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Neutrosophic Dynamic Systems 
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Abstract 

In this paper, we introduce for the first time the neutrosophic system and 

neutrosophic dynamic system that represent new per-spectives in science.  A 

neutrosophic system is a quasi- or (𝑡, 𝑖, 𝑓)–classical system, in the sense that the 

neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or 

(𝑡, 𝑖, 𝑓) − terms/ concepts/attributes], which are approximations of the classical 

terms/concepts/attributes, i.e. they are partially true/membership/probable (t%), 

partially indeterminate (i%), and partially false/nonmember-ship/improbable (f%), 

where 𝑡, 𝑖, 𝑓 are subsets of the unitary interval [0,1].  {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically ‘quasi’ 

means (𝑡, 𝑖, 𝑓) in a neutrophic way.}

Keywords 

neutrosophy, neutrosophics, neutrosophic system, neutrosophic patterns, 

neutrosophic model, neutrosophic synergy, neutrosophic interactions, neutrosophic 

complexity, neutrosophic process, neutrosophic cognitive science. 

1 Introduction 

A system 𝒮in general is composed from a space ℳ, together with its elements 

(concepts) {𝑒𝑗}, 𝑗 ∈ 𝜃, and the relationships {ℛ𝑘}, 𝑘 ∈ 𝜓, between them, where 

𝜃  and 𝜓  are countable or uncountable index sets. For a closed system, the 

space and its elements do not interact with the environment. For an open set, 

the space or its elements interact with the environment. 

2 Definition of the neutrosophic system 

A system is called neutrosophic system if at least one of the following occur: 

a. The space contains some indeterminacy.

b. At least one of its elements 𝑥 has some indeterminacy (it is not

well-defined or not well-known).
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c. At least one of its elements x does not 100% belong to the space;

we say 𝑥(𝑡, 𝑖, 𝑓) ∈ ℳ, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

d. At least one of the relationships ℛ𝑜 between the elements of ℳ

is not 100% well-defined (or well-known); we say ℛ𝑜(𝑡, 𝑖, 𝑓) ∈

𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

e. For an open system, at least one [ℛ𝐸(𝑡, 𝑖, 𝑓)] of the system ’s

interactions relationships with the environment has some

indeterminacy, or it is not well-defined, or not well-known, with

(𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

2.1 Classical system as particular case of neutrosophic system 

By language abuse, a classical system is a neutrosophic system with 

indeterminacy zero (no indeterminacy) at all system’s levels. 

2.2 World systems are mostly neutrosophic 

In our opinion, most of our world systems are neutrosophic systems, not 

classical systems, and the dynamicity of the systems is neutrosophic, not 

classical. 

Maybe the mechanical and electronical systems could have a better chance to 

be classical systems. 

3 A simple example of neutrosophic system 

Let’s consider a university campus Coronado as a whole neutrosophic system 

𝒮, whose space is a prism having a base the campus land and the altitude such 

that the prism encloses all campus’ buildings, towers, observatories, etc. 

The elements of the space are people (administration, faculty, staff, and 

students) and objects (buildings, vehicles, computers, boards, tables, chairs, 

etc.). 

A part of the campus land is unused. The campus administration has not 

decided yet what to do with it: either to build a laboratory on it, or to sell it. 

This is an indeterminate part of the space. 

Suppose that a staff (John, from the office of Human Resources) has been fired 

by the campus director for misconduct. But, according to his co-workers, John 

was not guilty for anything wrong doing. So, John sues the campus. At this point, 

we do not know if John belongs to the campus, or not. John’s appurtenance to 

the campus is indeterminate. 
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Assume the faculty norm of teaching is four courses per semester. But some 

faculty are part-timers, therefore they teach less number of courses. If an 

instructor teaches only one class per semester, he belongs to the campus only 

partially (25%), if he teaches two classes he belongs to the campus 50%, and 

if he teaches three courses he belongs to the campus 75%.  

We may write: 

Joe (0.25, 0, 0.75) ∈  𝒮 

George (0.50, 0, 0.50) ∈  𝒮 

and   Thom (0.75, 0.10, 0.25) ∈  𝒮. 

Thom has some indeterminacy (0.10) with respect to his work in the campus: 

it is possible that he might do some administrative work for the campus (but 

we don’t know).  

The faculty that are full-time (teaching four courses per semester) may also do 

overload. Suppose that Laura teaches five courses per semester, therefore 

Laura (1.25, 0, 0) ∈ 𝒮. 

In neutrosophic logic/set/probability it’s possible to have the sum of 

components (𝑡, 𝑖, 𝑓) different from 1: 

𝑡 + 𝑖 + 𝑓 > 1, for paraconsistent (conflicting) information; 

𝑡 + 𝑖 + 𝑓 = 1, for complete information; 

𝑡 + 𝑖 + 𝑓 < 1, for incomplete information. 

Also, there are staff that work only ½ norm for the campus, and many students 

take fewer classes or more classes than the required full-time norm. Therefore, 

they belong to the campus Coronado in a percentage different from 100%. 

About the objects, suppose that 50 calculators were brought from IBM for one 

semester only as part of IBM’s promotion of their new products. Therefore, 

these calculators only partially and temporarily belong to the campus. 

Thus, not all elements (people or objects) entirely belong to this system, there 

exist many 𝑒𝑗(𝑡, 𝑖, 𝑓) ∈ 𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

Now, let’s take into consideration the relationships. A professor, Frank, may 

agree with the campus dean with respect to a dean’s decision, may disagree 

with respect to the dean’s other decision, or may be ignorant with respect to 

the dean’s various decisions. So, the relationship between Frank and the dean 

may be, for example: 

Frank
agreement (0.5,0.2,0.3)
→      dean, i. e. not (1, 0, 0) agreement.  

This campus, as an open system, cooperates with one Research Laboratory 

from Nevada, pending some funds allocated by the government to the campus. 
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Therefore, the relationship (research cooperation) between campus Coronado 

and the Nevada Research Laboratory is indeterminate at this moment. 

4 Neutrosophic patterns 

In a neutrosophic system, we may study or discover, in general, neutrosophic 

patterns, i.e. quasi-patterns, approximated patterns, not totally working; we 

say: (𝑡, 𝑖, 𝑓) − patterns, i.e. t% true, i% indeterminate, and f% false, and 

elucidate (𝑡, 𝑖, 𝑓) −principles. 

The neutrosophic system, through feedback or partial feedback, is 

(𝑡, 𝑖, 𝑓) −self-correcting, and (𝑡, 𝑖, 𝑓) −self-organizing. 

5 Neutrosophic holism 

From a holistic point of view, the sum of parts of a system may be: 

1. Smaller than the whole (when the interactions between parts

are unsatisfactory);

2. Equals to the whole (when the interactions between parts are

satisfactory);

3. Greater than the whole (when the interactions between parts

are super-satisfactory).

The more interactions (interdependance, transdependance, hyper-

dependance) between parts, the more complex a system is.   

We have positive, neutral, and negative interactions between parts. Actually, 

an interaction between the parts has a degree of positiveness, degree of 

neutrality, and degree of negativeness. And these interactions are dynamic, 

meaning that their degrees of positiveness/neutrality/negativity change in 

time. They may be partially absolute and partially relative. 

6 Neutrosophic model 

In order to model such systems, we need a neutrosophic (approximate, partial, 

incomplete, imperfect) model that would discover the approximate system 

properties. 

7 Neutrosophic successful system 

A neutrosophic successful system is a system that is successful with respect to 

some goals, and partially successful or failing with respect to other goals. 
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The adaptivity, self-organization, self-reproducing, self-learning, reiteration, 

recursivity, relationism, complexity and other attributes of a classical system 

are extended to (𝑡, 𝑖, 𝑓) −attributes in the neutrosophic system. 

8 (𝑡, 𝑖, 𝑓) −attribute 

A (𝑡, 𝑖, 𝑓) −attribute means an attribute that is t% true (or probable), i% 

indeterminate (with respect to the true/probable and false/improbable), and 

f% false/improbable - where t,i,f are subsets of the unitary interval [0,1]. 

For example, considering the subsets reduced to single numbers, if a 

neutrosophic system is (0.7, 0.2, 0.3)-adaptable, it means that the system is 

70% adaptable, 20% indeterminate regarding adaptability, and 30% 

inadaptable; we may receive the informations for each attribute phase from 

different independent sources, that’s why the sum of the neutrosophic 

components is not necessarily 1. 

9 Neutrosophic dynamics 

While classical dynamics was beset by dialectics, which brought together an 

entity 〈A〉 and its opposite 〈antiA〉, the neutrosophic dynamics is beset by tri-

alectics, which brings together an entity 〈A〉 with its opposite 〈antiA〉 and their 

neutrality 〈neutA〉. Instead of duality as in dialectics, we have tri-alities in our 

world.  

Dialectics failed to take into consideration the neutrality between opposites, 

since the neutrality partially influences both opposites. 

Instead of unifying the opposites, the neutrosophic dynamics unifies the triad 

〈A〉, 〈antiA〉, 〈neutA〉. 

Instead of coupling with continuity as the classical dynamics promise, one has 

“tripling” with continuity and discontinuity altogether. 

All neutrosophic dynamic system’s components are interacted in a certain 

degree, repelling in another degree, and neutral (no interaction) in a different 

degree. 

They comprise the systems whose equilibrium is the disechilibrium - systems 

that are continuously changing. 

The internal structure of the neutrosophic system may increase in complexity 

and interconnections, or may degrade during the time. 

A neutrosophic system is characterized by potential, impotential, and 

indeterminate developmental outcome, each one of these three in a specific 

degree. 
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10 Neutrosophic behavior gradient 

In a neutrosophic system, we talk also about neutrosophic structure, which is 

actually a quasi-structure or structure which manifests into a certain degree; 

which influences the neutrosophic behavior gradient, that similarly is a 

behavior quasi-gradient - partially determined by quasi-stimulative effects; 

one has: discrete systems, continuous systems, hybrid (discrete and 

continuous) systems. 

11 Neutrosophic interactions 

Neutrosophic interactions in the system have the form: 

 A  B 
 ■   ■ 

                        (𝑡, 𝑖, 𝑓)                 ⃡                                                          

Neutrosophic self-organization is a quasi-self-organization. The system’s 

neutrosophic intelligence sets into the neutrosophic patterns formed within 

the system’s elements. 

We have a neutrosophic causality between event E1, that triggers event E2, and 

so on. And similarly, neutrosophic structure S1 (which is an approximate, not 

clearly know structure) causes the system to turn on neutrosophic structure 

S2, and so on. A neutrosophic system has different levels of self-organizations. 

12 Potentiality/impotentiality/indeterminacy 

Each neutrosophic system has a potentiality/impotentiality/indeterminacy to 

attain a certain state/stage; we mostly mention herein about the transition 

from a quasi-pattern to another quasi-pattern. A neutrosophic open system is 

always transacting with the environment; since always the change is needed. 

A neutrosophic system is always oscilating between stability, instability, and 

ambiguity (indeterminacy). Analysis, synthesis, and neutrosynthesis of 

existing data are done by the neutrosophic system. They are based on system’s 

principles, antiprinciples, and nonprinciples. 

13 Neutrosophic synergy 

The Neutrosophic Synergy is referred to partially joined work or partially 

combined forces, since the participating forces may cooperate in a degree (𝑡), 

may be antagonist in another degree (𝑓), and may have a neutral interest in 

joint work in a different degree (𝑖). 
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14 Neutrosophic complexity 

The neutrosophic complex systems produce neutrosophic complex patterns. 

These patterns result according to the neutrosophic relationships among 

system’s parts. They are well described by the neutrosophic cognitive maps 

(NCM), neutrosophic relational maps (NRM), and neutrosophic relational 

equations (NRE), all introduced by W. B. Vasanttha Kandasamy and F. 

Smarandache in 2003-2004. 

The neutrosophic systems represent a new perspective in science. They deal 

with quasi-terms [or (𝑡, 𝑖, 𝑓) −terms], quasi-concepts [or (𝑡, 𝑖, 𝑓) −concepts], 

and quasi-attributes [or (𝑡, 𝑖, 𝑓) −attributes], which are approximations of the 

terms, concepts, attributes, etc., i.e. they are partially true (𝑡%),  partially 

indeterminate (𝑖%), and partially false (𝑓%). 

Alike in neutrosophy where there are interactions between 〈A〉, 〈neutA〉, and 

〈antiA〉, where 〈A〉 is an entity, a system is frequently in one of these general 

states: equilibrium, indeterminacy (neither equilibrium, nor disequilibrium), 

and disequilibrium. 

They form a neutrosophic complexity with neutrosophically ordered patterns. 

A neutrosophic order is a quasi or approximate order, which is described by a 

neutrosophic formalism. 

The parts all together are partially homogeneous, partially heterogeneous, and 

they may combine in finitely and infinitely ways. 

15 Neutrosophic processes 

The neutrosophic patterns formed are also dynamic, changing in time and 

space. They are similar, dissimilar, and indeterminate (unknown, hidden, 

vague, incomplete) processes among the parts.  

They are called neutrosophic processes. 

16 Neutrosophic system behavior 

The neutrosophic system’s functionality and behavior are, therefore, coherent, 

incoherent, and imprevisible (indeterminate). It moves, at a given level, from 

a neutrosophic simplicity to a neutrosophic complexity, which becomes 

neutrosophic simplicity at the next level. And so on. 

Ambiguity (indeterminacy) at a level propagates at the next level. 
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17 Classical systems  

Although the biologist Bertalanffy is considered the father of general system 

theory since 1940, it has been found out that the conceptual portion of the 

system theory was published by Alexander Bogdanov between 1912-1917 in 

his three volumes of Tectology. 

18 Classical open systems 

A classical open system, in general, cannot be totally deterministic, if the 

environment is not totally deterministic itself.  

Change in energy or in momentum makes a classical system to move from 

thermodynamic equilibrium to nonequilibrium or reciprocally. 

Open classical systems, by infusion of outside energy, may get an unexpected 

spontaneous structure. 

19 Deneutrosophication  

In a neutrosophic system, besides the degrees of freedom, one also talk about 

the degree (grade) of indeterminacy. Indeterminacy can be described by a 

variable. 

Surely, the degrees of freedom should be condensed, and the indetermination 

reduced (the last action is called “deneutrosophication”). 

The neutrosophic system has a multi-indeterminate behavior. A neutrosophic 

operator of many variables, including the variable representing indeterminacy, 

can approximate and semi-predict the system’s behavior. 

20 From classical to neutrosophic systems  

Of course, in a bigger or more degree, one can consider the neutrosophic 

cybernetic system (quasi or approximate control mechanism, quasi 

information processing, and quasi information reaction), and similarly the 

neutrosophic chaos theory, neutrosophic catastrophe theory, or neutrosophic 

complexity theory. 

In general, when passing from a classical system 𝒮𝑐  in a given field of 

knowledge ℱ to a corresponding neutrosophic system 𝒮𝑁 in the same field of 

knowledge ℱ, one relaxes the restrictions about the system’s space, elements, 

and relationships, i.e. these components of the system (space, elements, 

relationships) may contain indeterminacy, may be partially (or totally) 
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unknown (or vague, incomplete, contradictory), may only partially belong to 

the system; they are approximate, quasi. 

Scientifically, we write: 

𝒮𝑁 = (𝑡, 𝑖, 𝑓) − 𝒮𝑐, 

and we read: a neutrosophic system is a (𝑡, 𝑖, 𝑓)–classical system. As mapping, 

between the neutrosophic algebraic structure systems, we have defined 

neutrosophic isomorphism. 

21 Neutrosophic dynamic system  

The behavior of a neutrosophic dynamic system is chaotic from a classical 

point of view. Instead of fixed points, as in classical dynamic systems, one deals 

with fixed regions (i.e. neighbourhoods of fixed points), as approximate values 

of the neutrosophic variables [we recall that a neutrosophic variable is, in 

general, represented by a thick curve – alike a neutrosophic (thick) function]. 

There may be several fixed regions that are attractive regions in the sense that 

the neutrosophic system converges towards these regions if it starts out in a 

nearby neutrosophic state. 

And similarly, instead of periodic points, as in classical dynamic systems, one 

has periodic regions, which are neutrosophic states where the neutrosophic 

system repeats from time to time. 

If two or more periodic regions are non-disjoint (as in a classical dynamic 

system, where the fixed points lie in the system space too close to each other, 

such that their corresponding neighbourhoods intersect), one gets double 

periodic region, triple periodic region: 

 

and so on: 𝑛 −uple periodic region, for 𝑛 ≥ 2. 

In a simple/double/triple/…/ 𝑛 − uple periodic region the neutrosophic 

system is fluctuating/oscilating from a point to another point. 

The smaller is a fixed region, the better is the accuracy. 
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22 Neutrosophic cognitive science  

In the Neutrosophic Cognitive Science, the Indeterminacy “I” led to the 

definition of the Neutrosophic Graphs (graphs which have: either at least one 

indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), and Neutrosophic Trees 

(trees which have: either at least one indeterminate edge, or at least one 

indeterminate vertex, or both some indeterminate edge and some 

indeterminate vertex), that have many applications in social sciences.  

Another type of neutrosophic graph is when at least one edge has a 

neutrosophic (𝑡, 𝑖, 𝑓) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & Smarandache, 

2003) and Neutrosophic Relational Maps (Vasantha & Smarandache, 2004) 

are generalizations of fuzzy cognitive maps and respectively fuzzy relational 

maps, Neutrosophic Relational Equations (Vasantha & Smarandache, 2004), 

Neutrosophic Relational Data (Wang, Smarandache,  Sunderraman, Rogatko - 

2008), etc. 

A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts 

like policies, events etc. as vertices, and causalities or indeterminates as edges. 

It represents the causal relationship between concepts. 

An edge is said indeterminate if we don’t know if it is any relationship between 

the vertices it connects, or for a directed graph we don’t know if it is a directly 

or inversely proportional relationship. We may write for such edge that (𝑡, 𝑖, 𝑓) 

= (0,1,0). 

A vertex is indeterminate if we don’t know what kind of vertex it is since we 

have incomplete information. We may write for such vertex that (𝑡, 𝑖, 𝑓)  = 

(0,1,0). 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and 

they are drawn as dotted): 
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and its neutrosophic adjacency matrix is: 























0110I

10100

110II

00I01

I0I10

 

The edges mean: 0 = no connection between vertices, 1 = connection between 

vertices, I = indeterminate connection (not known if it is, or if it is not). 

Such notions are not used in the fuzzy theory. 

Let’s give an example of Neutrosophic Cognitive Map (NCM), which is a 

generalization of the Fuzzy Cognitive Maps. 

We take the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 

 

The corresponding neutrosophic adjacency matrix related to this 

neutrosophic cognitive map is: 
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The edges mean: 0 = no connection between vertices, 1 = directly proportional 

connection, -1 = inversely proportionally connection, and I = indeterminate 

connection (not knowing what kind of relationship is between the vertices that 

the edge connects). 

Now, we give another type of neutrosophic graphs (and trees): An edge of a 

graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (𝑡, 𝑖, 𝑓), where t means the positive influence 

of A on B, i means the indeterminate/neutral influence of A on B, and f means 

the negative influence of A on B.  

Then, if we have, let's say: 𝐴−> 𝐵−> 𝐶 such that 𝐴−> 𝐵 has the neutrosophic 

value (t1, i1, f1) and 𝐵−> 𝐶 has the neutrosophic value (t2, i2, f2), then 𝐴−> 𝐶 

has the neutrosophic value (t1, i1, f1)/\(t2, i2. f2), where /\ is the 𝐴𝑁𝐷𝑁 

neutrosophic operator. 

Also, again a different type of graph: we can consider a vertex A as: 𝑡% 

belonging/membership to the graph, 𝑖%  indeterminate membership to the 

graph, and 𝑓% nonmembership to the graph. 

Finally, one may consider any of the previous types of graphs (or trees) put 

together. 

23 (𝑡, 𝑖, 𝑓) −qualitative behavior  

We normally study in a neutrosophic dynamic system its long-term 

(𝑡, 𝑖, 𝑓) −qualitative behavior, i.e. degree of behavior’s good quality (t), degree 

of behavior’s indeterminate (unclear) quality (i), and degree of behavior’s bad 

quality (f). 

The questions arise: will the neutrosophic system fluctuate in a fixed region 

(considered as a neutrosophic steady state of the system)? Will the fluctuation 

be smooth or sharp? Will the fixed region be large (hence less accuracy) or 

small (hence bigger accuracy)? How many periodic regions does the 
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neutrosophic system has? Do any of them intersect [i.e. does the neutrosophic 

system has some 𝑛 −uple periodic regions (for 𝑛 ≥ 2), and for how many]? 

24 Neutrosophic state  

The more indeterminacy a neutrosophic system has, the more chaotic it is from 

the classical point of view. A neutrosophic lineal dynamic system still has a 

degree of chaotic behavior. A collection of numerical sets determines a 

neutrosophic state, while a classical state is determined by a collection of 

numbers. 

25 Neutrosophic evolution rule  

The neutrosophic evolution rule decribes the set of neutrosophic states where 

the future state (that follows from a given current state) belongs to. If the set 

of neutrosophic states, that the next neutrosophic state will be in, is known, we 

have a quasi-deterministic neutrosophic evolution rule, otherwise the 

neutrosophic evolution rule is called quasi-stochastic. 

26 Neutrosophic chaos  

As an alternative to the classical Chaos Theory, we have the Neutrosophic 

Chaos Theory, which is highly sensitive to indeterminacy; we mean that small 

change in the neutrosophic system’s initial indeterminacy produces huge 

perturbations of the neutrosophic system’s behavior. 

27 Time quasi-delays and quasi-feedback thick-loops  

Similarly, the difficulties in modelling and simulating a Neutrosophic Complex 

System (also called Science of Neutrosophic Complexity) reside in its degree 

of indeterminacy at each system’s level. 

In order to understand the Neutrosophic System Dynamics, one studies the 

system’s time quasi-delays and internal quasi-feedback thick-loops (that are 

similar to thick functions ad thick curves defined in the neutrosophic 

precalculus and neutrosophic calculus). 

The system may oscillate from linearity to nonlinearity, depending on the 

neutrosophic time function. 
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28 Semi-open semi-closed system  

Almost all systems are open (exchanging energy with the environment). But, 

in theory and in laboratory, one may consider closed systems (completely 

isolated from the environment); such systems can oscillate between closed 

and open (when they are cut from the environment, or put back in contact with 

the environment respectively). Therefore, between open systems and closed 

systems, there also is a semi-open semi-closed system. 

29 Neutrosophic system’s development 

The system’s self-learning, self-adapting, self-conscienting, self-developing are 

parts of the system’s dynamicity and the way it moves from a state to another 

state – as a response to the system internal or external conditions. They are 

constituents of system’s behavior. 

The more developed is a neutrosophic system, the more complex it becomes. 

System’s development depends on the internal and external interactions 

(relationships) as well. 

Alike classical systems, the neutrosophic system shifts from a quasi-

developmental level to another. Inherent fluctuations are characteristic to 

neutrosophic complex systems. Around the quasi-steady states, the 

fluctuations in a neutrosophic system becomes its sources of new quasi-

development and quasi-behavior. 

In general, a neutrosophic system shows a nonlinear response to its initial 

conditions. The environment of a neutrosophic system may also be 

neutrosophic (i.e. having some indeterminacy). 

30 Dynamic dimensions of neutrosophic systems 

There may be neutrosophic systems whose spaces have dynamic dimensions, 

i.e. their dimensions change upon the time variable. 

Neutrosophic Dimension of a space has the form (𝑡, 𝑖, 𝑓), where we are 𝑡% 

sure about the real dimension of the space, 𝑖% indeterminate about the real 

dimension of the space, and 𝑓% unsure about the real dimension of the space. 

31 Noise in a neutrosophic system 

A neutrosophic system’s noise is part of the system’s indeterminacy. A 

system’s pattern may evolve or dissolve over time, as in a classical system. 
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32 Quasi-stability 

A neutrosophic system has a degree of stability, degree of indeterminacy 

referring to its stability, and degree of instability. Similarly, it has a degree of 

change, degree of indeterminate change, and degree of non-change at any 

point in time. 

Quasi-stability of a neutrosophic system is its partial resistance to change. 

33 (𝑡, 𝑖, 𝑓) −attractors 

Neutrosophic system’s quasi-stability is also dependant on the 

(𝑡, 𝑖, 𝑓) −attractor, which 𝑡% attracts, 𝑖% its attraction is indeterminate, and 

𝑓%  rejects. Or we may say that the neutrosophic system 

(𝑡%, 𝑖%, 𝑓%) −prefers to reside in a such neutrosophic attractor. 

Quasi-stability in a neutrosophic system responds to quasi-perturbations. 

When (𝑡, 𝑖, 𝑓) → (1,0,0)  the quasi-attractors tend to become stable, but if 

(𝑡, 𝑖, 𝑓) → (0, 𝑖, 𝑓), they tend to become unstable.  

Most neutrosophic system are very chaotic and possess many quasi-attractors 

and anomalous quasi-patterns. The degree of freedom in a neutrosophic 

complex system increase and get more intricate due to the type of 

indeterminacies that are specific to that system. For example, the classical 

system’s noise is a sort of indeterminacy. 

Various neutrosophic subsystems are assembled into a neutrosophic complex 

system. 

34  (𝑡, 𝑖, 𝑓) − repellors 

Besides attractors, there are systems that have repellors, i.e. states where the 

system avoids residing. The neutrosophic systems have quasi-repellors, or 

(𝑡, 𝑖, 𝑓) −repellors, i.e. states where the neutrosophic system partialy avoid 

residing. 

35 Neutrosophic probability of the system’s states 

In any (classical or neutrosophic) system, at a given time ρ, for each system 

state τ one can associate a neutrosophic probability, 

𝒩𝒫(𝜏) = (t, i, f), 

where t, i, f are subsets of the unit interval [0, 1] such that: 
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t = the probability that the system resides in τ; 

i = the indeterminate probability/improbability about the system 

residing in τ; 

f = the improbability that the system resides in τ; 

For a (classical or neutrosophic) dynamic system, the neutrosophic probability 

of a system’s state changes in the time, upon the previous states the system 

was in, and upon the internal or external conditions. 

36 (𝑡, 𝑖, 𝑓) −reiterative 

In Neutrosophic Reiterative System, each state is partially dependent on the 

previous state. We call this process quasi-reiteration or (𝑡, 𝑖, 𝑓) −reiteration. 

In a more general case, each state is partially dependent on the previous n 

states, for 𝑛 ≥ 1. This is called n-quasi-reiteration, or 𝑛 − (𝑡, 𝑖, 𝑓) −reiteration. 

Therefore, the previous neutrosophic system history partialy influences the 

future neutrosophic system’s states, which may be different even if the 

neutrosophic system started under the same initial conditions. 

37 Finite and infinite system 

A system is finite if its space, the number of its elements, and the number of its 

relationships are all finite. 

If at least one of these three is infinite, the system is considered infinite. An 

infinite system may be countable (if both the number of its elements and the 

number of its relationships are countable), or, otherwise, uncountable. 

38 Thermodynamic (𝑡, 𝑖, 𝑓) −equilibrium 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

A classical system may be in stable, neutral, or unstable equilibrium. A 

neutrosophic system may be in quasi-stable, quasi-neutral or quasi-unstable 

equilibrium, and its potential energy respectively quasi-minimum, quasi-null 

(i.e. close to zero), or quasi-maximum. {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically 

‘quasi’ means (𝑡, 𝑖, 𝑓) in a neutrophic way.} 
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In general, we say that a neutrosophic system is in (𝑡, 𝑖, 𝑓) − equilibrium, or 

𝑡%  in stable equilibrium, 𝑖%  in neutral equilibrium, and 𝑓%  in unstable 

equilibrium (non-equilibrium). 

When 𝑓 ≫ 𝑡 (f is much greater than t), the neutroophic system gets into deep 

non-equilibrium and the perturbations overtake the system’s organization to 

a new organization. 

Thus, similarly to the second law of thermodynamics, the neutrosophic system 

runs down to a (𝑡, 𝑖, 𝑓) −equilibrium state. 

A neutrosophic system is considered at a thermodynamic  

(𝑡, 𝑖, 𝑓) −equilibrium state when there is not (or insignificant) flow from a 

region to another region, and the momentum and energy are uninformally at 

(𝑡, 𝑖, 𝑓) −level. 

39 The (𝑡1, 𝑖1,  𝑓1) −cause produces a (𝑡2, 𝑖2, 𝑓2) −effect 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

In a neutrosophic system, a (𝑡1, 𝑖1,  𝑓1)-cause produces a (𝑡2, 𝑖2, 𝑓2)-effect. We 

also have cascading (𝑡, 𝑖, 𝑓)-effects from a given cause, and we have permanent 

change into the system. 

(𝑡, 𝑖, 𝑓)-principles and (𝑡, 𝑖, 𝑓)-laws function in a neutrosophic dynamic system. 

It is endowed with (𝑡, 𝑖, 𝑓)-invariants and with parameters of (𝑡, 𝑖, 𝑓)-potential 

(potentiality, neutrality, impotentiality) control. 

40 (𝑡, 𝑖, 𝑓) −holism 

A neutrosophic system is a (𝑡, 𝑖, 𝑓) −holism, in the sense that it has a degree of 

independent entity (t) with respect to its parts, a degree of indeterminate (i) 

independent-dependent entity with respect to its parts, and a degree of 

dependent entity (f) with respect to its parts. 

41 Neutrosophic soft assembly 

Only several ways of assembling (combining and arranging) the neutrosophic 

system’s parts are quasi-stable. The others assemble ways are quasi-

transitional.  
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The neutrosophic system development is viewed as a neutrosophic soft 

assembly. It is alike an amoeba that changes its shape. In a neutrosophic 

dynamic system, the space, the elements, the relationships are all flexible, 

changing, restructuring, reordering, reconnecting and so on, due to 

heterogeneity, multimodal processes, multi-causalities, multidimensionality, 

auto-stabilization, auto-hierarchization, auto-embodiement and especially 

due to synergetism (the neutrosophic system parts cooperating in a 

(𝑡, 𝑖, 𝑓) −degree). 

42 Neutrosophic collective variable 

The neutrosophic system is partially incoherent (because of the 

indeterminacy), and partially coherent. Its quasi-behavior is given by the 

neutrosophic collective variable that embeds all neutrosophic variables acting 

into the (𝑡, 𝑖, 𝑓) −holism. 

43 Conclusion  

We have introduced for the first time notions of neutrosophic system and 

neutrosophic dynamic system. Of course, these proposals and studies are not 

exhaustive. 

Future investigations have to be done about the neutrosophic (dynamic or not) 

system, regarding: the neutrosophic descriptive methods and neutrosophic 

experimental methods, developmental and study the neutrosophic differential 

equations and neutrosophic difference equations, neutrosophic simulations, 

the extension of the classical A-Not-B Error to the neutrosophic form, the 

neutrosophic putative control parameters, neutrosophic loops or 

neutrosophic cyclic alternations within the system, neutrosophic 

degenerating (dynamic or not) systems, possible programs within the 

neutrosophic system, from neutrosophic antecedent conditions how to predict 

the outcome, also how to find the boundary of neutrosophic conditions, when 

the neutrosophic invariants are innate/genetic, what are the relationships 

between the neutrosophic attractors and the neutrosophic repellors, etc. 
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Abstract 

This paper presents multi-attribute decision making based on tri-complex rough 

neutrosophic similarity measure with rough neutrosophic attribute values. The 

concept of rough neutrosophic set is a powerful mathematical tool to deal with 

incomplete, indeterminate and inconsistent information. The ratings of all 

alternatives are expressed in terms of the upper and lower approximation operators 

and the pair of neutrosophic sets which are characterized by truth-membership 

degree, indeterminacy-membership degree, and falsity-membership degree. We 

define a function based on tri-complex number system to determine the degree of 

similarity between rough neutrosophic sets. The approach of using tri-complex 

number system in formulating the similarity measure in rough neutrosophic 

environment is new. Finally, a numerical example demonstrates the applicability of 

the proposed approach. 

Keyword 

tri-complex rough neutrosophic similarity measure, rough neutrosophic set, MCDM 

problem, approximation operator. 

1 Introduction 

The concept of rough neutrosophic set is grounded by Broumi et al. [1], [2] in 

2014. It is derived by hybridizing the concepts of rough set proposed by 

Pawlak [3] and neutrosophic set originated by Smarandache [4, 5]. 

Neutrosophic sets and rough sets are both capable of dealing with uncertainty 

and partial information. Wang et al. [6] introduced single valued neutrosophic 

set (SVNS) in 2010 to deal with real world problems.   
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Rough neutrosophic set is the generalization of rough fuzzy sets [7], [8] and 

rough intuitionistic fuzzy sets [9]. Mondal and Pramanik [10] applied the 

concept of rough neutrosophic set in multi-attribute decision making based on 

grey relational analysis in 2015. Mondal and Pramanik [11] also studied cosine 

similarity measure of rough neutrosophic sets and its application in medical 

diagnosis in 2015. The same authors [12] proposed multi attribute decision 

making using rough accuracy score function, and also proposed cotangent 

similarity measure under rough neutrosophic environment [13]. The same 

authors [14] further proposed some similarity measures namely Dice and 

Jaccard similarity measures in rough neutrosophic environment. Olariu [15] 

introduced the concept of hypercomplex numbers and studied some of its 

properties in 2002, then studied exponential and trigonometric form, the 

concept of analyticity, contour integration and residue. Mandal and Basu [16] 

studied hyper-complex similarity measure for SVNS and presented application 

in decision making. No studies have been made on multi-attribute decision 

making using tri-complex rough neutrosophic environment.  

In this paper, we develop rough tri-complex neutrosophic multi-attribute 

decision making based on rough tri-complex neutrosophic similarity function 

(RTNSF). RNSs are represented as a tri-complex number. The distance 

measured between so transformed tri-complex numbers produce the 

similarity value. Section 2 presents preliminaries of neutrosophic sets and 

rough neutrosophic sets. Section 3 describes some basic ideas of tri-complex 

number. Section 4 presents tri-complex similarity measures in rough 

neutrosophic environment. Section 5 is devoted to present multi attribute 

decision-making method based on rough tri-complex neutrosophic similarity 

function. Section 6 presents a numerical example of the proposed approach. 

Section 7 presents comparison with existing rough neutrosophic similarity 

measures. Finally, section 8 presents concluding remarks and scope of future 

research. 

2 Neutrosophic Preliminaries 

Definition 2.1 [4, 5]  

Let U be an universe of discourse. Then the neutrosophic set A can be 

presented in the form: 

A = {< x:TA(x ), IA(x ), FA(x)>, x U},   

where  the functions T, I, F: U→ ]−0,1+[ represent respectively the degree of  

membership, the degree of indeterminacy, and the degree of non-membership 

of the element xU to the set P satisfying the following the condition: 
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−0≤ supTA(x)+ supIA( x)+ supFA(x) ≤ 3+                                                                   

Wang et al. [6] mentioned that the neutrosophic set assumes the value from 

real standard or non-standard subsets of ]−0, 1+[ based on philosophical point 

of view. So instead of ]−0, 1+[  Wang et al. [6] consider the interval  [0, 1] for 

technical applications, because  ]−0, 1+[ is difficult to apply in the real 

applications such as scientific and engineering problems. For two 

neutrosophic sets (NSs), ANS = {<x: TA(x ), IA(x ), FA(x)> | x X} and BNS ={< x, 

TB(x ), IB(x ), FB(x)> | x X } the two relations are defined as follows:  

(1) ANS  BNS if and only if TA(x )  TB(x ), IA(x )  IB(x ), FA(x )  FB(x) 

(2)  ANS = BNS if and only if TA(x) = TB(x), IA(x) = IB(x), FA(x ) = FB(x)   

2.2 Single valued neutrosophic sets 

Definition 2.2 [6]  

Assume that X be a space of points (objects) with generic elements in X 

denoted by x. A SVNS A in X is characterized by a truth-membership function 

TA(x), an indeterminacy-membership function IA(x), and a falsity membership 

function FA(x), for each point x in X, TA(x),  IA(x), FA(x) [0, 1]. When X is 

continuous, a SVNS A can be written as follows: 

X∈x:
x

)x(F),x(I),x(T
A

x

AAA



  

When X is discrete, a SVNS A can be written as follows: 

 X∈x:∑
x

>)x(F),x(I),x(T<
=A i

n

1=i

i

iAiAiA
 

For two SVNSs , ASVNS = {<x: TA(x ), IA(x), FA(x )> | x X} and BSVNS = {<x, TB(x), 

IB(x), FB(x)> | xX } the two relations are defined as follows: 

(1) ASVNS  BSVNS  

if and only if TA(x)  TB(x), IA(x)  IB(x), FA(x )  FB( x) 

(2) ASVNS = BSVNS  

if and only if TA(x) = TQ(x), IA(x) = IB(x), FA(x) = FB(x) for any xX.  

2.3 Rough neutrosophic set  

Definition 2.2.1 [1], [2] 

Let Z be a non-null set and R be an equivalence relation on Z. Let A be 

neutrosophic set in Z with the membership function ,TA indeterminacy function

AI  and non-membership function AF . The lower and the upper approximations 
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of A in the approximation (Z, R) denoted by ( )AN  and ( )AN   are respectively 

defined as follows: 

    Z∈x,x∈z/)x(F),x(I),x(T,xAN R)A(N)A(N)A(N    (1) 

    Z∈x,x∈z/)x(F),x(I),x(T,xAN R)A(N)A(N)A(N
   (2)

 

where,    zTx∈∧)x(T ARz)A(N  , 
 

[ ] ( )zIx∈∧=)x(I ARz)A(N , [ ] ( )zFx ∈∧=)x(F ARz)A(N ,  

[ ] ( )zTx∈∨=)x(T ARz)A(N
, [ ] ( )zTx∈∨=)x(I ARz)A(N

, 

[ ] ( )zIx∈∨=)x(F ARz)A(N
 

So, 3≤)x(F)x(I)x(T≤0 )A(N)A(N)A(N   and 3≤)x(F)x(I)x(T≤0
)A(N)A(N)A(N

 hold 

good. Here  and   denote “max” and “min’’ operators respectively.  ( )zTA , 

( )zIA  and ( )zFA are  the membership, indeterminacy and non-membership of z  

with respect to A. ( )AN and  ( )AN are two neutrosophic sets in Z. 

Thus, NS mappings ,N N : N(Z)  N(Z) are respectively referred to as the lower  

and  upper  rough  NS  approximation  operators,  and the pair ))A(N),A(N( is 

called the rough neutrosophic set in ( Z, R). 

Based on the above mentioned definition, it is observed that )A(N and )A(N  

have constant membership on the equivalence classes of R, if );A(N=)A(N  i.e.

),x(T=)x(T
)A(N)A(N  

),x(I=)x(I
)A(N)A(N  

  =)x(F )A(N x(F
)A(N

).
 

For any x belongs to Z, P is said to be a definable neutrosophic set in the 

approximation (Z, R). Obviously, zero neutrosophic set (0N) and unit 

neutrosophic sets (1N) are definable neutrosophic sets. 

Definition 2.2.2 [1], [2]  

Let N(A) = ( )A(N),A(N ) is a rough neutrosophic set in (Z, R). The rough 

complement of N(A) is denoted by ),)A(N,)A(N(=)A(N~ cc where cc )A(N,)A(N

are the complements of neutrosophic sets of )A(N),A(N respectively.  

( ) ,Z∈x,/>)x(T),x(I-1),x(F,x<=AN )A(N)A(N)A(N
c and  

( ) Z∈x,/>)x(T),x(I-1),x(F,x<=AN
)A(N)A(N)A(N

c    (3)                                               
 



30 

 

 

Kalyan Mondal and Surapati Pramanik 

Tri-complex Rough Neutrosophic Similarity Measure and its Application in Multi-

Attribute Decision Making 

Critical Review. Volume XI, 2015 

Definition 2.2.3 [1], [2]   

Let  )B(Nand)A(N  are two rough neutrosophic  sets  respectively in Z, then the 

following definitions hold good: 

)B(N=)A(N∧)B(N=)A(N⇔)B(N=)A(N  

)B(N⊆)A(N∧)B(N⊆)A(N⇔)B(N⊆)A(N  

>)B(N)A(N,)B(N)A(N<=)B(N)A(N   

>)B(N)A(N,)B(N)A(N<=)B(N)A(N   

>)B(N+)A(N,)B(N+)A(N<=)B(N+)A(N  

>)B(N.)A(N,)B(N.)A(N<=)B(N.)A(N  

If A, B, C are the rough neutrosophic sets in (Z, R), then the following 

propositions are stated from definitions 

Proposition 1 [1], [2] 

A=)A(~A~.1  

A∩B=B∩A,AB=BA.2   

)CB(A=C)BA(,)CB(A=C)BA(.3   

)CA()BA(=C)BA(,)CA()BA(=C)BA(.4    

Proposition 2 [1], [2] 

De Morgan’s Laws are satisfied for rough neutrosophic sets  N(A) and N(B) 

))B(N(~))A(N~(=))B(N)A(N(~.1   

))B(N(~))A(N(~=))B(N)A(N(~.2   

For proof of the proposition, see [1], [2]. 

Proposition 3 [1], [2]: 

If A and B are two neutrosophic sets in U such that then,B  ⊆A )B(N⊆)A(N  

)B(N)A(N⊆)BA(N.1   

)B(N)A(N⊇)BA(N.2   

For proof of the proposition, see [1], [2]. 
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Proposition 4 [1], [2]: 

)A(~N~=)A(N.1  

)A(~N~=)A(N.2  

 )A(N⊆)A(N.3  

For proof of the proposition, see [1], [2]. 

3 Basic concept of Tri-complex number in three dimension 

Olariu [15] described a system of hypercomplex numbers in three dimensions, 

where multiplication is associative and commutative. Hypercomplex numbers 

can be expressed in exponential and trigonometric forms and for which the 

concepts of analytic tri-complex function, contour integration and residue are 

well defined.  Olariu [15] introduced the concept of tri-complex numbers 

which is expressed in the form 𝑢 = 𝑥 + h1 𝑦 + h2 𝑧, the variables x, y, and z being 

real numbers. The multiplication rules [15] for the complex units h1, h2 are 

given by h12= h2, 
2
2h  = h1, 1. h1 = h1, 1. h2 = h2, h1. h2 = 1. Geometrically, tri-

complex number 𝑢 is expressed by the point D(x, y, z). Assume that O be the 

origin of the 𝑥, 𝑦, 𝑧 axes, T be the trisector line 𝑥 = 𝑦 = 𝑧 of the positive octant. 

Also, let L be the plane 𝑥 + 𝑦 + 𝑧 = 0 passing through the origin O and 

perpendicular to T. The tricomplex number u can be expressed as the 

projection p of the segment OD along the line T, by the distance   from D to the 

line T, and by the azimuthal angle 𝜙 in the plane L (see Fig. 1 below).  

Here, 𝜙 is the angle between the projection of D on the plane L and the straight 

line which is the intersection of the plane L and the plane determined by line 

T and x axis. 𝜙 satisfied the relation 0   𝜙   2𝜋. The amplitude   of a tri-

complex number is defined as  = (𝑥3+y3+𝑧3 - 3𝑥𝑦𝑧)1/3. The polar angle 𝜃  of 

OD with respect to the tri-sector line T is presented as 𝑡𝑎𝑛𝜃 =  /p. 𝜃 satisfies 

the inequality 0   𝜃   2𝜋. The distance d from D to the origin is obtained as 𝑑2 

= 𝑥2 + 𝑦2 + z2.  The division 1/( 𝑥 + h1 𝑦 + h2 𝑧) is possible if  ≠ 0.  

The product of two tri-complex numbers is equal to zero if both numbers are equal 

to zero, or if one of the tri-complex numbers lies in the plane L and the other on the 

T line. The tri-complex number 𝑢 = 𝑥 + h1 𝑦 + h2 𝑧 can be represented by the 

point D having coordinates (x, y, z). The projection p = OQ of the line OD on the 

tri-sector line 𝑥 = 𝑦 = 𝑧, which has the unit tangent 









3

1
,

3

1
,

3

1 , 𝑖𝑠 p=  .zyx
3

1


The distance   = DQ from D to the tri-sector line 𝑥 = 𝑦 = 𝑧, measured as the 
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distance from the point 𝐷(𝑥, 𝑦, 𝑧)  to the point Q of coordinates 








 

3

zyx
,

3

zyx
,

3

zyx , is 2  =  zxyzxyzyx
3

2 222  . 

The plane through the point D and perpendicular to the tri-sector line T 

intersects the x-axis at point A of coordinates (𝑥 +  𝑦 +  𝑧, 0, 0), the y-axis at 

point B of coordinates (0, 𝑥 +  𝑦 +  𝑧, 0),  and the z-axis at point C of 

coordinates (0, 0, 𝑥 +  𝑦 +  𝑧). The expression of 𝜙 in terms of x, y, z can be 

obtained in a system of coordinates defined by the unit vectors as follows: 

1 =  1,1,2
6

1
 , 2 =  1,1,0

2

1
 , 3 =  1,1,1

3

1 .  

The relation between the coordinates of D in the systems (1, 2, 3) and x, y, z 

can be presented as follows: 























3

2

1

= 



























3

1

3

1

3

1
2

1

2

1
0

6

1

6

1

6

2

















z

y

x

        (4) 

  









 )zyx(

3

1
),zy(

2

1
),zyx2(

6

1
,, 321

    (5) 

Also, cos = )zxyzxyzyx(2

zyx2
222 



        (6) 

sin = 

 
)zxyzxyzyx(2

zy3
222 



        (7) 

The angle 𝜃 between the line OD and the tri-sector line T is given by 𝑡𝑎𝑛𝜃 =
𝛿

𝑝
.
 

                                                       Z 

                           C(0, 0, x+y+z)                                              

    

 

 

               

𝜃 

𝜙 

d 

p 

O 

Q 

3  

1  

2  

  D(x, y, z) 

X      A(x+y+z, 0, 0) 

        B(0, x+y+z, 0)       Y 

T 

 
Figure 1. Tri-complex number. 
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Tri-complex variables p, d, 𝜃, and 𝜙 for the tri-complex number 𝑥+ h1𝑦 + h2𝑧, 

represented by the point 𝐷(𝑥, 𝑦, 𝑧). The angle 𝜙 is shown in the plane parallel 

to L, passing through D, which intersects the tri-sector line T at Q. The 

orthogonal axes: 1η , 2η , 3η  intersect at the origin Q. The axis Q 1η  is parallel to 

the axis O 1η , the axis Q 2η
  is parallel to the axis O 2η  and the axis Q 3η  is parallel 

to the axis O 3η , so that, in the plane ABC, the angle 𝜙 is measured from the line 

QA. 

4 Tri-complex similarity measure in RNS 

From the basic concept of Tri-complex number we have the following 

relations.  

𝑡𝑎𝑛𝜃= 


p zyx

)xz()zy()yx( 222




     (8) 

where, 2  =  zxyzxyzyx
3

2 222   and p =  .zyx
3

1
  

cos = )zxyzxyzyx(2

zyx2
222 



                                                                               

sin = 

 
)zxyzxyzyx(2

zy3
222 



       

This implies,  tan =

 
)zyx2(

zy3





       (9) 

We now define a function for similarity measure between rough neutrosophic 

set (RNSs). The function satisfies the basic properties of similarity measure 

method in tri-complex system. The rough tri-complex similarity function is 

defined as follows (see definition 1). 

Definition 1: 

Let A=<    )x(F),x(I),x(T,)x(F),x(I),x(T iAiAiAiAiAiA > and  

B = <    )x(F),x(I),x(T,)x(F),x(I),x(T iBiBiBiBiBiB > be two rough neutrosophic 

numbers in 𝑋 ={𝑥i: i = 1, 2, …, n}. 

Also let,  𝑡𝑎𝑛𝜃1  = 
     

)x(F)x(I)x(T

)x(T-)x(F)x(F-)x(I)x(I-)x(T

iAiAiA

2
iAiA

2
iAiA

2
iAiA





 

𝑡𝑎𝑛𝜃2  =      
)x(F)x(I)x(T

)x(T-)x(F)x(F-)x(I)x(I-)x(T

iBiBiB

2
iBiB

2
iBiB

2
iBiB




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tan 1  
)x(F-)x(I-)x(T2

)x(F-)x(I3

iAiAiA

iAiA





 

tan 2  
.

)x(F-)x(I-)x(T2

)x(F-)x(I3

iBiBiB

iBiB





 

Taking, 𝑡𝑎𝑛𝜃1 = 1
, 𝑡𝑎𝑛𝜃2 = 2

, tan 1  1
, tan 2 2

, the rough tri-

complex neutrosophic similarity function (RTNSF) between two neutrosophic 

sets A and B is defined as follows:  

SRTNSF(A, B)=  

   































2

2

2

1

2

2

2

1

2

21
2

2
2

1

2

2

2

1

2

21

 ∇ ∇ ∇ ∇1

 ∇ ∇1

 ∇ ∇ ∇ ∇1

 ∇ ∇ 1

2

1
   (10) 

where, 

 )x(T iA 











 

2

)x(T)x(T iAiA

, 

 )x(T iB 











 

2

)x(T)x(T iBiB

,  

 )x(I iA 











 

2

)x(I)x(I iAiA

, 
 

 )x(I iB 











 

2

)x(I)x(I iBiB

,  

 )x(F iA 











 

2

)x(F)x(F iAiA

,  

 )x(F iB 











 

2

)x(F)x(F iBiB

. 

Also, [ )x(TA , )x(IA , )x(FA ]  [0, 0, 0] and [ )x(TB , )x(IB , )x(FB ]  [0, 0, 0],  i = 1, 

2, …, n. 

The proposed rough neutrosophic operator satisfies the following conditions 

of similarity measures. 

P1. 0  SRTNSF(A, B)  1 

P2. SRTNSF(A, B) = SRTNSF(B, A) 

P3. SRTNSF(A, B) = 1 if A = B 
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Proof: 

P1. Since 2
θ2

2
θ1θ2θ1
∇+∇≤∇∇2     and 2

φ
2

2
φ
1

φ
2

φ
1

∇+∇≤∇∇2 so it is obvious that 0 

SRTNSF(A, B)  1 

P2. Obviously, SRTNSF(A, B) = SRTNSF(B, A) 

P3. When A = B then, ∇=∇ θ2θ1
and ∇=∇ φ

2
φ

1
so, SRTNSF(A, B) = (1/2)  (1+1) =1. 

When, SRTNSF(A, B) = 1 then, 2
θ2

2
θ1θ2θ1
∇+∇=∇∇2 and 2

φ
2

2
φ
1

φ
2

φ
1

∇+∇=∇∇2 . It is possible 

when ∇=∇ θ2θ1
and ∇=∇ φ

2
φ

1
. This implies that A = B. 

Alternative proof: 

Assume that  

H(A, B) = 















 )-(tan1

1

)-(tan1

1

2

1

21
2

21
2

  

=
   






















2
2

1
2

2
2

1
2

2
21

2
2

1
2

2
2

1
2

2
21

tantantantan1

tantan1

tantantantan1

tantan1

2

1
 

Taking, ,∇=αtan 1 θ1
,∇=αtan 2 θ2

 ∇=βtan 1 φ
1

, ∇=βtan 2 φ
2

, then,  

H(A, B) = SRTNSF(A, B). 

The function H(A, B) obviously satisfies the following conditions. 

P1. 0  H(A, B)  1 (obvious) 

P2. H(A, B) = H(B, A) (obvious) 

P3. When A = B then 21  and 21  then, H(A, B) = 1. 

Conversely, if H(A, B) = 1 then obviously, 21  and 21  .  

This implies that A = B. 

5 Decision making procedure under rough tri-complex 

neutrosophic similarity measure 

In this section, we apply rough tri-complex similarity measures between RNSs 

to the multi-criteria decision making problem. Let 𝐴 = 𝐴1, 𝐴2, … , 𝐴m be a set of 

alternatives and 𝐶 = 𝐶1, 𝐶2, … , 𝐶𝑛 be a set of attributes. 
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The proposed decision making method is described using the following steps. 

Step 1: Construction of the decision matrix with rough neutrosophic number  

The decision maker considers a decision matrix with respect to m alternatives 

and n attributes in terms of rough neutrosophic numbers as follows. 

 nmijij d,dD
 

mnmn2m2m1m1mm

n2n2222221212

n1n1121211111

n21

d,d...d,dd,dA

.............

.............

d,d...d,dd,dA

d,d...d,dd,dA

CCC 

      (11)
 

Table1. Rough neutrosophic decision matrix. 

Here ijij d,d is the rough neutrosophic number according to the i-th alternative 

and the j-th attribute.  

Step 2: Determination of the weights of attribute  

Assume that the weight of the attributes 𝐶 (𝑗 = 1, 2, … , 𝑛) considered by the 

decision-maker be wj ((𝑗 = 1, 2, … , 𝑛)) such that   ∀wj ∈ [0, 1] (j = 1, 2, …, n) 

and 1w
n

1j j   .  

Step 3: Determination of the benefit type attribute and cost type attribute  

Generally, the evaluation attribute can be categorized into two types: benefit 

attribute and cost attribute. Let K be a set of benefit attribute and M be a set of 

cost attribute. In the proposed decision-making method, an ideal alternative 

can be identified by using a maximum operator for the benefit attribute and a 

minimum operator for the cost attribute to determine the best value of each 

criterion among all alternatives. Therefore, we define an ideal alternative as 

follows: 

𝐴* = {C1*, C2*, … , Cm*}, 

where benefit attribute  







)Ai(
Cji

)Ai(
Cji

)Ai(
Cji

*
j Fmin,Imin,TmaxC  

and the cost attribute  







)Ai(
Cji

)Ai(
Cji

)Ai(
Cji

*
j Fmax,Imax,TminC
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Step 4: Determination of the overall weighted rough tri-complex 

neutrosophic similarity function (WRTNSF) of the alternatives 

We define weighted rough tri-complex neutrosophic similarity function as 

follows. 

SWRTNSF(A, B) =  B) (A,SW WRTNSF
n

1j j      (12) 

Properties: 

This weighted rough tri-complex neutrosophic operator satisfies the following 

conditions of similarity measures. 

P1. 0  SWRTNSF(A, B)  1 

P2. SWRTNSF(A, B) = SWRTNSF(B, A) 

P3. SWRTNSF(A, B) = 1 if A = B 

Proofs: 

P1. Since 2

2

2

121 DDDD2   and 2

2

2

121
DDDD2   and 1w

n
1j j   , so it is 

obvious that 0  SWRTNSF(A, B)  1 

P2. Obviously, SWRTNSF(A, B) = SWRTNSF(B, A) 

P3. When A = B then, DD 21   and DD
21   so, SWRTNSF(A, B) = 1w

n
1j j   . 

When, SWRTNSF(A, B) = 1 then, 2

2

2

121 DDDD2   and 2

2

2

121
DDDD2   . It is 

possible when DD 21   and DD
21   . Again, 1w

n
1j j   . This implies that A = B. 

Step 5: Ranking the alternatives 

Using the weighted rough tri-complex neutrosophic similarity measure 

between each alternative and the ideal alternative, the ranking order of all 

alternatives can be determined and the best alternative can be easily selected 

with the highest similarity value. 

Step 6: End. 
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6 Numerical Example 

Let us assume that a decision maker intends to select the most suitable 

smartphone for rough use from the four initially chosen smartphones (S1, S2, 

S3) by considering four attributes namely: features C1, reasonable price C2, 

customer care C3, risk factor C4. Based on the proposed approach discussed in 

section 5, the considered problem is solved using the following steps: 

Step 1: Construction of decision matrix with rough neutrosophic numbers  

The decision maker considers a decision matrix with respect to three 

alternatives and four attributes in terms of rough neutrosophic numbers as 

follows (see the Table 2). 

 43S )P(N),P(Nd

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 2.0,1.0,8.0

,2.0,3.0,6.0

4.0,2.0,9.0

,6.0,4.0,7.0

1.0,1.0,9.0

,3.0,3.0,7.0

2.0,0.0,8.0

,2.0,2.0,6.0
A

3.0,3.0,9.0

,3.0,3.0,7.0

2.0,4.0,8.0

,2.0,2.0,6.0

3.0,3.0,8.0

,3.0,3.0,6.0

3.0,1.0,9.0

,3.0,3.0,7.0
A

2.0,2.0,9.0

,4.0,4.0,7.0

2.0,2.0,8.0

,4.0,4.0,6.0

2.0,2.0,8.0

,4.0,4.0,6.0

1.0,1.0,8.0

,3.0,3.0,6.0
A

CCCC

3

2

1

4321

   

Table 2. Decision matrix with rough neutrosophic number. 

 

Step 2: Determination of the weights of the attributes  

The weight vectors considered by the decision maker are 0.30, 0.30, 0.30 and 

0.10 respectively.  

Step 3: Determination of the benefit attribute and cost attribute  

Here three benefit types attributes C1, C2, C3 and one cost type attribute C4. 

A* = [(0.8, 0.1, 0.2), (0.8, 0.2, 0.2), (0.8, 0.3, 0.3), (0.0.7, 0.3,0.3)] 

Step 4: Determination of the overall weighted rough tri-complex 

neutrosophic similarity function (WRHNSF)of the alternatives 

We calculate weighted rough tri-complex neutrosophic similarity values as 

follows. 

SWRTNSF(A1, A*) = 0.99554 

SWRTNSF(A2, A*) = 0.99253  

SWRTNSF(A3, A*) = 0.99799 
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Step 5: Ranking the alternatives 

Ranking the alternatives is prepared based on the descending order of 

similarity measures. Highest value reflects the best alternative. Here,  

SWRTNSF(A3, A*)   SWRTNSF(A1, A*)   SWRTNSF(A2, A*). 

Hence, the Smartphone A3 is the best alternative for rough use. 

Step 6: End. 

7 Comparison with other similarity measures 

We compare our result to other existing rough neutrosophic similarity 

measures as follows.     

 
Rough neutrosophic 
similarity measure 

Measure value Ranking order 

Weighted rough Cosine similarity 
measure 

CWRNS(A1, A*) = 0.99260 
CWRNS(A2, A*) = 0.99083 
CWRNS(A3, A*) = 0.99482 

A3 A1 A2 

Weighted rough Dice similarity 
measure 

DWRNS(A1, A*) = 0.98606 
DWRNS(A2, A*) = 0.98559 
DWRNS(A3, A*) = 0.98926 

A3 A1 A2 

Weighted rough Jaccard similarity 
measure 

JWRNS(A1, A*) = 0.97856 
JWRNS(A2, A*) = 0.97772 
JWRNS(A3, A*) = 0.97891 

A3 A1 A2 

Weighted rough Tri-complex 
similarity measure 

SWRTNSF(A1, A*) = 0.99554 
SWRTNSF(A2, A*) = 0.99253 
SWRTNSF(A3, A*) = 0.99799 

A3 A1 A2 

Table 3. Comparison with other existing rough neutrosophic similarity measures. 

8 Conclusion 

In this paper, we have proposed rough tri-complex similarity measure based 

multi-attribute decision making of rough neutrosophic environment and 

proved some of its basic properties. We have presented an application, namely 

selection of best smart-phone for rough use. We have also presented 

comparison with other existing rough neutrosophic similarity measures. In 

this paper, predefined weights of the decision makers have been considered.  

The proposed approach can be extended for generalized hypercomplex system 

with weighting scheme. 
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Abstract 

In this study, we present Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) method for solving generalized neutrosophic soft multi-attribute 

group decision making problem. The concept of generalized neutrosophic soft set is 

the hybridization of the two concepts namely generalized neutrosophic sets and soft 

sets. In the decision making process, the ratings of alternatives with respect to the 

parameters are expressed in terms of generalized neutrosophic sets. The evaluator 

selects the choice parameters and AND operator of generalized neutrosophic soft sets. 

Generalized neutrosophic soft set is used to aggregate the individual decision maker’s 

opinion into a single opinion based on the performance values of the choice 

parameters. The weights of the choice parameters are derived from information 

entropy method. Then, the preference of alternatives is ranked by using TOPSIS 

method. Finally, a numerical example is solved to show the potential applicability and 

effectiveness of the proposed method.  

Keyword 

neutrosophic set, soft set, generalized neutrosophic soft set, TOPSIS, information 

entropy method, multi-attribute group decision making.  

1 Introduction 

Multi-attribute group decision making (MAGDM) is the process of determining 

the best option from a list of feasible alternatives with respect to several 

predefined attributes offered by the multiple decision makers (DMs). 
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However, the rating and the weights of the attributes cannot always be 

preciously assessed in terms of crisp numbers due to the ambiguity of human 

decision and the complexity of the attributes. In order to overcome the 

abovementioned difficulties, Zadeh [37] proposed fuzzy set theory by 

introducing membership function )(TA x to deal with uncertainty and partial 

information. Atanassov [3] incorporated the degree of non-membership as 

independent component and defined intuitionistic fuzzy. Smarandache [28, 

29, 30, 31] proposed neutrosophic sets (NSs) by introducing degree of 

indeterminacy )(IA x as independent element in intuitionistc fuzzy set for 

handling incomplete, imprecise, inconsistent information. Later, Salama and 

Alblowi [27] defined generalized neutrosophic sets (GNSs), where the triplet 

functions satisfy the condition )(TA x  )(FA x  )(IA x 0.5.  

In 1999, Molodtsov [23] introduced the notion of soft set theory for dealing 

with uncertainty and vagueness and the concept has been applied diverse 

practical fields such as decision making [16, 17, 18, 24 ], data analysis [38], 

forecasting [33], optimization [14], etc. Several researchers have incorporated 

different mathematical hybrid structures such as fuzzy soft sets [10, 11, 19], 

intuitionistic fuzzy soft set theory [8, 9, 20], possibility fuzzy soft set [2], 

generalized fuzzy soft sets [22, 35], generalized intuitionistic fuzzy soft [4], 

possibility intuitionistic fuzzy soft set [5], vague soft set [34], possibility vague 

soft set [1], neutrosophic soft sets [17], weighted neutrosophic soft sets [16], 

etc by generalizing and extending classical soft set theory of Molodtsov [23]. 

Recently, Broumi [7] studied generalized neutrosophic soft sets (GNSSs) and 

provided some definitions and operations of the concept. He also provided an 

application of GNSSs in decision making problem. Şahin, and Küçük [25] 

discussed a method to find out similarity measures of two GNSSs and provided 

an application of GNSS in decision making problem.  

Hwang and Yoon [13] developed Technique for Order Preference by Similarity 

to Ideal Solution (TOPSIS) method for solving classical multi-attribute decision 

making (MADM) problems. Liu et al. [15] proposed a new method based on 

generalized neutrosophic number Hamacher aggregation operators for 

MAGDM with single valued neutrosophic numbers. Ye [36] investigated an 

extended TOPSIS method for solving a MADM problems based on the single 

valued neutrosophic linguistic numbers under single valued neutrosophic 

linguistic assessment. Biswas et al. [6] extended the notion of TOPSIS method 

for MAGDM problems under single valued neutrosophic environment. In the 

paper, we have demonstrated a new mathematical model for solving 

generalized neutrosophic soft MAGDM problem based on TOPSIS method. 

The content of the paper is structured as follows. Section 2 presents some basic 

definitions regarding NSs, soft sets, GNSs and GNSSs which will be useful for 
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the construction of the paper.  Section 3 is devoted to describe TOPSIS method 

for solving MAGDM problems under generalized neutrosophic soft 

environment. Section 4 is devoted to present the algorithm of the proposed 

TOPSIS method. A numerical problem regarding flat selection is presented to 

show the applicability of the proposed method in Section 5. Section 6 presents 

the concluding remarks and future scope of research. 

2 Preliminaries 

In this section, we present basic definitions regarding NSs, soft sets, GNSs and 

GNSSs. 

2.1 Neutrosophic Set [28, 29, 30, 31] 

Consider U be a space of objects with a generic element of U represented by x. 

Then, a neutrosophic set N on U is represented as follows: 

N = {x, )(F),(I),(T xxx NNN   x U} 

where, )(T xN , )(I xN , )(F xN : U  ]-0, 1+[ present respectively the degrees of 

truth-membership, indeterminacy-membership, and falsity-membership of a 

point x U to the set N with the condition -0  )(T xN + )(I xN + )(F xN  3+.  

2.2  Generalized Neutrosophic Set [27] 

Let U be a universe of discourse, with a generic element in U denoted by x. Then, 

a generalized neutrosophic set GU is represented as follows: 

G = {x, )(F),(I),(T xxx GGG   x U} 

where, )(T xG , )(I xG , )(F xG denote respectively the truth-membership 

function, indeterminacy-membership function, and falsity-membership 

function of a point x U to the set G where the functions satisfy the condition

)(T xG  )(I xG  )(F xG   0.5. 

 

Definition 2.2.1 [21]  

The Euclidean distance between two GNSs S1 = {xi, )(F),(I),(T iii 111
xxx SSS   

xiU} and S2 = {xi, )(F),(I),(T iii 222
xxx SSS   xi U} is defined as follows: 

DEuc (S1, S2) = 

 



n

1j

2

jSjS

2

jSjS

2

jSjS ))(F)((F))(I)((I))(T)((T
212121

xxxxxx                        (1) 
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and the normalized Euclidean distance between two GNSs S1 and S2 can be 

defined as follows: 

DEucN(S1,S2 

 



n

1j

2

jSjS

2

jSjS

2

jSjS ))(F)((F))(I)((I))(T)((T
3

1
212121

xxxxxx
n

                 (2) 

2.3  Soft set [23]  

Let X be a universal set and E be a set of parameters. Consider P (X) represents 

a power set of X. Also, let F be a non-empty set, where F   E. Then, a pair ( , 

F) is called a soft set over U, where   is a mapping given by : F  P (X). 

2.4  Generalized neutrosophic soft sets [7] 

Suppose X is a universal set and E is a set of parameters. Let A be a non-empty 

subset of E and GNS (X) denotes the set of all generalized neutrosophic sets of 

X. Then, the pair ( , A) is termed to be a GNSS over X, where   is a mapping 

given by : A GNS (X). 

Example:  

Let X be the set of citizens under consideration and E = {very rich, rich, upper-

middle-income, middle-income, lower-middle-income, poor, below-poverty-

line} be the set of parameters (or qualities). Each parameter is a generalized 

neutrosophic word or sentence regarding generalized neutrosophic word. 

Here, to describe GNSS means to indicate very rich citizens, rich citizens, 

citizens of lower-middle-income, poor citizens, etc. Consider four citizens in 

the universe X given by X = (x1, x2, x3, x4) and A = {a1, a2, a3, a4} be a set of 

parameters, where a1, a2, a3, a4 stand for the parameters ‘rich’, ‘middle-income’, 

‘poor’, ‘below-poverty-line’ respectively. Suppose that 

 (rich) = {< a1, 0.8, 0.3, 0.2>, < a2, 0.6, 0.3, 0.3>, < a3, 0.7, 0.4, 0.2>, 

< a4, 0.6, 0.1, 0.2>},  

 (middle-income) = {< a1, 0.6, 0.1, 0.1>, < a2, 0.5, 0.3, 0.4>, < a3, 0.8, 

0.4, 0.3>, < a4, 0.5, 0.2, 0.2>}, 

 (poor) = {< a1, 0.8, 0.4, 0.3>, < a2, 0.6, 0.4, 0.1>, < a3, 0.7, 0.3, 0.5>, 

< a4, 0.7, 0.2, 0.2>}, 

 (below-poverty-line) = {< a1, 0.8, 0.4, 0.4>, < a2, 0.6, 0.2, 0.5>, < 

a3, 0.5, 0.2, 0.2>, < a4, 0.7, 0.4, 0.5>}. 

Consequently, (rich) represents rich citizens,  (middle-income) represents 

citizens of middle-income,  (poor) represents poor citizens and (below-

poverty-line) represents citizens of  below-poverty-line. Therefore, the tabular 

representation of GNSS ( , A) is given below (see Table1). 
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X a1 = rich a2 = middle-

income 

a3 = poor a4 = below-

poverty-line 

x1 (0.8, 0.3, 0.2) (0.6, 0.1, 0.1) (0.8, 0.4, 0.3) (0.8, 0.4, 0.4) 

x2 (0.6, 0.3, 0.3) (0.5, 0.3, 0.4) (0.6, 0.4, 0.1) (0.6, 0.2, 0.5) 

x3 (0.7, 0.4, 0.2) (0.8, 0.4, 0.3) (0.7, 0.3, 0.5) (0.5, 0.2, 0.2) 

x4 (0.6, 0.1, 0.2) (0.5, 0.2, 0.2) (0.7, 0.2, 0.2) (0.7, 0.4, 0.5) 

Table 1. Tabular representation of GNSS ( , A) 

 

Definition 2.4.1 [7] 

Consider ( 1 , A) and ( 2 , B) be two GNSSs over a common universe U. The 

union ( 1 , A) and ( 2 , B) is defined by ( 1 , A) ( 2 , B) = ( 3 , C), where C = 

A   B. The truth-membership, indeterminacy-membership and falsity-

membership functions of ( 3 , C) are presented as follows: 

)(3
T e

(m) = 
)(1

T e
(m), if e 1  - 2 , 

                = 
)(2

T e
(m), if e 2  – 1 , 

               = Max (
)(1

T e
(m),

)(2
T e

(m)), if e 1  2 . 

)(3
I e

(m) = 
)(1

I e
(m), if e 1  - 2 , 

              = 
)(2

I e
(m), if e 2  – 1 , 

              = Min (
)(1

I e
(m),

)(2
I e

(m)), if e 1  2 . 

)(3
F e

(x) = 
)(1

F e
(m), if e 1  - 2 , 

             = 
)(2

F e
(m), if e 2  – 1 , 

             = Min (
)(1

F e
(m), 

)(2
F e

(m)), if e 1  2 . 

 

Definition 2.4.2 [7] 

Suppose ( 1 , A) and ( 2 , B) are two GNSSs over the same universe X The 

intersection ( 1 , A) and ( 2 , B) is defined by ( 1 , A)   ( 2 , B) = ( 4 , D), 

where D = A  B (  φ ) and the truth-membership, indeterminacy-

membership and falsity-membership functions of ( 4 , D) are defined as 

follows: 

)(4
T e (x) = Min (

)(1
T e

(m), )(2
T e (m)), 

)(4
I e

(m) = Min (
)(1

I e
(m),

)(2
I e

(m)),
)(4

F e
(m) = Max (

)(1
F e

(m), 
)(2

F e
(m)),  e  D. 
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Definition 2.4.3 [7] 

Let ( 1 , A) and ( 2 , B) be two GNSSs over the identical universe U. Then ‘AND’ 

operation on ( 1 , A) and ( 2 , B) is defined by ( 1 , A) ( 2 , B) = ( 5 , K), 

where K = AB and the truth-membership, indeterminacy-membership and 

falsity-membership functions of ( 5 , AB) are defined as follows: 

),(5
T 

(m) = Min (
)(1

T 
(m), 

)(2
T 

(m)), 
),(5

I 
(m) = Min (

)(1
I 

(m),
)(2

I 
(m)), 

),(5
F 

(m) = Max (
)(1

F 
(m), 

)(2
F 

(m)),   A, 

 B, m  X. 

3 A generalized neutrosophic soft MAGDM   

 based on TOPSIS method 

Let C = {C1, C2, …, Cn}, (n  2) be a discrete set of alternatives in a MAGDM 

problem with p DMs. Let q be the total number of parameters involved in the 

problem, where qi be number of parameters under the assessment of DMi (i = 

1, 2, …, p) such that q = .q
p

1i
i




 The rating of performance value of alternative Ci, 

(i = 1, 2, …, n) with respect to the choice parameters is provided by the DMs 

and they can be expressed in terms of GNSs. The procedure for solving 

neutrosophic soft MAGDM problem based on TOPSIS method is described as 

follows: 

Step 1. Formulation of criterion matrix with SVNSs 

Suppose that the rating of alternative Ci (i = 1, 2, …, n) with respect to the choice 

parameter provided by the s-th (s = 1, 2, …, p) DM is represented by GNSS ( s , 

Hs), (s = 1, 2, …, p) and they can be presented in matrix form s

ij
d G (i = 1, 2, …, n, 

j = 1, 2, …, qs; s = 1, 2, …, p).  Therefore, criterion matrix for s-th DM can be 

explicitly formulated as follows: 

s

GD  =
sq

s

ijd
n

= 














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s

nq
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n2
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n1
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2q

s

22

s

21

s

1q
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......
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Here, s

ijd  = ( s

ijT , s

ijI , s

ijF ) where s

ijT , s

ijI , s

ijF [0, 1] and 0 s

ijT  + s

ijI  + s

ijF 3, i = 1, 2, 

…, n; j = 1, 2, …, qs; s =1, 2, …, p. 
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Step 2. Formulation of combined criterion matrix with GNSs 

In the group decision making problem, DMs assessments need to be fused into 

a group opinion based on the choice parameters of the evaluator. Suppose the 

evaluator considers r number of choice parameters in the decision making 

situation. Using ‘AND’ operator of GNSSs proposed by Broumi [7], the resultant 

GNSSs is placed in the decision matrix GD  as follows: 

GD  =
rpijd


= 























nrn2n1

2r2221

1r1211

d...dd

......

......

d...dd

d...dd

 

Here, dij = '

ij

'

ij

'

ij F,I,T  where '

ijT , '

ijI , '

ijF [0, 1] and 0  '

ijT  + '

ijI  + '

ijF 3, i = 1, 2, 

…, n; j = 1, 2, …, r. 

Step 3. Determination of weights of the choice parameters 

The evaluator selects the choice parameters in the decision making situation. 

In general, the weights of the choice parameters are dissimilar and completely 

unknown to the evaluator.  In this paper, we use information entropy method 

in order to achieve the weights of the choice parameters. The entropy value Hj 

of the j-th attribute can be defined as follows: 

Hj = 1 - )(I)(I))(F)(T(
r

1
i

C

ijiiji

p

1
i xxxx ij

i
ij 


,  j = 1, 2, …, r  (3) 

Here, 0Hj1 and the entropy weight [12, 32] of the j-th attribute is obtained 

from the Eq. as given below.  

wj = 
∑ )H-(1

H-1

r

1=j
j

j
, with 0  wj 1 and 



r

1j
jw = 1.   (4) 

Step 4. Construction of weighted decision matrix 

We obtain aggregated weighted decision matrix by multiplying weights (wj) 

[26] of the choice parameters and aggregated decision matrix
rpijd


as follows: 

w

GD = GD w =
rnijd


  wj =

rn
ij

jd


w
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
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
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


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



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Here, j

ijd
w

 = jjj

ijijij F,I,T
www

 where j

ijT
w

, j

ijI
w

, j

ijF
w
[0, 1] and 0  j

ijT
w

 + j

ijI
w

 + j

ijF
w


3, i = 1, 2, …, n; j = 1, 2, …, r. 

 

Step 5. Determination of relative positive ideal solution (RPIS) and relative 

negative ideal solution (RNIS) 

In practical decision making, the attributes are classified into two categories 

namely benefit type attributes (J1) and cost type attributes (J2). Let, w

GR and

w

GR be the relative positive ideal solution (RPIS) and relative negative ideal 

solution (RNIS). Then, w

GR and w

GR can be defined as follows: 

w

GR = (  111

111 F,I,T
www ,  222

222 F,I,T
www , …,  rr

rrr F,I,T
www r ) 

w

GR = (  111

111 F,I,T
www ,  222

222 F,I,T
www , …,  rr w

rrr F,I,T rww ) 

where 

 jjj

jjj F,I,T
www

= < [{ )(TMax j

ij
i

w
| j  J1}; { )(TMin j

ij
i

w
| jJ2}], 

[{ )(IMin j

ij
i

w
| j  J1}; { )(IMax j

ij
i

w
| j  J2}], [{ )(FMin j

ij
i

w
| j  J1}; 

{ )(FMax j

ij
i

w
| j  J2}] >, j = 1, 2, …, r, 

 jjj

jjj F,I,T
www

= < [{ )(TMin j

ij
i

w
| j  J1}; { )(TMax j

ij
i

w
| jJ2}], 

[{ )(IMax j

ij
i

w
| j  J1}; { )(IMin j

ij
i

w
| j  J2}], [{ )(FMax j

ij
i

w
| j  J1}; 

{ )(FMin j

ij
i

w
| j  J2}] >, j = 1, 2, …, r. 

Step 6. Calculation of distance measure of each alternative from RPIS and 

RNIS 

The normalized Euclidean distance of each alternative jjj

ijijij F,I,T
www

 from the 

RPIS 
 jjj

jjj F,I,T
www

for i = 1, 2, …, n; j = 1, 2, …., r can be defined as follows: 

i

EucD ( j

ijd
w

,
j

jd
w

) 

 





r

1j

2

jjjij

2

jjjij

2

jjjij ))(F)((F))(I)((I))(T)((T
3r

1
jjjjjj xxxxxx

wwwwww  (5) 

Similarly, normalized Euclidean distance of each alternative jjj

ijijij F,I,T
www  from 

the RNIS  jjj

jjj F,I,T
www for i = 1, 2, …, n; j = 1, 2, …., r can be written as follows: 
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i

EucD ( j

ijd
w

,
j

jd
w

) 

 





r

1j

2

jjjij

2

jjjij

2

jjjij ))(F)((F))(I)((I))(T)((T
3r

1
jjjjjj xxxxxx

wwwwww     (6) 

Step 7. Computation of the relative closeness co-efficient to the neutrosophic 

ideal solution 

The relative closeness co-efficient of each alternative Ci, (i = 1, 2, …, n) with 

respect to the RPIS is defined as follows: 

*

iρ  =
)d,d(D)d,d(D

)d,d(D

jjjj

jj

jij

i

Eucjij

i

Euc

jij

i

Euc






wwww

ww

         (7) 

where, 0 *

iρ 1. 

 

Step 8. Rank the alternatives 

We rank the alternatives according to the values of *

iρ , i = 1, 2, …, n and bigger 

value of *

iρ , i = 1, 2, …, p reflects the better alternative. 

4 Proposed TOPSIS algorithm for MAGDM problems 

In sum, TOPSIS algorithm for generalized neutrosophic soft MAGDM problems 

is designed using the following steps: 

Step 1. Formulate the criterion matrix s

GD  of the s-th decision maker, s = 

1, 2, …, p. 

 Step 2. Establish the aggregated decision matrix DG using AND operator 

GNSSs the based on the choice parameters of the evaluator. 

Step 3. Determine the weight (wj) of the choice parameters using Eq. (4). 

Step 4. Construct the weighted aggregated decision matrix w

GD =
rn

ij
jd



w . 

Step 5. Identify the relative positive ideal solution ( w

GR ) and relative 

negative ideal solution ( w

GR ). 

Step 6. Compute the normalized Euclidean distance of each alternative from 

relative positive ideal solution ( w

GR ) and relative negative ideal solution 

( w

GR ) by Eqs. (5) and (6) respectively. 
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Step 7. Calculate the relative closeness co-efficient *

iρ using Eq. (7) of each 

alternative Ci. 

Step 8. Rank the preference order of alternatives according to the order of 

their relative closeness. 

5 A numerical example 

Let F = {f1, f2, f3, f4} be the set of flats characterized by different locations, prices 

and constructions and E = {very good, good, average good, below average, bad, 

very costly, costly, moderate, cheap, new-construction, not so new-

constructions, old-constructions, very old-constructions} be the set of 

parameters. Assume   that E1 = {very good, good}, E2 = {very costly, costly, 

moderate}, E3 = {new-construction, not so new-construction} are three 

subsets of E. Let the GNSSs ( 1 , E1), ( 2 , E2), ( 3 , E3) stand for the flats 

‘having diverse locations’, ‘having diverse prices’, ‘having diverse 

constructions’ respectively and they are computed by the three DMs namely 

DM1, DM2 and DM3 respectively. The criterion decision matrices for DM1, DM2 

and DM3 are presented (see Table 2, Table 3, Table 4) respectively as follows: 

 

U 
1α = very good 2α = good 

f1 (0.9, 0.3, 0.5) (0.5, 0.3, 0.4) 

f2 (0.6, 0.4, 0.3) (0.5, 0.2, 0.4) 

f3 (0.8, 0.2, 0.3) (0.7, 0.5, 0.4) 

f4 (0.7, 0.2, 0.1) (0.7, 0.5, 0.4) 

Table 2: Tabular form of GNSS ( 1 , E1) 

U 
1β = very costly 2β = costly 3β = moderate 

f1 (0.9, 0.3, 0.1) (0.7, 0.3, 0.4) (0.6, 0.2, 0.4) 

f2 (0.8, 0.3, 0.2) (0.6, 0.5, 0.4) (0.5, 0.4, 0.3) 

f3 (0.8, 0.5, 0.4) (0.7, 0.2, 0.3) (0.8, 0.3, 0.2) 

f4 (0.7, 0.2, 0.4) (0.8, 0.4, 0.5) (0.6, 0.5, 0.3) 

Table 3: Tabular form of GNSS ( 2 , E2) 

U 
1λ = new-construction 2λ = not so new-construction 

f1 (0.8, 0.4, 0.2) (0.7, 0.4, 0.3) 

f2 (0.9, 0.1, 0.1) (0.6, 0.3, 0.1) 

f3 (0.5, 0.4, 0.4) (0.8, 0.3, 0.4) 

f4 (0.4, 0.3, 0.4) (0.6, 0.3, 0.4) 

Table 4: Tabular form of GNSS ( 3 , E3) 
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The proposed TOPSIS method for solving generalized soft MAGDM problem is 

presented in the following steps. 

Step 1: If the evaluator wishes to perform the operation ‘( 1 , E1) AND ( 2 , 

E2)’ then we will get 23 parameters of the form
ijμ , where

ijμ = iα  jβ , for i = 

1, 2; j = 1, 2, 3. Let S = { 12μ , 13μ , 21μ , 22μ , 23μ } be the set of choice parameters of 

the evaluator, where 12μ = (very good, costly), 13μ = (very good, moderate), 21μ

= (good, very costly), etc. (see Table 5).   

 

U 
12μ  13μ  

21μ  22μ  23μ  

f1 (0.7, 0.3, 0.5) (0.6, 0.2, 0.5) (0.5, 0.3, 0.4) (0.5, 0.3, 0.4) (0.5, 0.2, 0.4) 

f2 (0.6, 0.4, 0.4) (0.5, 0.4, 0.3) (0.5, 0.2, 0.4) (0.5, 0.2, 0.4) (0.5, 0.2, 0.4) 

f3 (0.7, 0.2, 0.3) (0.8, 0.2, 0.3) (0.7, 0.5, 0.4) (0.7, 0.2, 0.4) (0.7, 0.3, 0.4) 

f4 (0.7, 0.2, 0.5) (0.6, 0.2, 0.3) (0.6, 0.2, 0.4) (0.6, 0.3, 0.5) (0.6, 0.3, 0.4) 

Table 5: Tabular form of ‘( 1 , E1) AND ( 2 , E2)’ 

 

Now the evaluator desires to compute ( 5 , T) from ( 4 , S) AND ( 3 , E3) for 

the specified parameters T = { 13μ  1λ , 22μ  1λ , 12μ  2λ , 21μ  2λ }, where 13μ

 1λ denotes (very good, moderate, new-construction), 12μ  2λ  represents 

(very good, costly, not so new construction), etc, (see Table 6).  

 

U 
13μ  1λ  22μ  1λ  12μ  2λ  21μ  2λ  

f1 (0.6, 0.2, 0.5) (0.5, 0.3, 0.4) (0.7, 0.3, 0.5) (0.5, 0.3, 0.4) 

f2 (0.5, 0.1, 0.3) (0.5, 0.1, 0.4) (0.6, 0.3, 0.4) (0.5, 0.2, 0.4) 

f3 (0.5, 0.2, 0.4) (0.5, 0.2, 0.4) (0.7, 0.2, 0.4) (0.7, 0.3, 0.4) 

f4 (0.4, 0.2, 0.4) (0.4, 0.3, 0.5) (0.6, 0.2, 0.5) (0.6, 0.2, 0.4) 

Table 6: Tabular form of ‘( 4 , S) AND ( 3 , E3)’ 

 

Step 2. Computation of the weights of the parameters 

Entropy value Hj (j = 1, 2, 3, 4) of the j-th choice parameter can be determined 

from Eq. (3) as follows: 

H1 = 0.42, H2 = 0.505, H3 = 0.45, H4 = 0.515. 

Then, normalized entropy weights are obtained as follows: 

w1 = 0.2712, w2 = 0.2318, w3 = 0.2564, w4 = 0.2406, where 


4

1j
jw = 1. 

Step 3. Formulation of weighted decision matrix of the choice parameters 
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The tabular form of the weighted decision matrix is presented in the Table 7). 

 

U w1 ( 13μ  1λ ) w2  ( 22μ  1λ ) w3  ( 12μ  2λ ) w4 ( 21μ  2λ ) 

f1 (0.22, 0.6463, 

0.8286) 

(0.1484, 0.7565, 

0.8086) 

(0.2656, 0.7344, 

0.8372) 

(0.1536, 0.7485, 

0.8022) 

f2 (0.1714, 0.5356, 

0.7214) 

(0.1484, 0.5864, 

0.8086) 

(0.2094, 0.7344, 

0.7906) 

(0.1536, 0.6789, 

0.8022) 

f3 (0.1714, 0.6463, 

0.78) 

(0.1484, 0.6886, 

0.8086) 

(0.2656, 0.6619, 

0.7906) 

(0.2515, 0.7485, 

0.8022) 

f4 (0.1294, 0.6463, 

0.78) 

(0.1167, 0.7565, 

0.8516) 

(0.2094, 0.6619, 

0.8372) 

(0.1978, 0.6789, 

0.8022) 

Table 7: Tabular form of weighted decision matrix 

 

Step 4. Determination of RPIS and RNIS 

The RPIS ( 

GR ) and RNIS ( 

GR ) can be obtained from the weighted decision 

matrix as follows: 



GR = < (0.22, 0.5356, 0.7214); (0.1484, 0.5864, 0.8086); (0.2656, 

0.6619, 0.7906); (0.2515, 0.6789, 0.8022) > 



GR = < (0.1294, 0.6453, 0.8286); (0.1167, 0.7565, 0.8516); (0.2094, 

0.7344, 0.8372); (0.1536, 0.7485, 0.8022) > 

Step 5. Determine the distance measure of each alternative from the RPIS 

and RNIS  

Using Eq. (5), the distance measures of each alternative from the RPIS are 

obtained as follows: 

1

EucD = 0.0788, 2

EucD = 0.0412, 3

EucD = 0.0527, 4

EucD = 0.0730. 

Similarly, the distance measures of each alternative from the RNIS are 

obtained using Eq. (6) as follows: 

1

EucD = 0.0344, 2

EucD = 0.0731, 3

EucD = 0.0514, 4

EucD = 0.0346. 

Step 6. Calculate the relative closeness coefficient  

We now compute the relative closeness co-efficient *

iρ , i = 1, 2, 3, 4 using Eq. (7) 

as follows: 

*

1ρ = 0.3039, *

2ρ = 0.6395, *

3ρ = 0.4938, *

4ρ = 0.3216. 
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Step 7. Rank the alternatives 

The ranking order of alternatives based on the relative closeness coefficient is 

presented as follows: 

C2   C3 C4   C1. 

Therefore, C2 is the best alternative. 

6 Conclusion 

In this paper, we have proposed a TOPSIS method for solving MAGDM problem 

with generalized neutrosophic soft information. In the decision making 

context, the rating of performance values of the alternatives with respect to 

the parameters are presented in terms of GNSSs. We employ AND operator of 

GNSSs to combine opinions of the DMs based on the choice parameters of the 

evaluator. We construct weighted decision matrix after obtaining the weights 

of the choice parameters by using information entropy method. Then, we 

define RPIS and RNIS from the weighted decision matrix and Euclidean 

distance measure is used to compute distances of each alternative from RPISs 

as well as RNISs. Finally, relative closeness co-efficient of each alternative is 

calculated in order to select the best alternative. The authors expect that the 

proposed concept can be useful in dealing with diverse MAGDM problems such 

as personnel and project selections, manufacturing systems, marketing 

research problems and various other management decision problems. 
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Abstract 

Full type-2 fuzzy techniques provide a more adequate representation of expert 

knowledge. However, such techniques also require additional computational efforts, 

so we should only use them if we expect a reasonable improvement in the result of 

the corresponding data processing. It is therefore important to come up with a 

practically useful criterion for deciding when we should stay with interval-valued 

fuzzy and when we should use full type-2 fuzzy techniques. Such a criterion is 

proposed in this paper. We also analyze how many experts we need to ask to come 

up with a reasonable description of expert uncertainty.
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1 Formulation of the Problem 

Need for fuzzy logic. In many application areas, we have expert knowledge 

formulated by using imprecise (“fuzzy”) words from natural language, such 

as “small”, “weak”, etc. To use this knowledge in automated systems, it is 

necessary to reformulate it in precise computer-understandable terms. The 
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need for such a reformulation was one of the motivations behind fuzzy logic 

(see, e.g., [3], [11], [15]). Fuzzy logic uses the fact that in a computer, 

“absolutely true” is usually represented as 1, and “absolutely false” is 

represented as 0. Thus, to describe expert’s intermediate degrees of 

confidence, it makes sense to use real numbers intermediate between 0 and 1. 

In this case, to represent an imprecise word like “small”, we describe, for 

each real number x, the degree ( ) [0,1]small x   to which the expert considers 

this value to be small. The corresponding function from the set of possible 

value to the interval [0, 1] is known as a membership function. 

Need to go beyond [0, 1]-valued fuzzy logic. In most practical problems, we 

have several experts, and while their imprecise rules may coincide, their 

understanding of the meaning of the corresponding words may be slightly 

different. As a result, when we ask different experts, we get, in general, 

different membership functions corresponding to the same term – i.e., for 

each possible value  x , we get, in general, different degrees ( )x (describing 

the expert’s opinion to what extent this value x satisfies the given property). 

To adequately represent expert knowledge, it is desirable to capture this 

difference, i.e., to go beyond the original [0, 1]-valued fuzzy logic – which was 

oriented towards capturing the opinion of a single expert. 

Interval-valued fuzzy techniques. If for the same property P  and for same 

value x , two different degrees of confidence, e.g., 0.6 and 0.8, are both 

possible – according to two experts – then it makes sense to assume that for 

other experts, intermediate viewpoints will also be possible. In other words, 

if two real numbers from the interval [0, 1] are possible degrees, then all 

intermediate numbers should also be possible degrees. In this case, for each 

property P  and for each value x , the set of all possible degree that x

satisfies the property P  is an interval. This interval can be denoted by

[ ( ), ( )]x x  . 

Interval-valued fuzzy techniques have indeed been successfully used in many 

applications; see, e.g., [7], [8], [10]. 

General type-2 fuzzy techniques. The interval-valued techniques do not 

fully capture the uncertainty of the experts’ opinion: these techniques just 

describe the interval, but they do not take into account that some values from 

this interval are shared by many experts, while other values are “outliers”, 

opinions of a few unorthodox experts. To capture this difference, a 

reasonable idea is to describe, for each value   from the corresponding 

interval   [ , ]  , a degree to which this value is common. 
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In other words, for each possible value x  of the original quantity, instead of 

single numerical degree ( )x , we now have a fuzzy set (membership function) 

describing this degree. Such situation in which, for every possible value x
  
of 

the original quantity, the experts’ degree of confidence that x  satisfies the 

given property P  is itself a fuzzy number is known as type-2 fuzzy set. 

Of course, each interval-valued fuzzy set is a trivial particular case of the 

general type-2 fuzzy set, corresponding to the case when the degree is 1 

inside the interval [ , ]  and 0 outside this interval. 

The most commonly used non-trivial type-2 fuzzy sets are the Gaussian ones, 

in which, for each x, the corresponding membership function of the set of all 

possible values   is Gaussian:
  

2

2

( )
( ) exp

2

od
 




 
  

 
 for some values  0  

and  . Such Gaussian-valued fuzzy sets are also used in applications [7], [8]. 

Comment. In addition to empirical success, there are also theoretical reasons 

why namely Gaussian membership functions are successfully used; see, e.g., 

[4]. 

Formulation of the problem. 

 On the one hand, the transition from interval-valued to general type-2 

fuzzy sets leads to a more adequate representation of the experts’ 

knowledge. From this viewpoint, it may sound as if it is always 

beneficial to use general type-2 fuzzy sets. 

 However, on the other hand, this transition requires that we store and 

process additional information about the secondary membership 

functions. So, we should only perform this switch if we expect a 

reasonable advantage. 

It is therefore desirable to come up with a criterion for deciding when we 

should switch from interval-valued fuzzy to general type-2 fuzzy. The main 

objective of this paper is to come up with such a criterion. 

Comment. A similar problem occurs in describing measurement uncertainty: 

we can simply store and use the interval of possible values of measurement 

error, or we may want to supplement this interval withe the information 

about the probability of different values within this interval – i.e., with a 

probability distribution. Here also, we face a similar problem of deciding 

when it is beneficial to switch from a simpler interval description to a more 

complex (but more adequate) probabilistic description. A possible solution to 

this problem – based on information theory – is presented in [1]. 
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2 Analysis of the Problem 

One more reason why Gaussian membership functions provide a good 

description of the expert diversity. There are many different factors that 

influence the expert’s degree of confidence. The actual degree produced by 

an individual expert is a result of the joint effect of all these factors. 

Such situations, when a quantity is influenced by many different factors, are 

ubiquitous. There is a known result – the Central Limit Theorem (see, e.g., 

[13]) – that helps to describe such situations, by proving that; under 

reasonable assumptions the probability distribution of the joint effect of 

many independent factors is close to Gaussian. This is a well-known fact 

explaining the ubiquity of bell-shaped Gaussian (normal) distributions: they 

describe the distribution of people by height, by weight, by IQ, they describe 

the distribution of different animals and plants, they describe the 

measurement errors, etc. 

It is therefore reasonable to assume that when we consider many experts 

providing their degrees of confidence, the resulting probability distribution 

of these degrees is also close to Gaussian (= normal), with some mean 0  and 

standard deviation  . 

For normally distributed expert estimates, what is the corresponding 

interval? Let us assume that for the same statement, different expert degrees 

of confidence are normally distributed with mean 0  and standard deviation

 . Let N denote the number of experts whose opinions we ask, and let 

1,..., N 
 
are degrees indicated by these experts. 

If we use an interval approach, then, as the interval-valued degree of 

confidence[ , ]  , we take the interval formed by these degrees i , i.e., the 

interval[min ,max ]i i
i i
  . 

On average, when we have a sample of N random values, then one of the ways 

to approximate the original distribution is to build a histogram, i.e., sort the 

observed values i  in increasing order into a sequence  

(1) (2) ( )... N            (1) 

and then take a distribution that has each of the values ( )i  with the same 

probability 
1

N
. It is known that in the limit N  , this histogram 

distribution converges to the actual distribution (i.e., becomes closer and 

closer as N increases). 
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Thus, as a good approximation to the smallest possible value (1) min i
i

  , it is 

reasonable to take the value   for which the probability  
1

Pr ( )ob
N

    

Similarly, as a good approximation to the largest possible value ( ) maxN i
i

  , 

we can take the value   for which
1

Pr ( )ob
N

   , i.e., for which 

1
Pr ( ) 1ob

N
            (2) 

For a normal distribution with mean 0  and standard deviation , the 

corresponding values   and   can be obtained as follows (see, e.g., [13]): 

0 ( ) ;k N       0 ( )k N          (3) 

where 

1 2
( ) 2 1

def

k N erf
N

  
   

 
       (4) 

and the error function erf  erf(x) is defined as  

2

( ) exp
2

xdef

x

t
erf x dt



 
  

 
         (5) 

So, when is interval representation better? The value ( )k N  increases with 

N  and tends to   when N  increases. Thus, when the number of experts N is 

large, the lower endpoint of the interval 

0 0[ , ] [ ( ) , ( ) ]k N k N                 (6) 

becomes negative, while its upper bound becomes larger than 1. Since the 

values i  are always located within the interval [0, 1], in this case, the 

interval-valued  description of uncertainty is useless: the smallest value is 0 

(or close to 0), the largest value is 1 (or close to 1). In such situations, we 

cannot use the interval-valued approach, so we need to use a more 

computationally complex Gaussian approach. 

On the other hand, if we have 

00 ( )k N       and 
0 ( ) 1k N           (7) 

then, once we know the bounds   and   , we can uniquely reconstruct both 

parameters  0  and   as follows: 
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0
2

 



 ; 

2 ( )k N

 



        (8)  

In this case, if we use the interval-valued approach, we do not lose any 

information in comparison with the Gaussian-based approach. Since the 

interval-valued approach is computationally easier than the Gaussian-based 

approach, it therefore makes sense to use the interval-based approach. 

But are these expert estimates meaningful at all? What if the experts do 

not real have any knowledge and their degrees are all over the map? In this 

case, processing these ignorance-based degrees does not make any sense. 

How can we detect such a situation? 

In the cases when experts have no meaningful knowledge, their degrees are 

simply uniformly distributed on the interval [0, 1]. In this case, the variance is 

equal to 2 1

12
  , in which case 0.3  . So, we can conclude that if the 

empirical standard deviation is greater than or equal to 0.3 , then we should 

simply ignore the experts’ degrees – since the experts’ opinions disagree too 

much to be useful. 

Thus, we arrive at the following recommendation. 

3 Recommendation: When to Use Interval-Valued Approach  

and When to Use Gaussian Approach 

What is given. For each property and for each possible value x , we have N   

experts that provide us with their degrees of confidence 1,..., N   that this 

value x  satisfies the given imprecise property (e.g., that this value x  is small). 

Resulting algorithm. First, we use the standard formulas to estimate the 

mean 0  and standard deviation   of the expert’s degrees i : 

1
0

... N

N

 


 
        (9) 

2

0

1

1
( )

1

N

i

iN
  



  


       (10) 

If 0.3  , then we conclude that the experts’ opinion disagree too much to be 

useful. 

If   0.3  , then, based on the number of experts N , we estimate k(N) as 
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1 2
( ) 2 1k N erf

N

  
   

 
        (11) 

Based on this value k(N), we compute the values 

0 ( )k N       and 
0 ( )k N          (12) 

Then: 

 if  0   and 1  , we use interval-valued approach, with interval-

valued degree  [ , ]   ; 

 otherwise, if  0   or  1  , we use a Gaussian approach, with the 

type-2 Gaussian degree of confidence 

2

2

( )
( ) exp

2

od
 




 
  

 
 

     (13) 

4 Auxiliary Question: How Many Experts We Should Ask? 

How many experts we should ask? For a general random variable, the 

larger the sample is the more accurate the estimates are. For example, if we 

perform measurements, then we can decrease the random component of the 

measurement error if we repeat the measurement many times and take the 

average of the measurement results. This fact follows from the Large 

Numbers Theorem, according to which, when the sample size increases, the 

sample average tends to the mean of the corresponding random variable. 

This makes sense if we deal with measurements of physical quantities, where 

more and more accurate description of this quantity makes perfect sense – 

and is desirable. For degree, however, the situation is different. A person can 

only provide his or her degree of confidence only with a low accuracy: e.g., an 

expert may distinguish between marks 6 and 7 on a scale from 0 to 10, but, 

when describing their degree of confidence, experts cannot meaningfully 

distinguish between, e.g., values 61 and 62 on a scale from 0 to 100. 

Comment. Issues related to decision making in fuzzy context are handled, e.g., 

in [2], [5], [6]. 

Our idea. Psychologists have found out that we usually divide each quantity 

into 7 plus minus 2 categories – this is the largest number of categories 

whose meaning we can immediately grasp; see, e.g., [9], [12] (see also [14]). 

For some people, this “magical number” is 7 + 2 = 9, for some it is 7 - 2 = 5. 

This rule is in good accordance with the fact that in fuzzy logic, to describe 
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the expert’s opinion on each quantity, we usually use 7 2  different 

categories (such as “small”, “medium”, etc.). 

Since on the interval [0, 1], we can only have 7 2  meaningfully different 

degrees of confidence, the accuracy of these degrees ranges is, at best, 1/9. 

When we estimate the mean 0  based on N  values, the accuracy is of order 

N

  . It does not make sense to bring this accuracy below 1/9, so it makes 

sense to limit the number of experts N  to a value for which 1

9N


 , i.e., to the 

value 2(9 )N   . 

Resulting recommendation. To estimate how many experts we need to ask, 

we ask a small number n of experts, and, based on their degrees i , estimate  

  as 

2

1

1
( )

1

n

i av

in
  



  


        (14) 

where 
1

1 n

av i

in
 



  . 

Then, we estimate the number N of experts to ask as 2(9 )N   . 

Comment. Of course, if N n , this means that we do not have to ask any more 

experts, whatever information we have from n  experts is enough. 

Examples. If all experts perfectly agree with each other, i.e., if  i j   for all 

i  and j , then  0   and 0N  . In this case, there is no need to ask any more 

experts. 

Similarly, if all experts more or less agree with each other and 0.1  , then

1N  , meaning also that there is no need to ask more experts. 

If 0.2  , then 3.61N  , meaning that we should ask at least 4 experts to get 

a good estimate. For 0.3  , we get 7.29N  , meaning that we need to ask at 

least 7 experts. 

This is about as bad as we can get: as we have mentioned, even when the 

expert’s degrees are all over the map, i.e., uniformly distributed on the 

interval [0, 1], then the variance is equal to 2 1

12
  , in which case 0.3  , 

and we get 2 2 81
9 6.75

12
N     , meaning that we need to ask at most 7 

experts. 
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5 Conclusion 

In all cases, we need to ask at most seven experts to get a meaningful 

estimate (and sometimes, when the experts agree with each other, a smaller 

number of experts is sufficient). 
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Abstract  

Neutrosophic numbers easily allow modeling uncertainties of prices universe, thus 

justifying the growing interest for theoretical and practical aspects of arithmetic 

generated by some special numbers in our work. At the beginning of this paper, we 

reconsider the importance in applied research of instrumental discernment, viewed 

as the main support of the final measurement validity. Theoretically, the need for 

discernment is revealed by decision logic, and more recently by the new neutrosophic 

logic and by constructing neutrosophic-type index numbers, exemplified in the 

context and applied to the world of prices, and, from a practical standpoint, by the 

possibility to use index numbers in characterization of some cyclical phenomena and 

economic processes, e.g. inflation rate. The neutrosophic index numbers or 

neutrosophic indexes are the key topic of this article. The next step is an interrogative 

and applicative one, drawing the coordinates of an optimized discernment centered 

on neutrosophic-type index numbers. The inevitable conclusions are optimistic in 

relation to the common future of the index method and neutrosophic logic, with 

statistical and economic meaning and utility. 

Keyword  

neutrosophic-tendential fuzzy logic, neutrosophic logic, neutrosophic index, index 

statistical method, price index, interpreter index, neutrosophic interpreter index.  

1 Introduction  

Any decision, including the statistical evaluation in the economy, requires 

three major aspects, distinct but interdependent to a large extent, starting with 

providing the needed knowledge to a certain level of credibility (reducing 
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uncertainty, available knowledge being incomplete and unreliable in different 

proportions, and the condition of certainty rarely being encountered in 

practice, the determinism essentially characterizing only the theory), then by 

the discernment of chosing the decision option, and, finally, by obtaining the 

instrumental and quantified consensus. In the hierarchy of measurement 

results qualities, the discernment of instrumental choice – by selection of the 

tool, of the technics, or of the method from the alternative options that 

characterizes all available solutions – should be declared the fundamental 

property of applied research. Moreover, the discernment can be placed on a 

scale intensity, from experimental discernment or decison discernment, 

selected according to the experience acquired in time, then ascending a “ladder” 

revealed by perpetual change of the continuous informational discernment or 

by the discernment obtained through knowledge from new results of research 

in specific activity, until the final stage of intuitional discernment (apparently 

rational, but mostly based on intuition), in fact the expression of a researcher's 

personal reasoning. 

In summary, the process of making a measurement decision, based on a 

spontaneous and intuitive personal judgment, contains a referential system 

that experiences, more or less by chance, different quantifying actions 

satisfying to varying degrees the needs of which the system is aware in a fairly 

nuanced manner. The actions, the tools, the techniques and the measurement 

methods that are experienced as satisfactory will be accepted, resumed, fixed 

and amplified as accurate, and those that are experienced as unsatisfactory 

will be remove from the beginning. A modern discernment involves 

completing all the steps of the described “ladder”, continuously exploiting the 

solutions or the alternatives enabling the best interpretation, ensuring the 

highest degree of differentiation, offering the best diagnostic, leading to the 

best treatment, with the most effective impact in real time. However, some 

modern measurement theories argue that human social systems, in conditions 

of uncertainity, resort to a simplified decision-making strategy, respectively 

the adoption of the first satisfactory solution, coherentely formulated, 

accepted by relative consensus (the Dow Jones index example is a perennial 

proof in this respect).  

Neutrosophic logic facilitates the discernment in relation to natural language, 

and especially with some of its terms, often having arbitrary values. An 

example in this regard is the formulation of common market economies: 

“inflation is low and a slight increase in prices is reported,” a mathematical 

imprecise formulation since it is not exactly known which is the percentage of 

price increase; still, if it comes about a short period of time and a well defined 

market of a product, one can make the assumption that a change to the current 

price is between 0% and 100% compared to the last (basic) price.  



69 

 

 
Critical Review. Volume XI, 2015 

Florentin Smarandache, Gheorghe Savoiu 

Neutrosophic Index Numbers: Neutrosophic Logic Applied In The Statistical 

Indicators Theory 

A statement like – “if one identifies a general increase in prices close to zero” 

(or an overall increase situated between three and five percent, or a general 

increase around up to five percent), “then the relevant market enjoys a low 

inflation” – has a corresponding degree of truth according to its interpretation 

in the context it was issued. However, the information must be interpreted 

accordingly to a certain linguistic value, because it can have different 

contextual meanings (for Romania, an amount of 5% may be a low value, but 

for the EU even an amount of five percent is certainly a very high one). 

Neutrosophic logic, by employing neutrosophic-type sets and corresponding 

membership functions, could allow detailing the arrangement of values 

covering the area of representation of a neutrosophic set, as well as the 

correspondence between these values and their degree of belonging to the 

related neutrosophic set, or by employing neutrosophic numbers, especially 

the neutrosophic indexes explained in this paper; and could open new applied 

horizons, e.g. price indexes that are, in fact, nothing else than interpreters, but 

more special – on the strength of their special relationship with the reality of 

price universe. 

2 Neutrosophic Logic 

First of all, we should define what the Logic is in general, and then the 

Neutrosophic Logic in particular. 

Although considered elliptical by Nae Ionescu, the most succinct and 

expressive metaphorical definition of the Logic remains that – Logic is “the 

thinking that thinks itself.”   

The Logic has indisputable historical primacy as science. The science of Logic 

seeks a finite number of consequences, operating with sets of sentences and 

the relationship between them. The consequence’s or relationship’s substance 

is exclusively predicative, modal, or propositional, such generating Predicative 

Logic, Modal Logic, or Propositional Logic. 

A logic calculation can be syntactic (based on evidence) and semantic (based 

on facts). The Classical Logic, or the Aristotelian excluded middle logic, 

operates only with the notions of truth and false, which makes it inappropriate 

to the vast majority of real situations, which are unclear or imprecise. 

According to the same traditional approach, an object could either belong or 

not belong to a set. 

The essence of the new Neutrosophic Logic is based on the notion of vagueness: 

a neutrosophic sentence may be only true to a certain extent; the notion of 

belonging benefits from a more flexible interpretation, as more items may 
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belong to a set in varying degrees. The first imprecision based logic (early 

neutrosophic) has existed since 1920, as proposed by the Polish 

mathematician and logician Jan Łukasiewicz, which expanded the truth of a 

proposition to all real numbers in the range [0; 1], thus generating the 

possibility theory, as reasoning method in conditions of inaccuracy and 

incompleteness [1]. 

In early fuzzy logic, a neutrosophic-tendential logic of Łukasiewicz type, this 

paradox disappears, since if φ has the value of 0.5, its own negation will have 

the same value, equivalent to φ. This is already a first step of a potentially 

approachable gradation, by denying the true statement (1) by the false 

statement (φ) and by the new arithmetic result of this logic, namely the new 

value 1- φ. 

In 1965, Lotfi A. Zadeh extended the possibility theory in a formal system of 

fuzzy mathematical logic, focused on methods of working using nuanced terms 

of natural language. Zadeh introduced the degree of membership/truth (t) in 

1965 and defined the fuzzy set.  

Atanassov introduced the degree of nonmembership/falsehood (f) in 1986 

and defined the intuitionistic fuzzy set. 

Smarandache introduced the degree of indeterminacy/neutrality (i) as 

independent component in 1995 (published in 1998), and defined the 

neutrosophic set. In 2013, he refined the neutrosophic set to n components:  

𝑡1, 𝑡2, … 𝑡𝑗;  𝑖1, 𝑖2, … , 𝑖𝑘;  𝑓1, 𝑓2, … , 𝑓2, 

where 𝑗 + 𝑘 + 𝑙 = 𝑛 > 3. 

The words “neutrosophy” and “neutrosophic” were coined/invented by F. 

Smarandache in his 1998 book. Etymologically, “neutro-sophy” (noun) 

[French neutre <Latin neuter, neutral, and Greek sophia, skill/wisdom] means 

“knowledge of neutral thought”, while “neutrosophic” (adjective), means 

“having the nature of, or having the characteristic of Neutrosophy”. 

Going over, in fuzzy set, there is only a degree (percentage) of belonging of an 

element to a set (Zadeh, 1965). Atanassov introduced in 1986 the degree 

(percentage) of non-belonging of an element to a set, and developed the 

intuitionistic fuzzy set. Smarandache introduced in 1995 the degree 

(percentage) of indeterminacy of belonging, that is: we do not know if an 

element belongs, or does not belong to a set), defining the neutrosophic set. 

The neutrosophy, in general, is based on the neutral part, neither membership 

nor non-membership, and in neutrosophic logic, in particular: neither true, nor 

false, but in between them. Therefore, an element 𝑥(𝑡, 𝑖, 𝑓)  belongs to a 
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neutrosophic set M in the following way: 𝑥  is t% in M, i% indeterminate 

belonging, and f% does not belong. Or we can look at this issue in probabilistic 

terms as such: the chance for the element x to belong to the set M is t%, the 

indeterminate chance to belong is i%, and the chance not to belong is f%. 

In normalized cases, 𝑡 + 𝑖 + 𝑓 = 1 (100%), but in general, if the information 

about the possibility of membership of the element x in the set M is 

independently sourced (not communicating with one another, so not 

influencing each other), then it may be that 0 ≤ 𝑡 + 𝑖 + 𝑓 ≤ 3. 

In more general or approximated cases, 𝑡, 𝑖, 𝑓 can be included intervals in [0, 

1], or even certain subsets included in [0, 1], i.e. when working with inaccurate, 

wrong, contradictory, vague data. 

In 1972, S.S.L. Chang and L. A. Zadeh sketched the use of fuzzy logic (also of 

tendential-neutrosophic logic) in conducting technological processes by 

introducing the concept of linguistic variables defined not by numbers, but as 

a variable in linguistic terms, clearly structured by letters of words. The 

linguistic variables can be decomposed into a multitude of terms, covering the 

full range of the considered parameter. 

On the other hand, unlike the classical logic (Aristotelian, mathematic and 

boolean), which work exclusively with two exact numerical values (0 for false 

and 1 for true), the fuzzy early-neutrosophic logic was able to use a wide 

continuous spectrum of logical values in the range [0, 1], where 0 indicates 

complete falsity, and 1 indicates complete truth. However, if an object, in 

classical logic, could belong to a set (1) or not belong to a set (0), the 

neutrosophic logic redefines the object's degree of membership to the set, 

taking any value between 0 and 1. The linguistic refinement could be fuzzy 

tendential-neutrosophically redefined, both logically and mathematically, by 

inaccuracy, by indistinctness, by vagueness. The mathematical clarification of 

imprecision and vagueness, the more elastic formal interpretation of 

membership, the representation and the manipulation of nuanced terms of 

natural language, all these characterize today, after almost half a century, the 

neutrosophic logic. 

The first major application of the neutrosophic logical system has been carried 

out by L.P. Holmblad and J.J. Ostergaard on a cement kiln automation [2], in 

1982, followed by more practical various uses, as in high traffic intersections 

or water treatment plants. The first chip capable of performing the inference 

in a decision based on neutrosophic logic was conducted in 1986 by Masaki 

Togai and Hiroyuki Watanabe at AT&T Bell Laboratories, using the digital 

implementation of min-max type logics, expressing elementary union and 

intersection operations [3]. 
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A neutrosophic-tendential fuzzy set, e.g. denoted by F, defined in a field of 

existence U, is characterized by a membership function 𝜇𝐹(𝑥)  which has 

values in the range [0, 1] and is a generalization of the concise set [4], where 

the belonging function takes only one of two values, zero and one. The 

membership function provides a measure of the degree of similarity of an 

element U of neutrosophic-tendential fuzzy subset F. Unlike the concise sets 

and subsets, characterized by net frontiers, the frontiers of the neutrosophic-

tendential fuzzy sets and subsets are made from regions where membership 

function values gradually fade out until they disappear, and the areas of 

frontiers of these nuanced subsets may overlap, meaning that the elements 

from these areas may belong to two neighboring subsets at the same time. 

As a result of the neutrosophic-tendential fuzzy subset being characterized by 

frontiers, which are not net, the classic inference reasoning, expressed by a 

Modus Ponens in the traditional logic, of form: 

(p→ ( p→q))→q, i.e.:  premise: if p, then q 

fact: p 

consequence: q, 

becomes a generalized Modus Ponens, according to the neutrosophic-

tendential fuzzy logic and under the new rules of inference suggested from the 

very beginning by Lotfi A. Zadeh [5], respectively in the following expression: 

premise: if x is A, then y is B 

fact: x is A’ 

consequence: y is B’, where B’= A’o(A→ B).  

(Modus ponens from classical logic could have the rule max-min as 

correspondent in neutrosophic-tendential fuzzy logic). 

This inference reasoning, which is essentially the basis of the neutrosophic-

tendential fuzzy logic, generated the use of expression “approximate 

reasoning”, with a nuanced meaning. Neutrosophic-tendential fuzzy logic can 

be considered a first extension of meanings of the incompleteness theory to 

date, offering the possibility of representing and reasoning with common 

knowledge, ordinary formulated, therefore having found applicability in many 

areas. 

The advantage of the neutrosophic-tendential fuzzy logic was the existence of 

a huge number of possibilities that must be validated at first. It could use 

linguistic modifiers of the language to appropriate the degree of imprecision 

represented by a neutrosophic-tendential fuzzy set, just having the natural 

language as example, where people alter the degree of ambiguity of a sentence 

using adverbs as incredibly, extremely, very, etc. An adverb can modify a verb, 

an adjective, another adverb, or the entire sentence. 
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After designing and analyzing a logic system with neutrosophic-tendential 

fuzzy sets [6], one develops its algorithm and, finally, its program 

incorporating specific applications, denoted as neutrosophic-tendential fuzzy 

controller. Any neutrosophic-tendential fuzzy logic consists of four blocks: the 

fuzzyfication (transcribing by the membership functions in neutrosophic input 

sets), the basic rules block (which contains rules, mostly described in a 

conditional manner, drawn from concise numerical data in a single collection 

of specific judgments, expressed in linguistic terms, having neutrosophic sets 

associated in the process of inference or decision), the inference block 

(transposing by neutrosophic inferential procedures nuanced input sets into 

nuanced output sets), and the defuzzyfication (transposing nuanced output 

sets in the form of concise numbers). 

The last few decades are increasingly dominated by artificial intelligence, 

especially by the computerized intelligence of experts and the expert-systems; 

alongside, the tendential-neutrosophic fuzzy logic has gradually imposed itself, 

being more and more commonly used in tendential-neutrosophic fuzzy control 

of subways and elevators systems, in tendential-neutrosophic fuzzy-

controlled household appliances (washing machines, microwave ovens, air 

conditioning, so on), in voice commands of tendential-neutrosophic fuzzy 

types, like up, land, hover, used to drive helicopters without men onboard, in 

tendential-neutrosophic fuzzy cameras that maps imaging data in medical lens 

settings etc.  

In that respect, a bibliography of theoretical and applied works related to the 

tendential-neutrosophic fuzzy logic, certainly counting thousands of articles 

and books, and increasing at a fast pace, proves the importance of the 

discipline. 

3 Construction of Sets and Numbers of Neutrosophic Type 

in the Universe of Prices heading  

As it can be seen from almost all fields of science and human communication, 

natural language is structured and prioritized through logical nuances of terms. 

Valorisation of linguistic nuances through neutrosophic-tendential fuzzy logic, 

contrary to traditional logic, after which an object may belong to a set or may 

not belong to a set, allow the use with a wide flexibility of the concept of 

belonging [7]. 

Neutrosophic-tendential fuzzy numbers are used in practice to represent more 

precisely defined approximate values. For example, creating a budget of a 

business focused on selling a new technology, characterized by uncertainty in 

relation to the number of firms that have the opportunity to purchase it for a 
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prices ensuring a certain profit of the producer, a price situated between 50 

and 100 million lei, with the highest possible range in the interval situated 

somewhere between 70 and 75, provides, among other things, a variant to 

define concretely a neutrosophic-tendential fuzzy number Z, using the set of 

pairs (offered contractual price, possibility, or real degree of membership), 

that may lead to a steady price: Z = [(50, 0), (60, 0.5), (70, 1), (75, 1), (85; 0.5) 

(100, 0)]. 

Given that X represents a universe of discourse, with a linguistic variable 

referring to the typical inflation or to a slight normal-upward shift of the price 

of a product, in a short period of time and in a well-defined market, specified 

by the elements x, it can be noted p, where p=(p1-p0)/p0. In the following 

exemplification, the values of p are simultaneously considered positive for 

the beginning and also below 1 (it is not hypothetically allowed, in a short 

period of time, a price increase more than double the original price, 

respectively the values of p are situated in the interval between 0 and 1). A 

neutrosophic-tendential fuzzy set A of a universe of discourse X is defined or it 

is characterized by a function of belonging μA(x) or μA(p), associating to each 

item x or p a degree of membership in the set A, as described by the equation: 

μA(x): X →[0,1] or μA(p): X →[0,1].    (1) 

To graphically represent a neutrosophic-tendential fuzzy set, we must first 

define the function of belonging, and thus the solution of spacial unambiguous 

definition is conferred by the coordinates x and μ A (x)  or  p and μ A (p): 

A = {[x, μ A (x)] | x [0,1]}   

or    A = {[p, μ A (p)] | p  [0,1]}    (2) 

A finite universe of discourse X={x1,x2,...,xn} or X={p1,p2,...,pn} can redeem, 

for simplicity, a notation of type:  

A = {μ1/x1 +μ2/x2 + ... +μn/xn},  

respectively A = {μ1/p1 + μ1/p2 + ... +μn/pn}. 

For example, in the situation of linguistic variable “a slight increase in price,” 

one can detail multiple universes of discourse, be it a summary one X = {0, 10, 

20, 100}, be it an excessive one X = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, 

the breakdowns being completed by membership functions for percentage 

values of variable p, resorting either to a reduced notation: 
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A = [0/1 + 10 / 0,9 + 20 / 0,8 + 100 / 0], 

or to an extended one: 

A = [0/1 + 10/0,9 + 20/0,8 + 30/0,7 + 40/0,6 + 50/0,5 + 60/0,4 + 

70/0,3 + 80/0,2 + 90/0,1 + 100/0]. 

The meaning of this notations starts with inclusion in the slight increase of a 

both unchanged price, where the difference between the old price of 20 lei and 

the new price of a certain product is nil, thus the unchanged price belonging 

100% to the set of “slight increase of price”, and of a changed price of 22 lei, 

where p = (p1 - p0) / p0 = 0,1 or 10%, therefore belonging 90% to the set of 

“slight increase of price”, … , and, finally, even the price of 40 lei, in proportion 

of 0% (its degree of belonging to the analyzed set being 0).  

Let us represent graphically, in a situation of a summary inflationary 

discourse: 

 
Graphic 2. Neutrosophic-tendential excesively described fuzzy set. 

To define a neutrosophic number, some other important concepts are required 

from the theory of neutrosophic set:  

 the support of A or the strict subset of X, whose elements have 

nonzero degrees of belonging in A:  

supp(A) = {x X | μ A (x) > 0}  

or  supp (A) = {p X | μ A (p) > 0},   (3) 

 the height of A or the highest value of membership function [8]:  

h(A) =  sup µ A(x),where x X   

or  h(A) =  sup µ A(p), where p X,   (4)                                 

 the nucleus of A or the strict subset of X, whose elements have 

unitary degrees of belonging in A: 

n(A) = {x  X | μ A (x) = 1}   
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or  n(A) = {p  X | μ A (p) = 1},   (5) 

 the subset A of subset B of neutrosophic-tendential fuzzy type: 

for A and B neutrosophic subsets of X, A becomes a subset of B if 

μ A (X) ≤ μ B (X), in the general case of any x X,  (6) 

 neutrosophic-tendential fuzzy subsets equal to X or A = B  μ A 

(X) = μ B (X), if A  B şi B  A.    (7) 

The first three operations with neutrosophic-tendential fuzzy set according to 

their importance are broadly the same as those of classical logic (reunion, 

intersection, complementarity etc.), being defined in the neutrosophic-

tendential fuzzy logic by characteristic membership functions. If A and B are 

two fuzzy or nuanced neutrosophic-tendential subsets, described by their 

membership functions μA(x) or μB(x), one gets the following results:  

a. The neutrosophic-tendential fuzzy reunion is defined by the 

membership function: μAUB(x) = max[μA(x), μB(x)]; 

b. The neutrosophic-tendential fuzzy intersection is rendered 

by the expression: μA∩B(x) = min[μA(x), μB(x)]; 

c. The neutrosophic-tendential fuzzy complementarity is 

theor-etically identic with the belonging function: μB(x) = 1-

μB(x). 

The neutrosophic-tendential fuzzy logic does not respect the classical 

principles of excluded middle and noncontradiction. For the topic of this 

article, a greater importance presents the arithmetic of neutrosophic-

tendential fuzzy numbers useful in building the neutrosophic indexes and 

mostly the interpret indexes.  

The neutrosophic-tendential fuzzy numbers, by their nuanced logic, allow a 

more rigorous approach of indexes in general and, especially, of interpreter 

indexes and price indexes, mathematically solving a relatively arbitrary 

linguistic approach of inflation level.  

The arguments leading to the neutrosophic-type indexes solution are: 

1. The inflation can be corectly defined as the rate of price growth (p), 

in relation to either the past price, when p = (p1-p0) / p0, or an 

average price, and then p = (p1-pm) / pm (the index from which this 

rate will be extracted, just as inflation is extracted from IPCG as soon 

as it was quantified, will be a neutrosophic-type index number purely 

expressing a mathematical coefficient). 
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2. The denominator or the reference base of statistical index, from which 

the rate defining the inflation is extracted, is the most important value; 

the optimal choice acquires a special significance, while the 

numerator reported level of statistical index is the signal of variation 

or stationarity of the studied phenomenon. Similarly, in the nuanced 

logic of neutrosophic-tendential fuzzy numbers, the denominator 

value of p (either p0, or pm) still remains essential, keeping the 

validity of the index paradox, as a sign of evolution or variation, to be 

fundamentally dependent on denominator, although apparently it 

seems to be signified by the nominator. 

3. The prices of any economy can be represented as a universe of 

discourse X, with a linguistic variable related to typical inflation or to 

a slight normal-upward shift of a product price, in a short period of 

time and in a well-defined market, specified by the elements x, the 

variable being denoted by p, where p = (p1-p0) / p0 or p = (p1-pm) 

/ pm. 

4. The values of p can be initially considered both positive and 

negative, but still smaller than 1. This is normal and in fact a price 

increase more than double the original price can not even be admitted 

in a short interval of time (usually a decade or a month), respectively 

the values of p are initially placed in the interval between -1 and 1, 

so that in the end p/n, where n represents the number of 

registered prices, the overwhelming majority of real cases to belong 

to the interval [0;1]. 

5. All operations generated by the specific arithmetic of constructing a 

neutrosophic number or a neutrosophic-type index are possible in 

the nuanced logic of neutrosophic numbers, finally being accepted 

even negative values or deflation processes (examples 1 and 2). 

6. The equations with neutrosophic-tendential fuzzy numbers and the 

functions specified by neutrosophic-tendential fuzzy numbers offer a 

much better use in constructing the hedonic functions – that were the 

relative computing solution of price dynamics of new products 

replacing in the market the technologically obsolete products, a 

solution often challenged in contemporary statistics of inflation. 

Example 3 resolves more clearly the problem of products substitution 

due to new technologies, but placing the divergences in the plane of 

correctness of the functions specified by neutrosophic numbers, 
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regarding the measurement of price increases or of inflationary 

developments. 

7. Some current calculation procedures capitalize the simplified 

notation 

A= {μ1/x1+μ2/x2+...+μn/xn},  

respectively A={μ1/p1+μ1/p2+...+μn/pn}.  

Even the calculation formula of IPCG of Laspeyres type constitutes a 

way to build an anticipation method of constructing neutrosophic-

tendential fuzzy numbers. Thus IPCG = 
p

I (p q )0 0

(p q )0 0





, where

(p q )0 0 =Cp(p q )0 0
where  Ip  = the index of month t compared to the 

average price and Cp = weighting coefficient, finally becomes IPCG = 

 Ip x Cp , for each item or group of expenditures being required the 

values p and Cp . 

4 Index Numbers or Statistical Indexes  

In Greek, deixis means “to indicate”, which makes the indicator to be that which 

indicates (etymologically). An indicator linguistically defines the situation, the 

time and the subject of an assertion. The concept of linguistic indicator 

becomes indicial exclusively in practical terms, respectively the pragmatism 

turns an indicator into an index as soon as the addressee and the recipient are 

clarified. The indicial character is conferred by specifying the addressee, but 

especially the recipient, and by determining the goals that created the 

indicator. The indicial is somehow similar to the symptom or to the syndrome 

in an illness metaphor of a process, phenomenon or system, be it political, 

economic or social. 

The symptom or the factor analysis of illness coincides with its explanatory 

fundamental factor, and a preventive approach of the health of a process, a 

phenomenon or a system obliges to the preliminary construction of indexes. 

The index is also a specific and graphic sign which reveals its character as 

iconic or reflected sign. The iconicity degree or the coverage depth in specific 

signs increases in figures, tables, or charts, and reaches a statistical peak with 

indexes. The statistical index reflects more promptly the information needed 

for a correct diagnosis, in relation to the flow chart and the table. The systemic 
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approach becomes salutary. The indexes, gathered in systems, generates the 

systematic indicial significance, characterized by:  

 in-depth approach of complex phenomena, 

 temporal and spatial ongoing investigation, 

 diversification of recipients, 

 extending intension (of sense) and increasing the extension 

coverage (of described reality), 

 gradual appreciation of development, 

 motivating the liasons with described reality, 

 ensuring practical conditions that are necessary for clustering 

of temporal primary indexes or globalization of regional 

indexes, 

 diversification of addressees (sources) and recipients 

(beneficiaries), 

 limiting restrictions of processing, 

 continued expansion of the range of phenomena and processes 

etc. 

The complexity and the promptness of the indicial overpass any other type of 

complexity and even promptness. 

After three centuries of existing, the index method is still the method providing 

the best statistical information, and the advanced importance of indexes is 

becoming more evident in the expediency of statistical information. The 

assessments made by means of indexes offer qualitatively the pattern 

elements defining national economies, regional or community and, ultimately, 

international aggregates. Thinking and practice of the statistical work 

emphasize the relevance of factorial analysis by the method of index, 

embodied in the interpreter (price) indexes of inflation, in the efficient use of 

labor indexes etc. Because the favorite field of indexes is the economic field, 

they gradually became key economic indicators. The indexes are used in most 

comparisons, confrontations, territorial and temporal analysis – as measuring 

instruments. [9] 

Originating etymologically in Greek deixis, which became in latin index, the 

index concept has multiple meanings, e.g. index, indicator, title, list, inscription. 

These meanings have maintained and even have enriched with new one, like 

hint, indication, sign. The statistical index is accepted as method, system, report 

or reference, size or relative indicator, average value of relative sizes or 

relative average change, instrument or measurement of relative change, pure 

number or adimensional numerical expression, simplified representation by 

substituting raw data, mathematical function or distinctive value of the 

axiomatic index theory etc. 
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Defined as pure number or adimensional numerical expression, the index is a 

particular form of “numerical purity”, namely of independence in relation to 

the measurement unit of comparable size. The term “index” was first applied 

to dynamic data series and is expressed as a relative number. Even today, it is 

considered statistically an adimensional number, achieved in relation either to 

two values of the same simple variable corresponding to two different periods 

of time or space, or to two sizes of a complex indicator, whose simple sizes are 

heterogeneous and can not be directly added together. The first category is 

that of individual (particular or elementary) indexes, and the second, known 

as synthetic or group indexes category, which is indeed the most important. 

Considered as a variation scheme of a single or of multiple sizes or phenomena, 

the index is a simplified representation by substituting raw data by their 

report, aimed at rebuilding the evolution of temporal and spatial observed 

quantities. Whenever a variable changes its level in time or space, a statistical 

index is born (Henri Guitton). Approached as statistical and mathematical 

function, the index generated a whole axiomatic theory which defines it as an 

economic measure, a function F: Dℝ , which projects a set or a set D of 

economic interest goals (information and data) into a set or a set of real 

numbers ℝ, which satisfies a system of relevant economic conditions – for 

example, the properties of monotony, homogeneity or homothety or relative 

identity (Wolfgang Eichhorn). 

Thus, the concept of “index” is shown by a general method of decomposition 

and factorial analysis; it is used in practice mainly as system. The index is 

defined either as a report or a reference which provides a characteristic 

number, or as synthetic relative size, either as relative indicator (numerical 

adimensional indicator), or as pure number, either in the condensed version 

as the weighted average of relative sizes or the measure of the average relative 

change of variables at their different time moments, different spaces or 

different categories, and, last but not least, as a simplified mathematical 

representation, by substituting the raw data by their report through a function 

with the same name – index function - respectively F: D ℝ, where  F (z1, z2, 

…, zk ) = z1/ z2,  with  z representing a specific variable and D the set of goals, 

information and data of (economic) interest, and ℝ is the set of real numbers. 

[10; 11; 12; 13; 14] 

The above mentioned properties means the following: 

 MONOTONY (A) 

An index is greater than the index of whose variables resultative 

vector is less than the initial index vector, all other conditions being 

constant: 
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z1 / z2 > x1 / x2 => F(z) > F(x)   

or: 

z1      F(z) is strictly increasing 

z2      F(z) is strictly decreasing 

zi = ct   F(z) is constant, where i k 3  

(where z is the vector of objective economic phenomenon, and z a 

correspondent real number). 

 HOMOGENEITY (A)  

If all variables “z” have a common factor , the resulting index F ( 

z) is equal to the product of the common factor  and the calculated 

index, if a multiplication factor  is absent. 

- of 1st degree (cu referire la z1) 

           F (z1, z2, …, zk ) =  F(z) for any z > 0 and  > 0 

- of “zero” degree 

           F ( z) = F (z) for any  > 0. 

 IDENTITY (A) (“STATIONARY”) 

If there is no change of variables (z1 = z2), the index is uniform or 

stationary regardless of other conditions. 

F(1, 1, z3,…,zk) = 1 for any z3,…,zk (for description simplification of 

F, we considered z1 = z2 =1). 

 ADDITIVITY (T) 

If the variable z is expressed in terms of its original value through 

an algebraic sum (z1 = z2 + z ), the new index F (z2 + z ) is equal to 

the algebraic sum of generated indexes F (z2) + F ( z ) 

F (z2 + z ) = F (z2) + F ( z ). 

 MULTIPLICATION (T) 

If the variable z is multiplied by the values (1, … ,k)  ℝ+  ,  than 

the resulting index F (1z1, 2z2, … ,kzk ) is equal to the product 

between the differentially multiplied variable z (1, … ,k)  and the 

initial index F(z) 
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F (1z1, … ,kzk ) = z (1, … ,k) F(z) ,  

where i  ℝ+ and i = 1 k . 

 QUASILINEARITY (T)  

If a1, a2, ..., ak  and b are real constant, and a1, a2, …., ak ≠ 0, and given 

the continuous and strictly monotone function f: ℝ +  ℝ, having 

the inverse function f -1, it verifies the relation: 

F (z) = f -1[a1f(z1) + a2f(z2) + …. + akf(zk) + b]. 

 DIMENSIONALITY (A)  

If all variables z1 and z2 are multiplied by a certain factor , the 

resulting index is equal to the initial index, as the case of the 

multiplying by  would not have been existed. 

F (z1, z2, … ,zk ) = 



 F(z) = F(z), for any z > 0 and  > 0 . 

 INTERIORITY (T) (“AVERAGE VALUE”) 

The index F(z) should behave as an average value of individual 

indicices, being inside the interval of minimum and maximum value 

min ( ) max
z

z
F z

z

z

i

i

i

i

1

2

1

2








 









. 

 MEASURABILITY (A)  

The index F(z) is independent, respectively it is unaffected by the 

measurement units in which the variables are denominated 

F
z z

z z
K

K

k k

1

1

1 1 
 ,..., ; ,...,









 = F(z1,z2,…,zk) = F(z). 

 PROPORTIONALITY (T)  

(Homogeneity of 1st degree of a stationary initial index) 

If an index is in the state of identity, respectively F(1, 1, z3,…,zk) = 1 

for any z3,…,zk , the proportional increase of variable z1 by turning 

it from to  lead to a similar valure of the obtained index F(, 1, 

z3,…,zk) =   (where  ℝ +) 
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 REVERSIBILITY (T) (ANTISYMMETRY AND SYMMETRY) 

Considered as an axiom, the reversibility implies a double 

interpretation: 

- the reversibility temporal or territorial approach generates an 

antisymmetry of Fisher type, respectively the index calculated as a 

report between the current period level or the compared space and 

the period level or reference space must be an inverse amount of 

the calculated index as report between the period level or reference 

space and the current period level or the compared space: 

F (z1, z2, …, zk )  
1

1
2 1F z z zk( , ,..., )

 

- the factorial approach generates a symmetry of Fisher type, 

respectively, if the phenomenon was split into qualitative and 

quantitative factors (z1 = n11  and  z2 = n00), changing index 

factors does not modify the product of new indexes (symmetry of 

“crossed” indexes) 

n

n

n

n

n

n

1 1

1 0

1 0

0 0

1 1

0 0






















 












. 

 CIRCULARITY (T) (TRANZITIVITY OR CONCATENATION) 

The product of successive indexes represents a closed circle, 

respectively an index of the first level reported to the top level of 

the variable. 

F (z1, z2, …, zk )  F (z2, z3, …, zk )  F (zi-1, zi, …, zk ) = F (z1, zi, …, zk ). 

 DETERMINATION (T) (CONTINUITY) 

If any scalar argument in F (z1, z2, …, zk) tends to zero, then F(z) 

tends as well to a unique positive value of a real number (all other 

variable-dependent values). 

 AGGREGATION (A) (INDEX OF INDEXES) 

The index of a set of variables is equal to an aggregated index when 

it is derived from indexes of each group sizes. Let all sizes: zn = 

F(z1,z2,….zn) be partial indexes; the index F is aggregative if Fn(z) = 

F[F(z1,z2,…,zn)]. 

 EXPANSIBILITY (A) (- specific to aggregate indexes) 

Fn(z) < Fn+1 (z,0). 
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 PRESERVING THE VALUE INDEX (Theorem) 

The aggregated index, written in the form of average index, which 

corresponds to a value index equal to the real value index, 

preserves the value index. 

 UNICITY (Theorem) 

An index F is not accepted as unique index if there exists two 

indices F1≠F2 such that: 

F (z1, z2, …, zk ) = 1 1 1 2

2 2

, , ` 1F for k K where K K N i k K

F for k K

   



 

where z is the variable, k the variables set, K1 and K2 are two subsets 

of the set N, such that K1 K2 = N  and  K1 K2 =  . This property 

requires the index calculation algorithm to be the same for all 

analyzed variables.  

 The USE OF INDEXES  

This is a property resulting from data promptitude and data 

availability, easiness and rapidity of calculation, from simplicity of 

formula and of weighting system, from truthfulness of base and 

practical construction of indexes. 

As shown, the axiomatic theory of economy is in fact a sum of properties-

conditions mostly expressed by axioms (A) defining indexes, and by theorems 

and corollaries thereof derived from axioms and from tests (T) whose role is 

also important in the construction of indexes. Depending on the system of 

indexes they belong to, and on the specific use, the required properties are 

layered by Helmut Diehl in: 

 basic requirements – imposed by specific circumstances of the 

project; 

 required properties – ensuring fundamental qualities and 

operational consistency; 

 desirable properties – providing some technical facilities and 

even some theoretical elegance; 

 special properties – generated by construction and method. 

Gathering specific characteristics in a definition as general as possible, the 

index is considered an indicator, a statistical category, expressed through a 

synthetic size that renders the relative variation between two states – one 

“actual” (or territoriality of interest), another “baseline” – of a phenomenon, 
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or a relative number resulted by the comparison of a statistical indicator values, 

a measure of the relative change of variables at different time points and in 

different spaces, or in different categories, set in relation to a certain 

characteristic feature. 

The evolution in time of indexes required for over three centuries solving all 

sort of theoretical and methodological problems regarding the method 

calculation, including formula, the base choice, the weighting system and, 

especially, the practical construction. [10; 11; 12; 13; 14] 

Process optimization of this issue is not definitively over even though its 

history is quite eventful, as summarized in Box No. 1, below. Moreover, even 

this paper is only trying to propose a new type of neutrosophic index or a 

neutrosophic-type index number. 

 

Box No. 1 

The index – appeared, as the modern statistics, in the school of political 

aritmetics – has as father an Anglican Bishop, named William Fleetwood. The birth 

year of the first interpreter index is 1707; it was recorded by studying the evolution 

of prices in England between 1440 and 1707, a work known under the title “Chicon 

Preciosum”. The value of this first index was 30/5, respectively 600,0%, and it was 

built on the simple arithmetical mean of eight products: wheat, oats, beans, 

clothing, beer, beef, sheepmeat and ham. Moreover, the world prices – a world 

hardly approachable because of specific amplitude, sui generis heterogeneity and 

apparently infinite trend – was transformed into a homogeneous population 

through interpreter indexes. In 1738, Dutot C. examines the declining purchasing 

power of the French currency between 1515 and 1735, through a broader 

interpreter index, using the following formula: 

(1.1) Dutot Index: 1 2 1

1 2

1

....

...

n

i

n i

n

n
i

i

p
p p p 



  


   






, where: pi and Pi  

= prices of current period vs. basic period. 

If you multiply the numerator and denominator index by (1/n), the 

calculation formula of Dutot index becomes a mean report, respectively: 

(
1

n

i

i

p


 /n):(
1

n

i

i

 /n).  

To quantify the effect of the flow of precious metals in Europe after the 

discovery of the Americas, the Italian historian, astronomer and economist Gian 

Rinaldo Carli, in 1764, used the simple arithmetic mean for three products, i.e. 

wheat, wine and oil, in constructing the interpreter index determined for 1500 and 

1750: 

(1.2) Carli Index: 1 2

11 2

1 1
...

n
n i

in i

p pp p

n n 

 
    

    
                                                                                             

As William Fleetwood has the merit of being the first to homogenize the 

heterogeneous variables through their ratio, using the results to ensure the 
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necessary comparisons, the same way Dutot and Carli are praiseworthy for 

generating the “adimensionality” issue, namely the transformation of absolute 

values into relative values, generally incomparable or not reducible to a central 

(essential or typical) value (a value possessing an admissible coefficient of 

variation in statistical terms). But the most important improvement in index 

construction, streamlining its processing, belongs to Englishman Arthur Young, by 

introducing the weight (ponderation), i.e. coefficients meant to point the relative 

importance of the various items that are part of the index. 

Young employed two weighting formulas, having as a starting point either 

Dutot: 

(1.3) Young Index (1):  

1 1 2 2 1

1 1 2 2

1

n n
i i

....

Ρ K +Ρ K +...+ Ρ K
K

n

i

n

i

i i
n n

p k
p k p k p k 



  








, 

where ki= coefficient of importance of product i,   

or Carli: 

(1.4) Young Index (2): 

 

1

1

i

i
i

C

C

n

n
i

i

ip











,  

where

1

i

i

C

C
n

i





 weighting coefficient and 
1

( . .)
n

i
ic p



 = 1. 

After Young solution from 1812, the new problem of designing indexes has 

become the effect of weight variations. Sir George Shuckburgh Evelyn introduced, 

in 1798, the concept of “basic year”, thus anticipating the dilemma of base selection 

and of construction of the weighting system. In 1863, by the index calculated as 

geometric mean of individual indexes, Stanley Jevons extended the issue to the 

formula: 

(1.5) Jevons Index: 

1

n
i

n

i i

p

 
                                                                                                                                   

Jevons does not distinguish between individual indexes, giving them the 

same importance. 

Two indexes imposed by the German school of statistics remain today, like 
the two terrestrial poles, structural limits of weighting systems. The first is the index 

of Etienne Laspeyres, produced in 1864, using basic period weighting, and the 

second is the index of Hermann Paasche, drafted in 1874, using the current period 

as weighting criterion: 

(1.6) Laspeyres Index: i1 i0

i0 i0

p q

p q



 or i0 i1

i0 i0

p q

p q



 and 

(1.7) Paasche Index:    i1 i1

i0 i1

p q

p q



 or i1 i1

i1 i0

p q

p q



, where: 

 pi0, pi1 = basic period prices (0) and current period prices (1) 

 qi0, qi1 = basic period quantities (0) and current period quantities (1). 

1
1 2

11 2

1 1

2
i

i
i i
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ip ppp



 


 

      
    
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Although the provided indexes only checks the identity condition ( 1/1

XI

=X1/X1 =1) from Fischer’s tests for elementary indexes, however they are the most 

commonly used in practice due to the economic content of each construction. 

Several “theoretical” indexes were placed close to the Laspeyres and Paasche 

indexes, but with the loss of specific business content, and different of Ladislaus 

von Bortkiewicz relationship. They can be called unreservedly indexes of 

"mesonic"-type, based on authors’ wishes to situate the values within the difference 

(P – L), to provide a solution of equilibrium between the two limit values in terms 

of choosing of base. Along with the two weighting systems, other issues are born, 

like weighting constancy and inconsistency, or connecting the bases on the extent 

of aging or disuse. Of the most popular "mesonic"-type index formulas [5], there are 

the constructions using common, ordinary statistics. The simple arithmetic mean 

of Laspeyres and Paasche indexes is known as Sidgwik – Drobisch index. 

(1.8) Sidgwig -Drobisch Index: L+P
2

  

The arithmetic mean of the quantities of the two periods (thus becoming 

weight) generates the Marshall - Edgeworth index or Bowley - Edgeworth index 

(1885 - 1887).  

(1.9) Marshall – Edgeworth Index: 
 
 

0 1i1 i i

0 1i0 i i

p q +q

p q +q




   

 The geometric mean of quantities in the two periods converted in weights 

fully describes the Walsh index (1901). 

(1.10) Walsh Index:  
 

 
1 0i1 i i

1 0i0 i i

p q q

p q q








  

The simple geometric mean of Laspeyres and Paasche indexes is none other 

than the well-known Fisher index (1922). 

 (1.11) Fisher Index:  L P   

The index checks three of the four tests of its author, Irving Fisher: the 

identity test, the symmetry test, or the reversibility-in-time test and the 

completeness test, or the factors reversibility test. The only test that is not entirely 

satisfied is the chaining (circularity) test. The advantage obtained by the 

reversibility of Fisher index: 

(1.12)      F0/1 =  
 

1/0 1/0
1/01/0 1/0

1 1
L P

FL P
  


, 

is unfortunately offset by the disadvantage caused by the lack of real economic 

content. A construction with real practical valences is that of R.H.I. Palgrave (1886), 

which proposed a calculation formula of an arithmetic average index weighted by 

the total value of goods for the current period (v1i = p1i q1i) : 

 (1.13) Palgrave Index: 
( ) (v )

11/0 1i i 1/0 1i

v
1i1 i 1i

i p q i

p q

 


 
 

. 

The series of purely theoretical or generalized indexes is unpredictable and 

full of originality.  
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Cobb - Douglas solution (1928) is a generalization of Jevons index, using 

unequal weights and fulfilling three of Fisher's tests (less the completeness or the 

reversibility of factors): 

 (1.14) Cobb – Douglas Index:  
1

α
i

i

n
i

i

p



 
 
  

 , where i > 0 and 
1

n

α
i

i

 = 1. 

Stuvel version, an index combining the Laspeyres index „of price factor” (LP) 

and the Laspeyres index „of quantity factor” (Lq), proposed in 1957, exclusively 

satisfies the condition of identity as its source: 

(1.15) Stuvel Index:  
   

2
p q

p q p qL -P
2

L -P
I

4


    

                                      (where I(pxq) = total variation index) 

Another construction, inspired this time from the „experimental” design 

method, based on the factorial conception, but economically ineffective, lacking 

such a meaning, is R.S. Banerjee index (1961), a combination of indexes as well, but 

of Laspeyres type and Paasche type: 

(1.16) Banerjee Index:  
 
 

P L+1L+1
1 P+1+1
P

   

A true turning point of classical theorizing in index theory is the 

autoregressive index.  

(1.17) Autoregressive Index: 
 

 

2

i i
2

2

i i

i
a

a

p P

P 




,  

Therefore, ai means the quantities of products or weights (importance) 

coefficients. This only verifies the provided identity, although conditionally 

constructed, respectively:  

AUTOREGRESSIVE

2
I

i
p - P
i

  
    minimum. 

Torngvist (1936) and Divisia (1925) indexes are results of generalizations 

of mathematical type, defining the following relationships: 

(1.18)   ln (Torngvist Index) =  
1

ln
2

P Qp q pi i i

p q P Q Pi i

i i

i i i

 
  
 
 


  ,   

where: 
p qi i

p qi i   and  
P Q

P Q

i i

i i
  are weights of specific transactions values 

piqi and PiQi . 

The usual shape under which one meets the Divisia index is: 

 (1.19) P0t Q0t = it it

i0 i0

p q

p q



  as averaged value in a relationship determined 

by individual prices indexes, respectively: 

 ...
1 2

P i i i ip p pn pi
    . 

Contemporary multiplication processes of indexes calculation formulas 

have two trends, one already visible of extrem axiomatization and mathematization, 
based on Torngvist and Divisia indexes models, which culminated with the school 
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of axiomatic indexes, and another, of resumption of the logic stream of economic 

significance of index construction, specific for the latest international constructions 

at the end of the twentieth century, respectively the integration variants of additive 

construction patterns or additive-multiplicative mixed models, close to the 

significance of real phenomena. In this regard, one could summary present the 

comparative advantage index or David Neven index (1895). 

 (1.20) David Neven Index:   

x m
k k
x m
k k

 
 
 
 
 

 
 

100, where x and m are values of exports and imports in 

the industry k. The index belongs to the range of values (-100%; 100%), but rarely 

achieves in practice higher values than 10% or lower than – 10%. etc. 

In the theory and practice of index numbers construction, to quantify and 

interpret the degree and the direction of the weights influence, use is made of 

Bortkiewicz relationship [15]. This specific relationship is based on factorial 

indexes and yields to the following equality: 

                             (1.21) 
where:  

r
x f
i i

is a simple linear correlation coefficient between individual indexes 

of the qualitative factor xi and individual indexes of the weights (respectively, 

individual indexes of the qualitative factor fi), 

Cv
x
i is the coefficient of variation of individual indexes of variable x to 

their environmental index, 

Cv
f
i

 is the coefficient of variation of individual indexes of weights 

towards their environment index, 

while       
( ) 1 11

1/0
0 1

x fx f
I

x f





       and          
( ) 1 00

1/0
0 0

x fx f
I

x f





. 

The interpretation of that relationship shows that the weighting system does 

not influence the index of a numerically expressed group variable, if the product of the 

three factors is null, respectively  r
x f
i i

 Cv
x
i
 Cv

f
i

 = 0. 

This is possible in three distinct situations: 

a) r
x f
i i

=0  xi and fi are independent to each other (there is no connection 

between individual indexes ix and if), 

b) Cv
x
i

=0     the absence of any variation on the part of x or f   

c) Cv
f
i

=0    (individual indexes are equal to the average index). 

Product sign of factors r
x f
i i

 Cv
x
i
 Cv

f
i

 is positive or negative depending on 

r
x f
i i

, the sign of the latter being decisive. 

The interpretation of the influence of the weighting systems on the value of 

a synthetic index is based on the following three cases:  
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 The synthetic index calculated using current period weights is equal with 

the same index calculated with the weights of the basic period when at least 

one of the factors is equal to „0”. 

 The synthetic index calculated using current period weights is bigger in 

value than the index calculated with the weights of the basic period when 

the three factors are different from „0” and the simple linear correlation 

coefficient is positive. 

 The synthetic index calculated using current period weights is lower in 

value than the index calculated with the weights of the basic period when 

the three factors are different from „0” and the simple linear correlation 

coefficient is negative. 

Applying Bortkiewicz's relationship to the interpretation of statistical 

indexes offers the opportunity to check the extent and direction to which the 

weighting system that is employed influence the value of the indexes. 

 

The conclusive instauration of a sign in language, be it gradually, is a lengthy 

process, where the sign (the representative or the signifier) replaces at a 

certain moment the representative (the signifier). The sign substitutes an 

object and can express either a quality (qualisign), or a current existence 

(synsign), or a general law (legisign). Thus, the index appears as sign together 

with an icon (e.g.: a chart, a graphic), a symbol (e.g.: currency), a rhema (e.g.: 

the mere posibility), a dicent (e.g.: a fact), an argument (e.g.: a syllogism) etc. 

The semiotic index can be defined as a sign that loses its sign once the object 

disappears or it is destroyed, but it does not lose this status if there is no 

interpreter. The index can therefore easily become its own interpreter sign. 

Currency as sign takes nearly all detailed semiotic forms, e.g. qualisign or hard 

currency, symbol of a broad range of sciences, or legisign specific to monetary 

and banking world. As the world's history is marked by inflation, and currency 

implicitly, as briefly described in Box nr. 2 below, likewise the favorite index 

of the inflationary phenomenon remains the interpreter index. 

 

Box No. 2 

The inflation – an evolution perceived as diminishing the value or purchasing 
power of the domestic currency, defined either as an imbalance between a stronger 

domestic price growth and an international price growth, or as a major 

macroeconomic imbalance of material-monetary kind and practically grasped as a 

general and steady increase in prices – appeared long before economics. Inflationary 

peak periods or “critical moments” occurred in the third century, at the beginning of 

sixteenth century, during the entire eighteenth and the twentieth centuries. The end 

of the third century is marked by inflation through currency, namely excessive 

uncovered currency issuance in the Roman Empire, unduely and in vain 

approached by the Emperor Diocletian in 301 by a “famous” edict of maximum 

prices which sanctioned the “crime” of price increase by death penalty. The 

Western Roman Empire collapsed and the reformer of the Eastern Roman Empire, 

Constantine the Great, imposed an imperial currency, called “solidus” or 
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“nomisma”, after 306, for almost 1000 years. The beginning of the sixteenth 

century, due to the great geographical discoveries, brings, together with gold and 

silver from the “new world”, over four times price increases, creating problems 

throughout Europe by precious metal excess of Spain and Portugal, reducing the 

purchasing power of their currencies and, finally, of all European money. If the 

seventeenth century is a century of inflationary "princes", which were maintaining 

wars by issuing calp fluctuating currency, the twentieth century distinguishes itself 

by waves of inflation, e.g. the inflation named "Great Depression began in Black 

Thursday", or the economic crisis in 1930, the inflation hidden in controlled and 

artificial imposed prices of “The Great Planning”, the inflation caused by price 

evolutions of oil barrel, or sometimes galloping inflation of Eastern European 

countries' transition to market economy. Neither the “edicts” or the “assignats” of 

Catherine II, as financial guarantees of currency, nor the imposed or controlled prices 

were perennial solutions against inflation.  

Inflation is driven, par excellence, by the term “excess”: excessive monetary 

emission or inflation through currency, excessive solvable demand or inflation by 

demand, excessive nominal demand, respectively by loan or loan inflation, 

excessive cost or cost-push inflation; but rarely by the term “insufficiency”, e.g. 

insufficient production, or supply inflation. Measurement of overall and sustained 

price growth – operation initiated by Bishop William Fleetwood in 1707 by 

estimating at about 500% the inflation present in the English economy between 

1440 and 1707 – lies on the statistical science and it materializes into multiple 

specific assessment tools, all bearing the name of price indexes, which originated 

in interpreter indexes. Modern issues impose new techniques, e.g. econophysics 

modeling, or modeling based on neutrosophic numbers resulted from nuanced 

logic. 

5 Neutrosofic Index Numbers      

 or Neutrosophic-Type Interpreter Indexes  

Created in the full-of-diversity world of prices, the first index was one of 

interpreter type. The term “interpreter” must be understood here by the 

originary meaning of its Latin component, respectively inter = between 

(middle, implicit mediation) and pretium = price. [16]   

The distinct national or communautaire definitions, assigned to various types 

of price indexes, validate, by synthesizing, the statement that the interpreter 

index has, as constant identical components, the following features: 

 measuring tool that provides an estimate of price trends 

(consumer goods in PCI, industrial goods în IPPI or 

import/export, rent prices, building cost etc.); 

 alienation of goods and services (respectively, actual charged 

prices and tariffs); 

 price change between a fixed period (called basic period or 

reference period) and a variable period (called current period). 
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The most used interpreter indexes are the following: 

 PCI – Prices of Consumer (goods and services) Index measures 

the overall evolution of prices for bought goods and tariffs of 

services, considered the main tool for assessing inflation; 

 IPPI – Industrial Producers’ Price Index of summarizes 

developments and changes in average prices of products 

manufactured and supplied by domestic producers, actually 

charged in the first stage of commercialization, used both for 

deflating industrial production valued at current prices, and for 

determining inflation within “producer prices”. This index is 

one of the few indexes endowed with power of “premonition”, 

a true Cassandra of instruments in the so-populated world of 

instruments measuring inflation. Thus, IIPP anticipates the 

developments of IPCG. The analysis of the last 17 years shows a 

parallel dynamics of evolution of the two statistical tools for 

assessing inflation, revealing the predictive ability of IPCG 

dynamics, starting from the development of IIPP;  

 UVI – Unit Value Index of export / import contracts 

characterizes the price dynamics of export / import, expanding 

representative goods price changes ultimately providing for 

products a coverage rate of maximum 92%, allowing deflation 

through indicators characterizing the foreign trade, and even 

calculating the exchange ratio; 

 CLI – Cost of Living Index shows which is the cost at market prices 

in the current period, in order to maintain the standard of living 

achieved in the basic period, being calculated as a ratio between 

this hypothetical cost and the actual cost (consumption) of the 

basic period; the need for this type of interpreter index is obvious 

above all in the determination of real wages and real income; 

 IRP – Index of Retail Price sets the price change for all goods 

sold through the retail network, its importance as a tool to 

measure inflation within “retail prices” being easily noticed; 

 BCI – Building Cost Index assesses price changes in housing 

construction, serving for numerous rental indexation, being 

used independently or within IPCG, regardless of the chosen 

calculation method; 

 FPPI-F – food products price index measures changes in prices 

of food products on the farm market (individual or associated 
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farmers market), providing important information about 

inflation on this special market; 

 GDP deflator index or the implicit deflator of GDP – GDP price 

index that is not calculated directly by measuring price changes, 

but as a result of the ratio between nominal GDP or in current 

prices and GDP expressed in comparable prices (after separately 

deflating the individual components of this macroeconomic 

indicator); GDP deflator has a larger coverage as all other price 

indexes. 

The main elements of the construction of an interpreter index refer to official 

name, construction aims, official computing base, weighting coefficients, 

sources, structure, their coverage and limits, choosing of the weighting system, 

of the calculation formula, method of collection, price type and description of 

varieties, product quality, seasonality and specific adjustments, processing 

and analysis of comparable sources, presentation, representation and 

publication. The instrumental and applied description of consumer goods 

price index has as guidelines: definition, the use advantages and the use 

disadvantages, the scope, data sources, samples used in construction, the 

weighting system, the actual calculation, the inflation calculated as the rate of 

IPCG, specific indicators of inflation, uses of IPCG and index of purchasing 

power of the national currency. 

As there seems natural, there is a statistical correlation and a gap between two 

typical constructions of price index and interpreter index, IPPI and PCI. Any 

chart, a chronogram or a historiogram, shows the evolution of both the prices 

of goods purchased, and of paid services that benefited common people 

(according to the consumer goods price index), and of the industrial goods 

prices that went out of the enterprises’ gate (according to the producers’ price 

index) and are temporarily at intermediaries, following to reach the consumers 

in a time period from two weeks to six months, depending on the length of 

“commercial channel”. 

The interpreter indexes are statistical tools – absolutely necessary in market 

economies – allowing substitution of adjectival-type characterizations of 

inflation within an ordinal scale. As the variable measured on an ordinal scale 

is equipped with a relationship of order, the following ordering becomes 

possible:  

 the level of subnormal inflation (between 0 and 3%); 

 the level of (infra)normal inflation (Friedman model with 

yearly inflation between 3 and 5%); 

 the level of moderate inflation (between 5 and 10% yearly); 

 the level of maintained inflation (between 10 and 20% yearly); 
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 the level of persistent inflation (between 20 and 100% yearly); 

 the level of enforced inflation (between 100 and 200% yearly); 

 the level of accelerated inflation (between 200 and 300% 

yearly); 

 the level of excessive inflation (over 300% yearly). 

Knowing the correct level of inflation, the dynamics and the estimates of short-

term price increase allow development appreciation of value indicators in real 

terms. The consumer goods price index, an interpreter index that can inflate 

or deflate all nominal value indicators, remains a prompt measurement tool of 

inflation at the micro and macroeconomic level.  

Any of the formulas or of the classical and modern weighting systems used in 

price indexes’ construction can be achieved by neutrosophic-tendential fuzzy 

numbers following operations that can be performed in neutrosophic 

arithmetics. A random example [17, 18, 19] relative to historical formulas and 

classical computing systems (maintaining the traditional name of “Index 

Number”) is detailed for the main indexes used to measure inflation, according 

to the data summarized in Table 1. 

The statistical data about the price trends and the quantities of milk and cheese 

group are presented below for two separate periods: 

 

Table 1. 
 

Product  

Basic 

price 

po 

Current 

price 

pt 

Total 

expenses 

in the 

basic 

period 
 (poqo) 

Total 

expenses 

in the 

basic 

period 
with 

current 

prices  
(pt qo) 

Total 

expenses 

in 

current 

period 
with 

basic 

prices 
(p0qt) 

Total 

expenses  

in the 

current 

period 
(pt qt) 

Weighting 

coefficients 

(Cp0) 

poqo/poqo 

Quantities 

of products 

bought in 

the basic 

period (qo) 

Quantities 

of 

products 

bought in 

the current 
period 

(qt) 

Milk  1,20 1,70 12,0 17,0 10,8 15,3 15,6 10 9 

Butter 1,90 1,70 15,2 13,6 13,3 11,9 19,8 8 7 

Yogurt 0,85 0,90 3,4 3,6 5,1 5,4 4,4 4 6 

Sour 

cream 

1,25 3,00 1,25 3,0 1,25 3,0 1,6 1 1 

Cheese 7,50 8,00 45,0 48,0 52,5 56,0 58,6 6 7 

Total 

group 

 

12,70 

 

15,30 

 

76,85 

 

85,2 

 

82,95 

 

91,6 

 

100,0 

 

- 

 

- 

 

A. Historical solutions (unorthodox) focused on calculating formula for the 

simple aggregate and unweighted index (quantities are not taken into account, 

although there have been changes as a result of price developments) 

I. Index Number = p
t

po





 = 15,30

12,70
 = 1,205. 

The inflation rate extracted from index = 0,205 or 20,5%. 
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B. Contemporary solutions focused on formula for calculating the aggregate 

weighted index in classical system  

I. Index Number by classical Laspeyres formula = 

  
 

ptqo

poqo





  = 
85,2

76,85
 = 1,109. 

The inflation rate extracted from index = 0,109 or 10,9%. 

II. Index Number expressed by relative prices or individual 

prices indexes by Laspeyres formula = 

 

 

pt
poqo

po

poqo




 = 

85,2

76,85
= 1,109 or 0

pt
Cp

po
 = 1,109.  

The inflation rate extracted from index = 0,109 or 10,9%.  

III. Index Number by Paasche formula = 

 
 

ptqt

poqt





= 
91,6

82,95
 = 1,104. 

The inflation rate extracted from index = 0,104 or 10,4%.   

IV. Index Number by Fisher formula =  

Laspeyres Index Number  Paasche Index Number  = 

 = 1,109  1,104  = 1,106.  

The inflation rate extracted from index = 0,106 or 10,6%.   

V. Index Number by Marshall-Edgeworth formula =  

 

 

pt qo + qt

po qo + qt

   

   
=

176,8

159,8
 =  1,106. 

The inflation rate extracted from index = 0,106 or 10,6%.   

VI. Index Number by Tornqvist formula = 
w

pt

po

 
 
 

 where          
o o

o o

p q

2 p q
w




t t

t t

p q

2 p q

 = 

= 0,1616
1,7

1,2

 
 
 

 0,1639
1,7

1,9

 
 
 

 0,0516
0,9

0,85

 
 
 

 0,0245
3,0

1,25

 
 
 

 0,5985
8,0

7,5

 
 
 

= 1,106. 

The inflation rate extracted from index = 0,106 or 10,6%.   
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As one can see, three Index Numbers or price indexes in Fisher, Marshall-

Edgeworth and Tornqvist formulas lead to the same result of inflation of 10.6%, 

which is placed in median position in relation to the Laspeyres and Paasche 

indexes.  

However, the practice imposed Laspeyres index because of obtaining a high costs 

and a relatively greater difficulty of weighting coefficients in the current period 

(t). [17] 

C. Neutrosophic index-based computing solutions  

Starting from the definition of “a slight increase in price” variable, denoted by 

p, where p=(p1-p0)/p0 , data from Table 1 are recalculated in Table 2, below 

and defines the same unorthodox but classic solutions (especially in the last 

two columns). 

Table 2. 
 

Product 

Basic 

price 

po 

Current 

price 

pt 

Quantities 

of products 

bought in 
the basic 

period (qo) 

Quantities 

of products 

bought in 
the current 

period 

(qt) 

Total 

expenses in 

the basic 
period 

(poqo) 

Total  

expenses in  

the current 
period 

(pt qt) 

Classic  

Index 

Number 

(pt / p0) 

p= 

(p1-p0)/p0 

pq= (p1q1-

p0q0)/p0q0 

 

Milk  1.20 1.70 10 9 12.0 15.3 1.4167 0.4167 0.2750 

Butter  1.90 1.70 8 7 15.2 11.9 0.8947 -0.1053      -0.2171 

Yogurt 0.85 0.90 4 6 3.4 5.4 1.0588 0.0588 0.5882 

Sour 

cream  
1.25 3.00 1 1 1.25 3.0 2.4000 1.4000 1.4000 

Cheese 7.50 8.00 6 7 45.0 56.0 1.0667 0.0667 0.2444 

Total 

group 

 

12.70 

 

15.30 

 

- 

 

- 

 

76.85 

 

91.6 

 

1.2047 

 

0.2047 

 

0.1919 

The identical values of Fisher, Marshall-Edgeworth and Tornqvist indices offer a 

hypothesis similar with the neutrosophic statistics and especially with 

neutrosophic frequencies. The highest similarity with the idea of neutrosophic 

statistics consists of the Tornqvist formula’s solution. The calculus of the absolute 

and relative values for necessary neutrosophic frequencies is described in the 

Table 3. 

Table 3. 
 

Product  

Total  

expenses in  
the basic 

period 

 (p0q0) 

Weighting 

coefficients 
(Cp0) = 

p0q0/p0q0 

Total 

expenses 
in the 

basic 

period 
with 

current 

prices (pt 

qo) 

Weighting 

coefficients 
(Cpt0) 

ptq0/ptq0 

Total 

expenses 
in current 

period 

with basic 
prices 

(p0qt) 

Weighting 

coefficients 
(Cp0t) = 

p0qt/p0qt 

Total  

expenses in  
the current 

period 

(pt qt) 

Weighting 

coefficients 
(Cpt) = 

ptqt/ptqt 

Milk  12.0 15.62 17.0 20.0 10.8 13.0 15.3 16.70 

Butter 15.2 19.78 13.6 16.0 13.3 16.0 11.9 12.99 

Yogurt 3.4 4.42 3.6 4.2 5.1 6.2 5.4 5.90 

Sour 

cream 

1.25 1.63 3.0 3.5 1.25 1.5 3.0 3.28 

Cheese 45.0 58.55 48.0 56.3 52.5 63.3 56.0 61.13 

Total 
group 

 
76.85 

 

100.00 

 
85.2 

 
100.0 

 
82.95 

 
100.0 

 
91.6 

 

100.00 
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In this situation, the construction of major modern indexes is the same as the 

practical application of statistical frequencies of neutrosophic type generating 

neutrosophic indexes in the seemingly infinite universe of prices specific to 

inflation phenomena, as a necessary combination between classical indexes and 

thinking and logic of frequencial neutrosophic statistics [20; 21; 22; 2. 3]. 

 

Table 4. 
 
Product  

Classic  
Index 

Number 

(pt / p0) 

(unorthodox) 

Relative  
Neutrosophic 

Frequency 

RNF(0) 

Weighting 

coefficients 
(Cp0) = 

p0q0/p0q0 

Relative  
Neutrosophic 

Frequency 
RNF(t.0) 

Weighting 

coefficients 
(Cpt0) 

ptq0/ptq0 

Relative  
Neutrosophic 

Frequency 
RNF(0.t) 

Weighting 

coefficients 
(Cp0t) = 

p0qt/p0qt 

Relative  
Neutrosophic 

Frequency 

RNF(t) 

Weighting 

coefficients 
(Cpt) = 

ptqt/ptqt 

 
 

w = [RNF(0) + RNF(t)] : 2
 

 

Milk  1.4167 15.62 20.0 13.0 16.70 16.16 % or 0.1616 

Butter 0.8947 19.78 16.0 16.0 12.99 16.39 %  or 0.1639 

Yogurt 1.0588 4.42 4.2 6.2 5.90 5.16 %  or  0.0516 

Sour 

cream 

2.4000 1.63 3.5 1.5 3.28 2.45 %  or  0.0245 

Cheese 1.0667 58.55 56.3 63.3 61.13 59.84 %  or  0.5984 

Total 

group 

 

1.2047 
 

100.0 

 

100.0 

 

100.0 
 

100.00 

 

100.00  or 1.0000 

 

In this case, index of Tornqvist type is determined exploiting the relative 

statistical frequencies of neutrosophic type consisting of column values (Cp0)  

and (Cpt) according to the new relations: 

w
pt

po

 
 
 

 where w = o o

o o

p q

2 p q


t t

t t

p q

2 p q

 = [RNF(0) + RNF(t)] : 2 

Finally, applying the values in Table 4 shows that the result 
w

pt

po

 
 
 

 is  

identical. 

w
pt

po

 
 
   

= 1.4167 0.1616 × 0.8947 0.1639 × 1.05880.0516 ×  2.40.0245  ×  1.0667 

0.5985 = 1.106 

5 Conclusion  

Over time, the index became potentially-neutrosophic, through the weighting 

systems of the classical indexes, especially after Laspeyres and Paasche. This 

journey into the world of indexes method merely proves that, with Tornqvist, 

we are witnessing the birth of neutrosophic index, resulting from applying 

predictive statistical neutrosophic frequencies, still theoretically not exposed 

by the author of this kind of thinking, actually the first author of the present 

article.  
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Future intention of the authors is to exceed, by neutrosophic indexes, the level 

of convergence or even emergence of unorthodox classical indexes, 

delineating excessive prices (high or low) by transforming into probabilities 

the classical interval [0 ; 1], either by the limiting values of Paasche and 

Laspeyres indexes, redefined as reporting base, or by detailed application of 

the neutrosophic thinking into statistical space of effective prices, covered by 

the standard interpreter index calculation (the example of PCI index is 

eloquent through its dual reference to time and space as determination of ten-

years average index type, by arithmetic mean, and  as determination of local 

average index type, by geometric mean of a large number of territories 

according to EU methodology, EUROSTAT). 
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Abstract 

In this chapter we define for the first time three neutrosophic actions and their 

properties. We then introduce the prevalence order on {𝑇, 𝐼, 𝐹} with respect to a given 

neutrosophic operator “o”, which may be subjective - as defined by the neutrosophic 

experts. And the refinement of neutrosophic entities <A>, <neutA>, and <antiA>. 

Then we extend the classical logical operators to neutrosophic literal logical 

operators and to refined literal logical operators, and we define the refinement 

neutrosophic literal space.

Keywords 

neutrosophy, neutrosophics, neutrosophic actions, prevalence order, neutrosophic 

operator, refinement of neutrosophic entities, neutrosophic literal logical operators, 

refined literal logical operators, refinement neutrosophic literal space. 

1 Introduction 

In Boolean Logic, a proposition 𝒫  is either true (T), or false (F). In 

Neutrosophic Logic, a proposition 𝒫  is either true (T), false (F), or 

indeterminate (I). 

For example, in Boolean Logic the proposition 𝒫1: 

"1+1=2 (in base 10)" 

is true, while the proposition 𝒫2: 

"1+1=3 (in base 10)" 

is false. 
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In neutrosophic logic, besides propositions 𝒫1 (which is true) and 𝒫2 (which is 

false), we may also have proposition 𝒫3: 

"1+1= ?(in base 10)", 

which is an incomplete/indeterminate proposition (neither true, nor false). 

1.1 Remark 

All conjectures in science are indeterminate at the beginning (researchers not 

knowing if they are true or false), and later they are proved as being either true, 

or false, or indeterminate in the case they were unclearly formulated. 

2 Notations 

In order to avoid confusions regarding the operators, we note them as: 
Boolean (classical) logic: 

¬, ∧, ∨, ∨, →, ↔ 

Fuzzy logic: 
¬
𝐹 ,

∧
𝐹

 ,
∨
𝐹

 ,
∨

𝐹
 ,

→
𝐹

 ,
↔
𝐹

Neutrosophic logic: 
¬
𝑁 ,

∧
𝑁

 ,
∨
𝑁

 ,
∨

𝑁
 ,

→
𝑁

 ,
↔
𝑁

3 Three Neutrosophic Actions 

In the frame of neutrosophy, we have considered [1995] for each entity 〈A〉, its 

opposite 〈antiA〉, and their neutrality 〈neutA〉 {i.e. neither 〈A〉, nor 〈antiA〉}.  

Also, by 〈nonA〉 we mean what is not 〈A〉, i.e. its opposite 〈antiA〉, together with 

its neutral(ity) 〈neutA〉; therefore: 

〈non𝐴〉 = 〈neut𝐴〉 ∨ 〈anti𝐴〉. 

Based on these, we may straightforwardly introduce for the first time the 

following neutrosophic actions with respect to an entity <A>: 

1. To neutralize (or to neuter, or simply to neut-ize) the entity <A>.

[As a noun: neutralization, or neuter-ization, or simply neut-

ization.]  We denote it by <neutA> or neut(A). 

2. To antithetic-ize (or to anti-ize) the entity <A>.  [As a noun:

antithetic-ization, or anti-ization.]  We denote it by <antiA> ot 

anti(A).  
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This action is 100% opposition to entity <A> (strong opposition, or 

strong negation). 

3. To non-ize the entity <A>.  [As a noun: non-ization].  We denote 

it by <nonA> or non(A). 

It is an opposition in a percentage between (0, 100]% to entity <A> 

(weak opposition). 

Of course, not all entities <A> can be neutralized, or antithetic-ized, or non-

ized. 

3.1 Example 

Let  

〈A〉="Phoenix Cardinals beats Texas Cowboys". 

Then,  

〈neutA〉="\"Phoenix Cardinals has a tie game with Texas 

Cowboys\""; 

〈antiA〉="\"Phoenix Cardinals is beaten by Texas Cowboys\""; 

〈nonA〉="\"Phoenix Cardinals has a tie game with Texas Cowboys,"  

"or Phoenix Cardinals is beaten by Texas Cowboys\"." 

3.2 Properties of the Three Neutrosophic Actions 

neut(〈anti𝐴〉) = neut(〈neutA〉) = neut(𝐴); 

anti(〈anti𝐴〉) = 𝐴;  anti(〈neut𝐴〉) = 〈𝐴〉 or 〈anti𝐴〉;  

non(〈anti𝐴〉) = 〈𝐴〉 or 〈neut𝐴〉;  non(〈neut𝐴〉) = 〈𝐴〉 or 〈anti𝐴〉. 

4 Neutrosophic Actions’ Truth-Value Tables 

Let’s have a logical proposition P, which may be true (T), Indeterminate (I), or 

false (F) as in previous example. One applies the neutrosophic actions below. 

4.1 Neutralization (or Indetermination) of P 

 

 

 

 

neut(P) T I F 

 I I I 
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4.2 Antitheticization (Neutrosophic Strong Opposition to P) 

 

 

 

4.3 Non-ization (Neutrosophic Weak Opposition to P): 

 

 

5 Refinement of Entities in Neutrosophy 

In neutrosophy, an entity 〈A〉 has an opposite 〈antiA〉 and a neutral 〈neutA〉. 

But these three categories can be refined in sub-entities 〈𝐴〉1, 〈𝐴〉2, … , 〈𝐴〉𝑚 , 

and respectively 〈neut𝐴〉1, 〈neut𝐴〉2, … , 〈neut𝐴〉𝑛 , and also 〈anti𝐴〉1 ,  

〈anti𝐴〉2, … , 〈anti𝐴〉𝑝 , where m, n, p are integers ≥1, but 𝑚 + 𝑛 + 𝑝 ≥ 4 

(meaning that at least one of 〈A〉, 〈antiA〉 or 〈neutA〉 is refined in two or more 

sub-entities). 

For example, if  〈A〉=white color, then  

〈antiA〉=black color, 

while    〈neutA〉=colors different from white and black. 

If we refine them, we get various nuances of white color: 〈𝐴〉1, 〈𝐴〉2, …, and 

various nuances of black color: 〈anti𝐴〉1, 〈anti𝐴〉2, …, and the colors in between 

them (red, green, yellow, blue, etc.): 〈neut𝐴〉1, 〈neut𝐴〉2, … . 

Similarly as above, we want to point out that not all entities <A> and/or their 

corresponding (if any) <neutA> and <antiA> can be refined. 

6 The Prevalence Order 

Let’s consider the classical literal (symbolic) truth (T) and falsehood (F). 

In a similar way, for neutrosophic operators we may consider the literal 

(symbolic) truth (T), the literal (symbolic) indeterminacy (I), and the literal 

(symbolic) falsehood (F). 

We also introduce the prevalence order on {𝑇, 𝐼, 𝐹} with respect to a given 

binary and commutative neutrosophic operator “o”. 

anti(P) T I F 

 F 𝑇 ∨ 𝐹 T 

non(P) T I F 

 𝐼 ∨ 𝐹 𝑇 ∨ 𝐹 𝑇 ∨ 𝐼 
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The neutrosophic operators are: neutrosophic negation, neutrosophic 

conjunction, neutrosophic disjunction, neutrosophic exclusive disjunction, 

neutrosophic Sheffer’s stroke, neutrosophic implication, neutrosophic 

equivalence, etc. 

The prevalence order is partially objective (following the classical logic for the 

relationship between T and F), and partially subjective (when the 

indeterminacy I interferes with itself or with T or F). 

For its subjective part, the prevalence order is determined by the neutrosophic 

logic expert in terms of the application/problem to solve, and also depending 

on the specific conditions of the application/problem. 

For 𝑋 ≠ 𝑌, we write 𝑋℗𝑌, or 𝑋 ≻𝑜 𝑌, and we read X prevails to Y with respect 

to the neutrosophic binary commutative operator “o”, which means that 

𝑋𝑜𝑌 = 𝑋. 

Let’s see the below examples. We mean by “o”: conjunction, disjunction, 

exclusive disjunction, Sheffer’s stroke, and equivalence. 

7 Neutrosophic Literal Operators & 

Neutrosophic Numerical Operators 

7.1 If we mean by neutrosophic literal proposition, a proposition whose truth 

value is a letter: either T or I or F.  The operators that deal with such logical 

propositions are called neutrosophic literal operators. 

7.2 And by neutrosophic numerical proposition, a proposition whose truth 

value is a triple of numbers (or in general of numerical subsets of the interval 

[0, 1]), for examples A(0.6, 0.1, 0.4) or B([0, 0.2], {0.3, 0.4, 0.6}, (0.7, 0.8)). The 

operators that deal with such logical propositions are called neutrosophic 

numerical operators. 

8 Truth-Value Tables of Neutrosophic Literal Operators 

In Boolean Logic, one has the following truth-value table for negation: 

8.1 Classical Negation 

 

 

 

¬ T F 

 F T 
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In Neutrosophic Logic, one has the following neutrosophic truth-value table 

for the neutrosophic negation: 

8.2 Neutrosophic Negation 

 

 

 

 

 
So, we have to consider that the negation of I is I, while the negations of T and 

F are similar as in classical logic. 

In classical logic, one has: 

8.3 Classical Conjunction 

 

 

 

 

In neutrosophic logic, one has: 

8.4 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 1 

 

 

 

 

 

 

 

The objective part (circled literal components in the above table) remains as 

in classical logic, but when indeterminacy I interferes, the neutrosophic expert 

may choose the most fit prevalence order.  

There are also cases when the expert may choose, for various reasons, to 

entangle the classical logic in the objective part. In this case, the prevalence 

order will be totally subjective. 

¬
N T I F 

 

 

I 

 

∧ T F 

T T F 

F F F 

∧N T I F 

T  
I 

 

I   I I    I 

F  
I 

 

F T 

T F 

F F 
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The prevalence order works for classical logic too. As an example, for classical 

conjunction, one has 𝐹 ≻𝑐 𝑇 , which means that 𝐹 ∧ 𝑇 = 𝐹.  While the 

prevalence order for the neutrosophic conjunction in the above tables was: 

𝐼 ≻𝑐 𝐹 ≻𝑐 𝑇, 

which means that 𝐼 ∧𝑁 𝐹 = 𝐼, and 𝐼 ∧𝑁 𝑇 = 𝐼. 

Other prevalence orders can be used herein, such as:  

𝐹
≻𝑐

𝐼 ≻𝑐 𝑇, 

and its corresponding table would be: 

8.5 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 2 

 

 

 

 

 

 

 

which means that 𝐹∧𝑁
𝐼 = 𝐹 and 𝐼∧𝑁

𝐼 = 𝐼; or another prevalence order:  

𝐹 ≻𝑐 𝑇 ≻𝑐 𝐼, 

and its corresponging table would be: 

8.6 Neutrosophic Conjunction (𝐴𝑁𝐷𝑁), version 3 

 

 

 

 

 

 

 

which means that 𝐹∧𝑁
𝐼 = 𝐹 and 𝑇∧𝑁

𝐼 = 𝑇. 

∧N T I F 

T  I 

 

I   I I    F 

F  F 

 

∧N T I F 

T  T 

 

I  T I    F 

F  F 

 

T F 

F F 

T F 

F F 
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If one compares the three versions of the neutrosophic literal conjunction, one 

observes that the objective part remains the same, but the subjective part 

changes. 

The subjective of the prevalence order can be established in an optimistic way, 

or pessimistic way, or according to the weights assigned to the neutrosophic 

literal components T, I, F by the experts. 

In a similar way, we do for disjunction. In classical logic, one has: 

8.7 Classical Disjunction 

 

 

 

 

In neutrosophic logic, one has: 

8.8 Classical Disjunction (𝑂𝑅𝑁) 

 

 

 

 

 

 

 

where we used the following prevalence order: 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼, 

but the reader is invited (as an exercise) to use another prevalence order, such 

as: 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹,  

Or 

 𝐼 ≻𝑑 𝑇 ≻𝑑 𝐹, etc., 

for all neutrosophic logical operators presented above and below in this paper. 

In classical logic, one has: 

∨ T F 

T T T 

F T F 

∨N T I F 

T  T 

 

I   T I    F 

F  
F 

 

T T 

T F 
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8.9 Classical Exclusive Disjunction 

 

 

 

In neutrosophic logic, one has: 

8.10 Neutrosophic Exclusive Disjunction 

 

 

 

 

 

 

using the prevalence order 

𝑇 ≻𝑑 𝐹 ≻𝑑 𝐼. 

In classical logic, one has: 

8.11 Classical Sheffer’s Stroke 

 

 

 

 

In neutrosophic logic, one has: 

8.12 Neutrosophic Sheffer’s Stroke 

 

 

 

 

 

 

∨ T F 

T F T 

F T F 

∨N T I F 

T  T  

I   T I    F 

F  F  

| T F 

T F T 

F T T 

|N T I F 

T  T 

 

I   T I    I 

F  I 

 

F T 

T T 

F T 

T F 
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using the prevalence order 

𝑇 ≻𝑑 𝐼 ≻𝑑 𝐹. 

In classical logic, one has: 

8.13 Classical Implication 

 

 

 

 

In neutrosophic logic, one has: 

8.14 Neutrosophic Implication 

 

 

 

 

 

 

 

using the subjective preference that 𝐼 →N 𝑇 is true (because in the classical 

implication 𝑇 is implied by anything), and 𝐼 →N 𝐹 is false, while 𝐼 →N 𝐼 is true 

because is similar to the classical implications 𝑇 → 𝑇  and 𝐹 → 𝐹 , which are 

true. 

The reader is free to check different subjective preferences. 

In classical logic, one has: 

8.15 Classical Equivalence 

 

 

 

 

In neutrosophic logic, one has: 

→ T F 

T T F 

F T T 

→N T I F 

T  I 

 

I   T T    F 

F  T 

 

↔ T F 

T T F 

F F T 

T F 

T T 
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8.15 Neutrosophic Equivalence 

 

 

 

 

 

 

 

using the subjective preference that 𝐼 ↔N 𝐼 is true, because it is similar to the 

classical equivalences that 𝑇 → 𝑇  and 𝐹 → 𝐹  are true, and also using the 

prevalence: 

𝐼 ≻𝑒 𝐹 ≻𝑒 𝑇. 

9 Refined Neutrosophic Literal Logic 

Each particular case has to be treated individually. 

In this paper, we present a simple example. Let’s consider the following 

neutrosophic logical propositions: 

T = Tomorrow it will rain or snow. 

T is split into  

 Tomorrow it will rain. 

 Tomorrow it will snow. 

F = Tomorrow it will neither rain nor snow. 

F is split into  

 Tomorrow it will not rain. 

 Tomorrow it will not snow. 

I = Do not know if tomorrow it will be raining, nor if it will be snowing. 

I is split into  

 Do not know if tomorrow it will be raining or not. 

 Do not know if tomorrow it will be snowing or not. 

Then: 

¬N T1 T2 I1 I2 F1 F2 

 𝐹1 𝐹2 𝑇1 ∨ 𝐹1 𝑇2 ∨ 𝐹2 𝑇1 𝑇2 

 

↔N T I F 

T  I 

 

I   I T    I 

F  I 

 

T F 

F T 
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It is clear that the negation of 𝑇1 (Tomorrow it will raining) is 𝐹1 (Tomorrow it 

will not be raining). Similarly for the negation of  𝑇2, which is 𝐹2. 

But, the negation of  𝐼1 (Do not know if tomorrow it will be raining or not) is 

“Do know if tomorrow it will be raining or not”, which is equivalent to “We 

know that tomorrow it will be raining” (𝑇1), or “We know that tomorrow it will 

not be raining” (𝐹1).  

Whence, the negation of 𝐼1 is 𝑇1 ∨ 𝐹1, and similarly, the negation of 𝐼2 is 𝑇2 ∨ 𝐹2. 

9.1 Refined Neutrosophic Literal Conjunction Operator 

∧N T1 T2 I1 I2 F1 F2 

T1 𝑇1 𝑇1 2 𝐼1 𝐼2 𝐹1 𝐹2 

T2 𝑇1 2 𝑇2 𝐼1 𝐼2 𝐹1 𝐹2 

I1 𝐼1 𝐼1 𝐼1 I 𝐹1 𝐹2 

I2 𝐼2 𝐼2 I 𝐼2 𝐹1 𝐹2 

F1 𝐹1 𝐹1 𝐹1 𝐹1 𝐹1 F 

F2 𝐹2 𝐹2 𝐹2 𝐹2 F 𝐹2 

 

where 𝑇1 2 = 𝑇1 ∧ 𝑇2 = “Tomorrow it will rain and it will snow”.  

Of course, other prevalence orders can be studied for this particular example. 

With respect to the neutrosophic conjunction, 𝐹𝑙  prevail in front of 𝐼𝑘, which 

prevail in front of 𝑇𝑗 , or 𝐹𝑙 ≻ 𝐼𝑘 ≻ 𝑇𝑗, for all 𝑙, 𝑘, 𝑗 ∈ {1, 2}. 

9.2 Refined Neutrosophic Literal Disjunction Operator 

∨N T1 T2 I1 I2 F1 F2 

T1 𝑇1 T 𝑇1 𝑇1 𝑇1 𝑇1 

T2 T 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 

I1 𝑇1 𝑇2 𝐼1 I 𝐹1 𝐹2 

I2 𝑇1 𝑇2 I 𝐼2 𝐹1 𝐹2 

F1 𝑇1 𝑇2 𝐹1 𝐹1 𝐹1 𝐹1 ∨ 𝐹2 

F2 𝑇1 𝑇2 𝐹2 𝐹2 𝐹1 ∨ 𝐹2 𝐹2 
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With respect to the neutrosophic disjunction, 𝑇𝑗  prevail in front of 𝐹𝑙 , which 

prevail in front of  𝐼𝑘 , or 𝑇𝑗 ≻ 𝐹𝑙 ≻ 𝐼𝑘, for all 𝑗, 𝑙, 𝑘 ∈ {1, 2}. 

For example, 𝑇1 ∨ 𝑇2 = 𝑇, but 𝐹1 ∨ 𝐹2 ∉ {𝑇, 𝐼 𝐹} ∪ {𝑇1, T2, 𝐼1, I2, 𝐹1, F2}. 

9.3 Refined Neutrosophic Literal Space 

The Refinement Neutrosophic Literal Space {𝑇1, 𝑇2, 𝐼1, 𝐼2, 𝐹1, 𝐹2} is not closed 

under neutrosophic negation, neutrosophic conjunction, and neutrosophic 

disjunction. The reader can check the closeness under other neutrosophic 

literal operations. 

A neutrosophic refined literal space  

𝑆𝑁 = {𝑇1, 𝑇2, … , 𝑇𝑝;  𝐼1, 𝐼2, … , 𝐼𝑟;  𝐹1, 𝐹2, … , 𝐹𝑠}, 

where 𝑝, 𝑟, 𝑠 are integers ≥ 1, is said to be closed under a given neutrosophic 

operator "𝜃𝑁", if for any elements 𝑋, 𝑌 ∈ 𝑆𝑁 one has 𝑋𝜃𝑁
𝑌 ∈ 𝑆𝑁 . 

Let’s denote the extension of 𝑆𝑁 with respect to a single 𝜃𝑁 by: 

𝑆𝑁1

𝐶 = (𝑆𝑁, 𝜃𝑁). 

If 𝑆𝑁  is not closed with respect to the given neutrosophic operator 𝜃𝑁 , then 

𝑆𝑁1

𝐶 ≠ 𝑆𝑁 , and we extend 𝑆𝑁 by adding in the new elements resulted from the 

operation 𝑋𝜃𝑁𝑌, let’s denote them by 𝐴1, 𝐴2, … 𝐴𝑚. 

Therefore, 

𝑆𝑁1

𝐶 ≠ 𝑆𝑁 ∪ {𝐴1, 𝐴2, … 𝐴𝑚}. 

𝑆𝑁1

𝐶  encloses 𝑆𝑁. 

Similarly, we can define the closeness of the neutrosophic refined literal space 

𝑆𝑁 with respect to the two or more neutrosophic operators 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
, 

for 𝑤 ≥ 2. 

𝑆𝑁  is closed under 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
 if for any 𝑋, 𝑌 ∈ 𝑆𝑁  and for any 𝑖 ∈

{1, 2, … , 𝑤} one has 𝑋𝜃𝑖𝑁
𝑌 ∈ 𝑆𝑁. 

If 𝑆𝑁 is not closed under these neutrosophic operators, one can extend it as 

previously. 

Let’s consider: 𝑆𝑁𝑤

𝐶 = (𝑆𝑁, 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
), which is 𝑆𝑁 closed with respect to 

all neutrosophic operators 𝜃1𝑁
, 𝜃2𝑁

, … , 𝜃𝑤𝑁
, then 𝑆𝑁𝑤

𝐶  encloses 𝑆𝑁. 
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10 Conclusion 

We have defined for the first time three neutrosophic actions and their 

properties. We have introduced the prevalence order on {𝑇, 𝐼, 𝐹} with respect 

to a given neutrosophic operator “o”, the refinement of neutrosophic entities 

<A>, <neutA>, and <antiA>, and the neutrosophic literal logical operators and 

refined literal logical operators, and the refinement neutrosophic literal space. 
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Abstract . 
In this paper, we have introduced the notion of neutrosophic )2,2(  -regular, 

neutrosophic strongly regular neutrosophic AG -groupoids and investigated these
structures. We have shown that neutrosophic regular, neutrosophic intra-regular 
and neutrosophic strongly regular AG -groupoid are the only generalized classes of
neutrosophic AG -groupoid. Further we have shown that non-associative regular,
weakly regular, intra-regular, right regular, left regular, left quasi regular, 

AG -completely regular, (2, 2) -regular and strongly regular 

neutrosophic groupoids do not exist.. 

Keyword  
A neutrosophic AG -groupoid, left invertive law, medial law and paramedial law.
[2000]20M10 and 20N99 

Introduction 
We know that in every branch of science there are lots of complications 
and problems appear which affluence the uncertainties and impaction. 
Most of these problems and complications are concerning with human 
life. These problems also play pivotal role for being subjective and 
classical. Common used methods are not sufficient to apply on these 
problems. To solve these complications, concept of fuzzy sets was published 
by Lotfi A.Zadeh in 1965, which has a wide range of applications in various 
fields such as engineering, artificial intelligence, control engineering, 
operation research, management science, robotics and many more. 
Zadeh introduced fuzzy sets to address uncertainities. By use of fuzzy sets the 
manipulated data and information of uncertainties can be prossessed. The 
idea of fuzzy sets was particularly designed to characterize uncertainty and 
vagueness and to present dignified tools in order to deal with the ambiguity 
intrinsic to the various problems. Fuzzy logic gives a conjecture morphology 
that enables approximate human reasoning capabilities to be applied to 
knowledge-based systems. The concept of fuzzy logic gives a mathematical 
potency to deal with the uncertainties associated with the human intellectual 
processes, such as reasoning and judgment.  

mailto:madadmath@yahoo.com
mailto:misbahkhurshid123@gmail.com
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In literature, a lot of theories have been developed to contend with 
uncertainty, imprecision and vagueness. In which, theory of probability, 
rough set theory fuzzy set theory, intiutionistic fuzzy sets etc, have played 
imperative role to cope with diverse types of uncertainties and imprecision 
entrenched in a system. But all these above theories were not sufficient tool 
to deal with indeterminate and inconsistent information in believe 
system. F.Samrandache noticed that the law of excluded middle are presently 
inactive in the modern logics and also by getting inspired with 
sport games (winning/tie/defeating), voting system (yes/ NA/no), 
decision making (making a decision/hesitating/not making) etc, he 
developed a new concept called neutrosophic set (NS) which is basically 
generalization of fuzzy sets and intiutionistic fuzzy sets. NS can be 
described by membership degree, and indeterminate degree and non-
membership degree. 
The neutrosophic logic is an extended idea of neutrosophy. Fuzzy theory is 
used when uncertainty is modeled and when there is indeterminancy 
involved we use neutrosophic theory. The neutrosophic algebraic structures 
have defined very recently. Basically, Vasantha K andasmy and Florentin 
Smarandache present the concept of neutrosophic algebraic structures by 
using neutrosophic theory. A number of the neutrosophic algrebraic 
structures introduced and considered include neutrosophic fields, 
neutrosophic vector spaces, neutrosophic groups, neutrosophic bigroups, 
neutrosophic N-groups, neutrosophic bisemigroups, neutrosophic 
N-semigroup, neutrosophic loops, neutrosophic biloops, neutrosophic N-
loop, neutrosophic groupoids, neutrosophic bigroupoids and 
neutrosophic AG-groupoids. 

Preliminaries 
Abel Grassmann's groupoid abbreviated as an AG-groupoid is a groupoid 
whose element satisfies the left invertive law i.e acbcab )()(   for all 

Scba ,,  .An AG-groupoid is a non associative and non-commutative 

algebraic structure mid way between a groupoid and commutative 
semigroup. AG-groupoids generalizes the concept of commutative semigroup 

and have an important application within the theory of flocks. 
An AG -groupoid , is a groupoid S  holding the left invertive law

(ab)c  (cb)a,  for all a,b,cS.

This left invertive law has been obtained by introducing braces on the left of 
ternary commutative law abc  cba . 

Basic Laws of AG -groupoid 
In an AG  -groupoid, the medial law holds

(ab)(cd )  (ac)(bd ),  for all a,b,c,d S.

In an AG -groupoid S  with left identity, the paramedial law holds
(ab)(cd )  (dc)(ba),  for all a,b,c,d S.

Further if an AG -groupoid contains a left identity, the following law holds

a(bc)  bac,  for all a,b,cS.

Madad Khan, Misbah Khurshid 

Structural Properties of Neutrosophic Abel-Grassmann's Groupoids 



117 

Critical Review. Volume XI, 2015 

Since the world is full of indeterminacy, the neutrosophics found their place 
into contemporary research. In 1995, Florentin Smarandache introduced the 
idea of neutrosophy. Neutrosophic logic is an extension of fuzzy logic. Madad 
Khan et al., for the first time introduced the idea of a neutrosophic LA-
semigroup in [4]. Moreover bIaSUI { : where a , Sb  and I is literal 

indeterminacy such that II 2  becomes neutrosophic LA-semigroup under 
the operation   defined as: 
 bdIacdIcbIa  )()(  For all )( bIa  , SUIdIc  )( . That is ),( SUI  

becomes neutrosophic LA-semigroup. They represented it by )(SN . 

 ,))]()([())]()([( 212121212121 IaaIbbIccIccIbbIaa  (1) 

holds for all ),( 21 Iaa    ,21 Ibb     )(21 SNIcc  . 

It is since than called the neutrosophic left invertive law. A neutrosophic 
groupoid satisfying the left invertive law is called a neutrosophic left almost 
semigroup and is abbreviated as neutrosophic LA-semigroup. 
In a neutrosophic LA-semigroup )(SN  medial law holds i.e  

 ,)])()][()([(

)])()][()([(

21212121

21212121

IddIbbIccIaa

IddIccIbbIaa




(2) 

holds for all )( 21 Iaa  , )( 21 Ibb  , )( 21 Icc  , )()( 21 SNIdd  . 

There can be a unique left identity in a neutrosophic LA-semigroup. In a 
neutrosophic LA-semigroup )(SN  with left identity  eIe   the following

laws hold for all ( 21a  a I ) , ( 21b  b I ) , ( 21 ) N (S)c  c I ) , ( 21d  d I . 

)],)()][()([(

)])()][()([(

21212121

21212121

d d I b b I c c I a a I

a  a I b b I c c I d  d I




(3) 

)],)()][()([(

)])()][([(

21212121

21212121

d d I c c I b b I a a I

a  a I )(b  b I c  c I d  d I


(4) 

and 

].)[)[(( 212121212121a  a I b  b I )(c  c I )]  (b  b I a  a I )(c  c I   (5)

for all ( 21a  a I 21 )b  b I ) , ( 21) , ( c  c I  N (S) . 

 (3)  is called neutrosophic paramedial law and a neutrosophic LA semigroup 

satisfies (5)  is called Neutrosophic AG
**

-groupoid. 

Now, (a  bI )2  a  bI  implies a  bI  is idempotent and if holds for all 

a  bI  N (S)  then N (S)  is called idempotent neutrosophic LA-semigroup. 

This structure is closely related with a neutrosophic commutative semigroup, 

because if a Neutrosophic AG -groupoid contains a right identity, then it
becomes a commutative semigroup.. 
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A neutrosophic AG -groupoid N(S) with neutrosophic left identity becomes a

Neutrosophic semigroup N(S) under new binary operation "" defined as

))]()([()()( 2121212121 IyyIaaIxxIyyIxx  

for all )()(),( 2121 SNIyyIxx  .

It is easy to show that   is associative 

)].()[()(

)])]()()[()([(

)])]()()[[()([(

)]])]()()][[()([[(

))]()]()]()([[[(

)()]()[(

212121

2121212121

2121212121

2121212121

2121212121

212121

IzzIyyIxx

IzzIaaIyyIaaIxx

IyyIaaIzzIIaaIxx

IyyIaaIxxIaaIzz

IzzIaaIyyIaaIxx

IzzIyyIxx

















Hence N(S) is a neutrosophic semigroup 

Regularities in Neutrosophic AG  -groupoids 

An element a  bI  of a neutrosophic AG  -groupoid N (S)  is called a regular

element of N (S)  if there exists ( )x1  x2 I  N S  such that

[(a  bI ) (x  x I )](a  bI )21a  bI   and N(S ) is called regular if all elements

of N(S ) are regular.
An element a  bI  of neutrosophic AG -groupoid N(S ) is called a weakly

),(regular element of  N(S ) if there exist (x1  x2I y1  y2I )N (S)  such that

)][(a  bI )(x  x I )][(a  bI )( 2121a  bI  y  y I  and N (S)  is called weakly

regular if all elements of N(S )  are weakly regular.
An element a  bI  of a neutrosophic AG  -groupoid N (S)   is called an intra-

regular element of N (S)  if there exist ,x1  x2 I y1  y2 I  N (S)  such that

[(x  x I )( 21
2

21a  bI  a  bI ) ](y  y I )  and N (S)  is called intra-regular if all

elements of N (S)  are intra-regular.

An element a  bI  of a neutrosophic AG  -groupoid  N (S)   is called a right

regular element of NS  if there exists ( )x1  x2 I  N S  such that

)(a  bI ) (x  x I )  [(a  bI )(a  bI )]( 2121a  bI  2 x  x I  and N (S)  is called

right regular if all elements of N (S)  are right regular.

An element a  bI  of a Neutrosophic AG  -groupoid N (S)  is called left

regular element of N(S)  if there exists x 1  x 2 I  NS  such that

( 21
2

21a  bI  x  x I )(a  bI )  (x  x I )[(a  bI )(a  bI )]  and N (S)  is called left

regular if all elements of N (S)  are left regular.

An element a  bI  of a Neutrosophic AG  -groupoid N (S)  is called a left

quasi regular element of N (S)  if there exist ,x1  x2 I y1  y2 I  N (S)  such

)]that a  bI  [(x  x I )(a  bI )][(y  y I )(2121 a  bI and N(S) is called left

quasi regular if all elements of N(S))  are left quasi regular.

quasi regular if all elements of N(S))  are left quasi regular.
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An element a  bI of a Neutrosophic AG -groupoid N(S) is called a

completely regular element of )(SN  if bIa   is regular, left regular and

right regular. )(SN  is called completely regular if it is regular, left and right

regular. 
An element bIa   of a Neutrosopic AG -groupoid )(SN  is called a (2,2)-

regular element of  )(SN  if there exists )(21 SNIxx   such that
2

21
2 ))](()[( bIaIxxbIabIa   and )(SN  is called )2,2( -regular AG -

groupoid if all elements of )(SN  are )2,2( -regular.

An element bIa   of a Neutrosophic AG -groupoid )(SN  is called a strongly

regular element of N (S)  if there exists ( )x1  x2 I  N S  such that

21a  bI  [(a  bI )(x  x I )](a  bI )  and ( )  ( 2121a  bI )(x  x I x  x I )(a  bI ).  

N (S)  is called strongly regular Neutrosophic AG -groupoid if all elements of

N (S)  are strongly regular.
AG -groupoid ifA Neutrosophic AG -groupoid N (S)  is called Neutrosophic

the following holds 
)] )([( 212121212121a  a I b  b I )](c  c I )  (b  b I )[(a  a I )(c  c I

for all ,,a1  a2 I b1  b2 I c1  c2 I N S( ).

In Neutrosophic AG  -groupoid N(S) the following law holds

A Neutrosophic AG -groupoid may or may not contains a left identity. The left
identity of a Neutrosophic AG -groupoid allow us to introduce the inverses of
elements in a Neutrosophic AG  -groupoid. If an AG -groupoid contains a left
identity, then it is unique. 

Example 1 Let us consider a Neutrosophic AG -groupoid

N(S) 11I ,  1 2I ,  1 3I ,  2 1I ,  2  2I ,  2  3I ,  3 1I ,  3  2I ,  3  3I  in the

following multiplication table. 

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII

IIIIIIIII

11312113332312322233

21113123133322123223

31211133231332221213

12322211312113332332

22123221113123133322

32221231211133231312

13332312323211312131

23133322122221113121

33231332221231211111

332313322212312111




















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Lemma 1 If N (S)  is a regular, weakly regular, intra-regular, right regular, left

regular, left quasi regular, completely regular, (2, 2) -regular or strongly regular 

neutrosophic AG  -groupoid ,  then N (S)   N (S)2 .

Proof Let N (S)  be a Neutrosophic regular AG -groupoid, then N (S)2  N (S)  is

obvious. Let a  bI  N (S),  then since N (S)  is regular so there exists x  yI  N (S)

such that a  bI  [(a  bI )(x  yI )](a  bI ).  

Now 

(S)2(S)

)N (S)N(S)

 NN

a  bI  [(a  b)(x  yI )](a  bI

Similarly if N (S)  is weakly regular, intra-regular, right regular, left regular, left quasi

regular, completely regular, (2, 2) -regular or strongly regular, then we can show that 

N (S)  N (S)2  .

The converse is not true in general, because in Example lil, N (S)  N (S)2  holds but

N (S)  is not regular, weakly regular, intra-regular, right regular, left regular, left

quasi regular, completely regular, (2, 2)  -regular and strongly regular, because 

(S)d1  d2 I N  is not regular, weakly regular, intra-regular, right regular, left

regular, left quasi regular, completely regular, (2, 2) -regular and strongly regular. 

Theorem1 If N (S)  is a Neutrosophic  AG -groupoid with left identity (AG -

groupoid ,  then N (S)  is intra-regular if and only if for all a  bI  N (S),

2121a  bI  [(x  x I )(a  bI )][(a  bI )(z  z I )]  holds for some 

,x1  x2 I z1  z2 I  N (S).

Proof Let N (S)  be an intra-regular Neutrosophic  AG -groupoid with left identity

(AG -groupoid , then for any a  bI N (S)  there exist x  x I ,1 2 y1  y2I N S( )

) ](such that a  bI  [(x  x I )( 21
2

21 a  bI y  y I ).  Now by using Lemma1, 

)( 212121y  y I  u  u I )(v  v I  for some u1  u2 I ,v1  v2 I N (S) .

a  bI

 x 1  x 2Ia  bI2y1  y2I

 x 1  x 2Ia  bIa  bIy1  y2I

 a  bIx 1  x 2Ia  bIy1  y2I

 y1  y2Ix 1  x 2Ia  bIa  bI
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 y1  y2Ix 1  x 2Ia  bIx 1  x 2 Ia  bI
2y1  y2 I

 u1  u2Iv 1  v 2x  yIa  bIx 1  x 2Ia  bI2 y1  y2 I,

 a  bIx 1  x 2Iv 1  v 2u1  u2 Ix 1  x 2 Ia  bI2y1  y2 I

 a  bIx 1  x 2It1  t2Ix 1  x 2Ia  bI
2y1  y2 I

 x 1  x 2Ia  bI2y1  y2It1  t2Ia  bIx 1  x 2 I

 t1  t2Iy1  y2Ix 1  x 2Ia  bI2 a  bIx 1  x 2 I

 a  bI2x 1  x 2Iy1  y2It1  t2Ia  bIx 1  x 2 I

 a  bI2x 1  x 2Is1  s2 Ia  bIx 1  x 2I,

 s1  s2Ix 1  x 2Ia  bI2a  bIx 1  x 2I

 s1  s2Ix 1  x 2Ia  bIa  bIa  bIx 1  x 2I

 a  bIa  bIx 1  x 2Is1  s2Ia  bIx 1  x 2I

 a  bIa  bIw1  w2Ia  bIx 1  x 2I,

 w1  w2Ia  bIa  bIa  bIx 1  x 2I

 z1  z2Ia  bIa  bIx 1  x 2I,

 x 1  x 2Ia  bIa  bIz1  z2I

where )( 2121w  w I )(a  bI )  (z  z I )N (S  where 

)(s  s I w  w I )N (S))  (( 212121x  x I  where 

) N (S))  (( 212121y  y I )(t  t I s  s I  where 

)N (S))  ()(( 212121v  v u  u I t  t I where [( 212121u  u I )(v  v )  (y  y I )  

N (S)  

Conversely, let for all 

)][( 2121a  bI  x  x I )(a  bI )][(a  bI )(z  z I  holds 

a  bI  N (S),

for some 

( ).,x1  x2 I z1  z2 I  N S  Now by using (4) , (1) , (2)  and (3) , we have
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 bI a
z2 I z1 bI a bI a x2 I x1  

z2 I z1 bI a x2 I x1 bI a  
z2 I z1 bI a x2 I x1 z2 I z1 bI a bI a x2 I x1  

 z2 I z1 bI a x2 I x1 z2 I z1 bI a x2 I x1 bI a  bI
a z2 I z1 bI a x2 I x1 z2 I z1 bI a x2 I x1  bI 

a 2 z2 I z1 bI a x2 I x1  

bI a 2 z2 I z1 
2 bI a x2 I x1  

bI a z2 I z1 z2 I z1 2 bI a 2 x2 I x1  

bI a z2 I z1 2 bI a z2 I z1 2 x2 I x1  

bI a z2 I z1 z2 I z1 2 x2 I x1 2 bI a  
bI a z2 I z1 z2 I z1 2 x2 I x1 bI a bI a  
bI a 2 x2 I x1 z2 I z1 z2 I z1 bI a bI a  
bI a 2 x2 I x1 2 z2 I z1 bI a bI a  
bI a bI a bI a 2 z2 I z1 

2 x2 I x1  

bI a bI a bI a t2 I t1  ,
u2 I u1 2 bI a t2 I t1  

where ) N (S)[( 21
2

21
2

21x  x I ) (z  z I ) ]  (t  t I  and 

( 21 )  (a  bI )  (u  u I )N (S)  where ( 21a  bI u  u I ) N (S)  

Thus N (S)  is intra-regular.
(AG -Theorem 2 If N (S)  is a Neutrosophic  AG -groupoid with left identity

groupoid ,  then the following are equivalent. 
(i)  N (S)  is weakly regular.

(ii)  N (S)  is intra-regular.

Proof (i)  (ii)  Let N (S)  be a weakly regular Neutrosophic  AG  -groupoid with

left identity (Neutrosophic AG**-groupoid , then for any  a  bI N (S)  there exist

( )x1  x2 I 1 2 S, y  y I  N  such that 

[(a  bI x  x I a  bI )(y  y I )])][()( 2121a  bI   and by Lemma1, 

))( 212121 ) N ( )),(x  x I  (u  u I v  v I  for some (u1  u2 I v1  v2 I S  Let
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( ) N (S))  (v1  v2 I )(u1  u2 I t1  t2 I . Now by using (3),  (1),  (4)  and (2),  we

have 

)) ]()([(

)])() ][()([(

)]) ()][()([(

)]) ()[((

)])()][()([(

)])()(

21
2

21

2121
2

21

21
2

2121

21
2

21

2121

2121

y  y I a  bI t t I

y  y I a  bI v v I u u I

u  u I v  v I a bI y y I

x I a  bI y y I

bI a bI x x I y y I

a bI x  x I )][(a bI y y I







 x 

 a 

 bI  [(a 

Thus N (S)  is intra-regular.

 (ii) (i)  Let N (S)  be a intra regular Neutrosophic AG -groupoid with left 

identity (Neutrosophic AG -groupoid), then for any a  bI N (S)

)])()][(

)])()][(

)]) (

) ()][([(

)])() ][([(

)[(

2121

2121

21
2

21

21
2

2121

2121
2

21

21
2

21

bI )(x  x I a bI y y I

bI )(a  bI x x I y y I

x I )[(a bI y y I

u  u I )(v  v I a bI y y I

y y I )(a bI v v I u u I

a y  y I )(a  bI ) ](t t I

 [(a 

 [(a 

 (x 





 bI 

)]
 

  Thus N (S)  is weakly regular .
(NeutrosophicAG -Theorem 3 If N (S)  is a Neutrosophic AG -groupoid

groupoid,  then the following are equivalent. 
(i)  N (S)  is weakly regular.

(ii)  N (S)  is right regular.

Proof (i) (ii)  Let N (S)  be a weakly regular Neutrosophic AG -groupoid (AG -

groupoid , then for any a  bI N (S)  there exist ,x1  x2I y1  y2I N (S)  such

that )(a  bI x  x I )()( 2121a  bI  a  bI )(y  y I  and let 

( ))  ( 212121 )N ( )x  x I )(y  y I t  t I  for some (t1  t2 I S . Now by using (2),  we

have 

)) ((

)()][([(

)])()][()(

21
2

2121

2121

a  bI t t I

a  bI )(a bI x  x I y y I

a bI x x I a  bI y y I





 bI  [(a 

)]  

Thus N (S)  is right regular.

 (ii) (i)  It follows from Lemma1 and (2)  . 

)])([(

)] )()][([(

)[(

)

2121

2121

21

21
2

bI )(x  x I )][(a bI y y I

bI )(a  bI x x I y y I

bI )(a  bI )](t t I

a bI ) (t  t I

 a 

 a 

 a 

 bI  (a 
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) N ( ))(where (t1  t2I )  (x1  x2I y1  y2I S . Thus N (S)  is weakly regular.

Theorem 4 If N (S)  is a Neutrosophic AG  -groupoid with left identity

(Neutrosophic AG**-groupoid ),  then the following are equivalent. 

(i)  N (S)  is weakly regular.

(ii)  N (S)  is left regular.

Proof (i) (ii)  Let N (S)  be a weakly regular Neutrosophic AG  -groupoid with

left identity (Neutrosophic AG**-groupoid ) , then for any a  bI  N (S)  there exist

)N (S)),(1 2 1 2(x  x I y  y I  such that 

)])][()([( 2121a  bI  a  bI x  x I a  bI )(y  y I . Now by using (2)  and (3),  we have 

) ,(

))]([(

)()][([(

)])()][([(

)])()][([(

2
21

2
2121

2121

2121

2121

t I )(a  bI

y y I )(x x I a bI

y y I )(x x I a bI a bI

bI )(a  bI x x I y y I

a bI )(x x I a bI y y I

 t 





 a 

 bI  a 

)]  

))]  ( 212121where [(y  y I )(x  x I t  t I  for some (t1  t2I )N (S).  Thus N (S)  is

left regular. 
 (ii) (i)  It follows from Lemma1, (3)  and (2).  

)],)()][()([(

)])()][(

)])()][([(

))]()([(

a t I )(a  bI )

2121

2121

2121

2
2121

2
21

bI x  x I a bI y y I

bI )(a  bI x x I y y I

y y I )(x x I a bI a bI

y y I x x I a bI

 a 

 [(a 





 bI  (t 

Where ( )  ( 212121 )N (S)y  y I )(x  x I t  t I )  for some (t1  t2 I . Thus N (S)  is

weakly regular. 

Theorem 5 If N (S)  is a Neutrosophic AG  -groupoid with left identity

(Neutrosophic AG**-groupoid,  then the following are equivalent. 
(i)  N (S)  is weakly regular.

(ii)  N (S)  is left quasi regular

Proof (i)  (ii)  Let N (S)  be a weakly regular NeutrosophicAG -groupoid with

left identity, then for a  bI N (S)  there exists (x1  x2I ),(y1  y2I )N (S)  such

that )( 2121 a  bI  [(a  bI x  x I )][(a  bI )(y  y I )]  

)].)()][()([(

)]

2121

2121

y  y I a  bI x x I a bI

a  bI  [(a  bI )(x  x I )][(a  bI )(y  y I


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Thus N (S)  is left quasi regular. 

(ii) (i)  Let N (S)  be a left quasi regular Neutrosophic AG  -groupoid with left

identity then.for a  bI N (S)  there exists (x1  x2I ),(y1  y2I )N (S)  such that

2121a  bI  [(y  y I )(a  b)][(x  x I )(a  b)]  

)].)][(a  b)([(a  b)(

)(a  b)])(a  b)][(

2121

2121

x x I y y I

a [(y  y I x x I



 bI 

Thus N (S)  is weakly regular. 

Theorem 6 If N (S)  is a Neutrosophic AG -groupoid with left identity ,  then the

following are equivalent. 
(i)  N (S)  is (2,2) -regular.

(ii)  N (S)  is completely regular.

Proof (i) (ii)  Let N (S)  be a (2,2) -regular NeutrosophicAG -groupoid with

x1  x2I )N (S)  such thatleft identity, then for a  bI N (S)  there exists (

a  bI  [(a  bI )2 (x  yI )](a  bI )2 . Now 

) ],[(

a bI x x I a  bI ))]() (
2

21

2
21

2

y  y I )(a  bI

 bI  [(a 

where ( )N (S),)  ( 2121
2a  bI ) (x  x I y  y I  and by using (3) , we have

),(

)[()][()([(

)])()][()2 ([(

21
2

2
21

21

bI ) (z  z I

bI a bI x  x I a bI

a bI bI a bI

 a 

 a 

x  x I a  bI  a 

) ]  

)(where ( 21
2x1  x2 I a  bI )  (z  z I )N (S).  and by using (3),  (1)  and (4) , we

have 

))]()([(

))]]()[[([(

))]]()()][()([[(

))]]()()][()([[(

))]()([[(

))]()]()([[[(

))]()]() ([[(

)]) ()([(

)]])()([(

)]])()([(

) ])][()([(

)]][(

21

21

21

21

21

21

21
2

21
2

2121

2121

2
21

21
2

bI u u I a  bI

bI a  bI )(t  t I )](a bI a bI

a  bI t  t I a  bI a bI a bI

a  bI a  bI t  t I a bI a bI

t  t I a  bI )][(a bI a bI )]](a bI

a  bI a bI t t I a bI )](a bI

a bI t t I a bI a bI

bI a  bI )][(a bI t t I

bI a  bI )][[(a x I e e I

bI a  bI )][[(e  e I )(x x I )][a  bI a bI

bI a bI x x I )(a bI

bI ) [(x  x I )[(a  bI )(a bI

a bI

 a 

 a 











 a 

 bI )(a bI )][(x  a 

 a 

 a 

 a 


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where )N (S))()  ((t1  t2 I x1  x2 I e1  e2 I  & where 

).N ( )) (( 21
2u1  u2 I )  (a  bI t  t I S . Thus N (S)  is neutrosophic left regular,

right regular and regular, so N (S)   is completely regular.

(ii) (i)  Assume that N (S)  is a completely regular neutrosophic AG  -groupoid

with left identity, then for any a  bI N (S)  there exist

)N (S)),((x1  x2I y1  y2I ),(z1  z2I such that 

)]()  [(( 21a  bI a  bI )21)(x  x I a  bI ) , (a  bI )  (a  bI )2 (y  y I  and 

)2 .)  (( 21a  bI z  z I )(a  bI  Now by using (1),  (4)  and (3) , we have 

) ,) ([(

))]]()]([(

))]]( z I )(y y I )][(a bI ) ([[(

))]]()() ][( z I )([[(

) ])()([(

)()]][()][()([[(

) ])()]][()()][([[(

) ])() ][()]([[(

) ])()][()]([[(

))](

2
21

2

2
212121

2

2
21

2
2121

2
2121

2
21

2
212121

2

2
212121

2
212121

2
21

2
2121

2
212121

2

21

bI v v I )](a bI

bI ) [[(z z I )(y y I x x I a bI

z x x I a bI

y y I x x I a bIz a bI

bI ) [(y y I x  x I )]][(z z I a  bI

a  bI a  bI y y I x I z  z I a bI

x  x I )(y  y I a bI a bI z  z I a bI

z z I a  bIx  x I )(y y I a bI

a  bI ) (y  y I x x I z z I a  bI

bI )(x x I a  bI

a  bI

 a 

 a 





 a 

)(x 







 [(a 

) ]  

)]  ()][()(where [(z1  z2I y1  y2I x1  x2I v1  v2I )N (S).  This shows that N (S)

is (2,2) -regular. 

Lemma2 Every weakly regular neutrosophic AG -groupoid with left identity

(Neutrosophic AG**-groupoid )  is regular. 

Proof Assume that N (S)  is a weakly regular Neutrosophic AG  -groupoid with left

identity (Neutrosophic AG**-groupoid ) , then for any (a  bI )N (S)  there exist

),((x1  x2 I y1  y2 I S)N ( )   such that 

)].)([( 2121a bI  a bI )(x  x I )][(a bI y  y I  Let 

(S)))((x1  x2I y1  y2I  t1  t2I  N  and 

)(x  x I )]]()[([(t1  t2I y1  y2I 1 2 a  bI )  (u1  u2I )N (S).  Now by using (1) ,

(2), (3)  and (4) , we have 
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),)]()([(

))]]]()]()()[[()[([(

))]]]()]()()[[()[([(

))]]]()()][()()[[([(

))]]]()()][()()[[([(

))]]]()()][()()[[([(

))]()([(

))]()]()([[(

))]()]()([[(

)])()][()([(

21

212121

212121

212121

212121

212121

21

2121

2121

2121

bIaIuubIa

bIabIaIxxIyyIttbIa

bIabIaIxxIyybIaItt

bIabIabIaIxxIyyItt

bIaIyyIxxbIabIaItt

bIaIyybIaIxxbIaItt

bIabIaItt

bIabIaIyyIxx

bIaIxxIyybIa

IyybIaIxxbIa

bIa























 

where )()]])]()()[[([( 21212121 SNIuubIaIxxIyyItt  . Thus )(SN  is

regular. 
The converse of Lemma 2 is not true in general, as can be seen from the following 
example. 
Example2 [ref10] Let us consider a Neutrosophic AG -groupoid














IIIIIIII

IIIIIIII

44,34,24,14,43,33,23,13

,42,32,22,12,41,31,21,11
N(S)  with left identity 3  

in the following Cayley's table. 

 1  1I 1  2I 1  3I 1  4I 2  1I 2  2I 2  3I 2  4I 3  1I 3  2I 3  3I 3  4I 4  1I 4  2I 4  3I 4  4I

1  1I 2  2I 2  2I 2  4I 2  4I 2  2I 2  2I 2  4I 2  4I 4  2I 4  2I 4  4I 4  4I 4  2I 4  2I 4  4I 4  4I

1  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 4  2I 4  2I 4  2I 4  2I 4  2I 4  2I 4  2I 4  2I

1  3I 2  1I 2  2I 2  3I 2  4I 2  1I 2  2I 2  3I 2  4I 4  1I 4  2I 4  3I 4  4I 4  1I 4  2I 4  3I 4  4I

1  4I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 4  1I 4  2I 4  1I 4  2I 4  1I 4  2I 4  1I 4  2I

2  1I 2  2I 2  2I 2  4I 2  4I 2  2I 2  2I 2  4I 2  4I 2  2I 2  2I 2  4I 2  4I 2  2I 2  2I 2  4I 2  4I

2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I 2  2I

2  3I 2  1I 2  2I 2  3I 2  4I 2  1I 2  2I 2  3I 2  4I 2  1I 2  2I 2  3I 2  4I 2  1I 2  2I 2  3I 2  4I

2  4I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I 2  1I 2  2I

3  1I 1  2I 1  2I 1  4I 1  4I 2  2I 2  2I 2  4I 2  4I 3  2I 3  2I 3  4I 3  4I 4  2I 4  2I 4  4I 4  4I

3  2I 1  2I 1  2I 1  2I 1  2I 2  2I 2  2I 2  2I 2  2I 3  2I 3  2I 3  2I 3  2I 4  2I 4  2I 4  2I 4  2I

3  3I 1  1I 1  2I 1  3I 1  4I 2  1I 2  2I 2  3I 2  4I 3  1I 3  2I 3  3I 3  4I 4  1I 4  2I 4  3I 4  4I

3  4I 1  1I 1  2I 1  1I 1  2I 2  1I 2  2I 2  1I 2  2I 3  1I 3  2I 3  1I 3  2I 4  1I 4  2I 4  1I 4  2I

4  1I 1  2I 1  2I 1  4I 1  4I 2  2I 2  2I 2  4I 2  4I 1  1I 1  2I 1  4I 1  4I 2  2I 2  2I 2  4I 2  4I

4  2I 1  2I 1  2I 1  2I 1  2I 2  2I 2  2I 2  2I 2  2I 1  1I 1  2I 1  2I 1  2I 2  2I 2  2I 2  2I 2  2I

4  3I 1  1I 1  2I 1  3I 1  4I 2  1I 2  2I 2  3I 2  4I 1  2I 1  2I 1  3I 1  4I 2  1I 2  2I 2  3I 2  4I

4  4I 1  1I 1  2I 1  1I 1  2I 2  1I 2  2I 2  1I 2  2I 1  2I 1  2I 1  1I 1  2I 2  1I 2  2I 2  1I 2  2I

Theorem 7 If N (S)  is a Neutrosophic AG -groupoid with left identity

(Neutrosophic AG**-groupoid )   then the following are equivalent. 

(i)  N (S)  is weakly regular.

(ii)  N (S)  is completely regular.

 Proof (i)  (ii)
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Let )(SN  be a weakly regular Neutrosophic AG -groupoid AG( -groupoid ) , then

for any )(SNbIa   there exist )()(),( 2121 SNIyyIxx   such that

))()()(( 2121 IyybIaIxxbIabIa   and let ( )())( 212121 IttIyyIxx 

for some )()( 21 SNItt  . Now by using ),2(  we have

 ,)()(

)])()][()([(

)])()][()([(

21
2

2121

2121

IttbIa

IyyIxxbIabIa

IyybIaIxxbIabIa







 

where )())(( 212121 SNIttIyyIxx  . Thus )(SN  is right regular.

Let )(SN  be a weakly regular Neutrosophic AG -groupoid with left identity

(Neutrosophic AG**-groupoid )  then for any )(SNbIa   there exist

)()(),( 2121 SNIyyIxx   such that

)])()][()([( 2121 IyybIaIxxbIabIa  . Now by using )2(  and ),3(  we have 

,))((

))]()([(

)])()][()([(

)])()][()([(

)])()][()([(

2
21

2
2121

2121

2121

2121

bIaItt

bIaIxxIyy

bIabIaIxxIyy

IyyIxxbIabIa

IyybIaIxxbIabIa











 

Where ( )())( 212121 IttIxxIyy   for some ).()( 21 SNItt   Thus )(SN  is left

regular. 
Assume that )(SN  is a weakly regular Neutrosophic AG -groupoid with left identity

(Neutrosophic AG**-groupoid ) , then for any )(SNbIa   there exist

)()(),( 2121 SNIyyIxx   such that 

)].)()][()([( 2121 IyybIaIxxbIabIa   Let 

)()())(( 212121 SNIttIyyIxx   and 

[(t  t I )[(y  y I )(1 2 1 2 x1  x2 I )]](a  bI )  (u1  u2 I )N (S).  Now by using (1) ,

(2), (3)  and (4) , we have 

),)(

))]]]()]()(

))]]]()]()(

))]]]()()][(

))]]]()()][(

))]]]()()][()(

))]([(

))]([[(

))]()([[(

)][(

21

212121

212121

212121

212121

212121

21

2121

2121

2121

bI u  u I )](a bI

bI )[(t  t I )[[(y y I x x I a bI a bI

t I )[(a  bI )[[(y y I x x I a bI a bI

t I )[[(y y I )(x x I a bI a bI a bI

t I )[[(a  bI )(a bI x x I y y I a bI

t I )[[(a bI x x I a bI y y I a bI

t I )(a  bI a  bI

x y I )](a bI a bI

a bI y y I )](x x I a bI

a  bI  a  bI )(x x I )][(a  bI )(y y I

 [(a 

 [(a 

 [(t 

 [(t 

 [(t 

 [(t 

 t 

 x I )(y 








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where )()()]])]()()[[([( 21212121 SNIuubIaIxxIyyItt  . Thus )(SN  is

regular. Thus )(SN  is completely regular. 

 )()( iii   

Assume that )(SN  is completely regular Neutrosophic AG -groupoid with left

identity AGicNeutrosoph( -groupoid ) , then for any )()( SNbIa   there exist

)()( 21 SNItt   such that ),()()( 21
2 IxxbIabIa   

2
21 ))(()( bIaIyybIa  , ))]()([( 21 bIaIzzbIabIa   

)],)()][()([( 

 )])()][()([(

)()(

2121

2121

21
2

IyybIaIxxbIa

IuuIvvbIabIa

IxxbIabIa







where )())(()( 212121 SNIuuIvvIxx  . Thus )(SN  is Neutrosophic weakly

regular 

,)])()][()([(

)])()][()([(

)])()[()([(

))]()([(

))((

2121

2121

2121

2
2121

2
21

IvvbIaIuubIa

IvvIuubIabIa

bIabIaIvvIuu

bIaIvvIuu

bIaIxxbIa











where ( 21x  x I )   ( 2121u  u I )(v  v I )  for some ( 21x  x I )N (S) . Thus N (S)  is

weakly regular. 

)],)()][()([(

)]])()[()]][()]()()[[(

)]])()[()]][()()][()([[(

) ])][()]() ([[(

))]()([(

2121

212121

212121

2
212121

2

21

bI t t I a bI w w I

bI z  z I x  x I a bI a bI y y I a bI

z z I x x I a bI a bI y y I a bI a bI

a  bI x x I z z I y y I )(a bI

bI z z I a  bI

a  bI

 a 

 [(a 





 a 

where )]]N (S)(t  t I z  z I )()  [[(1 2 1 2 x1  x2I )](a  bI  & 

)]N (S))(( 2121w  w I )  [(y  y I a  bI . Thus N (S)  is weakly regular.

Lemma 3 Every strongly regular Neutrosophic AG -groupoid with left identit

(Neutrosophic AG**-groupoid )  is completely regular. 
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Proof Assume that )(SN   is a strongly regular Neutrosophic AG -groupoid with

left identity AGicNeutrosoph( -groupoid  , then for any )()( SNbIa   there

exists  )()( 21 SNIxx   such that ))]()([( 21 bIaIxxbIabIa   and 

( ).)(())( 2121 bIaIxxIxxbIa   Now by using )1( ,we have 

).()(

))]()([(

))]()([(

))]()([(

21
2

21

21

21

IxxbIa

IxxbIabIa

bIabIaIxx

bIaIxxbIabIa









This shows that )(SN  is right regular and by Theorems 4 and 7, it is clear to see that

)(SN  is completely regular.

Theorem 8 In a Neutrosophic AG -groupoid N(S) with left identity (Neutrosophic

AG**-groupoid )   the following are equivalent. 

)(i  )(SN  is weakly regular.

)(ii  )(SN  is intra-regular.

)(iii  )(SN  is right regular.

)(iv  )(SN  is left regular.

)(v  )(SN  is left quasi regular.

)(vi  )(SN  is completely regular.

)(vii  For all ),(SNbIa   there exist )()(),( 2121 SNIyyIxx   such that

)].)()][()([( 2121 IyybIabIaIxxbIa   

Proof (i) (ii)  Let N (S)  be weakly regular Neutrosophic  AG -groupoid with

left identity (Neutrosophic AG**-groupoid ) , then for any a  bI N (S)  there exist

)N (S)),((x1  x2 I y1  y2 I such that 

)(x  x I a  bI )(y  y I )])][([( 2121a  bI  a  bI  and by Lemma 1, 

))  (( 212121 )N (S)x  x I u  u I )(v  v I  for some (u1  u2 I ),(v1  v2 I . Let

( )N ( ))  ()(v1  v2I u1  u2I t1  t2I S  . Now by using (3),  (1),  (4)  and (2),  we

have 

)) ]()([(

)])() ][()([(

)]) ()][()([(

)]) ()[((

)])()][()([(

)])()(

21
2

21

2121
2

21

21
2

2121

21
2

21

2121

2121

y  y I a  bI t t I

y  y I a  bI v v I u u I

u  u I v  v I a bI y y I

x I a  bI y y I

bI a bI x x I y y I

a bI x  x I )][(a bI y y I







 x 

 a 

 bI  [(a 

) N ( ))  (where (v1  v2I )(u1  u2I t1  t2I S . Thus N (S)  is intra-regular
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)()( iiiii   Let )(SN  be a weakly regular icNeutrosoph  AG -groupoid with left

identity AGicNeutrosoph( -groupoid ) , then for any )(SNbIa   there exist

)()(),( 2121 SNIyyIxx   such that )]())([( 21
2

21 IyybIaIxxbIa 

,)()(

)]))()()][(()([(

)])())][()()(([(

)))]()()(([(

)))]()((()[(

))]]()()][()([[(

)]())([(

21
2

212121

212121

2
212121

212121
2

212121

21
2

21

IssbIa

IyyIuuIvvbIabIa

bIabIaIuuIvvIyy

bIaIuuIvvIyy

IyyIuuIvvbIa

IyybIabIaIvvIuu

IyybIaIxxbIa















where x 1  x 2I  u!  u2Iv 1  v 2I  NS  & 

)()]])()[[( 21212121 SNIuuIvvIyyIss   . Thus )(SN  is right regular

)()( iviii   Let )(SN  be a right regular icNeutrosoph  AG -groupoid with left

identity AGicNeutrosoph( -groupoid ) , then for any )(SNbIa   there exist

x1  x2I N (S)  such that )21 a  bI  (a  b)2 (x  x I

2
21

2121

2121

21

21
2

)(

)])()][[(

)()][([(

))]([(

)

y I )(a bI

v v I )(u u I a  bI a bI

bI )(a  bI u u I v v I

bI )(a bI x x I

a b) (x x I

 y 



 a 

 a 

 bI  (a 

)]  

)] N ( ))(Where (y1  y2 I )  [(v1  v2 I u1  u2 I S . Thus N (S)  is left regular

(iv)  (v)  Let N (S)  be a left regular Neutrosophic  AG -groupoid with left

identity (Neutrosophic AG**-groupoid ) , then for any a  bI N (S)  there exist

(x  x I )N ( )1 2 S  such that 2
21 (a  bI )  (x  x I )(a  bI )

)])()][()(

[(

[(

)()][()(

))(

2121

2121

2
21

u  u I a bI v v I a bI

u u I v v I a bI a bI

a x I a bI





 bI  (x 

)]  
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Thus )(SN  is left quasi regular 

)()( viv   Let )(SN  be a left quasi regular icNeutrosoph  AG -groupoid with left

identity AGicNeutrosoph( -groupoid ) , then for any )(SNbIa   there exist

)(21 SNIxx   such that )])()][()([( 2121 bIaIyybIaIxxbIa   

)()(

)])()][()([(

)])()][()([(

21
2

2121

2121

IvvbIa

IxxIyybIabIa

bIaIyybIaIxxbIa







 

where )()])([( 212121 SNIxxIyyIvv 

Thus )(SN  is right regular )1(  

Let )(SN  be a left quasi regular icNeutrosoph  AG -groupoid with left identity
AGicNeutrosoph( -groupoid ) , then for any )(SNbIa   there exist

)(21 SNIxx   such that )])()][()([( 2121 bIaIyybIaIxxbIa 

2
21

2121

2121

))(

)()][()([(

)])()][()([(

u I a  bI

x x I y y I a bI a bI

a x x I a bI y y I a bI

 (u 



 bI 

)]  

)(where (u1  u2I )  [(x1  x2I y1  y2I )] N (S)

Thus N (S)  is left regular  (2)  

Let N (S)  be a left quasi regular Neutrosophic  AG -groupoid with left identity
(NeutrosophicAG -groupoid ) , then for any a  bI N (S)  there exist

)N (S)1 2 )][()([( 2121a  bI  x  x I a  bI y  y I )(a  bI(x  x I  such that )]  

))]()([(

))]]]()]()()[[(

))]]]()]()()[[([(

))]]()()][()([(

))]]()())(()([(

),)]()([(

))]())()([((

)])()][()(

)])][( x I )([(

21

212121

212121

212121

212121

21

2121

2121

2121

bI t t I a  bI

bI )[(v v I x x I y y I a bI a bI

v  v I )[(a bI x x I y y I a bI a bI

v  v I )[[(x  x I y y I a bI a bI a bI

v  v I )[(x y I a bI a bI

v v I a bI a bI

y  y I x x I a bI a bI

bI a bI y y I x x I

a x a bI y y I )(a bI

 a 

 [(a 





 x I a  bI y 





 [(a 

 bI 

where ) N (S))()  ((v1  v2I y1  y2I x1  x2I  & where 

)]]N (S))[[(t1  t2I  [(v1  v2I x1  x2I )(y1  y2I )](a  bI

Thus N (S)  is regular  (3) . 

By (1).(2)  & (3)  N (S)  is completely regular. 
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)()( ivi   Let )(SN  be a complete regular  icNeutrosoph  AG -groupoid with left

identity AGicNeutrosoph( -groupoid ) , then for any )(SNbIa   there exist

)()( 21 SNIxx   such that ),()( 21
2 IxxbIabIa 

,))(( 2
21 bIaIyybIa   )])([( 21 IzzbIabIa  )( bIa 

)])()][()([(

)])()][()([(

)()(

2121

2121

21
2

IvvbIaIuubIa

IvvIuubIabIa

IxxbIabIa







 

)])()  [(where ( 212121x  x I u  u I v  v I  N (S) . Thus N (S)  is weakly regular.

)])()][()(

)()][()([(

))((

2121

2121

2
21

bI u  u I a  bI v v I

v bI a bI

a y I a bI

 [(a 

 v I u  u I a 

 bI  y 

)]  

)] N (S))(where (y1  y2I )  [(v1  v2I u1  u2I . Thus N (S)  is neutrosophic

weakly regular. 

)])(

)]])()[()]][()]()()[[(

)]])()[()]][()()][()([[(

) ])][()]() ([[(

))]()(

2121

212121

212121

2
212121

2

21

bI t  t I )][(a  bI )(w  w I

bI z z I x  x I a bI a bI y y I a bI

z z I x x I a bI a bI y y I a bI a bI

a bI x x I z z I y y I )(a bI

bI z z I a  bI

a  bI

 [(a 

 [(a 





 [(a 

where )]] N (S))([[(t1  t2I  z1  z2I x1  x2I )](a  bI  & 

)]N ( ))((w1  w2I )  [(y1  y2I a  bI S . Thus N (S)  is neutrosophic weakly regular.

(ii) (vii)  Let N (S)  be an intra-regular Neutrosophic  AG -groupoid with left

identity (AG -groupoid ) , then for any a  bI N (S)  there exist

),((x1  x2 I y1  y2 I )N (S)   such that a  bI  [(x  x I )(a  bI ) ](y  y I ).21
2

21

Now by using Lemma1, ( 212121y  y I )  (u  u I )(v  v I )  for some 

,v  v I N ( )u1  u2I 1 2 S . Thus by using (4) , (1)  and (3) , we have

a  bI

 x 1  x 2Ia  bI2y1  y2I

 x 1  x 2Ia  bIa  bIy1  y2I

 a  bIx 1  x 2Ia  bIy1  y2I

 y1  y2Ix 1  x 2Ia  bIa  bI
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where )[( 212121u  u I )(v  v )  (y  y I  N (S) &  where 

)( 212121v  v )(u  u I )  (t  t I ) N (S  & where 

))  (( 212121y  y I )(t  t I s  s I )N (S  & where 

))  (( 212121x  x I )(s  s I w  w I ) N (S  & where 

))  (( 2121w  w I )(a  bI z  z I )N (S

 (vii)  (ii)  let for all a  bI N (S),

)][( 2121a  bI  x  x I )(a  bI )][(a  bI )(z  z I  holds for some 

 y1  y2Ix 1  x 2Ia  bIx 1  x 2Ia  bI2y1  y2I

 u1  u2Iv 1  v 2x  yIa  bIx 1  x 2Ia  bI2y1  y2I

 a  bIx 1  x 2Iv 1  v 2u1  u2Ix 1  x 2Ia  bI
2y1  y2I

 a  bIx 1  x 2It1  t2Ix 1  x 2Ia  bI2y1  y2I

 x 1  x 2Ia  bI2y1  y2It1  t2Ia  bIx 1  x 2I

 t1  t2Iy1  y2Ix 1  x 2Ia  bI2a  bIx 1  x 2I

 a  bI2x 1  x 2Iy1  y2It1  t2Ia  bIx 1  x 2I

 a  bI2x 1  x 2Is1  s2Ia  bIx 1  x 2I

 s1  s2Ix 1  x 2Ia  bI2a  bIx 1  x 2I

 s1  s2Ix 1  x 2Ia  bIa  bIa  bIx 1  x 2I

 a  bIa  bIx 1  x 2Is1  s2Ia  bIx 1  x 2I

 a  bIa  bIw1  w2Ia  bIx 1  x 2I

 w1  w2Ia  bIa  bIa  bIx 1  x 2I

 z1  z2Ia  bIa  bIx 1  x 2I

 x 1  x 2Ia  bIa  bIz1  z2I

),((x1  x2 I z1  z2 I )N (S).  Now by using (4) , (1) , (2)  and (3)  we have
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a  bI

 x 1  x 2 Ia  bIa  bIz1  z2I

 a  bIx 1  x 2Ia  bIz1  z2I

 x 1  x 2 Ia  bIa  bIz1  z2Ix 1  x 2Ia  bIz1  z2 I

 a  bIx 1  x 2Ia  bIz1  z2Ix 1  x 2Ia  bIz1  z2 I

 x 1  x 2Ia  bIz1  z2Ix 1  x 2 Ia  bIz1  z2 Ia  bI

 x 1  x 2Ia  bIz1  z2I2a  bI

 x 1  x 2Ia  bI2z1  z2I2 a  bI

 x 1  x 2I2a  bI2z1  z2Iz1  z2 Ia  bI

 x 1  x 2I2z1  z2Ia  bI2z1  z2 Ia  bI

 a  bI2x 1  x 2I2z1  z2 Iz1  z2 Ia  bI

 a  bIa  bIx 1  x 2 I2z1  z2 Iz1  z2Ia  bI

 a  bIa  bIz1  z2 Iz1  z2Ix 1  x 2 I2 a  bI

 a  bIa  bIz1  z2I2x 1  x 2 I2 a  bI

 x 1  x 2I
2z1  z2I

2a  bIa  bIa  bI

 t1  t2 Ia  bIa  bIa  bI,

 t1  t2 Ia  bI2u1  u2I

where ) N (S))2 ]  ([( 2121
2

21x  x I ) (z  z I t  t I  and 

( 21 ) N (S))  (a  bI )  (u  u I ) N (S)  where ( 21a  bI u  u I . Thus N (S)  is 

neutrosophic intra regular. 

Remark Every intra-regular, right regular, left regular, left quasi regular and
completely regular AG -groupoids with left identity (AG -groupoids )   are regular.

The converse of above is not true in general. Indeed, from Example 1, regular AG -
groupoid with left identity is not necessarily intra-regular. 

Theorem 9 In a Neutrosophic AG -groupoid N(S) with left identity ,  the following

are equivalent. 
(i)  N (S)  is weakly regular.

(ii)  N (S)  is intra-regular.

(iii)  N (S) is right regular.

(iv)  N (S)  is left regular.

(v)  N (S)  is left quasi regular.

(vi)  N (S)  is completely regular.
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(vii)  For all a  bI  N (S),  there exist (x1  x2 I ),(y1  y2 I )N (S)  such that

[( 2121a  bI  x  x I )(a  bI )][(a  bI )(y  y I )]. 

(viii)  N(S) is (2,2) -regular.

Proof (i) (ii)  Let N (S)  be a weakly regular Neutrosophic  AG -groupoid with

left identity (NeutrosophicAG -groupoid ) , then for any a  bI N (S)  there exist

) N ( )(x1  x2 I ), (y1  y2 I S  such that 

)]2121a  bI  [(a  bI )(x  x I )][(a  bI )(y  y I  and by Lemma1, 

))  (( 212121 ) N ( )), (x  x I u  u I )(v  v I  for some (u1  u2 I v1  v2 I S . Let

( ) N ( ))  ()(v1  v2 I u1  u2 I t1  t2I S . Now by using (3),  (1),  (4)  and (2),  we

have 

)) ]()([(

)])() ][()([(

)]) ()][()([(

)]) ()[((

)])()][()([(

)])()(

21
2

21

2121
2

21

21
2

2121

21
2

21

2121

2121

y  y I a  bI t t I

y  y I a  bI v v I u u I

u  u I v  v I a bI y y I

x I a  bI y y I

bI a bI x x I y y I

a bI x  x I )][(a bI y y I







 x 

 a 

 bI  [(a 

) N ( )where (v  v I )(u  u I )  (1 2 1 2 t1  t2I S . Thus N (S)  is intra-regular.

(ii) (iii)  Let N (S)  be a intra regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG -groupoid ) , then for any a  bI  N (S)  there exist

( ),x1  x2 I y1  y2 I N S  such that [( 21
2

21 a  bI  x  x I )(a  bI ) ](y  y I )  

)) (

)])()][(()([(

)])())][()([(

)))]()()(([(

)))]() (([(

),)]]()()([[(

))([(

21
2

212121

212121

2
212121

212121
2

212121

21
2

21

bI s  s I

bI a  bI v v I u u I ))(y y I

y  y I )((v v I u u I a bI a bI

y y I v v I u u I a bI

bI v v I )(u u I y y I

u  u I v v I )][(a bI a  bI y  y I

a x x I a bI ) ](y y I

 (a 

 a 





 a 



 bI 

where ) N (S)1 2 ! 2 1 2(x  x I )  (u  u I )(v  v I  & where 

)]] N (S))[(s1  s2 I )  [(y1  y2 I v1  v2 I )(u1  u2 I . Thus N (S)  is right regular

(iii)  (iv)  Let N (S)  be a right regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG  -groupoid ) , then for any a  bI  N (S)  there exist

) N ( )1 2 S ( 21a  bI  a  b)2 (x  x I(x  x I  such that )  
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2
21

2121

2121

21

21
2

)(

)])()][[(

)()][([(

))]([(

)

y I )(a bI

v v I )(u u I a bI a bI

a  bI )(a  bI u u I v v I

a  bI )(a bI x x I

a b) (x x I

 y 







 bI  (a 

)]  

)] N (S))(where (y1  y2 I )  [(v1  v2 I u1  u2 I  . Thus N (S)  is left regular

(iv)  (v)  Let N (S)  be a left regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG  -groupoid ) , then for any a  bI N (S)   there exist

)N ( )(x1  x2 I S  such that 2
21 a  bI  (x  x I )(a  bI )

)])()][()(

[(

[(

)()][()(

))(

2121

2121

2
21

u  u I a bI v v I a bI

u u I v v I a bI a bI

a x I a bI





 bI  (x 

)]  

Thus N (S)  is left quasi regular 

(v)  (vi)  Let N (S)  be a left quasi regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG -groupoid ) , then for any a  bI N (S)  there exist

x1  x2 I N S )()][()([( 2121( )   such that a  bI  x  x I a  bI y  y I a  bI )]  

) (

)()][(

)])][([(

21
2

2121

2121

bI ) (v v I

bI )(a  bI y y I x x I

a x bI y  y I )(a bI

 a 

 [(a 

 x I )(a  bI 

)]  

)] N (S))(where (v1  v2 I )  [(y1  y2 I x1  x2 I . Thus N (S)  is neutrosophic right

regular. Let N (S)  be a left quasi regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG -groupoid ) , then for any a  bI  N (S)  there exist

(x1  x2 I ) N (S)  such that )][()([( 2121 a  bI  x  x I a  bI y  y I )(a  bI )]  

2
21

2121

2121

)(

)][()([(

)])][()(

u I )(a bI

x x I y y I a bI )(a bI

a [(x  x I a bI y y I )(a bI

 u 



 bI 

)]  

)] N (S))(where (u1  u2 I )  [(x1  x2 I y1  y2 I . Thus N (S)  is neutrosophic left

regular .
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Let N (S)  be a neutrosophic left quasi regular Neutrosophic  AG -groupoid with left

identity (NeutrosophicAG -groupoid ) , then for any a  bI  N (S)  there exist

x1  x2 I N S 2121a  bI  [(x  x I )(a  bI )][(y  y I )(a  bI( )  such that )]  

))(

))]]]()]()()[([(

))]]]()]()()[([(

))]]()()][()[[([(

))]]()())(()[([(

))]()([(

))]()([((

)])()([(

)])([(

21

212121

212121

212121

212121

21

2121

2121

2121

bI t t I )](a  bI

bI v  v I )[[(x x I y y I a bI a bI

v v I a bI )[[(x x I y y I a bI a bI

v  v I x  x I )(y y I a bI a bI a bI

v  v I x  x I )(a  bI y  y I a bI a bI

v v I a bI a bI

y  y I x  x I ))(a bI a bI

bI a bI )][(y y I x x I

x x I a  bI )][(y  y I )(a bI

a bI

 [(a 

 a 











 a 





where ) N (S))()  ((v1  v2I y1  y2I x1  x2I  & where 

)]] N ( ))[[(x  x I )(y  y I )]((t1  t2 I )  [(v1  v2 I 1 2 1 2 a  bI S . Thus N (S)  is

regular  (3)   

By (1).(2)  & (3)  N (S)  is Neutrosophic completely regular. 

 (vi)  (i)  Assume that N (S)  is neutrosophic completely regular Neutrosophic 

AG -groupoid with left identity (NeutrosophicAG -groupoid ) , then for any

a  bI  N (S)  there exist (S)t1  t2 I  N  such that ( 21a  bI  a  bI )2 (x  x I ),  
2

21a  bI  (y  y I )(a  bI ) , )](21 a  bI  [(a  bI )(z  z I a  bI )  

)])()][()(

)]])()[()]][()]()()[[(

)]])()[()]][()()][()([[(

) ])][()]() ([[(

))]()(

2121

212121

212121

2
212121

2

21

bI t t I a bI w w I

bI z  z I x  x I a bI a bI y y I a bI

z z I x x I a bI a bI y y I a bI a bI

a  bI x x I z z I y y I )(a bI

bI z z I a  bI

a  bI

 [(a 

 [(a 





 [(a 

Thus N (S)  is Neutrosophic weakly regular. 

(ii) (vii)  Let N (S)  be a Neutrosophic intra-regular Neutrosophic  AG -groupoid

with left identity (AG -groupoid ) , then for any a  bI  N (S)  there exist

) N (S)(x1  x2 I ), (y1  y2 I  such that [( 21
2

21a  bI  x  x I )(a  bI ) ](y  y I ).  

)(Now by using Lemma1, ( 212121y  y I )  (u  u I v  v I )  for some 

(u1  u2 I ), (v1  v2 I ) N (S) .
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a  bI

 x 1  x 2Ia  bI2y1  y2I

 x 1  x 2Ia  bIa  bIy1  y2I

 a  bIx 1  x 2Ia  bIy1  y2I

 y1  y2Ix 1  x 2Ia  bIa  bI

 y1  y2Ix 1  x 2Ia  bIx 1  x 2 Ia  bI
2y1  y2 I

 u1  u2Iv 1  v 2x  yIa  bIx 1  x 2Ia  bI2 y1  y2 I,

 a  bIx 1  x 2Iv 1  v 2u1  u2 Ix 1  x 2 Ia  bI2y1  y2 I

 a  bIx 1  x 2It1  t2Ix 1  x 2Ia  bI
2y1  y2 I

 x 1  x 2Ia  bI2y1  y2It1  t2Ia  bIx 1  x 2 I

 t1  t2Iy1  y2Ix 1  x 2Ia  bI2 a  bIx 1  x 2 I

 a  bI2x 1  x 2Iy1  y2It1  t2Ia  bIx 1  x 2 I

 a  bI2x 1  x 2Is1  s2 Ia  bIx 1  x 2I,

 s1  s2Ix 1  x 2Ia  bI2a  bIx 1  x 2I

 s1  s2Ix 1  x 2Ia  bIa  bIa  bIx 1  x 2I

 a  bIa  bIx 1  x 2Is1  s2Ia  bIx 1  x 2I

 a  bIa  bIw1  w2Ia  bIx 1  x 2I,

 w1  w2Ia  bIa  bIa  bIx 1  x 2I

 z1  z2Ia  bIa  bIx 1  x 2I,

 x 1  x 2Ia  bIa  bIz1  z2I

where )()())(( 2121 SNIzzbIaIww   where 

)()())(( 212121 SNIwwIssIxx   where 

)()())(( 212121 SNIssIttIyy   where 

)()())(( 212121 SNIttIuuvv   where 

)())(( 212121 IyyvvIuu  )(SN  

 )()( iivii   let for all ),(SNbIa 

)])()][()([( 2121 IzzbIabIaIxxbIa   holds for some 

).()(),( 2121 SNIzzIxx   Now by using )4( , )1( , )2(  and )3( , we have
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a  bI

 x 1  x 2Ia  bIa  bIz1  z2I

 a  bIx 1  x 2Ia  bIz1  z2I

 x 1  x 2Ia  bIa  bIz1  z2Ix 1  x 2Ia  bIz1  z2I

 a  bIx 1  x 2Ia  bIz1  z2Ix 1  x 2Ia  bIz1  z2I

 x 1  x 2Ia  bIz1  z2Ix 1  x 2Ia  bIz1  z2Ia  bI

 x 1  x 2Ia  bIz1  z2I2a  bI

 x 1  x 2Ia  bI
2z1  z2I

2a  bI

 x 1  x 2I2a  bI2z1  z2Iz1  z2Ia  bI

 x 1  x 2I2z1  z2Ia  bI2z1  z2Ia  bI

 a  bI2x 1  x 2I2z1  z2Iz1  z2Ia  bI

 a  bIa  bIx 1  x 2I2z1  z2Iz1  z2Ia  bI

 a  bIa  bIz1  z2Iz1  z2Ix 1  x 2I2a  bI

 a  bIa  bIz1  z2I2x 1  x 2I2a  bI

 x 1  x 2I
2z1  z2I

2a  bIa  bIa  bI

 t1  t2Ia  bIa  bIa  bI,

 t1  t2Ia  bI2u1  u2I

where )()(])()[( 21
2

21
2

21 SNIttIzzIxx   and 

)()()( 21 SNIuubIa   where )()()( 21 SNIuubIa  . Thus )(SN  is 

intra regular. 
)()( viiivi   Assume that )(SN  is completely regular Neutrosophic AG -groupoid

with left identity AGicNeutrosoph( -groupoid ) ,then for any )(SNbIa   there

exist )()( 21 SNItt   such that ),()( 21
2 IxxbIabIa   

2
21 ))(( bIaIyybIa  , ))]()([( 21 bIaIzzbIabIa   

where )())(()( 212121 SNIuuIvvIxx    Thus )(SN  is weakly regular

)])()][()([( 

 )])()][()([(

)()(

2121

2121

21
2

IyybIaIxxbIa

IuuIvvbIabIa

IxxbIabIa







)])()][()([(

))])()][(

)])()][()([(

))]()([(

))(

2121

2121

2121

2
2121

2
21

bI u u I a bI v v I

bI )(a bI u u I v v I

u  u I v v I a bI a bI

u  u I v v I a bI

a x I a bI

 a 

 [(a 





 bI  (x 
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where )( 21 Ixx  ))(( 2121 IvvIuu   for some )()( 21 SNIxx  . Thus )(SN  is 

weakly regular. 

)])()][()([(

)]])()[()]][()]()()[[([(

)]])()[()]][()()][()([[(

]))()][()](()[[(

))]()([(

2121

212121

212121

2
212121

2

21

IwwbIaIttbIa

bIaIyybIabIaIxxIzzbIa

bIabIaIyybIabIaIxxIzz

bIaIyyIzzIxxbIa

bIaIzzbIa

bIa













where )()]])]()([[()( 212121 SNbIaIxxIzzItt   & 

)()])([()( 2121 SNbIaIyyIww  . Thus )(SN  is weakly regular.

)()( viviii   Let )(SN  be a )2,2( -regular AGicNeutrosoph -groupoid with left

identity, then for )(SNbIa   there exists )(21 SNIxx   such that
22 ))](()[( bIayIxbIabIa  . Now 

]))([(

))](()[(
2

21

2
21

2

bIaIyy

bIaIxxbIabIa





where ( )()()() 2121
2 SNIyyIxxbIa   and by using )3( , we have

)()(

]]))[()][()([(

)]])()[([()(

21
2

2
21

21
2

IzzbIa

bIaIxxbIabIa

bIabIaIxxbIabIa







 

where ).()())(( 21
2

21 SNIzzbIaIxx   and by using ),3(  )1(  and )4( , we

have 

))]()([(

))]]()]()()[[([(

))]]()()([[(

))]]()()][()([[(

))]]()]()][()([[(

))([[[(
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Thus N(S) is left regular, right regular and regular, so N(S) is completely regular. 
)()( viiivi   Assume that )(SN  is a completely regular Neutrosophic AG -

groupoid with left identity, then for any )(SNbIa   there exist

)()(),(),( 212121 SNIzzIyyIxx   such that 
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regular. 
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