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Abstract 

Newton's gravitational constant Big OG, appearing in both Newton's law of gravity and Einstein's 
general relativity, is essential for our todays understanding of gravity. Thus far, despite of the very 
long history of measurements of Newton's gravitational constant Big OG, a definite value is still not 
in sight. Surprisingly, the results of different experiments have varied by much more than would 
be expected due to systematic or random errors. Why do measurements of Newton's gravitational 
constant Big OG vary so much? It is the purpose of this publication is to provide a logically and 
mathematically self-consistent theoretical proof that Newton's gravitational constant Big OG is not 
a constant.  
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1. Introduction 

Today, Isaac Newton (1642–1727) is best known for his important contribution to the formulation of the theory 

of gravity. Newton's Principia from a historical point of view was published in a philosophically tumultuous and 

rich time. As is well known, Philosophers at Newton’s time were ‘studying nature’ often by studying texts ( i. e. 

such as commentaries on Aristotle and other) rather than engaging in observations or conducting experiments. 

Philosophers at Newton's time often did not employ mathematical techniques at all. Newton's Philosophiae 

Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), published in 1686, marked a 
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radical transformation from philosophy into a mathematically governed modern physical science. According to 

Newton’s universal law of gravitation [1], two object with a certain mass (Om1 and Om2) will attract each other 

with a certain force OF. Newton’s force of gravitational attraction OF is proportional to the product of these two 

masses (Om1  Om2) and the inverse square of the distance (Od²) between these two masses and a constant [1] of 

proportionality, called Newton's gravitational constant Big OG. Newton's gravitational constant Big OG has been 

measured about a dozen times over the last centuries. Henry Cavendish [2] and co-workers where the first which 

obtained in 1798 a value for Newton's constant OG, while using a torsion balance as invented by the geologist 

Rev. John Michell, as 6.6710
-11

 [Newtonm²/kg²]. Meanwhile, measurements of Newton's gravitational con-

stant Big OG were conducted below the surface of the earth (in mine shafts) [3], [4], within boreholes [5], in the 

deep ocean [6] and in an Airy-type geophysical experiment conducted in a 2-km-deep hole in the Greenland ice 

cap [7] at depths between 213 and 1673 m et cetera. The measurements of Newton's gravitational constant Big 

OG even under the most optimistic conditions consistently documented a significant deviation of Newton's grav-

itational constant Big OG from predictions based on Newton's law of gravitation. Despite the difficulties in 

measuring Newton's gravitational constant Big OG, the published experimental results of Newton's gravitational 

constant Big OG have varied by much more than can be justified due to systematic or random errors. A system-

atic study [8] of changes in Newton's gravitational constant Big OG at different times of day and night found in 

2002 a clear daily rhythm, the measured Newton's gravitational constant Big OG oscillate over time like a sine 

wave. Finally, the first theoretical evidence [9] that Newton's gravitational constant Big OG is not a constant was 

published in the year 2015. Newton's gravitational constant Big OG, essential for our todays understanding of 

gravity, is appearing in both Newton's law of gravity and Einstein's theory of general relativity. In Einstein's 

theory of general relativity, developed early in the 20th century, the curvature of space-time is proportional to 

Newton's gravitational constant Big OG. A proof that Newton's gravitational constant Big OG is not a constant 

would have influence on the unlimited validity of Einstein's theory of general relativity too. 

 

2. Material and Methods 

2.1. Definitions 

Definition. Proof by contradiction (Reductio ad Absurdum) 

The logical background of a proof by contradiction is Aristotle’s law of non-contradiction. A rigorous proof by 

contradiction proof of a theorem follows the standard method of contradiction used in science and mathematics 

and should be convincing as much as possible. For the first, we assume that a claim / a theorem / a proposition / 

a statement et cetera which has to be proved, is true. One then proceeds to demonstrate that a conclusion drawn 

from such a claim / a theorem / a proposition / a statement et cetera leads to a contradiction. Hence, the supposed 

claim / theorem / proposition / statement et cetera is deemed to be false. Consequently, we are then led to con-

clude that it was wrong to assume the claim / the theorem / the proposition / the statement was true. Thus far, the 

claim / the theorem / the proposition / the statement is proved to be false. 

 

Definition. Thought Experiments 

Properly constructed (real or) thought experiments (as devices of scientific investigation) can be used for diverse 

reasons in a variety of areas. Thought experiments can help us to investigate some basic properties of nature 

even under conditions when it is too difficult or too expensive to run a real experiment. Furthermore, a thought 

experiment can provide some evidence against or in favor of a theory. However, a thought experiment is not a 

substitute for a real experiment.  

 

Definition. Newton’s law of gravitation from the standpoint of a moving observer O 

The influence of Isaac Newton's masterpiece Philosophiae naturalis principia mathematica on the development 

of modern science, physics and astronomy is still of historical importance. Isaac Newton (1642-1727) published 

on 5 July 1686 in his work Philosophiae Naturalis Principia Mathematica on page 198 (Prop. LXXVI. Theor. 

XXXVI)  his well known universal law of gravitation. Newton defines the force of gravity in the following 
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way:  

 

 

        Figure 1. Philosophiae Naturalis Principia Mathematica, Prop. LXXVI. Theor. XXXVI, page 198.  

 

Translated from the Latin into English. 

 

<the attractive force of every point decreases in the duplicate ratio of the distance of the body attracted ; I say, 

that the whole force with which one of these spheres attracts the other will be reciprocally proportional to the 

square of the distance of the centres.> 

 

For the first, Newton’s key word is proportional. Newton's statement of proportionality is the source of Newton's 

gravitational constant Big OG, known to physicists as Big OG. For the second, Newton himself is of the opinion, 

that his law of universal gravitation is valid under conditions of inertial frames of reference. Newton's law of 

universal gravitation from the standpoint of a co-moving observer O written as an equation states  

 

 

 (1) 

 

 

where OF is the force due to gravity between the two masses, OG is the gravitational constant as measured by a 

moving observer, Om1 is the mass of object 1, Om2 is the mass of object 2. Thus far, Od is the distance between 

the centers of these two masses (Om1 and Om2) as measured by the moving observer O.  

 

Scholium. 

Under conditions of inertial frames of reference invariant quantities are the same for all observers (an observer 

independent quantity). In special relativity, the total force or the net force (the sum of forces acting on an ob-

ject) is equal to zero. But this does not mean that there are no forces. In general, force is a vector quantity, which 

means force has a direction and a magnitude. Sometimes, force is denoted using boldface such as F. 

 

Definition. Newton’s law of gravitation from the standpoint of a stationary observer 

Let RF denote the force under conditions of special relativity as determined by a stationary observer R. Let Rm1 

denote the “relativistic” mass as measured by a stationary observer R. Let Rm2 denote a second “relativistic” 

mass as measured by a stationary observer R. Let RG denote the Newtonian gravitational constant as determined 

by a stationary observer R. Let Rt denote the time as determined by a stationary observer R. Let c denote the 

speed of the light in vacuum. Let Rd = c  Rt denote the distance between the centers of the two masses Rm1 and 

Rm2 as measured by the stationary observer R. Newton's law of universal gravitation from the standpoint of a 

stationary observer R written as an equation states 

 

 

(2) 

 

Scholium. 

Under conditions of inertial frames of reference, we expect that a Newtonian gravitational constant which is de-

termined by a stationary observer is equivalent with a Newtonian gravitational constant as measured by a mov-

ing observer. Especially, due to Newton’s third law, under conditions of special theory of relativity, we do ex-

pect that is OF = RF. 

  
“vis attractiva puncti cujusq; decrescit in duplicata ratione distantiæ corporis attracti: dico quod vis tota 

qua hujusmodi Sphæra una attrahit aliam sit reciproce proportionalis quadrato distantiæ centrorum.” [10] 
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Definition. Rest mass Om and relativistic mass Rm 

 

The relative motion between two inertial frames of reference, where Newton's law's are valid, causes observers 

in those frames of reference to measure different values of the particle's energy (mass) and time. Especially, the 

notion “relativistic mass” Rm of an object and the time is dependent on the relative velocity v of the observer 

and depends at the end on the observer's frame of reference. Under circumstances where the relative velocity 

between two inertial frames of reference is equal to zero, observers will measures the same values for particle's 

energy (mass) and time and distances too. Thus far, according to special relativity theory [11], [12],[13] it is 

 

 

 (3) 

 

Scholium. 

Einstein special theory relativity defines mass at least in two different ways. The “rest mass” or “invariant mass” 

denoted as Om is an invariant quantity which is measured by an observer at rest relative to Om has the same val-

ue for all observers in all reference frames. The “rest mass” Om of an object is identical with the Newtonian 

mass as measured by an observer moving along with the object, while a rest relative to the moving object. The 

“relativistic mass” Rm is dependent on the velocity of the observer. The term “relativistic mass” Rm was first de-

fined by Gilbert N. Lewis and Richard C. Tolman in 1909.[14]  

 

Definition. The time of a stationary observer Rt and the time of a co-moving observer Ot  

Time is dependent on the observer's reference frame. Especially, clocks moving at close to the speed of light c 

will slow down with respect to a stationary observer R (observer at rest). Thus far, let Rt denote the time as 

measured by a stationary observer, i. e. the relativistic time. Let Ot denote the time as measured by a moving ob-

server. The relationship between the time Ot as measured by a clock moving at constant velocity v in relation to 

the time Rt as measured by a clock of a stationary observer is determined by Einstein's relativistic time dilation 

[15] as 

 

(4) 

 

 

where Ot denotes time as measured by a moving observer, Rt denotes the time as measured by a stationary ob-

server, v denotes the relative velocity and c denotes the speed of light in vacuum. Equally, it is  

 

 

(5) 

 

or 

 

(6) 

 

Scholium. 

Coordinate systems can be chosen freely, deepening upon circumstances. In many coordinate systems, an event 

can be specified by one time coordinate and three spatial coordinates. The time as specified by the time coordi-

nate is denoted as coordinate time. Coordinate time is distinguished from proper time. The concept of proper 

time, introduced by Hermann Minkowski in 1908 and denoted as Ot, incorporates Einstein's time dilation effect. 

In principle, Einstein is defining time exclusively for every place where a watch measuring this time is located. 

  

"... Definition ... der ... Zeit ... für den Ort, an welchem sich die Uhr … befindet ..." [16] 

 

In general, a watch is treated as being at rest relative to the place where the same watch is located.  
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"Es werde ferner mittels der im ruhenden System befindlichen ruhenden Uhren die Zeit t [Rt, author] des 

ruhenden Systems ... bestimmt, ebenso werde die Zeit   [Ot, author] des bewegten Systems, in welchen sich 

relativ zu letzterem ruhende Uhren befinden, bestimmt..." [17] 

 

Only, the place where a watch at rest is located can move together with the watch itself. Therefore, due to Ein-

stein, it is necessary to distinguish between clocks as such which are qualified to mark the time Rt when at rest 

relatively to the stationary system R, and the time Ot when at rest relatively to the moving system O. 

 

"Wir denken uns ferner eine der Uhren, welche relativ zum ruhenden System ruhend die Zeit t [Rt, author], 

relativ zum bewegten System ruhend die Zeit  [Ot, author] anzugeben befähigt sind ..." [18] 

 

In English: 

<Further, we imagine one of the clocks which are qualified to mark the time t [Rt, author] when at rest rela-

tively to the stationary system, and the time  [Ot, author] when at rest relatively to the moving system …. > 

 

In other words, we have to take into account that both observers have at least one point in common, the station-

ary observer R and the moving observer O are at rest, but at rest relative to what? The stationary observer R is 

at rest relative to a stationary co-ordinate system R, the moving observer O is at rest relative to a moving 

co-ordinate system O. Both co-ordinate systems can but must not be at rest relative to each other. The time Rt of 

the stationary system R is determined by clocks which are at rest relatively to that stationary system R. Similar-

ly, the time Ot of the moving system O is determined by clocks which are at rest relatively to that the moving 

system O. What is the time marked by the clock when viewed from the stationary system? What is the time 

marked by the clock when viewed from the moving system? In last consequence, due to Einstein's theory of 

special relativity, a moving clock (Ot) will measure a smaller elapsed time between two events than that meas-

ured by a non-moving (inertial) clock (Rt) between the same two events. 

 

Definition. The normalized relativistic time dilation  

As defined above, due to Einstein's special relativity, it is  

 

 

(7) 

 

 

The normalized relativistic time dilation relation [19] follows as 

 

 

(8) 

 

 

Definition. The distance Od and the distance Rd 

In general it is distance = speed x time. The time as such depends on the frame of reference in which it is 

measured or in other words a moving clock will more slowly. In general, it follows that 

 

(9) 

 

 

where Od denotes the distance as measured by a moving observer, Ot denotes time as measured by a moving ob-

server, Rd denotes the distance as measured by a stationary observer, Rt denotes the time as measured by a sta-

tionary observer, v denotes the relative velocity between the moving O and the stationary R observer and c de-

notes the speed of light in vacuum. 

20

²

²
1

c

v

t

t

R



1
²

²
2

2

0 
c

v

t

t

R

2 2
0 0 R R

v² v²
d c t c t 1 d 1

c² c²
        



Ilija Barukčić  
 

 
6 

Definition. Einstein’s field equation 

Newton's theory of gravity has been superseded by Einstein's (1879-1955) new theory of gravity but continues 

to be used as an approximation of the effects of gravitation. Leaving aside that Newton's theory of gravity is un-

der dispute, Newton's gravitational constant is still of use and part even of Einstein's general relativity theory 

[20] too. Einstein's field equations are determined as 

 

 

(10) 

 

 

where RG denotes Newton gravitational constant. Einstein's general relativity theory does seem to be the correct 

theory of gravitation at least at low energies. As can be seen, curvature of space-time is proportional to New-

ton’s constant of gravitation. 

 

Definition. The relativistic Doppler effect 

Redshift can be measured by determining the wavelength of a known transition, such as hydrogen a-lines for 

distant quasars, and finding the fractional shift compared to a stationary reference. The light from the stars or 

from distant galaxies has distinct spectral features i. e. due to the characteristics of the atoms in the gases around 

the stars. These spectra can be examined, they are found to be shifted (Doppler shift). The measured (red) shifts 

are usually stated in terms of a so called z parameter. The measured Doppler red shifts can be used to calculate 

the recession velocity v of stars or galaxies, presuming that the Hubble law is valid. We obtain 

 

 

(11) 

 

 

 

A z value of 8.68 was measured by Zitrin et al. [21]. 

 

 

 

2.2. Axioms 

Axiom I. (Lex identitatis). 

The following theory is based on the following axiom: 
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3. Results 

 

3.1. Theorem. Newton’s gravitational constant Big G is a constant. 

 

Claim. (Theorem. Proposition. Statement.) 

Under conditions of special relativity (inertial frames of reference) Newton’s gravitational constant is not a con-

stant. In principle, a co-moving observer O and a stationary observer R will not agree on the value of Newton’s 

gravitational constant. In general, we must accept that 

 

 

 (13) 

Proof. 

In general, axiom I is determined as 

 

(14) 

 

Multiplying this equation by the “rest mass” Om1, we obtain the mass as determined by co-moving observer as 

 

 

(15) 

 

According to Einstein’s theory of special relativity the laws of physics are the same in any inertial frame of ref-

erence. A stationary observer R will ascribe the value Rm1 to the same object. Due to special relativity we obtain  

 

 

 (16) 

 

 

Multiplying this equation by Rm2, we obtain 

 

 

 (17) 

 

 

Two different observers moving with constant velocity relative to each other will have a different view on the 

product of two masses. Due to special relativity, the equation before can be rearranged as 

 

 

 (18) 

 

Quod erat demonstrandum. 

 

 

Scholium. 

Two different observers moving with constant velocity relative to each other will obtain the same value of the 

product of the two masses i. e. equation by (Om1  Rm2) = (Rm1  Om2). This simple equation does not change 

everything we thought we understood about Newton’s gravitational constant Big G. But the same equation 

makes it evident that under conditions of special theory of relativity the mass has no influence on a possible 

variation of Newton’s gravitational constant Big G. 
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3.2. Theorem. Newton’s gravitational constant II. 

 

Claim. (Theorem. Proposition. Statement.) 

Under conditions of the special theory of relativity, we must accept that 
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Proof.  

In general, it is 

(20) 

 

Multiplying this equation by the “rest mass” Om1 and by the “rest mass” Om2 we obtain  
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Dividing this equation by OG/Ot² it is 
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Due to special relativity, this equation can be rearranged as 
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In general, the equation simplifies as 
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3.3. Theorem. Newton’s gravitational constant III. 

 

Claim. (Theorem. Proposition. Statement.) 

Under conditions of the special theory of relativity, where the relative velocity between the mass Om1 and the 

mass Om2 is equal to v = 0 while moving at constant relative velocity v with respect to a stationary observer R, 

we must accept that 

 

 

 

(26) 

 

Proof.  

In general, it is 

 

(27) 

 

Multiplying this equation by Newton’s gravitational constant OG we obtain  

 

(28) 

 

At this point, our assumption is that Newton’s gravitational constant as determined by a stationary observer R 

and denoted by RG is identical with Newton’s gravitational constant OG as determined by the moving observer 

O. In general it is assumed, that Newton’s gravitational constant is independent of the frame of reference. Thus 

far, we change the equality above and do obtain 
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Multiplying this equation by (Om1  Om2)/Od² it follows that 
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Due to special relativity, we rearrange this equation as 
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Scholium. 

Let  denote the co-moving observer. Let  denote the stationary observer. Let  denote mass 1, let  denote 

mass 2. The relative velocity between the moving observer  and the mass  and the mass  is equal to v = 0. 

In other words, the moving observer  is at rest relative the mass  and the mass  . Mass  and mass  are 

moving at the same time with a constant relative velocity with respect to the stationary observer . The table 

may illustrate this experimental situation in more detail. 

         Table .The relationship between two masses at rest from the standpoint of two observers.     

          

Moving observer   Stationary observer 

    

   Om1   Rm1    

     
     

Moving  

observer 



 
Od  Rd 

     
     

   Om2  
 Rm2 

 
 

Stationary  

observer 

 

Two object at rest relative to each other and to the moving observer  

are moving with constant velocity v relative to the stationary observer. 

 

The moving observer  is at rest relative to the mass 1 denoted as  and at the same time at rest relative to the 

mas mass 2 denoted as . The moving observer  ascribes to the mass  the value Om1 and at the same time to 

the mass  the value Om2. Within the frame of reference of the moving observer , the relative velocity be-

tween the two masses is zero. At the same time, from the standpoint of the stationary observer , both masses 

are moving with a certain relative velocity v relative to the frame of reference of the stationary observer . 

Therefore, the stationary observer  ascribes to the mass  the value Rm1 and to the mass  the value Rm2. 

Written as a mathematical formula, we obtain  

 

 

 

(33) 

 

 

 

Under these experimental conditions, it appears to be justified to assume that Newton’s gravitational constant 

Big OG is a constant [22]. 
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3.4. Theorem. Newton’s gravitational constant IV. 

 

Claim. (Theorem. Proposition. Statement.) 

Under conditions of special theory of relativity it is 

 

 

(34) 

 

Proof.  

In general, it is 

(35) 

 

Newton’s law of universal gravitation follows as 
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Consequently, due to theorem 3.3, it is 
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or according to special relativity 
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This equation can be simplified as 
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Scholium. 

Let  denote mass 1, let  denote mass 2. Let  denote the co-moving observer. Let  denote the stationary 

observer. The moving observer  is at rest relative Om1. The stationary observer  is at rest relative Om2. The 

following 2x2 table may illustrate the relationships above.  

 

         Table .The relationship between two masses from the standpoint of two observers.          

          

Moving observer   Stationary observer 

    

   Om1   Rm1    

     
     

Moving  

observer 



 
Od  Rd 

          

   Rm2   
Om2 

 
 

Stationary  

observer 

 

The mass has no influence on Newtown’s gravitational constant. 

  

Due to the constant relative velocity, which is different from zero, the moving observer  will ascribe the mass 

Rm2 to the mass . At the same time, the stationary observer  ascribes the mass Rm1 to the mass . This has 

no influence on the product of both masses. We obtain 

 

 

 (42) 

 

                                

                                Moving    =  Stationary 

 

The product of the two masses m1 and m2 as calculated by the moving observer is equivalent to the product of 

the two masses m1 and m2 as calculated by the stationary observer. 

 

 

 

 

 

 

 

0 1 R 2 R 1 0 2m m m m  
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3.5. Theorem. Newton’s gravitational constant Big G is not a constant. 

 

Claim. (Theorem. Proposition. Statement.) 

Under conditions of special theory of relativity it is 

 

 

(43) 

 

 

Proof.  

In general, it is 

 

(44) 

 

Newton’s law of universal gravitation follows as 

 

 

(45) 

 

 

Consequently, due to theorem 3.3, it is 

 

 

(46) 

 

 

or according to special relativity 

 

 

(47) 

 

 

 

 

 

This equation can be simplified as 

 

 

(48) 

 

 

 

which is equal to 

 

 

 

(49) 

 

 

 

 

Thus far, we obtain the relationship 

1 1  

0 0 1 0 2 0 0 1 0 2
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0 0

G m m G m m

t t

   


0 0 1 0 2 R R 1 R 2

2 2

0 R

G m m G m m

t t

   


2
0 0 1 R 2

R R 1 R 2

2 2

0 R

v²
G m m 1

c² G m m

t t

 
    

  


0 0 1 R 2 R R 1 R 2

2

0 2
2

R

G m m G m m

t v²
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c²
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(50) 

 

 

According to the theorem 3.2, we obtain equally 

 

  

(51) 

 

 

 

In general it is 

 

(52) 

 

 

Rearranging this equation, it follows from the above that 

 

 

(53) 

 

 

 

We simplify this equation as 

 

 

(54) 

 

 

 

or as 

 

(55) 

 

 

 

In general, we obtain 

 

(56) 

 

 

Quod erat demonstrandum. 

 

 

Scholium. 

The moving observer O and the stationary observer R will agree on the value on Newton’s gravitational constant 

Big G only if v = 0, otherwise not. The value of Newton’s gravitational constant Big G is reference frame de-

pendent. 
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3.6. Theorem. Newton’s gravitational constant Big OG of a distant Galaxy. 

 

Claim. (Theorem. Proposition. Statement.) 

An international team of astrophysicists [23] discovered a distant galaxy, called EGSY8p7, with a spectroscopic 

redshift of z = 8.68 by observing its characteristic hydrogen signature. This red shift is equivalent to a recession-

al velocity of the distant galaxy EGSY8p7 as v = 0.9788812110358344  c. Assuming that v is approximately 

identical with the relative velocity between the galaxy EGSY8p7 and our earth, Newton’s constant Big G of the 

distant galaxy EGSY8p7 oG can be calculated approximately as 

 

 

(57) 

 

 

Proof.  

Due to our theorem before, it is  

 

(58) 

 

 

The relative velocity of the distant galaxy is approximately v = 0.9788812110358344  c as calculated in this 

paper while Newtons’s constant RG is about ~6.674×10
-11

 [Nm
2
/kg]. We obtain 

 

 

(59) 

 

We obtain 

 

 

(60) 

 

 

Quod erat demonstrandum. 

 

4. Discussion 

There is already some theoretical evidence [24] that Newton’s gravitational constant Big G is not a constant. On 

page 132 of the paper mentioned, there is a misprint within the equation 12. The misprint free form of the equa-

tion 12 of the paper mentioned is 

 

 

 

 

 

to a achieve a correct result. Newton’s gravitational constant Big G is reference frame dependent. This can be 

proofed by a simple experiment. The orbital velocity of our earth with respect to the sun is different at perihelion 

than at aphelion. The difference in orbital velocity may be small but is big enough to make the proof whether 

Newton’s constant Big G is a constant or not. Newton’s constant Big G should be of the same value at periheli-

on and at aphelion. In contrast to expectation, the results measurements of Newton's gravitational constant Big G 

performed first at perihelion and later at aphelion, or vice versa, will vary significantly and by much more than 

would be expected due to systematic or random errors. 
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5. Conclusion 

Newton’s gravitational constant Big G is not a constant. Today, the constancy of Newton’s gravitational con-

stant Big G is a constituting part of Einstein’s theory of general relativity. Consequently, it appears to be neces-

sary to review the unrestricted validity of Einstein’s theory of general relativity [25] from the beginning. 
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