
0+ �vcv̂S

and the rapidity 'v of the spatial boost velocity vS is

'v = atanh(�v)= atanh
�
kvSk
c

�
:

The STA boost operation with position normalization on an STA position pM0=uMt is

pM0

0 = ct
BMpM0BM

�

(BMpM0BM
�) �
0

:

The velocity normalization uses factor c instead of ct in the above boost operation.
The particle of the STA boost is

pM1 = vMt

which is the particle that results by boosting the observer position pM0 = oMt and
normalizing to obtain the transformation pM0! pM1.

Using the hyperbolic function composition identities

cosh
�
1
2
atanh(�v)

�
=

(1+ �v)+ 1¡ �v
2

p
2 1+ �v
p

1¡ �v
24

p for ¡1< �v< 1

sinh
�
1
2
atanh(�v)

�
=

(1+ �v)¡ 1¡ �v
2

p
2 1+ �v
p

1¡ �v
24

p for ¡1< �v< 1

cosh(atanh(�v)) =
1

1¡ �v
2

p for ¡1< �v< 1

sinh(atanh(�v)) =
�v

1¡ �v
2

p for ¡1< �v< 1;

cosh(2atanh(�v)) =
1+ �v

2

1¡ �v
2 for ¡1< �v< 1

sinh(2atanh(�v)) =
2�v
1¡ �v

2 for ¡1< �v< 1

it can be shown that the boost operator that applies the boost �v twice successively, and
adds the rapidity 2'v, is

BMBM=B�vB�v =
1

1¡ �v
2

p +
�v

1¡ �v
2

p v̂
0

and the boost operator that applies the boost 1

2
�v twice successively is

B1

2
�v
B1

2
�v

=
2

1¡ �v
2

p +
�v

1¡ �v
2

p v̂
0:

The boost operation that applies boosts by 1

2
�v twice successively

(ut)0 �
�
B1

2
�v
B1

2
�v

�
ut
�
B1

2
�v
B1

2
�v

��
is approximately equal , for small �v� c, to the single boost by �v

(ut)0 = B�v(ut)B�v
� :

Space-Time Algebra (STA) 15

The double boost operator B�vB�v can be de�ned as successive re�ections in two hyper-
bolic spacetime planes, where the �rst plane contains the observer and the second plane
contains the boost particle. The two planes bound the hyperbolic angle 'v that turns
from the �rst plane at �o= 0 into the second plane at �v, toward the direction in space
of the boost velocity, or spatial axis, v.

For very small �v� c, then 'v= atanh(�v)� �v and then

BM = e
1

2
'vv̂
0= e

1

4
'vv̂
0e

1

4
'vv̂
0=B1

2
'v
B1

2
'v

� 2

1¡ �v
2

p +
�v

1¡ �v
2

p v̂
0=B1

2
�v
B1

2
�v

� e
1

2
�vv̂
0= cosh

�
1
2
�v

�
+ sinh

�
1
2
�v

�
v̂
0

The good approximation of BM for very small �v� c is

BM � 2

1¡ �v
2

p +
�v

1¡ �v
2

p v̂
0:

Since the magnitude of the versor BM is not important, it can be rescaled as

BM�B� = 1+
1
2
�vv̂
0=1+

1
2c
v
0:

The approximate boost operator B� continues to hold light speed c as the limit of suc-
cessive boosts and has good accuracy for a wide range of low speeds.

3.2.6 STA reframe (reverse boost)

A reverse boost is a change in spacetime observer frame, or reframe, which is similar to
a change of spatial basis using a reverse spatial rotation. If pM0 is a position relative to
observer velocity oM, then

pM0

0 = BM
¡1pM0BM=BM� pM0BM

is pM0 relative to the new observer particle pM1=vMt of the boost BM. The reverse boost
turns vM into the new observer oM0 . Relative to the new observer, the normalization of
pM0

0 to a new pM0 (dropping primes) is

pM0 = ct
pM0

0

pM0

0 �
0
such that the observer always has the normalized position oMt= ct
0 at its proper time
t. The observer rests at the spatial origin of the frame.

For example, if the old position is pM0=oMt and the boost spacetime velocity of BM is
vM=oM+vS, which is the new observer, then the old!new position is oMt! (oM¡vS)t
relative to old!new observer vM! oM after normalization and dropping prime marks.
In this example, the old observer oM and particle vM exchange roles, such that the old
particle becomes the new observer and the old observer becomes the new particle.

The STA boost operator BM for a boost by natural speed �v in the unit spatial
direction v̂S relative to the observer oM= c
0 is de�ned as

BM = e
1

2
'vv̂S
0

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S ^
0

16 Section 3

where the new observer spacetime velocity vM!oM of the reframe boost operator BM is

vM = oM+vS= c
0+ kvSkv̂S= c
0+ �vcv̂S

and the rapidity 'v of the spatial boost velocity vS is

'v = atanh(�v)= atanh
�
kvSk
c

�
:

The STA reframe boost operation (reverse boost) with position normalization on an STA
position pM0=uMt is

pM0

0 = ct
BM� pM0BM

(BM� pM0BM) �
0
:

The velocity normalization uses factor c instead of ct in the above boost operation. This
operation is just the boost operation in reverse, or is an inverse boost operation. The time
t is the proper time of the new observer (pM1=vMt)!oMt.

4 Conformal Space-Time Algebra (CSTA)

G2;4 Conformal Space-Time Algebra (CSTA) is introduced in [2] as the spacetime con-
formal group.
G2;4 CSTA is a straightforward extension and adaptation of the G4;1 Conformal Geo-

metric Algebra (CGA). CGA is introduced by Hestenes, Li, and Rockwood in [14].
CGA is also discussed by Perwass in [11], and by Dorst, Fontijne, and Mann in [3].
G4;8 Double Conformal Space-Time Algebra (DCSTA) contains two copies of G2;4

CSTA, which are called CSTA1 and CSTA2. Elements and operations in CSTA1 are
subscripted with C1. Elements and operations in CSTA2 are subscripted with C2. Elements
and operations in generic CSTA are subscripted with C.

Most formulas are expressed in CSTA and written explicitly in CSTA1 and CSTA2
only when helpful to see how the particular CSTA1 and CSTA2 elements are used in
formulas. Most formulas in CSTA can be written in CSTA1 and CSTA2 by just changing
subscripts. CSTA uses the origin eo
 and in�nity e1
 points and the Dirac gammas
0;

1;
2;
3 for the timelike w = ct and spatial x, y, and z axes, respectively. The generic
CSTA point embedding is PC= C(pM).

4.1 CSTA unit pseudoscalar

The G2;4 CSTA 6-vector unit pseudoscalar IC with signature (+¡¡¡+¡) is

IC = IMe1
eo
=
0ISe1
eo
=
0
1
2
3e1
eo
=
0
1
2
3e+e¡

IC� = (¡1)6(6¡1)/2IC=¡IC
IC
2 = ¡1

IC
¡1 = ¡IC= IC�:

The G2;4 CSTA1 6-vector unit pseudoscalar IC1 with signature (+¡¡¡+¡) is

IC1 = IM1e11eo1= e1IS1e11eo1= e1e2e3e4e11eo1= e1e2e3e4e5e6:

Conformal Space-Time Algebra (CSTA) 17

The G2;4 CSTA2 6-vector unit pseudoscalar IC2 with signature (+¡¡¡+¡) is

IC2 = IM2e12eo2= e7IS2e12eo2= e7e8e9e10e12eo2= e7e8e9e10e11e12:

4.2 CSTA point
The CSTA null 1-vector point entity is very similar to the CGA null 1-vector point entity.
The following subsections de�ne the CSTA points at the origin and at in�nity, and the
CSTA point embedding.

4.2.1 Stereographic embedding and homogenization

The embedding of an G1;3 STA position vector pM into a G2;4 CSTA null 1-vector point PC
is done in exactly the same way a G3 APS point p is embedded into a G4;1 CGA point PC.
There are many references that explain the stereographic embedding and homogenization,
such as [11] and the paper on G8;2 DCGA [6].

4.2.2 CSTA point at the origin

The CSTA null 1-vector point at the origin is de�ned as

eo
 =
1
2
(¡e++ e¡)

where e+ is the stereographic unit and e¡ is the homogeneous unit, and

e+ =

�
e5 : in CSTA1
e11 : in CSTA2

e¡ =

�
e6 : in CSTA1
e12 : in CSTA2.

The CSTA1 null 1-vector point at the origin is de�ned as

eo1 =
1
2
(¡e5+ e6):

The CSTA2 null 1-vector point at the origin is de�ned as

eo2 =
1
2
(¡e11+ e12):

The CSTA null 1-vector point at the origin eo
 represents either eo1 or eo2.

4.2.3 CSTA point at in�nity

The CSTA null 1-vector point at in�nity is de�ned as

e1
 = e++ e¡:

The CSTA1 null 1-vector point at in�nity is de�ned as

e11 = e5+ e6:

The CSTA2 null 1-vector point at in�nity is de�ned as

e12 = e11+ e12:

The CSTA null 1-vector point at in�nity e1
 represents either e11 or e12.

18 Section 4

4.2.4 CSTA point embedding

The generic CSTA null 1-vector point PC entity is the embedding of an STA position pM as

PC= C(pM) = pM+
1
2
pM
2 e1
+ eo
:

The CSTA1 null 1-vector point PC1 entity is the embedding of an STA1 position pM1 as

PC1= C(pM1) = pM1+
1
2
pM1
2 e11+ eo1:

The CSTA2 null 1-vector point PC2 entity is the embedding of an STA2 position pM2 as

PC2= C(pM2) = pM2+
1
2
pM2
2 e12+ eo2:

The embedding function C is implemented as a piecewise embedding function that embeds
an STA, STA1, or STA2 vector into the corresponding CSTA, CSTA1, or CSTA2 point.
The generic CSTA embedding will used to avoid duplication in generic discussions that
can apply just as well in either CSTA1 or CSTA2 by only changing the subscripts accord-
ingly.

The CSTA point PC is similar to a CGA point PC as in [6] when PC is the embedding
of a spatial point pM=pS and we hold w= ct=0.

As a GOPNS entity (�4.5.2), a CSTA point PC simply represents the point , as
expected.

As a GIPNS entity, a �nite CSTA point PC, excluding e1
, actually represents a
hypercone in spacetime of the form

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0

where

pM = pw
0+ px
1+ py
2+ pz
3= pw
0+pS:

In general, a hypersurface in an n-D space has an (n¡1)-D surface. A cone or other surface
in 3-D space has a 2-D surface, but a hypercone or other hypersurface in 4-D spacetime
has a 3-D surface. A hypersurface is treated and conceptualized in most respects the same
as a 2-D surface, but it embeds extended dimensions and its mathematical forms contain
an additional term per extended dimension.

The hypercone is a result of the Minkowski spacetime metric (1; 3), which can be
seen in the hypercone equation. For comparison to G4;1 CGA, a CGA point embeds a 3-
D Euclidean vector with metric (3; 0) and represents an implicit surface equation of a
sphere with zero radius

(x¡ px)2+(y¡ py)2+(z¡ pz)2 = 0:

In 3-D spacetime with only two spatial dimensions by holding z ¡ pz= 0, the hypercone
reduces to the circular cone

(x¡ px)2+(y¡ py)2¡ (w¡ pw)2 = 0

which is an expanding circle in the xy-plane as the time-like coordinate w= ct increases
past pw. The hypercone is an expanding sphere in space that is expanding with time t in
radius

r = w¡ pw= ct¡ pw

Conformal Space-Time Algebra (CSTA) 19

at the speed of light c. The point begins expanding after time t= pw/c and is contracting
before that time.

A CSTA point, as an expanding sphere, represents a light-cone in spacetime that is
centered at the vertex point pM. In spacetime, the light-cone is a spherical hypercone,
which is a cone with a 3-D hypersurface. A surface is usually 2-D, but a hypersurface
is imagined as a surface while it is actually a higher-dimensional space. The light-cone
is often depicted as a cone in a 3-D spacetime of two spatial dimensions and a time-like
dimension, wherein the cone is a circular wave front of light that expands in space as time
t increases. The expanding radius r= ct¡ pw of the wave front is centered at a point light
source pM. A CSTA point represents a spherical wave front of light in space, or light-
cone in spacetime, centered at a point light source pM that �ashes at time t= pw/c.

4.2.5 CSTA point normalization

A homogeneous CSTA point embedding with scalar weight s is

sPC= sC(pM) = spM+ s
1
2
pM
2 e1
+ seo
:

A normalized point is scaled to weight s=1.
The normalization of a weighted CSTA point sPC is

PC =
(sPC)

¡(sPC) � e1

=
sPC
s
:

Many formulas require points and other entities to be unit weight. The normalization of
an entity can be particular to the type of the entity.

4.2.6 CSTA point projection (inverse embedding)

The projection of CSTA point PC= C(pM) to STA position pM is

pM= C¡1(PC) =

�
PC

¡PC � e1

� IM

�
IM
¡1:

If PC is the embedding of an STA position, then an STA position normalization (�3.2.2)
of pM may be required. If PC is the embedding of an STA velocity, then an STA velocity
normalization (�3.2.1) of pM may be required.

4.2.7 CSTA test point

The symbolic CSTA test point TC = C(tM) is the embedding of the symbolic STA test
vector

tM = w
0+ x
1+ y
2+ z
3= ct
0+ tS=oMt+ tS:

The symbolic CSTA1 test point TC1=C(tM1) is the embedding of the symbolic STA1 test
vector

tM1 = we1+ xe2+ ye3+ ze4= cte1+ tS1=oM1t+ tS1:

The symbolic CSTA2 test point TC2=C(tM2) is the embedding of the symbolic STA2 test
vector

tM2 = we7+xe8+ ye9+ ze10= cte7+ tS2=oM2t+ tS2:

20 Section 4

The symbolic scalars w, x, y, and z are the conventional coordinates in spacetime. The
time-like coordinate w=ct is the coordinate position of light at light speed c at time t. The
observer , as de�ned in the theory of special relativity, is identi�ed as the symbolic
time-like velocity oM.

CSTA1 and CSTA2 test points TC1 and TC2, respectively, are wedged to form the G4;8
DCSTA test point TD = TC1 ^ TC2. The DCSTA point value-extraction elements Ts are
de�ned as elements that extract values from the DCSTA test point TD as s=TD �Ts.

4.3 CSTA point value-extraction elements

The CSTA point value-extraction elements Cs extract the value s from a test point TC=
C(tM) as s=TC �Cs. The CSTA value-extraction elements are

C1 = ¡e1

Cw =
0

Ct =
1
c
Cw

Cx = ¡
1
Cy = ¡
2
Cz = ¡
3
Ct2 = ¡2eo
:

These elements are straightforward to verify. When w= ct, the extraction Ct gives t. The
extraction

TC �Ct2 = tM
2 = jtMj2=w2¡ r2=(ct)2¡x2¡ y2¡ z2

is the squared modulus of the STA test vector tM.
The CSTA geometric inner product null space (GIPNS) 1-vector surface entities can

be de�ned in terms of these extraction elements by writing their implicit surface functions.
Two of these entities are the CSTA GIPNS 1-vector hyperplane EC and the CSTA GIPNS
1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C. A hyperhyperboloid can
degenerate into a hypercone, which is a CSTA GIPNS null 1-vector point entity PC. The
CSTA GIPNS 1-vector entities �C and EC are similar to the CGA sphere S and plane
�. The other CSTA GIPNS entities are of grades 2 to 5 and are formed as intersections
(wedges) of hyperpseudospheres and hyperplanes or by speci�c formulas.

4.4 CSTA GIPNS entities

The G2;4 CSTA GIPNS entities are similar to G4;1 CGA GIPNS entities, but with some
changes to account for the anti-Euclidean signature (0; 3) of G0;3 SA and the pseudo-
Euclidean, or Minkowski spacetime, signature (1; 3) of G1;3 STA in a 4-D spacetime.
The CSTA GIPNS entities of forms similar to CGA GIPNS entities are representing
hypersurfaces in 4-D spacetime.

4.4.1 Geometric inner product null space (GIPNS)

Geometric inner product null space (GIPNS) entities are introduced by Perwass in [11],
and are reviewed by this author in [6] and [7].

Conformal Space-Time Algebra (CSTA) 21

4.4.2 CSTA GIPNS 1-vector hypercone

The implicit quadric surface equation for a circular hypercone is

(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0:

The CSTA GIPNS null 1-vector hypercone KC is the point embedding

KC = PC= C(pM)

with center vertex point pM. The hypercone is a sphere in space that expands from a
point at pM with squared radius

r2 = (w¡ pw)2=(ct¡ pw)2:

4.4.3 CSTA GIPNS 1-vector hyperplane

A hyperplane is a linear subspace of dimension (n¡ 1) in a space of dimension n. In 4-D
spacetime, a hyperplane is a 3-D subspace. The hyperplane space can be a Minkowski
spacetime (1; 2) or an anti-Euclidean space (0; 3).

An implicit surface equation for a hyperplane in spacetime through the origin can be
written

tM �nM =

nww¡nxx¡nyy¡nzz = 0:

The STA vector

nM = nw
0+nx
1+ny
2+nz
3

is the normal vector to the hyperplane. Only the direction of nM is signi�cant, and its
magnitude can be arbitrary. The STA test vector tM is

tM = w
0+ x
1+ y
2+ z
3:

The equation holds good for any point tM on the hyperplane through the origin orthogonal
to nM. Using the CSTA point value-extraction elements (�4.3), the hyperplane implicit
surface function can be written as the CSTA GIPNS entity

nwCw¡nxCx¡nyCy¡nzCz =

nw
0+nx
1+ny
2+nz
3 =

nM :

The CSTA GIPNS 1-vector hyperplane EC through the origin with normal vector nM is
de�ned as

EC = nM:

The hyperplane through the origin nM can be translated from the origin to a point dM
using the translator (�4.6.4) operation

TCnMTC� =�
1¡ 1

2
dMe1

�
nM

�
1¡ 1

2
e1
dM

�
=

nM+(dM �nM)e1
 :

22 Section 4

The CSTA GIPNS 1-vector hyperplane EC through the point pM with normal vector nM
is de�ned as

EC = nM+(pM �nM)e1

= nM+ d2e1

' EC
�IC

and is equal to the CSTA undual of the dual CSTA GOPNS 5-vector hyperplane EC�

(�4.5.13) up to a homogeneous scalar factor. The squared hyperbolic distance (squared
modulus) d2= pM �nM from the origin is constant for all points on the hyperplane. The
hyperplane EC is the set of points

NIG(EC) = f TC= C(tM) : TC �EC=0 g

of the geometric inner product null space of EC, denoted NIG(EC) [11]. A similar set
holds for all other GIPNS entities.

Two hyperplanes intersect as a CSTA GIPNS 2-vector plane �C

EC1^EC2 =

(n1+ d1
2e1
)^ (n2+ d2

2e1
) =

n1^n2+(d2
2n1¡ d12n2)e1
 =

D�M¡ (pM �D�M)e1
 = �C

where D�M=n1^n2 is the STA dual of the plane �C direction bivector D.
Three hyperplanes intersect as a CSTA GIPNS 3-vector line LC

EC1^EC2^EC3 =

(n1^n2+(d2
2n1¡ d12n2)e1
)^ (n3+ d3

2e1
) =

n1^n2^n3+(d2
2n1¡ d12n2)^ e1
^n3+ d3

2n1^n2^ e1
 =

n1^n2^n3+(d1
2n2^n3¡ d22n1^n3+ d3

2n1^n2)e1
 =

d�M+(pM �d�M)^ e1
 = LC

where d�M=n1^n2^n3 is the STA dual of the line LC direction vector d.
Four hyperplanes intersect as a CST GIPNS 4-vector �at point

EC1^EC2^EC3^EC4 =

(n1^n2^n3+(d1
2n2^n3¡ d22n1^n3+ d3

2n1^n2)e1
)^ (n4+ d4
2e1
) =

�IM¡�(pM � IM)e1
 '
IM+ pM

� e1
 = PC:

The CSTA dual of the �at point is

(IM+ pM
� e1
)IC

¡1 =

e1
 ^PC = PC
�:

Five hyperplanes intersect as the CSTA GIPNS 5-vector point at in�nity e1

?

EC1^EC2^EC3^EC4^EC5 =

(IM+ pM
� e1
)^ (n4+ d4

2e1
) =

pM
� ^ e1
 ^n4+ d4

2IM^ e1
 '
IM^ e1
 =

e1
IC = e1

? :

Conformal Space-Time Algebra (CSTA) 23

4.4.4 CSTA GIPNS 1-vector hyperhyperboloid of one sheet

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z ¡ pz)2 = 0

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)

2
p

= r0
2+(ct¡ pw)

2
p

and center position

pM = pw
0+ px
1+ py
2+ pz
3= pw
0+pS

in 4-D spacetime.
When w¡ pw=0, the surface is a sphere with radius r0. The circular hyperhyperboloid

of one sheet can also be called a hyperpseudosphere. Like a sphere, a hyperpseudosphere
does not include the point at in�nity.

In 3-D spacetime with only two spatial dimensions by holding (z¡ pz)=0, the circular
hyperhyperboloid of one sheet reduces to the circular hyperboloid of one sheet

(x¡ px)2

r0
2 +

(y¡ py)2

r0
2 ¡ (w¡ pw)2

r0
2 = 1:

When (w ¡ pw) = 0, the hyperboloid of one sheet is a circle in the xy-plane with initial
radius r0 at initial time t = pw / c, or w = pw. The circle radius r = r0

2+(w¡ pw)2
p

is
expanding after time t= pw/c and is contracting before that time. The radius is expanding
with time t at the rate

r_ =
@r
@t

=
1
2
r¡12(ct¡ pw)c=

ct¡ pw
r

c=
ct¡ pw

(ct¡ pw)2+ r0
2

p c:

The initial rate at time t= pw/c is r_(pw/c) = 0 and increases to r_(1) = c as t!1. In
natural units, c=1 and the hyperhyperboloid of one sheet is asymptotically the hypercone
of a spherically expanding point PC. The acceleration of the radius r is

r�=
@r_
@t

= @t
ct¡ pw

r
c=

cr¡ r_(ct¡ pw)
r2

c=
c2¡ r_2
r

:

The initial acceleration at t= pw/c is r�(pw/c)= c2/r0 and decreases to r�(1)=0 as t!1.
In natural units, c=1 and r� is a measure of circular, or spherical, curvature at time t.

Using the CSTA point value-extraction elements (�4.3) the hyperhyperboloid of one
sheet implicit surface function entity can be written

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ px)2 =

(r0
2+ pM

2)C1+Ct2¡ 2pwCw¡ 2pxCx¡ 2pyCy¡ 2pzCz =

¡(r02+ pM2)e1
¡ 2eo
¡ 2pw
0¡ 2px
1¡ 2py
2¡ 2pz
3 =

¡2pM¡ (r02+ pM2)e1
¡ 2eo
 :

Normalizing eo
 by scaling ¡1/2 gives

pM+
1
2
(r0
2+ pM

2)e1
+ eo
 =

PC+
1
2
r0
2e1
 :

24 Section 4

The CSTA GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C in
spacetime with initial radius r0 centered at CSTA point PC= C(pM) is de�ned as

�C = PC+
1
2
r0
2e1

' �C
�IC

and equals the CSTA undual of the dual CSTA GOPNS 5-vector hyperpseudosphere �C�

up to a homogeneous scalar factor.
The CSTA hyperpseudosphere �C is similar to a CGA sphere S discussed in [6] when

PC = C(pS) is the embedding of a spatial point pM= pS with w = ct= 0. When r0= 0,
�C=KC is a hypercone, which is the CSTA point embedding PC=KC as a GIPNS entity.
Two hyperpseudospheres can intersect in a spatial sphere, spacetime pseudosphere, or
spacetime cone.

4.4.5 CSTA GIPNS 1-vector hyperhyperboloid of two sheets

The implicit quadric surface equation for a circular hyperhyperboloid of two sheets is

¡r02+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0:

The CSTA GIPNS 1-vector hyperhyperboloid of two sheets (imaginary hyperpseudosphere)
is

�C = PC¡
1
2
r0
2e1
:

The imaginary radius is ¡1
p

r0.
The intersection of �C and hyperplane EC=
0+ pwe1
 holds w= pw and produces an

imaginary sphere. The intersection of �C and hyperplaneEC=
3¡ pze1
 holds z= pz and
produces a hyperboloid of two sheets in wxy-spacetime opening up and down the w-axis.
The intersection of �C and spacetime plane �C produces a hyperbola in the spacetime
plane that opens up and down the time axis.

4.4.6 CSTA GIPNS 2-vector spatial sphere

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z¡ pz)2 = 0:

If we set the time coordinate w, then we get the implicit surface equation for a sphere in
xyz-space

(x¡ px)2+(y¡ py)2+(z¡ pz)2¡ r2 = 0

with radius

r = r0
2+(w¡ pw)2

p
:

To set w, we can intersect a hyperpseudosphere

�C = PC+
1
2
r0
2e1

with radius r0 centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)= C(pw
0+pS)

Conformal Space-Time Algebra (CSTA) 25

with the hyperplane

EC =
0+we1

of xyz-space at w. The sphere of radius r0 centered at pS is at the time w= pw.
The CSTA GIPNS 2-vector sphere SC centered at PC = C(pM) with radius r0 is the

intersection

SC = �C^EC

=

�
PC+

1
2
r0
2e1

�
^ (
0+(pM �
0)e1
)

=

�
PC+

1
2
r0
2e1

�
^ (
0+ pwe1
)

' SC
�IC

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector sphere SC� up to
a homogeneous scalar factor.

4.4.7 CSTA GIPNS 2-vector spacetime hyperboloid of one sheet

The implicit quadric surface equation for a hyperpseudosphere is

r0
2+(w¡ pw)

2¡ (x¡ px)
2¡ (y¡ py)

2¡ (z¡ pz)
2 = 0:

If we set one spatial coordinate, for instance z, then we get the implicit surface equation
for a circular hyperboloid of one sheet in wxy-spacetime

(x¡ px)2+(y¡ py)2¡ (w¡ pw)2¡ (r02¡ (z ¡ pz)2) =

(x¡ px)2

r2
+
(y¡ py)2

r2
¡ (w¡ pw)2

r2
¡ 1 = 0

with central radius

r = r0
2¡ (z ¡ pz)2

p
and circular conic section radius at w; z

rc = (w¡ pw)2+(r0
2¡ (z¡ pz)2)

p
= (w¡ pw)2+ r2
p

:

The spacetime hyperboloid of one sheet is also called a pseudosphere. Like a sphere, a
pseudosphere does not include the point at in�nity. The pseudosphere in wxy-spacetime
is a circle in xy-space that changes in radius with w; z. To set z, we can intersect a
hyperpseudosphere

�C = PC+
1
2
r0
2e1

with radius r0 centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)= C(pw
0+pS)

with the hyperplane

EC = z
3¡ z2e1

'
3¡ ze1

26 Section 4

of wxy-space at z
3. To have pseudosphere central radius r0, set z = pz. The xy-plane
circle of radius r0 centered at pS is at the time w = pw. More generally, the hyperplane
can be through point pM with spatial normal vector nS as

EC = nS+(pM �nS)e1

which makes the hyperboloid of one sheet in the
0nS� -space. The
0nS� -space can also
be called the wuv-space with time coordinate w and spatial plane coordinates u and v
orthogonal to normal vector nnS.

The CSTA GIPNS 2-vector spacetime hyperboloid of one sheet (pseudosphere) SC
centered at PC= C(pM) with central radius r0 in the spatial plane orthogonal to normal
vector nS is the intersection

SC = �C^EC

=

�
PC+

1
2
r0e1

�
^ (nS+(pM �nS)e1)

' SC
�IC

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector pseudosphere SC�

up to a homogeneous scalar factor.
The CSTA GIPNS null 2-vector spacetime cone (null cone) is the pseudosphere SC

with central radius r=0.
The spacetime hyperboloid of one sheet is always in wuv-spacetime and is not a spatial

surface, but is a circle in the nS� -plane centered at pS with radius rc= (w¡ pw)2+ r0
2

p
.

The CSTA GIPNS 3-vector circle entity CC with radius r0 is obtained by another inter-
section with the hyperplane at pw
0.

4.4.8 CSTA GIPNS 2-vector spacetime hyperboloid of two sheets

The CSTA GIPNS 2-vector spacetime hyperboloid of two sheets (imaginary pseudosphere)
SC centered at PC=C(pM) with central radius r0 in the spatial plane orthogonal to normal
vector nS is the intersection

SC = �C ^EC

=

�
PC¡

1
2
r0e1

�
^ (nS+(pM �nS)e1)

' SC
�IC

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector imaginary pseu-
dosphere SC� up to a homogeneous scalar factor. The two sheets open up and down the
w-axis and have circular sections in the nS� -plane.

4.4.9 CSTA GIPNS 2-vector plane

A plane in spacetime can be de�ned by two orthogonal unit-norm direction vectors

dM1 =
dM1

kdM1k
= dw1
0+ dx1
1+ dy1
2+ dz1
3

dM2 =
dM2

kdM2k
= dw2
0+ dx2
1+ dy2
2+ dz2
3

dM1 �dM2

y = 0

Conformal Space-Time Algebra (CSTA) 27

and a point

pM = pw
0+ px
1+ py
2+ pz
3

on the plane. The direction of the plane is represented by the normalized unit bivector

D = dM1^dM2

=
D

D �Dy
p =

D

D � (
0D�
0)
p :

The notation AM
y =
0AM�
0 is the anti-Euclidean space conjugation, or SA space con-

jugation, which is necessary for the case where D is a null bivector. For blade AM in
spacetime, the conjugate [11] has the property

AM �AM
y = AM �

¡

0AM
0

�
= kAMk2:

Any test point

tM = w
0+x
1+ y
2+ z
3

on the plane must satisfy the plane equation

(tM¡ pM)^D = 0

which can also be written in the dual form

(tM¡ pM) �D�M = tM �D�M¡ pM �D�M=0:

The dual form plane equation is vector-valued and the components represent a system of
implicit surface equations for an intersection of hyperplanes that gives the plane.

The CSTA GIPNS 2-vector plane �C through point pM in the planar direction of the
unit bivector D in spacetime can be de�ned as

�C = D�M¡ (pM �D�M)^ e1

' �C
�IC

which is equal to the CSTA undual of the dual CSTA GOPNS 4-vector plane �C
� up to

a homogeneous scalar factor.
The CSTA translation operation on any CSTA entity can be de�ned as its succes-

sive re�ections in two parallel CSTA planes. The CSTA 2-versor translator (translation
operator) TC can be de�ned by two parallel planes �C1 and �C2 that are separated by a
spacetime displacement vector 1

2
dM from �C1 to �C2 as

TC = �C2�C1:

The translator versor operation on a CSTA point PC= C(pM), for example, is

PC
0 = TCPCTC�=�C2�C1PC�C1

��C2
� = C(pM+dM):

The successive re�ections in two parallel planes translates by twice the spacetime dis-
placement between the parallel planes.

The rotor (spatial rotation operator) RS for a rotation by twice the angle between
two non-parallel spatial planes �C1 and �C2 can be de�ned as

RS = �C2�C1:

28 Section 4

The spatial rotation operator RS is equivalent to the SA rotor and is the same spatial rotor
that is used in STA and CSTA. The spatial rotor RS can spatially rotate any multivector
by versor outermorphism [11] that rotates all vectors within outer products.

The double boost operator BMBM = B'vB'v that adds the double rapidity 2'v =
2atanh(�v) in the direction v can be de�ned as the successive re�ections in two non-
parallel spacetime planes. The �rst plane �C1 should represent the observer position
as a plane through the origin and observer that spans the time axis and another axis
perpendicular to v. The second plane �C2 should represent the boost particle position
p1= vt= ot+ vt by passing through the origin and p1 and spanning the same direction
perpendicular to v as the �rst plane. The two planes contain an angle, the hyperbolic
rapidity angle or area 'v, that turns positive from �C1 toward �C2 into the direction of
v. The boost BM by �v, or rotation by 'v, that is applied twice for addition of rapidity
2'v is obtained by the successive re�ections

p1
0 = �C2�C1vt�C1

��C2
� =BMBMvtBM� BM� :

The position normalization is then applied as

p1
00 = ct

p1
0

p1
0 �
0

where t is the proper time of the same observer o that has not changed.

4.4.10 CSTA GIPNS 3-vector line

An implicit equation for a line in spacetime through two points can be written as

(t¡ p1) � (p2¡ p1)�M = 0

where t is the CSTA test point. The equation holds good for any t on the line of the two
points p1 and p2. The unit norm direction d of the line can be written as

d =
p2¡ p1

(p2¡ p1) � (p2¡ p1)y
p

=
p2¡ p1

(p2¡ p1) � (
0(p2¡ p1)
0)
p

=
p2¡ p1
kp2¡ p1k

:

The unit norm trivector dual to the line direction is

d�M = dIM
¡1:

The implicit equation can be rewritten as

(t¡ p) �d�M =

t �d�M¡ p �d�M = 0

where p is any point on the line.
The CSTA 3-vector line entity LC through point pM in the direction of unit norm

vector dM can be de�ned as

LC = d�M+(pM �d�M)^ e1

' LC
�IC

Conformal Space-Time Algebra (CSTA) 29

which is equal to the CSTA undual of the dual CSTA GOPNS 3-vector line LC� up to a
homogeneous scalar factor.

4.4.11 CSTA GIPNS 3-vector spatial circle

The CSTA GIPNS 1-vector hyperpseudosphere with radius r0

�C = PC+
1
2
r0
2e1

centered at

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)

can be intersected with two CSTA GIPNS 1-vector hyperplanes

EC1 = nS+(pM �nS)e1

EC2 =
0+(pM �
0)e1

to obtain a circle with radius r0 centered at pM in the spatial plane through pM with
direction bivector NS=nS

� =¡nSIS¡1.
The CSTA GIPNS 3-vector circle entity CC centered at pM with radius r0 at time pw

in the plane of bivector NS=nS
� =¡nSIS¡1 dual to normal vector nS can be formed as

CC = �C ^EC1^EC2
= SC^EC2

Without setting the time w= pw by intersecting EC2, the circle changes radius with time
as the CSTA GIPNS 2-vector hyperboloid (pseudosphere) SC=�C^EC1 (�4.4.7).

The CSTA GIPNS 3-vector circle CC can also be represented as the intersection of
the CSTA GIPNS 1-vector hyperpseudosphere �C and CSTA GIPNS 2-vector plane �C as

CC = �C ^�C

where the hyperpseudosphere �C is the same as above and sets the center pM and radius
r0, and the plane �C with spatial direction bivector NS through point pM is

�C = D�M¡ (pM �D�M)^ e1

= NS
�M¡ (pM �NS

�M)^ e1

= EC1^EC2:

The CSTA GIPNS 3-vector circle CC is equal to the CSTA undual of the dual CSTA
GOPNS 3-vector circle CC�

CC ' CC
�IC

up to a homogeneous scalar factor.
A CSTA GIPNS 3-vector circle CC can also be formed as the intersection of a CSTA

GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA GIPNS 1-vector hyperconeKC
and CSTA GIPNS 2-vector spatial plane �C as

CC = �C^�C

= KC^�C:

30 Section 4

4.4.12 CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle)

The circleCC with radius r0 centered at pM= pw
0+pS in spatial planeNS=nS
� is formed

by intersecting the plane �C of NS through pM with the hyperpseudosphere �C of radius
r0 at pM. Similarly, the pseudocircle CC with central radius r0 centered at pM= pw
0+pS
in Minkowski spacetime planeDM=
0dS is formed by intersecting the plane�C of DM
through pM with the hyperpseudosphere �C of radius r0 at pM. The hyperbola opens
up and down the spatial vector axis dS for a hyperpseudosphere �C, and it opens up and
down the time axis
0 for an imaginary hyperpseudosphere �C.

The CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can be de�ned as

CC = �C ^�C

where the hyperpseudosphere �C sets the central position PC= C(pM) and initial radius
r0 as

�C = PC+
1
2
r0e1

and the plane�C sets the Minkowski spacetime planeD=
0dS of spatial unit direction
vector dS and time direction
0 as

�C = D�M¡ (pM �D�M)^ e1
:

The hyperbola can be visualized as a point pair on the spatial line dS, centered on pS, and
separated by an initial distance 2r = 2r0 at time w = pw. As time w changes away from
the initial time pw, the radius r increases to r= r0

2+(w¡ pw)
2

p
. The CSTA GIPNS 4-

vector spacetime point pair can be obtained as

2C = SC ^EC

where EC is the xyz-space hyperplane

EC =
0+we1

at the time w for the point pair with radius r around pS on the line direction dS. The
hyperplane sets the time w component of the points in the spacetime point pair. The
points appear to move apart spatially with time away from pw.

A CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle) CC can also be formed
as the intersection of a CSTA GIPNS 1-vector imaginary hyperpseudosphere �C or CSTA
GIPNS 1-vector hypercone KC and CSTA GIPNS 2-vector spacetime plane �C as

CC = �C ^�C

= KC ^�C

which open up and down the time w-axis.

4.4.13 CSTA GIPNS 4-vector point pair

The CSTA GIPNS 4-vector point pair 2C is

2C = ¡PC1 �PC2�

= ¡PC1 � (PC2IC¡1)=PC1 � (PC2IC)= (PC1^PC2)IC
= 2C

�IC

Conformal Space-Time Algebra (CSTA) 31

which is exactly the CSTA undual of the dual CSTA GOPNS 2-vector point pair 2C�.
If the two points are relatively lightlike, then the point pair is actually the CSTA

GIPNS null 4-vector light-line (null line) LC that is exactly undual to the dual CSTA
GOPNS null 2-vector light-line (null line) LC� (�4.5.4). The point pair 2C of two not
relatively lightlike points is non-null .

If one of the two points is e1
, then the point pair is actually the CSTA GIPNS 4-
vector �at point PC that is exactly undual to the dual CSTA GOPNS 2-vector �at point
PC
� (�4.5.5). A �at point is non-null.

4.4.14 CSTA GIPNS null 4-vector light-line (null line)

The CSTA GIPNS null 4-vector null line (light-line) LC is exactly the undual LC=LC�IC
of the dual CSTA GOPNS null 2-vector null line (light-line) LC� (�4.5.4).

The CSTA GIPNS null 4-vector light-line (null line) LC is

LC = ¡PL1 �PL2�

= ¡PL1 � (PL2IC¡1)=PL1 � (PL2IC)= (PL1^PL2)IC
= LC�IC

where PLi = C(pMi) = C(pwi
0 + pSi) denotes points that are relatively lightlike in
spacetime positions. The two relatively lightlike points PL1 and PL2 are on a light-line
in spacetime having equal changes in time components jpw1¡ pw2j to space components
kpS1¡pS2k,

jpw1¡ pw2j
kpS1¡pS2k

= 1

@tkpS1¡pS2k= @tjpw1¡ pw2j = c:

Light speed c is required to travel between the two points, or any two points on a light-
line, in spacetime. The vector pM1¡ pM2 is a null vector in spacetime, and any two points
in spacetime with a null di�erence vector are relatively lightlike.

A null 4-vector light-line LC can be converted into a non-null 3-vector line LC as

LC = (LC� ^ e1
)IC=LC
�IC:

4.4.15 CSTA GIPNS 4-vector �at point

The CSTA GIPNS 4-vector �at point PC is

PC = ¡PC � e1

�

= ¡PC � (e1
IC
¡1)=PC � (e1
IC)= (PC^ e1
)IC

= PC
�IC

which is exactly the undual of the dual CSTA GOPNS 2-vector �at point PC�.
A �at spatial point PC= C(pS)^ e1
 at w=0 can be represented as the intersection

of a CSTA GIPNS 2-vector plane �C and CSTA GIPNS 3-vector line LC that are in the
common xyz-space hyperplane at any times in spacetime as

PC =
0^ (
0 ��C)^ (
0 �LC)
= PC

�IC

32 Section 4

where the common hyperplane of xyz-space EC =
0 is contracted out of the plane and
line before they are intersected, and then
0 is intersected back into the result. The time
components of the plane and line do not a�ect the result, which is spatial intersection
at w= 0. The �at spatial point PC can exactly match the undual PC�IC. The �at spatial
point represents the point PC of intersection on the plane where the line passes through,
and it also represents e1 where the plane and line also intersect. A �at spacetime point
as intersections may also be possible but is not considered here.

4.4.16 CSTA GIPNS 5-vector point

The CSTA null 1-vector point embedding PC= C(pM) is the

� CSTA GIPNS null 1-vector hypercone PC centered at pM

� CSTA GOPNS null 1-vector point PC representing the point pM.

Therefore, the CSTA GIPNS null 5-vector point PC? is the undual

PC
? = PCIC

which also introduces a notation for the undual operation. The undual notation has been
omitted on other undual entities. For the 5-vector point, the undual notation avoids a
notational con�ict since PC is the dual, not PC�.

For STA vectors, the undual is

0
? =
0IM=
1
2
3

1
? =
1IM=
0
2
3

2
? =
2IM=
0
3
1

3
? =
3IM=
0
1
2

which is consistent, in this case, with Hodge dual that is denoted ?A in other literature.
The CSTA GIPNS null 5-vector point PC? can also be represented as the intersection

of a hypercone PC with the four hyperplanes ECi through the hypercone vertex pM as

PC
? = PC^EC1^EC2^EC3^EC4

where

PC = C(pM)= C(pw
0+ px
1+ py
2+ pz
3)

EC1 =
0+ pwe1

EC2 = ¡
1+ pxe1

EC3 = ¡
2+ pye1

EC4 = ¡
3+ pze1
:

Each hyperplane �xes one coordinate to hold a value.

4.5 CSTA GOPNS entities

In G2;4 CSTA, �ve or less points can be wedged into CSTA GOPNS entities, allowing a
greater variety of entities than in G4;1 CGA, which uses four or less points.

Conformal Space-Time Algebra (CSTA) 33

The familiar CGA GOPNS entities at time w= ct=0 can be formed by wedging four
or less points that are the embeddings of spatial points PC=C(pS). The dilator operation,
or successive inversions in two concentric spheres for a dilation by factor r22 / r12, can
isotropically dilate CGA entities in space and time. The translator operation, or successive
re�ections in parallel spacetime planes, can translate CGA entities in space and time. The
rotor operation, or successive re�ections in non-parallel spatial planes, can rotate CGA
entities in space, leaving the time una�ected. Boosting the CSTA entities does not work
as may be expected since the contraction of a sphere into an ellipsoid is not supported
by CSTA. CSTA has no ellipsoid entity to represent a contracted sphere. In DCSTA, the
DCSTA GIPNS 2-vector quadric surface entities can be boosted as expected.

The CSTA GOPNS entities represent hypersurfaces of the CGA surfaces. The hyper-
dimension is time w. A sphere changes radius with time as a hypercone or hyperpseudos-
phere in spacetime. A circle changes radius with time as a pseudosphere in spacetime.
A plane is the intersection of two hyperplanes in spacetime. A line is the intersection
of three hyperplanes.

The GOPNS entities are called dual to the undual GIPNS entities, but this naming
is quite often reversed in other literature. This naming is chosen to be consistent with
DCSTA entities, where the DCSTA GIPNS entities are unduals and the DCSTA GOPNS
entities are duals.

4.5.1 Geometric outer product null space (GOPNS)

Geometric outer product null space (GOPNS) entities are introduced by Perwass in [11],
and are reviewed by this author in [6] and [7].

The G2;4 CSTA unit pseudoscalar IC is grade 6. Therefore, CSTA GOPNS entities
can be formed as the wedge of �ve or less CSTA points. In G4;1 CGA, the CGA GOPNS
entities are formed as the wedge of four or less points. Compared to CGA, CSTA has a
larger set of GOPNS entities.

The subset of CSTA GOPNS entities that are similar to CGA GOPNS entities are
de�ned as the wedge, or outer product, of four or less CSTA spatial points PCi= C(pS)
that are on the surface and that also span the surface of the entity.

The wedge of �ve CSTA points creates hyperhyperboloid and hyperplane entities as
explained in later subsections.

4.5.2 CSTA GOPNS 1-vector point

As a GOPNS entity, the CSTA null 1-vector point embedding PC= C(pM) represents
the point of the embedded STA position pM. The GOPNS test

TC^PC = 0

holds good if and only if (i�)

TC � PC:

As a GIPNS entity, a point PC represents a null hypercone in spacetime (�4.2.4). The
GIPNS test

TC �PC = 0

holds good for any point TC on the hypercone with vertex PC. A point TC on the hypercone
is a point that is located at a diagonal lightlike position relative to the vertex PC. The
hypercone is a sphere in space, centered at PC, with time-varying radius r = w ¡ pw =
ct¡ pw.

34 Section 4

A CSTA null 1-vector point embedding PC= C(pM) represents

TC �PC =

�
null hypercone centered at vertex pM : � is �
null point at pM: : � is ^

4.5.3 CSTA GOPNS 2-vector point pair

The CSTA GOPNS 2-vector point pair 2C� is the wedge of two not relatively lightlike and
�nite CSTA points

2C
� = PC1^PC2
= 2CIC

¡1

and is the CSTA dual of the CSTA GIPNS 4-vector point pair 2C. The GOPNS test

TC �2C� = 0

holds good for two not relatively lightlike and �nite points if and only if (i�)

TC 2 fPC1;PC2g:

A valid point pair 2C� represents the two distinct points as a single entity.
The point pair decomposition [3]

PC� =
2C
� � (2C

�)2
p

¡e1
 �2C�
=(2C

� � 2C
� �2C�

p
)(¡e1
 �2C�)¡1

gives the two �nite points PC+ and PC¡ of the point pair with unit weight.
A light-line (null line) LC� =PL1 ^PL2 (�4.5.4) is the wedge of two relatively lightlike

points PLi and represents the line of the two points, excluding e1
. A �at point PC�=PC^
e1
 (�4.5.5) is the wedge of one �nite point PC and the point at in�nity e1
.

4.5.4 CSTA GOPNS 2-vector light-line (null line)

An STA null lightlike position vector lM relative to the origin has the form

lM = ct(
0+ n̂S)=w(
0+ n̂S)= ctnM:

It can be veri�ed that nM2 =0 for any spatial unit direction vector nS. A lightlike position
relative to an STA position vector pM is

pL = pM+ lM:

Let any three relatively lightlike positions and their embeddings be

PL1= C(pL1) = C(pM+w1nM)= C(pM+ ct1nM)

PL2= C(pL2) = C(pM+w2nM)= C(pM+ ct2nM)

PL3= C(pL3) = C(pM+w3nM)= C(pM+ ct3nM):

These three points, called relatively lightlike points, are along a light-line in the direction
nM on a light-cone with vertex pM. It can be veri�ed that for any three such points

PL1^PL2^PL3 = 0:

Conformal Space-Time Algebra (CSTA) 35

Therefore, the light-line LC in the direction of nM through the point pM is characterized
by the wedge of any two points on the light-line. The point at in�nity e1
 is not a point
on a light-line that is represented like a point pair.

The CSTA GOPNS null 2-vector light-line LC is the wedge of any two relatively light-
like points on the light-line

LC� = PL1^PL2
' LCIC¡1

and is the CSTA dual of the CSTA null 4-vector light-line LC up to a homogeneous scalar
factor.

The light-line LC� does not include the point at in�nity e1
. A light-line exists only in
spacetime. In general, the two points of LC are along a light-line, which is a line through
spacetime with slope m=�1 of time to space distance on a light-cone. A light-line is also
called a null line since

(LC�)2 = 0:

For any two coplanar light-lines LC1� and LC2� , the lines share a light-cone vertex pM and

LC1� ^LC2� = 0

which is a result that holds in general for all coplanar lines.
A light-line LC� is a special type of line that requires only two points to de�ne the line.

A light-line is also called a lightlike line. Other lines in spacetime are timelike or spacelike
lines and require the wedge of three collinear points to de�ne them. The CSTA GOPNS
3-vector line LC� (�4.5.6) always includes e1
 on the line. A light-line LC� can be extended
to include e1
 as a 3-vector line LC�.

A lightlike line LC� is converted into a line LC� as

LC
� = LC� ^ e1
:

The CSTA GOPNS 3-vector line LC� always includes e1
 as a point of LC�.
The two points of a lightlike line cannot be decomposed into two points since the

lightlike line is a null line that has no inverse.

4.5.5 CSTA GOPNS 2-vector �at point

A CSTA �at point PC
� is the wedge of a �nite CSTA point PC and the CSTA point at

in�nity e1

PC
� = PC^ e1
= C(pM)^ e1

' PCIC
¡1

and equals the CSTA dual of the CSTA 4-vector �at point PC up to a homogeneous scalar
factor.

As introduced in [3] in the context of G4;1 CGA, a �at point is the intersection point
of a plane and line in space. However, a plane and line both also include the point at
in�nity. Therefore, a �at point represents the two points where a line and plane intersect
in space. In G2;4 CSTA, a line and plane are in spacetime and may intersect at a spacetime
�at point. The CSTA GIPNS 2-vector plane �C is the intersection of two hyperplanes

�C = EC1^EC2

36 Section 4

and the CSTA GIPNS 3-vector line LC is the intersection of three hyperplanes

LC = EC3^EC4^EC5:

In CGA, the intersection of a line and plane is simply L^�, but this form cannot work as
simply in CSTA. There can be zero, one, or two hyperplanes that are the same in the line
and plane. If zero are the same, then�C^LC=/ 0 and the intersection is �C^LC'e1

? . If
two are the same, then LC=�C^EC and the intersection is LC. If one hyperplane is the
same, then the intersection is a �nite spacetime point PC and e1
, which are represented
as a CSTA GOPNS 2-vector �at point PC�=PC^e1
. In all three cases, a line and plane
intersect at e1
.

Assume, for now, that there is only one common hyperplane

EC=EC1=EC3 = nM
y + de1
:

We expect to obtain a CSTA GIPNS 4-vector �at point PC as the intersection of the
CSTA GIPNS 3-vector line LC and CSTA GIPNS 2-vector plane �C. If we contract EC
into the line or the plane and then wedge them, then we get the 4-vector �at point. The
pseudoscalar of the spacetime projections of �C and LC is IM. The conjugate normal
vector nM

y of EC is given by the spacetime meet product _M of the plane and line, and
the normal vector nM is

nM = (�C _MLC)y

=
0(((�C � IM¡1)^ (LC � IM¡1)) � IM)
0:

The normal vector nM can be used to contract EC in either the plane or line, which then
allows intersections of the plane and line to be formed as the two �at points

PC1 = (nM ��C)^LC
PC2 = �C^ (nM �LC):

For one common hyperplane EC, as assumed, then PC1=�PC2. Now, if two hyperplanes
are common in the plane and line, then the spacetime meet produces zero and the �at
points are zero. These results allow the following de�nition for the intersection �C \LC
of a line and plane.

The CSTA GIPNS intersection �C \ LC of a CSTA GIPNS 2-vector plane �C and
CSTA GIPNS 3-vector line LC can be de�ned as

�C\LC=

8<: e1
 or e1

? : �C^LC=/ 0

PC1=�PC2 : �C^LC=0;�C_MLC=/ 0
LC : �C^LC=0;�C_MLC=0:

The point PC of a �at point PC�=PCIC
¡1 is projected [3] as

pM= C¡1(PC) =
(eo
 ^ e1
) � (eo
 ^PC

�)
¡(eo
^ e1
) �PC�

=
¡PC�

(eo
 ^ e1
) �PC�
� eo
¡ eo
:

4.5.6 CSTA GOPNS 3-vector line

The CSTA GOPNS line LC� is similar to the CGA GOPNS line L� discussed in [6]. In
general, any line in spacetime can be represented as the wedge of three well-chosen points
on the line. A CSTA GOPNS 2-vector lightlike line LC� (�4.5.4) is represented by the wedge
of just two points but it does not include the point at in�nity e1
 on the line.

Conformal Space-Time Algebra (CSTA) 37

A CSTA GOPNS 3-vector lightlike line LC� is the wedge of any two relatively lightlike
points PLi on the line and the CSTA point at in�nity e1

LC
� = PL1^PL2^ e1
=LC� ^ e1
:

A CSTA GOPNS 3-vector timelike or spacelike line LC� can be the wedge of any two
points PCi on the line and the CSTA point at in�nity e1
 or the wedge of any three
collinear points PCi on the line

LC
� = PC1^PC2^ e1

' PC1^PC2^PC3
' LCIC

¡1

and is equal to the CSTA dual of the CSTA GIPNS 3-vector line LC up to a homogeneous
scalar factor.

4.5.7 CSTA GOPNS 3-vector spatial circle

The system of implicit surface equations for a spatial circle with radius r0 centered at
(px; py; pz) in the xy-plane at z= pz is

(x¡ px)
2+(y¡ py)

2¡ r02 = 0

z¡ pz = 0

w¡ pw = 0:

The CSTA spatial circle entity CC represents a system of implicit surface equations of this
form for the intersection of a circular cylinder and plane. The center position of the circle

pM = pw
0+ px
1+ py
2+ pz
3

includes a time component pw
0 that indicates when the circle exists.
The CSTA GOPNS spatial circle CC� is similar to the CGA GOPNS circle C� discussed

in [6] and is the wedge of any three points on the circle in space at the same time. Three
points are always coplanar cocircular points. Three collinear points are on a circle of
in�nite radius, which is a line.

The CSTA GOPNS 3-vector spatial circle CC� is the wedge of any three CSTA points
PCi= C(pw
0+pSi) at the same time pw on the circle

CC
� = PC1^PC2^PC3
' CCIC

¡1

and is the CSTA dual of the CSTA GIPNS 3-vector spatial circle CC up to a homogeneous
scalar factor.

The wedge of three points that are not all at the same time may produce a spacetime
hyperbola (�4.5.8). The circle is produced for three points at the same time.

4.5.8 CSTA GOPNS 3-vector spacetime hyperbola (pseudocircle)

The system of implicit surface equations for a spacetime circular hyperbola in the xw-
plane centered at (pw; px; py; pz), with central radius r, opening up and down the w-axis is

(x¡ px)2+ r2¡ (w¡ pw)2 = 0

y¡ py = 0

z ¡ pz = 0:

38 Section 4

The spacetime circular hyperbola can also be called a pseudocircle. The CSTA pseudo-
circle entity represents a system of implicit surface equations of this form. This hyperbola
is not general, but circular. To get the expected shape, the points have to be chosen
carefully. At x= px, w= pw�r. At w= pw+ 2

p
r, x= px� r. The axes may be transposed.

Spatial rotations, spacetime translations, and spacetime isotropic dilations permit the
pseudocircle to be in any Minkowski space-time plane, at any spacetime center point,
and with any central radius. The hyperbola is generally a conic section of a related
circular hyperboloid (�4.5.10) cut through a spacetime plane and has lightlike asymptotes.
By cutting the related hyperboloid in di�erent spacetime planes, it is possible to get
hyperbolas that open up and down the time or space axis. The hyperboloids are w-axis
(time-axis) aligned with circles in the xy-planes.

The CSTA GOPNS 3-vector spacetime circular hyperbola CC� is the wedge of any three
non-collinear CSTA spacetime points PCi= C(pMi) on the spacetime circular hyperbola

CC
� = PC1^PC2^PC3
' CCIC

¡1

and is the CSTA dual of the CSTA GIPNS 3-vector spacetime hyperbola CC up to a
homogeneous scalar factor. Similar to a circle, the point at in�nity e1
 is not a point on
the pseudocircle.

The spacetime hyperbola CC� becomes a light-cone light-line pair when the three non-
collinear points are relatively lightlike points PLi (�4.5.4). The points are relatively light-
like when any two points are relatively lightlike, forming one of the light-lines. The
perpendicular line through the third point is the other light-line. The light-cone vertex
is the point of intersection of the two light-lines, which could be one of the points.

In general, the wedge of three non-collinear CSTA spatial points PCi=C(pSi) produces
a spatial circle (�4.5.7) that holds w= ct=0.

4.5.9 CSTA GOPNS 4-vector spatial sphere

The CSTA GOPNS spatial sphere SC� is similar to the CGA GOPNS sphere S� discussed
in [6].

The CSTA GOPNS 4-vector spatial sphere SC� is the wedge of four CSTA spatial points
PCi= C(pSi) on the sphere surface that span the sphere

SC
� = PC1^PC2^PC3^PC4
' SCIC

¡1

and is the CSTA dual of the CSTA GIPNS 2-vector spatial sphere SC up to a homogeneous
scalar factor. To span the sphere, the points cannot be all coplanar. The spatial sphere
SC
� holds w= ct=0 and is a sphere in space at time t=0.

4.5.10 CSTA GOPNS 4-vector spacetime hyperboloid (pseudosphere)

The implicit quadric surface equation of a spacetime circular hyperboloid of one sheet with
circular sections in the xy-plane and central radius r is

(w¡ pw)2+ r2¡ (x¡ px)2¡ (y¡ py) = 0:

The spacetime circular hyperboloid can also be called a pseudosphere. Spatial rotations,
spacetime translations, and spacetime isotropic dilations permit the pseudosphere to be
in any spatial plane, at any spacetime center point, and with any central radius.

Conformal Space-Time Algebra (CSTA) 39

The CSTA GOPNS 4-vector spacetime circular hyperboloid of one sheet (pseudos-
phere) SC� is the wedge of four CSTA spacetime points PCi= C(pMi) on the surface that
span the surface

SC
� = PC1^PC2^PC3^PC4
' LC1� ^LC2�

' SCIC
¡1

and is the CSTA dual of the CSTA GIPNS 2-vector spacetime circular hyperboloid of
one sheet SC up to a homogeneous scalar factor. Similar to a sphere, the point at in�nity
e1
 is not a point on the pseudosphere. Two non-coplanar light-lines LC1� and LC2� span
a pseudosphere with radius equal to half the distance between the light-lines.

The pseudosphere SC� becomes a light-cone, also called a null cone, when the four
points are relatively lightlike points PLi . The points are relatively lightlike when any three
points are relatively lightlike to the fourth point, which is the vertex center point of the
light-cone. The wedge of the light-cone vertex and another point is a light-line LC�, and
the light-cone is spanned by three light-lines sharing the vertex.

In general, the wedge of four non-coplanar CSTA spatial points PCi= C(pSi) produces
a spatial sphere that holds w= ct=0.

It is also possible to produce the CSTA GOPNS 4-vector spacetime hyperboloid of two
sheets (imaginary pseudosphere) as the wedge of four well-chosen points that span the
surface.

4.5.11 CSTA GOPNS 4-vector plane
The CSTA GOPNS plane �C

� is similar to the CGA GOPNS plane �� discussed in [6]. In
CGA, a plane �� is the wedge of any four coplanar non-collinear non-cocircular points
on the plane. The four well-chosen points that de�ne a plane in CGA are nearly the same
for �C

�, but light-lines LC� (�4.5.4) introduce an additional constraint on the choice of the
four coplanar points in spacetime.

Three non-collinear �nite points PCi are co(pseudo)circular and de�ne a �nite
(pseudo)circle CC�. The fourth point can be the point at in�nity e1
 or some other
coplanar non-co(pseudo)circular �nite point PC4.

Three collinear, not relatively lightlike, �nite points PCi de�ne a line LC�. The fourth
point cannot be the point at in�nity e1
 since it is collinear. The fourth point can be
some other non-collinear �nite point PC4.

Two relatively lightlike �nite points PLi de�ne a light-line LC�. The other two points can
be e1
 and a coplanar non-collinear �nite point PC4. The other two points can also be not
relatively lightlike �nite points PC3 and PC4 that are coplanar non-collinear points to LC�.

The CSTA GOPNS 4-vector plane �C
� is the wedge of four well-chosen points PCi on

the plane in space or spacetime

�C
� = PC1^PC2^PC3^PC4=CC^PC4
' PC1^PC2^PC3^ e1
=CC ^ e1

' LC
� ^PC4

' LC� ^ e1
^PC4
' LC� ^PC3^PC4
' �CIC

¡1

and is the CSTA dual of the CSTA GIPNS 2-vector plane �C up to a homogeneous scalar
factor. The four points must be well-chosen as explained above.

40 Section 4

The entity �C
� is a plane in space that holds w= ct= 0 when its points PCi= C(pSi)

are the embeddings of spatial points pSi in 3-D SA space. In the general case of points
PCi = C(pMi) in spacetime, the entity �C

� is a plane in spacetime. The plane entity is
generally valid in both space and spacetime.

4.5.12 CSTA GOPNS 5-vector hyperhyperboloid

The implicit quadric surface equation for a circular hyperhyperboloid of one sheet is

r0
2+(w¡ pw)2¡ (x¡ px)2¡ (y¡ py)2¡ (z ¡ px)2 = 0

where r0 is the initial radius of the expanding sphere in space with time-varying radius

r = r0
2+(w¡ pw)

2
p

= r0
2+(ct¡ pw)

2
p

and center position

pM = pw
0+ px
1+ py
2+ pz
3

in spacetime.
The hyperhyperboloid can be spanned by �ve surface points that do not form entities

for any (pseudo)sphere, plane, line, or (pseudo)circle. Planes and lines are avoided by
excluding the point at in�nity. Spheres and circles are avoided by using only one or
two points in any circle on the surface. The choice of points is otherwise arbitrary. For
example, using an arbitrary scalar l=/ 0, three values of time

w 2 fpw+ l; pw+2l; pw¡ 3lg

and corresponding values of radius

r 2
n

r0
2+ l2

p
; r0

2+4l2
p

; r0
2+9l2

p o
can be chosen. Then, use at most two surface points per value of w. The hyperhyperboloid,
a sphere that expands with time, has the �ve surface points that span the surface

PC1 = C
�
pM+ l
0+ r0

2+ l2
p

1

�
PC2 = C

�
pM+2l
0¡ r0

2+4l2
p

2

�
PC3 = C

�
pM+2l
0¡ r0

2+4l2
p

3

�
PC4 = C

�
pM¡ 3l
0+ r0

2+9l2
p

1

�
PC5 = C

�
pM¡ 3l
0+ r0

2+9l2
p

2

�
:

The CSTA GOPNS 5-vector hyperhyperboloid of one sheet (hyperpseudosphere) �C� is the
wedge of �ve CSTA1 points PCi on the surface that span the surface

�C
� = PC1^PC2^PC3^PC4^PC5
' �CIC

¡1

and is the CSTA dual of the CSTA GIPNS 1-vector hyperhyperboloid �C up to a homo-
geneous scalar factor.

The hyperhyperboloid with r0 = 0 degenerates into the dual CSTA GOPNS null 5-
vector hypercone PC�=�C�(pM; r0=0). The CSTA GIPNS null 1-vector hypercone PC at
pM is the point embedding PC = C(pM). The undual PC? = PCIC = PC

�ICIC = ¡PC� is the
CSTA GIPNS null 5-vector point PC?.

Conformal Space-Time Algebra (CSTA) 41

It is also possible to produce the CSTA GOPNS 5-vector hyperhyperboloid of two sheets
(imaginary hyperpseudosphere) �C� as the wedge of �ve well-chosen points that span the
surface.

4.5.13 CSTA GOPNS 5-vector hyperplane

A hyperplane is a subspace of dimension (n ¡ 1) in a space of dimension n. In 4-D
spacetime, a hyperplane is a 3-D subspace. The signature of the hyperplane space can be
(2; 1) or (3; 0).

The implicit linear surface equation for a hyperplane in spacetime is

tM �nMy ¡ d =

tM � (
0nM
0)¡ d =

tM � (nM¡ 2(nM � IS)IS¡1)¡ d =

nww+nxx+nyy+nzz¡ d = 0

where d is the distance of the hyperplane from the origin in the direction nM, which is
the unit-norm STA vector that is perpendicular, or normal , to the hyperplane

nM =
nM
knMk

=
nM

nM �nMy
q =

nM

nw
2 +nx

2+ny
2+nz

2
p =nw
0+nx
1+ny
2+nz
3:

The STA test vector tM is

tM = w
0+ x
1+ y
2+ z
3:

The position of the hyperplane is

pM = dnM:

The hyperplane can be spanned by the point at in�nity e1
 and four �nite points PCi
that are perpendicular to nM and centered relative to the position dnM. Three of the
four points can span a plane, and the fourth point must not be coplanar with the other
three points. The points are cohyperplanar. The 3-D space of the hyperplane is parallel
to the dual space

nM
� = nMIM

¡1:

Four unit vectors in this space can be obtained by contractions and conjugations and then
spanned around pM to obtain the four �nite points that span the hyperplane.

For a non-null vector nM2G2;4?1 [11], where nM2 =/ 0, the hyperplane has the �ve surface
points that span the surface

PC1 = C(pM+
0((nM � (
0
1
2)) �nM�)
0)
PC2 = C(pM+
0((nM � (
1
2
3)) �nM�)
0)
PC3 = C(pM+
0((nM � (
2
3
0)) �nM�)
0)
PC4 = C(pM+
0((nM � (
3
0
1)) �nM�)
0)
PC5 = e1

For a null vector nM2G2;4�1 [11], where nM2 =0, the points PCi as given above do not span
the surface and their wedge product is zero. A null vector nM can be used to create the
GIPNS entity EC, and its dual GOPNS entity EC� =ECIC

¡1 represents the same surface.
In general, the implicit surface function

42 Section 4

The CSTA GOPNS 5-vector hyperplane EC� is the wedge the CSTA point at in�nity
e1
 and four CSTA points PCi on the surface that span the hyperplane

EC
� = PC1^PC2^PC3^PC4^ e1

= ECIC
¡1

and is the CSTA dual of the CSTA GIPNS 1-vector hyperplane EC up to a homogeneous
scalar factor, since the points PC1 are arbitrary. Straightforward substitutions produce
EC1
� and EC2� in CSTA1 and CSTA2, respectively.
The symbolic CSTA test point TC = C(tM), or an actual point PC, that satis�es the

hyperplane implicit surface equation as TC ^ EC� = 0 is a point on the CSTA GOPNS
hyperplane EC�.

4.6 CSTA operations

4.6.1 CSTA dualization

The CSTA dual AC�C of a CSTA multivector AC is

AC
�C = AC1IC1

¡1=AC1IC1
� :

The CSTA undual AC of a CSTA multivector AC�C is

AC = AC
�CIC=ACIC

¡1IC:

4.6.2 CSTA spatial projection

The G1;4 CSA1 spatial projection ACS1 of a G2;4 CSTA1 multivector AC1 is

ACS1 = (AC1 � ICS1)ICS1¡1

where the G1;4 Conformal Space-like Algebra 1 (CSA1) unit pseudoscalar ICS1 is

ICS1 = e1 � IC1= IS1e5e6:

The G1;4 CSA2 spatial projection ACS2 of a G2;4 CSTA2 multivector AC2 is

ACS2 = (AC2 � ICS2)ICS2¡1

where the G1;4 Conformal Space-like Algebra 2 (CSA2) unit pseudoscalar ICS2 is

ICS2 = e7 � IC2= IS2e11e12:

The spatial projections ACS drop the time-like components of AC, and may be useful for
extracting geometrical results in space.

4.6.3 CSTA spatial rotor

The spatial rotor R is the same in SA, STA, and CSTA.
The CSTA spatial rotor RC is equal to the SA rotor RS

RC = RS= e
1

2
�n̂S
�S

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
n̂SIS�

where SA unit direction vector n̂S is the axis of rotation, and � is the angle of rotation.
The rotor operation RCACRC� on a CSTA GIPNS entity AC spatially rotates the entity in
the usual way in space, leaving any time component unchanged.

Conformal Space-Time Algebra (CSTA) 43

The CSTA rotor operation that spatially rotates CSTA entity AC by angle � around
SA axis n̂S is de�ned as

AC
0 = RCACRC�:

4.6.4 CSTA translator

The CSTA translator TC, adapted from the CGA translator, is de�ned as

TC = e
¡1

2
dMe1

= 1¡ 1
2
dM^ e1
:

The translation vector dM is an STA spacetime displacement vector in STA1 or STA2.
The CSTA translator operation that translates CSTA entity AC in spacetime by STA

spacetime displacement dM is the two-sided versor �sandwich� operation

AC
0 = TCACTC�:

4.6.5 CSTA spatial rotor around a line

The CSTA 2-versor line rotor LC is de�ned as

LC = e
¡1

2
�
0�LC

= cos
�
1
2
�

�
+ sin

�
1
2
�

�
(¡
0 �LC):

The line rotor LC rotates around the line LC in space by the angle �. The direction of
rotation follows the right-hand rule such that if the line is rotated and translated into the
z-axis, then the rotation is counter-clockwise around the z-axis by angle �. If the line has
been rotated by � or has been scaled by ¡1, then the rotation is negative or left-handed.

The time component of the line LC has no e�ect on the spatial rotation operation
AC
0 =LCACLC

� on CSTA entityAC. The time component of AC is una�ected by the rotation
operation into AC0 .

4.6.6 CSTA isotropic dilator

The CSTA 2-versor isotropic dilator DC, adapted from the CGA dilator, is de�ned as

DC =
1
2
(1+ d)+

1
2
(1¡ d)e1
^ eo
:

The scalar d is the dilation factor . The CSTA isotropic dilator DC is a spacetime dilator ,
which includes the dilation of the time and space components of an entity by the factor d.

The CSTA isotropic dilation operation that isotropically dilates CSTA entity AC by
factor d in spacetime is the two-sided versor �sandwich� operation

AC
0 = TCACTC�:

4.6.7 CSTA spacetime boost

The STA boost BM operator can also be applied to CSTA points and entities. The e�ect
of a boost on a CSTA point mirrors the e�ect on the STA point it embeds. A boosted
CSTA point can be projected back to a boosted STA point that can be renormalized.
The e�ect of boosts on other CSTA surface entities will not be considered in this paper.
Boosts on DCSTA quadric surface entities will be considered later in this paper.

44 Section 4

The CSTA boost operator BC for a natural speed �v in the SA unit direction v̂S is
de�ned as

BC=BM = e
1

2
'vv̂S
0

= cosh
�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S ^
0

where the boost velocity is

vS = kvSkv̂S= �vcv̂S

and the rapidity is

'v = atanh(�v)= atanh
�
kvSk
c

�
:

The SA velocity vS of the CSTA boost BC=BM is relative to the STA observer velocity

oM = c
0

and has the STA velocity

vM = oM+vS:

The boost and renormalization of the STA observer velocity oM produces a particle
velocity

oM
0 =vM = c

BCoMBC�

(BCoMBC�) �
0
= oM+vS= c
0+vS

moving relative to the same observer oM.
The STA observer velocity oM = c
0 embedded as CSTA velocity OC = C(oM) is

boosted as

OC
0 = BCOCBC�:

Then OC0 can be projected and renormalized as the STA particle velocity vM

oM
0 = c

C¡1(OC0)
C¡1(OC0) �
0

=oM+vS=vM:

4.6.8 CSTA spacetime reframe (reverse boost)

This operation changes the reference frame on which time, distances, and velocities are
measured. Each observer carries a local reference frame, where the observer is at the
spatial origin of the frame. Each observer measures time t and coordinates w= ct, x, y,
and z on its local frame. The time t and other coordinates are generally not shared in
common with any other observer and are unique variables to each observer. The time and
other coordinates of one observer can be transformed into those of another observer via
the Lorentz transformations, which is implemented as hyperbolic rotations in spacetime.
The hyperbolic rotations are called boosts. As the previous section discussed, a boost
can increase the velocity of a particle consistent with Special Relativity, but without
changing the frame or observer. As a type of rotation, the boost can be operated in reverse
to change the spacetime basis or frame, which is very similar to how a reverse circular
rotation changes the coordinate axes in space.

Conformal Space-Time Algebra (CSTA) 45

The CSTA reframe (reverse boost) operation on a CSTA velocity

AM = C(aM)= C(oM+aS)

is

AM
0 = BM�AMBM

whereAM, which is relative to the initial observer oM, becomesAM
0 that is relative to the

new observer oM0 . The new observer oM0 is moving at natural speed �v in unit direction v̂S
relative to the initial observer oM. Relative to the initial observer oM, the new observer
oM
0 was

vM = oM+vS=oM+ �vcv̂S

= oM+
kvSk
c

cv̂S:

If AM=OM is the CSTA embedding OM= C(oM) of the STA initial observer velocity
oM, then

aM
0 = c

C¡1(OC0)
C¡1(OC0) �
0

= oM
0 ¡vS=oM0 ¡ �vcv̂S

where oM0 is the new observer that was called vM and which is moving relative to the initial
observer oM. The new velocity aM0 is the initial observer that is now relative to the new
observer oM0 . The new position is aM0 t, where time t is the proper time measured by the
new observer at position oM0 t= ct
0. The current observer, after proper normalization,
always has the spacetime velocity form

oM = c
0

and spacetime position form

oMt = ct
0

where time t is the current observer's clock time or proper time. The observer is considered
to be stationary in its local frame of reference, and the time-like axis
0 is basically the
observer's clock, although it holds a distance coordinate w= ct with time t.

The boost, reframe, and observer normalizations are potentially confusing operations.
Added to the complexity is that these operations can be performed either directly in STA
or on embedded values in CSTA. Using a computer algebra system (CAS) for symbolic
calculations, such as the Geometric Algebra Module for Sympy [1], can assist in testing
these calculations.

5 Double Conformal Space-Time Algebra (DCSTA)

The G4;8 Double Conformal Space-Time Algebra (DCSTA) is a straightforward extension
of the G8;2 Double Conformal / Darboux Cyclide Geometric Algebra (DCGA) that is
introduced in the paper [6] and discussed further in the papers [4] and [5].

46 Section 5

DCSTA includes many operations on quadric surface entities, including

� Rotation in space

� Translation in spacetime

� Isotropic dilation in spacetime

� Anisotropic dilation (directed length dilation) in space

� Spacetime boost of velocity relative to observer, with length contraction e�ect

� Spacetime reframe (reverse boost) relative to a new observer

� Intersection with standard entities that are doubled CSTA entities.

The general DCSTA GIPNS 2-vector surface entity
 has the general form of a Darboux
cyclide in spacetime, which has degenerate forms that include Dupin cyclides, horned
Dupin cyclides, parabolic cyclides, and the quadric surfaces. The DCSTA quadric surfaces
support anisotropic length contraction and dilation since these forms can be written in
terms of the DCSTA value-extraction elements. On the other hand, the higher-degree
surfaces, which include cubic parabolic cyclides and quartic Darboux and Dupin cyclides,
do not support anisotropic length contraction and dilation forms. Any DCSTA GIPNS
2-vector surface entity
 represents an implicit surface function in spacetime (w; x; y; z)
and supports function di�erentiation using the di�erential operations for

� Di�erentiation with respect to w= ct, t, x, y, or z

� Directional derivative with respect to a unit-norm direction n in spacetime.

The DCSTA forms of conic sections can also support the operations for

� Orthographic projection

� Perspective projection

as discussed in the paper [4].

5.1 DCSTA unit pseudoscalar

The DCSTA 12-vector unit pseudoscalar ID with signature (+¡¡¡+¡+¡¡¡+¡) is

ID = IC1^ IC2=
^
i=1

12

ei

= ID�= ID
¡1

ID
2 = 1:

5.2 DCSTA point

5.2.1 DCSTA point embedding

The STA position vector

pM = w
0+ px
1+ py
2+ pz
3= pw
0+pS

Double Conformal Space-Time Algebra (DCSTA) 47

is embedded into the DCSTA null 2-vector point embedding PD as

PD = C(pM1)^C(pM2)

= PC1^PC2

where

pM1 = (oM1+vS1)t=vM1t= pwe1+ pxe2+ pye3+ pze4

pM2 = (oM2+vS2)t=vM2t= pwe7+ pxe8+ pye9+ pze10:

The DCSTA null 2-vector point at the origin is

eo = eo1^ eo2:

The DCSTA null 2-vector point at in�nity is

e1 = e11^ e12:

The STA vector xM can be an STA position vector or an STA velocity vector, but it
must be handled appropriately in calculations for each type of vector. For spacetime
calculations with embedded STA position vectors, then w= ct, xM=vMt= (oM+ vS)t,
and xM=0 at t=0.

5.2.2 DCSTA point projection (inverse embedding)

The projection of DCSTA point PD back to STA1 vector pM1 is

pM1 = C¡1(PD � e12)

=

�
PD � e12

¡(PD � e12) � e11
� IM1

�
� IM1
¡1 :

The projection of DCSTA point PD back to STA2 vector pM2 is

pM2 = C¡1(PD � e11)

=

�
PD � e11

¡(PD � e11) � e12
� IM2

�
� IM2
¡1 :

A projected STA vector pM can be normalized as appropriate for an STA position vector
or an STA velocity vector.

5.2.3 DCSTA point value-extraction elements

Let the STA test vector t and its square t2 be

t = w
0+x
1+ y
2+ z
3

= ct
0+ vxt
1+ vyt
2+ vzt
3

= oMt+vSt=oMt+ kvSktv̂S=oMt+ vtv̂S

t2 = w2¡x2¡ y2¡ z2

= (ct)2¡x2¡ y2¡ z2

= (ct)2¡ (vt)2= t2(c2¡ v2)= t2(c2¡ �2c2)

= c2t2(1¡ �2):

48 Section 5

The DCSTA test point TD=D(t) value-extraction elements Ts are de�ned as

Tw =
1
2
(e1^ e12+ e11^ e7)

Tt =
1
c
Tw

Tx =
1
2
(e12^ e2+ e8^ e11)

Ty =
1
2
(e12^ e3+ e9^ e11)

Tz =
1
2
(e12^ e4+ e10^ e11)

Tw2 = e7^ e1
Tt2 =

1
c2
Tw2

Tx2 = e8^ e2
Ty2 = e9^ e3
Tz2 = e10^ e4

Twx =
1
2
(e1^ e8+ e2^ e7)

Twy =
1
2
(e1^ e9+ e3^ e7)

Twz =
1
2
(e1^ e10+ e4^ e7)

Ttx =
1
c
Twx

Tty =
1
c
Twy

Ttz =
1
c
Twz

Txy =
1
2
(e9^ e2+ e8^ e3)

Tyz =
1
2
(e10^ e3+ e9^ e4)

Tzx =
1
2
(e8^ e4+ e10^ e2)

Twt2 = e1^ eo2+ eo1^ e7
Ttt2 =

1
c
Twt2

Txt2 = eo2^ e2+ e8^ eo1
Tyt2 = eo2^ e3+ e9^ eo1
Tzt2 = eo2^ e4+ e10^ eo1
T1 = ¡e1
Tt2 = eo2^ e11+ e12^ eo1
Tt4 = ¡4eo:

The value s is extracted from TD as

s = TD �Ts:

The value-extraction elements are used to de�ne DCSTA GIPNS entities that are similar
to those that can be de�ned in DCGA. The DCSTA GIPNS quadric surface entities can
be boosted in spacetime and display length contraction.

Double Conformal Space-Time Algebra (DCSTA) 49

5.2.4 DCSTA point value-extraction pseudo-inverse elements

The pseudo-inverse of A is denoted A+ and has the relation

A �A+ = 1:

If A¡1 exists, it may be equal to A+. The inverse or pseudo-inverse of an extraction element
Ts can be useful for formulating certain other elements and operators. The pseudo-inverses
of some of the extraction elements are

Tw2
¡1=Tw2

+ = ¡Tw2
Tt2
¡1=Tt2

+ = ¡c2Tw2
Tx2
¡1=Tx2

+ = ¡Tx2
Ty2
¡1=Ty2

+ = ¡Ty2
Tz2
¡1=Tz2

+ = ¡Tz2

Tw
+ = Twt2

Tt
+ = c2Ttt2

Tx
+ = ¡Txt2

Ty
+ = ¡Tyt2

Tz
+ = ¡Tzt2

Twx
+ = 2Twx

Twy
+ = 2Twy

Twz
+ = 2Twz

Ttx
+ = 2c2Ttx

Tty
+ = 2c2Tty

Ttz
+ = 2c2Ttz

Txy
+ = ¡2Txy

Tyz
+ = ¡2Tyz

Tzx
+ = ¡2Tzx

T1
+ = ¡1

4
Tt4

Tt2
+ = ¡1

2
Tt2

Tt4
+ = ¡1

4
T1:

5.3 DCSTA GIPNS standard entities
The standard surface entities are similar to the entities available in CGA. These entities
have special properties and operations that include re�ection and intersection. All DCSTA
entities can be re�ected in the standard entities. The re�ection in a standard sphere is
called inversion in a sphere. All DCSTA entities can be intersected with standard entities.
A DCSTA intersection entity is a wedge of entities, similar to a DCGA intersection entity
and with similar limitations on what combinations of entities can be wedged to form a
valid intersection entity. The basic examples of intersection entities are the DCSTA 4-
vector standard line LD=�D1^�D2 and DCSTA 4-vector standard circle or pseudocircle
CD=SD1^SD2 or CD=SD^�D.

50 Section 5

5.3.1 DCSTA GIPNS null 2-vector hypercone

The DCSTA GIPNS null 2-vector standard hypercone KD is de�ned as

KD = KC1^KC2=PC1^PC2

which is the wedge of the same point embedding in CSTA1 and CSTA2.

5.3.2 DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet (hyperpseudosphere)
�D is de�ned as

�D = �C1^�C2

which is the wedge of the same hyperpseudosphere embedded in CSTA1 and CSTA2.

5.3.3 DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets

The DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets (imaginary hyper-
pseudosphere) �D is de�ned as

�D = �C1^�C2

which is the wedge of the same imaginary hyperpseudosphere embedded in CSTA1 and
CSTA2.

5.3.4 DCSTA GIPNS 4-vector standard sphere or pseudosphere

The DCSTA GIPNS 4-vector standard sphere or pseudosphere SD is de�ned as

SD = SC1^SC2

which is the wedge of the same sphere or pseudosphere embedded in CSTA1 and CSTA2.

5.3.5 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane �D is de�ned as

�D = �C1^�C2

which is the wedge of the same plane embedded in CSTA1 and CSTA2.

5.3.6 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line LD is de�ned as

LD = LC1^LC2

which is the wedge of the same line embedded in CSTA1 and CSTA2.

5.3.7 DCSTA GIPNS 6-vector standard circle or pseudocircle

The DCSTA GIPNS 6-vector standard circle or pseudocircle CD is de�ned as

CD = CC1^CC2

Double Conformal Space-Time Algebra (DCSTA) 51

which is the wedge of the same circle or pseudocircle embedded in CSTA1 and CSTA2.

5.3.8 DCSTA GIPNS 8-vector standard point pair

The DCSTA GIPNS 8-vector standard point pair 2D is de�ned as

2D = 2C1^2C2

which is the wedge of the same point pair embedded in CSTA1 and CSTA2.

5.3.9 DCSTA GIPNS null 10-vector standard point

The DCSTA GIPNS null 10-vector standard point PD? is de�ned as

PD
? = PC1

? ^PC2?

which is the wedge of the same point embedded in CSTA1 and CSTA2.

5.4 DCSTA GOPNS standard entities

The DCSTA GOPNS standard entities are the DCSTA duals of the DCSTA GIPNS
standard entities. The DCSTA GOPNS standard entities can also be formed as the wedges
of DCSTA points by the same formulas as in CSTA. Only the DCSTA GOPNS standard
entities can be formed as wedges of DCSTA null 2-vector points.

The DCSTA GIPNS 2-vector non-standard entities that are formed as linear combi-
nations of the DCSTA 2-vector value-extraction elements Ts have DCSTA dual forms as
DCSTA GOPNS 10-vector non-standard entities, but these GOPNS entities cannot be
formed as wedges of DCSTA points. All DCSTA GIPNS entities have a DCSTA dual that
is the DCSTA GOPNS entity.

5.5 DCSTA GIPNS 2-vector non-standard surface entities

The DCSTA GIPNS 2-vector non-standard surface entities are de�ned as linear combi-
nations of the DCSTA 2-vector value-extraction elements Ts. In a straightforward way,
the entities are formulated in terms of the value-extraction elements to represent implicit
surface functions. In terms of the value-extraction elements, these entities are de�ned
exactly as they are in the G8;2 Double Conformal / Darboux Cyclide Geometric Algebra
(DCGA) that is introduced in [6]. The reader should refer to [6] for details, which will
not be repeated here.

The DCSTA GIPNS 2-vector or GOPNS 10-vector non-standard surface entities
can be translated in spacetime using the DCSTA translator , spatially rotated in space
using the DCSTA spatial rotor , and isotropically dilated in spacetime using the DCSTA
isotropic dilator .

The DCSTA GIPNS 2-vector or GOPNS 10-vector non-standard quadric surface enti-
ties can also be boosted in spacetime using the DCSTA boost operation. The quadric
surfaces can also be anisotropically dilated in a speci�c direction in space using the
DCSTA boost operation with an imaginary natural boost speed that is followed by a
DCSTA spatial projection. The spatial projection discards all time components, but the
translator operation can move an entity in spacetime if it is to be at a certain time other
than w=0.

52 Section 5

5.6 DCSTA conic section entities

It should be straightforward to adapt the DCGA conic sections into DCSTA. The reader
is referred to the paper [4] for details on conic sections in DCGA and possible applications
that include orthographic and perspective projection of conic sections.

5.7 DCSTA operations

5.7.1 DCSTA spacetime boost

The DCSTA boost operator is de�ned as

BD = BC1^BC2:

A DCSTA GIPNS 2-vector quadric surface entity Q is boosted as

Q0 = BDQBD�:

The quadric surface Q should be initially centered at the spacetime origin before it is
boosted the �rst time. The boosted quadric surface Q0 can be evaluated at any time t and
graphed in space. The graph of Q0 should show it to be centered in space at a position
consistent with the elapsed time t in the frame of the observer, and the shape of the
quadric surface should show a length contraction e�ect consistent with the speed of the
boosting that has been applied.

Other surfaces than quadrics can also be boosted, but they may not display the length
contraction e�ect. The boosting of surfaces other than quadrics could be the subject of
further studies to determine their properties and possible applications.

5.7.2 DCSTA spacetime reframe (reverse boost)

The DCSTA reframe operation is simply the application of the boost operation in reverse.
A DCSTA GIPNS 2-vector quadric surface entity QD is reframed as

Q0 = BD�QBD:

The quadric surface Q, relative to an initial observer oM, is transformed into Q0 relative
to a new observer oM0 that moves with velocity vS relative to oM with spacetime velocity
vM=oM+vS. After a renormalization of the new observer, the new observer always has
the form

oM = c
0

in the new reference frame. The reframe of other surfaces than quadrics could be the
subject of future research by any interested researcher.

5.7.3 DCSTA spatial projection

In some situations, it is desired to discard time-like components of a DCSTA surface
entity, leaving only a geometrical entity as it appears at t=0.

Double Conformal Space-Time Algebra (DCSTA) 53

The DCSTA spatial projection of a DCSTA surface entity Q is de�ned as

QDS = (Q � IDS)IDS¡1

where

IDS = ID � (e1^ e7)
= ¡IDS� =¡IDS¡1 :

5.7.4 DCSTA dualization

The dual DCSTA GOPNS (12¡ k)-vector surface entity Q�D of any DCSTA GIPNS k-
vector surface entity Q is obtained by dualization as

Q�D = QID=Q � ID:

The undual operation is

Q = Q�D � ID:

The dual and undual operations are the repeated application of the same dualization
operation. Therefore, DCSTA dualization is an involution.

5.7.5 DCSTA rotor

The DCSTA GIPNS 4-versor rotor RD is de�ned as

RD = RC1^RC2

which is the wedge of the same rotor in CSTA1 and CSTA2.
A DCSTA entity Q is rotated by the rotor operation

Q0 = RDQRD
�:

5.7.6 DCSTA translator

The DCSTA GIPNS 4-versor translator TD is de�ned as

TD = TC1^TC2

which is the wedge of the same translator in CSTA1 and CSTA2.
A DCSTA entity Q is translated by the translator operation

Q0 = TDQTD�:

5.7.7 DCSTA isotropic dilator

The DCSTA GIPNS 4-versor isotropic dilator DD is de�ned as

DD = DC1^DC2

which is the wedge of the same isotropic dilator in CSTA1 and CSTA2.
A DCSTA entity Q is isotropically dilated by the dilator operation

Q0 = DDQDD�:

54 Section 5

5.7.8 DCSTA anisotropic dilator

A DCSTA GIPNS 2-vector quadric surface entity Q can be anisotropically dilated by
factor d in a unit direction v̂S as a boost that is followed by a DCSTA spatial projection.
The natural speed �v of the boost, for the dilation factor d, is

�v = 1¡ d2
p

which is an imaginary number for 1<d.
The DCSTA 4-versor anisotropic dilator is de�ned as

A = e
1

2
'vv̂S1e1^ e

1

2
'vv̂S2e7=BC1^BC2=BD

=

�
cosh

�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S1e1

�
^
�
cosh

�
1
2
'v

�
+ sinh

�
1
2
'v

�
v̂S2e7

�
where the rapidity is

'v = atanh(�v)= atanh
¡

1¡ d2
p �

:

The anisotropic dilator A follows from the Special Relativity (SR) length contraction
formula

L =
L0

v

=L0 1¡ �v
2

p
=L0d:

In SR, it is required that d�1 for any real speed that is at most light speed c. A dilation
factor 1<d requires an imaginary natural speed �v.

The DCSTA anisotropic dilator operation on a DCSTA GIPNS 2-vector quadric sur-
face Q is de�ned as

QDS
0 = ((AQA�) � IDS)IDS¡1 :

The spatial projection discards imaginary time-like components, leaving only a geomet-
rical surface entity at w= ct= 0 in spacetime. The dilated entity QDS0 can be evaluated
with time-like coordinate �xed to w = ct = 0, and the entity should appear dilated in
the unit direction v̂S by factor d. The center point of the entity Q is also dilated, which
causes a translation of the center point unless Q is at the origin. If QDS0 is to be at a time
pw=/ 0, then the translator operation can be used to translate QDS0 in spacetime.

5.8 DCSTA di�erential calculus
The DCSTA di�erential calculus is a straightforward extension of the DCGA di�erential
calculus that is introduced in the paper [5].

5.8.1 DCSTA di�erential elements

Some of the DCSTA point value-extraction elements Ts have inverses. These inverses allow
the following DCSTA 2-vector di�erential elements to be de�ned as

Dw = 2TwTw2
¡1

Dt = 2TtTt2
¡1

Dx = 2TxTx2
¡1

Dy = 2TyTy2
¡1

Dz = 2TzTz2
¡1:

Double Conformal Space-Time Algebra (DCSTA) 55

5.8.2 DCSTA antisymmetric di�erential operators

The DCSTA antisymmetric di�erential operators are de�ned as

@w=
@
@w

= Dw�

@t=
@
@t

= Dt�

@x=
@
@x

= Dx�

@y=
@
@y

= Dy�

@z=
@
@z

= Dz�

where the symbol � is the antisymmetric commutator product . For any multivectors A
and B, the commutator product is

A�B =
1
2
(AB ¡BA):

Any DCSTA GIPNS 2-vector surface entity
, in terms of the extraction elements Ts,
can be di�erentiated as Dn�
, where Dn is one of the di�erential elements or is a linear
combination of di�erential elements. Higher-order mixed partial derivatives can also be
computed, as for example

d2

@x@y

= Dx� (Dy�
)=Dy� (Dx�
):

As required of partial di�erential operators, the sequence in which the derivatives are
computed does not a�ect the result.

5.8.3 DCSTA directional derivative operator

The DCSTA n-directional derivative operator is de�ned as

@n=
@
@n

= (nwDw+nxDx+nyDy+nzDz)�

where n is a unit norm spacetime direction

n =
n
knk =

n

n �ny
p =nw
0+nx
1+ny
2+nz
3:

5.8.4 DCSTA time derivative operator

The DCSTA time t derivative operator is

@t=
@
@t

= Dt� :

The time t derivative of any DCSTA GIPNS 2-vector spacetime entity
 is

_ = @t
=
@

@t

= Dt�
:

56 Section 5

The DCSTA 2-vector spacetime entity
 is the most general DCSTA GIPNS 2-vector
non-standard surface entity that is formed as a linear combination of the DCSTA 2-vector
extraction elements Ts.

5.9 DCSTA pseudo-integral calculus

In the paper [5], the DCGA pseudo-integral calculus is introduced. A straightforward
adaptation and extension into DCSTA is possible but will not be explored here.

6 DCSTA computing with SymPy

DCSTA computing with SymPy (http://sympy.org) [13] is possible by using
the Geometric Algebra Module for Sympy (GAlgebra) by Alan Bromborsky
(https://github.com/brombo/galgebra) [1]. This section provides sample code listings and
example computations in DCSTA using GAlgebra. The Anaconda and SciPy python
distributions both include SymPy and the Mayavi [12] data visualization package. The
current version of the GAlgebra module for SymPy can be downloaded and installed from
GitHub. The Jupyter Notebook web application (http://jupyter.org) is recommended
for running the sample code and example computations.

6.1 Sample code

The sample code that is listed in the following subsections can be inserted into cells of
a Jupyter notebook �le and executed in the order listed. The sample code initializes
the GAlgebra modules and de�nes functions and symbols for DCSTA computing. The
example computations use the functions and symbols that are de�ned in the sample code.
The sample code is provided as is for experimental testing and educational purposes only!

6.1.1 Imports

Import the SymPy and GAlgebra modules:

from sympy import *
from sympy.printing import *
from galgebra.ga import *
from galgebra.mv import *
from galgebra.lt import *
from galgebra.metric import *
from galgebra.printer import *
init_printing()

6.1.2 Basis vectors

G4;8 DCSTA requires twelve unit vectors, which can be setup as follows:

DCSTA computing with SymPy 57

(e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12) = MV.setup(
'e*1|2|3|4|5|6|7|8|9|10|11|12',
metric=[1,-1,-1,-1,1,-1, 1,-1,-1,-1,1,-1]

)

6.1.3 Points at the origin and at in�nity

The CSTA1, CSTA2, and DCSTA points at the origin and at in�nity are de�ned as
follows:

(eo1,ei1,eo2,ei2,eo,ei) = symbols(
'e_o1 e_i1 e_o2 e_i2 e_o e_i'

)
CSTA1 points
eo1 = Pow(2,-1)*(-e5+e6)
ei1 = (e5+e6)
CSTA2 points
eo2 = Pow(2,-1)*(-e11+e12)
ei2 = (e11+e12)
DCSTA points
eo = eo1^eo2
ei = ei1^ei2

6.1.4 Unit pseudoscalars

The unit pseudoscalars in G0;3 SA1, G1;3 STA1, G2;4 CSTA1, G0;3 SA2, G1;3 STA2, G2;4
CSTA2, and G4;8 DCSTA, respectively, are de�ned as follows:

(I31,I41,I61,I32,I42,I62,ID IDS) = symbols(
'I_31 I_41 I_61 I_32 I_42 I_62 I_D I_DS'

)
SA1 unit pseudoscalar
I31 = e2^e3^e4
STA1 unit pseudoscalar
I41 = e1^I31
CSTA1 unit pseudoscalar
I61 = I41^ei1^eo1
SA2 unit pseudoscalar
I32 = e8^e9^e10
STA2 unit pseudoscalar
I42 = e7^I32
CSTA2 unit pseudoscalar
I62 = I42^ei2^eo2
DCSTA unit pseudoscalar
ID = I61^I62
G2,8 anti-DCGA (spatial) unit pseudoscalar
IDS = (e1^e7)|ID

58 Section 6

The last value, IDS, is the G2;8 anti-DCGA unit pseudoscalar for a space that is very
similar to the G8;2 DCGA. The IDS unit pseudoscalar is used to project entities into a
purely spatial algebra that drops the two time dimensions e1 and e7. When these time
dimensions are dropped, or rejected, by a projection of an entity onto IDS, then the
entity is e�ectively located at t=0 in spacetime. The projection onto IDS is useful after
a directed scaling, or anisotropic dilation, of a quadric surface.

6.1.5 Point embeddings

CSTA1 point embedding:

def EV1(v):
Embed STA1 vector v as CSTA1 point.
v1 = v
return (v1 + Pow(2,-1)*(v1*v1)*ei1 + eo1)

CSTA2 point embedding:

def EV2(v):
Embed STA1 vector v as CSTA2 point.
STA1 vector v is converted to an STA2 vector v2.
v2 = (v|e1)*e7 - ((v|e2)*e8 + (v|e3)*e9 + (v|e4)*e10)
return (v2 + Pow(2,-1)*(v2*v2)*ei2 + eo2)

DCSTA point embedding:

def EV(v):
Embed STA1 vector v as DCSTA point.
return (EV1(v)^EV2(v))

6.1.6 Point projections

CSTA1 point projection to an STA1 vector:

def PV1(V1):
Project CSTA1 point to STA1 vector.
1) Normalize point.
2) Use multivector projection to project vector part.
return Pow(scalar(-V1|ei1),-1)*(V1|I41)*I41.inv()

CSTA2 point projection to an STA1 vector:

def PV2(V2):
Project CSTA2 point to STA1 vector.
1) Normalize point.
2) Use multivector projection to project vector part.
3) Convert into main STA1 space.
v2 = Pow(scalar(-V2|ei2),-1)*(V2|I42)*I42.inv()
return ((v2|e7)*e1 + (-v2|e8)*e2 + (-v2|e9)*e3 + (-v2|e10)*e4)

DCSTA computing with SymPy 59

DCSTA point projection to an STA1 vector:

def PV(V):
Project DCSTA point V to an STA1 vector.
1) Contract DCSTA point into CSTA1 point using ei2.
2) Project CSTA1 point V1 to an STA1 vector.
V1 = V|ei2
return PV1(V1)

6.1.7 Symbolic vectors and points

Symbols for coordinates, parameters, and vectors:

w,x,y,z,c,t,g,b = symbols('w x y z c t g b')
pw,px,py,pz = symbols('p_w p_x p_y p_z')
rx,ry,rz = symbols('r_x r_y r_z')
nw,nx,ny,nz = symbols('n_w n_x n_y n_z')
vx,vy,vz = symbols('v_x v_y v_z')
v,v1,v2,V,V1,V2 = symbols('v v1 v2 V V1 V2')

The pw,px,py,pz are used as symbolic position coordinates for the center position of
surface entities. The rx,ry,rz are used as symbolic radii parameters of implicit quadric
surface functions. The nw,nx,ny,nz may be used as symbolic coordinates of a normalized
unit vector n. The vx,vy,vz may be used to hold the velocity components of a velocity
vector v. The symbol c is used as the symbolic speed of light, and symbol t is time.

Symbolic values, vectors, and points:

w = c*t
v = w*e1 + x*e2 + y*e3 + z*e4
v1 = v
v2 = w*e7 + x*e8 + y*e9 + z*e10
V1 = EV1(v)
V2 = EV2(v)
V = EV(v)

The embedding of the symbolic STA1 and STA2 vectors v1 and v2 are symbolic CSTA1
and CSTA2 points V1 and V2, respectively. The DCSTA embedding of a symbolic STA1
vector v is the symbolic DCSTA point V. In symbolic calculations, these symbolic point
embeddings V1, V2, and V are useful to check results.

6.1.8 Extraction elements

The DCSTA point value-extraction elements Ts are used to extract the value s from a
DCSTA point TD as

s = TD �Ts:

The extraction elements are de�ned in code as:

60 Section 6

(
Tw,Tx,Ty,Tz,
Tww,Txx,Tyy,Tzz,
Txy,Tyz,Tzx,Twx,Twy,Twz,
Twt2,Txt2,Tyt2,Tzt2,
Tt,Ttt,Ttx,Tty,Ttz,Ttt2,
T0,T1,Tt2,Tt4

) = symbols(
'Tw Tx Ty Tz '
'Tww Txx Tyy Tzz '
'Txy Tyz Tzx Twx Twy Twz '
'Twt2 Txt2 Tyt2 Tzt2 '
'Tt Ttt Ttx Tty Ttz Ttt2 '
'T0 T1 Tt2 Tt4'

)
Coordinates; linear extractions
Tw = Pow(2,-1)*((e1^ei2)+(ei1^e7))
Tt = Pow(c,-1)*Tw
Tx = -Pow(2,-1)*((e2^ei2)+(ei1^e8))
Ty = -Pow(2,-1)*((e3^ei2)+(ei1^e9))
Tz = -Pow(2,-1)*((e4^ei2)+(ei1^e10))
Squares; quadratic extractons
Tww = e7^e1
Ttt = Pow(c,-2)*Tw
Txx = e8^e2
Tyy = e9^e3
Tzz = e10^e4
Cross terms; quadratic extractions
Twx = Pow(2,-1)*((e1^e8)+(e2^e7))
Twy = Pow(2,-1)*((e1^e9)+(e3^e7))
Twz = Pow(2,-1)*((e1^e10)+(e4^e7))
Ttx = Pow(c,-1)*Twx
Tty = Pow(c,-1)*Twy
Ttz = Pow(c,-1)*Twz
Txy = Pow(2,-1)*((e8^e3)+(e9^e2))
Tyz = Pow(2,-1)*((e10^e3)+(e9^e4))
Tzx = Pow(2,-1)*((e10^e2)+(e8^e4))
Coordinates * squared test vector; cubic extractions
Twt2 = (e1^eo2)+(eo1^e7)
Ttt2 = Pow(c,-1)*Twt2
Txt2 = (eo2^e2)+(e8^eo1)
Tyt2 = (eo2^e3)+(e9^eo1)
Tzt2 = (eo2^e4)+(e10^eo1)
Unit scalar extraction
T1 = -ei
Squared test vector; quadratic extraction
Tt2 = (eo2^ei1)+(ei2^eo1)
Squared squared test vector; quartic extraction
Tt4 = -4*eo

DCSTA computing with SymPy 61

6.1.9 Extraction pseudo-inverse elements

An extraction pseudo-inverse element has the property

Ts �Ts+ = 1:

The extraction pseudo-inverse elements are de�ned in code as:

(
iTw,iTx,iTy,iTz,iTt,
iTww,iTxx,iTyy,iTzz,iTtt,
iTxy,iTyz,iTzx,iTwx,iTwy,iTwz,iTtx,iTty,iTtz,
iT1,iTt2,iTt4) = symbols(
'i_Tww i_Txx i_Tyy i_Tzz i_Ttt '
'i_Tw i_Tx i_Ty i_Tz iTt '
'i_Txy i_Tyz i_Tzx i_Twx i_Twy i_Twz i_Ttx i_Tty i_Ttz '
'i_T1 i_Tt2 i_Tt4'

)
iTw = Twt2
iTx = -Txt2
iTy = -Tyt2
iTz = -Tzt2
iTt = Pow(c,2)*Ttt2
iTww = -Tww
iTxx = -Txx
iTyy = -Tyy
iTzz = -Tzz
iTtt = -Pow(c,2)*Tww
iTxy = -2*Txy
iTyz = -2*Tyz
iTzx = -2*Tzx
iTwx = 2*Twx
iTwy = 2*Twy
iTwz = 2*Twz
iTtx = 2*Pow(c,2)*Ttx
iTty = 2*Pow(c,2)*Tty
iTtz = 2*Pow(c,2)*Ttz
iT1 = -Pow(4,-1)*Tt4
iTt2 = -Pow(2,-1)*Tt2
iTt4 = -Pow(4,-1)*T1

6.1.10 Di�erential elements

The di�erential and pseudo-integral elements are:

62 Section 6

(
Dw,Dx,Dy,Dz,Dt,
Iw,Ix,Iy,Iz,It

) = symbols(
'D_w D_x D_y D_z D_t '
'I_w I_x I_y I_z I_t'

)
Differential elements
Dw = 2*Tw*Tww.inv()
Dx = 2*Tx*Txx.inv()
Dy = 2*Ty*Tyy.inv()
Dz = 2*Tz*Tzz.inv()
Dt = 2*Tt*Ttt.inv()
Pseudo-integral elements
Iw = Pow(2,-1)*Tww*iTw
Ix = Pow(2,-1)*Txx*iTx
Iy = Pow(2,-1)*Tyy*iTy
Iz = Pow(2,-1)*Tzz*iTz
It = Pow(2,-1)*Ttt*iTt

In recent versions of the GAlgebra module, the commutator product A � B is coded as
(A>>B), and the anti-commutator product A �� B is coded as (A<<B). The parentheses
are required to ensure that the precedence rules for Python operators do not interfere.
For example, the derivative of a DCSTA GIPNS 2-vector surface entity
 with respect
to t is written @t
=
_ =Dt�
, and if
 is assigned to variable E, then the derivative
is coded as (Dt>>E) and evaluated symbolically as (V|(Dt>>E)). The operation (A|B)
is the inner product.

6.1.11 Directional derivative operator

The n-directional derivative operator is de�ned in code as:

def Dn(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Dw + x*Dx + y*Dy + z*Dz)

Only the direction of the spacetime vector

n = we1+xe2+ ye3+ ze3

is signi�cant. The n-directional derivative uses the norm-unit of n, which is

n
knk =

n

nw
2 +nx

2+ny
2+nz

2
p :

The directional derivative of a DCSTA GIPNS 2-vector surface entity E is coded as (Dn(w,
x,y,z)>>E).

DCSTA computing with SymPy 63

6.1.12 Pseudo-integral operator

The n-directional pseudo-integral operator is de�ned in code as:

def In(w,x,y,z):
n = sqrt(w**2 + x**2 + y**2 + z**2)
return Pow(n,-1)*(w*Iw + x*Ix + y*Iy + z*Iz)

The directional pseudo-integral of a DCSTA GIPNS 2-vector surface entity E is coded as
(In(w,x,y,z)>>E).

6.1.13 DCSTA GIPNS 2-vector surface entities

The following subsections de�ne, in code, many of the same surface entities that are dis-
cussed in the paper on G8;2 DCGA [6]. The most general DCSTA GIPNS 2-vector surface
entity
 is the linear combination of the value-extraction elements (�6.1.8). The value-
extraction elements can form a general DCSTA GIPNS 2-vector quadric surface entity
Q that supports anisotropic dilations. The value-extraction elements can form particular
cubic surfaces known as parabolic cyclides and particular quartic surfaces known as Dupin
and Darboux cyclides that do not support anisotropic dilations. All of the DCSTA GIPNS
2-vector surfaces
 can be boosted into a velocity in spacetime, but only the quadric
surface entities can correctly display length contraction or dilation e�ects.

6.1.14 DCSTA GIPNS 2-vector toroid

The DCSTA GIPNS 2-vector toroid is coded as:

def GIPNS_Toroid(R,r):
Torus centered at the origin circling the z-axis.
R is the major radius
r is the minor radius
R=0 degenerates into exactly -4*Sphere(0,r)
R=r=0 degenerates into exactly -4*eo
r=0 degenerates into non-standard circle radius R
Note, -Tt2 since signatures are negative
return (

Tt4 +
-Tt2*2*(R**2 - r**2) +
T1*(R**2 - r**2)**2 +
(Txx + Tyy)*(-4)*R**2

)

The Toroid is evaluated at t=0 to obtain the same toroid as in G8;2 DCGA:

EV(c*0*e1+x*e2+y*e3+z*e4)|Toroid(R,r)

The cyclide surface that is formed from the toroid at other times t=/ 0 could be researched

64 Section 6

further. Most surfaces are evaluated at t=0 to obtain a surface similar to those in DCGA.

6.1.15 DCSTA GIPNS 2-vector Dupin cyclide

The DCSTA GIPNS 2-vector Dupin cyclide is coded as:

def GIPNS_DupinCyclide(R,r1,r2):
DupinCyclide generalizes the torus.
Types of cyclide:
Ring cyclide when (r1+r2)<2R
Spindle cyclide when (r1+r2)>2R
Types of torus:
Horn torus when (r1=r2)=R
Ring torus when (r1=r2)<R
Spindle torus when (r1=r2)>R
#
R is major radius in the xy-plane.
r1 and r2 are minor radii.
r1 is the radius of sphere centered at x=+R.
r2 is the radius of sphere centered at x=-R.
When r1=r2, we get exactly a Toroid(R,r=r1=r2).
When r1+r2=2R, we get the union of two spheres
that touch in a tangent point, exactly.
#
Note: -Tt2 since signatures are negative.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-c**2)
return (

Tt4 +
-2*(b**2-u**2)*Tt2 +
(b**2-u**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

The DupinCyclide is evaluated at t=0 to obtain the same Dupin cyclide as in G8;2 DCGA:

EV(c*0*e1+x*e2+y*e3+z*e4)|DupinCyclide(R,r1,r2)

6.1.16 DCSTA GIPNS 2-vector horned Dupin cyclide

The DCSTA GIPNS 2-vector horned Dupin cyclide is coded as:

DCSTA computing with SymPy 65

def GIPNS_HornedDupinCyclide(R,r1,r2):
Compared to DupinCyclide, just exchange values of
u and c to get horned Dupin cyclide.
For r1=r2: symmetrical, with horn points on y-axis.
For (r1+r2)<2R: horned ring cyclide.
For (r1+r2)>2R: horned spindle cyclide.
For (r1+r2)=2R: union of two spheres exactly.
a = R
u = (r1+r2)*Pow(2,-1)
c = (r1-r2)*Pow(2,-1)
b = sqrt(a**2-u**2)
return (

Tt4 +
-2*(b**2-c**2)*Tt2 +
(b**2-c**2)**2*T1 +
-4*(a**2*Txx - 2*a*c*u*Tx + c**2*u**2*T1) +
-4*b**2*Tyy

)

6.1.17 DCSTA GIPNS 2-vector ellipsoid

The DCSTA GIPNS 2-vector ellipsoid is coded as:

def GIPNS_Ellipsoid(px,py,pz,rx,ry,rz):
Axis-aligned ellipsoid.
return (

Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-Tx*2*px*Pow(rx**2,-1) +
-Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)

An ellipsoid, or any other quadric surface entity, that is to be boosted into a spacetime
velocity should initially be at the origin position (px; py; pz) = (0; 0; 0) before the �rst
boost operation on the entity. After the boost operation(s) on a quadric surface entity,
the boosted entity can be evaluated at any time t, where the entity has a moving position
and displays a length contraction e�ect.

6.1.18 DCSTA GIPNS 2-vector elliptic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cylinder is coded as:

66 Section 6

def GIPNS_ECylinderX(px,py,pz,rx,ry,rz):
x-axis aligned elliptic cylinder.
return (

T1*(py**2*Pow(ry**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.19 DCSTA GIPNS 2-vector elliptic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderY(px,py,pz,rx,ry,rz):
y-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+pz**2*Pow(rz**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.20 DCSTA GIPNS 2-vector elliptic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cylinder is coded as:

def GIPNS_ECylinderZ(px,py,pz,rx,ry,rz):
z-axis aligned elliptic cylinder.
return (

T1*(px**2*Pow(rx**2,-1)+py**2*Pow(ry**2,-1)-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1)

)

6.1.21 DCSTA GIPNS 2-vector elliptic cone, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic cone is coded as:

DCSTA computing with SymPy 67

def GIPNS_ConeX(px,py,pz,rx,ry,rz):
x-axis aligned elliptic cone.
return (

-T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.22 DCSTA GIPNS 2-vector elliptic cone, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic cone is coded as:

def GIPNS_ConeY(px,py,pz,rx,ry,rz):
y-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-2*pz*Tz*Pow(rz**2,-1)

)

6.1.23 DCSTA GIPNS 2-vector elliptic cone, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic cone is coded as:

def GIPNS_ConeZ(px,py,pz,rx,ry,rz):
z-axis aligned elliptic cone.
return (

T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1)

)

68 Section 6

6.1.24 DCSTA GIPNS 2-vector elliptic paraboloid, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidX(px,py,pz,rx,ry,rz):
x-axis aligned elliptic paraboloid.
return (

-2*pz*Tz*Pow(rz**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tx*Pow(rx,-1) +
Tzz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*px*Pow(rx,-1)

)

6.1.25 DCSTA GIPNS 2-vector elliptic paraboloid, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidY(px,py,pz,rx,ry,rz):
y-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*pz*Tz*Pow(rz**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
T1*py*Pow(ry,-1)

)

6.1.26 DCSTA GIPNS 2-vector elliptic paraboloid, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned elliptic paraboloid is coded as:

def GIPNS_ParaboloidZ(px,py,pz,rx,ry,rz):
z-axis aligned elliptic paraboloid.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

DCSTA computing with SymPy 69

6.1.27 DCSTA GIPNS 2-vector hyperbolic paraboloid

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic paraboloid is coded as:

def GIPNS_HParaboloidZ(px,py,pz,rx,ry,rz):
z-axis aligned hyperbolic paraboloid.
A saddle-like shape
that "saddles" x-axis
and "straddles" y-axis
with "up" direction as z-axis.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.28 DCSTA GIPNS 2-vector hyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperboloid of one sheet is coded as:

def GIPNS_Hyperboloid1(px,py,pz,rx,ry,rz):
z-axis aligned hyperboloid of one sheet.
An hourglass-like shape that
is elliptic in the xy-plane
and hyperbolic in xz and yz planes.
return (

-2*px*Tx*Pow(rx**2,-1) +
-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.29 DCSTA GIPNS 2-vector hyperboloid of two sheets

The DCSTA GIPNS 2-vector hyperboloid of two sheets is coded as:

70 Section 6

def GIPNS_Hyperboloid2(px,py,pz,rx,ry,rz):
z-axis aligned hyperboloid of two sheets.
A shape like two dishes that
are elliptic in the xy-plane
and hyperbolic in xz and yz planes.
return (

Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
-Tz*2*pz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
Tzz*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.30 DCSTA GIPNS 2-vector parabolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderX(px,py,pz,rx,ry,rz):
Cylinder along x-axis with
constant parabola cross-section in yz-plane.
return (

-2*py*Ty*Pow(ry**2,-1) +
-Tz*Pow(rz,-1) +
Tyy*Pow(ry**2,-1) +
T1*py**2*Pow(ry**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.31 DCSTA GIPNS 2-vector parabolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned parabolic cylinder is coded as:

def GIPNS_PCylinderY(px,py,pz,rx,ry,rz):
Cylinder along y-axis with
constant parabola cross-section in xz-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Tz*Pow(rz,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*pz*Pow(rz,-1)

)

6.1.32 DCSTA GIPNS 2-vector parabolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned parabolic cylinder is coded as:

DCSTA computing with SymPy 71

def GIPNS_PCylinderZ(px,py,pz,rx,ry,rz):
Cylinder along z-axis with
constant parabola cross-section in xy-plane.
return (

-2*px*Tx*Pow(rx**2,-1) +
-Ty*Pow(ry,-1) +
Txx*Pow(rx**2,-1) +
T1*px**2*Pow(rx**2,-1) +
T1*py*Pow(ry,-1)

)

6.1.33 DCSTA GIPNS 2-vector hyperbolic cylinder, x-axis aligned

The DCSTA GIPNS 2-vector x-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderX(px,py,pz,rx,ry,rz):
Cylinder along x-axis with
constant hyperbola cross-section in yz-plane
opening up and down the y-axis.
return (

-Ty*2*py*Pow(ry**2,-1) +
Tz*2*pz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1) +
-T1

)

6.1.34 DCSTA GIPNS 2-vector hyperbolic cylinder, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned hyperbolic cylinder is coded as:

def GIPNS_HCylinderY(px,py,pz,rx,ry,rz):
Cylinder along y-axis with
constant hyperbola cross-section in xz-plane
opening up and down the z-axis.
return (

-Tz*2*pz*Pow(rz**2,-1) +
Tx*2*px*Pow(rx**2,-1) +
Tzz*Pow(rz**2,-1) +
-Txx*Pow(rx**2,-1) +
T1*pz**2*Pow(rz**2,-1) +
-T1*px**2*Pow(rx**2,-1) +
-T1

)

6.1.35 DCSTA GIPNS 2-vector hyperbolic cylinder, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned hyperbolic cylinder is coded as:

72 Section 6

def GIPNS_HCylinderZ(px,py,pz,rx,ry,rz):
Cylinder along z-axis with
constant hyperbola cross-section in xy-plane
opening up and down the x-axis.
return (

-Tx*2*px*Pow(rx**2,-1) +
Ty*2*py*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1) +
-T1

)

6.1.36 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to x-axis
The DCSTA GIPNS 2-vector parallel planes pair ?x-axis is coded as:

def GIPNS_PPlanesPairX(px1,px2):
Parallel planes pair, x=px1 and x=px2.
return (Txx - (px1+px2)*Tx + px1*px2*T1)

6.1.37 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to y-axis
The DCSTA GIPNS 2-vector parallel planes pair ?y-axis is coded as:

def GIPNS_PPlanesPairY(py1,py2):
Parallel planes pair, y=py1 and y=py2.
return (Tyy - (py1+py2)*Ty + py1*py2*T1)

6.1.38 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to z-axis
The DCSTA GIPNS 2-vector parallel planes pair ?z-axis is coded as:

def GIPNS_PPlanesPairZ(pz1,pz2):
Parallel planes pair, z=pz1 and z=pz2.
return (Tzz - (pz1+pz2)*Tz + pz1*pz2*T1)

6.1.39 DCSTA GIPNS 2-vector non-parallel planes pair, x-axis aligned
The DCSTA GIPNS 2-vector x-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairX(py,pz,ry,rz):
The non-parallel planes pair aligned with x-axis
is a type of cylinder with constant cross section
that is a pair of lines in the yz-plane. The lines
intersect at (py,pz), and the slopes of the two
lines are +rz/ry and -rz/ry.
return (

-2*py*Ty*Pow(ry**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Tyy*Pow(ry**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*py**2*Pow(ry**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)

DCSTA computing with SymPy 73

6.1.40 DCSTA GIPNS 2-vector non-parallel planes pair, y-axis aligned

The DCSTA GIPNS 2-vector y-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairY(px,pz,rx,rz):
The non-parallel planes pair aligned with y-axis
is a type of cylinder with constant cross section
that is a pair of lines in the xz-plane. The lines
intersect at (px,pz), and the slopes of the two
lines are +rz/rx and -rz/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*pz*Tz*Pow(rz**2,-1) +
Txx*Pow(rx**2,-1) +
-Tzz*Pow(rz**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*pz**2*Pow(rz**2,-1)

)

6.1.41 DCSTA GIPNS 2-vector non-parallel planes pair, z-axis aligned

The DCSTA GIPNS 2-vector z-axis aligned non-parallel planes pair is coded as:

def GIPNS_XPlanesPairZ(px,py,rx,ry):
The non-parallel planes pair aligned with z-axis
is a type of cylinder with constant cross section
that is a pair of lines in the xy-plane. The lines
intersect at (px,py), and the slopes of the two
lines are +ry/rx and -ry/rx.
return (

-2*px*Tx*Pow(rx**2,-1) +
2*py*Ty*Pow(ry**2,-1) +
Txx*Pow(rx**2,-1) +
-Tyy*Pow(ry**2,-1) +
T1*px**2*Pow(rx**2,-1) +
-T1*py**2*Pow(ry**2,-1)

)

6.1.42 CSTA1 GIPNS 1-vector hyperplane

The CSTA1 GIPNS 1-vector hyperplane is coded as:

def GIPNS_HPlane1(p,n):
CSTA1 1-vector hyperplane
p is any point on the hyperplane
n is the normal vector
the magnitude of n is not significant
return (n + (p|n)*ei1)

6.1.43 CSTA2 GIPNS 1-vector hyperplane

The CSTA2 GIPNS 1-vector hyperplane is coded as:

74 Section 6

def GIPNS_HPlane2(p,n):
CSTA2 1-vector hyperplane
p is any point on the hyperplane
n is the normal vector
the magnitude of n is not significant
p2 = (p1|e1)*e7 + (-p1|e2)*e8 + (-p1|e3)*e9 + (-p1|e4)*e10
n2 = (n1|e1)*e7 + (-n1|e2)*e8 + (-n1|e3)*e9 + (-n1|e4)*e10
return (n2 + (p2|n2)*ei2)

6.1.44 DCSTA GIPNS 2-vector hyperplane

The DCSTA GIPNS 2-vector hyperplane is coded as:

def GIPNS_HPlane(p,n):
DCSTA 2-vector hyperplane
p is any point on the hyperplane
n is the normal vector
the magnitude of n is not significant
return (GIPNS_HPlane1(p,n)^GIPNS_HPlane2(p,n))

6.1.45 CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) is coded
as:

def GIPNS_HPSphere1(p,r):
CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
p is the STA center point
r is the radius
negative radius makes imaginary hyperpseudosphere
f = Pow(abs(r),-1)*r
return (EV1(p) + f*Pow(2,-1)*r**2*ei1)

6.1.46 CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet

The CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet (hyperpseudosphere) is coded
as:

def GIPNS_HPSphere2(p,r):
CSTA1 1-vector hyperpseudosphere (hyperhyperboloid)
p is the STA center point
r is the radius
negative radius makes imaginary hyperpseudosphere
f = Pow(abs(r),-1)*r
return (EV2(p) + f*Pow(2,-1)*r**2*ei2)

6.1.47 DCSTA GIPNS 2-vector hyperhyperboloid of one sheet

The DCSTA GIPNS 2-vector hyperhyperboloid of one sheet (hyperpseudosphere) is coded
as:

DCSTA computing with SymPy 75

def GIPNS_HPSphere(p,r):
DCSTA 2-vector hyperpseudosphere (hyperhyperboloid)
p is the STA center point
r is the radius
negative radius makes imaginary hyperpseudosphere
return (GIPNS_HPSphere1(p,r)^GIPNS_HPSphere2(p,r))

6.1.48 CSTA1 GIPNS 2-vector plane

The CSTA1 GIPNS 2-vector plane is coded as:

def GIPNS_Plane1(p,da,db):
p is any STA1 point on the plane
da is STA1 direction one of plane
db is STA1 direction two of plane
The STA1 plane bivector B is da^db
p1 = p
B1 = da^db
N1 = Pow(sqrt(scalar(B1|(e1*B1.rev()*e1))),-1)*B1
D1 = ((1*N1*1)|I41.inv())
return (D1 - ((p1|D1)^ei1))

6.1.49 CSTA2 GIPNS 2-vector plane

The CSTA2 GIPNS 2-vector plane is coded as:

def GIPNS_Plane2(p,da,db):
p is any STA1 point on the plane
da is STA1 direction one of plane
db is STA1 direction two of plane
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
da2 = (da|e1)*e7+(-da|e2)*e8+(-da|e3)*e9+(-da|e4)*e10
db2 = (db|e1)*e7+(-db|e2)*e8+(-db|e3)*e9+(-db|e4)*e10
B2 = da2^db2
N2 = Pow(sqrt(scalar(B2|(e7*B2.rev()*e7))),-1)*B2
D2 = (N2|I42.inv())
return (D2 - ((p2|D2)^ei2))

6.1.50 DCSTA GIPNS 4-vector standard plane

The DCSTA GIPNS 4-vector standard plane is coded as:

def GIPNS_Plane(p,da,db):
p is any STA1 point on the plane
da is STA1 direction one of plane
db is STA1 direction two of plane
return (GIPNS_Plane1(p,da,db)^GIPNS_Plane2(p,da,db))

The standard plane can be intersected with all other DCSTA GIPNS surface entities.

76 Section 6

6.1.51 CSTA1 GIPNS 3-vector line

The CSTA1 GIPNS 3-vector line is coded as:

def GIPNS_Line1(p,d):
p is any STA1 point on the line
d is the STA1 direction of line
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
D1 = d1|(-I41)
return (D1 + ((p|D1)^ei1))

6.1.52 CSTA2 GIPNS 3-vector line

The CSTA2 GIPNS 3-vector line is coded as:

def GIPNS_Line2(p,d):
p is any STA1 point on the line
d is the STA1 direction of line
p2 = (p|e1)*e7+(-p|e2)*e8+(-p|e3)*e9+(-p|e4)*e10
dc = e1*d*e1
d1 = Pow(sqrt(scalar(d|dc)),-1)*d
d2 = (d1|e1)*e7+(-d1|e2)*e8+(-d1|e3)*e9+(-d1|e4)*e10
D2 = d2|(-I42)
return (D2 + ((p2|D2)^ei2))

6.1.53 DCSTA GIPNS 6-vector standard line

The DCSTA GIPNS 6-vector standard line is coded as:

def GIPNS_Line(p,d):
p is any STA1 point on the line
d is the STA1 direction of line
return (GIPNS_Line1(p,d)^GIPNS_Line2(p,d))

The standard line can be intersected with all other DCSTA GIPNS surface entities.

6.1.54 CSTA1 plane-line intersection

The CSTA1 plane-line intersection is coded as:

def GIPNS_PlaneLineIntersection1(p,l):
Intersect GIPNS_Plane1 p and GIPNS_Line1 l
plwedge = (p^l)
if plwedge != 0: return ei1
plmeet = (((p|I41.inv())^(l|I41.inv()))|I41)
if plmeet == 0: return l
return ((e1*plmeet*e1)|p)^l

6.1.55 CSTA2 plane-line intersection

The CSTA2 plane-line intersection is coded as:

DCSTA computing with SymPy 77

def GIPNS_PlaneLineIntersection2(p,l):
Intersect GIPNS_Plane2 p and GIPNS_Line2 l
plwedge = (p^l)
if plwedge != 0: return ei2
plmeet = (((p|I42.inv())^(l|I42.inv()))|I42)
if plmeet == 0: return l
return ((e7*plmeet*e7)|p)^l

6.1.56 CSTA1 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA1 GOPNS 2-vector point pair is coded as:

def GOPNS_PointPairDecomp1(pp,pm):
pp is a CSTA1 GOPNS 2-vector point pair
pm is -1 or 1 to select a point of the pair
returns a CSTA1 null 1-vector point entity
return ((pp + pm*sqrt(scalar(pp|pp)))*(-ei1|pp).inv())

6.1.57 CSTA2 GOPNS 2-vector point pair decomposition

The decomposition of a CSTA2 GOPNS 2-vector point pair is coded as:

def GOPNS_PointPairDecomp2(pp,pm):
pp is a CSTA2 GOPNS 2-vector point pair
pm is -1 or 1 to select a point of the pair
returns a CSTA2 null 1-vector point entity
return ((pp + pm*sqrt(scalar(pp|pp)))*(-ei2|pp).inv())

6.1.58 CSTA1 GOPNS 2-vector �at point projection

The projection of the point of a CSTA1 GOPNS 2-vector �at point is coded as:

def GOPNS_FlatPointProj1(fp):
fp is a CSTA1 GOPNS 2-vector flat point
returns the STA1 vector projection of the point
E = eo1^ei1
return (-(fp|eo1)*Pow(scalar(E|fp),-1) - eo1)

6.1.59 CSTA2 GOPNS 2-vector �at point projection

The projection of the point of a CSTA2 GOPNS 2-vector �at point is coded as:

def GOPNS_FlatPointProj2(fp):
fp is a CSTA2 GOPNS 2-vector flat point
returns the STA2 vector projection of the point
E = eo2^ei2
return (-(fp|eo2)*Pow(scalar(E|fp),-1) - eo2)

6.1.60 SA1, STA1, and CSTA1 2-versor rotor

The CSTA1 2-versor spatial rotor is coded as:

78 Section 6

def Rotor1(axis,angle):
Spatial rotor in SA1, STA1, and CSTA1, where
axis is SA1 vector axis of rotation and
angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax1|(-I31))

)

6.1.61 SA2, STA2, and CSTA2 2-versor rotor

The CSTA2 2-versor spatial rotor is coded as:

def Rotor2(axis,angle):
Spatial rotor in SA2, STA2, and CSTA2, where
axis is SA1 vector axis of rotation and
angle is scalar angle of rotation in degrees.
ax1 = Pow(norm(axis),-1)*axis
ax2 = (-ax1|e2)*e8 + (-ax1|e3)*e9 + (-ax1|e4)*e10
ang = pi*Pow(180,-1)*angle
return (

cos(ang*Pow(2,-1)) +
sin(ang*Pow(2,-1))*(ax2|(-I32))

)

6.1.62 DCSTA 4-versor rotor

The DCSTA 4-versor spatial rotor is coded as:

def Rotor(axis,angle):
Spatial rotor in DCSTA, where
axis is SA1 vector axis of rotation and
angle is scalar angle of rotation in degrees
return (Rotor1(axis,angle)^Rotor2(axis,angle))

6.1.63 CSTA1 2-versor line rotor

The CSTA1 2-versor line rotor for the rotation around a line is coded as:

def LRotor1(p,d,a):
Rotor around a line l by angle a in degrees
line l is given by STA1 point p and direction d
l = GIPNS_Line1(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return (cos(t) + sin(t)*(-e1|l))

6.1.64 CSTA2 2-versor line rotor

The CSTA2 2-versor line rotor for the rotation around a line is coded as:

DCSTA computing with SymPy 79

def LRotor2(p,d,a):
l = GIPNS_Line2(p,d)
t = Rational(1,2)*pi*Pow(180,-1)*a
return (cos(t) + sin(t)*(-e7|l))

6.1.65 DCSTA 4-versor line rotor

The DCSTA 4-versor line rotor for the rotation around a line is coded as:

def LRotor(p,d,a):
return LRotor1(p,d,a)^LRotor2(p,d,a)

6.1.66 STA1 and CSTA1 2-versor hyperbolic rotor (boost operator)

The CSTA1 2-versor spacetime hyperbolic rotor (boost operator) is coded as:

def HRotor1(b,d):
STA1 and CSTA1 boost operator, where
0<=b<=1 is scalar natural speed of boost and
d is SA1 direction vector of boost velocity
v1 = Pow(-scalar(d|d),-1)*d
r = atanh(b)
return (cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v1^e1))

The b is the natural speed �v. The d is the SA1 spatial velocity direction v̂ that is
normalized as v1. The spatial velocity of the boost is v = �vcv̂ = kvkv̂ relative to an
observer o= cte1. The r is the rapidity 'v= atanh(�v).

6.1.67 STA2 and CSTA2 2-versor hyperbolic rotor (boost operator)

The CSTA2 2-versor spacetime hyperbolic rotor (boost operator) is coded as:

def HRotor2(b,d):
STA2 and CSTA2 boost operator, where
0<=b<=1 is scalar natural speed of boost and
d is SA1 direction vector of boost velocity
v1 = Pow(-scalar(d|d),-1)*d
v2 = (-v1|e2)*e8 + (-v1|e3)*e9 + (-v1|e4)*e10
r = atanh(b)
return (cosh(Pow(2,-1)*r) + sinh(Pow(2,-1)*r)*(v2^e7))

6.1.68 DCSTA 4-versor hyperbolic rotor (boost operator)

The DCSTA 4-versor spacetime hyperbolic rotor (boost operator) is coded as:

def HRotor(b,d):
DCSTA boost operator, where
0<=b<=1 is scalar natural speed of boost and
d is SA1 direction vector of boost velocity
return (HRotor1(b,d)^HRotor2(b,d))

80 Section 6

For an anisotropic dilation of a quadric surface Q by factor d in direction d, then speed
b should be set to �v= 1¡ d2

p
, which may be an imaginary number.

The anisotropic dilation of Q by a dilation factor d in an SA1 direction
v=vx*e2+vy*e3+vz*e4 is coded as:

((
HRotor(sqrt(1-d**2),v)*
Q*
HRotor(sqrt(1-d**2),v).rev()

)|IDS)*IDS.inv()

The projection using IDS is the space projection into the G2;8 anti-DCGA, which discards
imaginary components that are by-products of the directed scaling operation. A good
example to try can use Q=Ellipsoid(px,py,pz,rx,ry,rz).

6.1.69 CSTA1 2-versor translator

The CSTA1 2-versor spacetime translator is coded as:

def Translator1(d):
CSTA1 spacetime translator, where
d is an STA1 spacetime displacement vector.
d1 = d
return (1 - Pow(2,-1)*(d1^ei1))

6.1.70 CSTA2 2-versor translator

The CSTA2 2-versor spacetime translator is coded as:

def Translator2(d):
CSTA2 spacetime translator, where
d is an STA1 spacetime displacement vector.
d2 = (d|e1)*e7 + (-d|e2)*e8 + (-d|e3)*e9 + (-d|e4)*e10
return (1 - Pow(2,-1)*(d2^ei2))

6.1.71 DCSTA 4-versor translator

The DCSTA 4-versor spacetime translator is coded as:

def Translator(d):
DCSTA spacetime translator, where
d is an STA1 spacetime displacement vector.
return (Translator1(d)^Translator2(d))

6.1.72 CSTA1 2-versor isotropic dilator

The CSTA1 2-versor spacetime isotropic dilator is coded as:

DCSTA computing with SymPy 81

def Dilator1(d):
CSTA1 isotropic dilator, where
d is the scalar dilation factor.
Note: dilation factor d=0 is not generally valid.
return (Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei1^eo1))

6.1.73 CSTA2 2-versor isotropic dilator

The CSTA2 2-versor spacetime isotropic dilator is coded as:

def Dilator2(d):
CSTA2 isotropic dilator, where
d is the scalar dilation factor.
Note: dilation factor d=0 is not generally valid.
return (Pow(2,-1)*(1+d) + Pow(2,-1)*(1-d)*(ei2^eo2))

6.1.74 DCSTA 4-versor isotropic dilator

The DCSTA 4-versor spacetime isotropic dilator is coded as:

def Dilator(d):
DCSTA isotropic dilator, where
d is the scalar dilation factor.
Note: dilation factor d=0 is not generally valid.
return (Dilator1(d)^Dilator2(d))

The anisotropic dilator on quadric surface entities is implemented using the hyperbolic
rotor (�6.1.68).

6.2 Example computations

6.2.1 Reframe to new observer in STA

The observer position is ot= cte1, and a particle vt=(o+v)t moves relative to o, where

v = �vce2=
1
2
ce2:

We want to change observer as v! o to make v the new observer, and to compute the
current observer as o! o0 relative to the new observer v!o. Solution: use the reframe
operation on o, followed by a position renormalization.

o_rel_v = (
HRotor1(Rational(1,2), e2).rev()*
(c*t*e1)*
HRotor1(Rational(1,2), e2)

)
normalized = c*t*Pow(scalar(o_rel_v|e1), -1)*o_rel_v
normalized

normalized = cte1¡
ct
2
e2:

82 Section 6

The old observer is now seen as a particle moving with velocity v=¡1

2
ce2 relative to the

new observer ot= cte1. The time t is the proper time of the new observer o, which was v.

6.2.2 Collinear velocity addition in STA

A particle moves with velocity u= 3

4
ce2 relative to another particle moving with velocity

v=
1

2
ce2 relative to an observer o= ce1. The two velocities u and v are collinear, and if we

simply add the velocities, we may conclude that u relative to o is a velocity v+u= 5

4
ce2.

However, this speed is greater than light speed c, which according to the physical theory
of special relativity is an impossible speed. Velocities cannot be simply added, and we
must use a reframe operation to reframe u relative to o. Relative to v = o + v, the
particle moving with velocity u is written ut=ot+ut= cte1+ut, where this o is v as the
observer and this time t is its proper time. We want this u reframed relative to observer
o of v=o+v. The solution is to apply to u the operation for the reverse of the reframe
relative to v that goes back to relative to its o, and this reframe is also seen as boosting
the particle u=o+u by the velocity v relative to o.

u_rel_o = (
HRotor1(Rational(1,2), e2)*
(c*t*e1 + Rational(3,4)*c*t*e2)*
HRotor1(Rational(1,2), e2).rev()

)
normalized = c*t*Pow(scalar(u_rel_o|e1), -1)*u_rel_o
normalized

normalized = cte1+
10
11
cte2:

The result is relativistic velocity addition, where the boost of velocities does not exceed
the speed of light c.

6.2.3 Velocity addition in STA

The velocities u and v need not be collinear, and the same operation of the previous
section (�6.2.2) for collinear velocities can be applied to reframe any velocity u relative to
v=o+v into u relative to o. The result is the so-called velocity-addition formula, which
could also be called the velocity boost formula,

urelv!urelo = o+urelo

= o+u�v

c
0+
ujjv̂+ 1¡ kvk2

c2

q
u?v̂+v

1¡ u �v
c2

where o= c
0, and the G0;3 SA metric gives

v̂ =
v
kvk =

v

¡v2
p

v̂2 = ¡1
u �v = ¡kukkvkcos(�uv):

DCSTA computing with SymPy 83

The notation u� v can be read �u boosted by v� since this is the actual operation, but
this may be backwards compared to some other literature. In general, u�v=/ v�u. Some
other identities are

u=ujjv̂+u?v̂ = (u � v̂+u^ v̂)v̂¡1=(¡u � v̂)v̂+(v̂^u) � v̂

�v =
kvk
c

v =
1

1¡ �v
2

p :

When the boost velocity approaches light speed kvk! c, we get

u�v =
kukcos(�uv)v̂+ cv̂

1+
kukcos(�uv)

c

=
c(kukcos(�uv)+ c)v̂
c+ kukcos(�uv)

= cv̂=v:

For collinear u and v, then

u�v=�v�v=v�u =
u+v

1+
kukkvk
c2

where as the boost velocity approaches light speed kvk! c,

u�v ! c(kuk+ c)û
c+ kuk = cû=v:

For perpendicular u and v, then

u�v = 1¡ kvk
2

c2

r
u+v=

1

v
u+v

where as the boost velocity approaches light speed kvk ! c, u/
v! 0 and u � v! v.
The velocity-addition formula is derived and discussed more in [7].

6.2.4 Boost of an ellipsoid entity for contraction e�ect

Any DCSTA GIPNS 2-vector quadric surface entity can be boosted into a velocity in
spacetime. Boosting sets the quadric surface into motion at constant velocity and gives the
surface a length contraction e�ect. As an example of the contraction e�ect, we can boost
an ellipsoid to a natural speed �v= 1¡ d2

p
for the dilation factor d. A good example is

to choose d= 1/2 to squeeze the ellipsoid into one-half its length in the direction of the
velocity.

moving_ellipsoid = (
HRotor(sqrt(1-Rational(1,2)**2), e2)*
GIPNS_Ellipsoid(0,0,0,10,10,10)*
HRotor(sqrt(1-Rational(1,2)**2), e2).rev()

)
print(N(V|moving_ellipsoid))

The moving_ellipsoid is evaluated at a symbolic point V. The full symbolic output can
be long, therefore numeric output has been generated using N(). The result is printed
in plain text using print(). Output of this form can be graphed using Mayavi . For
graphing, it works well to use natural units, where c=1, so that the graph can be near the
origin. Mayavi seems to work best if graphing can be limited to a small cube around the
origin that is about �20 units on each axis. If Mayavi is installed and working, a small
mayavi.py python �le can be created to graph this output (copied into surface) as:

84 Section 6

from __future__ import division
from numpy import *
from mayavi import mlab

mlab.figure(bgcolor=(1,1,1))
x, y, z = mgrid[-20:20:100j, -20:20:100j, -20:20:100j]

axes
cylx = y**2 + z**2 - 1/10
cyly = x**2 + z**2 - 1/10
cylz = y**2 + x**2 - 1/10
mlab.contour3d(x,y,z,cylx,contours=[0],opacity=0.25,color=(1,0,0))
mlab.contour3d(x,y,z,cyly,contours=[0],opacity=0.25,color=(0,1,0))
mlab.contour3d(x,y,z,cylz,contours=[0],opacity=0.25,color=(0,0,1))

function for rendering a dot somewhere
def dotat(px,py,pz):

blackdot = (x-px)**2 + (y-py)**2 + (z-pz)**2 - 1/sqrt(5)
mlab.contour3d(

x, y, z, blackdot, contours=[0],
opacity=0.5, color=(0,0,0)

)
return

plot some dots
dotat(5,0,0)
dotat(0,10,0)
dotat(0,0,10)

Set the light speed (units per second)
Use a small unit or else boosted moving surfaces move
out of graphing range after only a few time units.
c = 1
Set the time.
Boosted surfaces move natural-speed units per time unit.
At t=20, a surface at speed c=1 moves out of graphing range.
t = 0
The numerical printed output, copied into here:
surface = (

0.03*c**2*t**2 - 0.0692820323027551*c*t*x +
0.04*x**2 + 0.01*y**2 + 0.01*z**2 - 0.999999999999999

)
Mayavi rendering function
mlab.contour3d(

x, y, z, surface, contours=[0], opacity=0.5,
color=(0.0, 1.0, 1.0)

)

The mayavi.py �le is saved and then run from a command line as:

DCSTA computing with SymPy 85

ipython mayavi.py

y: e3

x: e2
x=5

y= 10

Figure 1. Ellipsoid (sphere r= 10) boosted to �v= 1¡
¡ 1
2

�
2

q
in x-direction

Figure 1 shows a boosted ellipsoid at time t=0. The ellipsoid was initially at the origin
and spherical with radius r = rx= ry = rz = 10. The spherical ellipsoid was boosted into

a natural speed �v= 1¡
¡ 1
2

�
2

q
for a dilation factor d= 1

2
in the x-direction v̂=
1= e2.

The boosted sphere is squeezed by the boost into an ellipsoid that is length-contracted to
half-size in the x-direction with rx= 5, while the y and z directions hold their sizes with
ry= rz= 10. As the time t is increased, the boosted sphere moves toward the right along
the x-axis. For natural units c=1, the boosted sphere moves �v= 3

p
/2�0.866 units per

time unit.

6.2.5 Boost of an ellipsoid entity for dilation

As an example of dilating a quadric surface by dilation factor d = 2 using the boost
operation, we can take a spherical ellipsoid with radius r=5 centered at 5(e2+e3+e4) and
boost it into an imaginary natural speed �v= 1¡ d2

p
in the unit direction 1

3
p (e2+ e3+

e4). Following the boost for dilation, the result is projected onto the spatial subalgebra
using the G2;8 anti-DCGA pseudoscalar IDS. The projection discards imaginary time
components and resets the entity at time t=0. The dilation is coded as:

dilated_ellipsoid = ((
HRotor(sqrt(1-2**2), e2+e3+e4)*
GIPNS_Ellipsoid(5,5,5,5,5,5)*
HRotor(sqrt(1-2**2), e2+e3+e4).rev()

)|IDS)*IDS.inv()
print(N(V|dilated_ellipsoid))

86 Section 6

1

3
p (e2+ e3+ e4)

y: e3

x: e2

z: e4

(10,10,10)

10

10

y=5

z=5

x=5

o

Figure 2. Ellipsoid (sphere r=5) dilated by factor d=2 in direction 1

3
p (e2+ e3+ e4)

Figure 2 shows the graph of the dilated ellipsoid. In the unit direction 1

3
p (e2+e3+e4)

of dilation by factor d= 2, the spherical ellipsoid is dilated from a diameter of 10 into a
diameter of 20. The spherical diameter remains 10 orthogonal to the direction of dilation.
The center point (5; 5; 5) of the original spherical ellipsoid is dilated into (10; 10; 10) as
the new center point of the dilated ellipsoid.

7 Conclusion
The G4;8 Double Conformal Space-Time Algebra (DCSTA) has been presented in this
paper as a straightforward extension of the G8;2 Double Conformal / Darboux Cyclide
Geometric Algebra (DCGA). DCSTA is a large, complicated algebra and this paper may
contain some mistakes and has probably overlooked some things that should have been
discussed. Nevertheless, this author feels that this paper substantially conveys the basic
ideas and concepts of DCSTA. Certainly, much further research can be done into DCSTA
and its applications.

Conclusion 87

References

[1] Alan Bromborsky. Geometric Algebra Module for Sympy . 2015.
[2] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge: Cambridge Uni-

versity Press, Paperback reprint of the 2003 original edition, 2007.
[3] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science (Revised Edition):

An Object-Oriented Approach to Geometry . The Morgan Kaufmann Series in Computer Graphics.
Elsevier Science, 2009.

[4] Robert B. Easter. Conic and Cyclidic Sections in the G8,2 Geometric Algebra, DCGA. viXra.org,
2015.

[5] Robert B. Easter. Di�erential Operators in the G8,2 Geometric Algebra, DCGA. viXra.org, 2015.
[6] Robert B. Easter. G8,2 Geometric Algebra, DCGA. viXra.org, 2015.
[7] Robert B. Easter. Quaternions and Cli�ord Geometric Algebras. ViXra.org, 2015.
[8] Hamilton, Sir William Rowan. Lectures on Quaternions: Containing a Systematic Statement of a

New Mathematical Method; of which the Principles Were Communicated in 1843 to the Royal Irish
Academy; and which Has Since Formed the Subject of Successive Courses of Lectures, Delivered
in 1848 and Subsequent Years, in the Halls of Trinity College, Dublin: with Numerous Illustra-
tive Diagrams, and with Some Geometrical and Physical Applications. Dublin: Hodges and Smith,
Grafton-Street, Booksellers to the University. London: Whittaker & Co., Ave-Maria Lane. Cam-
bridge: Macmillan & Co., 1853.

[9] David Hestenes. Space-Time Algebra. Springer, Second edition, 2015.
[10] David Hestenes and Garret Sobczyk. Cli�ord Algebra to Geometric Calculus, A Uni�ed Language

for Mathematics and Physics, volume 5 of Fundamental Theories of Physics. Dordrecht-Boston-
Lancaster: D. Reidel Publishing Company, a Member of the Kluwer Academic Publishers Group,
1984.

[11] Christian Perwass. Geometric Algebra with Applications in Engineering , volume 4 of Geometry and
Computing. Springer, 2009.

[12] P. Ramachandran and G. Varoquaux. Mayavi: 3D Visualization of Scienti�c Data. Computing in
Science & Engineering, 13(2):40�51, 2011.

[13] SymPy Development Team. SymPy: Python library for symbolic mathematics. 2015.
[14] Gerald Sommer, editor. Geometric Computing with Cli�ord Algebras, Theoretical Foundations and

Applications in Computer Vision and Robotics. Berlin: Springer, 2001.

88 Section

	1 Introduction
	2 Space Algebra (SA)
	2.1 SA unit pseudoscalar
	2.2 SA dualization
	2.3 SA test vector
	2.4 SA spatial velocity vector
	2.5 SA spatial position vector
	2.6 SA rotor

	3 Space-Time Algebra (STA)
	3.1 STA elements
	3.1.1 Dirac gammas and Pauli sigmas in STA
	3.1.2 STA unit pseudoscalar
	3.1.3 STA test vector
	3.1.4 STA observer
	3.1.5 STA spatial velocity
	3.1.6 STA spatial position
	3.1.7 STA spacetime velocity
	3.1.8 STA spacetime position

	3.2 STA operations
	3.2.1 STA spacetime velocity normalization
	3.2.2 STA spacetime position normalization
	3.2.3 STA dualization
	3.2.4 STA rotor
	3.2.5 STA spacetime boost
	3.2.6 STA reframe (reverse boost)

	4 Conformal Space-Time Algebra (CSTA)
	4.1 CSTA unit pseudoscalar
	4.2 CSTA point
	4.2.1 Stereographic embedding and homogenization
	4.2.2 CSTA point at the origin
	4.2.3 CSTA point at infinity
	4.2.4 CSTA point embedding
	4.2.5 CSTA point normalization
	4.2.6 CSTA point projection (inverse embedding)
	4.2.7 CSTA test point

	4.3 CSTA point value-extraction elements
	4.4 CSTA GIPNS entities
	4.4.1 Geometric inner product null space (GIPNS)
	4.4.2 CSTA GIPNS 1-vector hypercone
	4.4.3 CSTA GIPNS 1-vector hyperplane
	4.4.4 CSTA GIPNS 1-vector hyperhyperboloid of one sheet
	4.4.5 CSTA GIPNS 1-vector hyperhyperboloid of two sheets
	4.4.6 CSTA GIPNS 2-vector spatial sphere
	4.4.7 CSTA GIPNS 2-vector spacetime hyperboloid of one sheet
	4.4.8 CSTA GIPNS 2-vector spacetime hyperboloid of two sheets
	4.4.9 CSTA GIPNS 2-vector plane
	4.4.10 CSTA GIPNS 3-vector line
	4.4.11 CSTA GIPNS 3-vector spatial circle
	4.4.12 CSTA GIPNS 3-vector spacetime hyperbola (pseudocircle)
	4.4.13 CSTA GIPNS 4-vector point pair
	4.4.14 CSTA GIPNS null 4-vector light-line (null line)
	4.4.15 CSTA GIPNS 4-vector flat point
	4.4.16 CSTA GIPNS 5-vector point

	4.5 CSTA GOPNS entities
	4.5.1 Geometric outer product null space (GOPNS)
	4.5.2 CSTA GOPNS 1-vector point
	4.5.3 CSTA GOPNS 2-vector point pair
	4.5.4 CSTA GOPNS 2-vector light-line (null line)
	4.5.5 CSTA GOPNS 2-vector flat point
	4.5.6 CSTA GOPNS 3-vector line
	4.5.7 CSTA GOPNS 3-vector spatial circle
	4.5.8 CSTA GOPNS 3-vector spacetime hyperbola (pseudocircle)
	4.5.9 CSTA GOPNS 4-vector spatial sphere
	4.5.10 CSTA GOPNS 4-vector spacetime hyperboloid (pseudosphere)
	4.5.11 CSTA GOPNS 4-vector plane
	4.5.12 CSTA GOPNS 5-vector hyperhyperboloid
	4.5.13 CSTA GOPNS 5-vector hyperplane

	4.6 CSTA operations
	4.6.1 CSTA dualization
	4.6.2 CSTA spatial projection
	4.6.3 CSTA spatial rotor
	4.6.4 CSTA translator
	4.6.5 CSTA spatial rotor around a line
	4.6.6 CSTA isotropic dilator
	4.6.7 CSTA spacetime boost
	4.6.8 CSTA spacetime reframe (reverse boost)

	5 Double Conformal Space-Time Algebra (DCSTA)
	5.1 DCSTA unit pseudoscalar
	5.2 DCSTA point
	5.2.1 DCSTA point embedding
	5.2.2 DCSTA point projection (inverse embedding)
	5.2.3 DCSTA point value-extraction elements
	5.2.4 DCSTA point value-extraction pseudo-inverse elements

	5.3 DCSTA GIPNS standard entities
	5.3.1 DCSTA GIPNS null 2-vector hypercone
	5.3.2 DCSTA GIPNS 2-vector standard hyperhyperboloid of one sheet
	5.3.3 DCSTA GIPNS 2-vector standard hyperhyperboloid of two sheets
	5.3.4 DCSTA GIPNS 4-vector standard sphere or pseudosphere
	5.3.5 DCSTA GIPNS 4-vector standard plane
	5.3.6 DCSTA GIPNS 6-vector standard line
	5.3.7 DCSTA GIPNS 6-vector standard circle or pseudocircle
	5.3.8 DCSTA GIPNS 8-vector standard point pair
	5.3.9 DCSTA GIPNS null 10-vector standard point

	5.4 DCSTA GOPNS standard entities
	5.5 DCSTA GIPNS 2-vector non-standard surface entities
	5.6 DCSTA conic section entities
	5.7 DCSTA operations
	5.7.1 DCSTA spacetime boost
	5.7.2 DCSTA spacetime reframe (reverse boost)
	5.7.3 DCSTA spatial projection
	5.7.4 DCSTA dualization
	5.7.5 DCSTA rotor
	5.7.6 DCSTA translator
	5.7.7 DCSTA isotropic dilator
	5.7.8 DCSTA anisotropic dilator

	5.8 DCSTA differential calculus
	5.8.1 DCSTA differential elements
	5.8.2 DCSTA antisymmetric differential operators
	5.8.3 DCSTA directional derivative operator
	5.8.4 DCSTA time derivative operator

	5.9 DCSTA pseudo-integral calculus

	6 DCSTA computing with SymPy
	6.1 Sample code
	6.1.1 Imports
	6.1.2 Basis vectors
	6.1.3 Points at the origin and at infinity
	6.1.4 Unit pseudoscalars
	6.1.5 Point embeddings
	6.1.6 Point projections
	6.1.7 Symbolic vectors and points
	6.1.8 Extraction elements
	6.1.9 Extraction pseudo-inverse elements
	6.1.10 Differential elements
	6.1.11 Directional derivative operator
	6.1.12 Pseudo-integral operator
	6.1.13 DCSTA GIPNS 2-vector surface entities
	6.1.14 DCSTA GIPNS 2-vector toroid
	6.1.15 DCSTA GIPNS 2-vector Dupin cyclide
	6.1.16 DCSTA GIPNS 2-vector horned Dupin cyclide
	6.1.17 DCSTA GIPNS 2-vector ellipsoid
	6.1.18 DCSTA GIPNS 2-vector elliptic cylinder, x-axis aligned
	6.1.19 DCSTA GIPNS 2-vector elliptic cylinder, y-axis aligned
	6.1.20 DCSTA GIPNS 2-vector elliptic cylinder, z-axis aligned
	6.1.21 DCSTA GIPNS 2-vector elliptic cone, x-axis aligned
	6.1.22 DCSTA GIPNS 2-vector elliptic cone, y-axis aligned
	6.1.23 DCSTA GIPNS 2-vector elliptic cone, z-axis aligned
	6.1.24 DCSTA GIPNS 2-vector elliptic paraboloid, x-axis aligned
	6.1.25 DCSTA GIPNS 2-vector elliptic paraboloid, y-axis aligned
	6.1.26 DCSTA GIPNS 2-vector elliptic paraboloid, z-axis aligned
	6.1.27 DCSTA GIPNS 2-vector hyperbolic paraboloid
	6.1.28 DCSTA GIPNS 2-vector hyperboloid of one sheet
	6.1.29 DCSTA GIPNS 2-vector hyperboloid of two sheets
	6.1.30 DCSTA GIPNS 2-vector parabolic cylinder, x-axis aligned
	6.1.31 DCSTA GIPNS 2-vector parabolic cylinder, y-axis aligned
	6.1.32 DCSTA GIPNS 2-vector parabolic cylinder, z-axis aligned
	6.1.33 DCSTA GIPNS 2-vector hyperbolic cylinder, x-axis aligned
	6.1.34 DCSTA GIPNS 2-vector hyperbolic cylinder, y-axis aligned
	6.1.35 DCSTA GIPNS 2-vector hyperbolic cylinder, z-axis aligned
	6.1.36 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to x-axis
	6.1.37 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to y-axis
	6.1.38 DCSTA GIPNS 2-vector parallel planes pair, perpendicular to z-axis
	6.1.39 DCSTA GIPNS 2-vector non-parallel planes pair, x-axis aligned
	6.1.40 DCSTA GIPNS 2-vector non-parallel planes pair, y-axis aligned
	6.1.41 DCSTA GIPNS 2-vector non-parallel planes pair, z-axis aligned
	6.1.42 CSTA1 GIPNS 1-vector hyperplane
	6.1.43 CSTA2 GIPNS 1-vector hyperplane
	6.1.44 DCSTA GIPNS 2-vector hyperplane
	6.1.45 CSTA1 GIPNS 1-vector hyperhyperboloid of one sheet
	6.1.46 CSTA2 GIPNS 1-vector hyperhyperboloid of one sheet
	6.1.47 DCSTA GIPNS 2-vector hyperhyperboloid of one sheet
	6.1.48 CSTA1 GIPNS 2-vector plane
	6.1.49 CSTA2 GIPNS 2-vector plane
	6.1.50 DCSTA GIPNS 4-vector standard plane
	6.1.51 CSTA1 GIPNS 3-vector line
	6.1.52 CSTA2 GIPNS 3-vector line
	6.1.53 DCSTA GIPNS 6-vector standard line
	6.1.54 CSTA1 plane-line intersection
	6.1.55 CSTA2 plane-line intersection
	6.1.56 CSTA1 GOPNS 2-vector point pair decomposition
	6.1.57 CSTA2 GOPNS 2-vector point pair decomposition
	6.1.58 CSTA1 GOPNS 2-vector flat point projection
	6.1.59 CSTA2 GOPNS 2-vector flat point projection
	6.1.60 SA1, STA1, and CSTA1 2-versor rotor
	6.1.61 SA2, STA2, and CSTA2 2-versor rotor
	6.1.62 DCSTA 4-versor rotor
	6.1.63 CSTA1 2-versor line rotor
	6.1.64 CSTA2 2-versor line rotor
	6.1.65 DCSTA 4-versor line rotor
	6.1.66 STA1 and CSTA1 2-versor hyperbolic rotor (boost operator)
	6.1.67 STA2 and CSTA2 2-versor hyperbolic rotor (boost operator)
	6.1.68 DCSTA 4-versor hyperbolic rotor (boost operator)
	6.1.69 CSTA1 2-versor translator
	6.1.70 CSTA2 2-versor translator
	6.1.71 DCSTA 4-versor translator
	6.1.72 CSTA1 2-versor isotropic dilator
	6.1.73 CSTA2 2-versor isotropic dilator
	6.1.74 DCSTA 4-versor isotropic dilator

	6.2 Example computations
	6.2.1 Reframe to new observer in STA
	6.2.2 Collinear velocity addition in STA
	6.2.3 Velocity addition in STA
	6.2.4 Boost of an ellipsoid entity for contraction effect
	6.2.5 Boost of an ellipsoid entity for dilation

	7 Conclusion
	References

