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Abstract. The purpose of this text is to make a few comments about the book “Categories and
Sheaves” by Kashiwara and Schapira, Springer 2006.
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1 Introduction

The purpose of this text is to make a few comments about the book

Categories and Sheaves by Kashiwara and Schapira, Springer 2006,

referred to as “the book” henceforth.

An important reference is

[GV] Grothendieck, A. and Verdier, J.-L. (1972). Préfaisceaux. In Artin, M.,
Grothendieck, A. and Verdier, J.-L., editors, Théorie des Topos et Cohomologie Étale
des Schémas, volume 1 of Séminaire de géométrie algébrique du Bois-Marie, 4, pages
1-218. Springer.

http://www.normalesup.org/∼forgogozo/SGA4/01/01.pdf

Here are two useful links:

Schapira’s Errata:
https://webusers.imj-prg.fr/∼pierre.schapira/books/Errata.pdf,

nLab entry: http://ncatlab.org/nlab/show/Categories+and+Sheaves.

The tex file for this text is available at

https://github.com/Pierre-Yves-Gaillard/acs and

https://goo.gl/eJxVyj

More links are available at http://goo.gl/df2Xw.

I have rewritten some of the proofs in the book. Of course, I’m not suggesting
that my wording is better than that of Kashiwara and Schapira! I just tried to make
explicit a few points which are implicit in the book.

The notation of the book will be freely used. We will sometimes write BA for
Fct(A,B), αi for α(i), fg for f ◦ g, and some parenthesis might be omitted. We write⊔

instead of
∐

for the coproduct.

Following a suggestion of Pierre Schapira’s, we shall denote projective limits by
lim instead of lim

←−
, and inductive limits by colim instead of lim

−→
. We sometimes use

the words limit and colimit instead of the phrases projective limit and inductive limit.

Thank you to Pierre Schapira and to Olaf Schnürer for their help and their interest!
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2 U-categories and U-small Categories

Here are a few comments about the definition of a U -category on page 11 of the book.

§ 1. First of all let us insist on the fact that, in this text, the hom-sets of a category
are not necessarily disjoint. For more on this disjointness issue, see §7 p. 11 and §21
p. 25 below.

Let U be a universe. Recall that an element of U is called a U -set. The following
definitions are used in the book:

Definition 2 (U -category). A U-category is a category C such that, for all objects
X, Y , the set HomC(X, Y ) of morphisms from X to Y is equipotent to some U-set.

Definition 3 (U -small category). The category C is U-small if in addition the set of
objects of C is equipotent to some U-set.

One could also consider the following variant:

Definition 4 (U -category). A U-category is a category C such that, for all objects
X, Y , the set HomC(X, Y ) is a U-set.

Definition 5 (U -small category). The category C is U-small if in addition the set of
objects of C is a U-set. More concisely: C is U-small if and only if C ∈ U .

Definition 6 (essentially U -small category). The category C is essentially U -small if
it is equivalent to a U-small category.

Note that: (a) a category C is a U -category in the sense of Definition 2 if and only
if there is a U-category in the sense of Definition 4 which is isomorphic to C; (b) a
similar statement holds for U-small categories; (c) Statement (a) would have to be
modified if the hom-sets were required to be disjoint.

In this text we shall always use Definitions 4 and 5.

We often assume implicitly that a universe U has been chosen, and we say “category”
and “small category” instead of “U -category” and “U -small category”.

See also Section 4.2 p. 24.
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3 Typos and Details

∗ P. 11, Definition 1.2.1, Condition (b): Hom(X,X) should be HomC(X,X).

§ 7. Page 14, definition of Mor(C). As the hom-sets of C are not assumed to be
disjoint, it seems better to define Mor(C) as a category of functors. See §21 p. 25.

∗ P. 25, Corollary 1.4.6. Due to the definition of U -small category used in this text
(see Section 2 p. 10), the category CA of the corollary is no longer U -small, but only
canonically isomorphic to some U -small category.

∗ P. 25, Proof of Corollary 1.4.6 (second line): hC should be hC′ .

∗ P. 26, Proposition 1.4.10, end of the proof: HomC(Y,X) → F (X) should be
HomC(Y,X)→ F (Y ).

∗ P. 33, Exercise 1.19: the arrow from L1 ◦R1 ◦ L2 to L2 should be η1 ◦ L2 instead of
ε1 ◦ L2.

∗ P. 37, Remark 2.1.5: “Let I be a small set” should be “Let I be a small category”.

∗ P. 39, penultimate line “exits” should be “exists”.

∗ P. 47, Proposition 2.2.4 (ii): “If Y0 × Y1 and Y0 ×X Y1 exist in C” should be “If
X0 ×X1 and X0 ×Y X1 exist in C”.

∗ P. 41, sixth line: (i) should be (a).

∗ P. 52, fourth line: Mor(I, C) should be Fct(I, C).

∗ P. 53, Part (i) (c) of the proof of Theorem 2.3.3 (Line 2): “β ∈ Fct(J,A)” should
be “β ∈ Fct(J, C)”.

∗ P. 54, second display: we should have i→ φ(j) instead of φ(j)→ i.

∗ P. 58, Corollary 2.5.3: The assumption that I and J are small is not necessary.
(The statement does not depend on the Axiom of Universes.)

∗ P. 58, Proposition 2.5.4: Parts (i) and (ii) could be replaced with the statement: “If
two of the functors φ, ψ and φ ◦ ψ are cofinal, so is the third one”.

∗ Pp. 63-64, statement and proof of Corollary 2.7.4: all the h are slanted, but they
should be straight.

∗ P. 65, Exercise 2.7: see Section 5.20 p. 93 below.
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∗ P. 74, first line of the proof of Theorem 3.1.6: lim
−→

should be lim
−→
i

.

∗ P. 74, last four lines: α should be φ.

∗ P. 79, proof of Proposition 3.2.5: the word “filtrant” should be replaced with the
word “connected”.

∗ P. 80, last display: a lim
−→

is missing.

∗ P. 83, Statement of Proposition 3.3.7 (iv) and (v): k might be replaced with R.

∗ Pp 83 and 85, Proof of Proposition 3.3.7 (iv): “Proposition 3.1.6” should be “Theorem
3.1.6”. Same typo on p. 85, Line 6.

∗ P. 84, Proposition 3.3.13. It is clear from the proof (I think) that the intended
statement was the following one: If C is a category admitting finite inductive limits
and if A : Cop → Set is a functor, then we have

C small and CA filtrant ⇒ A left exact ⇒ CA filtrant.

∗ P. 88, Proposition 3.4.3 (i). It would be better to assume that C admits small
inductive limits.

∗ P. 89, last sentence of the proof of Proposition 3.4.4. The argument is slightly easier
to follow if ψ′ is factored as

(J1)
j2 a−→ (J1)

ψ2(j2) b−→ (K1)
ψ2(j2) c−→ (K1)

φ2(i2).

Then a, b and c are respectively cofinal by Parts (ii), (iii) and (iv) of Proposition 3.2.5
p. 79 of the book.

∗ P. 90, Exercise 3.2: “Proposition 3.1.6” should be “Theorem 3.1.6”.

∗ P. 115, line 4: “two morphisms i1, i2 : Y → Y ⊔X Y ” should be “two morphisms
i1, i2 : Y ⇒ Y ⊔X Y ”.

∗ P. 115, Line 8: i1 ◦ g = i2 ◦ g should be g ◦ i1 = g ◦ i2.

∗ P. 120, proof of Theorem 5.2.6. We define u′ : X ′ → F as the element of F (X ′)
corresponding to the element (u, u0) of F (X)×F (X1)F (Z0) under the natural bijection.
(Recall X ′ := X ⊔X1 Z0.)

∗ P. 121, proof of Proposition 5.2.9. The fact that, in Proposition 5.2.3 p. 118 of
the book, only Part (iv) needs the assumption that C admits small coproducts is
implicitly used in the sequel of the book.
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∗ P. 128, proof of Theorem 5.3.9. Last display: ⊔ should be ∪. It would be simpler
in fact to put

Ob(Fn) := {Y1 ⊔X Y2 | X → Y1 and X → Y2 are morphisms in Fn−1}.

∗ P. 128, proof of Theorem 5.3.9„ just before the “q.e.d.”: Corollary 5.3.5 should be
Proposition 5.3.5.

∗ P. 132, Line 2: It would be slightly better to replace “for small and filtrant
categories I and J” with “for small and filtrant categories I and J and functors
α : I → C, β : J → C”.

∗ P. 132, Line 3: HomC(A,B) should be HomInd(C)(A,B).

∗ P. 132, Lines 4 and 5: «We may replace “filtrant and small” by “filtrant and cofinally
small” in the above definition»: see Proposition 158 p. 104.

∗ P. 132, Corollary 6.1.6: The following fact is implicit. Let C F−→ C ′ G−→ C ′′ be functors,
let X ′ be in C ′, and assume that G is fully faithful. Then the functor CX′ → CG(X′)

induced by G is an isomorphism.

∗ P. 133, Proposition 6.1.9. “There exists a unique functor ...” should be “There exists
a functor ... Moreover, this functor is unique up to unique isomorphism.”

§ 8. P. 133. In Part (ii) of Proposition 6.1.9 the authors, I think, intended to write

“ lim
−→

”(IF ◦ α) ∼−→ IF (“ lim
−→

”α)

instead of
IF (“ lim

−→
”α)

∼−→ “ lim
−→

”(IF ◦ α).

∗ P. 134, proof of Proposition 6.1.12: “CA × CA′” should be “CA × C ′A′” (twice).

∗ P. 135, Corollary 6.1.14: f = “ lim
−→

”φ should be f ≃ “ lim
−→

”φ. (This is an
isomorphism in Mor(Ind(C)).)

§ 9. ∗ P. 135, Corollary 6.1.15: f = “ lim
−→

”φ should be f ≃ “ lim
−→

”φ and g = “ lim
−→

”ψ

should be g ≃ “ lim
−→

”ψ. (See Section 9.5 p. 137 below.)

∗ P. 136, proof of Proposition 6.1.16: see §128 p. 96.
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∗ P. 136, proof of Proposition 6.1.18. Second line of the proof: “Corollary 6.1.14”
should be “Corollary 6.1.15”.

∗ P. 136, last line: “the cokernel of (α(i), β(i))” should be “the cokernel of (φi, ψi)”.
Moreover, the cokernel in question is denoted by λi on the last line of p. 136 and by
λ(i) on the first line of p. 137.

∗ P. 138, second line of Section 6.2: “the functor “ lim
−→

” is representable in C” should
be “the functor “ lim

−→
”α is representable in C”. Next line: “natural functor” should be

“natural morphism”.

∗ P. 138, Proposition 6.2.1. The assumption that I is small is not really necessary.
(See Section 9.7 p. 140 below.)

∗ P. 141, Display (6.3.2): ̸= should be ̸≃ (see Section 9.1 p. 129 below).

∗ P. 141, Corollary 6.3.7 (ii): id should be idC.

∗ P. 143, third line of the proof of Proposition 6.4.2: {Yi}I∈I should be {Yi}i∈I .

∗ P. 144, proof of Proposition 6.4.2, Step (ii), second sentence: It might be better to
state explicitly the assumption that X i

ν is in Cν for ν = 1, 2.

∗ P. 146, Exercise 6.3. “Let C be a small category” should be “Let C be a category”.

∗ P. 146, Exercise 6.8 (ii): (Mod(A))M should be (Mod(R))M .

∗ P. 150, before Proposition 7.1.2. One could add after “This implies that FS is
unique up to unique isomorphism”: Moreover we have Q†F ≃ FS ≃ Q‡F .

∗ P. 153, statement of Lemma 7.1.12. The readability might be improved by changing
s : X → X ′ ∈ S to (s : X → X ′) ∈ S. Same for Line 4 of the proof of Lemma 7.1.21
p. 157.

∗ P. 156, first line of the first display and first line after the first display: CS should
be CrS .

∗ P. 160, second line after the diagram: “commutative” should be “commutative up
to isomorphism”.

§ 10. P. 160, proof of Proposition 7.3.2. “F (s) is an isomorphism” should be “QS(s)
is an isomorphism” or “G(QS(s)) is an isomorphism”. In fact I would replace

“Let us check that Lemma 7.1.3 applies to I ι−→ C QS−−→ CS and hence to I ι−→ C G◦QS−−−→ A.
Let X ∈ C. By the hypothesis, there exist Y ∈ I and s : X → ι(Y ) with s ∈ S.
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Therefore, F (s) is an isomorphism. . . ”

with

“Let us check that Lemma 7.1.3 applies to I ι−→ C G◦QS−−−→ A. Let X ∈ C. By the
hypothesis, there exist Y ∈ I and s : X → ι(Y ) with s ∈ S. Therefore, G(QS(s)) is
an isomorphism. . . ”

∗ P. 163, last sentence of Remark 7.4.5: “right localizable” should be “universally right
localizable”.

∗ P. 168, Line 9: “f : X → Y ” should be “f : Y → X”.

∗ P. 170, Corollary 8.2.4. The period at the end of the last display should be moved
to the end of the sentence.

∗ P. 172, proof of Lemma 8.2.10, first line: “composition morphism” should be
“addition morphism”.

∗ P. 179, about one third of the page: “a complex X Y Zu v

w
” should be

“a sequence X Y Zu v

w
”.

∗ P. 180, Lemma 8.3.11 (b) (i): Coker f
∼−→ Coker f ′ should be Coker f ′

∼−→ Coker f .
Proof of Lemma 8.3.11: The notation Hom for HomC occurs eight times. Lemma
8.3.11 is stated below as Lemma 290 p. 177.

∗ P. 181, Lemma 8.3.13, second line of the proof: h ◦ f 2 should be f 2 ◦ h.

§ 11. P. 184, Definitions 8.3.21 (v) and (vi). Definition 8.3.21 (vi) says that a
full subcategory S of a category C is generating if any object of C is the target of
some epimorphism whose source is in S. It seems to me this definition might create
confusion with Definition 192 p. 118. For want of a better idea, I suggest to say that
C is a-generating if its satisfies the above condition. (The letter a stands for the
word “abelian”, the reason being that this notion seems to be only used for abelian
categories.) The notion of co-a-generating is defined in the obvious way.

∗ P. 186, Corollary 8.3.26. The proof reads: “Apply Proposition 5.2.9”. One could
add: “and Proposition 5.2.3 (v)”.

∗ P. 187, proof of Proposition 8.4.3. More generally, if F is a left exact additive functor
between abelian categories, then, in view of the observations made on p. 183 of the
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book (and especially Exercise 8.17), F is exact if and only if it sends epimorphisms to
epimorphisms. (A solution to the important Exercise 8.17 is given in Section 11.8.2
p. 202.)

∗ P. 188. In the second diagram Y ′
l′

↣ Z should be Y ′
l′

↣ X. After the second
diagram: “the set of isomorphism classes of ∆” should be “the set of isomorphism
classes of objects of ∆”.

∗ P. 190, proof of Proposition 8.5.5 (a) (i): all the R should be Rop, except for the
last one.

∗ P. 191: The equality ψ(M) = G ⊗R M is used in the second display, whereas
ψ(M) = M ⊗R G is used in the third display. It might be better to use ψ(M) =
M ⊗Rop G both times.

∗ P. 191, Proof of Theorem 8.5.8 (iii): “the product of finite copies of R” should be
“the product of finitely many copies of R”.

∗ P. 196, Proposition 8.6.9, last sentence of the proof of (i)⇒(ii): “Proposition 8.3.12”
should be “Lemma 8.3.12”.

∗ P. 201, proof of Lemma 8.7.7, first line: “we can construct a commutative diagram”.
I think the authors meant “we can construct an exact commutative diagram”.

§ 12. P. 218, middle of the page: “b := inf(J \ A)” should be “b := inf(J \ A′)” (the
prime is missing).

∗ P. 218, proof of Lemma 9.2.5, first sentence: “Proposition 3.2.4” should be “Proposi-
tion 3.2.2”.

∗ P. 220, part (ii) of the proof of Proposition 9.2.9, last sentence of the first paragraph:
s(j) should be s̃(j). Moreover, in the last two paragraphs of the proof, it would be
better to denote j(u) by i(u).

∗ P. 221, Lemma 9.2.15. “Let A ∈ C” should be “Let A ∈ Ind(C)”.

∗ P. 224, proof of Proposition 9.3.2, line 2: “there exist maps S → A(G)→ S whose
composition is the identity” should be “there exist maps A(G) → S such that the
composition S → A(G)→ S is the identity of S”.

∗ Pp 224-228, from Proposition 9.3.2 to the end of the section. The notation G⊔S,
where S is a set, is used twice (each time on p. 224), and the notation G

∐
S is used

many times in the sequel of the section. I think the two pieces of notation have the
same meaning. If so, it might be slightly better to uniformize the notation.

16 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



§ 13. P. 225, line 3: “Since Ns is a subobject of A and card(A(G)) < π” should be
“Since card(A(G)) < π”.

∗ P. 225, line 4: “there exists i0 → i1 such that Ni1 → A is an epimorphism” should
be “there exists s : i0 → i such that Ns → A is an epimorphism”.

∗ P. 226, four lines before the end: “By 9.3.4 (c)” should be “By (9.3.4) (c)” (the
parenthesis are missing).

∗ P. 227. The second sentence uses Proposition 165 p. 106.

∗ P. 228, line 3: C should be Cπ.

∗ P. 228, Corollary 9.3.6: lim
−→

should be σπ.

§ 14. P. 228: It might be better to state Part (iv) of Corollary 9.3.8 as “G is in S”,
instead of “there exists an object G ∈ S which is a generator of C”. (Indeed, G is
already mentioned in Condition (9.3.1), which is one of the assumptions of Corollary
9.3.8.)

∗ P. 229, proof of 9.4.3 (i): it might be better to write “containing S strictly” (or
“properly”), instead of just “containing S”.

∗ P. 229, proof of 9.4.4: “The category CX is nonempty, essentially small ...”: the
adverb “essentially” is not necessary since C is supposed to be small.

∗ P. 237: “Proposition 9.6.3” should be “Theorem 9.6.3” (twice).

∗ P. 237, proof of Corollary 9.6.6, first display: “ψ : C → C” should be “ψ : C → Iinj”.

∗ P. 237, end of proof of Corollary 9.6.6: it might be slightly more precise to write
“X → ι(ψ(X)) = KHomC(X,K)” instead of “X → ψ(X) = KHomC(X,K)”.

∗ P. 244, second diagram: the arrow from X ′ to Z ′ should be dotted. (For a nice
picture of the octahedral diagram see p. 49 of Miličić’s text

http://www.math.utah.edu/∼milicic/Eprints/dercat.pdf.)

∗ P. 245, beginning of the proof of Proposition 10.1.13: The letters f and g being
used in the sequel, it would be better to write X f−→ Y

g−→ Z → TX instead of
X → Y → Z → TX.

∗ P. 245, first display in the proof of Proposition 10.1.13: The subscript D is missing
(three times) in HomD.
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∗ P. 250, Line 1: “TR3” should be “TR2”. After the second diagram, s ◦ f should be
f ◦ s.

∗ P. 251, right after Remark 10.2.5: “Lemma 7.1.10” should be “Proposition 7.1.10”.

∗ P. 252, last five lines:

• “u is represented by morphisms u′ : ⊕i Xi
u′−→ Y ′

s←− Y ” should be “u is
represented by morphisms ⊕i Xi

u′−→ Y ′
s←− Y ”,

• v′i should (I believe) be u′i,

• Q(u) should be Q(u′).

∗ P. 253, Definition 10.3.1. It would be better (I think) to remove (or alter) the
second sentence of the definition. (This sentence is supposed to recall Definition 7.3.1
p. 159 of the book, but it is not clear to me that the formulation in the reminder is
equivalent to the one in Definition 7.3.1; moreover the formulation in Definition 7.3.1
is consistent with the way Kan extensions are defined in the book.)

∗ P. 253, sentence between Definition 10.3.2 and Proposition 10.3.3: “Note that if
F (N ) ⊂ N ′, then D is both F -injective and F -projective.” I don’t understand why
this is true.

∗ P. 254. The functor RF of Notation 10.3.4 coincides with the functor RNQF of
Definition 7.3.1 p. 159 of the book.

∗ P. 257, first display: the expression TX1 ⊕ TX2 , which occurs twice, should be
replaced with TX1 × TX2 .

∗ P. 266, Exercise 10.6. I think the authors forgot to assume that the top left square
commutes.

∗ P. 278: The first display should start with T ′′(s′′) instead of T ′′(s), and the second
F (X, dY ) on the third line of the display should be F (X ′, dY ).

∗ P. 287, first display after Proposition 11.5.4: v(Xn,m) should be v(X)n,m.

§ 15. P. 282, Definition 11.3.12. As indicated in Pierre Schapira’s Errata,

dnC(F )(X) = (−1)n F (d−n−1X )

should be replaced with

dnC(F )(X) = (−1)n+1 F (d−n−1X ).
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The following is essentially a rewriting of the comment after Definition 11.3.12
taking the above correction into account:

We have

F (X[1])n = F (X)n−1 = (F (X)[−1])n,

dnF (X[1]) = (−1)n+1 F (d−n−1X[1] ) = (−1)n F (d−nX ),

dnF (X)[−1] = −dn−1F (X) = −(−1)
n F (d−nX ) = (−1)n+1 F (d−nX ),

dnF (X)[−1] = −dnF (X[1]).

§ 16. ∗ P. 290, Line 17: as indicated in Pierre Schapira’s Errata, one should read

d
′′n,m = HomC((−1)m+1d−m−1X , Y n).

∗ P. 290, Line -3: “We define the functor” should be “We define the isomorphisms of
functors”.

∗ P. 303, just after the diagram: “the exact sequence (12.2.2) give rise” should be “the
exact sequence (12.2.2) gives rise”.

∗ P. 313, third line from the bottom: it would be better to write “double complex”
instead of “complex”.

∗ P. 320, Display (13.1.2): we have Qis = Nub(C).

∗ P. 321, Line 8: τ̃ ≥n(X)→ τ̃ ≥n(X) should be τ̃ ≥n(X)→ τ≥n(X).

∗ P. 327, Lemma 13.2.4: C+(IC) should be C+(IC).

∗ P. 327, Proposition 13.2.46: N should be N(C).

∗ P. 328, Line 8: I think the authors meant “X i → Zi is an isomorphism for i > n+d ”
instead of “i ≥ n+ d ”.

∗ P. 328. After the second display the phrase “the natural isomorphism Coker di−2M →
Ker diM is an isomorphism” should be “the natural morphism Coker di−2M → Ker diM is
an isomorphism”.
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∗ P. 330, right after Definition 13.3.1: “F admits a right derived functor on K∗(C)”
should be “F admits a right derived functor on D∗(C)”.

∗ P. 331, Remark 13.3.6 (iii): C+(I) should be C+(IC).

§ 17. P. 337, Theorem 13.4.1. The phrase “right localizable at (Y,X)” should be
“universally right localizable at (Y,X), and let RHomC denote its right localization”.

∗ P. 348, proof of Lemma 14.1.2: dM(X) should be dM(Z).

∗ P. 359, Line 3: σ should be sh.

∗ P. 360, Line 5 of Step (ii) of the proof of Theorem 14.4.5: “Then X ′′ is an exact
complex in K−(P)” should be (I think) “Then X ′′ is an exact complex in K−(C)”.

∗ P. 362, Line 8: K(G)-projective should be G-projective (see Definition 13.4.2 p. 338
of the book).

∗ P. 364, Step (g) of the proof of Theorem 14.4.8: P1 = K−(C1) should be P1 = C1.

∗ P. 365, line between the last two displays: “adjoint” should be “derived”.

∗ P. 392, Lemma 16.1.6 (ii). It would be better to write v : C → U instead of
u : C → U and t ◦ v instead of t ◦ u.

∗ P. 396, proof of Lemma 16.2.4 (ii), last sentence of the proof: It would be better (I
think) write “by LE2 and LE3” instead of “by Proposition 16.1.11 (ii)”.

∗ P. 401, Line 6: B′′ → B should be B′′ → B′.

∗ P. 406, first line of the second display: (CY )∧ should be CY (twice). (See §510
p. 294.)

∗ P. 409, line 2: λ ◦ (htX)A ≃ hA should be λ ◦ (htX)A ≃ htA.

§ 18. P. 410, Display (17.1.15): instead of

HomPSh(X,A)(F,G) ≃ lim
U∈CX

HomPSh(U,A)(F,G)(U).

we should have

HomPSh(X,A)(F,G) ≃ lim
U∈CX

HomPSh(X,A)(F,G)(U).

See §516 p. 296.
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§ 19. P. 412, proof of Lemma 17.2.2 (ii), (b)⇒(a), Step (3). “Since (f t)̂(uV ) is an
epimorphism by (2), (f t)̂(uV ) is a local isomorphism” should be “Since (f t)̂(uV ) is
a local epimorphism by (2), (f t)̂(uV ) is a local isomorphism”.

∗ P. 414, line before the last display: h‡XF should be h‡X F , i.e. the h should be
straight, not slanted.

∗ P. 417, first sentence of the paragraph containing Display (17.4.2): A,A′ ∈ C∧
should be A,A′ ∈ C∧X .

∗ P. 418, last display:

lim
−→

: lim
−→

(B→A)∈LIA

F (B)→ lim
−→

(B→A)∈LIA

F b(B)

should be
lim
−→

(B→A)∈LIA

: lim
−→

(B→A)∈LIA

F (B)→ lim
−→

(B→A)∈LIA

F b(B).

∗ P. 419, second line: “applying Corollary 2.3.4 to θ = idLIA” should be “applying
Corollary 2.3.4 to φ = idLIA”.

∗ P. 421, Theorem 17.4.7 (i): (h‡XF )
b ≃ (h‡XF

a) should be (h‡X F )
b ≃ (h‡X F

a), i.e.
the h’s should be straight, not slanted.

∗ P. 424, proof of Theorem 17.5.2 (iv). “The functor f † is left exact” should be “The
functor f † is exact”. (See §512 p. 295.)

∗ P. 426, Line 5: “morphism of sites by” should be “morphism of sites”.

∗ P. 428, Notation 17.6.13 (i). “For M ∈ A, let us denote by MA the sheaf associated
with the constant presheaf CX ∋ U 7→M ” should be

“For M ∈ A, let us denote by MA the sheaf over CA associated with the constant
presheaf CA ∋ (U → A) 7→M ”.

It might also be worth mentioning that MA is called the constant sheaf over A
with stalk M .

∗ P. 437, Line 3 of Step (ii) of the proof of Lemma 18.1.5: It might be better to write
“
⊕

s∈A(U)G(U
s−→ A)” instead of “

∐
s∈A(U)G(U

s−→ A)”; indeed
⊕

is more usual that∐
to denote the coproduct of k-modules.
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∗ P. 438, right after “q.e.d.”: “Notations (17.6.13)” should be “Notations 17.6.13” (no
parenthesis).

∗ P. 438, bottom: One can add that we have HomR(R, F ) ≃ F for all F in PSh(R).

∗ P. 439, after Definition 18.2.2: One can add that we have F
psh

⊗R R ≃ F for F in
PSh(R) and F ⊗R R ≃ F for F in Mod(R).

∗ P. 439, Proposition 18.2.3 (ii). Here is a slightly stronger statement: If R,S, T are
kX-algebras, if F is a (T ⊗kX Rop)-module, if G is an (R⊗kX S)-module, and if H is
an (S ⊗kX T )-module, then there are isomorphisms

HomS⊗kX T (F ⊗R G,H) ≃ HomR⊗kXS(G,HomT (F,H)),

HomS⊗kX T (F ⊗R G,H) ≃ HomR⊗kXS(G,HomT (F,H)),

functorial with respect to F,G and H.

∗ P. 440, last line of second display: HomR(U)(G(U) ⊗k F (U), H(U)) should be
Homk(F (U)⊗R(U) G(U), H(U)).

∗ P. 440, first line of the fourth display,
psh

⊗R(V ) should be ⊗R(V ).

∗ P. 441. The proof of Proposition 18.2.5 uses Display (17.1.11) p. 409 of the book
and Exercise 17.5 (i) p. 431 of the book (see §559 p. 316).

∗ P. 442, first line of Step (ii) of the proof of Proposition 18.2.7: HomR(R⊗ kXA, F )
should be HomR(R⊗kX kXA, F ).

∗ P. 442, Line 3 of last display of Section 18.2: jA→X! j
−1
A→X should be j‡A→X jA→X∗.

∗ P. 442. Lemma 18.3.1 (i) follows from Proposition 17.5.1 p. 432 of the book.

∗ P. 443, first display: On the third and fourth lines, HomkX should be HomkZ .

∗ P. 443, sentence preceding Lemma 18.3.2: jA→X should be jA→X (the slanted j
should be straight).

∗ Pp 447-8, proof of Lemma 18.5.3: in (18.5.3) M ′|U and M |U should be M ′(U) and
M(U), and, after the second display on p. 448, s1 ∈ ((Rop)⊕m ⊗R P )(U) should be
s1 ∈ ((Rop)⊕n ⊗R P )(U).

∗ P. 448, Proposition 18.5.4, Line 3 of the proof: G⊕I ↠M should be G⊕I ↠M .

∗ P. 452, Part (i) (a) of the proof of Lemma 18.6.7. I think that OU and OV stand
for OX |U and OY |V . (If this is so, it would be better, in the penultimate display of
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the page, to write OV instead of OY |V .)

∗ P. 452, a few lines before the penultimate display of the page, f−1W : O⊕nU
u−→ O⊕mU

should be (I think) f−1W : O⊕nW → O
⊕m
W .

∗ P. 494, Index. I found useful to add the following subentries to the entry “injective”:
F -injective, 231; F -injective, 253, 255, 330.

4 About Chapter 1

4.1 Universes (p. 9)

The book starts with a few statements which are not proved, a reference being given
instead. Here are the proofs.

A universe is a set U satisfying

(i) ∅ ∈ U ,

(ii) u ∈ U ∈ U ⇒ u ∈ U ,

(iii) U ∈ U ⇒ {U} ∈ U ,

(iv) U ∈ U ⇒ P(U) ∈ U ,

(v) I ∈ U and Ui ∈ U for all i ⇒
⋃
i∈I Ui ∈ U ,

(vi) N ∈ U .

We want to prove:

(vii) U ∈ U ⇒
⋃
u∈U u ∈ U ,

(viii) U, V ∈ U ⇒ U × V ∈ U ,

(ix) U ⊂ V ∈ U ⇒ U ∈ U ,

(x) I ∈ U and Ui ∈ U for all i ⇒
∏

i∈I Ui ∈ U .

(We have kept Kashiwara and Schapira’s numbering of Conditions (i) to (x).)

Obviously, (ii) and (v) imply (vii), whereas (iv) and (ii) imply (ix). Axioms (iii), (vi)
and (v) imply

(a) U, V ∈ U ⇒ {U, V } ∈ U ,
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and thus

(b) U, V ∈ U ⇒ (U, V ) := {{U}, {U, V }} ∈ U .

Proof of (viii). If u ∈ U and v ∈ V , then {(u, v)} ∈ U by (ii), (b) and (iii). Now
(v) yields

U × V =
⋃
u∈U

⋃
v∈V

{(u, v)} ∈ U . q.e.d.

Assume U, V ∈ U , and let V U be the set of all maps from U to V . As V U ∈
P(U × V ), Statements (viii), (iv) and (ii) give

(c) U, V ∈ U ⇒ V U ∈ U .

Proof of (x). As ∏
i∈I

Ui ∈ P

(⋃
i∈I

Ui

)I
 ,

(x) follows from (v), (c) and (iv). q.e.d.

4.2 Definition of a category (p. 11)

We slightly modify Definition 1.2.1 p. 11 as follows:

Definition 20. A category C consists of:

(i) a set Ob(C),

(ii) for any X, Y in Ob(C), a set HomC(X, Y ),

(iii) for any X, Y, Z in Ob(C), a map:

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

called the composition and denoted by

(f, g) 7→ g ◦ZY X f,

these data satisfying:

(a) ◦ is associative, i.e., for f ∈ HomC(X, Y ), g ∈ HomC(Y, Z), h ∈ HomC(Z,W ), we
have

(h ◦WZY g) ◦WYX f = h ◦WZX (g ◦ZY X f),
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(b) for each X in Ob(C), there exists idX in HomC(X,X) such that

f ◦Y XX idX = f

for all f in HomC(X, Y ) and
idY ◦Y Y X g = g

for all g in HomC(Y,X).

The common practice is to abbreviated ◦ZY X by ◦. If one does that without any
precaution, one may end up with an inequality of the form g ◦ f ̸= g ◦ f , as suggested
by the diagram

Y

X Z

Y ′,

gf

f g

where we assume (as we may) g ◦ZY X f ̸= g ◦ZY ′X f . It is not clear to me which
precautions one can take in order to avoid this problem. Also note that a phrase
like “the morphism f is a monomorphism” doesn’t make sense, and one should say
instead something like “the morphism f is a monomorphism with respect to the pair
of objects (X, Y )”.

Another option (which would be simpler in my humble opinion) would be to
impose, in the definition of a category, the condition that the Hom-sets are disjoint,
and, for each category, to choose a universe U such that the (automatically disjoint)
union of the Hom-sets is an element of U . An argument in favor of this option would
be to say that, as we want our statements to be compatible with universe enlargement,
there is no harm in choosing a large enough universe at the outset.

See also Section 2 p. 10.

4.3 Brief comments

§ 21. Page 14, category of morphisms. Here are some comments about Definition
1.2.5 p. 14:
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Notation 22. For any category C define the category C∗ as follows. The objects of
C∗ are the objects of C, the set HomC∗(X, Y ) is defined by

HomC∗(X, Y ) := {Y } × HomC(X, Y )× {X},

and the composition is defined by

(Z, g, Y ) ◦ (Y, f,X) := (Z, g ◦ f,X).

Note that there are natural mutually inverse isomorphisms C ⇄ C∗.

Notation 23. Let C be a category. Define the category Mor(C) by

Ob(Mor(C)) :=
⋃

X,Y ∈Ob(C)

HomC∗(X, Y ),

HomMor(C)((Y, f,X), (V, g, U)) :=

{(a, b) ∈ HomC(X,U)× HomC(Y, V ) | g ◦ a = b ◦ f},

i.e.
X U

Y V,

f

a

g

b

and the composition is defined in the obvious way.

Observe that a functor A → B is given by two maps

Ob(A)→ Ob(B), Ob(Mor(A))→ Ob(Mor(B))

satisfying certain conditions.

When C is a small category (see Section 2 p. 10), we assume that the hom-sets of
C are disjoint.

§ 24. P. 16, Definition 1.2.11 (iii). Note that fully faithful functors are conservative.
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§ 25. P. 16. Here are some exercises.

(a) Let U be a universe and Set the category of U -sets. Show that the only proper
subfunctor of the identity functor I : Set→ Set is the initial object of SetSet.

(b) In the same setting, let T : Set→ Set be a terminal object of SetSet. Show that
the only proper subfunctors of T are the initial object of SetSet and the image of the
unique morphism I → T .

§ 26. P. 18, Definition 1.2.16. If F : C → C ′ is a functor and X ′ an object of C ′, then
we have natural isomorphisms

(CX′)op ≃ (Cop)X′
, (CX′

)op ≃ (Cop)X′ . (1)

Also note that, if Cat is the category of small categories (Definition 5 p. 10), then
the formula X ′ 7→ CX′ defines a functor C ′ → Cat, and the formula X ′ 7→ CX′ defines
a functor C ′ op → Cat.

§ 27. P. 18, Definition 1.2.18. We define a subobject as being an element of the
indicated equivalence class. Unless otherwise stated, we choose this element “at
random”. (Note that there a many cases in which an explicit choice is possible.) See
§496 p. 289.

§ 28. P. 19. Let M be a monoid. Define the category C by the conditions Ob(C) = {⋆}
and EndC(⋆) =M .

We want to reconstruct the monoid M from the category C.

Define

• the functor A : C → Set by A(⋆) :=M and A(m)(n) := mn,

• the forgetful functor U : SetC → Set by U(X) := X(⋆) and U(α) := α⋆ for any
morphism α : X → Y in SetC,

• the map f :M → End(U) by f(m)X := X(m) for any X : C → Set and any m in
M ,

• the map g : End(U)→M by g(θ) := θA(1) for any endomorphism θ of U .

Then f and g are inverse monoid morphisms.

Proof. For m,n in M and X : C → Set we have

f(mn)X = X(mn) = X(m) ◦X(n) = f(m)X ◦ f(n)X = (f(m) ◦ f(n))X
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This shows that f is a monoid morphism. Thus it suffices to prove that f and g are
inverse bijections.

For m in M we have

g(f(m)) = f(m)A(1) = A(m)(1) = m.

Let θ be an endomorphism of U and let’s check f(g(θ)) = θ. Let X : C → Set be
a functor and x an element of X(⋆). It suffices to prove

f(g(θ))X(x) = θX(x).

We leave it to the reader to verify that the formula α⋆(m) := X(m)(x) defines a
morphism α : A→ X. We get

f(g(θ))X(x) = X(g(θ))(x) = X(θA(1))(x) = α⋆(θA(1)) = θX(α⋆(1)) = θX(x).

§ 29. P. 19. We compute the endomorphisms of the covariant power set functor
P : Set→ Set. Let ε : P → P be defined by εA(Z) = ∅ for all set A and all Z ⊂ A.

We claim
(a) End(P ) = {idP , ε}

Set 1 := {0},2 := {0, 1} and let θ be an endomorphism of P .

(b) We obviously have θ∅ = idP (∅).

(c) Using (b) and applying θ to ∅→ 1 we see that θ1(∅) = ∅.

• Case 1: θ1(1) = ∅.

We claim θ = ε for all set A and all Z ⊂ A, and prove the claim by applying θ to
A→ 1.

• Case 2: θ1(1) = 1.

We claim

(d) θ = idP .

This will imply (a).

(e) We have θ2 = idP (2). [Left to the reader.]
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(f) Let A be a set with at least three elements. It suffices to show θA = idP (A).

(g) If Z and Y are two distinct subsets of A, then there is an f : A → 2 such that
P (f)(Z) ̸= P (f)(Y ).

Proof: We can assume that there is a y in Y \ Z. Letting f be the characteristic
function of Y \ Z, we get 1 ∈ P (f)(Y ) \ P (f)(Z).

(h) Let Z be a subset of A. Applying θ to all the maps from A to 2 and using (g),
we see that θA(Z) = Z. This proves (f), and thus (d), and thus (a).

§ 30. P. 19. Let A be a set and F the functor Hom(−, A). A maximal subfunctor of
F shall mean a subfunctor of F which is maximal among the proper subfunctors of
F . A maximal quotient of F shall mean a quotient of F which is maximal among the
proper quotients of F . A congruence on F consists of an equivalence relation on each
F (X) such that each map F (X)→ F (Y ) induced by a morphism sends equivalent
elements to equivalent elements. Such a congruence is called minimal if it is minimal
among the non-discrete congruences on F . Minimal congruences correspond of course
to maximal quotients. There are analogous definitions for the functor Hom(A,−);
the details are left to the reader.

Here we want to classify the maximal subfunctors and quotients of Hom(−, A)
and Hom(A,−).

The classification being easy when A has zero or one element, we assume that A
has at least two elements.

There is only one maximal subfunctor of Hom(A,−) and of Hom(−, A). The
maximal subfunctor of Hom(A,−) consists of all the non-injective maps A→ X, and
the maximal subfunctor of Hom(−, A) consists of all the non-surjective maps X → A.
The maximal quotients of Hom(−, A) are attached to subsets {a, b} of cardinality
two of A by forming the least equivalence relation on Hom(X,A) which identifies the
constant map with value a to the constant map with value b.

We now describe the maximal quotients of Hom(A,−), and we do this by describing
the minimal congruences.

Let A,B,C,D,E and X be sets. Assume that A = B ⊔ C ⊔D ⊔ E, that A has
at least two elements, and that B is nonempty. Suppose also that at least one of the
three sets C,D and E is nonempty. For each x1, x2, x3, x4 ∈ X write x1x2x3x4 for
the map from A to X which has the constant value x1 on B, x2 on C, x3 on D, and
x4 on E.
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Then there is a unique equivalence relation on F (X) := Hom(A,X) such that the
equivalence class of f is {xyxy, yxxy} if f = xyxy for some distinct elements x and
y of X, and is the singleton {f} otherwise.

If C is nonempty, then the equivalence relation attached to (C,B,E,D) coincides
with that attached to (B,C,D,E), and this is the only case in which there is a
coincidence.

Let A,B,E and X be sets, and let y be in X. Assume that A = B ⊔E, and that
B is nonempty. For each u, v in X write uv for the map from A to X which has the
constant value u on B and v on E.

Then there is a unique equivalence relation on F (X) such that the equivalence
class of f is {zy | z ∈ X} if f = xy for some x in X, and is the singleton {f}
otherwise.

We claim that, when X varies, each of these equivalence relations on F (X) defines
a minimal congruence on F , and that there are no other minimal congruences on F .

We sketch the proof of the last statement. Let ∼ be a minimal congruence of F ,
and let f, g ∈ F (X) satisfy f ̸= g and f ∼ g. Pick an a in A such that f(a) ̸= g(a).
Let h : X → {f(a), g(a)} fix f(a) and g(a). Then h ◦ f ≠ h ◦ g and h ◦ f ∼ h ◦ g.
By minimality, the congruence ∼ is generated by h ◦ f ∼ h ◦ g. In other words, we
can assume that f(A) ∪ g(A) has exactly two elements. From this point the proof is
somewhat tedious, but straightforward. The proofs of the other statements are also
straightforward.

4.4 Horizontal and vertical compositions (p. 19)

For each object X of C3 the diagram

C1 C2 C3

C1 C2 C3

C1 C2 C3

F11 F12

θ11
F21

θ12
F22

θ21

F31

θ22

F32

of categories, functors and morphisms of functors yields the commutative diagram
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F11F12X F21F12X F31F12X

F11F22X F21F22X F31F22X

F11F32X F21F32X F31F32X

θ11F12X θ21F12X

F11θ12X

θ11F22X

F21θ12X

θ21F22X

F31θ12X

F11θ22X

θ11F32X

F21θ22X

θ21F32X

F31θ22X

in C1. So, we get a well-defined morphism in C1 from F31F32X to F11F12X, which is
easily seen to define a morphism of functors from F31F32 to F11F12.

Notation 31. We denote this morphism of functors by(
θ11 θ12
θ21 θ22

)
: F31F32 → F11F12.

If θ21 and θ22 are identity morphisms, we put

θ11 ⋆ θ12 :=

(
θ11 θ12
θ21 θ22

)
.

If θ12 and θ22 are identity morphisms, we put

θ11 ◦ θ21 :=
(
θ11 θ12
θ21 θ22

)
.

Let m,n ≥ 1 be integers, let C1, . . . , Cn+1 be categories, let

Fi,j : Cj+1 → Cj, 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n

be functors, let
θi,j : Fi+1,j → Fi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

be morphisms of functors. For instance, if m = 2, n = 4, then we have

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5.

F11 F12 F13 F14

θ11
F21

θ12
F22

θ13
F23

θ14
F24

θ21
F31

θ22
F32

θ23
F33

θ24
F34

The following proposition is clear
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Proposition 32. The operations ⋆ and ◦ are associative, and, in the above setting,
we have the equality

(θ1,1 ⋆ · · · ⋆ θ1,n) ◦ · · · ◦ (θm,1 ⋆ · · · ⋆ θm,n)

= (θ1,1 ◦ · · · ◦ θm,1) ⋆ · · · ⋆ (θ1,n ◦ · · · ◦ θm,n).

between functors from Fm+1,1 · · ·Fm+1,n to F1,1 · · ·F1,n.

Notation 33. We denote this morphism of functors byθ1,1 · · · θ1,n
...

...
θm,1 · · · θm,n

 : Fm+1,1 · · ·Fm+1,n → F1,1 · · ·F1,n.

Proposition 34. We have, in the above setting,

(θ1,1 ⋆ · · · ⋆ θ1,n) ◦ · · · ◦ (θm,1 ⋆ · · · ⋆ θm,n) =

 θ1,1 ⋆ · · · ⋆ θ1,n
...

θm,1 ⋆ · · · ⋆ θm,n



=

θ1,1 · · · θ1,n
...

...
θm,1 · · · θm,n



=

θ1,1
...

θm,1

 ⋆ · · · ⋆

θ1,n
...

θm,n

 = (θ1,1 ◦ · · · ◦ θm,1) ⋆ · · · ⋆ (θ1,n ◦ · · · ◦ θm,n).

Definition 35 (horizontal and vertical composition, Interchange Law). We call ⋆ the
horizontal composition. We call ◦ the vertical composition. We call the equalities in
Proposition 34 the Interchange Law.

32 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



4.5 Brief comment

P. 19, Definition 1.3.16, notion of essentially small category. Here is a simple but
crucial fact which is often left implicit:

The category of U-sets is not essentially small. More precisely, there is no U-set
which is equipotent to the set of cardinalities of U-sets.

Here is a sketch of a proof.

Let κ be the supremum of the cardinalities of the elements of U . Then κ is strongly
inaccessible. See

http://www.normalesup.org/∼forgogozo/SGA4/01/01.pdf

Section 5 of the appendix. Then κ = ℵκ. See

https://mathoverflow.net/a/117809/461

Hence the set of cardinals less than κ coincides with the set

{ℵα | α ordinal less than κ},

whose cardinality is κ. □

For additional details, see also

https://en.wikipedia.org/wiki/Cofinality♯Regular_and_singular_ordinals

https://mathoverflow.net/a/117809/461

4.6 The Yoneda Lemma (p. 24)

We state the Yoneda Lemma for the sake of completeness:

Theorem 36 (Yoneda’s Lemma). Let C be a category.

(a) Let h : C → C∧ be the Yoneda embedding, let A be in C∧, let X be in C, and define

A(X) HomC∧(h(X), A)
φ

ψ
(2)

by
φ(x)Y (f) := A(f)(x), ψ(θ) := θX(idX) (3)
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for
x ∈ A(X), Y ∈ C, f ∈ HomC(Y,X), θ ∈ HomC∧(h(X), A) :

f ∈ HomC(Y,X)
φ(x)Y−−−→ A(Y )

A(f)←−− A(X) ∋ x.
Then φ and ψ are mutually inverse bijections. In the particular case where A is equal
to h(Z) for some Z in C, we get

φ(x) = h(x) ∈ HomC∧(h(X), h(Z)).

This shows that h is fully faithful.

(b) Let k : C → C∨ be the Yoneda embedding, let A be in C∨, let X be in C, and define

A(X) HomC∨(A, k(X)) = HomSetC(k(X), A)
φ

ψ
(4)

by (3) for

x ∈ A(X), Y ∈ C, f ∈ HomC(X, Y ), θ ∈ HomSetC(k(X), A) :

f ∈ HomC(X, Y )
φ(x)Y−−−→ A(Y )

A(f)←−− A(X) ∋ x.
Then φ and ψ are mutually inverse bijections. In the particular case where A is equal
to k(Z) for some Z in C, we get

φ(x) = k(x) ∈ HomC∨(k(Z), k(X)).

This shows that k is fully faithful.

(c) The bijections (2) and (4) are functorial in A and X.

Proof. (a) We have

ψ(φ(x)) = φ(x)X(idX) = A(idX)(x) = x

and
φ(ψ(θ))Y (f) = A(f)(ψ(θ)) = A(f)(θX(idX)) = θY (f),

the last equality following from the commutativity of the square

h(X)(Y ) A(Y )

h(X)(X) A(X),

θY

h(X)(f)

θX

A(f)
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which is equal to the square

HomC(Y,X) A(Y )

HomC(X,X) A(X).

θY

◦f

θX

A(f)

(b) The proof of (b) is similar.

(c) Let h : C → C∧ be the Yoneda embedding, and, for X in C and A in C∧ let

ΦX,A : HomC∧(h(X), A)→ A(X), θ 7→ θX(idX)

be the Yoneda bijection. We shall prove that ΦX,A is functorial in X and A.

Functoriality in A: Let B be in C∧ and let h(X)
θ−→ A

λ−→ B be morphisms of
functors. We must show λX(ΦX,A(θ)) = ΦX,B((λ◦)(θ)):

HomC∧(h(X), A) A(X)

HomC∧(h(X), B) B(X).

λ◦

ΦX,A

λX

ΦX,B

We have
λX(ΦX,A(θ)) = λX(θX(idX)),

ΦX,B((λ◦)(θ)) = ΦX,B(λ ◦ θ) = (λ ◦ θ)X(idX) = (λX ◦ θX)(idX) = λX(θX(idX)),

where the penultimate equality follows from the definition of the vertical composition
of morphisms of functors (Definition 35 p. 32):

HomC(X,X)
θX−→ A(X)

λX−→ B(X).

Functoriality in X: Let f : X → Y be a morphism in C and θ : h(Y )→ A be a
morphism in C∧. We must show

ΦX,A

((
◦ h(f)

)
(θ)
)
= A(f)

(
ΦY,A(θ)

)
:

HomC∧(h(X), A) A(X)

HomC∧(h(Y ), B) A(Y ).

ΦX,A

◦h(f)

ΦY,A

A(f)

35 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



We have
ΦX,A

((
◦ h(f)

)
(θ)
)
= ΦX,A(θ ◦ h(f)) = (θX ◦ h(f)X)(idX)

= (θX ◦ (f◦))(idX) = θX(f),

where the second equality follows from the definition of the vertical composition of
morphisms of functors:

h(X)
h(f)−−→ h(Y )

θ−→ A,

HomC(X,X)
f◦−→ HomC(X, Y )

θX−→ A(X)

because h(f)X = f◦. We also have

A(f)
(
ΦY,A(θ)

)
= A(f)

(
θY (idY )

)
= θX(f),

where the last equality follows from the naturality of θ:

HomC(X, Y ) A(X)

HomC(Y, Y ) A(Y ).

θX

◦f

θY

A(f)

Corollary 37. In the setting of Theorem 36 (a), p. 33, X represents A if and only
if there is an x in A(X) such that, for all Y in C, the map f 7→ A(f)(x) from
HomC(Y,X) to A(Y ) is bijective. In particular this condition does not depend on the
universe U such that C, A ∈ U . (See Remark 1.4.13 p. 27 of the book.)

Convention 38. An object Y in a category A is terminal if all X in A admits a unique
morphism X → Y . Let TA be the set of terminal objects of A. If Y, Z ∈ TA, then
there is a unique morphism Y → Z, and this morphism is an isomorphism. For all
category A such that TA ̸= ∅ we choose an element in TA and call it the terminal
object of A. Let us insist: we make a distinction between “a terminal object of A”
and “the terminal object of A” (when they exist). Unless otherwise indicated, the
choice of the terminal object of A is random (but there will be two exceptions to this
rule: see Convention 55 p. 47 and Convention 57 p. 48).

Convention 39. We often identify the source and the target of φ in (2) and (4), and
we also often consider C as a full subcategory of C∧ and C∨ thanks to the Yoneda
embeddings. Let A be in C∧ and (X, x), with X in C and x : X → A a morphism in
C∧, an object in the category CA (see Definition 1.2.16 p. 18 of the book). Then (X, x)
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is terminal if and only if x is an isomorphism. If the category CA admits a terminal
object, we say that A is representable. Let (X, x) be a (resp. the) terminal object
of CA. We say that the couple (X, x), or sometimes just the morphism x, is a (resp.
the) representation of A, and that X is a (resp. the) representative of A (or that
X, or x, represents A). We use a similar terminology if A in is in C∨ instead of C∧,
replacing the words representable, representative, representation with co-representable,
co-representative, co-representation.

A morphism x : X → A in C∧ with X in C is a representation of A if and only if
any morphism Y → A with Y in C factors uniquely through x:

Y A

X.

x

A morphism x : A→ X in C∨ with X in C is a co-representation of A if and only if
any morphism A→ Y with Y in C factors uniquely through x:

A Y

X.

x

Here are two corollaries to the Yoneda Lemma:

Corollary 40. In the setting of the Yoneda Lemma (Theorem 36 p. 33), an element
x ∈ A(X) represents A if and only if, for any Y in C, the map HomC(Y,X) →
A(Y ), f 7→ A(f)(x) is bijective.

Corollary 41. Let U and V be universes, let C be a U- and V-category, let A be in
C∧U and B in C∧V , and assume A(X) = B(X) for all object X in C, and A(f) = B(f)
for all f ∈ HomC(X, Y ) and all X, Y ∈ C. Then A is representable if and only if B
is. Let X be in C. Then X represents A if and only if X represents B. Let x be in
A(X) = B(X). Then x is a representation of A if and only if x is a representation
of B.

Proof. This follows from Corollary 40.
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Here is a typical situation where Corollary 41 applies: Let L : C → C ′ be an
arbitrary functor, let X ′ be an object of C ′, let U and V be universes such that C and
C ′ are U - and V-categories, and define A ∈ C∧U and B ∈ C∧V by

A(X) = B(X) = HomC′(L(X), X ′).

Then A is representable if and only if B is. More on this in §45 p. 39.

4.7 Brief comments

§ 42. P. 25, Corollary 1.4.7. A statement slightly stronger than Corollary 1.4.7 of
the book can be proved more naively:

Proposition 43. A morphism f : A→ B in a category C is an isomorphism if and
only if

HomC(X, f) : HomC(X,A)→ HomC(X,B)

is (i) surjective for X = B and (ii) injective for X = A.

Proof. By (i) there is a g : B → A satisfying f ◦ g = idB, yielding f ◦ g ◦ f = f , and
(ii) implies g ◦ f = idA.

§ 44. P. 26, Lemma 1.4.12. We can define the functors

(C∧)A (CA)∧
λ

µ

as follows:
λ(B

b−→ A)(X
x−→ A) := b−1X (x),

µ(C) := (µ0(C)→ A), µ0(C)(X) :=
⊔

x∈A(X)

C(X
x−→ A),

µ0(C)(X)→ A(X) being the obvious map.
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4.8 Partially defined adjoints (Section 1.5, p. 28)

§ 45. Let L : C → C ′ be a functor and X ′ an object of C ′. If the functor

HomC′(L( ), X
′) : Cop → Set

is representable, we denote its representative by R(X ′) and its representation by
ηX′ : L(R(X ′))→ X ′ (see Convention 39 p. 36), and we say that

“the value of the right adjoint R to L at X ′ is defined and isomorphic to R(X ′)”,

or, abusing the terminology, that

“R(X ′) exists”.

The following lemma will result from Lemma 49 below.

Lemma 46. In the above setting, if ηX′ : L(R(X ′))→ X ′ is a morphism in C ′, then
the following two conditions are equivalent:

(a) ηX′ is a representation of HomC′(L( ), X ′),

(b) for all X in C and all g : L(X)→ X ′ there is a unique f : X → R(X ′) such that
ηX′ ◦ L(f) = g:

X L(X) X ′

R(X ′) L(R(X ′)).

f L(f)

g

ηX′
(5)

We call ηX′ the unit of the adjunction.

§ 47. Note that Condition (b) in Lemma 46 involves no universe. In the statement
of Condition (a) it is implicitly assumed that a universe U such that C and C ′ are
U -categories (Definition 4 p. 10) has been chosen. In particular, if V is another such
universe, then (a) holds for V if and only if it holds for U . (See also Corollary 41
p. 37.)

§ 48. By definition, ηX′ : L(R(X ′))→ X ′ in C ′ is a representation of HomC′(L( ), X ′)
if and only if, for all morphism θ : X → HomC′(L( ), X

′) in C∧, there is a unique
morphism f : X → R(X ′) in C such that ηX′ ◦ f = θ:

X HomC′(L( ), X
′)

R(X ′).

f

θ

ηX′
(6)
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Even if it is straightforward, we state and prove formally the fact that the above
condition is equivalent to the condition in Lemma 46. For the purpose of this proof,
we prefer to rewrite (5) as

X L(X) X ′

R(X ′) L(R(X ′)).

f L(f)

θX(idX)

ηX′,R(X′)(idR(X′))
(7)

Lemma 49. If L : C → C ′ is a functor, if X and R(X ′) are objects of C, if
f : X → R(X ′) is a morphism in C, and if

ηX′ : R(X ′)→ HomC′(L( ), X
′) and θ : X → HomC′(L( ), X

′)

are morphisms of functors, then we have

ηX′ ◦ f = θ ⇐⇒ ηX′,R(X′)(idR(X′)) ◦ L(f) = θX(idX)

(see (6) and (7)).

Proof. The equalities

(ηX′ ◦ f)X(idX) = ηX′,X(f) = ηX′,R(X′)(idR(X′)) ◦ L(f)

are respectively justified by the definition of the vertical composition of morphisms of
functors and by the naturality of ηX′ . As the Yoneda Lemma (Theorem 36 p. 33)
implies

ηX′ ◦ f = θ ⇐⇒ (ηX′ ◦ f)X(idX) = θX(idX),

the lemma is proved.

§ 50. Let T be a terminal object of Set. Then a functor A : Cop → Set is representable
if and only if the right adjoint of Aop : C → Setop is defined at T .

Indeed we have

HomSetop(A
op( ), T ) ≃ HomSet(T,A( )) ≃ A.

§ 51. Let us spell out the statement dual to §45:

Let R : C ′ → C be a functor and X an object of C. If the functor

HomC′(X,R( )) : C → Set

40 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



is co-representable, we denote its co-representative by L(X) and its co-representation
by εX : X → R(L(X)) (see Convention 39 p. 36), and we say that

“the value of the left adjoint L to R at X is defined and isomorphic to L(X)”,

or, abusing the terminology, that

“L(X) exists”.

Concretely this means that, for all X ′ in C ′ and all g : X → R(X ′) there is a unique
f : L(X)→ X ′ such that R(f) ◦ εX = g:

X R(L(X)) L(X)

R(X ′) X ′.

εX

g R(f) f

We call εX the co-unit of the adjunction.

4.9 Commutativity of Diagram (1.5.6) p. 28

Let us prove the commutativity of the diagram (1.5.6) p. 28 of the book. Recall the
setting: We have a pair (L,R) of adjoint functors:

C

C ′.

L R

Let us denote the functorial bijection defining the adjunction by

λX,X′ : HomC(X,RX
′)→ HomC′(LX,X

′)

for X in C and X ′ in C ′. The diagram (1.5.6) can be written as

HomC′(X
′, Y ′) HomC(RX

′, RY ′),

HomC′(LRX
′, Y ′).

R

◦λRX′,X′ (idRX′ )
λRX′,Y ′ (8)
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As the diagram

HomC(RX
′, RX ′) HomC′(LRX

′, X ′),

HomC(RX
′, RY ′) HomC′(LRX

′, Y ′)

λRX′,X′

R(f)◦ f◦

λRX′,Y ′

commutes for f in HomC′(X
′, Y ′), we get in particular

f ◦ λRX′,X′(idRX′) = λRX′,Y ′(R(f) ◦ idRX′) = λRX′,Y ′(R(f)).

This shows that (8) commutes, as required.

4.10 Equalities (1.5.8) and (1.5.9) p. 29

Warning: many authors designate ε by η and η by ε.

4.10.1 Statements

We have a pair (L,R) of adjoint functors:

C

C ′.

L R

Recall that εX ∈ HomC(X,RLX) and ηX′ ∈ HomC′(LRX
′, X ′) for all X in C and all

X ′ in C ′:
εX : X → RLX, ηX′ : LRX ′ → X ′.

Using Notation 31 p. 31, Equalities (1.5.8) and (1.5.9) become respectively

(η ⋆ L) ◦ (L ⋆ ε) = L (9)

and

(R ⋆ η) ◦ (ε ⋆ R) = R. (10)
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4.10.2 Pictures

Let us try to illustrate these two equalities by diagrams:

Picture of L η⋆L←−− LRL:

C ′ C ′ C C

C ′ C ′ C C

=

C ′ C

C ′ C.

1 L 1

η

LR

L

L

1

1

L

η⋆L

LRL

Picture of LRL L⋆ε←−− L:

C ′ C ′ C C

C ′ C ′ C C

=

C ′ C

C ′ C.

1 L RL

1

1

L

L

ε

1

LRL

L⋆ε

L

Picture of (9), that is, (η ⋆ L) ◦ (L ⋆ ε) = L:
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C ′ C

C ′ C

C ′ C

=

C ′ C

C ′ C.

L

η⋆L

LRL

L⋆ε

L

L

L

L

Picture of R R⋆η←−− RLR:

C C C ′ C ′

C C C ′ C ′

=

C C ′

C C ′.

1 R 1

1

1

R

R

η

LR

R

R⋆η

RLR
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Picture of RLR ε⋆R←−− R:

C C C ′ C ′

C C C ′ C ′

=

C C ′

C C ′.

RL R 1

ε

1

R

R

1

1

RLR

ε⋆R

R

Picture of (10), that is, (R ⋆ η) ◦ (ε ⋆ R) = R:

C C ′

C C ′

C C ′

=

C C ′

C C ′.

R

R⋆η

RLR

ε⋆R

R

R

R

R

4.10.3 Proofs

For the reader’s convenience we prove (9) p. 42 and (10) p. 42. It clearly suffices to
prove (9). Recall that (9) claims

(η ⋆ L) ◦ (L ⋆ ε) = L.
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Let us denote the functorial mutually inverse bijections defining the adjunction by

HomC(X,RX
′) HomC′(LX,X

′),
λX,X′

µX,X′
(11)

and recall that εX and ηX′ are defined by

εX := µX,LX(idLX), ηX′ := λRX′,X′(idRX′). (12)

Equality (9) p. 42 can be written

λRLX,LX(idRLX) ◦ L(εX) = idLX ,

and we have

idLX
(a)
= λX,LX

(
µX,LX(idLX)

) (b)
= λX,LX(εX)

(c)
=
(
λX,LX ◦ (◦εX)

)
(idRLX)

(d)
=
((
◦ L(εX)

)
◦ λRLX,LX

)
(idRLX)

(e)
= λRLX,LX(idRLX) ◦ L(εX),

the successive equalities being justified as follows:

(a) follows from (11),

(b) follows from (12),

(c) is obvious,

(d) follows from the commutative square

HomC(RLX,RLX) HomC′(LRLX,LX)

HomC(X,RLX) HomC′(LX,LX),

◦εX

λRLX,LX

◦L(εX)

λX,LX

(e) is obvious.

5 About Chapter 2

5.1 Definition of limits (§2.1 p. 36)

Notation 52. If I and C are categories, we denote by ∆ the diagonal functor from
C to CI . The categories I and C shall be explicitly indicated only when they are not
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clear from the context. Furthermore, we shall often write ∆X for ∆(X). To be more
precise, ∆X is the constant functor from I to C with value X.

Definition 53 (“projective limit” or “limit”). Let α : Iop → C be a functor. If the
value at α of the right adjoint lim to ∆ : C → Fct(Iop, C) exists (see §45 p. 39), we
denote it by limα and call it the projective limit, or just the limit, of α. Moreover, we
say that the unit p : ∆ limα→ α of the adjunction is the projection. More generally
we say that q : ∆X → α (with X in C) is a projection if the corresponding morphism

X → HomFct(Iop,C)(∆( ), α)

in C∧ (see Convention 39 p. 36) is an isomorphism.

The characteristic property of the pair (limα, p) can be described as follows: For
each Y in C and each morphism of functors θ : ∆Y → α there is a unique morphism
f : Y → limα satisfying p ◦∆f = θ:

Y ∆Y

limα ∆ limα α.

f ∆f θ

p

(13)

Remark 54. Note that this definition of limit involves no universe. This will be also
the case for the notion of colimit that will be introduced shortly. This observation
has already been made in §47 p. 39.

In Convention 38 p. 36 we stated a rule and indicated that we would make some
exceptions to it. Here is the first such exception:

Convention 55. If α : Iop → Set is a functor defined on a small category (Definition 5
p. 10), then we define its projective limit limα by

limα :=

{
x ∈

∏
i∈I

α(i)

∣∣∣∣ xi = α(s)(xj) ∀ s : i→ j

}
∈ Set,

and we define the projection p : ∆ limα→ α by pi(x) := xi. Then p is a projection in
the sense of Definition 53. [Indeed, let θ in (13) be given. If such an f exists, it must
satisfy pi(f(y)) = θi(y) for all i in I and all y in Y . This implies f(y) = (θi(y))i∈I ,
and proves the uniqueness of f . It is straightforward to check that the map f defined
by the above equality does the job.]
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Note that the projective limit of α : Iop → Set does not depend on the universe
which makes I a small category (Definition 5 p. 10).

Definition 56 (“inductive limit” or “colimit”). Let α : I → C be a functor. If the value
at α of the left adjoint colim to ∆ : C → CI exists, we denote it by colimα and call it
the inductive limit, or the colimit, of α (see §51 p. 40). Moreover, we say that the
co-unit p : α→ ∆colimα of the adjunction is the coprojection. More generally we
say that q : α→ ∆X (with X in C) is a coprojection if the corresponding morphism

HomCI (α,∆( ))→ X

in C∨ is an isomorphism.

The characteristic property of the pair (colimα, p) can be described as follows: For
each Y in C and each morphism of functors θ : α→ ∆Y there is a unique morphism
f : X → Y satisfying ∆f ◦ p = θ:

α ∆colimα colimα

∆Y Y.

p

θ
∆f f (14)

In Convention 38 p. 36 we stated a rule and indicated that we would make some
exceptions to it. Here is the second such exception:
Convention 57. Let α : I → Set be a functor defined on a small category (Definition 5
p. 10), set

U := {(i, x) ∈ U | i ∈ I, x ∈ α(i)},
and let ∼ be the least equivalence relation on U satisfying (i, x) ∼ (j, α(f)(x))
for all morphisms f : i → j. Then we define the inductive limit colimα as the
quotient U/∼. Let π : U → colimα be the canonical projection, and, for all i in
I, define pi : α(i) → colimα by pi(x) := π(i, x). We call the resulting morphism
p : α→ colimα the coprojection. Then p is a coprojection in the sense of Definition 53.
[Indeed, given θ in (14) let us prove the uniqueness of f . Any x in X is of the form
pi(t) for some i in I and t in α(i), and we must have f(x) = θi(t). This proves the
uniqueness. To verify the existence, we must assume pi(t) = pj(u) (obvious notation),
and derive θi(t) = θj(u). We may assume that there is a morphism s : i→ j, and the
verification is straightforward.]

Note that the inductive limit of α : I → Set does not depend on the universe
which makes I a small category (Definition 5 p. 10).
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5.2 Brief comments

§ 58. We shall spell out two wordings of a certain statement about the following
setting: α : I → C is a functor and Z is an object of C.

First wording: Assume that colimα exists in C and, for each i in I, let pi : α(i)→
colimα be the corresponding coprojection. Then the map

HomC(colimα,Z)→
∏
i∈I

HomC(α(i), Z), f 7→ (f ◦ pi)i∈I

induces a bijection

HomC(colimα,Z)
∼−→ limHomC(α,Z).

The proof is left to the reader.

Second wording: Let X be an object of C and p : α → ∆X a coprojection in the
sense of Definition 56 p. 48:

α ∆X X

∆Y Y.

p

λ
∆f f (15)

We claim that
◦p : ∆HomC(X,Z)→ HomC(α,Z)

is a projection in the sense of Definition 53 p. 47:

S ∆S

HomC(X,Z) ∆HomC(X,Z) HomC(α,Z).

g ∆g
µ

◦p

(16)

More precisely, assume we are given µ as above and s in S. Then we set Y := Z and
λi := µi(s) in (15). We get an f : X → Z, and we set g(s) := f . We leave it to the
reader to check that this process yields a solution to (16), and that this solution is
unique.

§ 59. P. 38, Proposition 2.1.6. We want to find a setting where the isomorphism

colimα(j)
∼−→ (colimα)(j)
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makes sense and is true.

Let α : I → CJ be a functor, and let us assume that for each j in J the functor
α( )(j) : I → C admits a coprojection pj : α( )(j)→ ∆Xj in the sense of Definition 56
p. 48:

α( )(j) ∆Xj Xj

∆Y Y.

pj

(17)

We claim that there is a natural functor β : J → C satisfying β(j) = Xj for all j
in J . Given j → j′ we define Xj → Xj′ as suggested by the commutative diagram

α( )(j) ∆Xj Xj

α( )(j′) ∆Xj′ Xj′ .

pj

pj′

We leave it to the reader to verify that this construction does define our functor β.

We want to define a morphism q : α → ∆β. Let i be in I. We must define
qi : α(i)→ β, that is, given j in J we must define qij : α(i)(j)→ β(j). It suffices to
set qij := pji.

Proposition 60. In the above setting the morphism q is a coprojection in the sense
of Definition 56 p. 48.

Proof. Let γ : J → C be a functor and λ : α→ ∆γ a morphism of functors. We must
solve the problem described by the commutative diagram

α ∆β β

∆γ γ.

q

λ
∆µ µ

Note that λ is given by a family of morphisms λi : α(i)→ γ, morphisms given in
turn by families λij : α(i)(j)→ γ(j).
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In view of (17) we can define µj : β(j)→ γ(j) as suggested by the commutative
diagram

α( )(j) ∆β(j) β(j)

∆γ(j) γ(j).

pj

λ•j
∆µj µj

It is straightforward to check that the morphisms µj : β(j)→ γ(j) give rise to a
morphism µ : β → γ, and that this morphism satisfies ∆µ ◦ q = λ, as required.

§ 61. P. 38, Proposition 2.1.6. Here is an example of a functor α : I → CJ such that
colimα exists in CJ but there is a j in J such that colim (ρj ◦ α) does not exist in
C. (Recall that ρj : CJ → C is the evaluation at j ∈ J .) This example is taken from
Section 3.3 of the book Basic Concepts of Enriched Category Theory of G.M.
Kelly:

http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html

The category J has two objects, 1, 2; it has exactly one nontrivial morphism; and
this morphism goes from 1 to 2. The category C has exactly three objects, 1, 2, 3,
and exactly four nontrivial morphisms, f, g, h, g ◦ f = h ◦ f , with

1 2 3.
f g

h

Then CJ is the category of morphisms in C. It is easy to see that the morphism
(f, h) : f → g, that is

1 2

2 3,

f

f

g

h

in CJ is an epimorphism, and that this implies that the commutative square

f g

g g

(f,h)

(f,h)

idg

idg
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in CJ is cocartesian. But it is also easy to see that the morphism f in C is not an
epimorphism, and that this implies that the commutative square

1 2

2 2

f

f

id2

id2

in C is not cocartesian.

In Proposition 72 p. 59 we shall see a way to prevent the kind of pathology
displayed by the above example.

§ 62. P. 39, Proposition 2.1.7. We want to find a setting where the isomorphism

colim
i,j

α(i, j) ≃ colim
i

colim
j

α(i, j)

makes sense and is true.

Let α : I × J → C be a bifunctor, and let (Xi)i∈I be a family of objects of C.
Assume that for any i in I there is some morphism pi : α(i, ) → ∆Xi which is a
coprojection in the sense of Definition 56 p. 48:

α(i, ) ∆Xi Xi

∆Y Y.

pi

By arguing as in §59 p. 49 we see that there is a natural functor β : I → C such that
β(i) = Xi for all i. Let q : β → ∆X be a coprojection:

β ∆X X

∆Y Y.

q

(18)

We claim that the obvious morphism of functors r : α→ ∆X is a coprojection.

Let Y be in C and θ : α → ∆Y a morphism of functors. We must solve the
problem

α ∆X X

∆Y Y.

r

θ
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Noting that θ induces, for all i, a morphism of functors α(i, )→ ∆Y , we get firstly a
morphism β(i)→ Y :

α(i, ) ∆β(i) β(i)

∆Y Y,

pi

secondly a morphism of functors β → ∆Y , and thirdly a morphism X → Y by (18).
It is straightforward to check that this morphism X → Y does the job. q.e.d.
§ 63. The two propositions below are basic.
Proposition 64. If α : Iop → C is a functor defined on a small category (Definition 5
p. 10), if X is in C, if p : ∆X → α is a morphism in Fct(Iop, C), and if h : C → C∧
is the Yoneda embedding, then the following conditions (a), (b), (c) are equivalent:

(a) p is a projection in the sense of Definition 53 p. 47,

(b) the morphism h(p) : ∆h(X)→ h ◦ α in Fct(Iop, C∧) induced by p is a projection,

(c) for all Y in C the morphism HomC(Y, p) : ∆HomC(Y,X) → HomC(Y, α) in
Fct(Iop,Set) induced by p is a projection,

Moreover, if (b) holds for some universe U such that I is U-small and C is a U-
category (Definitions 4 p. 10 and 5 p. 10), then it holds for any such universe; the
same applies to (c).

Condition (c) is often abridged by

HomC(Y, limα)
∼−→ limHomC(Y, α).

Proof. Conditions (b) and (c) are equivalent by Proposition 60 p. 50. We sketch the
proof that (a) and (c) are equivalent. Let us summarize (a) and (c) by the following
self-explanatory commutative diagrams:

Z ∆Z

X ∆X α,

f ∆f λ

p

(19)

S ∆S

HomC(Y,X) ∆HomC(Y,X) HomC(Y, α).

g ∆g
µ

HomC(Y,p)

(20)
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To prove (c)⇒(a), we suppose Z and λ given in (19), and in (20) we let S be a
singleton, we set Y := Z, we define µ by the formula µi(s) := λi, we get a g as above,
we set f := g(s), and we check that this works.

To prove (a)⇒(c), we suppose S, Y and µ given in (20), and we let s be in S. We
must define g(s) : Y → X. We set Z := Y in (19). We must define λ : ∆Y → α.
Letting i be in I, it suffices to define λi : Y → α(i). To do this we set λi := µi(s), we
get an f (depending on s) as above, we set g(s) := f , and we check that this works.

The last sentence is obvious (see Remark 54 p. 47).

The proof of the following proposition is similar to the previous one and is left to
the reader as an easy exercise.

Proposition 65. If α : I → C is a functor defined on a small category (Definition 5
p. 10), if X is in C, if p : α → ∆X is a morphism in CI , and if k : C → C∨ is the
Yoneda embedding, then the following conditions (a), (b), (c), (d) are equivalent:

(a) p is a coprojection in the sense of Definition 56 p. 48,

(b) the morphism k(p) : k ◦ α→ ∆k(X) in Fct(I, C∨) induced by p is a coprojection,

(c) the morphism k(p) : ∆k(X)→ k◦αop in Fct(Iop,SetC) induced by p is a projection
in the sense of Definition 53 p. 47,

(d) for all Y in C the morphism HomC(p, Y ) : ∆HomC(X, Y ) → HomC(α, Y ) in
Fct(Iop,Set) is a projection.

Morevover, if (b) holds for some universe U such that I is U-small and C is a
U-category (Definitions 4 p. 10 and 5 p. 10), then it holds for any such universe; the
same applies to (c) and (d).

Condition (d) is often abridged by

HomC(colimα, Y )
∼−→ limHomC(α, Y ).

In §58 p. 49 we proved that (a) implies (d).
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5.3 Proposition 2.1.10 p. 40

5.3.1 A first generalization

Here is a mild generalization of Proposition 2.1.10 p. 40 of the book (stated below as
Corollary 67):

Proposition 66. Let C G←− A F−→ B be functors and I a small category (Definition 5
p. 10). Assume that A admits inductive limits indexed by I, that G commutes with
such limits, and that for each Y in B there is a Z in C and an isomorphism

HomB(F ( ), Y ) ≃ HomC(G( ), Z)

in A∧. Then F commutes with inductive limits indexed by I.

Proof. Let θ be the isomorphism HomB(F ( ), Y )
∼−→ HomC(G( ), Z), let α : I → A

be a functor and let p : α → ∆colimα be the coprojection. Note that colimF ◦ α
exists in B∨. Consider the self-explanatory commutative diagrams

F ◦ α ∆colimF ◦ α colimF ◦ α

∆F (colimα) F (colimα)

q

F (p)
∆f f (21)

and
G ◦ α ∆colimG ◦ α colimG ◦ α

∆G(colimα) G(colimα),

r

G(p)
∆g g

where q and r are the coprojections. Note that g is an isomorphism by assumption.
Our goal is to prove that f is an isomorphism too. Let Y be in B. It suffices to show
that the map

HomB∨(f, Y ) : HomB(F (colimα), Y )→ HomB∨(colimF ◦ α, Y )
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is bijective. Form the commutative diagram

∆HomB(F (colimα), Y ) HomB(F ◦ α, Y )

∆HomC(G(colimα), Z) HomC(G ◦ α,Z)

∆HomC(colimG ◦ α, Y ) HomC(G ◦ α,Z)

∆HomB∨(colimF ◦ α, Y ) HomB(F ◦ α, Y ).

HomB(F (p),Y )

∼∆θcolimα θα∼

HomC(r,Z)

∼∆HomC(g,Z)

HomC(G(p),Z)

HomB∨ (q,Y )

∼ θα

The last three horizontal arrows are projections. The bottom horizontal arrow being
a projection, there is a unique map

h : HomC(colimG ◦ α, Y )→ HomB∨(colimF ◦ α, Y )

making the diagram

∆HomB(F (colimα), Y ) HomB(F ◦ α, Y )

∆HomC(G(colimα), Z) HomC(G ◦ α,Z)

∆HomC(colimG ◦ α, Y ) HomC(G ◦ α,Z)

∆HomB∨(colimF ◦ α, Y ) HomB(F ◦ α, Y )

HomB(F (p),Y )

∼∆θcolimα θα∼

HomC(r,Z)

∼∆HomC(g,Z)

HomC(G(p),Z)

∆h

HomB∨ (q,Y )

∼ θα

(22)

commute. Moreover h is bijective because HomC(G(p), Z) is a projection. Define the
bijection

k : HomB(F (colimα), Y )→ HomB∨(colimF ◦ α, Y )

by k := h◦HomC(g, Z)◦ θcolimα. It is enough to check that we have HomB∨(f, Y ) = k.
As HomB∨(q, Y ) is a projection, this equality follows from the commutativity of
(22).

Corollary 67 (Proposition 2.1.10 p. 40). Let F : A → B be a functor and I a small
category (Definition 5 p. 10). Assume that A admits inductive limits indexed by I
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and that F admits a right adjoint. Then F commutes with inductive limits indexed
by I.

Proof. Let R : B → A be right adjoint to F , and in Proposition 66, let C be A, G be
idA and Z be R(Y ).

5.3.2 A second generalization

Here is another mild generalization of Proposition 2.1.10.

Proposition 68. Let F : A → B be a functor admitting a left adjoint and α a
functor from Iop to C, where I is a small category, such that limα exists in C. Then
F (limα) is a limit of F ◦ α. Moreover, if p : ∆ limα→ α is the old projection, then
F (p) : ∆F (limα)→ F ◦ α is the new projection.

Proof. Let θ′ : ∆X ′ → F ◦ α be a morphism. It suffices to solve the problem

X ′ ∆X ′

F (limα) ∆F (limα) F ◦ α.

f ′ ∆f ′
θ′

F (p)

By adjunction we get a morphism θ : ∆G(X ′)→ α. Write f : G(X ′)→ limα for the
solution to the new problem

G(X ′) ∆G(X ′)

limα ∆ limα α,

f ∆f θ

p

and define f ′ : X ′ → F (limα) as the morphism attached to f : G(X ′) → limα by
adjunction. Let i be in I. We are left with checking that F (pi) ◦ f ′ = θ′i knowing that
pi ◦ f = θi. Let

λX′,X : HomC′(X
′, F (X))→ HomC(G(X

′), X).
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be the bijection given by the adjunction. Set X := limα. The equality F (pi) ◦ f ′ = θ′i
follows from the commutativity of

HomC′(X
′, F (X)) HomC(G(X

′), X)

HomC′(X
′, F (α(i))) HomC(G(X

′), α(i)).

F (pi)◦

λX′,X

pi◦

λX′,α(i)

5.4 Universal limits

Proposition 69. Let α : I → C be an arbitrary functor. For each universe U such that
I is U-small and C is a U-category (Definitions 5 p. 10 and 4 p. 10), let hU : C → C∧U
be the Yoneda embedding and define AU ∈ C∧U by AU(X) := colimHomC(X,α), where
colimHomC(X,α) is defined as in Convention 57 p. 48. Let U and V be two such
universes. Then AU is representable if and only if AV is. Let X be in C. Then X
represents AU if and only if X represents AV . Assume that such is the case. Then X
is a colimit of α in C. Moreover, for any functor F : C → C ′, the natural morphism
colimF ◦ α→ F (X) is an isomorphism.

Proof. Let us prove the last sentence, the others following from Corollary 41 p. 37.
Let U be a universe such that I is U -small and C and C ′ are U -categories, let X ′ be in
C ′ and define A ∈ C∧U by A := HomC′(F ( ), X

′). Let p : α→ ∆X be the coprojection.
By Proposition 65 p. 54, it suffices to show that the morphism

HomC′(F (p), X
′) : ∆HomC′(F (X), X ′)→ HomC′(F ◦ α,X ′)

in Fct(Iop,SetU) is a projection (see Definition 53 p. 47). Consider the commutative
diagram

∆A(X) A ◦ α

∆HomC∧U (X,A) HomC∧U (α,A)

∼

A(p)

∼

HomC∧U
(hU (p),A)

in Fct(Iop,SetV), where V is a universe such that C∧U is a V-category, the vertical
isomorphisms being given by the Yoneda Lemma. The bottom horizontal arrow being
a projection by assumption, the top horizontal arrow is also a projection.
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Definition 70 (universal inductive limit). Let α : I → C be an arbitrary functor
and let X be an object of C. If, in the notation of Proposition 69, the functor AU is
representable for some U such that I is U-small and C is a U-category (Definitions 4
p. 10 and 5 p. 10), we say that X is a universal inductive limit of α, and that colimα
exists universally in C.

There is of course an analogous notion of universal projective limit.

Here is the classic example of a non-universal inductive limit. Letting α be
the unique functor from the empty category to Set, we get colimα = ∅. Writing
h : Set→ Set∧ for the Yoneda embedding yields colimh ◦ α = ∆∅. But we have, on
the one hand (∆∅)(∅) = ∅, and on the other hand (h(∅))(∅) ̸≃ ∅, implying

colimh ◦ α ̸≃ h(colimα).

This shows that the inductive limit of α does not exist universally in Set.

5.5 Brief comments

§ 71.

Proposition 72. If I and J are big categories, if C is a U-category (Definition 4
p. 10), if α : I × J → C is a functor and if colimi α(i, ) exists universally in the
sense of Definition 70 p. 59, then colimi α(i, j) exists universally for all j.

In §61 p. 51 we saw that, without the adverb “universally”, the claim is false.

Proof. To prove the proposition, we may assume that I is small (Definition 5 p. 10).
Then the statement follows from Proposition 60 p. 50.

§ 73. P. 40, proof of Lemma 2.1.11 (minor variant).

Lemma 74. If T is an object of a category C, then

T is terminal ⇔ T ≃ colim idC .

Proof. ⇒: Straightforward.
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⇐: Let p : idC → ∆T be a coprojection (see Definition 56 p. 48) and let X be in C.
For all morphism of functors θ : idC → ∆X there is a unique morphism f : T → X
satisfying ∆f ◦ p = θ:

idC ∆T T

∆X X.

p

θ
∆f f

We claim
idT = pT . (23)

We have indeed (∆pT ◦ p)X = pT ◦ pX = pX = (∆ idT ◦p)X . This proves (23). If
f : X → T is a morphism in C, then we have f = idT ◦f = pT ◦ f = pX , the second
equality following from (23). This shows that T is terminal.

Corollary 75. If C is a category and A an object of C∧, then the following conditions
are equivalent:

(a) A is representable,

(b) CA has a terminal object,

(c) the identity of CA has an inductive limit in CA.

Proof. This follows from Lemma 74 above and Convention 39 p. 36.

§ 76. P. 41, Lemma 2.1.12. The following variant will be useful to prove Proposition
2.5.2 p. 57 of the book (see §105 p. 79 below).

Lemma 77. If I and C are categories, if X is in C, if ∆X : I → C is the constant
functor with value X, and if I is connected, then

(a) id∆X : ∆X → ∆X is a coprojection in the sense of Definition 56 p. 48,

(b) if i is in I, Y in C, f : X → Y and θ : ∆X → ∆Y , then the equalities ∆f = θ
and f = θi are equivalent:

∆X ∆X X

∆Y Y.

id

θ
∆f f

(c) we have θi = θj for all θ : ∆X → ∆Y with Y in C and all i, j in I.
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Proof. To prove (c) we can assume that there is a morphism i→ j, in which case the
claim is obvious. Clearly (c) implies (a) and (b).

§ 78. P. 42, proof of Lemma 2.1.15. Here are some additional details about the last
diagram on p. 42:

To the commutative diagram

i j

i i

id

f

id

f

in I we attach the commutative diagram

α(i) β(j)

α(i) β(i)

id

φ(f)

φ(idi)

β(f) (24)

in C. Turning (24) upside down we get

α(i) β(i)

α(i) β(j).

φ(idi)

β(f)id

φ(f)

(25)

To the commutative diagram
i j

j j

f

f

id

id

in I we attach the commutative diagram

α(i) β(j)

α(j) β(j)

α(f)

φ(f)

φ(idj)

id (26)
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in C. Splicing (25) and (26) we get

α(i) β(i)

α(i) β(j)

α(j) β(j).

φ(idi)

β(f)id

α(f)

φ(f)

φ(idj)

id

Reversing the identity arrows, we get

α(i) β(i)

α(i) β(j)

α(j) β(j),

id

φ(idi)

β(f)

α(f)

φ(f)

id

φ(idj)

as desired.

§ 79. Lemma 2.1.15 p. 42. Here is a complement which will be used in §516 p. 296.

Theorem 80. Let I be a small (Definition 5 p. 10) category; let α, β : I → C be two
functors; for each i in I, let U i : I i → I be the forgetful functor; and set

S := HomFct(I,C)(α, β), T := lim
i∈Iop

HomFct(Ii,C)(α ◦ U i, β ◦ U i).

Then there is a unique map f : T → S satisfying f(t)i = tidi for all t in T . Moreover
f is inverse to the natural map from S to T .

Proof. Left to the reader.

§ 81. P. 44, Definition 2.2.2 (iii). A sequence X → Y ⇒ Z in a category C is exact if
and only if its image in C∧ is exact.
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5.6 Stability by base change

§ 82. (See also Section 5.20 p. 93.) Recall the following definition:

Definition 83 (Definition 2.2.6 p. 47, stability by base change). Let C be a category
which admits fiber products and inductive limits indexed by a category I.

(i) We say that inductive limits in C indexed by I are stable by base change if for
any morphism Y → Z in C, the base change functor CZ → CY given by

CZ ∋ (X → Z) 7→ (X ×Z Y → Y ) ∈ CY

commutes with inductive limits indexed by I.

This is equivalent to saying that for any inductive system (Xi)i∈I in C and any
pair of morphisms Y → Z and colimiXi → Z in C, we have the isomorphism

colim
i

(Xi ×Z Y )
∼−→
(
colim

i
Xi

)
×Z Y.

(ii) If C admits small inductive limits and (i) holds for any small category I (Defini-
tion 5 p. 10), we say that small inductive limits in C are stable by base change.

The following lemma is implicit:

Lemma 84. Let I and C be categories, let Y be an object of C, let U : CY → C be
the forgetful functor, and let α : I → CY be a functor such that colimU ◦ α exists in
C. Then colimα exists in CY and is given by the natural morphism colimU ◦ α→ Y .
More precisely, let X → Y be a morphism in C, let p : α→ ∆(X → Y ) be a morphism
in Fct(I, CY ), and let U ⋆p : U ◦α→ ∆X be the corresponding morphism in Fct(I, C).
[Recall that ⋆ denotes the horizontal composition defined in Definition 35 p. 32.] If
U ⋆ p is a coprojection (see Definition 56 p. 48), then so is p.

Proof. Let Z → Y be a morphism in C and λ : α → ∆(Z → Y ) be a morphism in
Fct(I, CY ). We must show that there is a unique morphism f : X → Z in CY such
that ∆f ◦ p = λ:

α ∆(X → Y ) (X → Y )

∆(Z → Y ) (Z → Y ).

p

λ ∆f f
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Let µ : U ◦ α → ∆Z be the morphism in Fct(I, C) induced by λ. Then there is a
unique morphism f : X → Z such that ∆f ◦ (U ⋆ p) = µ:

U ◦ α ∆X X

∆Z Z.

U⋆p

µ
∆f f

It remains to check that f is a morphism in CY , that is, we must prove

(X
f−→ Z → Y ) = (X → Y ).

Let i be in I. As U ⋆ p is a coprojection, it suffices to show(
U(α(i))→ X

f−→ Z → Y
)
=
(
U(α(i))→ X → Y

)
.

But we have

(U(α(i)) X Z Y ) =

(U(α(i)) Z Y ) =

(U(α(i)) Y ) =

(U(α(i)) X Y ).

(U⋆p)i f

λi

(U⋆p)i

Indeed, the first and third equalities follow from the fact that U ⋆ p is a coprojection,
and the second equality follows from the fact that λi is a morphism in CY .

§ 85. We make an easy but useful observation. Let I, J and C be three categories.

If C admits fiber products, and if inductive limits indexed by I exist in C and are
stable by base change, then CJ admits fiber products, and inductive limits indexed by
I exist in CJ and are stable by base change.

5.7 Brief comments

§ 86. P. 50, Corollary 2.2.11. We also have:
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A category admits finite projective limits if and only if it admits a terminal object
and binary fibered products.

Indeed, if f, g : X ⇒ Y is a pair of parallel arrows, and if the square

K Y

X Y × Y
∆

(f,g)

is cartesian, then K ≃ Ker(f, g). (As usual, ∆ is the diagonal morphism.)

§ 87. P. 50, Definition 2.3.1. The three pieces of notation φ∗, φ† and φ‡ are justified
by Notation 17.1.5 p. 407 (see also (199) p. 294).

§ 88. P. 50, Definition 2.3.1. Let φ : J → I be a functor of small categories
(Definition 5 p. 10), let C be a category, and consider the functor

φ∗ := ◦φ : CI → CJ . (27)

The following fact results from Proposition 2.1.6 p. 38 of the book (see §59 p. 49):

If C admits small inductive (resp. projective) limits, then so do CI and CJ , and
φ∗ commutes with such limits.

Recall that we denote horizontal composition of morphisms of functors by ⋆ (see
Definition 35 p. 32).

The effect of the functor (27) on morphisms can be described as follows: If
θ : α→ β is a morphism in CI , then the morphism φ∗θ : φ∗α→ φ∗β in CJ is defined
by φ∗θ := θ ⋆ φ, which is in turn defined by (θ ⋆ φ)j := θφ(j).

§ 89. P. 51, Definition 2.3.2. Recall that we have functors I φ←− J
β−→ C. We spell out

Definition 2.3.2 using the terminology of Section 4.8 p. 39. Let φ†β and φ‡β be in CI .

(a) We say that “φ†β exists” if there is a co-unit εβ : β → φ∗φ
†β, that is, for all

α : I → C and all w : β → φ∗α there is a unique v : φ†β → α such that (v⋆φ)◦εβ = w:

β φ∗φ
†β φ†β

φ∗α α.

εβ

w v⋆φ v
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(b) We say that “φ‡β exists” if there is a unit ηβ : φ∗φ
‡β → β, that is, for all α : I → C

and all w : φ∗α→ β there is a unique v : α→ φ‡β such that ηβ ◦ (v ⋆ φ) = w:

α φ∗α

φ‡β φ∗φ
‡β β

v v⋆φ w

ηβ

(c) Let γ : I → C and let u be an endomorphism of the functor φ∗γ : J → C. The
phrase “φ‡φ∗γ exists and is isomorphic to γ via u” shall mean that for all α : I → C
and all w : φ∗α→ φ∗γ there is a unique v : α→ γ such that u ◦ (v ⋆ φ) = w:

α φ∗α

γ φ∗γ φ∗γ.

v v⋆φ
w

u

In particular, the phrase “φ‡φ∗γ exists and is isomorphic to γ via the identity of
φ∗γ : J → C” shall mean that, for all α : I → C, the map

HomCI (α, γ)→ HomCJ (φ∗α, φ∗γ), v 7→ v ⋆ φ

is bijective. (See §246 p. 156 below.)

§ 90. Let I φ←− J
β−→ C F−→ C ′ be functors, let β be in CJ and assume that φ†(β) and

φ†(F ◦ β) exist:
J I

C C ′.

β

φ

φ†(β)
φ†(F◦β)

F

We claim that there is a natural morphism φ†(F ◦ β)→ F ◦ φ†(β).

As F ◦ φ†(β) ◦ φ = φ∗(F ◦ φ†(β)), it suffices to define a natural morphism
F ◦ β → F ◦ φ†(β) ◦ φ:

F ◦ β φ∗φ
†(F ◦ β) φ†(F ◦ β)

φ∗(F ◦ φ†(β)) F ◦ φ†(β).

εF◦β
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As we have εβ : β → φ†(β) ◦ φ, we can take F ⋆ εβ : F ◦ β → F ◦ φ†(β) ◦ φ.

Definition 91. If the above morphism φ†(F ◦ β)→ F ◦φ†(β) is an isomorphism, we
say that F commutes with φ† at β.

§ 92. P. 51, Definition 2.3.2 (minor variant). We assume that no underlying universe
has been given. Let I φ←− J

β−→ C be functors, let β be in CJ , and let φ†β be in CI .
The following conditions are equivalent:

(a) φ†β represents HomCJ (β, φ∗( )) ∈ (CI)∨U for some universe U such that CJ is a
U -category (Definition 4 p. 10),

(b) φ†β represents HomCJ (β, φ∗( )) ∈ (CI)∨U for any universe U such that CJ is a
U -category.

Definition 93 (Universal Kan extension). If the above equivalent conditions hold, we
say that φ†β exists (this is compatible with §89 (a) p. 65). If, in addition, φ†(F ◦ β)
exists and the natural morphism φ†(F ◦ β)→ F ◦ φ†(β) is an isomorphism for all big
category C ′ and all functor F : C → C ′, we say that φ†β exists universally.

5.8 Theorem 2.3.3 (i) p. 52

Note that projective and inductive limits are particular cases of Kan extensions.

Recall the statement:

Theorem 94 (Theorem 2.3.3 (i) p. 52). Let I φ←− J
β−→ C be functors. Assume that

colim
(φ(j)→i)∈Ji

β(j)

exists in C for all i in I. Then φ†(β) exists and we have

φ†(β)(i) ≃ colim
(φ(j)→i)∈Ji

β(j) (28)

for all i in I. In particular, if C admits small inductive limits and J is small, then
φ† exists. If moreover φ is fully faithful, then φ† is fully faithful and the co-unit
εβ : idCJ → φ∗ ◦ φ† (see §51 p. 40) is an isomorphism.

Note that, as observed by Kelly (see Section 4.2 of the book quoted above in
§61 p. 51), the above sufficient condition for φ†(β) to exist is not necessary. This
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non-necessity results from §61 and the following remark. If π : I × J → I is the
projection, and α : I × J → C is a functor, then π†(α) ≃ colimj∈J α( , j) (in the
strong sense that one exists if and only if the other exists); in contrast we have
colim(φ(i′,j)→i)∈(I×J)i α(j) ≃ colimj∈J α(i, j) (in the same strong sense); and we saw
that the existence of colimj∈J α(i, j) for all i implies that of colimj∈J α( , j), but the
converse is not true. We have however

Theorem 95 (Universal Kan Extension Theorem). If I φ←− J
β−→ C are arbitrary

functors and
colim

(φ(j)→i)∈Ji
β(j) (29)

exists in C for all i in I, then φ†β exists, and (φ†β)(i) is isomorphic to (29). Moreover,
the following conditions are equivalent

(a) the colimit (29) exists universally for all i in the sense of Definition 70 p. 59,

(b) φ†β exists universally in the sense of Definition 93 p. 67,

(c) φ†β exists and there is a universe U such that J is U-small, C is a U-category
(Definitions 4 p. 10 and 5 p. 10), the functor φ†(h ◦ β) (where h : C → C∧ is the
Yoneda embedding) exists, and the natural morphism φ†(h ◦ β) → h ◦ φ†(β) is an
isomorphism.

Proof. This follows from Theorem 94 p. 67 and Proposition 69 p. 58.

In the book the proof of Theorem 2.3.3 (i) is divided into three steps, called (a),
(b) and (c). We shall follow this subdivision.

5.8.1 Step (a)

We define φ†(β) by (28). The purpose of Step (a) is to show that φ†(β) is indeed a
functor.

For the reader’s convenience we reproduce the argument in the book:

Let i→ i′ be a morphism in I. It is easily checked that there is a unique morphism
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φ†(β)(i)→ φ†(β)(i′) which make the diagrams

φ†(β)(i) = colim
(φ(j)→i)∈Ji

β(j) colim
(φ(j)→i′)∈Ji′β(j)

= φ†(β)(i′)

β(j)
p[φ(j)→i] q[φ(j)→i→i′]

commute, where p[φ(j)→ i] and q[φ(j)→ i→ i′] are the coprojections, and that the
assignment

(i→ i′) 7→
(
φ†(β)(i)→ φ†(β)(i′)

)
is functorial.

5.8.2 Step (b)

The purpose of Step (b) is to prove

HomCI (φ
†(β), α) ≃ HomCJ (β, φ∗(α)) (30)

for all α : I → C. As pointed out in the book, this can also be achieved by using
Lemma 2.1.15 p. 42. Here is a sketch of the argument. We start with a reminder of
Lemma 2.1.15.

To any category A we attach the category Mor0(A) defined as follows. The objects
of Mor0(A) are the triples (X, f, Y ) such that f is a morphism in C from X to Y .
The morphisms in Mor0(A) from (X, f, Y ) to (X ′, f ′, Y ′) are the pairs (u, v) with
u : X → X ′, v : Y ′ → Y , and f = v ◦ f ′ ◦ u:

X Y

X ′ Y ′.

u

f

g

v

The composition of morphisms is the obvious one. Lemma 2.1.15 can be stated as
follows:

If I and A are categories, and a, b : I ⇒ A are functors, then

(i, i→ j, j) 7→ HomA(a(i), b(j))
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is a functor from Mor0(I)
op to Set, and there is a natural isomorphism

HomAI (a, b)
∼−→ lim

(i→j)∈Mor0(I)
HomA(a(i), b(j)). (31)

Returning to (30), we have functors

J I

C.

φ

β α

Let us define the categories M and N as follows: an object of M is a pair

(j, φ(j)→ i→ i′)

with j in J and i, i′ in I. A morphism(
j1, φ(j1)→ i1 → i′1

)
→
(
j2, φ(j2)→ i2 → i′2

)
is given by a triple of morphisms j1 → j2, i1 → i2, i

′
1 ← i′2 such that the obvious

diagram commutes. The category N is Mor0(J). Consider the functors

γ :Mop → Set,
(
j, φ(j)→ i→ i′

)
7→ HomC

(
β(j), α(i′)

)
,

δ : Nop → Set, (j → j′) 7→ HomC
(
β(j), α(φ(j′))

)
.

The existence of a natural bijection

HomCJ
(
β, φ∗(α)

) ∼−→ lim δ (32)

follows immediately from (31). Using (31) again, it is easy to see that we also have a
natural bijection

HomCI
(
φ†(β), α

) ∼−→ lim γ. (33)

By (32) and (33), it suffices to show

Lemma 96. There is a natural bijection lim γ ≃ lim δ.

Proof. To define a map lim γ → lim δ, we attach, to a family(
β(j)→ α(i′)

)
φ(j)→i→i′ ∈ lim γ
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and to a morphism j → j′, a morphism β(j)→ α(φ(j′)) by setting

i := i′ := φ(j′), (i→ i′) := idφ(j′),

and by taking as β(j)→ α(φ(j′)) the corresponding member of our family. We leave
it to the reader to check that this defines indeed a map lim γ → lim δ. To define a
map lim δ → lim γ, we attach, to a family(

β(j)→ α(φ(j′))
)
j→j′ ∈ lim δ

and to a chain of morphisms φ(j)→ i→ i′, a morphism β(j)→ α(i′) by setting

j′ := j, (j → j′) := idj,

and by taking as β(j)→ α(i′) the composition

β(j)→ α(φ(j))→ α(i)→ α(i′).

We leave it to the reader to check that this defines indeed a map lim δ → lim γ, and
that this map is inverse to the map constructed above.

5.8.3 Step (c)

The purpose of Step (c) is to prove the last two sentences of the statement of Theorem
2.3.3 (i) p. 52 of the book (stated above as Theorem 94 p. 67). We assume that
C admits small inductive limits, that J is small (in particular φ† exists), and that
φ is fully faithful. We must show that φ† is fully faithful, and that the co-unit
εβ : idCJ → φ∗ ◦ φ† (see §51 p. 40) is an isomorphism. Recall that we have

φ†(β)(i) := colim
(φ(j)→i)∈Ji

β(j),

and let
p[φ(j)→ i] : β(j)→ φ†(β)(i)

be the coprojections. By the proof of Step (b) in the book, the co-unit

εβ,j : β(j)→ φ†(β)(φ(j))

coincides with the coprojection p[φ(j) id−→ φ(j)]. We shall define a morphism

φ†(β)(φ(j))→ β(j)
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and leave it to the reader to check that it is inverse to εβ,j. It suffices to define a
functorial family of morphisms

f(φ(j′)→ φ(j)) : β(j′)→ β(j)

indexed by (φ(j′)→ φ(j)) ∈ Jφ(j). Let such a morphism φ(j′)→ φ(j) be given. As
φ is fully faithful, we get a well-defined morphism j′ → j, and we set

f(φ(j′)→ φ(j)) := β(j′ → j).

It is straightforward to verify that the family of morphisms defined this way is
functorial.

5.8.4 A Corollary

Here is a corollary to Theorem 94 p. 67 (which is Theorem 2.3.3 (i) p. 52 of the book):

Corollary 97. If, in the setting of Theorem 94, we have C = Set and J is small
(Definition 5 p. 10), then φ†(β)(i) is (in natural bijection with) the quotient of⊔

j∈J

β(j)× HomI(φ(j), i)

by the smallest equivalence relation ∼ satisfying the following condition: If j → j′ is
a morphism in J , if x is in β(j), and if φ(j′)→ i is a morphism in I, then

pj(x, φ(j)→ φ(j′)→ i) ∼ pj′(β(j → j′)(x), φ(j′)→ i),

where pj is the j-coprojection.

Proof. Recall that Theorem 94 p. 67 states the existence of an isomorphism

φ†(β)(i) ≃ colim
(φ(j)→i)∈Ji

β(j).

By Proposition 2.4.1 p. 54 of the book, the right-hand side is, in a natural way, the
quotient of ⊔

(φ(j)→i)∈Ji

β(j)
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by a certain equivalence relation. We have⊔
(φ(j)→i)∈Ji

β(j) =
⊔
j∈J

⊔
u∈HomI(φ(j),i)

β(j) ≃
⊔
j∈J

β(j)× HomI(φ(j), i),

and it easy to see that the three data of the above bijection, of the equivalence relation
in Proposition 2.4.1 of the book, and of the equivalence relation in Corollary 97 above
are compatible.

Under the same assumptions φ‡(β)(i) is (in natural bijection with) the set of all
x in ∏

(i→φ(j))∈Ji
β(j)

such that xi→φ(j)→φ(j′) = β(j → j′)(xi→φ(j)) for all morphism j → j′ in J .

5.9 Brief comments

§ 98. P. 53, Corollary 2.3.4. Recall that we have functors C β←− J
φ−→ I, where I and J

are small (Definition 5 p. 10) and C admits small inductive limits, and that Corollary
2.3.4 says that we have a natural isomorphism colim β ≃ colimφ†β, that is

colim β ≃ colim
i

colim
(j,u)∈Ji

β(j), (34)

where (j, u) runs over Ji, with u : φ(j)→ i.

Proof of (34). We define morphisms

colim β colim
i

colim
(j,u)∈Ji

β(j),
f

g

and claim that f and g are inverse isomorphisms. We have the coprojections

β(j)
pj−→ colim β, β(j)

qi,j,u−−−→ colim
(j′,u′)∈Ji

β(j′)
ri−→ colim

i′
colim

(j′′,u′′)∈Ji′
β(j′′).

We define f by the condition that we have

f ◦ pj = rφ(j) ◦ qφ(j),j,idφ(j)
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for all j in J :
β(j) β(j)

colim
(j′,u)∈Jφ(j)

β(j′)

colim β colim
i

colim
(j′,u)∈Ji

β(j′).

pj

id

qφ(j),j,idφ(j)

rφ(j)

f

To define g, we form the commutative diagram

β(j) β(j)

colim
(j′,u′)∈Ji

β(j′) colim β

colim
i′

colim
(j′,u′)∈Ji′

β(j′) colim β.

qi,j,u

id

pj

ri

gi

id

g

(35)

as follows: We let i be in I and define gi by the condition that the top square of
(35) commutes for all (j, u) ∈ Ji. Then we define g by the condition that the bottom
square of (35) commutes for all i.

Let us prove that f ◦ g is the identity of colimi colim(j,u)∈Ji β(j). We have

f ◦ g ◦ ri ◦ qi,j,u = f ◦ pj = rφ(j) ◦ qφ(j),j,idφ(j)

for all i ∈ J, (j, u) ∈ Ji. Let i ∈ J, (j, u) ∈ Ji. It suffices to show

ri ◦ qi,j,u = rφ(j) ◦ qφ(j),j,idφ(j) , (36)
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that is, it suffices to show that the diagram

β(j) β(j)

colim
(j′,u′)∈Jφ(j)

β(j′) colim
(j′,u′)∈Ji

β(j′)

colim
i′

colim
(j′,u′)∈Ji

β(j′) colim
i′

colim
(j′,u′)∈Ji

β(j′),

qφ(j),j,idφ(j)

id

qi,j,u

rφ(j)

u∗

ri

id

where u∗ denotes the morphism induced by u, commutes. The top square commutes
by definition of u∗, and the bottom square commutes for obvious reasons.

We leave the proof of the fact that g ◦f is the identity of colim β to the reader.

Display (34) p. 73 above just says that there exists an isomorphism between two
given objects of C. But the proof proves much more than that! The proof indeed
exhibits a morphism from the first object to the second, a morphism from the second
to the first, and a proof that these two morphisms are inverse isomorphisms. When
we invoke (34) in a subsequent argument, we shall often tacitly refer not only to the
mere display (34), but also to the two morphisms involved in its proof. In many cases
it will be clear that the mere existential statement (34) wouldn’t suffice to make the
argument in question work, and that the invocation of the proof of (34) is crucial.
Such a situation will happen so often that we think it advisable to issue a general
warning:

Warning 99. When we invoke a previously proved statement, we tacitly understand
once and for all that the proof of the statement in question is also implicitly invoked.

5.10 Kan extensions of modules

Let R be a ring, let U and V be universes such that R ∈ U ∈ V, put, with self-
explanatory notation,

I := ModU(R), C := ModV(R),

let J be the full subcategory of I whose single object is R, and let C β←− J
φ−→ I be the

inclusion functors. We identify HomR(R,M) to M whenever convenient.
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We claim that the functor φ†(β) : I → C satisfies

φ†(β)(M) ≃M. (37)

To prove (37), set
M ′ := colim

(x:R→M)∈JM
R ∈ C,

and let px : R → M ′ be the coprojections. As Theorem 2.3.3 (i) p. 52 of the book
(stated above as Theorem 94 p. 67) implies M ′ ≃ φ†(β)(M), it suffices to prove
M ′ ≃M . We define a family of linear maps Φx : R→M , indexed by x : R→M , by
setting Φx := x, and leave it to the reader to check that the Φx induce a linear map
Φ :M ′ →M . We define the set theoretic map Ψ :M →M ′ by putting Ψ(x) := px(1),
and leave it to the reader to verify that Φ and Ψ are mutually inverse bijections. This
proves (37).

We claim that the functor φ‡(β) : I → C satisfies

φ‡(β)(M) ≃M∗∗, (38)

where M∗∗ is the double of M .

To prove (38), set
M ′ := lim

(f :M→R)∈JM
R ∈ C,

and let pf : M ′ → R be the projections. As Theorem 2.3.3 (ii) p. 52 of the book
implies M ′ ≃ φ‡(β)(M), it suffices to prove M ′ ≃M∗∗. We define a family of linear
maps Φf :M∗∗ → R, indexed by f :M → R, by setting Φf (F ) := F (f), and leave it
to the reader to check that the Φf induce a linear map Φ :M∗∗ →M ′. We define the
linear map Ψ :M ′ →M∗∗ by putting Ψ((λf ))(g) := λg, and leave it to the reader to
verify that Φ and Ψ are mutually inverse linear bijections. This proves (38).

Let R, U and V be as above, put, with self-explanatory notation,

I := ModU(R)op, C := ModV(Rop),

let J be the full subcategory of I whose single object is R, let φ : J → I be the
inclusion functor, and let β : J → C be the obvious functor satisfying β(R) = Rop.

We claim that the functor φ†(β) : I → C satisfies

φ†(β)(M) ≃M∗, (39)
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where M∗ is the of M .

To prove (39), set

M ′ := colim
(R→M)∈JM

Rop = colim
(f :M→R)∈(Jop)M

Rop ∈ C,

and let pf : Rop →M ′ be the coprojections. As Theorem 2.3.3 (i) p. 52 of the book
(stated above as Theorem 94 p. 67) implies M ′ ≃ φ†(β)(M), it suffices to prove
M ′ ≃M∗. We define a family of linear maps Φf : Rop →M∗, indexed by f :M → R,
by setting Φf (1) := f , and leave it to the reader to check that the Φf induce a linear
map Φ : M ′ → M∗. We define the set theoretic map Ψ : M∗ → M ′ by putting
Ψ(f) := pf (1), and leave it to the reader to verify that Φ and Ψ are mutually inverse
bijections. This proves (39).

We claim that the functor φ‡(β) : I → C satisfies

φ‡(β)(M) ≃M∗, (40)

where M∗ is the of M .

To prove (40), set

M ′ := lim
(M→R)∈JM

Rop = lim
(x:R→M)∈(Jop)M

Rop ∈ C,

and let px : M ′ → Rop be the projections. As Theorem 2.3.3 (ii) p. 52 of the book
implies M ′ ≃ φ‡(β)(M), it suffices to prove M ′ ≃M∗. We define a family of linear
maps Φx :M

∗ → Rop, indexed by x : R→M , by setting Φx(f) := f(x), and leave it
to the reader to check that the Φx induce a linear map Φ :M∗ →M ′. We define the
linear map Ψ :M ′ →M∗ by putting Ψ((λx))(y) := λy, and leave it to the reader to
verify that Φ and Ψ are mutually inverse linear bijections. This proves (40).

5.11 Brief comments

§ 100. P. 55, proof of Corollary 2.4.4 (iii) (minor variant).

Proposition 101. If I is a small category (Definition 5 p. 10), if S is in Set and
∆S : I → Set is the corresponding constant functor, then there is a canonical bijection

colim∆S ≃ π0(I)× S.

(See Notation 52 p. 46.)
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Proof. On the one hand we have

π0(I) := Ob(I)/∼ ,

where ∼ is the equivalence relation defined on p. 18 of the book. On the other hand
we have by Proposition 2.4.1 p. 54 of the book

colim∆S ≃ (Ob(I)× S)/≈ ,

where ≈ is the equivalence relation described in the proposition. In view of the
definition of ≈ and ∼, we get

(i, s) ≈ (j, t) ⇔ [i ∼ j and s = t].

5.12 Corollary 2.4.6 p. 56

Recall the statement:

Proposition 102 (Corollary 2.4.6 p. 56). If X ′ and X ′′ are objects, if C and C ′ are
categories, and if F and G are functors satisfying

X ′ ∈ C ′ F←− C G−→ C ′′ ∋ X ′′, (41)

then we have

colim
(G(X)→X′′)∈CX′′

HomC′(X
′, F (X)) ≃ colim

(X′→F (X))∈(CX′ )op
HomC′′(G(X), X ′′). (42)

Proof. Consider the diagram

colim
(G(X)→X′′)∈CX′′

HomC′(X
′, F (X)) colim

(X′→F (X))∈(CX′ )op
HomC′′(G(X), X ′′)

HomC′(X
′, F (X)) HomC′′(G(X), X ′′),

f

g

p[G(X)→X′′] q[X′→F (X)]

where the vertical arrows are the coprojections. We leave it to the reader to check
firstly that there are maps f and g as in the above diagram satisfying

f
(
p
[
G(X)→ X ′′

](
X ′ → F (X)

))
:= q

[
X ′ → F (X)

](
G(X)→ X ′′

)
,

78 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



g
(
q
[
X ′ → F (X)

](
G(X)→ X ′′

))
:= p

[
G(X)→ X ′′

](
X ′ → F (X)

)
for all morphism G(X)→ X ′′ in C ′′ and all morphism X ′ → F (X) in C ′, and secondly
that f and g are inverse bijections.

5.13 Brief comments

§ 103. P. 56, proof of Lemma 2.4.7 (minor variant).

Lemma 104. If I is a small category (Definition 5 p. 10), i0 is in I, and α : I → Set
is the functor HomI(i0, ), then colimα is a terminal object of Set.

Proof. We shall use (14) p. 48. Let X = {x} be a terminal object of Set, let
p : α→ ∆X be the unique morphism from α to ∆X, let θ : α→ ∆Y be a morphism
in SetI (with Y in Set), and let us show that there is a unique map f : X → Y such
that ∆f ◦ p = θ:

α ∆X X

∆Y Y.

p

θ
∆f f

Any such f must satisfy f(x) = θi0(idi0). This proves the uniqueness. For the
existence, it is easy to see that the map f defined by the above equality does the
job.

Here is a second proof:

Proof. Each element of colimi∈I HomI(i0, i) is represented by some morphism i0 → i
in I. Moreover, a composition of the form i0 → i→ j represents the same element as
i0 → i. In particular i0 → i represents the same element as idi0 .

§ 105. P. 57, proof of Proposition 2.5.2 (minor variant). Instead of proving (i)⇒(v),
we prove (i)⇒(ii), that is, we prove the following statement:

Lemma 106. If φ : J → I and β : Iop → Set are functors defined on small categories
(Definition 5 p. 10) and if the category J i is connected for all i in I, then the natural
map

f : lim β → lim β ◦ φop

is bijective.
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Proof. We shall define a map

g : lim β ◦ φop → lim β

and leave it to the reader to check that f and g are inverse. Let y be in lim β ◦ φop.
In particular y is of the form (yj)j∈J with yj ∈ β(φ(j)). We must define the element
g(y)i in β(i), where i is an arbitrary element in I. Let us choose a morphism i→ φ(j)
in I. It suffices to show that the element β(i→ φ(j))(yj) in β(i) does not depend on
the choice of i→ φ(j), enabling us to set

g(y)i := β(i→ φ(j))(yj).

Given another choice i→ φ(j′), we must prove

β(i→ φ(j))(yj) = β(i→ φ(j′))(yj′).

As J i is connected, we may assume that there is a morphism j → j′ in J such that
(i→ φ(j′)) = (i→ φ(j)→ φ(j′)), and the proof is straightforward.

§ 107. P. 58, implication (vi)⇒(i) of Proposition 2.5.2. Here is a slightly stronger
statement:

Proposition 108. If φ : J → I is a functor, then the obvious map

colimHomI(i, φ)→ π0(J
i) (43)

is bijective.

Proof. Let Li be the left-hand side of (43), and, for j in J , let

pj : HomI(i, φ(j))→ Li

be the coprojection. It is easy to check that the map

Ob(J i)→ Li, (j, i→ φ(j)) 7→ pj(i→ φ(j))

factors through π0(J i), and that the induced map π0(J i)→ Li is inverse to (43).
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5.14 Proposition 2.6.3 (i) p. 61

Let C be a category and let A be in C∧. Consider the statements

“colim”
(X→A)∈CA

X
∼−→ A, (44)

colim
(X→A)∈CA

HomC(Y,X)
∼−→ A(Y ) for all Y ∈ C, (45)

HomC∧(A,B)
∼−→ lim

(X→A)∈CA
B(X) for all B ∈ C∧. (46)

We prove (44), (45) and (46) in §109 p. 81 below. [Note that Warning 99 p. 75
applies particularly well to (44), (45) and (46).]

Note that (44) can be stated as follows: If h : C → C∧ is the Yoneda embedding,
then the natural morphism h†(h)→ idC∧ is an isomorphism. This implies in particular
that (44) is functorial in A.

§ 109. We shall prove (44), (45) and (46). More precisely, we shall spell out these
three isomorphisms in terms of Diagram (14) p. 48 and Diagram (13) p. 47).

Warning: In this proof the symbols X and Y will designate either two objects of
C or the image of these objects in C∧. The context only will tell which interpretation
is the good one. (It seems to me the choice of the correct interpretation will always
be obvious.)

• Isomorphism (44) can be decoded as follows: Consider the functor

α : CA → C∧, (X → A) 7→ X,

and let p : α→ ∆A be the tautological morphism in (C∧)CA defined by

pX→A := (X → A) (47)

for all X → A in CA. Let B be in C∧ and θ : α→ ∆B. Diagram (14) p. 48 becomes

α ∆A A

∆B B.

p

θ
∆f f
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The uniqueness of f follows from the fact that the equality

∆f ◦ p = θ (48)

implies
(X → A

f−→ B) = θX→A ∀ X → A, (49)

and the existence of f follows from the fact that (49) implies (48).

• Isomorphism (45) can be decoded as follows: Let Y be in C, consider the functor

β : CA → Set, (X → A) 7→ HomC(Y,X),

and let q : β → ∆A(Y ) be the morphism in SetCA defined by

qX→A(Y → X) := (Y → X → A)

for all X → A in CA. Let S be in Set and Y in C. Diagram (14) p. 48 becomes

β ∆A(Y ) A(Y )

∆S S.

q

θ
∆f f

The equality ∆f ◦ q = θ is equivalent to the condition

f(Y → X → A) = θX→A(Y → X) ∀ Y → X → A. (50)

Consider the condition

f(Y → A) = θY→A(idY ) ∀ Y → A. (51)

The uniqueness of f follows from the fact that (50) implies (51), and the existence of
f follows from the fact that (51) implies (50).

• Isomorphism (46) can be decoded as follows: Let B be in C∧, consider the functor

γ : (CA)op → Set, (X → A) 7→ B(X),

let r : ∆B(A)→ γ be the morphism in Set(CA)
op

defined by

rX→A(A→ B) := (X → A→ B)
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for all X → A in CA and all A → B in B(A), and let S be in Set. Diagram (13)
p. 47 becomes

S ∆S

B(A) ∆B(A) γ.

f ∆f θ

r

The uniqueness of f follows from the fact that the equality

r ◦∆f = θ (52)

implies
(X → A

f(s)−−→ B) = θX→A(s) for all s ∈ S and all X → A, (53)

and the existence of f follows from the fact that (53) implies (52). q.e.d.

5.15 Brief comments

§ 110. P. 62, Proposition 2.7.1. Consider the commutative diagram

C C∧ I

A,

hC

F
F̃

α

where I is a small category (Definition 5 p. 10) and F̃ satisfies

F̃ (A) ≃ colim
(X→A)∈CA

F (X)

for all A in C∧. Let us rewrite the proof of the fact that the natural morphism
colim F̃ ◦ α→ F̃ (colimα) is an isomorphism.

By Proposition 2.1.10 p. 40 of the book (stated on p. 56 above as Corollary 67),
it suffices to check that the functor G : A → C∧ defined by

G(X ′)(X) := HomA(F (X), X ′).

is right adjoint to F̃ . This results from the following computation:

HomA

(
F̃ (A), X ′

)
≃ HomA

(
colim

(X→A)∈CA
F (X), X ′

)
≃ lim

(X→A)∈CA
HomA(F (X), X ′)
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= lim
(X→A)∈CA

G(X ′)(X) ≃ HomC∧(A,G(X
′)),

the last isomorphism following from (46) p. 81. q.e.d.

§ 111. P. 62. In the setting of Proposition 2.7.1, the functors

AC → A, F 7→ (h†C F )(A) and C∧ → A, A 7→ (h†C F )(A)

commute with small inductive limits.

Indeed, for the first functor the conclusion follows from the isomorphism

(h†C F )(A) ≃ colim
(U→A)∈CA

F (U), (54)

and, for the second functor it follows from Proposition 2.7.1 p. 62 of the book.

5.16 Three formulas

Here is a complement to Section 2.3 pp 52-54 of the book, complement which will be
used in §515 p. 296 to prove Proposition 17.1.9 p. 409 of the book.

In this section we shall use the following notation: The Yoneda embedding C → C∧
will be denoted by h[C], and the forgetful functor CA → C by j[CA]:

h[C] : C → C∧, j[CA] : CA → C.

5.16.1 Preliminaries

Let C be a category and A an object of C∧. Recall that there is a unique functor

λ : (C∧)A → (CA)∧

such that
λ(B → A)(U → A) = Hom(C∧)A(U → A,B → A) (55)

for all (B → A) in (C∧)A and all (U → A) in CA. Moreover

λ is an equivalence, (56)

and we have
λ ◦ h[C]A ≃ h[CA], (57)
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that is, the diagram

CA (C∧)A

(CA)∧

h[C]A

h[CA]
λ

quasi-commutes. (See Lemma 1.4.12 p. 26 of the book.)

The statement below follows from Proposition 2.7.1 p. 62 of the book:

Proposition 112. Let F : C → A be a functor, assume that C is small (Definition 5
p. 10) and that A admits small inductive limits. Then the functor h[C]†(F ) : C∧ → A
exists, commutes with small inductive limits and satisfies h[C]†(F ) ◦ h[C] ≃ F .

Let F : C → A be a functor and A an object of C∧, and assume that C is small
(Definition 5 p. 10) and that A admits small inductive and projective limits.

5.16.2 First Formula

We claim

h[CA]†(F ◦ j[CA]) ◦ λ ≃ h[C]†(F ) ◦ j[(C∧)A] (58)

(see the diagram (59) below).

Proof. Consider the diagram

CA A C

(CA)∧ (C∧)A C∧.

j[CA]

F◦j[CA]

h[CA]

F

h[C]
h[CA]†(F◦j[CA])

λ j[(C∧)A]

h[C]†(F ) (59)

For B in C∧ and B → A in (C∧)A, setting
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X := h[CA]†
(
F ◦ j[CA]

)(
λ(B → A)

)
,

we get

X ≃ h[CA]†(F ◦ j[CA])
(
λ

((
colim

(U→B)∈CB
h[C](U)

)
→ A

))
by (44)

≃ h[CA]†(F ◦ j[CA])
(
λ

(
colim

(U→B)∈CB

(
h[C](U)→ A

)))
by Lemma 84

≃ colim
(U→B)∈CB

h[CA]†
(
F ◦ j[CA]

)(
λ
(
h[C](U)→ A

))
by (56) & Prop. 112

≃ colim
(U→B)∈CB

h[CA]†
(
F ◦ j[CA]

)(
λ
(
h[C]A(U → A)

))
≃ colim

(U→B)∈CB
h[CA]†

(
F ◦ j[CA]

)(
h[CA](U → A)

)
by (57)

≃ colim
(U→B)∈CB

(
F ◦ j[CA]

)
(U → A) by Prop. 112

≃ colim
(U→B)∈CB

F (U)

≃
(
h[C]†(F ) ◦ j

(
(C∧)A

))
(B → A) by (54).

5.16.3 Second Formula

Proposition 113. Consider the quasi-commutative diagram

CA C

A,

j[CA]

G j[CA]‡(G)

and let U be in C. Then we have

j[CA]‡(G)(U) ≃
∏
U→A

G(U → A). (60)
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Lemma 114. The discrete category A(U) is cocofinal in (CA)U .

Proof of Lemma 114. We probably give too many details, and the reader may want
to skip this proof. An object a of (CA)U is given by a triple

a = (Ua, Ua
ua−→ A;U

sa−→ Ua),

and a morphism from a to

b = (Ub, Ub
ub−→ A;U

sb−→ Ub) ∈ (CA)U

is given by a commutative diagram

U

Ua Ub

A.

sa sb

ua

c

ub

The embedding φ : A(U)→ (CA)U implicit in the statement of Lemma 114 is given
by

φ(u) = (U,U
u−→ A;U

idU−−→ U).

It is easy to see that, for any b in (CA)U , there is precisely one pair (u, c) such that u
is in A(U) and c is a morphism from U to Ub making the diagram

U

U Ub

A

idU sb

u

c

ub

commute. This implies the lemma.

Proof of Proposition 113. We have

j[CA]‡(G)(U) ≃ lim
(U→j[CA](V→A))∈(CA)U

G(V → A)

≃ lim
U→A

G(U → A) ≃
∏
U→A

G(U → A),

the penultimate isomorphism following from Lemma 114.
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5.16.4 Third Formula

Put j := j[CA], h := h[C], hA := h[CA], and consider the diagram

C∧ C CA (CA)∧ (C∧)A

A A A A.

h†(j†(G))

h

j†(G)

j hA

G (hA)
†(G)

λ

(See (55) p. 84 for the definition of λ.) Let B be in C∧. We claim

h†(j†(G))(B) ≃ (hA)
†(G)(λ(B × A→ A)). (61)

Proof. We have, for U in C,

j†(G)(U) ≃ colim
(j(V→A)→U)∈(CA)U

G(V → A) ≃ colim
(A←V→U)∈(CA)U

G(V → A)

≃ colim
((V→A)→(U×A→A))∈(CA)U×A→A

G(V → A) ≃ (hA)
†(G)(λ(U × A→ A)),

that is:
j†(G)(U) ≃ (hA)

†(G)(λ(U × A→ A)). (62)
For B in C∧ we get

h†(j†(G))(B) ≃ colim
(U→B)∈CB

j†(G)(U)
(a)
≃ colim

(U→B)∈CB
(hA)

†(G)(λ(U × A→ A))

(b)
≃ (hA)

†(G)

(
λ

(
colim

(U→B)∈CB
(U × A→ A)

))
(c)
≃ (hA)

†(G)

(
λ

((
colim

(U→B)∈CB
(U × A)

)
→ A

))

(d)
≃ (hA)

†(G)

(
λ

((
“colim”
(U→B)∈CB

U

)
× A→ A

))
(e)
≃ (hA)

†(G)(λ(B × A→ A)),

where (a) follows from (62); (b) follows from Proposition 112 p. 85 and (56) p. 84; (c)
follows from Lemma 84 p. 63; (d) follows from the fact that small inductive limits in
Set are stable by base change (see Section 5.6 p. 63 above and Section 5.20 p. 93)
below; (e) follows from (44) p. 81.
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5.17 Notation 2.7.2 p. 63

Recall that F : C → C ′ is a functor of small categories (Definition 5 p. 10). The
formula

F̂ (A)(X ′) = colim
(X→A)∈CA

HomC′(X
′, F (X))

may also be written as
F̂ (A) = “colim”

(X→A)∈CA
F (X). (63)

It might be worth stating explicitly the isomorphism

F̂ ◦ hC
∼−→ hC′ ◦F,

which says that the diagram
C C ′

C∧ C ′∧.

hC

F

hC′

F̂

quasi-commutes.
Remark 115. Recall that F : C → C ′ is a functor of small categories (Definition 5
p. 10). Let A′ be in C ′∧, and let CA′◦F

φ−→ C ′A′
ψ−→ C ′∧ be the natural functors. The

natural morphism colimψ ◦ φ → colimψ induces a morphism f : F̂ (A′ ◦ F ) → A′

functorial in A′:
F̂ (A′ ◦ F ) = colimψ ◦ φ→ colimψ ≃ A′,

the equality F (A′ ◦ F ) = colimψ ◦ φ and the isomorphism colimψ ≃ A′ following
respectively from (63) and (44) p. 81. Moreover f is an isomorphism whenever φ is
cofinal. Note that the condition that f is an isomorphism means that, for each X ′ in
C ′, the natural map

colim
(X→A′◦F )∈CA′◦F

HomC′(X
′, F (X))→ A′(X ′)

is bijective. This condition depends only on the functor F : C → C ′ and the projective
system of sets (A′(X ′))X′∈C′ . (This remark will be used to prove Proposition 242
p. 153.)

The proof is obvious.
Remark 116. If F is fully faithful, then there is an isomorphism F̂ (A) ◦ F ∼−→ A
functorial in A ∈ C∧.
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Proof. We have

F̂ (A)(F (X)) = colim
(Y→A)∈CA

HomC′(F (X), F (Y ))

≃ colim
(Y→A)∈CA

HomC(X, Y )
∼−→ A(X),

the last isomorphism following from (45) p. 81.

As observed in the book (see also §110 p. 83):

Remark 117. The functor F̂ commutes with small inductive limits.

Let X be in C and A a terminal object of C∧. We have

F̂ (A)(F (X)) ≃
⊔
Y ∈C

HomC′(F (X), F (Y )).

Let us identify these two sets.

Remark 118. Assume A is a terminal object of C∧, and define, using the above
identification, G : C → C ′

F̂ (A)
by

G(X) := (F (X), pX(idF (X))),

where pX : HomC′(F (X), F (X)) → F̂ (A)(F (X)) is the coprojection. Then the
composition of G with the forgetful functor C ′

F̂ (A)
→ C ′ is F .

The proof is obvious.

5.18 Brief comments

§ 119. P. 63, Corollary 2.7.4. Here is a variant:

Let C be a category and A a category admitting small projective limits, let
h : C → C∧ the Yoneda embedding, and let Fctpℓ((C∧)op,A) be the category of
functors from (C∧)op to A commuting with small projective limits. Then the functors

Fctpℓ((C∧)op,A) Fct(Cop,A)
(hop)∗

(hop)‡
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are mutually quasi-inverse equivalences.

Let F be in Fct((C∧)op,A). Assume (Ai) is a projective system in (C∧)op, or,
equivalently, (Ai) is an inductive system in C∧. In particular (F (Ai)) is a projective
system in A.

Then F is in Fctpℓ((C∧)op,A) if and only if the following condition holds:

For any system (Ai) as above, the natural morphism

F
(
colim

i
Ai

)
→ lim

i
F (Ai)

is an isomorphism.

The functor (hop)‡ is given by

(hop)‡(F )(A) = lim
(U→A)∈CA

F (U).

The functors

ACop → A, F 7→ (hop)‡(F )(A) and C∧ → A, A 7→ (hop)‡(F )(A)

commute with small projective limits. (For a justification, see §111 p. 84.)

§ 120. P. 64. It might be worth displaying the formula

F̂ (A)(X ′) ≃ colim
(X→A)∈CA

HomC′(X
′, F (X)) ≃ colim

(X′→F (X))∈CX′
A(X), (64)

which is contained in the proof of Proposition 2.7.5 p. 64 of the book, and which
follows from Corollary 2.4.6 p. 56 of the book (see Proposition 102 p. 78). Recall that
F : C → C ′ is a functor of small categories (Definition 5 p. 10), that A is in C∧, and
that X ′ is in C ′.

For the reader’s convenience we reproduce the statement of Proposition 2.7.5:

Proposition 121 (Proposition 2.7.5 p. 64). If F : C → C ′ is a functor of small
categories, then the functors F̂ and (F op)† from C∧ to C ′∧ are isomorphic.

This follows from (64).

91 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



§ 122. P. 64, end of Chapter 2. One could add the following observation:

If C is a small category (Definition 5 p. 10), if A is in C∧, if B is a terminal
object of (CA)∧, and if F : CA → C is the forgetful functor, then we have

F̂ (B) ≃ A.

Indeed, we have

F̂ (B)(X) ≃ colim
((Y→A)→B)∈(CA)B

HomC(X,F (Y → A))

≃ colim
(Y→A)∈CA

HomC(X, Y ) ≃ A(X),

the last isomorphism following from (45) p. 81.

5.19 Exercise 2.4

P. 64, Exercise 2.4. Here is (with some minor changes) the statement of Exercise 2.4.

Let f : X → Y be a morphism in a category admitting fiber products. Set
P := X ×Y X; let p1, p2 : P → X be the projections; and let δ : X → P be the
diagonal morphism.

(i) We have p1 ◦ δ = idX = p2 ◦ δ. In particular p1 and p2 are epimorphisms and δ is
a monomorphism.

(ii) We have: f monomorphism ⇔ p1 = p2 ⇔ δ isomorphism ⇔ δ epimorphism.

Solution: Claim (i) is obvious. Let us prove (ii):

f monomorphism ⇒ p1 = p2: we have f ◦ p1 = f ◦ p2;

p1 = p2 ⇒ δ isomorphism: pi ◦ δ ◦ pj = pi ◦ idP for all i, j, and thus δ ◦ pj = idP for
all j;

δ isomorphism ⇒ δ epimorphism: obvious;

δ epimorphism ⇒ f monomorphism: let g, h : Z ⇒ X satisfy f ◦ g = f ◦ h; let
k : Z → P satisfy p1◦k = g, p2◦k = h; then the assumption that δ is an epimorphism
and the equality p1 ◦ δ = p2 ◦ δ observed in (i) imply p1 = p2, and thus g = h.
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5.20 Exercise 2.7

P. 65, Exercise 2.7, Line 3: “that the functor · ×Z Y : SetZ → SetZ” should be “that,
given Y ∈ SetZ , the functor · ×Z Y : SetZ → SetY ”. For the reader’s convenience
we paste the exercise below:

Exercise 2.7. Let Z ∈ Set.

(i) Prove that the category SetZ admits products (denoted here by X ×Z Y ) and
that, given Y ∈ SetZ , the functor · ×Z Y : SetZ → SetY is left adjoint to the functor
HomZ(Y, · ) given by

HomZ(Y,X) =
⊔
z∈Z

HomSet(Yz, Xz),

where Xz is the fiber of X → Z over z ∈ Z.

(ii) Deduce that small inductive limits in Set are stable by base change (see Defini-
tion 83 p. 63).

Here is a solution: (i) The fact that SetZ admits products is clear. The bijective
correspondence between

f ∈ HomSetY (U ×Z Y,X)

and

g ∈ HomSetZ

(
U ,

⊔
z∈Z

HomSet (Yz, Xz)

)
is given by

(∀ z ∈ Z) (∀ u ∈ Uz) (∀ y ∈ Yz) (f(u, y) = g(u)(y)).

(ii) The statement follows from (i) and Proposition 2.1.10 p. 40 of the book.

(See also Section 5.6 p. 63.)

Note that (ii) can also be proved directly by observing that the category SetZ is
canonically isomorphic to ∏

z∈Z

Set,

and that, given f : Y → Z, if we identify SetZ to
∏

z∈Z Set and SetY to
∏

y∈Y Set,
then the change of base functor, viewed as a functor∏

z∈Z

Set→
∏
y∈Y

Set,

maps (Xz)z∈Z to (Xf(y))y∈Y .
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6 About Chapter 3

6.1 Brief comments

§ 123. P. 72, proof of Lemma 3.1.2. Here is a minor variant of the proof of the
following statement:

If φ : J → I is a functor with I filtrant and J finite, then limHomI(φ, i) ̸= ∅ for
some i in I.

Indeed, let S be a set of morphisms in J . It is easy to prove

(∃ i ∈ I)

(
∃ a ∈

∏
j∈J

HomI(φ(j), i)

)
(∀ (s : j → j′) ∈ S) (aj′ ◦ φ(s) = aj)

by induction on the cardinal of S, and to see that this implies the claim. q.e.d.

§ 124. P. 74, Theorem 3.1.6. The proof of Theorem 3.1.6 implies:

Proposition 125. Let I be a (not necessarily small) filtrant U-category (Definitions
4 p. 10 and 5 p. 10), J a finite category, and α : I × Jop → Set a functor such that
colimi α(i, j) exists in Set for all j. Then colimi limj α(i, j) exists in Set, and the
natural map

colim
i

lim
j
α(i, j)→ lim

j
colim

i
α(i, j)

is bijective.

This corollary is implicitly used in the proof of Proposition 3.3.13 p. 84 (see
Proposition 150 p. 101 below).

§ 126. P. 75, Proposition 3.1.8 (i). In the proof of Proposition 3.3.15 p. 85 of the
book, a slightly stronger result is needed (see §151 p. 101). We state and prove this
stronger result.

Proposition 127. Let

J I L K
φ θ ψ

be a diagram of categories. Assume that ψ is cofinal, and that the obvious functor
φk : Jψ(k) → Iψ(k) is cofinal for all k in K. Then φ is cofinal.

94 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



Proof. Pick a universe making I, J,K and L small (Definition 5 p. 10), let α : I → Set
be a functor, and consider the commutative diagrams

α(φ(j)) α(φ(j)) α(φ(j))

colim
θ(φ(j))→ℓ

α(φ(j)) colim
θ(φ(j))→ψ(k)

α(φ(j))

colimα ◦ φ colim
ℓ

colim
θ(φ(j))→ℓ

α(φ(j)) colim
k

colim
θ(φ(j))→ψ(k)

α(φ(j)),

pj

id id

a b

α(φ(j)) α(φ(j)) α(φ(j))

colim
θ(φ(j))→ψ(k)

α(φ(j)) colim
θ(i)→ψ(k)

α(i) colim
θ(i)→ψ(k)

α(i)

colim
k

colim
θ(φ(j))→ψ(k)

α(φ(j)) colim
k

colim
θ(i)→ψ(k)

α(i) colim
ℓ

colim
θ(i)→ℓ

α(i),

id id

id

c d

α(φ(j)) α(φ(j))

colim
θ(i)→ψ(k)

α(i)

colim
ℓ

colim
θ(i)→ℓ

α(i) colimα.

id

qj

e

Note that the last row of the first (resp. second) diagram coincides with the first row
of the second (resp. third) diagram. Moreover the vertical arrows are coprojections,
the squares above a and e result from the proof of (34) p. 73, the squares above
b and d result from the cofinality of ψ, and the squares above c result from the
cofinality of φk. In particular, the maps a, b, c, d and e are bijective. As the bijection
f := e−1 ◦ d ◦ c ◦ b ◦ a satisfies f ◦ pj = qj, it is the natural map from colimα ◦ φ to
colimα.
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§ 128. P. 75. Throughout the section about the IPC Property, one can assume that
A is a big category. This applies in particular to Corollary 3.1.12 p. 77, corollary
used in this generalized form at the end of the proof of Proposition 6.1.16 p. 136 of
the book.

§ 129. P. 77, Proposition 3.1.11 (ii). This proposition says that Set has the IPC
property. Recall the setting:

Let S be a small set, for each s in S let Is be a small set and αs : Is → Set a
functor, put I :=

∏
s∈S Is, let

pj :
∏
s∈S

αs(js) → colim
i∈I

∏
s∈S

αs(is), qjs : αs(js) → colim
is∈Is

αs(is)

be the coprojections, and define

f : colim
i∈I

∏
s∈S

αs(is) →
∏
s∈S

colim
is∈Is

αs(is)

by (f(pj(x)))s := qjs(xs). Let

g :
∏
s∈S

colim
is∈Is

αs(is) → colim
i∈I

∏
s∈S

αs(is) (65)

and consider the following condition on g:
Condition 130. We have

g((qjs(ys))s∈S) = pj(y)

for all j in I and all y in
∏

s∈S αs(js).

Clearly the proposition below implies Proposition 3.1.11 (ii) in the book.

Proposition 131. If g satisfies Condition 130, then f and g are inverse bijections.
If Is is filtrant for all s in S, then there is a g as in (65) satisfying Condition 130.

Proof. The proof of the first sentence is straightforward. To prove the second sentence,
let j and k be in I, let y in

∏
s∈S αs(js) and z in

∏
s∈S αs(ks) satisfy qjs(ys) = qks(zs)

for all s in S. It suffices to show pj(y) = pk(z). By Corollary 3.1.4 (ii) p. 73 in the
book, for each s in S there is a diagram

js
us−→ ℓs

vs←− ks

in Is and an element ws in αs(ℓs) such that αs(us)(ys) = ws = αs(vs)(zs). This
implies pj(y) = pℓ(w) = pk(z), and thus pj(y) = pk(z) as requested.
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Proposition 132. Let U be a universe, let Set be the category of U-sets, let Z be
in Set, and let Z ′ be the discrete category whose set of objects is Z. Then there are
canonical isomorphisms

SetZ ≃
∏
z∈Z

Set ≃ Fct(Z ′,Set).

Propositions 131 and 132 imply

Proposition 133. If Z ∈ Set, then SetZ has the IPC property.

§ 134. P. 78, Proposition 3.2.2. It is easy to see that Condition (iii) is equivalent to

colim HomI(i, φ) ≃ {pt} for all i ∈ I, (66)

which is Condition (vi) in Proposition 2.5.2 p. 57 of the book. (Proposition 2.5.2
states, among other things, that (66) is equivalent to the cofinality of φ.)

§ 135. P. 79, proof of Corollary 3.2.3 (ii). Here are more details: For (i, j) ∈ I × J
we have I(i,j) ≃ (I i)j. Part (i) implies that I i is filtrant and the forgetful functor
I i → I is cofinal. Then Proposition 3.2.2, (i) ⇒ (ii), p. 78 of the book implies that
(I i)j is filtrant. Finally, Proposition 3.2.2, (ii) ⇒ (i) implies that the diagonal functor
I → I × I is cofinal.

§ 136. P. 79, Proposition 3.2.5. It is claimed that (ii) is a particular case of (iv).
More precisely, (ii) is obtained from (iv) by replacing the setting

I
φ−→ J

ψ−→ K, u : k → ψ(j)

with
I

idI−→ I
φ−→ J, idφ(i) : φ(i)→ φ(i).

§ 137. P. 80. Propositions 3.2.4 and 3.2.6 can be combined as follows.

Proposition 138. Let φ : J → I be fully faithful. Assume that I is filtrant and
cofinally small, and that for each i in I there is a morphism i→ φ(j) for some j in
J . Then φ is cofinal and J is filtrant and cofinally small.

Proof. In view of Proposition 3.2.4 it suffices to show that J is cofinally small. By
Proposition 3.2.6, there is a small full subcategory (Definition 5 p. 10) S ⊂ I cofinal
to I. For each s in S pick a morphism s→ φ(js) with js in J . Then, for each j in J
there are morphisms φ(j)→ s→ φ(js) with s in S. As φ is full there is a morphism
j → js, and we conclude by using again Proposition 3.2.6.
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§ 139. P. 80, proof of Lemma 3.2.8 (minor variant). As already pointed out, a lim
−→

is
missing in the last display. Recall the statement:

Lemma 140. Let I be a small ordered set, let α : I → C be a functor, let J be the
set of finite subsets of I ordered by inclusion, and for each J in J let αJ : J → C be
the restriction of α to J . Then J is small (Definition 5 p. 10) and filtrant, and we
have

colimα ≃ colim
J∈J

colimαJ .

in C∨.

Proof. Set
A := colimα, β(J) := colimαJ , B := colim β.

Let
pi : α(i)→ A, pi,J : α(i)→ β(J), pJ : β(J)→ B

be the coprojections. Note that pi,J is defined only for i in J . We easily check that

• the morphismsfi := p{i} ◦ pi,{i} : α(i)→ B induce a morphism f : A→ B,

• the morphisms gi,J := pi : α(i)→ A (with i in J) induce a morphism gJ : β(J)→ A,

• the morphisms gJ induce a morphism g : B → A,

• f and g are mutually inverse isomorphisms.

For the reader’s convenience we reproduce Definition 3.3.1 p. 81.

Definition 141 (Definition 3.3.1, exactness). Let F : C → C ′ be a functor.

(i) We say that F is right exact if the category CX′ is filtrant for all X ′ in C ′.

(ii) We say that F is left exact if F op : Cop → C ′ op is right exact, or equivalently if
the category CX′ is cofiltrant for all X ′ in C ′.

(iii) We say that F is exact if it is both right and left exact.

§ 142. P. 81, proof of Proposition 3.3.2 (minor variant). Recall the statement:

Proposition 143 (Proposition 3.3.2 p. 81). Consider functors I α−→ C F−→ C ′, and
assume that I is finite, that F is right exact, and that colimα exists in C. Then
colimF ◦ α exists in C ′, and the natural morphism colimF ◦ α → F (colimα) is an
isomorphism.
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Proof. Let X ′ be in C ′. It suffices to show that the natural map

HomC′(F (colimα), X ′)→ limHomC′(F ◦ α,X ′)

is bijective. We claim

colim
(F (Y )→X′)∈CX′

HomC(X, Y ) ≃ colim
(X→Y )∈(CX)op

HomC′(F (Y ), X ′) (67a)

≃ HomC′(F (X), X ′). (67b)

Indeed, we obtain (67a) by replacing the setting (41) p. 78 with

X ∈ C idC←− C F−→ C ′ ∋ X ′

in the isomorphism (42) p. 78, and we prove (67b) by noting that the identity of X
is an initial object of CX . We have five sets and four bijections:

HomC′(F (colimα), X ′)
∼−→ colim

(F (Y )→X′)∈CX′
HomC(colimα, Y )

∼−→ colim
(F (Y )→X′)∈CX′

limHomC(α, Y )
∼−→ lim colim

(F (Y )→X′)∈CX′
HomC(α, Y )

∼−→ limHomC′(F ◦ α,X ′).
The first and last bijections follow from (67), the second one is clear, and the third
one can be justified as follows: Set-valued inductive limits over the category CX′ ,
which is filtrant because F is right exact, commute with set-valued projective limits
over the finite category I (Theorem 3.1.6 p. 74 of the book).

Let us denote these five sets and four bijections by

S1
f1−→ S2

f2−→ S3
f3−→ S4

f4−→ S5,

and let
f : HomC′(F (colimα), X ′)→ limHomC′(F ◦ α,X ′).

be the natural map. It remains to show

f4 ◦ f3 ◦ f2 ◦ f1 = f. (68)

Let Y be in C, let F (Y )→ X ′ be a morphism in C ′, and let

p[F (Y )→ X ′] : HomC(colimα, Y )→ colim
(F (Y )→X′)∈CX′

HomC(colimα, Y ),
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q[F (Y )→ X ′] : limHomC(α, Y )→ colim
(F (Y )→X′)∈CX′

limHomC(α, Y ),

r[F (Y )→ X ′] : HomC(α, Y )→ colim
(F (Y )→X′)∈CX′

HomC(α, Y )

be the coprojections.

We shall use implicitly, not only the statements of the bijections (67a) and (67b),
but also their proofs (see Warning 99 p. 75).

For F (colimα) → X ′ in HomC′(F (colimα), X ′), we have (omitting most of the
parenthesis)

f4f3f2f1(F (colimα)→ X ′)

= f4f3f2

(
p[F (colimα)→ X ′]

(
colimα

id−→ colimα
))

= f4f3

(
q[F (colimα)→ X ′]

((
α(i)→ colimα

)
i

))
= f4

((
r[F (colimα)→ X ′]

(
α(i)→ colimα

))
i

)
=
((
F (α(i))→ F (colimα)→ X ′

)
i

)
.

This proves (68).

§ 144. P. 83, Proposition 3.3.6. Here is a mild generalization:

Proposition 145. Let C G←− A F−→ B be functors. Assume that for each Y in B
there is a Z in C and an isomorphism

HomB(F ( ), Y ) ≃ HomC(G( ), Z)

in A∧. If G is right exact, then so if F .

Proof. The proof is similar to that of Proposition 3.3.6 in the book. The details are
left to the reader.

§ 146. P. 83, proof of Proposition 3.3.7 (i). The proof uses Proposition 3.3.3.

§ 147. Some more details in the proof of Proposition 3.3.12 p. 84:

Proposition 148 (Proposition 3.3.12 p. 84). Let F : C → C ′ and G : C ′ → C ′′ be two
functors. If F and G are right exact, then G ◦ F is right exact.
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Proof. Since G is right exact, C ′X′′ is filtrant for any X ′′ in C ′′. The obvious functor
CX′′ → C ′X′′ is again right exact. Indeed, for any G(X ′)→ X ′′ in C ′X′′ , the category
(CX′′)G(X′)→X′′ ≃ CX′ is filtrant because F is right exact. Hence, Proposition 3.3.11
implies that CX′′ is filtrant.

§ 149. P. 84, Proposition 3.3.13. Recall the statement:

Proposition 150 (Proposition 3.3.13 p. 84). Let C be a category admitting finite
inductive limits, and let A be in C∧. Then A is left exact if and only if CA is filtrant.

We spell out the details of the proof of the implication CA is filtrant ⇒ A left
exact.

By Proposition 3.3.3 of the book, stated as Proposition 161 p. 105 below, it suffices
to show that A commutes with finite projective limits. Let (Xi) be a finite inductive
system in C. We must check that the natural map

e : A
(
colim

i
Xi

)
→ lim

i
A(Xi)

is bijective. Let us abbreviate (Y → A) ∈ CA by Y , and consider the commutative
diagram

colimY HomC(colimiXi, Y ) colimY limiHomC(Xi, Y )

limi colimY HomC(Xi, Y )

A(colimiXi) limiA(Xi),

a

d

b

c

e

where a is defined by §58 p. 49, c and d are defined by (45) p. 81 and b is defined by
Proposition 125 p. 94 (see Warning 99 p. 75). These four maps are clearly bijective.
We leave it to the reader to check that this diagram commutes. This implies that e is
bijective.

§ 151. P. 85, proof of Proposition 3.3.15. To prove that A → C is cofinal, one can
apply Proposition 127 p. 94 with J = A, I = C, L = C ′, K = S.

§ 152. P. 86, proof of Theorem 3.3.18 (b). The proof uses the following fact, whose
proof is straightforward:
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Let α : I × Jop → C be a functor. Assume that C admits inductive limits indexed
by I and projective limits indexed by Jop. Then the morphism obtained by composing
the canonical morphism

colim
i∈I

lim
j∈Jop

α(i, j)→ lim
j∈Jop

colim
i∈I

α(i, j)

with the projection
lim
j∈Jop

colim
i∈I

α(i, j)→ colim
i∈I

α(i, j)

coincides with the morphism obtained by applying the functor colimi∈I to the projec-
tion

lim
j∈Jop

α(i, j)→ α(i, j).

6.2 Proposition 3.4.3 (i) p. 88

Lemma 153. If I φ−→ K
ψ←− J are functors between small categories (Definition 5

p. 10), if
M :=M [I

φ−→ K
ψ←− J ]

is the category defined in Definition 3.4.1 p. 87 of the book, if α :M → C is a functor,
and if C admits small inductive limits, then there is a natural functor (described in
the proof) from J to C mapping j ∈ J to

colim
(i,u)∈Iψ(j)

α(i, j, u)

(u being a morphism in K from φ(i) to ψ(j)).

Proof. Let j → j′ be a morphism in J . It is easily checked that there is a unique
dashed arrow which make all diagrams

colim
(i,u)∈Iψ(j)

α(i, j, u) colim
(i,u)∈Iψ(j′)

α(i, j′, u)

α(i, j, u) α(i, j′, u′)

piu

α(idi,j 7→j′)

qiu′

commute, where piu and qiu′ are the coprojections and u′ is the obvious composition

φ(i)
u−→ ψ(j)→ ψ(j′),
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and that the assignment

(j → j′) 7→

(
colim

(i,u)∈Iψ(j)

α(i, j, u)→ colim
(i,u)∈Iψ(j′)

α(i, j′, u)

)
is functorial.

Proposition 154 (Proposition 3.4.3 (i) p. 88). We have an isomorphism

colimα ≃ colim
j

colim
i,u

α(i, j, u),

where (i, u) runs over Iψ(j) (with u : φ(i) → ψ(j)). This isomorphism is explicitly
described in the proof.

Proof. Let

α(i, j, u)
piju−−→ colimα, α(i, j, u)

qiju−−→ colim
i,u

α(i, j, u)
rj−→ colim

j
colim
i,u

α(i, j, u)

be the coprojections. There is a unique morphism

f : colimα→ colim
j

colim
i,u

α(i, j, u)

such that f ◦ piju = rj ◦ qiju for all i, j, u:

α(i, j, u) α(i, j, u)

colim
i,u

α(i, j, u)

colimα colim
j

colim
i,u

α(i, j, u).

piju

id

qiju

rj

f

We construct the commutative diagram

α(i, j, u) α(i, j, u)

colim
i,u

α(i, j, u) colimα

colim
j

colim
i,u

α(i, j, u) colimα.

qiju

id

piju

rj

gj

id

g

(69)

103 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



as follows: We fix j and define gj by the condition that the top square of (69)
commutes for all (i, u). Then we define g by the condition that the bottom square of
(69) commutes for all j. We leave it to the reader to check that f and g are inverse
isomorphisms.

In view of Proposition 125 p. 94, Proposition 154 implies

Proposition 155. If J and Iψ(j) are filtrant for all j in J , then M is filtrant.

6.3 Brief comments

§ 156. We prove Proposition 3.4.3 (ii) p. 88. Recall the statement:

If ψ is cofinal, then M [I → K ← J ]→ I is cofinal.

To prove this, we let α : I → Set be a functor, we denote by β the composition
M [I → K ← J ]→ I → Set, and we verify that the natural map colim β → colimα
is bijective as follows.

In the commutative diagram below we write u for a generic morphism φ(i)→ ψ(j)
and v for a generic morphism φ(i)→ k, with i ∈ I, j ∈ J, k ∈ K, and we abbreviate
colim(i,u)∈Iψ(j)

by colimi,u and colim(i,v)∈Ik by colimi,v:

α(i) α(i) α(i) α(i)

colim
i,u

α(i) colim
i,u

α(i)

colim β colim
j

colim
i,u

α(i) colim
k

colim
i,v

α(i) colimα.

aiju

id

biju

id

biψ(j)u

id

ei

cj

id

dψ(j)

f g h

(The vertical arrows are the various coprojections.) The diagram being commutative,
h ◦ g ◦ f is the natural map colim β → colimα. Moreover f is bijective by the proof
of Proposition 154, g is bijective because ψ is cofinal and h is bijective by the proof
of (34) p. 73.

§ 157. P. 89, Proposition 3.4.5 (iii). The proof uses implicitly the following fact:

Proposition 158. If F is a cofinally small filtrant category, then there is a small
filtrant full subcategory of F cofinal to F .
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This results immediately from Corollary 2.5.6 p. 59 and Proposition 3.2.4 p. 79
(see Proposition 138 p. 97). This fact also justifies the sentence “We may replace
‘filtrant and small’ by ‘filtrant and cofinally small’ in the above definition” p. 132,
Lines 4 and 5 of the book.

6.4 Five closely related statements

For the reader’s convenience we collect five statements closely related to Exercise 3.4
(i) p. 90 of the book.

6.4.1 Proposition 2.1.10 p. 40

Proposition 159 (Proposition 2.1.10 p. 40). If F : C → C ′ is a functor admitting a
left adjoint, if I is a category, and if C admits projective limits indexed by I, then F
commutes with such limits.

(This fact has already been stated as Corollary 67 p. 56.)

6.4.2 Exercise 2.7 (ii) p. 65

Proposition 160 (Exercise 2.7 (ii) p. 65). The base change functors (see Section 5.6
p. 63) in Set commute with small inductive and projective limits. In particular, small
inductive limits in Set are stable by base change.

Note that Proposition 160 generalizes the distributivity of multiplication over
addition in N.

6.4.3 Proposition 3.3.3 p. 82

Proposition 161 (Proposition 3.3.3 p. 82). Let F : C → C ′ be a functor and assume
that C admits finite projective limits. Then F is left exact if and only if it commutes
with such limits.

Corollary 162. In the setting of Proposition 2.7.1 p. 62 of the book, the functors

AC → A, F 7→ (h†C F )(A) and C∧ → A, A 7→ (h†C F )(A)
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are right exact.

Proof. This follows from Proposition 161 and §111 p. 84.

Corollary 163. In the setting of §119 p. 90, the functors

ACop → A, F 7→ (hop)‡(F )(A) and C∧ → A, A 7→ (hop)‡(F )(A)

are left exact.

6.4.4 Proposition 3.3.6 p. 83

Proposition 164 (Proposition 3.3.6 p. 83). A functor admitting a left adjoint is left
exact.

6.4.5 Exercise 3.4 (i) p. 90

Proposition 165 (Exercise 3.4 (i) p. 90). If F : C → C ′ is a right exact functor and
f : X ↠ Y is an epimorphism in C, then F (f) : F (X)→ F (Y ) is an epimorphism
in C ′.

(This exercise is used in the second sentence of p. 227 of the book.)

Proof. Let f ′1, f ′2 : F (Y ) ⇒ X ′ be morphisms in C ′ satisfying

f ′1 ◦ F (f) = f ′2 ◦ F (f) =: f ′.

This is visualized by the diagram(
F (X) F (Y ) X ′

)
=
(
F (X) X ′

)
.

f
f ′1

f ′2

f ′

It suffices to prove f ′1 = f ′2. For i = 1, 2 let fi be the morphism f viewed as a
morphism from (X, f ′) to (Y, f ′i) in CX′ :

F (X) F (Y )

X ′.
f ′

F (f)

f ′i
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As CX′ is filtrant, there are morphisms γi : (Y, f ′i)→ (Z, g′), defined by morphisms
gi : Y → Z, such that γ1 ◦ f1 = γ2 ◦ f2:

F (X) F (Y ) F (Z)

X ′ X ′ X ′.

f ′

F (f)

f ′i

F (gi)

g′

As f is an epimorphism, the equality g1 ◦ f = g2 ◦ f implies g1 = g2 =: g, and thus
f ′1 = g′ ◦ F (g) = f ′2.

Corollary 166. Let C be a category, let C ′ be a category admitting finite inductive
limits, and let θ : F → G be a morphism in C ′C. Then θ is an epimorphism if and
only if θX : F (X)→ G(X) is an epimorphism for all X in C.

Proof. This follows from Proposition 161 p. 105 and Proposition 165 just above.

7 About Chapter 4

§ 167. P. 93, Lemma 4.1.2. Here is a slightly more general statement:

Lemma 168. Let C be a category, let P : C → C be a functor, let ε : idC → P be a
morphism of functors, and let X be an object of C. Then the following conditions are
equivalent:

(a) εP (X) is an isomorphism and P (εX) is an epimorphism,

(b) P (εX) is an isomorphism and εP (X) is a monomorphism,

(c) εP (X) and P (εX) are equal isomorphisms.

Proof. It is enough to prove (a)⇒(c)⇐(b).

(a)⇒(c): Put u := (εP (X))
−1 ◦ P (εX). It suffices to show

u = idP (X) . (70)

We have

u ◦ εX = (εP (X))
−1 ◦ P (εX) ◦ εX = (εP (X))

−1 ◦ εP (X) ◦ εX = εX ,
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and thus
P (u) ◦ P (εX) = P (εX) = idP 2(X) ◦P (εX).

As P (εX) is an epimorphism, this implies P (u) = idP 2(X), and thus

εP (X) ◦ u = P (u) ◦ εP (X) = εP (X).

As εP (X) is an isomorphism, this implies (70), as required.

(b)⇒(c): We shall use several times the assumption that P (εX) is an isomorphism.
Put v := P (εX)

−1 ◦ εP (X). It suffices to show

v = idP (X) . (71)

We have

v ◦ εX = P (εX)
−1 ◦ εP (X) ◦ εX = P (εX)

−1 ◦ P (εX) ◦ εX = εX ,

P (v) ◦ P (εX) = P (εX),

P (v) = idP 2(X),

εP (X) ◦ v = P (v) ◦ εP (X) = εP (X) = εP (X) ◦ idP (X) .

As εP (X) is a monomorphism, this implies (71), as required.

Definition 4.1.1 p. 93 of the book can be stated as follows:

Definition 169 (Definition 4.1.1 p. 93, projector). Let C be a category. A projector
on C is the data of a functor P : C → C and a morphism ε : idC → P such that each
object X of C satisfies the equivalent conditions of Lemma 168.

§ 170. P. 94, proof of (a)⇒(b) in Proposition 4.1.3 (ii) (additional details): In the
commutative diagram

HomC(P (Y ), X) HomC(Y,X)

HomC(P (Y ), P (X)) HomC(Y, P (X)),

∼εX◦

◦εY

εX◦∼

◦εY
∼

the vertical arrows are bijective by (a), and the bottom arrow is bijective by (i).
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§ 171. P. 95, end of the proof of Proposition 4.1.3. Recall that we have functors

C0 C.
ι

P

The last sentence of the proof says that P “is a left adjoint to ι by (i)”. One could also
write that P “is a left adjoint to ι by Condition (b) in Part (ii)”. Indeed, Condition
(b) in Part (ii) asserts that the map

HomC(P (Y ), X)
◦εY−−→ HomC(Y,X),

that is
HomC0(P (Y ), X)

◦εY−−→ HomC(Y, ι(X)),

is bijective for all Y in C.

§ 172. P. 95, Proposition 4.1.4.

• Proof of (i) (additional details). The authors write: “The two compositions

P P 2 P
ε◦P

P◦ε

RηL

are equal to idP ”. If we translate this statement into the language of Notation 31
p. 31 and Notation 33 p. 32, we get

(
R ⋆ η ⋆ L
ε ⋆ R ⋆ L

)
= RL =

(
R ⋆ η ⋆ L
R ⋆ L ⋆ ε

)
. (72)

To prove (72), write

(
R ⋆ η ⋆ L
ε ⋆ R ⋆ L

)
=

(
R ⋆ η L
ε ⋆ R L

)
=

(
R ⋆ η
ε ⋆ R

)
⋆

(
L
L

)
(a)
= RL

(b)
=

(
R
R

)
⋆

(
η ⋆ L
L ⋆ ε

)
=

(
R η ⋆ L
R L ⋆ ε

)
=

(
R ⋆ η ⋆ L
R ⋆ L ⋆ ε

)
,

Equalities (a) and (b) resulting respectively from (10) p. 42 and (9) p. 42, and the
other equalities following from Proposition 34 p. 32.

• Statement of (iii): As explained in the proof, the phrase “C ′ is equivalent to C0”
really means “R induces an equivalence from C ′ to C0”.
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§ 173. Definition 4.2.1 p. 96. It is important for aesthetic reasons to note that tensor
products can be transported along equivalences. We sketch a proof of this fact. In
this section we will use a notation which very different from the one used in the rest
of this text (and in the book).

Let f : A→ B and g : B → A be quasi-inverse equivalences. If b is an object of
B, we write bg for the image of b under g, and gf for the functor b 7→ bgf , etc. We
also write xy for x⊗ y. Let us assume that A is a tensor category.

We define b1b2 for b1, b2 in B by

b1b2 := (bg1b
g
2)
f .

Let α be the associator of A. We define

β(b1, b2, b3) : (b1b2)b3 → b1(b2b3),

that is
β(b1, b2, b3) : ((b

g
1b
g
2)
fgbg3)

f → (bg1(b
g
2b
g
3)
fg)f ,

as being the composite of the obvious isomorphisms

((bg1b
g
2)
fgbg3)

f → ((bg1b
g
2)b

g
3)
f α(b1,b2,b3)f−−−−−−→ (bg1(b

g
2b
g
3))

f → (bg1(b
g
2b
g
3)
fg)f .

Let b1, b2, b3, b4 be in B. We must check that the pentagon build from b1, b2, b3, b4
commutes.

Pick one edge of this pentagon, say the edge

β(b1b2, b3, b4) :
(
(b1b2)b3

)
b4 → (b1b2)(b3b4),

that is
β(b1b2, b3, b4) :

((
(bg1b

g
2)
fgbg3

)fg
bg4

)f
→
(
(bg1b

g
2)
fg(bg3b

g
4)
fg
)f
.

We complete this edge to the obvious square of isomorphisms

((
(bg1b

g
2)
fgbg3

)fg
bg4

)f (
(bg1b

g
2)
fg(bg3b

g
4)
fg
)f

((
(bg1b

g
2)b

g
3

)
bg4

)f (
(bg1b

g
2)(b

g
3b
g
4)
)f
.

β(b1b2,b3,b4)

α(bg1b
g
2,b

g
3,b

g
4)
f

(73)
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We claim that (73) commutes. Consider the diagram of isomorphisms

((
(bg1b

g
2)
fgbg3

)fg
bg4

)f (
(bg1b

g
2)
fg(bg3b

g
4)
fg
)f

((
(bg1b

g
2)
fgbg3

)
bg4

)f (
(bg1b

g
2)
fg(bg3b

g
4)
)f

((
(bg1b

g
2)b

g
3

)
bg4

)f (
(bg1b

g
2)(b

g
3b
g
4)
)f
.

β(b1b2,b3,b4)

α((bg1b
g
2)
fg ,bg3,b

g
4)
f

α(bg1b
g
2,b

g
3,b

g
4)
f

The top square commutes by definition of β, whereas the bottom square commutes
by functoriality of α in its first variable. This proves that (73) commutes.

There is a commutative square of isomorphisms similar to (73) for each edge of
the pentagon build from b1, b2, b3, b4, so that we get two pentagons, one over the other,
each vertex of the top pentagon being linked by an edge to the corresponding vertex
of the bottom pentagon. The bottom pentagon commutes because A is a tensor
category. We’ve just verified that one of the vertical squares commutes. The other
vertical squares commute for similar reasons (the details are left to the reader). So,
the top pentagon commutes, as was to be shown.

We can also reason on the planar figure

• •

• •

• •

• •

• •

(All the morphisms under consideration being isomorphisms, it is not necessary
to orient the edges.) The argument is this: Assuming that all the quadrilaterals
commute, if one of the pentagons commutes, so does the other.
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§ 174. Definition 4.2.5 p. 98. Here is an example of a category C admitting no tensor
product with unit. More precisely C is an ordered set X which admits no ordered
monoid structure. This example is taken from Comments 2 and 13 in

Azimuth Forum, Applied Category Theory Course, Lecture 21 - Chapter 2: Monoidal
Preorders, p. 1, https://tinyurl.com/y4onm8kk

Our ordered set X is
a b

c d

Suppose X has an ordered monoid structure with d = 1. Then

a⊗ b ≥ a⊗ d = a⊗ 1 = a

and
a⊗ b ≥ d⊗ b = 1⊗ b = b.

This is a contradiction since a and b do not have a common upper bound. Similar
arguments show the unit can’t be a, b or c either, so there is no ordered monoid
structure on X.

8 About Chapter 5

8.1 Beginning of Section 5.1 p. 113

We want to define the notions of coimage (denoted by Coim) and image (denoted by
Im) in a slightly more general way than in the book. To this end we start by defining
these notions in a particular context in which they coincide. To avoid confusions
we (temporarily) use the notation IM for these particular cases. The proof of the
following lemma is obvious.

Lemma 175. For any set theoretical map g : U → V we have natural bijections

Coker(U ×V U ⇒ U) ≃ IM g ≃ Ker(V ⇒ V ⊔U V ),

where IM g denotes the image of g.
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Let C be a U -small category (Definition 5 p. 10), and let us denote by h : C → C∧
and k : C → C∨ the Yoneda embeddings. For any morphism f : X → Y in C define
IMh(f) in C∧ and IMk(f) in C∨ by

(IMh(f))(Z) := IM h(f)Z , (IMk(f))(Z) := IM k(f)Z

for any Z in C. Note the equalities

IM h(f)Z = f ◦ HomC(Z,X) = {f ◦ x | x ∈ HomC(Z,X)},

IM k(f)Z = HomC(Y, Z) ◦ f = {y ◦ f | y ∈ HomC(Y, Z)}.

Lemma 175 implies

IMh(f) ≃ Coker(h(X)×h(Y ) h(X) ⇒ h(X)),

IMk(f) ≃ Ker(k(Y ) ⇒ k(Y ) ⊔k(X) k(Y )).

(74)

Definition 176 (coimage, image). In the above setting, the coimage of f is the object
Coim f of C∨ defined by

(Coim f)(Z) := HomC∧(IMh(f), h(Z))

for all Z in C, and the image of f is the object Im f of C∧ defined by

(Im f)(Z) := HomC∨(k(Z), IMk(f))

for all Z in C.

Proposition 177. We may regard (Coim f)(Z) as a subset of HomC(X,Z), and
(Im f)(Z) as a subset of HomC(Z, Y ). (These subsets will be spelled out by Proposi-
tion 179 below.)

Proof. We prove that (Coim f)(Z) is naturally embedded in HomC(X,Z). The
morphisms

h(X)→ IMh(f)→ h(Y )

are given by the maps

HomC(Z,X) = h(X)(Z)→ IMh(f)Z → h(Y )(Z) = HomC(Z, Y ).
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In view of the definition of Coim(f), it suffices to check that h(X)→ IMh(f) is an
epimorphism in C∧, that is, it suffices, by Corollary 166 p. 107, to check that the map
h(X)(Z)→ IMh(f)Z is surjective for all Z in C. But this is clear.

We prove that (Im f)(Z) is naturally embedded in HomC(Z, Y ). The morphisms

k(X)→ IMk(f)→ k(Y )

in C∨ are given by the morphisms

k(Y )→ IMk(f)→ k(X)

in SetC, which are, in turn, given by the maps

HomC(Y, Z) = k(Y )(Z)→ IMk(f)Z → k(X)(Z) = HomC(X,Z).

In view of the definition of Im(f), it suffices to check that k(Y ) → IMk(f) is an
epimorphism in SetC, that is, it suffices, by Corollary 166 p. 107, to check that the
map k(Y )(Z)→ IMk(f)Z is surjective for all Z in C. But this is clear.

According to Proposition 177 we regard from now on (Coim f)(Z) as a subset of
HomC(X,Z) and (Im f)(Z) as a subset of HomC(Z, Y ).

Convention 178. If A⇒ B → C is a diagram in a given category, then the notation
[A⇒ B → C] shall mean that the two compositions coincide.

Proposition 179. If f : X → Y is a morphism in a category C, and if Z is an object
of C, then we have

(Coim f)(Z) =

{
x : X → Z

∣∣∣∣ [W ⇒ X
f−→ Y

]
⇒
[
W ⇒ X

x−→ Z
]
∀ W ∈ C

}
,

(Im f)(Z) =

{
y : Z → Y

∣∣∣∣ [X f−→ Y ⇒ W
]
⇒
[
Z

y−→ Y ⇒ W
]
∀ W ∈ C

}
.

In particular, these two sets do not depend on the universe U making C a U-category
(Definition 4 p. 10). There are natural morphisms

k(X)→ Coim f → k(Y ), h(X)→ Im f → h(Y )

in C∨ and C∧ respectively. Moreover, k(X) → Coim f is an epimorphism, and
Im f → h(Y ) is a monomorphism.
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For the sake of emphasis we write

k(X) ↠ Coim f → k(Y ), h(X)→ Im f ↣ h(Y ).

Proof. To prove the first equality, let x : W → X be a morphism in C and consider
the condition

(a) there is a map u : f ◦ HomC(W,X)→ HomC(W,Z) such that u(g) = x ◦ g for all
g in HomC(W,X):

HomC(W,X) HomC(W,Z)

f ◦ HomC(W,X).

x◦

u

It suffices to show that (a) is equivalent to

(b)
[
W ⇒ X

f−→ Y
]
⇒
[
W ⇒ X

x−→ Z
]
.

To show (a)⇒(b), let g1 and g2 in HomC(W,X) satisfy f ◦ g1 = f ◦ g2. This yields
x ◦ g1 = u(f ◦ g1) = u(f ◦ g2) = x ◦ g2.

To show (b)⇒(a), given g in HomC(W,X) we must prove that the morphism x ◦ g
does depends only on f ◦ g, and not on g itself. But this is precisely what (b) says.
This proves the first equality in the statement of the proposition.

Let us show that the natural morphism k(X)→ Coim f is an epimorphism. As
k(X)→ Coim f is a morphism in C∨, it is given by a morphism Coim f → k(X) in
SetC, and we must check that Coim f → k(X) is a monomorphism in SetC. But
in Proposition 177, we noticed that (Coim f)(Z) could be viewed as a subset of
HomC(X,Z) = k(X)(Z) for any Z in C.

Let us show that the natural morphism Im f → h(Y ) is an monomorphism.
But in Proposition 177, we noticed that (Im f)(Z) could be viewed as a subset of
HomC(Z, Y ) = h(Y )(Z) for any Z in C.

The rest of the proof is left to the reader.

By (74) we have

(Coim f)(Z) ≃ Ker
(
HomC(X,Z) ⇒ HomC∧

(
h(X)×h(Y ) h(X), h(Z)

))
,
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(Im f)(Z) ≃ Ker
(
HomC(Z, Y ) ⇒ HomC∨

(
k(Z), k(Y ) ⊔k(X) k(Y )

))
.

This implies

Proposition 180. If P := X ×Y X exists in C, then Coim f is naturally isomorphic
to Coker(P ⇒ X) ∈ C∨. If S := Y ⊔X Y exists in C, then Im f is naturally isomorphic
to Ker(Y ⇒ S) ∈ C∧.

In view of Lemma 175 and Proposition 180 we can replace the notation IM with
Im (or Coim). The following proposition is obvious:

Proposition 181. We have:

f 7→ Imh(f) and Im are functors from Mor(C) to C∧,

f 7→ Im k(f) and Coim are functors from Mor(C) to C∨.

Definition 182 (strict epimorphism). A morphism f : X → Y in a category C is a
strict epimorphism if the morphism Coim f → k(Y ) in C∨ is an isomorphism.

The proposition below is obvious:

Proposition 183. A morphism f : X → Y in a category C is a strict epimorphism
if and only if, for all Z in C, the map

◦f : HomC(Y, Z)→ HomC(X,Z)

induces a bijection
HomC(Y, Z)

∼−→ (Coim f)(Z).

By Proposition 179 p. 114, this condition does not depend on the universe U making C
a U-category (Definition 4 p. 10). Moreover, a strict epimorphism is an epimorphism.

8.2 Brief comments

§ 184. P. 115, Proposition 5.1.5 (i). For the sake of completeness we spell out some
details, and, for the reader’s convenience we reproduce Proposition 5.1.5 (i) p. 115 of
the book.
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Proposition 185 (Proposition 5.1.5 (i) p. 115). If C is a category admitting finite
inductive and projective limits, then the following five conditions on a morphism
f : X → Y are equivalent:

(a) f is an epimorphism and Coim f → Im f is an isomorphism,

(b) Coim f
∼−→ Y ,

(c) the sequence X ×Y X ⇒ X → Y is exact,

(d) there exists a pair of parallel arrows g, h : Z ⇒ X such that f ◦ g = f ◦ h and
Coker(g, h)→ Y is an isomorphism,

(e) for any Z in C, the set HomC(Y, Z) is isomorphic to the set of morphisms
u : X → Z satisfying u◦v1 = u◦v2 for any pair of parallel morphisms v1, v2 : W ⇒ X
such that f ◦ v1 = f ◦ v2.

Here are the additional details:

(b)⇒(a): The composition Coim f → Im f → Y being an isomorphism by assumption,
Im f → Y is an epimorphism. Then Proposition 5.1.2 (iv) of the book implies that f
is an epimorphism and that Im f → Y is an isomorphism, from which we conclude
that Coim f → Im f is an isomorphism.

§ 186. Proposition 5.1.5 p. 115. Here is a corollary to Proposition 5.1.5 and to
Proposition 165 p. 106:

Corollary 187. Let F and G be functors from a category C to a category C ′, let
θ : F → G be a morphism of functors, and consider the following conditions:

(a) C ′ admits finite inductive and projective limits,

(b) θ is an epimorphism,

(c) θ is a strict epimorphism,

(d) θX : F (X)→ G(X) is an epimorphism for all X in C,

(e) θX : F (X)→ G(X) is a strict epimorphism for all X in C,

(f) θ is a monomorphism,

(g) θX : F (X)→ G(X) is a monomorphism for all X in C.

Then (d) ⇒ (b), (g) ⇒ (f), (a) and (b) imply (d), (a) and (f) imply (g), (a) implies
that (c) and (e) are equivalent.
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§ 188. P. 116, proof of Proposition 5.1.7 (i) (minor variant). Recall the statement:

Proposition 189 (Proposition 5.1.7 (i) p. 116). Let C be a category admitting finite
inductive and projective limits in which epimorphisms are strict. Let us denote by
I ′g the coimage of any morphism g in C. Let f : X → Y be a morphism in C and
X

u−→ I ′f
v−→ Y its factorization through I ′f . Then v is a monomorphism.

Proof. Consider the commutative diagram

X I ′f Y

I ′a◦u I ′v.

b

u

a

v

d

c

(We first form a, then b and c, and finally d; the existence of d is a very particular
case of Proposition 181 p. 116.) By (the of) Proposition 5.1.2 (iv) p. 114 of the
book, it suffices to show that a is an isomorphism. As a ◦ u is a strict epimorphism,
Proposition 185, (a)⇒(b), p. 117, implies that c is an isomorphism. We claim that
d ◦ c−1 is inverse to a. We have

a ◦ d ◦ c−1 = c ◦ c−1 = idI′v

and
d ◦ c−1 ◦ a ◦ u = d ◦ c−1 ◦ c ◦ b = d ◦ b = u = idI′f ◦u,

and the conclusion follows from the fact that u is an epimorphism.

§ 190. P. 116, Proposition 5.1.7 (ii). The proof shows that the natural morphism
I → Coim f is an isomorphism.

§ 191. P. 117, Definition 5.2.1 (definition of a system of generators). There is an
important comment about this in Pierre Schapira’s Errata

https://webusers.imj-prg.fr/∼pierre.schapira/books/Errata.pdf.

As observed at the bottom of p. 121 of the book, the definition can be stated as
follows:

Definition 192 (generator, system of generators). Let S be a set of objects of a
category C and S the corresponding full subcategory. We say that S is a system of
generators if the functor φ : C → S∧, X 7→ HomC( , X) is conservative. The notions
of co-generator and system of co-generators are defined in the obvious way.
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§ 193. P. 118, second display: the isomorphism

HomSet

(
HomC(G,X),HomC(G,X)

)
≃ HomC∨(G

⊔HomC(G,X), X)

is a particular case of the following isomorphism, which holds for any U-set S and
any objects G and X of C:

HomSet(S,HomC(G,X)) ≃ HomC∨(G
⊔S, X).

§ 194. P. 118, proof of Proposition 5.2.3 (v): Writing Z ′ for φG(Z), observe that, for
i = 1, 2, the composition of the natural isomorphisms

(Y1 ×X Y2)′
∼−→ Y ′1 ×X′ Y ′2 → Y ′i

is the natural isomorphism (Y1 ×X Y2)
′ ∼−→ Y ′i . Moreover, the phrase “Y1 and Y2

are isomorphic” should be understood as “there is an isomorphism Y1
∼−→ Y2 whose

composition with the natural morphism Y2 → X is the natural morphism Y1 → X”.

§ 195. P. 119, Theorem 5.2.5: see Corollary 75 p. 60.

§ 196. P. 119. Proposition 5.2.8 will be used to prove Proposition 8.3.27 p. 186 of
the book.

§ 197. P. 121, proof of Proposition 5.2.9. The last words are “by Proposition 5.2.3
(v)”. A more precise wording would be “by the proof of Proposition 5.2.3 (v)”.

§ 198. P. 121. Corollary 5.2.10 follows from Theorem 5.2.6 p. 119 and Proposition
5.2.9 p. 121 of the book. Corollary 5.2.10 will be used to prove Proposition 8.3.27
p. 186 of the book.

§ 199. P. 122, sentence following Definition 5.3.1. This sentence is “Note that if F is
strictly generating, then Ob(F) is a system of generators”. See §24 p. 26.

8.3 Lemma 5.3.2 p. 122

Here is a minor variant of the proof of Lemma 5.3.2.

Lemma 200 (Lemma 5.3.2 p. 122). If F ⊂ G are full subcategories of a category C,
and if F is strictly generating, then G is strictly generating.
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Proof. Let
C G∧

F∧

γ

φ
ρ

be the natural functors (ρ being the restriction), and let X and Y be in C. We have

HomC(X, Y ) HomG∧(γ(X), γ(Y ))

HomF∧(φ(X), φ(Y )).

γ′

∼
φ′ ρ′

We want to prove that γ′ is bijective. As φ′ is bijective, it suffices to show that γ′
is surjective. Let ξ be in HomG∧(γ(X), γ(Y )). There is a (unique) f in HomC(X, Y )
such that

ρ(ξ) = φ(f), (75)

and it suffices to prove ξ = γ(f). Let Z be in G and z be in HomC(Z,X). It suffices
to show that the morphisms

Z Y
ξZ(z)

f◦z

coincide. As F is strictly generating, it suffices to show that the morphisms

φ(Z) φ(Y )
φ(ξZ(z))

φ(f◦z)

coincide. Let W be in F . It suffices to show that the maps

φ(Z)(W ) φ(Y )(W )
φ(ξZ(z))W

φ(f◦z)W

coincide, that is, it suffices to show that the maps

HomC(W,Z) HomC(W,Y )
ξZ(z)◦

f◦z◦

coincide. We have, for w in HomC(W,Z),

ξZ(z) ◦ w
(a)
= ξW (z ◦ w) (b)

= ρ(ξ)W (z ◦ w) (c)
= φ(f)W (z ◦ w) (d)

= f ◦ z ◦ w,
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Equality (a) following from the functoriality of ξ (see diagram below), Equality (b)
following from the definition of ρ, Equality (c) following from (75), and Equality (d)
following from the definition of φ.

For the reader’s convenience, we add the commutative diagram

Z z ∈ HomC(Z,X) HomC(Z, Y )

W HomC(W,X) HomC(W,X).

ξZ

◦w ◦ww

ξW

8.4 Brief comments

§ 201. P. 122. The proof of Lemma 5.3.3 proves a statement that is much stronger
than Lemma 5.3.3. This stronger statement can be phrased as follows:

Lemma 202. Let C be a category which admits small inductive limits, let F be a
small (Definition 5 p. 10) full subcategory of C, let F be in F∧, set

ψ(F ) := colim
(Y→F )∈FF

Y,

let X be in C, let f : ψ(F )→ X be a morphism in C and, for each (Y → F ) ∈ FF ,
let fY→F : Y → X be the composition of f with the coprojection Y → ψ(F ). Then
there is a unique morphism θ : F → φ(X) in F∧ such that

θY (Y → F ) = fY→F

for all Y in F . Moreover, the map

HomC(ψ(F ), X)→ HomF∧(F, φ(X)), f 7→ θ

is bijective and functorial in F and X. In particular ψ : F∧ → C is left adjoint to
φ : C → F∧.

Proof. We have, for X in C and A in F∧,

HomC

(
colim

(Y→A)∈FA
Y,X

)
∼−→ lim

(Y→A)∈FA
HomC(Y,X)
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∼−→ lim
(Y→A)∈FA

φ(X)(Y )
∼−→ HomF∧(A,φ(X)),

the last isomorphism following from (46) p. 81, and it is straightforward to check that
the composition of these bijections coincides with the map f 7→ θ in the statement of
our lemma.

§ 203. P. 123, proof of Theorem 5.3.4. The following fact is implicit in the proof:
The map

f : HomF∧(φψ(G), F )→ HomF∧(G,F ),

obtained by composing the chain of isomorphisms in the proof, is equal to ◦εG. This
equality is easily checked using Lemma 202 and the commutativity of the obvious
diagram

φ(X) colim
X→G

φ(X)

φ
(
colim
X→G

X
)

G.

∼

εG

in F∧ (the isomorphism on the right following from (44)).

8.5 Theorem 5.3.6 p. 124

Theorem 204 (Theorem 5.3.6 p. 124). Let C be a category such that

(a) C admits small inductive limits and finite projective limits,

(b) small filtrant inductive limits are stable by base change (see Section 5.6 p. 63),

(c) epimorphisms are strict.

Let F be an essentially small (Definition 6 p. 10) full subcategory of C such that

(d) the functor φ : C → F∧ is defined by φ(X)(Y ) := HomC(Y,X) is faithful,

(e) F is closed by finite coproducts in C.

Then φ is full, or, in other words, F is strictly generating.

Proof. We may assume from the beginning that F is small (Definition 5 p. 10).

Step 1. We have slightly changed the statement of Theorem 5.3.6 p. 124 of the book,
but we want to keep the division of the proof in six steps used in the book. In the
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book φ is supposed to be conservative, and Step 1 consists in invoking the proof of
Proposition 5.2.3 (i) p. 118 of the book to conclude that φ is faithful. In the present
setting, Step 1 can be ignored thanks to Assumption (d).

Step 2. By Proposition 1.2.12 p. 16 of the book, a morphism f in C is an epimorphism
as soon as φ(f) is an epimorphism.

Step 3. Let X be in C, and let (Yi → X)i∈I be a small filtrant inductive system in
CX . We claim that the natural morphism

colim
i

Coim(Yi → X)→ Coim
(
colim

i
Yi → X

)
(76)

is an isomorphism. As F∧ satisfies Assumptions (a), (b) and (c), the above statement
also applies to F∧.

Let X and Y be in C.

Step 4. If z : Z → X is in FX , then the natural map

HomC(Z, Y )→ HomF∧
(
φ(Z), φ(Y )

)
, (77)

which is bijective by the Yoneda Lemma, induces a bijection

HomC(Coim z, Y )
∼−→ HomF∧(Coimφ(z), φ(Y )) (78)

in the following sense:

There are natural bijections

HomC(Coim z, Y ) ≃ Ker
(
HomC(Z, Y ) ⇒ HomC(Z ×X Z, Y )

)
,

HomF∧(Coimφz, φY ) ≃ Ker
(
HomF∧

(
φZ, φY

)
⇒ HomF∧

(
φZ ×φX φZ, φY

))
.

(We have omitted some parenthesis to save space.) Let Z → Y be a morphism in C.
Then Z → Y is in

Ker
(
HomC(Z, Y ) ⇒ HomC(Z ×X Z, Y )

)
if and only if its image φ(Z)→ φ(Y ) is in

Ker
(
HomF∧

(
φ(Z), φ(Y )

)
⇒ HomF∧

(
φ(Z)×φ(X) φ(Z), φ(Y )

))
.

[To make our argument work, it is not enough that the natural bijection (78) exist;
the fact that it is induced by (77) will be crucial.]
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Let us denote by I the set of finite subsets of Ob(FX), ordered by inclusion.
Regarding I as a category, it is small (Definition 5 p. 10). Assumption (e) implies
that I is filtrant. For any A in I set ZA :=

⊔
a∈A ζ(a), where ζ : CX → C is the

forgetful functor.

Step 5. We claim that the natural morphism

colim
A∈I

φ(ZA)→ φ(X)

is an epimorphism.

Step 6. We claim that the natural morphism

colim
A∈I

Coim(ZA → X)→ X

is an isomorphism.

Lemma 205 below will show that these steps imply the theorem. We have, in the
above setting,

HomC(X, Y )
∼−→ HomC

(
colim
A∈I

Coim(ZA → X), Y

)
by Step 6

∼−→ lim
A∈I

HomC(Coim(ZA → X), Y )

∼−→ lim
A∈I

HomF∧

(
Coim(φ(ZA)→ φ(X)), φ(Y )

)
by Step 4

∼−→ HomF∧

(
colim
A∈I

Coim(φ(ZA)→ φ(X)), φ(Y )

)

∼−→ HomF∧

(
Coim

(
colim
A∈I

φ(ZA)→ φ(X)

)
, φ(Y )

)
by Step 3

∼−→ HomF∧(φ(X), φ(Y )) by Step 5.

Lemma 205. Taking Steps 1 to 6 for granted, the composition of the six above
bijections coincides with the natural map HomC(X, Y )→ HomF∧(φ(X), φ(Y )).
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Proof. Let us denote these six bijections by f1, . . . , f6; let u : X → Y be a morphism
in C; and let us compute successively f1u, f2f1u, . . . , f6 . . . f1u. We have

f1u =

(
colim
A∈I

Coim(ZA → X)
∼−→ X

u−→ Y

)
∈ HomC

(
colim
A∈I

Coim(ZA → X), Y

)
.

Then f2f1u is the obvious family

(Coim(ZA → X)→ X
u−→ Y )A ∈ lim

A∈I
HomC(Coim(ZA → X), Y ). (79)

Let us compute f3f2f1u thanks to Step 4. Firstly, to the family (79) we attach
the obvious family (ZA → Y )A, each of whose member ZA → Y is in

Ker
(
HomC(ZA, Y ) ⇒ HomC(ZA ×X ZA, Y )

)
.

Secondly, applying the functor φ to the family (ZA → Y )A we get the obvious family
(φ(ZA)→ φ(Y ))A, each of whose member φ(ZA)→ φ(Y ) is in

Ker
(
HomF∧

(
φ(ZA), φ(Y )

)
⇒ HomF∧

(
φ(ZA)×φ(X) φ(ZA), φ(Y )

))
.

Thirdly, to the family (φ(ZA)→ φ(Y ))A we attach the family of morphisms

Coim(φ(ZA)→ φ(X))→ φ(X)
φ(u)−−→ φ(Y ), (80)

family which makes up the sought-for morphism f3f2f1u. The morphisms (80) give
rise to a morphism

colim
A∈I

Coim(φ(ZA)→ φ(X))→ φ(X)
φ(u)−−→ φ(Y ), (81)

morphism equals to f4f3f2f1u. The morphism (81) induces a morphism

Coim

(
colim
A∈I

φ(ZA)→ φ(X)

)
→ φ(X)

φ(u)−−→ φ(Y ),

morphism equals to f5f4f3f2f1u. This shows that f6f5f4f3f2f1u is indeed equal to
φ(X)

φ(u)−−→ φ(Y ).

It remains to prove Steps 3, 4, 5 and 6.

Proof of Step 3. Set Y := colimi Yi.
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Lemma 206. The natural morphism colimi Yi ×X Yi → Y ×X Y is an isomorphism.

In the diagrams used to prove Step 3, the undefined arrows are the obvious ones.

Proof of Lemma 206. Consider the commutative diagrams

colim
i

Yi ×X Yi colim
i,j

Yi ×X Yj

Yi ×X Yi Yi ×X Yi,

a

id

colim
i,j

Yi ×X Yj colim
i

colim
j

Yi ×X Yj colim
i

Yi ×X Y

colim
j

Yi ×X Yj

Yi ×X Yj Yi ×X Yj Yi ×X Y,

b c

id

colim
i

Yi ×X Y Y ×X Y

Yi ×X Y.

d

The composition d ◦ c ◦ b ◦ a equals (76), and a is an isomorphism by Corollary 3.2.3
(ii) p. 79 of the book, b is an isomorphism by §62 p. 52, c and d are isomorphisms by
Assumption (b).This proves Lemma 206.

Taking the definition of Coim into account, we have

Coim(Yi → X) = Coker(Yi ×X Yi ⇒ Yi),

Coker(Y ×X Y ⇒ Y ) = Coim(Y → X).
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Moreover, there is an obvious commutative diagram

colim
i

Coker(Yi ×X Yi ⇒ Yi) Coker(colim
i

(Yi ×X Yi) ⇒ Y )

Coker(Yi ×X Yi ⇒ Yi), Coker(Yi ×X Yi ⇒ Yi),

e

id

where e is an isomorphism, and Lemma 206 yields a commutative diagram

Coker(colim
i

(Yi ×X Yi) ⇒ Y ) Coker(Y ×X Y ⇒ Y )

Coker(Yi ×X Yi ⇒ Yi) Coker(Yi ×X Yi ⇒ Yi),

f

id

where f is an isomorphism. This implies that (76) is an isomorphism, completing the
proof of Step 3.

Proof of Step 4. We have

HomC(Coim z, Y ) = HomC
(
Coker(Z ×X Z ⇒ Z), Y

)
≃ Ker

(
HomC(Z, Y ) ⇒ HomC(Z ×X Z, Y )

)
,

and similarly

HomF∧(Coimφz, φY ) ≃ Ker
(
HomF∧

(
φZ, φY

)
⇒ HomF∧

(
φZ ×φX φZ, φY

))
.

The natural map
HomC(Z, Y )→ HomF∧(φ(Z), φ(Y ))

is bijective by the Yoneda Lemma. As φ is faithful by Assumption (d), the natural
map

HomC(Z ×X Z, Y )→ HomF∧
(
φ(Z ×X Z), φ(Y )

)
≃ HomF∧

(
φ(Z)×φ(X) φ(Z), φ(Y )

)
.

is injective. This implies our claims.

127 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



Proof of Step 5. Let Z be in F . We must show that the natural map

colim
A∈I

φ(ZA)(Z)→ φ(X)(Z) := HomC(Z,X)

is surjective. Let z be in HomC(Z,X). It suffices to check that z is in the image of
the natural map

φ(Z{z})(Z) = HomC(Z,Z)
z◦−→ HomC(Z,X),

which is obvious.

Proof of Step 6. As Step 3 implies

colim
A∈I

Coim(ZA → X) ≃ Coim

(
colim
A∈I

ZA → X

)
,

it suffices to prove

Coim

(
colim
A∈I

ZA → X

)
≃ X. (82)

Epimorphisms being strict by Assumption (c), it is enough, in view of Proposition 185,
(a)⇒(b), p. 117 to check that

colim
A∈I

ZA → X (83)

is an epimorphism. Let

colim
A∈I

φ(ZA)
b−→ φ

(
colim
A∈I

ZA

)
a−→ φ(X)

be the natural morphisms. As a◦ b is an epimorphism by Step 5, a is an epimorphism,
and Step 2 implies that (83) is also an epimorphism.

8.6 Brief comments

§ 207. P. 127, proof of Theorem 5.3.8.

The sentence “Since φ is conservative by (a), it remains to show that φ(u) is
a monomorphism” is justified by Proposition 5.1.5 (ii) p. 115 of the book and
Corollary 187 p. 117 above.
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The phrase “the two arrows φ(Xi1 ×X Xi1) ⇒ colimi φ(Xi) coincide” can be
justified as follows: The two compositions

Xi1 ×X Xi1 X0 X
ξ1

ξ2

u

coincide by definition. Thus the two compositions

φ(Xi1 ×X Xi1) ⇒ φ(X0)→ φ(X),

which can be written as

φ(Xi1 ×X Xi1) ⇒ colim
i

φ(Xi)→ φ(X0)→ φ(X),

coincide. The composition colimi φ(Xi) → φ(X0) → φ(X) being an isomorphism,
the two morphisms φ(Xi1 ×X Xi1) ⇒ colimi φ(Xi) coincide.

§ 208. P. 128, Theorem 5.3.9. To prove the existence of F , one can also argue as
follows.

Lemma 209. Let C be a category admitting finite inductive limits, and let A be a
small (Definition 5 p. 10) full subcategory of C. Then:

(a) There is a small full subcategory B of C such that A ⊂ B ⊂ C and that B is closed
by finite inductive limits in the following sense: if (Xi) is a finite inductive system in
B and X is an inductive limit of (Xi) in C, then X is isomorphic to some object of B.

(b) There is a small full subcategory A′ of C such that A ⊂ A′ ⊂ C and that each
finite inductive system in A has a limit in A′.

Proof. Since there are only countably many finite categories up to isomorphism, (b) is
clear. To prove (a), let A ⊂ A′ ⊂ A′′ ⊂ · · · be a tower of full subcategories obtained
by iterating the argument used to prove (b), and let B be the union of the A(n).

9 About Chapter 6

9.1 Definition 6.1.1 p. 131

Here is an example of an object of Ind(Set) which is isomorphic (in Ind(Set)) to no
object of Set.
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For each n in N set
n := {0, . . . , n− 1} ⊂ N,

let N→ Set, n 7→ n be the obvious functor, and set

N′ := “colim”
n

n.

(Note that A(X) can be identified to the set of bounded maps from X to N.) We
clearly have N′ ∈ Ind(Set). Let X be in Set and let u : X → N′ be a morphism.
To prove that N′ is isomorphic to no object of Set, it suffices to show that u is not
an epimorphism. As u factors through some coprojection pn : n→ N′, if u were an
epimorphism, so would be pn.

Claim: pn is not an epimorphism.

Proof: Let f : N′ → N be the natural morphism. There is a morphism g : N′ → N
such that

g(pi(j)) =

{
j if j ≤ n

n if j ≥ n

whenever 0 ≤ j < i, and we have g ◦ pn = f ◦ pn but g ̸= f . This proves the claim,
and, thus, the fact that N′ is isomorphic to no object of Set.

Claim: The natural morphism f : N′ → N is a monomorphism.

Proof: Let
A N′ N

g

h

f

be a diagram in Ind(Set) with g ̸= h. It suffices to prove f ◦ g ̸= f ◦ h. We can
assume that A is in Set. There is an a in A satisfying g(a) ̸= h(a). Recall that
pn : n→ N′ is the n-th coprojection. There is an n in N and there are gn, hn : A⇒ n
such that g = pn ◦ gn, h = pn ◦ hn:

A N′ N

n.

hngn

g

h

f

pn

The map f ◦ pn being injective, this yields

(f ◦ g)(a) = (f ◦ pn)(gn(a)) ̸= (f ◦ pn)(hn(a)) = (f ◦ h)(a),

and thus f ◦ g ̸= f ◦ h. Hence, f is a monomorphism.
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Claim: f is not an epimorphism.

Proof 1: Use Proposition 221 p. 139 below.

Proof 2: (Proof 2 is more direct.) Define u : N→ N by

u(i) :=

{
i− 1 if i ̸= 0

0 if i = 0,

and define the functor α : N → Set as follows. To the object i of N we attach the
object N of Set, and to the inequality i ≤ j in N we attach the endomap uj−i of N.
Set A := “colim”α, let qi : N→ A be the i-th coprojection and define g : N→ N by
g(i) = 0 for all i ∈ N. It is easy to check that we have q0 ̸= q0 ◦g and q0 ◦f = q0 ◦g ◦f .
This proves the claim.

9.2 Theorem 6.1.8 p. 132

Recall the statement:

Theorem 210 (Theorem 6.1.8 p. 132). If C is a category, then the category Ind(C)
admits small filtrant inductive limits and the natural functor Ind(C)→ C∧ commutes
with such limits.

Here is a minor variant of Step (i) of the proof of Theorem 6.1.8. We must show:

Lemma 211. If α : I → Ind(C) is a functor, if I is small (Definition 5 p. 10) and
filtrant, and if we define A ∈ C∧ by A = “colim”α, then CA is filtrant.

Proof. Let M be the category attached by Definition 3.4.1 p. 87 of the book to the
functors

C h−→ C∧ ι◦α←−− I,

where h : C → C∧ and ι : Ind(C)→ C∧ are the natural embeddings. Proposition 155
p. 104 implies that M is filtrant, and that it suffices to check that Conditions (iii)
(a) and (iii) (b) of Proposition 3.2.2 p. 78 of the book hold for the obvious functor
φ :M → CA. Let us do it for Condition (iii) (b), the case of Condition (iii) (a) being
similar and simpler.

For all i in I and all X in C let

pi : α(i)→ A and pi(X) : HomC(X,α(i))→ A(X)
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be the coprojections. Note that pi(X) = pi◦.

Given an object c of CA, and object m of M , and a pair of parallel morphisms
σ, σ′ : c ⇒ φ(m) in CA, we must find a morphism τ : m → n in M satisfying
φ(τ) ◦ σ = φ(τ) ◦ σ′.

Let c be given by the morphism X → A in C∧, let m be given by the morphism
Y → α(i) in Ind(C), and let σ and σ′ be given by the morphisms s, s′ : X ⇒ Y
making the diagram below commute:

X Y

α(i)

A A.

s

s′
y

pi

Then we are looking for and object n of M given by a morphism z : Z → α(j),
and for a morphism t : Y → Z defining the sought-for morphism τ .

As pi(X)(y ◦ s) equals pi(X)(y ◦ s′) in A(X) ≃ colimHomC(X,α) and I is filtrant,
there is a morphism t : i→ j in I such that α(t) ◦ y ◦ s = α(t) ◦ y ◦ s′, and we can set
Z := α(j) and z := idα(j). The situation is depicted by the commutative diagram

X Y α(j)

α(i) α(j)

A A A.

s

s′

y

pi

α(t)

pj

9.3 Proposition 6.1.9 p. 133

9.3.1 Proof of Proposition 6.1.9

The following point is implicit in the book, and we give additional details for the
reader’s convenience. Proposition 6.1.9 results immediately from the statement below:
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Proposition 212. Let A be a category which admits small filtrant inductive limits, let
F : C → A be a functor, and let C i−→ Ind(C) j−→ C∧ be the natural embeddings. Then
the functor i†(F ) : Ind(C)→ A exists, commutes with small filtrant inductive limits,
and satisfies i†(F ) ◦ i ≃ F . Conversely, any functor F̃ : Ind(C)→ A commuting with
small filtrant inductive limits with values in C, and satisfying F̃ ◦ i ≃ F , is isomorphic
to i†(F ).

Proof. The proof is essentially the same as that of Proposition 2.7.1 on p. 62 of the
book. (See also §110 p. 83.) Again, we give some more details about the proof of the
fact that i†(F ) commutes with small filtrant inductive limits. Put F̃ := i†(F ).

Let us attach the functor B := HomA(F ( ), Y ) ∈ C∧ to the object Y of A. To
apply Proposition 66 p. 55 to the diagram

I Ind(C) A

C∧

α

j

F̃

(where I is a small filtrant category — Definition 5 p. 10), it suffices to check that
there is an isomorphism

HomA

(
F̃ ( ), Y

)
≃ HomC∧( , B)

in Ind(C)∧V , where V is a universe containing U such that C∧ is a V-category (Defini-
tion 4 p. 10). We have

F̃ (A) := colim
(X→A)∈CA

F (X),

as well as the following bijections functorial in A ∈ Ind(C):

HomA

(
F̃ (A), Y

)
= HomA

(
colim

(X→A)∈CA
F (X), Y

)
≃ lim

(X→A)∈CA
B(X)

≃ lim
(X→A)∈CA

HomC∧((j ◦ i)(X), B) ≃ HomC∧

(
“colim”
(X→A)∈CA

X,B

)
≃ HomC∧(j(A), B).

133 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



9.3.2 Comments about Proposition 6.1.9

Let us record Part (i) of the proposition as

IF ◦ ιC ≃ ιC′ ◦ F, (84)

and note that we have, in the setting of Corollary 6.3.2 p. 140,

colimF ◦ α ∼−→ (JF )(“colim”α). (85)

Let us also record Part (ii) of the proposition as

“colim”(IF ◦ α) ∼−→ IF (“colim”α). (86)

(See §8 p. 13.)

Also note that the proof of Proposition 6.1.9 shows

Proposition 213. If F : C → C ′ is a functor of small categories (Definition 5 p. 10),
then the functor F̂ : C∧ → C ′∧ defined in Notation 2.7.2 p. 63 of the book induces the
functor IF : Ind(C)→ Ind(C ′).

9.4 Proposition 6.1.12 p. 134

We give some more details about the proof. Recall the setting: We have two categories
C1 and C2, and we shall define functors

Ind(C1 × C2) Ind(C1)× Ind(C2),
θ

µ

and prove that they are mutually quasi-inverse equivalences. (In fact, we shall only
define the effect of θ and µ on objects, leaving also to the reader the definition of the
effect of these functors on morphisms.) But first let us introduce some notation. We
shall consider functors

A ∈ Ind(C1 × C2); Ai, Bi ∈ Ind(Ci);

objects Xi, Yi, . . . in Ci; and elements

x ∈ A(X1, X2), y ∈ A(Y1, Y2), . . . , xi ∈ Ai(Xi), yi ∈ Ai(Yi), . . .
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When we write
colim

x
· · · , colim

xi
· · · , colim

x1,x2
· · · ,

we mean, in the first case, not only that x runs over the elements of A(X1, X2), but
also that X1 and X2 themselves run over the objects of C1 and C2, so that we are
taking the inductive limit of some functor defined over (C1 × C2)A. In the other cases,
the interpretation is similar.

Let us define θ and µ: We define θ by setting θ(A) = (A1, A2) with

Ai := “colim”
x

Xi, (87)

and we define µ by putting µ(A1, A2) := A1 × A2 with

(A1 × A2)(X1, X2) := A1(X1)× A2(X2)

for all Xi in Ci (i = 1, 2).

Proposition 214 (Proposition 6.1.12 p. 134). The functors θ and µ are mutually
quasi-inverse.

Proof. Let us prove
θ ◦ µ ≃ idInd(C1)×Ind(C2) . (88)

If Ai is in Ind(Ci) for i = 1, 2; if A is A1 × A2; and if (B1, B2) is θ(A), then we have

B1

(a)
≃ “colim”

x
X1

(b)
≃ “colim”

x1,x2
X1

(c)
≃ “colim”

x1
X1

(d)
≃ A1.

Indeed, Isomorphism (a) follows from (87), Isomorphism (b) from the definition of A,
Isomorphism (c) from the fact that the projection

(C1)A1 × (C2)A2 → (C1)A1

is cofinal by Lemma 215 below coupled with the fact that (C2)A2 is connected, and
Isomorphism (d) from our old friend (44) p. 81. (By the way, in this proof we are
using (44) a lot without explicit reference.)

Lemma 215. If I and J are categories and if J is connected, then the projection
I × J → I is cofinal.

Proof. Let i0 be in I. We must check that (I×J)i0 is connected. We have (I×J)i0 ≃
I i0×J , and it is easy to see that a product of two connected categories is connected.
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This ends the proof of (88).

Let us prove
µ ◦ θ ≃ idInd(C1×C2) . (89)

Let A be in Ind(C1 × C2) and set (A1, A2) := θ(A). We shall define morphisms
A → A1 × A2 and A1 × A2 → A, and leave it to the reader to check that these
morphisms are mutually inverse isomorphisms of functors.

• Definition of the morphism A → A1 × A2: Let Xi be in Ci (i = 1, 2). We must
define a map A(X1, X2)→ A1(X1)× A2(X2). We shall define firstly a map

A(X1, X2)→ A1(X1). (90)

This will enable us to define a map A(X1, X2)→ A2(X2) similarly, yielding our map
A(X1, X2)→ A1(X1)× A2(X2). As we have an isomorphism

A1(X1) ≃ colim
y

HomC1(X1, Y1)

and coprojections
p1y : HomC1(X1, Y1)→ A1(X1),

we can define (90) by x 7→ p1x(idX1). We leave it to the reader to check that this
does define a morphism A→ A1 × A2.

• Definition of the morphism A1 × A2 → A. Letting Xi be in Ci as above, we must
define a map A1(X1)×A2(X2)→ A(X1, X2). Letting xi be in Ai(Xi), we must define
an element x in A(X1, X2). We have x1 = p1y(f1) and x2 = p2z(f2) for some y and z
in (C1×C2)A, some f1 in HomC1(X1, Y1) and some f2 in HomC2(X2, Z2). The category
(C1 × C2)A being filtrant, we can assume z = y. We have an isomorphism

A(X1, X2) ≃ colim
w

HomC1(X1,W1)× HomC2(X2,W2)

and coprojections qw : HomC1(X1,W1)×HomC2(X2,W2)→ A(X1, X2), we can define
x by x := qy(f1, f2). We leave it to the reader to check that this does define a
morphism A1 × A2 → A, and that this morphism is an inverse to the morphism
A→ A1 × A2 defined above.

This ends the proofs of Isomorphism (89) p. 136 and Proposition 214 p. 135.
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9.5 Corollary 6.1.15 p. 135

Recall the statement (see §9 p. 13 above):

Corollary 216 (Corollary 6.1.15 p. 135). Let f, g : A ⇒ B be two morphisms
in Ind(C). Then there exist a small (Definition 5 p. 10) and filtrant category I
and morphisms φ, ψ : α ⇒ β of functors from I to C such that A ≃ “colim”α,
B ≃ “colim” β, f ≃ “colim”φ, g ≃ “colim”ψ. (The last two isomorphisms take
place in Mor(Ind(C)).)

Lemma 217. Let α1 : I → C1 and α2 : I → C2 be functors defined on a small
filtrant category I. Define α : I → C1 × C2 by α(i) := (α1(i), α2(i)) and let Xk be in
Ck (k = 1, 2). Then the natural map

(“colim”α)(X1, X2)→ (“colim”α1)(X1)× (“colim”α2)(X2) (91)

is bijective.

Proof of Lemma 217. This follows from Corollary 3.2.3 (ii) p. 79 and Proposition
3.1.11 (ii) of the book. Let us just add that (91) is the natural composition

colim
i∈I

(
HomC1(X1, α1(i))× HomC2(X2, α2(i))

)
→

colim
(i,j)∈I×I

(
HomC1(X1, α1(i))× HomC2(X2, α2(j))

)
→(

colim
i∈I

HomC1(X1, α1(i))
)
×
(
colim
j∈I

HomC2(X2, α2(j))
)
.

Proof of Corollary 216. Let I and J be small filtrant categories and let α : I → C
and β : J → C be two functors such that A ≃ “colim”α and B ≃ “colim” β. Denote
by α̃ : I → C × C the functor i 7→ (α(i), α(i)), and similarly with β.

Recall that there are quasi-inverse equivalences

Ind(C × C) Ind(C)× Ind(C),
θ

µ

that we sometimes write A1 × A2 for µ(A1, A2), and that we have

(A1 × A2)(X1, X2) := A1(X1)× A2(X2)
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for all Xi in C (i = 1, 2). (See Section 9.4 p. 134.)

Then A × A ≃ “colim” α̃ and B × B ≃ “colim” β̃. By Lemma 217 and the
above reminder, the morphism (f, g) : (A,A)→ (B,B) in Ind(C)× Ind(C) defines a
morphism f × g : A×A→ B ×B in Ind(C × C). Applying Proposition 6.1.13 p. 134
in the book, we find a small (Definition 5 p. 10) and filtrant category K, functors
pI : K → I, pJ : K → J and a morphism of functors (φ, ψ) from α ◦ pI to β ◦ pJ such
that f × g ≃ “colim”(φ, ψ). It follows that f ≃ “colim”φ and g ≃ “colim”ψ.

9.6 Brief comments

§ 218. The proofs of Propositions 6.1.16 and 6.1.18 p. 136 in the book use the
following lemma

Lemma 219. Let I be a small (Definition 5 p. 10) filtrant category, let C be category,
and let F : CI → Ind(C) be the functor α 7→ “colim”α.

(a) If C admits finite projective limits, F is left exact.

(b) If C admits finite inductive limits, F is right exact.

Proof. Let h : C → C∧ be the Yoneda embedding and ι : C → Ind(C) the natural
embedding. If α is in CI , then “colim”α can be defined as colimh◦α or as colim ι◦α
(Theorem 6.1.8 p. 132 in the book). Let J be a finite category.

(a) Let α : I × Jop → C be a functor. We claim

“colim”
i

lim
j
α(i, j)

∼−→ colim
i

h

(
lim
j
α(i, j)

)
.

Clearly lim
j

commutes with h. As lim
j

commutes also with colimi as far as C∧-valued

functors are concerned, “colim”
i

commutes with lim
j

, and the claim is proved.

(b) Let α : I × J → C be a functor. We claim

“colim”
i

colim
j

α(i, j)
∼−→ colim

i
ι

(
colim

j
α(i, j)

)
.

The functor ι, being right exact (Corollary 6.1.6 p. 132 in the book), commutes with
colim

j
. As colim

j
commutes with colim

i
for obvious reasons, it commutes with “colim”

i
,

and the claim is proved.
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§ 220.

Proposition 221. If C is a category admitting finite inductive and projective limits,
and if C is strict, then Ind(C) is strict.

Lemma 222. If F : C → C ′ is an exact functor between categories admitting finite
inductive and projective limits, and if f is a strict morphism in C, then F (f) is a
strict morphism in C ′.

Proof. This is obvious.

Proof of Proposition 221. Let f : A → B be a morphism in Ind(C). By Corollary
6.1.14 p. 135 in the book, there is a small filtrant category I and a morphism φ in
CI such that “colim”φ ≃ f . Clearly CI is strict, and the theorem follows now from
Lemmas 219 and 222.

§ 223. P. 136, Corollary 6.1.17 (i). If C admits finite projective limits, then the
natural functor C → Ind(C) is exact. (Recall that it is right exact by Corollary 6.1.6
p. 132 of the book.)

§ 224. P. 137, proof of Proposition 6.1.19. We just add a few references in the proof.
Recall the statement:

Proposition 225. If a category C admits finite inductive limits and finite projective
limits, then small filtrant inductive limits are exact in Ind(C).

Proof. By Proposition 161 p. 105 it suffices to check that small filtrant inductive limits
commute with finite projective limits in Ind(C). Since the embedding Ind(C)→ C∧
commutes with small filtrant inductive limits by Theorem 6.1.8 p. 132, and with finite
projective limits by Corollary 6.1.17 (i) p. 136, this follows from the fact that small
filtrant inductive limits are exact in C∧ (see Exercise 3.2 p. 90).

§ 226. P. 137, table. In view of Corollary 6.1.17 p. 136, one can add two lines to the
table:
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C → Ind(C) Ind(C)→ C∧
1 finite inductive limits ◦ ×
2 finite coproducts ◦ ×
3 small filtrant inductive limits × ◦
4 small coproducts × ×
5 small inductive limits × ×
6 finite projective limits ◦ ◦
7 small projective limits ◦ ◦

(In Line 6 we assume that C admits finite projective limits, whereas in Line 7 we
assume that C admits small projective limits.)

§ 227. P. 138, Corollary 6.1.17. If C admits finite projective limits, then C is exact in
Ind(C). This follows from Corollary 6.1.17, Corollary 6.1.6 p. 132 and Proposition 161
p. 105.

§ 228. P. 138, proof of Proposition 6.1.21. One can also argue as follows. Assume C
admits finite projective limits. By Remark 2.6.5 p. 62 and Corollary 6.1.17 p. 136, all
inclusions represented in the diagram

C∧V

C∧U IndV(C)

IndU(C)

C,

i

except perhaps inclusion i, commute with finite projective limits. Thus inclusion i
commutes with finite projective limits. The argument for U -small projective limits is
the same. q.e.d.

9.7 Proposition 6.2.1 p. 138

We add a few details to the proof. Recall the statement:
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Proposition 229 (Proposition 6.2.1 p. 138). Let α : I → C be a functor with I
filtrant and let Z ∈ C. The conditions below are equivalent:

(i) Z is a universal inductive limit of α in the sense of Definition 70 p. 59.

(ii) there exist an object i0 ∈ I and a morphism τ : Z → α(i0) satisfying the property:

for any morphism s : i0 → i, there exist a morphism pi : α(i)→ Z and a morphism
t : i→ j satisfying

(a) pi ◦ α(s) ◦ τ = idZ,

(b) α(t) ◦ α(s) ◦ τ ◦ pi = α(t).

Proof. Choose a universe making I and C small (Definition 5 p. 10), set A := “colim”α
and let qi : α(i)→ A be the coprojections.

• (i) implies (ii). Let φ : Z → A be an isomorphism. By definition of A the
isomorphism φ factors as Z τ−→ α(i0)

qi0−→ A. Let s : i0 → i. We define pi : α(i)→ Z

as being the composition α(i) qi−→ A
φ
←−
∼ Z. As the three small triangles in the diagram

α(i) Z

C

D

pi

qi
φ

∼

τ
α(s) qi0

commute, we get
φ ◦ pi ◦ α(s) ◦ τ = qi ◦ α(s) ◦ τ = φ,

which implies (a). The coprojection

HomC(α(i), α(i))→ colimHomC(α(i), α) = HomC(α(i), A)

being the map qi◦, and I being filtrant, the equalities

qi ◦ α(s) ◦ τ ◦ pi = qi0 ◦ τ ◦ pi = φ ◦ pi = qi = qi ◦ idα(i)

imply the existence of a morphism t : i→ j satisfying (b).
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• (ii) implies (i). Let φ : Z → A be the composition Z τ−→ α(i0)
qi0−→ A. It suffices to

show that φ is an isomorphism. Let X be an object of C. It suffices to show that the
map

φX : HomC(X,Z)→ HomC(X,A) ≃ colimHomC(X,α), u 7→ φ ◦ u

is bijective.

⋆ φX is injective. Let u, v ∈ HomC(X,Z) satisfy φ ◦ u = φ ◦ v, that is,

qi0 ◦ τ ◦ u = qi0 ◦ τ ◦ v.

As I is filtrant and as HomC(X,A) ≃ colimHomC(X,α), there is a morphism s : i0 → i
such that α(s) ◦ τ ◦ u = α(s) ◦ τ ◦ v. We have qi ◦ α(s) ◦ τ ◦ u = qi0 ◦ τ ◦ u = φ ◦ u,
and, similarly, qi ◦ α(s) ◦ τ ◦ v = φ ◦ v, yielding

φ ◦ u = qi ◦ α(s) ◦ τ ◦ u = qi ◦ α(s) ◦ τ ◦ v = φ ◦ v,

and thus u = v.

⋆ φX is surjective. Let w : X → α(i) be a morphism. It suffices to show that there
is a morphism u : X → Z such that φ ◦ u = w. We may assume that there is a
morphism i0 → i. If pi : α(i)→ Z and t : i→ j are as in (ii), we get

qi ◦ w = qj ◦ α(t) ◦ w = qj ◦ α(t) ◦ α(s) ◦ τ ◦ pi ◦ w = qi0 ◦ τ ◦ pi ◦ w = φ ◦ pi ◦ w.

Corollary 230. Let α : I → X be a functor from a filtrant category I to an ordered
set X, let f : Ob(I)→ X be the obvious map, and let x0 be in X. Then x0 = colimα
if and only if x0 = sup Im f . Moreover this inductive limit is universal in the sense
of Definition 70 p. 59 if and only the supremum x0 is reached by f .

9.8 Brief comments

§ 231. P. 140, proof of Corollary 6.3.2. For X in J we have

F (X) ≃ σC(ιC(F (X))) ≃ σC(IF (ιJ (X))).

§ 232. P. 140, Definition 6.3.3. Recall this definition:
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Definition 233 (Definition 6.3.3. p. 140). Assume that C admits small filtrant
inductive limits. We say that an object X of C is of finite presentation if for any
α : I → C with I small and filtrant, the natural morphism

colimHomC(X,α)→ HomC(X, colimα)

is an isomorphism, that is, if

HomInd(C)(X,A)→ HomC(X, σC(A))

is an isomorphism for any A ∈ Ind(C).

We spell out some details. Recall that the embedding functor ι : C → Ind(C) has
a left adjoint functor σ:

C

Ind(C).

ισ

In particular, for each A in Ind(C) we have a morphism εA : A→ ι(σ(A)). Recall also
that C is a category admitting small filtrant limits. Consider the following conditions
on an object X in C:

(a) The natural map colimHomC(X,α)→ HomC(X, colimα) is bijective for all functor
α : I → C with I small (Definition 5 p. 10) and filtrant.

(b) The map εA◦ : HomInd(C)(ι(X), A)→ HomInd(C)(ι(X), ι(σ(A))) is bijective for all
A in Ind(C).

Lemma 234. The above conditions are equivalent.

Proof. If α : I → C is a functor with I small and filtrant, then the obvious square

colimHomC(X,α) HomC(X, colimα)

HomInd(C)(X, “colim”α) HomInd(C)(X, colimα)

∼ ∼

ε“colim”α

commutes.

Definition 235. We say that X is of finite presentation if the above conditions are
satisfied.
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§ 236. P. 140, proof of Proposition 6.3.4. The authors construct a bijection

HomInd(J )(“colim”
j

β(j), “colim”
i

α(i))

∼−→ HomC(JF (“colim”
j

β(j)), JF (“colim”
i

α(i))).

We leave it to the reader to check that this bijection coincides with the natural
map

HomInd(J )(“colim”
j

β(j), “colim”
i

α(i))

→ HomC(JF (“colim”
j

β(j)), JF (“colim”
i

α(i))).

Here is a consequence of Proposition 6.3.4 (see Corollary 6.3.5 p. 141 in the book):

Let C be a category admitting small (Definition 5 p. 10) filtrant inductive limits,
and let C ′ be the full subcategory of C whose objects are isomorphic to small filtrant
inductive limits of objects of Cfp. Then C ′ is equivalent to Ind(Cfp). In particular C ′
admits small filtrant inductive limits. Moreover the inclusion C ′ → C commutes with
such limits.

Proof. Let ι : Cfp → C be the inclusion functor. By Corollary 6.3.2 and Proposition
6.3.4 p. 140 of the book, the functor Jι : Ind(Cfp)→ C is fully faithful and commutes
with small filtrant inductive limits, and ι factors through Jι. By Lemma 1.3.11 p. 21
of the book, Jι induces an equivalence Ind(Cfp) ∼−→ C ′. The claims above follow easily
from these observations.
§ 237. P. 143, proof of Proposition 6.4.1. The authors construct a bijection

colim
i

HomFct(K,Ind(C))(ψ, α(i))
∼−→ HomFct(K,Ind(C))

(
ψ, colim

i
α(i)

)
.

We leave it to the reader to check that this bijection coincides with the natural map

colim
i

HomFct(K,Ind(C))(ψ, α(i))→ HomFct(K,Ind(C))

(
ψ, colim

i
α(i)

)
.

§ 238. P. 142, proof of Corollary 6.3.7. Let us check the isomorphism

κ(X) ≃ “colim” ρ ◦ ξ. (92)

Recall the setting:
I Cfp C

Ind(Cfp) Ind(C),

ξ

ιC

ρ

κ′
ιC

Jρ

Iρ
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κ′ being quasi-inverse to Jρ (for more details, see p. 141 of the book), κ is defined by
κ := Iρ ◦ κ′, and X ≃ colim ρ ◦ ξ. We have

κ(X) ≃ Iρ(κ′(colim ρ ◦ ξ)) ≃ Iρ(“colim” ξ)

≃ “colim”(Iρ ◦ ιC ◦ ξ) ≃ “colim”(ρ ◦ ξ),

the second, third and fourth isomorphisms being respectively justified by (85) p. 134,
(86) p. 134 and (84) p. 134. This proves (92).

Parts (ii) and (iii) of Corollary 6.3.7 are equivalent by Proposition 1.5.6 (ii) p. 29
of the book. To prove (ii) note that we have

σ(κ(colim ρ ◦ ξ)) ≃ σ(“colim” ρ ◦ ξ) ≃ colim ρ ◦ ξ

by Corollary 6.3.7 (i) p. 141 and Proposition 6.3.1 (i) p. 139 of the book.

9.9 Theorem 6.4.3 p. 144

Notational convention for this section, and for this section only! Superscripts will
never be used to designate a category of the form CX′ attached to a functor C → C ′
and to an object X ′ of C ′. Only two categories of the form CX′ (again attached to a
functor C → C ′ and to an object X ′ of C ′) will be considered in this section. As a lot
of subscripts will be used, we shall denote these categories by

C/G(a) and L/a (93)

instead of CG(a) and La, to avoid confusion. Superscripts will always be used to
designate categories of functors, like the category BA of functors from A to B.

Let C be a category and K a small category (Definition 5 p. 10). Recall that,
by Corollary 6.3.2 p. 140 of the book (see (85) p. 134 above), there is a functor
Φ : Ind(CK) → Ind(C)K such that, if F : N → CK is a functor defined on a small
filtrant category and if k is in K, then we have

Φ(“colim”F )(k) ≃ “colim”
n∈N

(F (n)(k)) = “colim”(F ( )(k)).
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Theorem 239 (Theorem 6.4.3 p. 144). If C is a category and if K is a finite category
such that HomK(k, k) = {idk} for all k in K, then the functor

Φ : Ind(CK)→ Ind(C)K ,

whose existence is recalled above, is an equivalence.

The key point is to check that

Φ is essentially surjective. (94)

(The fact that Φ is fully faithful is proved as Proposition 6.4.1 p. 142 of the book.)

In the book (94) is proved by an inductive argument. The limited purpose of this
section is to attach, in an “explicit” way (in the spirit of the proof of Proposition
6.1.13 p. 134 of the book), to an object G of Ind(C)K a small (Definition 5 p. 10)
filtrant category N and a functor F : N → CK such that

Φ(“colim”F ) ≃ G,

that is, we want isomorphisms

“colim”F ( )(k) ≃ G(k)

functorial in k ∈ K.

As in the book we assume, as we may, that any two isomorphic objects of K are
equal.

Let C, K and G be as above. We consider C as being given once and for all, so
that, in the notation below, the dependence on C will be implicit. For each k in K,
let Ik be a small (Definition 5 p. 10) filtrant category and let

αk : Ik → C

be a functor such that
G(k) = “colim”αk.

We define the category
N := N{K,G, (αk)}

as follows:

146 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



[Beginning of the definition of the category N := N{K,G, (αk)}.] An object of N is
a pair ((ik), P ), where each ik is in Ik and P is a functor from K to C, subject to the
conditions

• αk(ik) = P (k) for all k,

• the coprojections uk(ik) : αk(ik) = P (k)→ G(k) induce a morphism of functors

u′ : P → G. (95)

(We regard C as a subcategory of Ind(C).) The picture is very similar to the second
diagram of p. 135 of the book: For each morphism f : k → ℓ in K we have the
commutative square

αk(ik) P (k) P (ℓ) αℓ(iℓ)

G(k) G(ℓ)

P (f)

uk(ik) uℓ(iℓ)

G(f)

in Ind(C).

A morphism from ((ik), P ) to ((jk), Q) is a pair ((fk), θ), where each fk is a
morphism fk : ik → jk in Ik, and θ : P → Q is a morphism of functors, subject to
the condition θk = αk(fk) for all k:

αk(ik) αk(jk)

P (k) Q(k).

αk(fk)

θk

[End of the definition of the category N := N{K,G, (αk)}.]

Let pk : N → Ik be the natural projection. Then the functor F : N → CK is given
by

F ( )(k) = αk ◦ pk ∀ k ∈ K :

N
pk−→ Ik

αk−→ C.
In other words, we set

F
(
(ik), P

)
(k0) := αk0(ik0).
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Lemma 240. The category N is small (Definition 5 p. 10) and filtrant, and the
functor pk is cofinal.

Clearly, Lemma 240 implies Theorem 239.

Proof of Lemma 240. We start as in the proof of Theorem 6.4.3 p. 144 of the book:

We order Ob(K) be decreeing k ≤ ℓ if and only if HomK(k, ℓ) ̸= ∅, and argue by
induction on the cardinal n of Ob(K).

If n = 0 the result is clear.

Otherwise, let a be a maximal object of K; let L be the full subcategory of K
such that

Ob(L) = Ob(K) \ {a};

let GL : L→ Ind(C) be the restriction of G to L; let

α̃a : Ia → C/G(a)

(see (93) p. 145 for the definition of C/G(a)) be the functor defined by

α̃a(ia) :=
(
u′(a) : αa(ia)→ G(a)

)
;

and put
N ′ := N{L,GL, (αℓ)}.

We define the functor
φ : N ′ →

(
C/G(a)

)L/a
(see (93) p. 145 for the definition of L/a) as follows. Let ((iℓ), Q) be in N ′. In
particular, Q is a functor from L to C, and we have, for each ℓ in L, a morphism

Q(ℓ) = αℓ(iℓ)
u′(ℓ)−−→ “colim”αℓ = G(ℓ)

in C (see (95) p. 147). Letting ℓ f−→ a be a morphism in K viewed as an object of
L/a, we put

φ
(
(iℓ), Q

) (
ℓ
f−→ a
)
:=

(
Q(ℓ)

u′(ℓ)−−→ G(ℓ)
G(f)−−→ G(a)

)
∈ C/G(a).
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Letting
∆ : C/G(a)→

(
C/G(a)

)L/a
be the diagonal functor (see Notation 52 p. 46), we can form the category

M :=M
[
N ′

φ−→
(
C/G(a)

)L/a ∆◦α̃a←−−− Ia

]
.

Concretely, an object of M is a triple((
(iℓ), Q

)
, ia,

(
ξf : Q(ℓ)→ αa(ia)

)
f :ℓ→a

)
, (96)

where ((iℓ), Q) is an object of N ′, where ia is an object of Ia, where f runs over the
morphisms from ℓ to a in K, and where ξf is a morphism from Q(ℓ) to αa(ia) which
makes the square

Q(ℓ) αa(ia)

G(ℓ) G(a)

ξf

u′(ℓ) u′(a)

G(f)

in C commute, and a morphism from (96) to((
(i′ℓ), Q

′), i′a, (ξ′f : Q′(ℓ)→ αa(i
′
a)
)
f :ℓ→a

)
is given by a family (fk : ik → i′k)k∈K of morphisms in Ik making the squares

Q(ℓ) Q′(ℓ)

αa(ia) αa(i
′
a)

αℓ(fℓ)

ξf ξ′f

αa(fa)

in C commute. (Recall Q(ℓ) = αℓ(iℓ), Q′(ℓ) = αℓ(i
′
ℓ).)

We shall define functors
N M

λ

µ

and leave it to the reader to check that they are mutually inverse isomorphisms. (In
fact, we shall only define the effect of λ and µ on objects, leaving also to the reader
the definition of the effect of these functors on morphisms.)
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We shall define maps

Ob(N) Ob(M).
λ

µ

To define λ let ((ik), P ) be in N , and let Q be the restriction of P to L. Then
λ((ik), P ) will be of the form((

(iℓ), Q
)
, ia,

(
ξf : Q(ℓ)→ αa(ia)

)
f :ℓ→a

)
.

As Q(ℓ) = P (ℓ) and αa(ia) = P (a), we can (and do) put ξf := P (f).

To define µ let

Ξ :=
((

(iℓ), Q
)
, ia , φ((iℓ), Q)→ ∆α̃a(ia)

)
be in M . The object µ(Ξ) of N will be of the form ((ik), P ), so that we must define
a functor P : K → C.

We define P (k) by putting P (ℓ) := Q(ℓ) for ℓ in L and P (a) := αa(ia).

If f : ℓ→ m is a morphism in L, then we set P (f) := Q(f) : P (ℓ)→ P (m). Let
ℓ be in L. There is at most one morphism f : ℓ → a. If this morphism does exist,
then we put P (f) := ξf .

We leave it to the reader to check that λ and µ are mutually inverse bijections.

We also leave it to the reader to check that the set of morphisms in M from
λ((ik), P ) to λ((i′k), P

′) is equal (in the strictest sense of the word) to the set of
morphisms in N from ((ik), P ) to ((i′k), P

′), so that we get an isomorphism

N ≃M
[
N ′

φ−→ (C/G(a))L/a ∆◦α̃a←−−− Ia

]
.

By induction hypothesis,

N ′ is small and filtrant (97)

and the projection N ′ → Iℓ is cofinal for all ℓ in L. It follows from Proposition
2.6.3 (ii) p. 61 of the book that α̃a is cofinal. By assumption C/G(a) is filtrant, and
Lemma 241 below will imply that ∆ is cofinal. Thus,

∆ ◦ α̃a is cofinal. (98)

Taking Lemma 241 below for granted, Lemma 240 p. 148 now follows from (97), (98)
and Proposition 3.4.5 p. 89 of the book.

150 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



As already observed, Lemma 240 implies Theorem 239 p. 146. The only remaining
task is to prove

Lemma 241. If I is a finite category and C a filtrant category, then the diagonal
functor ∆ : C → CI is cofinal.

Proof. It suffices to verify Conditions (a) and (b) of Proposition 3.2.2 (iii) p. 78 of
the book. Condition (b) is clear. To check Condition (a), let α be in CI . We must
show that there is pair (X,λ), where X is in C and λ is a morphism of functors from
α to ∆X. Let S be a set of morphisms in I. It is easy to prove

(∃ Y ∈ C)

(
∃ µ ∈

∏
i∈I

HomC(α(i), Y )

)(
∀ (s : i→ j) ∈ S

)(
µj ◦ α(s) = µi

)
by induction on the cardinal of S, and to see that this implies the existence of
(X,λ).

9.10 Exercise 6.8 p. 146

Recall the statement:

Let R be a ring.

(i) Prove that M ∈ Mod(R) is of finite presentation in the sense of Definition 233
p. 143 if and only if it is of finite presentation in the classical sense (see Examples
1.2.4 (iv)), that is, if there exists an exact sequence Rm → Rn →M → 0.

(ii) Prove that any R-module M is a small filtrant inductive limit of modules of
finite presentation. (Hint: consider the full subcategory of (Mod(R))M consisting of
modules of finite presentation and prove it is essentially small and filtrant.)

(iii) Deduce that the functor Jρ defined in Diagram (6.3.1) induces an equivalence
Jρ : Ind(Modfp(R))→ Mod(R).

Solution. We shall freely use Proposition 3.1.3 p. 73 of the book, which describes
the inductive limit of a set-valued functor defined on a small (Definition 5 p. 10)
filtrant category, as well as Corollary 3.1.5 (same page), which says that the forgetful
functor Mod(R)→ Set commutes with small filtrant inductive limits.

(i) (a) Let Rm → Rn → M → 0 be exact, and let us show that M ∈ Mod(R) is of
finite presentation in the sense of Definition 233 p. 143.
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Let (Ni)i∈I be an inductive system in Mod(R) indexed by a small (Definition 5
p. 10) filtrant category I, let N be its inductive limit, and, for each i, let

pi : Ni → N and qi : HomR(M,Ni)→ colim
i

HomR(M,Ni)

be the coprojections, and consider the map

colimHomR(M,Ni)→ HomR(M,N) (99)

induced by the
pi◦ : HomR(M,Ni)→ HomR(M,N).

(i) (a1) The map (99) is injective. (This part of the proof also works if M is just
finitely generated, without being finitely presented.) Let i be an object of I and
f : M → Ni an R-linear map such that qi(f) is in the kernel of (99). It suffices to
show qi(f) = 0. Let F be the subset of M formed by the images of the elements of
the canonical basis of Rn. For each x in F , the element f(x) is annihilated by pi. As
F is finite, there is a j in I and a morphism s : i→ j such that Ns(f(x)) = 0 for all
x in F , and thus for all x in M . This implies qi(f) = 0, as required. This ends the
proof of the injectivity of (99).

(i) (a2) The map (99) is surjective. Let f :M → N be R-linear. It suffices to show
that f factors through pi : Ni → N for some i in I. Let aj ∈M be the image of the
j-th element of the canonical basis of Rn, and let (λjk) be the matrix of our map
Rm → Rn, so that we have

n∑
j=1

λjk aj = 0 for k = 1, . . . ,m.

There is an i′ in I and there are b1, . . . , bn in Ni′ such that pi′(bj) = f(aj) for all j.
This yields

pi′

(
n∑
j=1

λjk bj

)
= 0 for k = 1, . . . ,m.

As a result, there is a i in I and there are c1, . . . , cn in Ni such that pi(cj) = f(aj)
for all j and

n∑
j=1

λjk cj = 0 for k = 1, . . . ,m.

Hence there is an R-linear map g :M → Ni such that g(aj) = cj for all j, and thus
pi ◦ g = f . This ends the proof of the surjectivity of (99), and also the proof of the
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fact that any R-module which is of finite presentation in the classical sense is of finite
presentation in the sense of Definition 233 p. 143.

(i) (b) We assume now that M ∈ Mod(R) is of finite presentation in the sense of
Definition 233 p. 143, and we prove that M is of finite presentation in the classical
sense.

(i) (b1) The R-module M is finitely generated. Let I be the set of all finitely
generated submodules of M . Then I is a small filtrant ordered set. For each N in I
let qN : HomR(M,N)→ colimN HomR(M,N) be the coprojection. Then the identity
of M is the image of qN(f) for some N in I and some R-linear f : M → N . This
implies N =M .

(i) (b2) The R-module M is finitely presented in the classical sense. The argument is
similar to the one in (i) (b1) above. There is a small set K, a positive integer n and
an exact sequence R⊕K f−→ Rn →M → 0. Let I be the set of the finite subsets of K.
Then I is a small filtrant ordered set. For each F in I set MF := Rn/f(R⊕F ). Then
(MF )F∈I is, in a natural way, an inductive system whose colimit isM , the coprojections
being the obvious maps pF :MF →M . Let qF : HomR(M,MF )→ HomR(M,M) be
the coprojections. The identity of M factors through pF :MF →M for some F in I.
This implies M ≃MF , ending the proof that M is finitely presented in the classical
sense, and thus the proof of (i).

(ii) (I don’t understand the hint.) Clearly any R-module is a small filtrant inductive
limit of finitely generated R-modules. Hence, in view of §236 p. 144, it suffices to
show that any finitely generated R-module is a small filtrant inductive limit of finitely
presented R-modules. But this follows from (i) (b2) above.

There is also a more direct way to prove that any R-module M is a small filtrant
inductive limit of finitely presented R-modules: Let F be a finite subset of M , let
KF be the kernel the natural map R⊕F →M , let G be a finite subset of KF , and let
MF,G be the cokernel of the obvious map R⊕G → R⊕F . Then the MF,G form a small
filtrant inductive system of R-modules whose colimit is M .

(iii) Claim (iii) follows from §236 p. 144.

9.11 Exercise 6.11 p. 147

We prove the following slightly more precise statement:
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Proposition 242. Let F : C → C ′ be a fully faithful functor, let A′ be in Ind(C ′),
and let S be the set of objects A of Ind(C) such that IF (A) ≃ A′. Then the following
conditions are equivalent:

(a) S ̸= ∅,

(b) all morphism X ′ → A′ in Ind(C ′) with X ′ in C ′ factors through F (X) for some
X in C,

(c) the natural functor CA′◦F → C ′A′ is cofinal,

(d) A′ ◦ F is in S.

Proof.

(a)⇒(b). Let f : X ′ → IF (A) be a morphism in Ind(C ′) with X ′ in C ′ and A in
Ind(C), let β0 : I → C be a functor with I small (Definition 5 p. 10) and filtrant and
“colim” β0 ≃ A; in particular “colim”(F ◦ β0) ≃ IF (A). By Proposition 6.1.13 p. 134
of the book there is a functor β : J → C and a morphism of functors φ : ∆X ′ → F ◦β,
where ∆X ′ : J → C ′ is the constant functor equal to X ′, such that

J is small and filtrant,

“colim”(F ◦ β) ≃ IF (A),

“colim”φ ≃ f .

Then f factors as X ′
φj−→ F (β(j))

pj−→ IF (A), where pj is the coprojection.

(b)⇒(c). This follows from Proposition 138 p. 97.

(c)⇒(d). This follows from Remark 115 p. 89 and Proposition 213 p. 134.

(d)⇒(a). This is obvious.

10 About Chapter 7

§ 243. P. 149, Definition 7.1.1. We define the localization of a category C with respect
to a set S of morphisms in a way that is slightly different from the one used in the
book. It is obvious that a localization as defined here is also a localization as defined
in the book.
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Definition 244. A localization of a category C with respect to a set S of morphisms
is a category CS equipped with a functor Q : C → CS such that

(a) CS has the same objects as C,

(b) we have Q(X) = X for all object X in C,

(c) if F : C → A is a functor turning the elements of S into isomorphisms, then there
is a unique functor FS : CS → A such that FS ◦Q = F ,

(d) if G1 and G2 are two functors from CS to A, then the natural map

HomFct(CS ,A)(G1, G2)→ HomFct(C,A)(G1 ◦Q,G2 ◦Q)

is bijective.

Proposition 245. Let C be a category and S a set of morphisms in C.

(a) There is a category CS equipped with a functor Q : C → CS satisfying conditions
(a), (b) and (c) of Definition 244. Moreover, the pair (CS , Q) is unique up to unique
isomorphism.

(b) The category CS satisfies also condition (d) of Definition 244, and is thus a
localization of C with respect to S.

Proof. (a) We define the objects of CS as being the objects of C, and we construct
the morphisms of CS by inverting formally the elements of S. The details are left to
the reader.

(b) Let F,G be in Fct(CS ,A) and consider the map

⋆Q : HomFct(CS ,A)(F,G)→ HomFct(C,A)(F ◦Q,G ◦Q),

where ⋆ denotes the horizontal composition (see Definition 35 p. 32). We shall define
a putative inverse

Φ : HomFct(C,A)(F ◦Q,G ◦Q)→ HomFct(CS ,A)(F,G)

to ⋆Q. For λ in Fct(C,A)(F ◦ Q,G ◦ Q) and X in C we define set Φ(λ)X := λX :
F (X)→ G(X). We must show that the square

F (X) G(X)

F (Y ) G(Y )

F (f)

λX

G(f)

λY
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commutes for all f ∈ HomCS (X, Y ). It suffices to check that this square commutes
when f = Q(s)−1 for s in S ∩ HomC(Y,X), which is straightforward.

§ 246. P. 150, Lemma 7.1.3. The last sentence says that, in terms of §89 (c) p. 65,
the functor Q‡Q∗G exists and is isomorphic to G via the identity of G ◦Q, or, more
explicitly, that for all F : C ′ → A, the map

HomAC′ (F,G)→ HomAC(F ◦Q,G ◦Q), v 7→ v ⋆ Q

is bijective. (Recall that v ⋆ Q denotes the horizontal composition of v and Q; see
Definition 35 p. 32.)

Lemma 7.1.3 is used on p. 160 of the book to prove Theorem 7.1.16.

§ 247. P. 151, last sentence of the proof of Lemma 7.1.3. Omitting most of the
parenthesis, we have

Gf ◦ θ̃X1 = (Gs2)
−1 ◦ (GQt2)−1 ◦GQt1 ◦Gs1 ◦ θ̃X1

= (Gs2)
−1 ◦ (GQt2)−1 ◦ θY3 ◦ FQt1 ◦ Fs1

= (Gs2)
−1 ◦ (GQt2)−1 ◦ θY3 ◦ FQt2 ◦ Fs2 ◦ Ff

= θ̃X2 ◦ Ff.

§ 248. P. 155, Theorem 7.1.16. If we define CS as in the proof of Proposition 245
p. 155, it is easy to check that, for X and Y in C, the natural map

colim
(Y→Y ′)∈SY

HomC(X, Y
′)→ HomCS (X, Y )

is bijective.

§ 249. About the proof of Remark 7.1.18 (ii) p. 156. The following is almost a copy
and paste of the display in the proof of Remark 7.1.18 (ii):

HomCℓS (X, Y ) ≃ colim
(X′→X)∈SX

HomC(X
′, Y )

∼−→ colim
(X′→X)∈SX ,(Y→Y ′)∈SY

HomC(X
′, Y ′)
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∼←− colim
(Y→Y ′)∈SY

HomC(X, Y
′) ≃ HomCrS (X, Y ).

Let us describe the implicit map

colim
(X′→X)∈SX ,(Y→Y ′)∈SY

HomC(X
′, Y ′)→ colim

(X′→X)∈SX
HomC(X

′, Y ). (100)

Given a diagram X
s←− X ′

f−→ Y ′
t←− Y with s and t in S, we must first concoct a

diagram X
u←− X ′′

g−→ Y with u in S. As S is a left multiplicative system, the solid
diagram

X ′′ Y

X ′ Y ′

v

g

t

f

can be completed to a commutative square as indicated, with v in S, and it suffices to
set u := s◦ v. We leave the proof of the fact that the element in the right hand side of
(100) so obtained does not depend on the choice of the object X ′′ and the morphisms
g and v. From this point the proof of Remark 7.1.18 (ii) is straightforward.

Unsolved Problem 250. P. 157, proof of Proposition 7.1.20. In the sentence “Since
t ◦ s ∈ S, we have thus proved that, for f : X → Y in C, if Q(f) is an isomorphism,
then there exists g : Y → Z such that g ◦ f ∈ S”, I don’t understand why g ◦ f ∈ S.
(Proposition 7.1.20 doesn’t seem to be used elsewhere in the book.)

§ 251. P. 159, Definition 7.3.1 (i). Recall the definition:

Let C be a U -small category (Definition 5 p. 10), let S be a right multiplicative
system, and let Q : C → CS be the right the localization of C by S. A functor
F : C → A is said to be right localizable if Q†F exists, in which case we say that Q†F
a right localization of F , and denote this functor by RSF .

In terms of §89 (a) p. 65, the condition is that there is a morphism of functors
τ : F → RSF ◦ Q such that for all G : CS → A and all w : F → G ◦ Q there is a
unique v : RSF → G such that (v ⋆ Q) ◦ τ = w:

F RSF ◦Q RSF

G ◦Q G.

τ

w v⋆Q v
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(Recall that ⋆ denotes the horizontal composition of morphisms of functors; see
Definition 35 p. 32.)

§ 252. P. 159, Definition 7.3.1 (ii). The following proposition is obvious:

Proposition 253. In the setting of §251, assume that F (s) is an isomorphism for all
s in S. Recall that αX : SX → C is the forgetful functor (X ′, s) 7→ X ′ (see Definition
7.1.9 p. 153 in the book). Define p : F ◦ αX → ∆F (X) by pX′,s := F (s)−1. Then
F (X) is a universal inductive limit of F ◦ αX in A in the sense of Definition 70
p. 59. In particular F is universally right localizable, RSF ≃ FS (for the definition
of FS, see condition (c) in Definition 244 p. 155), and for any functor K : A → A′
the diagram below commutes

C A

CS A′.

F

Q K

(K◦F )S

FS

§ 254. P. 160, Proposition 7.3.2. (See also §10 p. 14.)

(a) The second sentence of the proof reads: “By hypothesis (i) and Corollary 7.2.2,
ιQ : IT → CS is an equivalence”. It is also worth noting that T is a right multiplicative
system in I.

(b) The third sentence of the proof reads: “By hypothesis (ii) the localization FT
of F ◦ ι exists”. See Proposition 253. By Proposition 245 p. 155 there is a unique
functor FT : IT → A such that

FT ◦QT = F ◦ ι. (101)

(c) Recall the diagram

C

I CS A.

IT

QS

F

ι

QT

RF

ιQ

FT

To each functor G : CS → A the book attaches a bijection

fG : HomACS (RF,G)→ HomAC(F,G ◦QS).
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We must verify that we have

fG(µ) = (µ ⋆ QS) ◦ fRF (idRF ) (102)

for all G : CS → A and all µ : RF → G (see Definition 35 p. 32 and § 251 p. 157).
Here is a picture:

A CS C

G

QSµ

RF

A C

G◦QS

µ⋆QS
RF◦QS

fRF (idRF )

F

We can assume that we have the following equalities between functors:

RF = FT ◦ ι−1Q , ι−1Q ◦ ιQ = idIT , F ◦ ι = FT ◦QT , QS ◦ ι = ιQ ◦QT .

This gives in particular:

RF ◦QS ◦ ι = FT ◦ ι−1Q ◦QS ◦ ι = FT ◦ ι−1Q ◦ ιQ ◦QT = FT ◦QT = F ◦ ι.

Note that fG is characterized by the equality

(⋆ ι) ◦ fG = ⋆ (ιQ ◦QT ).

Here is a picture:

A C I

G◦QS

ιfG(µ)

F
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A CS I

G

ιQ◦QT
µ

RF

Setting ε := fRF (idRF ), we get

ε ⋆ ι = idF◦ι .

For µ in HomACS (RF,G), Equality (102) is then equivalent to the equality

((µ ⋆ QS) ◦ ε) ⋆ ι = µ ⋆ ιQ ⋆ QT ,

which is straightforward:

A C I

G◦QS

µ⋆QS
RF◦QS ι

ε

F

A I

G◦QS◦ι

µ⋆QS⋆ι

F◦ι

idF◦ι

F◦ι

(d) The last claim in Proposition 7.3.2 is the existence of an isomorphism

RF ◦QS ◦ ι ≃ F ◦ ι.

This can be proved as follows:

RF ◦QS ◦ ι ≃ RF ◦ ιQ ◦QT ≃ FT ◦ ι−1Q ◦ ιQ ◦QT ≃ FT ◦QT ≃ F ◦ ι,

160 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



the last isomorphism following from (101).

(e) For each X in C let us denote by sX : X → ι(WX) the morphism in S with WX

in I which exists by assumption. Then we can define RF by

RF (QS(X)) := F (ι(WX)).

Moreover, the structural morphism F → RF ◦QS is given by

F (X)
F (sX)−−−→ F (ι(WX)) = RF (QS(X)).

(f) If we set W (X) := WX , then the functor

“colim”
(W (X)→W )∈T W (X)

F (ι(W )) ∈ A∧

is represented by RF (X).

§ 255. P. 161. We paste Display (7.3.7), which appears in Proposition 7.3.3 (iii)
p. 161 of the book:

(RSF )(Q(X)) ≃ colim
(X→Y )∈SX

F (Y ). (103)

Let C be a U -category (Definition 4 p. 10), and let V be a universe such that U ∈ V
and C is a V-small category (Definition 5 p. 10). Writing A for the category of V-sets,
Proposition 7.3.3 (iii) of the book implies the following:

Let X and Y be two objects of C.

If S is a right multiplicative system in C, then the functor

RS HomC(X, )

exists and is isomorphic to HomCrS (X, ).

Similarly, if S is a left multiplicative system in C, then the functor

RSop HomC( , Y )

exists and is isomorphic to HomCℓS ( , Y ).

§ 256. P. 161. We prove the isomorphism at the bottom of p. 161.

Recall the setting: S is a right multiplicative system in a category C such that
SX is cofinally small for all X in C. Let X and Y be in C. It is claimed in the book
that there is a natural isomorphism

colim
(Y→Y ′)∈SY

HomC(X, Y
′)
∼−→ lim

(X→X′)∈SX
colim

(Y→Y ′)∈SY
HomC(X

′, Y ′). (104)
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We can rewrite (104) as

HomCS (Q(X), Q(Y ))
∼−→ lim

(X→X′)∈SX
HomCS (Q(X

′), Q(Y )). (105)

For X → X ′ in S let

p[X → X ′] : lim
(X→X′′)∈SX

HomCS (Q(X
′′), Q(Y ))→ HomCS (Q(X

′), Q(Y ))

be the projection, and define the maps

HomCS (Q(X), Q(Y )) lim
(X→X′)∈SX

HomCS (Q(X
′), Q(Y ))

f

g

as follows: We define f by

p[X → X ′]
(
f
(
Q(X)→ Q(Y )

))
:=
(
Q(X ′)→ Q(X)→ Q(Y )

)
for X → X ′ in S, where Q(X ′)→ Q(X) is the inverse of Q(X → X ′), and we define
g by

g := p[X
id−→ X].

To show that f ◦ g is the identity of the right-hand side of (105), note that we have
in the above notation

p[X → X ′]

(
f

(
g
((
Q(X ′′)→ Q(Y )

)
X→X′′

)))

= p[X → X ′]
(
f
(
Q(X)→ Q(Y )

))
=
(
Q(X ′)→ Q(X)→ Q(Y )

)
= p[X → X ′]

((
Q(X ′′)→ Q(Y )

)
X→X′′

)
.

The proof that g ◦ f is the identity of the left-hand side of (105) is similar and easier.

§ 257. P. 162, Display (7.4.3). We must prove RS(ιA ◦ F ) ≃ IF ◦ αS . Let X be in C.
It suffices to show RS(ιA ◦ F )(Q(X)) ≃ IF (αS(Q(X))). We have

RS(ιA ◦ F )(Q(X)) ≃ colim
(X→X′)∈SX

ιA(F (X
′))

≃ IF

(
colim

(X→X′)∈SX
ιC(X

′)

)
≃ IF (αS(Q(X))),

the isomorphisms following respectively from (7.3.7) p. 161 of the book, Proposition
6.1.9 p. 133 of the book and Proposition 7.4.1 p. 162 of the book.
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§ 258. P. 162, Definition 7.4.2. If F : C → A is a functor and X an object of C, then
the condition that F is right localizable at X does not depend on the choice of a
universe U such that C and A are U -categories (Definition 4 p. 10).

§ 259. P. 162, proof of Lemma 7.4.3. Recall the statement:

Lemma 260 (Lemma 7.4.3 p. 162). If G : A → A′ is a functor and F is right
localizable at X, then G ◦ F is right localizable at X.

Proof. This follows from Proposition 69 p. 58.

§ 261. P. 163, Remark 7.4.5. In this § we adhere to Convention 11.7.1 of the book,
according to which, paradoxically, in the expression HomC(X, Y ), the variable Y is
considered as the first variable and X as the second variable.

Let S be a left and right multiplicative system in C, and let X and Y be two
objects of C. §255 p. 161 implies that the functors

RS HomC(X, ), RSop HomC( , Y ), RS×Sop HomC

exist and satisfy
HomCS (X, Y ) ≃ RS

(
HomC(X, )

)
(Y )

≃ RSop
(
HomC( , Y )

)
(X) ≃ RS×Sop HomC(X, Y ).

More precisely, if, in the diagram

RS HC(X, )(Y ) RS×Sop HC(X, Y ) RSop HC( , Y )(X)

HCS (X, Y ),

(106)

where we have written H for Hom to save space, the horizontal arrows are the natural
maps, and the other arrows are the above bijections, then (106) commutes and all its
arrows are bijective.

§ 262. Exercise 7.4 p. 164.
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Statement: In a category endowed with a right multiplicative system S, if there
is a diagram

Z Y X

W V U

c

a s

d

b t

with s, t ∈ S and Q(d)◦Q(s)−1◦Q(a) = Q(t)−1◦Q(b◦c), then there is a commutative
diagram

Z Y X

W T U

c

a

e

s

d

f u

with u ∈ S and Q(u)−1 ◦ Q(f) = Q(t)−1 ◦ Q(b). [This statement solves clearly the
exercise.]

Proof: We build a commutative diagram

Z Y X

S

T

W V U

c

a

g

s

dw

f

b

h

t

u

v

with u, v, w ∈ S by forming firstly g and v, secondly h and w, and thirdly f and u.

11 About Chapter 8

11.1 About Section 8.1

The following definition of a commutative group object is much less general and much
less elegant than the one in the book (p. 168), but it is slightly simpler and seems
sufficient in this context.
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Let C be a category with finite products; let 0 be the terminal object of C; let X
be in C; let p1, p2 : X ×X → X be the projections; and let v : X ×X → X ×X be
defined by the equalities

pi ◦ v = pj

for all i, j such that {i, j} = {1, 2}.

A structure of commutative group object on an object X of C is a triple (α, e, a)
satisfying the following conditions:

We have
α : X ×X → X, e : 0→ X, a : X → X,

and the following diagrams commute:

X ×X ×X X ×X

X ×X X,

α×id

id×α

α

α

X X ×X

X,
id

(id,e)

α

X X ×X

X,
id

(e,id)

α

X X ×X

0 X,

(id,a)

α

e

X X ×X

0 X,

(a,id)

α

e

X ×X X ×X

X.

α

v

α
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11.2 About Section 8.2

11.2.1 Definition 8.2.1 p. 169

The proposition and lemma below are obvious.

Proposition 263. Let C be a pre-additive category, let A be the category of additive
functors from Cop to Mod(Z), let h : C → A be the obvious functor satisfying
h(X)(Y ) = HomC(Y,X) for all X and Y in C, let X be in C and A in A, and let

HomA(h(X), A) A(X)
Φ

Ψ

be defined by
Φ(θ) = θX(idX), Ψ(x)(f) = A(f)(x).

Then Φ and Ψ are mutually inverse abelian group isomorphisms.

(See Theorem 36 p. 33.)
Convention 264. In the above setting we denote A by C∧ and h by hC. (This abuse is
justified by Proposition 263.)

Lemma 265. Let C and C ′ be pre-additive categories, let A be the category of additive
functors from C to C ′, and let α : I → A be a functor such that colimα(X) exists in
C ′ for all X in C. Then colimα exists in A and satisfies

(colimα)(X) ≃ colimα(X)

for all X in C. (There is a similar statement for projective limits.)

11.2.2 Lemma 8.2.3 p. 169

Here is a statement contained in Lemma 8.2.3:

Corollary 266. Let C be a pre-additive category, let X1 and X2 be two objects of C
such that the product X = X1 ×X2 exists in C, let pa : X → Xa be the projection,
and define ia : Xa → X by

pa ◦ ib =

{
idXa if a = b

0 if a ̸= b.

Then X is a coproduct of X1 and X2 by i1 and i2. Moreover we have

i1 ◦ p1 + i2 ◦ p2 = idX1×X2 .
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For the reader’s convenience we reproduce the statement and the proof of Lemma
8.2.3 (ii) p. 169 of the book:

Lemma 267 (Lemma 8.2.3 (ii) p. 169). Let C be a pre-additive category; let X,X1,

and X2 be objects of C; and, for a = 1, 2, let Xa
ia−→ X

pa−→ Xa be morphisms satisfying

pa ◦ ib = δab idXa , i1 ◦ p1 + i2 ◦ p2 = idX .

Then X is a product of X1 and X2 by p1 and p2 and a coproduct of X1 and X2 by i1
and i2.

Proof. For any Y in C we have

HomC(Y, pa) ◦ HomC(Y, ib) = δab idHomC(Y,Xa),

HomC(Y, i1) ◦ HomC(Y, p1) + HomC(Y, i2) ◦ HomC(Y, p2) = idHomC(Y,X) .

This implies that HomC(Y,X) is a product of HomC(Y,X1) and HomC(Y,X2) by
HomC(Y, p1) and HomC(Y, p2), and thus, Y being arbitrary, that X is a product of X1

and X2 by p1 and p2, and we conclude by applying this observation to the opposite
category.

Note also the following corollary to Lemma 8.2.3 (ii) (stated above as Lemma
267).

Corollary 268. Let F : C → C ′ be an additive functor of pre-additive categories; let
X,X1 and X2 be objects of C; and, for a = 1, 2, let Xa

ia−→ X
pa−→ Xa be morphisms

such that X is a product of X1 and X2 by p1, p2 and a coproduct of X1 and X2 by
i1, i2. Then F (X) is a product of F (X1) and F (X2) by F (p1), F (p2) and a coproduct
of F (X1) and F (X2) by F (i1), F (i2).

11.2.3 Brief comments

§ 269. P. 170, Corollary 8.2.4. Recall the statement:

Corollary 270 (Corollary 8.2.4 p. 170). Let C be a pre-additive category and let
X1, X2 ∈ C. If X1 ×X2 exists in C, then X1 ⊔X2 also exists. Moreover denoting by
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ij : Xj → X1 ⊔X2 and pj : X1 ×X2 → Xj the j-th co-projection and projection, the
morphism r : X1 ⊔X2 → X1 ×X2 given by

pj ◦ r ◦ ik =

{
idXk if j = k

0 if j ̸= k.

is an isomorphism.

Convention 271. Let X1 and X2 be two objects of a category C. Assume that the
product X1×X2 and the coproduct X1 ⊔X2 exist in C and are isomorphic. In such a
situation, we make a new exception to Convention 38 p. 36: we set X1⊕X2 := X1×X2,
we transport the coprojections of X1⊔X2 to X1⊕X2 and redefine X1⊔X2 by setting

X1 ⊔X2 := X1 ⊕X2 := X1 ×X2,

so that X1 ⊕X2 is at the same time a product and a coproduct of X1 and X2.

The following lemma, whose proof is left to the reader, is implicit in the book.

Lemma 272. For a = 1, 2 let fa : Xa → Ya be a morphism in a pre-additive category
C. Assume that X1 ⊕X2 and Y1 ⊕ Y2 exist in C (see Convention 271 above). Then
we have

f1 × f2 = f1 ⊔ f2
(equality in HomC(X1 ⊕X2, Y1 ⊕ Y2)).

We denote this morphism by f1 ⊕ f2.

§ 273. P. 171, Corollary 8.2.6. Recall the statement:

Corollary 274 (Corollary 8.2.6 p. 171). Let C be a pre-additive category, X, Y ∈ C
and f1, f2 ∈ HomC(X, Y ). Assume that the direct sums X ⊕X and Y ⊕ Y exist (see
Convention 271 p. 168). Then f1 + f2 ∈ HomC(X, Y ) coincides with the composition

X
δX−→ X ⊕X f1⊕f2−−−→ Y ⊕ Y σY−→ Y.

Here δX : X → X×X = X⊕X is the diagonal morphism and σY : Y⊕Y = Y ⊔Y → Y
is the codiagonal morphism.
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Proof. For a = 1, 2 let

X ⊕X X Y ⊕ Y Y
pa

ia

qa

ja

be the projections and coprojections. Writing xy for x ◦ y we have

σY (f1 ⊕ f2) δX =
∑
a,b

σY ja qa (f1 ⊕ f2) ib pb δX

=
∑
a,b

qa (f1 ⊕ f2) ib =
∑
a

qa (f1 ⊕ f2) ia = f1 + f2,

the second equality following from the definitions of σY and δX , and the third and
fourth equalities following from the definitions of f1 ⊕ f2. (The justification of the
first equality is left to the reader.)

§ 275. P. 172, Lemma 8.2.9. Recall the statement:

Lemma 276 (Lemma 8.2.9 p. 172). Let C be a pre-additive category which admits
finite products. Then C is additive.

Let us check that C has a zero object. (This part of the proof is left to the reader
by the authors.)

Let X and Y be in C. By Lemma 8.2.3 p. 169 of the book, the product X × Y
is also a coproduct of X and Y . Let us denote this object by X ⊕ Y . Let T be a
terminal object of C. For any X in C we have a natural isomorphism X ⊕ T ≃ X. In
particular T can be viewed as T ⊔ T via the morphisms T id−→ T

id←− T . This implies
successively that, for X in C, the diagonal map

HomC(T,X)→ HomC(T,X)× HomC(T,X)

is bijective, that the set HomC(T,X) has at most one element, and that it has exactly
one element. As X is arbitrary, this entails that T is a zero object. q.e.d.

Also note that Corollary 8.2.4 p. 170 of the book is useful to prove Lemma 8.2.9.

§ 277. P. 172, Lemma 8.2.10. Let me state the result in a more explicit way:

Lemma 278 (Lemma 8.2.10 p. 172). If X is an object of an additive category C,
then the morphism

X ×X = X ⊔X σX−−−→ X

defines a structure of a commutative group object on X.
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The associativity of the addition can also be proved as follows:

Put Xn := X ⊕ · · · ⊕X (n factors), and let X ia−→ Xn σn−→ X be respectively the
a-th coprojection and the codiagonal morphism. It clearly suffices to show that the
composition

X3 σ2⊕X−−−→ X2 σ2−→ X

is equal to σ3. This follows from the fact that the composition

X
ia−→ X3 σ2⊕X−−−→ X2

is equal to ib with

b =

{
1 if a = 1, 2

2 if a = 3.

q.e.d.

§ 279. P. 173, proof of Proposition 8.2.13. The fact that any X in C has a structure
of commutative group object follows from Lemma 8.2.10 p. 172 of the book.

§ 280. Proposition 8.2.13 p. 173. Let C be an additive category, let C ′ be the category
of finite product preserving functors from C to Mod(Z), let C ′′ be the category of finite
product preserving functors from C to Set, let U be the forgetful functor from Mod(Z)
to Set and define the functor V : C ′′ → C ′ by the formula (V (F ))(X) := (F (X),+),
where + is the addition defined in the proof of Proposition 8.2.13.

Proposition 281. In the above setting, the functors V and U◦ : C ′ → C ′′ are mutually
inverse isomorphisms (not just mutually quasi-inverse equivalences).

Proof. For F in C ′′, for G in C ′ and for X in C we have((
(U◦) ◦ V

)
(F )
)
(X) = U

((
V (F )

)
(X)

)
= F (X)

and ((
V ◦ (U◦)

)
(G)
)
(X) =

(
V (U ◦G)

)
(X) = G(X).

Indeed, the last equality follows from Lemma 8.2.11 p. 172 of the book, and the
others are straightforward.

§ 282. P. 173, Theorem 8.2.14. Let me state the result in a more explicit way:
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Theorem 283 (Theorem 8.2.14). If C is an additive category, then C has a unique
structure of a pre-additive category. More precisely, for f and g in HomC(X, Y ), the
morphism f + g ∈ HomC(X, Y ) is given by the composition

X X ×X Y × Y

X ⊔X Y ⊔ Y Y.

δX

∼

f×g

∼

f⊔g
σY

Let me also try to rewrite the beginning of the proof:

Let X ∈ C. By applying Proposition 8.2.13 p. 173 of the book (see §286 p. 172)
to the functor F := HomC(X, ), we obtain that HomC(X, Y ) has a structure of an
additive group for all Y in C. Then Lemma 8.2.11 p. 172 of the book implies that
the addition on HomC(X, Y ) is given by the above commutative diagram.

We complete the proof by showing as in the book that this addition does define a
pre-additive structure on C.

§ 284. P. 173, Theorem 8.2.14 (stated above as Theorem 283). Consider the following
claims:

(a) the fields Q and F3(X) have isomorphic multiplicative groups,

(b) there is a category C admitting two pre-additive structures p and q such that
there is no additive equivalence from (C, p) to (C, q).

We leave it to the reader to prove (a) and to show that (a) implies (b).

§ 285. P. 173, Proposition 8.2.15. Recall the setting: F : C → C ′ is a functor between
additive categories, and the claim is:

F is additive ⇔ F commutes with finite products.

I think the authors forgot to prove implication⇒. Let us do it. It suffices to show
that F commutes with n-fold products for n = 0 or n = 2.

Case n = 0: Put X := F (0). We must prove X ≃ 0. The equality 0 = 1 holds
in the ring HomC(X,X) because it holds in the ring HomC(0, 0). As a result, the
morphisms 0→ X and X → 0 are mutually inverse isomorphisms.

Case n = 2: Let X1, X2 be in C. The natural morphisms

F (X1 ⊕X2) ⇄ F (X1)⊕ F (X2)
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are mutually inverse isomorphisms by Corollary 268 p. 167 above. q.e.d.

§ 286. Let us insist on the main point.

If C is an additive category, then the following categories are canonically isomorphic:

the category C ′ of finite product preserving functors from C to Mod(Z),

the category C ′′ of finite product preserving functors from C to Set,

the category C ′′′ of additive functors from C to Mod(Z).

Moreover C ′ and C ′′′ are equal.

This follows from §280 p. 170 and §285 p. 171.

11.3 About Section 8.3

11.3.1 Proposition 8.3.4 p. 176

Here are a few more details about the proof of Proposition 8.3.4. Recall the setting:
We have a morphism f : X → Y in an abelian category C. Let P be the fiber product
X ×Y X; let p1, p2 : P ⇒ X be the projections; let p be the morphism p1 − p2 from
P to X; and consider the diagram

Ker f X Cokerh

P X Coker p Coim f,

h a

p b

where h, a, and b are the natural morphisms.

We claim b ◦ h = 0. Indeed, we define c : Ker f → P by the condition p1 ◦ c =
h, p2 ◦ c = 0:

X

Ker f P Y

X,

fh

0

c

p1

p2
f
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and we get b ◦ h = b ◦ p ◦ c = 0 ◦ c = 0. This proves the claim. Hence, there is a
unique morphism d : Cokerh→ Coim f making the diagram

Ker f X Cokerh

P X Coim f Coker p

h a

d

p b

commute.

As p factors through h, we have a ◦ p = 0, and there is a unique morphism
e : Coim f → Cokerh making the diagram

Ker f X Cokerh

P X Coim f Coker p

h a

p b

e

commute.

It is easy to see that d and e are mutually inverse isomorphisms. In short, there
is a natural isomorphism Cokerh ≃ Coim f which makes the diagram

Ker f X Cokerh

P X Coim f Coker p

h a

∼

p b

(107)

commute.

Dually, let S (for “sum”) be the fiber coproduct Y ⊕X Y , let ia : Y → S be the
coprojection, let i be the morphism i1 − i2 from Y to S, and consider the diagram

Im f Y S

Ker k Y Coker f

a i

b

k

where a, b, and k are the natural morphisms. Then there is a natural isomorphism
Im f ≃ Ker k which makes the diagram

Im f Y S

Ker k Y Coker f

∼

i

k

(108)
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commute. Let us record these observations:

Proposition 287. In the above setting there are natural isomorphisms

Cokerh ≃ Coim f, Im f ≃ Ker k

which make Diagrams (107) and (108) commute.

Note that we can splice Diagrams (107) and (108):

Ker f X Cokerh

P X Coim f

Im f Y S

Ker k Y Coker f.

h

∼

p

∼

∼

i

k

11.3.2 Definition 8.3.5 p. 177

The following definitions and observations are implicit in the book. Let A be a
subcategory of a pre-additive category B, and let ι : A → B be the inclusion. If A is
pre-additive and ι is additive, we say that A is a pre-additive subcategory of B. If,
moreover, A and B are additive (resp. abelian), we say that A is an additive (resp.
abelian) subcategory of B. Now let A and B be categories. If B is pre-additive (resp.
additive, abelian), then so is the category C := BA of functors from A to B. Assume
furthermore that A is pre-additive. If B is pre-additive (resp. additive, abelian), then
the full subcategory D := Add(A,B) of C whose objects are the additive functors
from A to B is a pre-additive (resp. additive, abelian) subcategory of C.

11.3.3 The Complex (8.3.3) p. 178

Let us just add a few details about the proof of the isomorphisms

Imu ≃ Coker(φ : Im f → Ker g) ≃ Coker(X ′ → Ker g)

≃ Ker(ψ : Coker f → Im g) ≃ Ker(Coker f → X ′′),
(109)
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labeled (8.3.4) in the book. Recall that the underlying category C is abelian, and
that the complex in question is denoted

X ′
f−→ X

g−→ X ′′. (110)

We shall freely use the isomorphism between image and coimage, as well as the
abbreviations

Kv := Ker v, K ′v := Coker v, Iv := Im v.

Let us also write “A ∼→ B” for “the natural morphism A→ B is an isomorphism”.

Proposition 287 p. 174 can be stated as follows.

Proposition 288. Let f : X → Y be a morphism, and consider the commutative
diagram

Kf X Y K ′f

K ′h If Kk.

h f k

Then the bottom arrows are isomorphisms.

Going back to our complex (110) p. 175, let us introduce the notation

X ′ X X ′′

X ′ If Kg X K ′f Ig X ′′

Ku Kg K ′f K ′u

K ′e Iu Kh.

f g

a φ b c ψ d

e u h

∼
i

∼
j

By Proposition 287 p. 174

i and j are isomorphisms. (111)
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We shall prove

K ′φ◦a K ′φ K ′e Iu Kh Kψ Kd◦ψ.
k
∼

ℓ
∼

i
∼

j

∼
m
∼

n
∼

This will imply (109) p. 174.

The morphisms k and n are isomorphisms because a is an epimorphism and d a
monomorphism. Thus, in view of (111), it only remains to prove that

ℓ and m are isomorphisms. (112)

There is a natural monomorphism from If to Ku. Indeed, we have

u ◦ φ ◦ a = c ◦ f = 0.

As a is an epimorphism, this implies u ◦ φ = 0.

It is easy to see that there is a natural monomorphisms from Ku to Kc. By
Proposition 287 p. 174, we have If

∼−→ Kc, and it is easy to see that this implies
If
∼−→ Ku. Similarly we prove K ′u

∼−→ Ig.

We can thus complete our previous diagram as follows:

X ′ X X ′′

X ′ If Kg X K ′f Ig X ′′

Ku Kg K ′f K ′u

K ′e Iu Kh.

f g

a

∼

φ b c ψ d

e u h

∼

∼
i

∼
j

(The two dashed arrows have been added.) Now (112) is clear.
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11.3.4 Brief comments

§ 289. For the reader’s convenience we state Lemma 8.3.11 p. 180. Consider the
commutative square

X ′ Y ′

X Y

g′

f ′

g

f

(113)

in the abelian category C.

Lemma 290 (Lemma 8.3.11 p. 180). We have:

(a) Assume that (113) is cartesian.

(i) We have Ker f ′
∼−→ Ker f .

(ii) If f is an epimorphism, then (113) is cocartesian and f ′ is an epimorphism.

(b) Assume that (113) is cocartesian.

(i) We have Coker f ′
∼−→ Coker f .

(ii) If f ′ is a monomorphism, then (113) is cartesian and f is a monomorphism.

§ 291. P. 180, Lemma 8.3.12. Here is a minor variant:

Lemma 292. For a complex Z → Y → X in some abelian category, the following
conditions are equivalent:

(a) the complex is exact,

(b) any commutative diagram of solid arrows

V W

Z Y X

0

can be completed as indicated (V → W being an epimorphism),

(c) any commutative diagram of solid arrows

Z Y X

W V

0
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can be completed as indicated (W → V being a monomorphism).

Proof. Equivalence (a)⇔ (b) is proved in the book, and Equivalence (a)⇔ (c) follows
by reversing arrows.

§ 293. Here are two lemmas which be used in the sequel:

Lemma 294. Let
Z Y X

Z W V

a

c

b

d

e f

be a commutative diagram of complexes in an abelian category, and assume that the
right square is cartesian.

(a) If e is a monomorphism, so is a.

(b) If f is an epimorphism, so is b.

(c) If the bottom row is exact, so is the top row.

Proof. Part (a) is obvious, and (b) follows from Lemma 290 (a) (ii) p. 177. To prove
(c), let g : U → Y be a morphism satisfying bg = 0 (in this proof we write uv for
u ◦ v). By Lemma 292, (a) ⇔ (b), p. 177, it suffices to complete the commutative
diagram

V U

Z Y X

i

h

0g

a b

as indicated. Consider the larger commutative diagram

V U

Z Y X

Z W V.

i

h

0g

a

c

b

d

e f

Invoking again Lemma 292, (a) ⇔ (b), p. 177, we find an epimorphism h : V ↠ U
and a morphism i : V → Z such that cgh = ei, and it suffices to prove gh = ai. But
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the equality gh = ai is equivalent to the conjunction of the equalities cgh = cai and
bgh = bai, equalities whose proof is straightforward.

Lemma 295. Let
Z Y X

W V X

c

a

d

b

e f

be a commutative diagram of complexes in an abelian category, and assume that the
left square is cartesian.

(a) If e is a monomorphism, so is a.

(b) If the bottom row is exact, so is the top row.

Proof. Part (a) follows from Lemma 290 (a) (i) p. 177. Let us prove (b). By
Lemma 292, (a) ⇔ (b), p. 177, it suffices, given a morphism g : U → Y such that
bg = 0, to complete the commutative diagram

T U

Z Y X

i

h

0g

a b

as indicated. (In this proof we write uv for u ◦ v.) Invoking again Lemma 292, (a) ⇔
(b), p. 177, we find h : T ↠ U and j : T → W such that ej = dgh:

T U

W V X.

j

h

0
dg

e f

As ej = dgh, there is a unique morphism i : T → Z such that ci = j and ai = gh.

§ 296. Page 181, the Five Lemma (minor variant of the proof).

Theorem 297 (Lemma 8.3.13 p. 181, Five Lemma). Consider the commutative
diagram of complexes

X0 X1 X2 X3

Y 0 Y 1 Y 2 Y 3,

f0

a0

f1

a1

f2

a2

f3

b0 b1 b2
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where f 0 is an epimorphism, f 1 and f 3 are monomorphisms, and X1 → X2 → X3

and Y 0 → Y 1 → Y 2 are exact. Then f 2 is a monomorphism.

Proof. Note that Equivalence (a)⇔(b) in Lemma 292 p. 177 can be stated as follows:

(∗) f : X → Y is an epimorphism if and only if any subobject of Y is the image of
some subobject of X.

We write fx for the image of a subobject x of X, and fg for f ◦ g.

Put x2 := Ker f 2. Using (∗) we see that there is:

• a subobject x1 of X1 such that x2 = a1x1 (because f 3 is a monomorphism,
f 3a2x2 = 0, and X1 a1−→ X2 a2−→ X3 is exact),

• a subobject y0 of Y 0 such that f 1x1 = b0y0 (because b1f 1x1 = 0 and Y 0 b0−→ Y 1 b1−→ Y
is exact), and

• a subobject x0 of X0 such that y0 = f 0x0 (because f 0 is an epimorphism).

This yields
f 1a0x0 = b0f 0x0 = b0y0 = f 1x1,

implying a0x0 = x1 (because f 1 is a monomorphism), and thus

0 = a1a0x0 = a1x1 = x2.

§ 298. P. 181, Lemma 8.3.13 (Five Lemma). We spell out the dual of Theorem 297
above.

Theorem 299. Consider the commutative diagram of complexes

X0 X1 X2 X3

Y 0 Y 1 Y 2 Y 3,

f0

a0

f1

a1

f2

a2

f3

b0 b1 b2

where f 0 and f 2 are epimorphisms, f 3 is a monomorphism, and X0 → X1 → X2

and Y 1 → Y 2 → Y 3 are exact. Then f 1 is an epimorphism.

§ 300. P. 182, proof of the equivalence (iii)⇔(iv) in Proposition 8.3.14. Here is the
statement of the proposition:
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Proposition 301 (Proposition 8.3.14 p. 182). Let 0 → X ′
f−→ X

g−→ X ′′ → 0
be a short exact sequence in an abelian category C. Then the conditions below are
equivalent:

(i) there exits h : X ′′ → X such that g ◦ h = idX′′,

(ii) there exits k : X → X ′ such that k ◦ f = idX′,

(iii) there exits h : X ′′ → X and k : X → X ′ such that idX = f ◦ k + h ◦ g,

(iv) there exits φ = (k, g) and ψ = (f, h) such that X φ−→ X ′⊕X ′′ and X ′⊕X ′′ ψ−→ X
are mutually inverse isomorphisms,

(v) for any Y in C, the map HomC(Y,X)
g◦−→ HomC(Y,X

′′) is surjective,

(vi) for any Y in C, the map HomC(X, Y )
◦f−→ HomC(X

′, Y ) is surjective.

The authors say that the equivalence (iii)⇔(iv) is obvious. I agree, but here are a
few more details. Implication (iv)⇒(iii) is indeed obvious in the strongest sense of
the word. Implication (iii)⇒(iv) can be proved as follows.

Assume (iii), that is, we have morphisms h : X ′′ → X and k : X → X ′ such that

f ◦ k + h ◦ g = idX . (114)

As g ◦ f = 0, this implies

g ◦ h ◦ g = g ◦ f ◦ k + g ◦ h ◦ g = g ◦ idX = g.

Since g is an epimorphism, this entails g ◦ h = idX′′ . We prove similarly k ◦ f = idX′ .
Let us record the two above equalities:

g ◦ h = idX′′ , k ◦ f = idX′ . (115)

Now (114) and (115) imply

k ◦ h = k ◦ (f ◦ k + h ◦ g) ◦ h = k ◦ f ◦ k ◦ h+ k ◦ h ◦ g ◦ h = k ◦ h+ k ◦ h,

and thus
k ◦ h = 0, (116)

and (iv) follows from (114), (115) and (116). q.e.d.
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§ 302. P. 183. Here is an example showing that filtrant and cofiltrant small projective
limits of R-modules are not exact in general:

lim
n∈N

(
Z→ Z/2nZ→ 0

)
=
(
Z→ Z2 → 0

)
.

§ 303. P. 184, Definitions 8.3.21 (v) and (vi). See § 11 p. 15.

11.3.5 Proof of Lemma 8.3.23 p. 184

In the book, the proofs of the two lemmas below are left to the reader.

Lemma 304. If

Y Y ′′ 0

0 Y ′ X Y ′′ 0

c

u

id

a b

is an exact commutative diagram in an abelian category, then Y ⊕ Y ′ (c,a)−−→ X is an
epimorphism.

Proof. In this proof below we write ψφ for ψ ◦ φ, and we tacitly use Lemma 292
p. 177.

Let x : Z → X and let us show that the solid diagram

W Z

Y ⊕ Y ′ X

e

d

x

(c,a)

may be completed as indicated. We get a commutative square

V Z

Y Y ′′

y

f

bx

bc
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and then a commutative diagram

W V

Y ′ X Y ′′.

y′

g

xf−cy

a b

Setting d := fg, e := (yg, y′) yields

(c, a)e = (c, a)(yg, y′) = cyg + ay′ = cyg + xfg − cyg = xfg = xd.

Lemma 305. If
0 0

Z Y

0 X W V 0

0 X U T 0

0 0

b

a

c

d

f

e

g

h i

is an exact commutative diagram in an abelian category, then a is an isomorphism.

Proof. In this proof below we write ψφ for ψ ◦ φ, and we tacitly use Lemma 292
p. 177.

We claim
a is a monomorphism. (117)

Let z : S → Z satisfy az = 0, and let us show z = 0. We have ebz = 0, and the solid
diagram

R S

X W V

x

j

bz

d e
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may be completed as indicated, yielding successively hx = fdx = fbzj = 0, x = 0,
bzj = 0, bz = 0, z = 0. This proves (117).

We claim
a is an epimorphism. (118)

Let y : S → Y and let us show that the solid diagram

R S

Z Y

z

j

y

a

may be completed as indicated. We get successively: a commutative square

Q S

W V ;

w

k

cy

e

equalities ifw = gew = gcyk = 0; an exact commutative diagram

P Q

W V T ;

x

ℓ

fw

h i

equalities fdx = hx = fwℓ, f(wℓ− dx) = 0; an exact commutative diagram

R P

Z W U ;

z

m

wℓ−dx

b f

equalities caz = ebz = ewℓm− edxm = ewℓm = cykℓm, az = ykℓm; and it suffices
to set j := kℓm. This proves (118), and thus our lemma.

11.3.6 Brief comments

§ 306. On p. 185 we read:

184 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



“Recall (see Proposition 5.2.4) that in an abelian category, the conditions below
are equivalent:

(i) G is a generator, that is, the functor φG = HomC(G, ) is conservative,

(ii) The functor φG is faithful.

. . .

Moreover, if C admits small inductive limits, the conditions above are equivalent
to:

(iii) for any X ∈ C, there exist a small set I and an epimorphism G⊔I ↠ X.”

It would be better (I think) to refer to Proposition 2.2.3 p. 45 of the book for the
equivalence between (i) and (ii).

§ 307. P. 186, Definition 8.3.24 (definition of a Grothendieck category). The condition
that small filtrant inductive limits are exact is not automatic. I know no entirely
elementary proof of this important fact. Here is a proof using a little bit of sheaf
theory. To show that there is an abelian category where small filtrant inductive
limits exist but are not exact, it suffices to prove that there is an abelian category
C where small filtrant projective limits exist but are not exact. It is even enough
to show that small products are not exact in C. Let X be a topological space, and
let U0 ⊃ U1 ⊃ · · · be a decreasing sequence of open subsets whose intersection is
a non-open closed singleton {a}. We can take for C the category of small abelian
sheaves on X. To see this, let G be the abelian presheaf over X such that G(U) is
Z if a is in U and 0 otherwise, and, for each n in N, let Fn be the abelian presheaf
over X such that Fn(U) is Z if U ⊂ Un and 0 otherwise. These presheaves are easily
seen to be sheaves. For each n in N and each open set U let Fn(U)→ G(U) be the
identity if a is in U ⊂ Un and 0 otherwise. This family of morphisms defines, when U
varies, an epimorphism φn : Fn ↠ G. Put

F :=
∏
n∈N

Fn, H :=
∏
n∈N

G, φ :=
∏
n∈N

φn : F → H.

It suffices to show that the morphism φ(a) : F (a) → H(a) between the stalks at
a induced by φ is not an epimorphism. This is clear because φ(a) is the natural
morphism ⊕

n∈N

Z→
∏
n∈N

Z.

q.e.d.
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§ 308. Recall the statement of Corollary 8.3.26 p. 186 of the book:

Let C be a Grothendieck category and let X ∈ C. Then the set of quotients of X
and the the set of subobjects of X are small.

The proof is phrased as follows: “Apply Proposition 5.2.9”. One could add “. . . and
Proposition 5.2.3 (v)”.

§ 309. P. 186. Proposition 8.3.27 will be used to prove Corollary 381 p. 237 below
(which is Corollary 9.6.6 p. 237 of the book), Corollary 14.4.6 (i) p. 361 and Corollary
14.4.9 p. 365 of the book. See also §310 below.

§ 310. P. 186. By Proposition 8.3.27 (i) and Lemma 3.3.9 p. 83 of the book, in a
Grothendieck U-category U-small (Definition 5 p. 10) filtrant inductive limits are
stable by base change (see Section 5.6 p. 63).

11.4 About Section 8.4

This is about Proposition 8.4.7 p. 187. Let us just rewrite in a slightly less concise way
the part of the proof on p. 188 which starts with the sentence “Define Y := Y0×X Gi”
at the fifth line of the last paragraph of the proof, and goes to the end of the proof.

It suffices to show that there is a morphism a0 : Gi → Y0 satisfying l0 ◦ a0 = φ:

X ′ Y0 X

Z Gi.

h

k0

g0

l0

a0
φ

Form the cartesian square
Y Y0

Gi X,

b

c l0

φ

and the cocartesian square
Y Y0

Gi Y1.

b

c λ

a1
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Let l1 : Y1 → X be the morphism which makes the diagram

Y0

Y Y1 X

Gi

λ
l0b

c

l1

a1 φ

commutative. By Lemma 290 (a) (i) p. 177, c is a monomorphism, and, by Part
(b) (ii) of the same lemma, λ is also a monomorphism. As Z is injective, there is a
morphism d : Gi → Z satisfying d ◦ c = g0 ◦ b:

Y Y0

Gi Z.

b

c g0

d

By the definition of Y1 there is a morphism g1 : Y1 → Z such that

Y Y0

Gi Y1

Z

b

c λ
g0

a1

d

g1

commutes. We get the commutative diagram

Y0 X

X ′ Y0 Y1 X

Z Gi.

l0

h

k0

g0

λ

g1

l1

φ

d

a1

As λ is an isomorphism by maximality of (Y0, g0, l0), we can set a0 := λ−1 ◦ a1, and
we get

l0 ◦ a0 = l0 ◦ λ−1 ◦ a1 = l1 ◦ λ ◦ λ−1 ◦ a1 = l1 ◦ a1 = φ.

q.e.d.
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11.5 About Section 8.5

11.5.1 Brief comments

§ 311. P. 190, Proposition 8.5.5. It might be worth writing explicitly the formulas
(for X, Y ∈ Mod(R, C)):

HomRop(N,HomC(X, Y )) ≃ HomC (N ⊗R X, Y ) ,

HomR(M,HomC(Y,X)) ≃ HomC (Y,HomR(M,X)) ,

Rop ⊗R X ≃ X,

HomR(R,X) ≃ X.

One could also mention explicitly the adjunctions

Mod(Rop) Mod(R)op

C C,

−⊗RX HomC(−,X)HomC(X,−) HomR(−,X)

where, we hope, the notation is self-explanatory.

§ 312. P. 191, proof of Theorem 8.5.8 (iii) (minor variant). Recall the statement:

Proposition 313 (Theorem 8.5.8 (iii) p. 191). Let C be a Grothendieck category, let
G be a generator, let R be the ring EndC(G)op, put M := Mod(R), let φ : C →M be
the functor defined by φ(X) := HomC(G,X). Then φ is fully faithful.

Proof. Let ψ :M→ C be the functor defined by ψ(M) := G⊗RM , let C0 be the full
subcategory of C whose objects are

0, G, G⊕G, G⊕G⊕G, . . . ,

and letM0 be the full subcategory ofM whose objects are

0, R, R⊕R, R⊕R⊕R, . . .

Then φ and ψ induce mutually quasi-inverse equivalences

C0 M0.
φ0

ψ0
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We can assume that C0 andM0 are small (Definition 5 p. 10). If λ : C → (C0)∧ and
λ′ :M→ (M0)

∧ are the obvious functors, then the diagram

C M

(C0)∧ (M0)
∧

φ

λ λ′

φ̂0

quasi-commutes. The functors λ and λ′ are fully faithful by §310 p. 186 and The-
orem 204 p. 122 above. As φ̂0 is an equivalence (a quasi-inverse being ψ̂0 , see
Proposition 2.7.1 p. 62 in the book), the proof is complete.

11.5.2 Theorem 8.5.8 (iv) p. 191

Here is a minor variant of Step (a) of the proof of Theorem 8.5.8 (iv). Recall the
statement:

Lemma 314. In the setting of Proposition 313, assume that there is a finite set F ,
an epimorphism RF ↠ M in M, a small set S, and a monomorphism M ↣ R⊕S.
Let ψ :M→ C be the functor defined by ψ(M) := G⊗RM . Then ψ(M)→ ψ(R⊕S)
is a monomorphism.

Proof. There is a finite subset F ′ of S such that M ↣ R⊕S factors as

M ↣ RF ′
↣ R⊕S.

As RF ′ is a direct summand of R⊕S, the morphism ψ(RF ′
) → ψ(R⊕S) is a mono-

morphism. In other words, we may assume S = F ′, and it suffices to check that
ψ(M)→ ψ(RF ′

) is a monomorphism, or, more explicitly, that

f : ψ(M)→ GF ′
is a monomorphism. (119)

Applying the right exact functor ψ to

RF ↠M ↣ RF ′
,

we get
K GF ψ(M) GF ′

,i

0

p f
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where K := Ker(f ◦ p). Applying φ we obtain

φ(K) RF φ(ψ(M)) RF ′
.

φ(i)

0

φ(p) φ(f)

The commutative diagram

φ(K) RF ′

φ(K) RF φ(ψ(M)) RF ′

RF M RF ′

0

φ(i) φ(p) φ(f)

a b

yields b ◦ a ◦ φ(i) = 0. As b is a monomorphism, we get a ◦ φ(i) = 0, and thus
φ(p) ◦ φ(i) = 0. Since φ is faithful by Proposition 313 p. 188, this implies

p ◦ i = 0. (120)

Let us prove (119). Let x : X → ψ(M) be a morphism in C satisfying f ◦ x = 0.
It suffices to prove

x = 0. (121)

As p is an epimorphism, the diagram of solid arrows

Y X

GF ψ(M)

y

c

x

p

can be completed, by Lemma 290 (b) (i) p. 177, to a commutative square as indicated,
c being an epimorphism. The commutative diagram of solid arrows

Y X

K GF ψ(M) GF

z y

c

x 0

i p f
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can in turn be completed to a commutative diagram as indicated, and we get

x ◦ c = p ◦ i ◦ z = 0

by (120). As c is an epimorphism, this implies successively (121), (119) and the
lemma.

11.6 About Section 8.6

§ 315. P. 193, second sentence of Section 8.6. The proof of the following statement
is straightforward.

Let C and C ′ be pre-additive categories, let C ′C be the category of functors from C to
C ′, and let α : I → C ′C be a functor. Assume that α(i) is additive for all i in I, and
that the colimit colimα exists in C ′C. Then colimα is additive. There is a similar
statement for limits.

§ 316. P. 193. Just before the statement of Proposition 8.6.2 it is claimed that the
inclusion

Ind(C) ⊂ C∧,add

holds. This inclusion follows from Propositions 3.3.3 p. 82 (see Proposition 161 p. 105),
6.1.7 p. 132, 8.2.13 p. 173 (see §286 p. 172) 8.2.15 p. 173 in the book.

§ 317. P. 194, Theorem 8.6.5 (ii). See §223 p. 139.

§ 318. Proof of Lemma 8.6.7 p. 195. The proof uses the following lemma:

Lemma 319. Let f : X → Y be a morphism in an abelian category, define f ′ : X →
X ⊕ Y and f ′′ : X ⊕ Y → Y by f ′ :=

[
1
f

]
, f ′′ := [f − 1] (obvious notation). Then

the sequence X f ′−→ X ⊕ Y f ′′−→ Y is exact.

Proof. It suffices to show that an arbitrary solid commutative diagram

W Z

X X ⊕ Y Y

i

h

0g

f ′ f ′′

may be completed as indicated. Let the above square be cartesian. Note that g is of
the form

[ g1
f◦g1

]
with g1 : Z → X. It suffices to show that h is an epimorphism. Let
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j : Z → V be a morphism such that j ◦ h = 0. It suffices to prove j = 0. The solid
commutative diagram

X

Z W X ⊕ Y

Z

f ′

k

g1

id

i

h
g

may be completed as indicated, yielding 0 = j ◦ h ◦ k = j.

§ 320. P. 197, proof of Proposition 8.6.12. The existence of the epimorphismX1 → Y ′′

follows from Proposition 8.6.9 in the book, and the statement “Since the top square
on the left is co-Cartesian, the middle row is exact” follows from the Lemma 294
p. 178.

11.7 About Section 8.7

11.7.1 Lemma 8.7.3 p. 198

Let us spell out the proof of the fact that K(α) is a monomorphism. Consider the
commutative diagram

Z Y X

W V

U

T S R Q,

f

a

c

b

d

g

h

e

i

j

k ℓ m

where the five rectangles are cartesian, and the three sequences

T → S → R→ 0, X → V → Q→ 0, Z → W → U → 0

are exact.
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We must check the j is a monomorphism.

(In the proof below we omit the composition symbols ◦ and most of the parenthesis.
We shall freely use the equivalence (a)⇔(b) in Lemma 292 p. 177.)

Let u : P → U satisfy ju = 0, and let us show u = 0.

There is a commutative square

N P

W U.

w

n

u

h

As ℓgw = jhw = jun = 0, there is a commutative diagram

M N

T S R.

t

p

gw 0

k ℓ

As iewp = mℓgwp = mℓkt = 0, there is a commutative diagram

L M

X V Q.

x

q

ewp 0

d i

As Z ≃ T ⊕X, we can introduce the coprojections a′ and f ′ indicated below:

Z Y X

W V

U

T S R Q.

f

a

c

b

d

a′

g

h

e

i

j

f ′

k ℓ m
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Define z : L→ Z by z := f ′tq + a′x. We claim

caz = wpq. (122)

It suffices to verify
gcaz = gwpq, ecaz = ewpq.

The proof of the two above equalities is straightforward and left to the reader, so
that we consider that (122) has been proved. We get

unpq = hwpq = hcaz = 0.

As pq is an epimorphism, this implies u = 0, as desired. q.e.d.

11.7.2 Lemma 8.7.5 (i) p. 199

Let us spell out the proof of the fact that Coker(u)→ Coker(v) is a monomorphism.
We shall use the same notation and arguments as in Section 11.7.1 p. 192.

In the commutative diagram

Y ′

Z Y

X ′ X

W ′ W,

a

p

q

u

c

b

d

e

the square ZY XX ′ is cartesian and the sequences

Y → X → W → 0, Y ′ → X ′ → W ′ → 0

are exact.

We must show that e is an isomorphism. Clearly e is an epimorphism. It suffices
to prove that e is a monomorphism. Let w′ : V → W ′ satisfy ew′ = 0. It suffices to
prove w′ = 0.
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Form the commutative square

U V

X ′ W ′.

x′

f

w′

c

As we have dbx′ = ecx′ = ew′f = 0, we can form the commutative diagram

T U

Y X W.

y

g

bx′
0

u d

As we have bx′g = uy, we get a morphism z : T → Z such that pz = x′g and qz = y,
and we can form the commutative square

S T

Y ′ Z.

y′

h

z

a

This yields w′fgh = cx′gh = cpzh = cpay′ = 0. As f, g and h are epimorphisms,
this implies w′ = 0, as desired. q.e.d.

Here is a second version:

P. 199, proof of Lemma 8.7.5 (i). As we have

Coker(Y ×X X ′ → X ′)
∼−→ Coker(u)

by Lemma 113 p. 177, we can assume X ∈ J . Let b : Y ′ ↠ Y be an epimorphism
with Y ′ ∈ J , and set v := ub, W := Coker(v), Z := Coker(u):

Y ′ X W 0

Y X Z 0.

b

v a

c

u d

(The above diagram commutes and the rows are exact.) We shall use Lemma 292
p. 177. We must show that c is an isomorphism. Clearly c is an epimorphism. It
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suffices to prove that c is a monomorphism. Let w : T → W satisfy cw = 0. It suffices
to show w = 0. There are commutative diagrams with exact rows and equalities

R T

X W 0,

x

t

w

a

0 = cwt = cax = dx,

Q R

Y X Z,

y

r

x

u d

P Q

Y ′ Y 0,

y′

q

y

b

wtrq = axrq = auyq = auby′ = avy′ = 0.

As t, r and q are epimorphisms, this implies w = 0, as desired. q.e.d.

11.7.3 Proof of (8.7.3) p. 200

Right after (8.7.4) we read

“The condition that K(α) is an isomorphism is equivalent to the fact that the
sequence Y → X ⊕ Y ′ → X ′ → 0 is exact.”

It seems to me we get a counterexample by setting 0 ≃ Y ≃ X ≃ X ′ ̸≃ Y ′, but
we can prove

(8.7.3) for α : u → v in Mor(D0), if K(α) is an isomorphism, then A′(α) is an
isomorphism

as follows:
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Let α : u→ v in Mor(D0) be such that K(α) is an isomorphism. By Proposition
8.3.18 p. 183, the diagram below commutes:

A′(u) A′(v)

CokerA(u) CokerA(v)

A(K(u)) A(K(v)).

A′(α)

∼

CokerA(α)

∼

A(K(α))

∼

11.7.4 Proof of (8.7.2) p. 200

Let us spell out the proof of the claim

“The condition K(α) = 0 implies that X ×X′ Y ′ → X is an epimorphism.”

(This is the third sentence of the last paragraph.)

We shall use the same notation and arguments as in Section 11.7.1 p. 192.

We have the commutative square with exact columns

Y Y ′

X X ′

Ku Kv

0 0.

u

α0

v

u′

α1

v′

0

Set Z := X ×X′ Y ′ and write p : Z → X and q : Z → Y ′ for the projections, so
that we must show that p is an epimorphism. Let x : W → X be given. It suffices to
complete the solid diagram

V W

Z X

z

a

x

p
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as indicated. As v′α1x = 0, we get the commutative diagram

V W

Y ′ X ′ Kv.

y′

a

α1x
0

v v′

As α1xa = vy′ we get the commutative diagram

V Y ′

X Z.

xa

y′

z

p

q

11.7.5 Commutativity of the last diagram p. 200

I failed to prove that the triangle Y1Y ′X1 commutes, but it seems to me that this is
not needed.

11.7.6 Proof of Lemma 8.7.7 p. 201

The last sentence of the proof of Lemma 8.7.7 uses Exercise 8.19 p. 204 (see Section
11.8.3 p. 206 below).

(In the rest of this section we omit the composition symbols ◦ and most of the
parenthesis, we freely use Lemma 290 p. 177 and Lemma 292 p. 177, and we let the
setting of Lemma 8.7.7 of the book be in force.)

Lemma 321. If Z a−→ Y
b−→ X → 0 is an exact sequence in C, then there is an exact

commutative diagram

T S R 0

W V U 0

Z Y X 0

0 0 0

h

k

i

ℓ

j

c

f

d

g

e

a b

(123)
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with R, S, T, U, V,W in J .
Lemma 322. The solid diagram in C below can be completed as indicated to a
commutative diagram in C with Z in J :

Ker b Z Y

Ker g X W.

c

a

d

b

e

f g

Proof of Lemma 322. Form the cartesian square

V Y

X W.

i

h

e

g

Note that h and i are epimorphisms. Let Z V
j be an epimorphism in C with

Z in J . We get the commutative diagram

Ker b Z

V Y

Ker g X W.

c

a

j b

i

h

e

f g

Set d := ij. It only remains to check that c is an epimorphism. Let x : U → Ker g. It
suffices to complete the solid diagram

T U

Ker b Ker g

z

k

x

c

as indicated. There is a morphism v : U → V such that

Y

U V

X

0

v

fx

h

i
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commutes, and there are morphisms k and z′ such that

T U

Z V

z′

k

v

j

commutes. As we have bz′ = hjz′ = hvk = 0, there is a morphism z : T → Ker b such
that az = z′, and we get fcz = ijaz = ijz′ = ivk = fxk. Since f is a monomorphism,
this yields cz = xk, as desired.

The above proof shows that we have in fact:
Lemma 323. The solid diagram in C below can be completed as indicated to a
commutative diagram in C with Z in J :

Ker b Ker c

Ker a Z Y

Ker d X W.

b

a

c

d

Proof of Lemma 321. Let e : U ↠ X be an epimorphism in C with U in J . A first
application of Lemma 323 gives a commutative diagram

Ker d Ker e

Ker g V U

Z Ker b Y X

m

d

g

e

b

with V in J . A second application of Lemma 323 gives a commutative diagram

Ker d Ker e

W Ker g V U

Z Ker b Y X

m

c d

g

e

b
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with W in J . Let R ↠ Ker e be an epimorphism in C with R in J . A third
application of Lemma 323 gives a commutative diagram

Ker ℓ S R

Kerm Ker d Ker e

W Ker g V U

Z Ker b Y X

ℓ

m

d

g

e

b

with S in J . Let Ker c T Ker ℓ be a diagram in C with T in J . We
finally get

T Ker ℓ S R

Ker c Kerm Ker d Ker e

W Ker g V U

Z Ker b Y X,

ℓ

m

c d

g

e

b

as required.

11.8 About the exercises

11.8.1 Exercise 8.4 p. 202

Recall the statement:

Let C be an additive category and S a right multiplicative system. Prove that the
localization CS is an additive category and Q : C → CS is an additive functor.

It is easy to equip CS with a pre-additive structure making Q additive. Then the
result follows from Corollary 268 p. 167.
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The pre-additive structure on CS is described in a very detailed way at the
beginning of the following text of Dragan Miličić:

http://www.math.utah.edu/∼milicic/Eprints/dercat.pdf

11.8.2 Exercise 8.17 p. 204

Preliminaries

Lemma 324. If
X

f−→ Y
g−→ Z (124)

are morphisms in an abelian category C (we do not assume g ◦ f = 0), then the
commutative diagram

Ker(g ◦ f) X Im(g ◦ f) 0

0 Im g Z Coker g

of solid arrows, whose rows are exact sequences, can be completed as indicated. The
situation can also be represented as follows:

X Y

Im g

Im(g ◦ f) Z.

f

g

In particular Im(g ◦ f)→ Im g is a monomorphism.

Proof. We claim that the diagram of solid arrows

X ×Z X X Coim(g ◦ f) 0

Y

0 Im g Z Z ⊕Y Z,

a

f

d

b

g

c
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whose rows are exact sequences, can be completed as indicated. Indeed, the existence
of b follows from the equality g ◦ f ◦ a = 0. To prove the lemma, it is enough
to check that b factors through Im g, or, equivalently, that c ◦ b = 0. As d is an
epimorphism, the vanishing of c ◦ b is equivalent to the vanishing of c ◦ b ◦ d. But we
have c ◦ b ◦ d = c ◦ g ◦ f = 0 ◦ f = 0.

Lemma 325. If, in the setting of Lemma 326, f is an epimorphism, then

Im(g ◦ f)→ Im g

is an isomorphism.

Proof. Consider the commutative square

X Y

Im(g ◦ f) Im g,

f

a

b

where a and b are the natural morphisms. As f and a are epimorphisms, so is b.

Exercise 8.17 The exercise follows easily from Lemmas 326 and 327 below.

Let us denote the cokernel of any morphism h : Y → Z in any abelian category
by Z/ Imh.

Recall that, by Proposition 8.3.18 p. 183 of the book, an additive functor between
abelian categories F : C → C ′ is left exact if and only if

0→ X ′
f−→ X

g−→ X ′′ exact
⇒

0→ F (X ′)
F (f)−→ F (X)

F (g)−→ F (X ′′) exact

 (125)

Consider the condition

0→ X ′
f−→ X

g−→ X ′′ → 0 exact
⇒

0→ F (X ′)
F (f)−→ F (X)

F (g)−→ F (X ′′) exact

 (126)

Lemma 326. We have (125)⇔(126).
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Proof. Implication ⇒ is clear. To prove ⇐, let

0→ X ′
f−→ X

g−→ X ′′

be exact. We must check that

0→ F (X ′)→ F (X)→ F (X ′′) (127)

is exact. Let I be the image of g. The sequence

0→ X ′ → X → I → 0

being exact, so is
0→ F (X ′)→ F (X)→ F (I). (128)

This implies that (127) is exact at F (X ′). The sequence

0→ I → X ′′ → X ′′/I → 0

being exact, so is
0→ F (I)→ F (X ′′),

and we have
Ker

(
F (X)→ F (I)

) ∼−→ Ker
(
F (X)→ F (X ′′)

)
. (129)

The exactness of (128) implies

Im
(
F (X ′)→ F (X)

) ∼−→ Ker
(
F (X)→ F (I)

)
, (130)

and the exactness of (127) at F (X) follows from (129) and (130).

Consider the conditions below on our additive functor F : C → C ′:

0→ X ′
f−→ X

g−→ X ′′ → 0 exact
⇒

0→ F (X ′)
F (f)−→ F (X)

F (g)−→ F (X ′′)→ 0 exact

 (131)

X ′
f−→ X

g−→ X ′′ exact
⇒

F (X ′)
F (f)−→ F (X)

F (g)−→ F (X ′′) exact

 (132)

Lemma 327. We have (131)⇔(132).
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Proof. Implication ⇐ is clear. To prove ⇒, let

X ′
f−→ X

g−→ X ′′

be exact. We must show that

F (X ′)→ F (X)→ F (X ′′) (133)

is exact. Let Kg, Kf and Ig denote the indicated kernels and image. The sequence

0→ Ig → X ′′ → X ′′/Ig → 0

being exact, so is
0→ F (Ig)→ F (X ′′),

and we get
Ker

(
F (X)→ F (Ig)

) ∼−→ Ker
(
F (X)→ F (X ′′)

)
. (134)

The sequence
0→ Kg → X → Ig → 0

being exact, so is
F (Kg)→ F (X)→ F (Ig),

and we get
Im
(
F (Kg)→ F (X)

) ∼−→ Ker
(
F (X)→ F (Ig)

)
. (135)

The sequence
0→ Kf → X ′ → Kg → 0

being exact, so is
F (X ′)→ F (Kg)→ 0,

and the isomorphism

Im
(
F (X ′)→ F (X)

) ∼−→ Im
(
F (Kg)→ F (X)

)
(136)

results from Lemma 325 p. 203 with F (X ′)→ F (Kg)→ F (X) instead of (124) p. 202.
The exactness of (133) follows from (134), (135) and (136).
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11.8.3 Exercise 8.19 p. 204

Let
0 0 0

0 Z Y X

0 W V U

T S

c

a

d

b

e

h

f

i

g

j

be a commutative diagram in an abelian category. If the first two rows and the last
two columns are exact, then the first column is exact.

Proof. (In this proof we omit the composition symbols ◦ and most of the parenthesis,
and we freely use Lemma 290 p. 177 and Lemma 292 p. 177.)

Exactness at Z: If z : R→ Z satisfies cz = 0, we get daz = fcz = 0, and thus z = 0.

Exactness at W : Let w : Q→ W satisfy hw = 0:

Q

Z W T.

0
w

c h

The equalities ifw = jhw = 0 yield the commutative diagram

P Q

Y V S,

y

k

fw
0

d i

and the equalities eby = gdy = gfwk = 0 and thus by = 0 yield the commutative
diagram

N P

Z Y X.

z

ℓ

y 0

a b
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This implies fcz = daz = dyℓ = fwkℓ, and thus cz = wkℓ:

N Q

Z W T.

z

kℓ

0
w

c h

For the reader’s convenience we spell out the statement:

Let
U X 0

S V Y 0

T W Z 0

0 0

g

e

b

j

i

f

d

a

h c

be a commutative diagram in an abelian category. If the last two columns and the
first two rows are exact, then the last row is exact.

11.8.4 Exercise 8.37 p. 211

It will be convenient to denote the identity morphisms by 1 and the shift morphisms
by s. We shall often write fg for f ◦ g.

(i) We follow the hint and make the

Claim. There is a split exact sequence

0
m⊕
n=0

Xn

m+1⊕
n=0

Xn Xm+1 0,
1−s

that is, there is a diagram

0
m⊕
n=0

Xn

m+1⊕
n=0

Xn Xm+1 0
1−s

b

a

c
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such that

a (1− s) = 0, b (1− s) = 1, a c = 1, (1− s) b+ c a = 1.

We shall only define a, b, c for m = 2, leaving the rest of the proof of the claim to
the reader. So we assume m = 2. The morphism 1− s is given by the matrix

1− s =


1 0 0
−s 1 0
0 −s 1
0 0 −s

 ,

and we define a, b, c by the matrices

a :=
(
s3 s2 s 1

)
, b :=

 1 0 0 0
s 1 0 0
s2 s 1 0

 , c :=


0
0
0
1

 .

Part (i) of the exercise follows clearly from the claim.

(ii) This part follows from the previous one together with Theorem 6.1.8 p. 132 and
Proposition 6.1.19 p. 137 in the book.

(iii) I haven’t been able to solve this part of the exercise.

12 About Chapter 9

I find Chapter 9 especially beautiful!

12.1 Brief comments

§ 328. P. 217, beginning of Section 9.2.

Proposition 329. Let π be an infinite cardinal. The following conditions on a small
category I (Definition 5 p. 10) are equivalent:

(a) For any category J with card(Mor(J)) < π and any functor

α : I × Jop → Set
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the natural map
colim
i∈I

lim
j∈J

α(i, j)→ lim
j∈J

colim
i∈I

α(i, j)

is bijective.

(b) For any category J with card(Mor(J)) < π and any functor

α : I × Jop → Set

the natural map
colim
i∈I

lim
j∈J

α(i, j)→ lim
j∈J

colim
i∈I

α(i, j)

is surjective.

(c) The following conditions hold:

(c1) for any A ⊂ Ob(I) such that card(A) < π there is a j in I such that for any
a in A there is a morphism a→ j in I,

(c2) for any i and j in I and for any B ⊂ HomI(i, j) such that card(B) < π there
is a morphism j → k in I such that the composition i

s−→ j → k does not depend on
s ∈ B.

(d) For any category J such that card(Mor(J)) < π and any functor φ : J → I there
is an i in I such that limHomI(φ, i) ̸= ∅.

Proof. Implications (c) ⇔ (d) ⇒ (a) are proved in Proposition 9.2.1 p. 217 and
Proposition 9.2.9 p. 219 of the book. Implication (a)⇒(b) is obvious. The proof of
Implication (b)⇒(d) is the same as the proof of Implication (b)⇒(a) in Theorem
3.1.6 p. 74 of the book.

Definition 330 (π-filtrant category). Let π be an infinite cardinal and I a category.
Then I is π-filtrant if (and only if) the equivalent conditions of Proposition 329 are
satisfied.

§ 331. P. 218. One can make the following observation after Definition 9.2.2:

If I admits inductive limits indexed by categories J such that card(Mor(J)) < π,
then I is π-filtrant.

Proof. For φ : J → I we have

limHomC(φ, colimφ)
∼←− HomC(colimφ, colimφ) ̸= ∅.
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§ 332. P. 218, Example 9.2.3. See §12 p. 16.

§ 333. P. 218, Lemma 9.2.5.

Lemma 334 (Lemma 9.2.5 p. 218). Let φ : J → I be a cofinal functor. If J is
π-filtrant, so is I.

Clearly, I satisfies conditions (a) and (b) in Proposition 329 p. 208.

§ 335. P. 219, proof of Remark 9.2.6. To prove that I ′ is π-filtrant it is straightforward
to check that I ′ satisfies Conditions (c1) and (c2) in Proposition 329 p. 208.

§ 336. Definition 9.2.7 p. 219. For the reader’s convenience we paste the definition
in question:

Definition 337. Let π be an infinite cardinal and let C be a category which admits
π-filtrant small inductive limits.

An object X ∈ C is π-accessible if for any π-filtrant small category I and any
functor α : I → C the natural map

colim
i∈I

HomC(X,α(i))→ HomC

(
X , colim

i∈I
α(i)

)
is bijective.

We denote by Cπ the full subcategory of C consisting of π-accessible objects.

§ 338. P. 220, proof of Proposition 9.2.9. We add a few details to the argument in
the book. Recall the statement:

Proposition 339. Let π be an infinite cardinal. Let J be a category such that
card(Mor(J)) < π and let I be a small (Definition 5 p. 10) π-filtrant category.
Consider a functor α : I × Jop → Set, (i, j) 7→ αij. Then the natural map λ below is
bijective:

λ : colim
i

lim
j
αij → lim

j
colim

i
αij.

Proof. Let
colim

i
lim
j
αij lim

j
colim

i
αij

lim
j
αij αij colim

i
αij

λ

q′jpi

p′ij
qij
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be the obvious commutative diagram.

(i) Injectivity. Let i be in I and let x, y ∈ limj αij satisfy qij xj = qij yj for all j. (In this
proof we omit almost all parenthesis.) It suffices to prove pi x = pi y. For each j there
is a morphism i→ i(j) in I such that αi→i(j),j xj = αi→i(j),j yj. Since I is π-filtrant
and card(J) < π, there is an i′ in I and there are morphisms i(j)→ i′ in I such that
the composition i→ i(j)→ i′ does not depend on j. We get αi→i′,j xj = αi→i′,j yj for
all j, and thus pi x = pi y.

(i) Surjectivity. Let y be in limj colimi αij. Each yj is of the form qij zj. A priori
i depends on j, but it is easy to see that we can assume that i independent of j.
Let j → j′ be a morphism in Jop. We have qij′ zj′ = qij′ αi,j→j′ zj, and there is a
morphism i→ i(j → j′) in I such that

αi→i(j→j′),j′ zj′ = αi→i(j→j′),j′ αi,j→j′ zj.

Since card(Mor(J)) < π, there are morphisms i(j → j′) → i′ in I such that the
composition i → i(j → j′) → i′ does not depend on j → j′. For each j set
xj := αi→i′,j zj ∈ αi′j.

We claim x ∈ limj αij. Indeed, for any morphism j → j′ in Jop we have

αi,j→j′ xj = αi,j→j′ αi→i′,j zj = αi(j→j′)→i′,j′ αi→i(j→j′),j′ αi,j→j′ zj

= αi(j→j′)→i′,j′ αi→i(j→j′),j′ zj′ = αi→i′,j′ zj′ = xj′ .

We claim λ pi x = y. Let j be in J . It suffices to show qi′j xj = qij zj. We have
qi′j xj = qi′j αi→i′,j zj = qij zj.

§ 340. For the reader’s convenience we state and prove Proposition 9.2.10 p. 220.

Proposition 341 (Proposition 9.2.10 p. 220). If C and J are categories, if C admits
small π-filtrant inductive limits, if J satisfies card(Mor(J)) < π, if β : J → Cπ is a
functor and if colim β exists in C, then it belongs to Cπ.

Proof. Let α : I → C be a functor with I small (Definition 5 p. 10) and π-filtrant,
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and consider the commutative diagram

colimiHomC(colimj β(j), α(i)) HomC(colimj β(j), colimα)

colimi limj HomC(β(j), α(i))

limj colimiHomC(β(j), α(i)) limj HomC(β(j), colimα).

a

b∼

e∼

c∼

d
∼

The maps b and e are bijective for obvious reasons. The map c is bijective because of
our assumptions on I and J . The map d is bijective because β(j) is in Cπ for all j.
Thus, the map a is bijective.

§ 342. P. 220, proof of Corollary 9.2.11.

Corollary 343 (Corollary 9.2.11 p. 220). If C admits small inductive limits and if
X is an object of C, then Cπ and (Cπ)X are π-filtrant.

This follows from §331 p. 209. Note that it suffices to assume that C admits
inductive limits indexed by categories J such that card(Mor(J)) < π. (For the case
of (Cπ)X , see Lemma 84 p. 63.)

§ 344. P. 222, Proposition 9.2.17.

• Proof of implication (ii)⇒(i). I suspect that the argument of the book is better
than the one given here, but, unfortunately, I don’t understand it. Here is a less
concise wording:

Recall the setting: C is a category admitting inductive limits indexed by any
category J such that card(Mor(J)) < π, and A is in Ind(C). Conditions (i) and (ii)
are as follows:

(i) CA is π-filtrant,

(ii) for any category J such that card(Mor(J)) < π and any functor φ : J → C, the
natural map A(colimφ)→ limA(φ) is surjective.

To prove (ii)⇒(i), let J be a category satisfying

card(Mor(J)) < π,
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and let ψ : J → CA be a functor. It suffices find a ξ in CA satisfying

limHomCA(ψ, ξ) ̸= ∅

(see Condition (d) in Proposition 329 p. 208). Let φ : J → C be the composition of ψ
with the forgetful functor CA → C, and write

ψ(j) =
(
φ(j) , φ(j)

yj−→ A
)
∈ CA.

In particular the family (yj) belongs to limA(φ). Our assumption about C implies
that colimφ exists in C. Let pj : φ(j)→ colimφ be the coprojection. By surjectivity
of the map A(colimφ) → limA(φ) in (ii), there is an x : colimφ → A such that
x ◦ pj = yj for all j. Setting

ξ :=
(
colimφ, colimφ

x−→ A
)
∈ CA,

and letting fj : ψ(j) → ξ be the obvious morphism, we get (fj) ∈ limHomCA(ψ, ξ).
q.e.d.

• Proof of implication (i)⇒(iii). The proof of the book exhibits a bijection

A

(
colim
j∈J

φ(j)

)
→ lim

j∈J
A(φ(j)).

To prove that it coincides with the natural morphism, it suffices to check that the
obvious diagram

A(colimj∈J φ(j)) limj∈J A(φ(j))

A(φ(j))

commutes for all j in J . The details are left to the reader.

12.2 Section 9.3 pp 223–228

Here is a slightly different wording.
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12.2.1 Conditions (9.3.1) p. 223

Recall Conditions (9.3.1) of the book: C is a category satisfying

(i) C admits small inductive limits,

(ii) C admits finite projective limits,

(iii) small filtrant inductive limits are exact,

(iv) there exists a generator G,

(v) epimorphisms are strict.

12.2.2 Summary of Section 9.3

The main purpose of Section 9.3 of the book is to prove Corollaries 9.3.7 and 9.3.8
p. 228 of the book, and these corollaries could be stated immediately after Conditions
(9.3.1) above. For the reader’s convenience we recall the definition of a regular cardinal
and state Corollary 9.3.7:

Definition 345 (regular cardinal). A cardinal π is regular if for any family of sets
(Bi)i∈I we have

card(I) < π, card(Bi) < π ∀ i ⇒ card

(⊔
i

Bi

)
< π.

Corollary 346 (Corollary 9.3.7 p. 228). Assume (9.3.1). Then for any small subset
S of Ob(C) there exists an infinite cardinal π such that S ⊂ Ob(Cπ).

We make a few comments about Corollary 9.3.8. Firstly, it would be simpler (I
think) to replace S with Cπ in the statement, since in the first sentence of the proof
one sets S := Cπ. Secondly, in view of the way Theorem 9.6.1 p. 235 of the book
is phrased, it would be better, even if it is a repetition, to incorporate Part (iv) of
Corollary 9.3.5 (which says that Cπ is closed by finite projective limits) into Corollary
9.3.8. Then, Corollary 9.3.8 would read as follows:

Corollary 347 (Corollary 9.3.8 p. 227). Assume (9.3.1) and let κ be a cardinal.
Then there exists an infinite regular cardinal π > κ such that

(i) Cπ is essentially small,
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(ii) if X ↠ Y is an epimorphism and X is in Cπ, then Y is in Cπ,

(iii) if X ↣ Y is a monomorphism and Y in Cπ, then X is in Cπ,

(iv) G is in Cπ,

(v) for any epimorphism f : X ↠ Y in C with Y in Cπ, there exists Z in Cπ and a
monomorphism g : Z ↣ X such that f ◦ g : Z → Y is an epimorphism,

(vi) Cπ is closed by inductive limits indexed by categories J which satisfy

card(Mor(J)) < π,

(vii) Cπ is closed by finite projective limits.

See also Theorem 376 p. 236 below.

12.2.3 Lemma 9.3.1 p. 224

For the reader’s convenience we state the lemma:

Lemma 348 (Lemma 9.3.1 p. 224). Assume that Conditions (9.3.1) p. 223 of the
book (see §12.2.1 p. 214) hold, let π be an infinite regular cardinal, let I be a π-filtrant
small category (Definition 5 p. 10), let α : I → C be a functor, and let colimα→ Y
be an epimorphism in C. Assume either card(Y (G)) < π or Y ∈ Cπ. Then there is
an i0 in I such that the obvious morphism α(i0)→ Y is an epimorphism.

The proof of Lemma 348 in the book uses twice the following lemma:

Lemma 349. Let C be a category, let π be an infinite cardinal, and let α : I → C
be a functor admitting an inductive limit X in C. Assume that the coprojections
pi : α(i)→ X are monomorphisms, and consider the conditions below:

(a) I is π-filtrant and X is π-accessible,

(b) the identity of X factors through the coprojection pi for some i,

(c) the coprojection pi is an isomorphism for some i,

(d) there is an i in I such that α(s) : α(i)→ α(j) is an isomorphism for all morphism
s : i→ j in I.

Then we have (a) ⇒ (b) ⇔ (c) ⇒ (d).
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Proof. This follows immediately from Exercise 1.7 p. 31 of the book.

We add a few details to the beginning of the proof of Lemma 9.3.1.

Set Xi = α(i) and Yi = Im(Xi → Y ) = Ker(Y ⇒ Y ⊔Xi Y ). In particular the
natural morphism Yi → Y is a monomorphism. Since small π-filtrant inductive limits
are exact, we have

colim
i

Yi
∼−→ Ker(Y ⇒ Y ⊔colimiXi Y )

∼−→ Im(colim
i

Xi → Y )
∼−→ Y, (137)

where, in view of the hypothesis that colimiXi → Y is an epimorphism, the last
isomorphism follows from Proposition 5.1.2 (iv) p. 114 of the book. It is easy
to see that the chain of isomorphisms (137) coincides with the natural morphism
colimi Yi → Y , and that the coprojections Yi → Y are monomorphisms. In particular
the maps Yi(G)→ Y (G) are injective by Proposition 161 p. 105 and Proposition 165
p. 106. This is easily seen to imply that colimi Yi(G)→ Y (G) is also injective.

(a) Assume that card(Y (G)) < π. Then card(S) < π, where S := colimi Yi(G). By
Corollary 9.2.12 p. 221, S ∈ Setπ and this implies

colim
i∈I

HomSet(S, Yi(G))
∼−→ HomSet(S, S).

Hence, there exist i0 and a map S → Yi0(G) such that the composition S → Yi0(G) ↣
S is the identity. Therefore Yi0(G)

∼−→ S and hence, Yi0(G)→ Yi(G) is bijective for
any i0 → i by Lemma 349. Hence Yi0 → Yi is an isomorphism, which implies, again
by Lemma 349, that Yi0 → Y is an isomorphism. Applying Proposition 5.1.2 (iv), we
find that Xi0 → Y is an epimorphism.

12.2.4 Proposition 9.3.2 p. 224

Proposition 350 (Proposition 9.3.2 p. 224). Let C be a category satisfying Conditions
(9.3.1) of the book, conditions stated in Section 12.2.1 p. 214 above. If π is an infinite
regular cardinal, if A is in C, and if

card(A(G)) < π, card
(
G⊔A(G)(G)

)
< π,

then A is in Cπ.

Here is a rewriting of the proof with a few more details:
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Proof of Proposition 350.

• Step 1. Note that Set ∋ S 7→ G⊔S ∈ C is a well-defined covariant functor. Also
note that card(G⊔S(G)) < π for any S ⊂ A(G). Indeed, there are maps

S → A(G)→ S

whose composition is the identity. Hence, the composition

G⊔S(G)→ G⊔A(G)(G)→ G⊔S(G)

is the identity.

• Step 2. Let I be a small (Definition 5 p. 10) π-filtrant category, let (Xi)i∈I be an
inductive system in C, and let X be its inductive limit. Claim 351 below will imply
Proposition 350.
Claim 351. The map

λA : colim
i∈I

HomC(A,Xi)→ HomC(A,X).

is bijective.
Claim 352. The map λA is injective.

Proof of Claim 352. (We shall only use card(A(G)) < π.) Suppose that f, g : A ⇒
Xi0 have same image in HomC(A,X). This just means that the two compositions

A⇒ Xi0 → X

coincide. We must show that f and g have already same image in

colim
i∈I

HomC(A,Xi),

that is, we must show that there is a morphism s1 : i0 → i1 in I such that the two
compositions A⇒ Xi0 → Xi1 coincide. For each s : i0 → i, set

Ns := Ker(A⇒ Xi).

By Corollary 3.2.3 (i) p. 79 of the book, I i0 is filtrant and the forgetful functor I i0 → I
is cofinal. One of our assumptions, namely Condition (9.3.1) (iii) in Section 12.2.1
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p. 214, says that small filtrant inductive limits are exact in C. In particular, colims∈Ii0
is exact in C, and we get

colim
s∈Ii0

Ns ≃ Ker

(
A⇒ colim

s∈Ii0
Xi

)
≃ Ker(A⇒ X) ≃ A.

As card(A(G)) < π by assumption, Lemma 348 p. 215 implies that there is a morphism
s1 : i0 → i1 in I such that Ns1 → A is an epimorphism. Hence, the two compositions
A⇒ Xi0 → Xi1 coincide, as was to be shown. This proves Claim 352.

It only remains, in order to prove Proposition 350, to check that λA is surjective.
Let f : A → X be a morphism. Claim 353 below will imply the surjectivity of λA,
and thus the truth of Proposition 350.
Claim 353. There is an i in I and a morphism g : A→ Xi such that pi ◦ g = f , where
pi : Xi → X is the coprojection.

• Step 3. Consider the following conditions:

(a) there is an i0 in I such that the diagram of solid arrows

B A

Xi0 X

f

pi0

can be completed to a commutative diagram as indicated (the morphism B → A
being an epimorphism),

(b) there is an i0 in I such that the diagram of solid arrows

C A

Xi0 X

a

x f

pi0

(138)

can be completed to a commutative diagram as indicated, with card(C(G)) < π (the
morphism C → A being an epimorphism).

We shall show that (a) holds, that (a) implies (b), and that (b) implies Claim 353,
and thus Proposition 350 p. 216.
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• Step 4: (a) holds. For each i in I define Yi := A ×X Xi. As colimi is exact in C,
we have colimi Yi ≃ A. As card(A(G)) < π, Lemma 9.3.1 p. 224 of the book (stated
above as Lemma 348 p. 215) implies that there is an i0 in I such that B := Yi0 → A
is an epimorphism.

• Step 5: (a) implies (b). Assuming (a), we consider the commutative square

B A

Xi0 X,

f

pi0

(139)

and we put S := Im(B(G) → A(G)) ⊂ A(G), so that B(G) ↠ S ↣ A(G) is the
“epi-mono” factorization of B(G)→ A(G). Let S ↣ B(G) be a section of B(G) ↠ S.
By Step 1 we have card(C(G)) < π. We set C := G⊔S. The vertical arrows of the
commutative diagram

G⊔B(G) C G⊔A(G)

B A

(140)

being epimorphisms by Proposition 5.2.3 (iv) p. 118 of the book, so is C → A. From
the commutative diagram

S S

S B(G) S,

we get, by Step 1, the commutative diagram

C C

C G⊔B(G) C.

(141)
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Splicing (139), (140) and (141) gives

C C

C G⊔B(G) C

B A

Xi0 X.

x

a

pi0

This proves (b).

• Step 6: (b) implies Claim 353 p. 218, and thus Proposition 350 p. 216. Assuming
(b), form the cartesian square

P C

C A.

a

a

Epimorphisms in C being strict, the sequence P ⇒ C
a−→ A is exact (see Proposition

5.1.5, (i), (a)⇒(c), p. 115 of the book). As

P (G) ≤ card(C(G))2 < π,

Claim 352 implies that the natural map

λP : colim
i∈I

HomC(P,Xi)→ HomC(P,X)

is injective. Consider the commutative diagram

P C A

Xi0 X.

a

x f

pi0

As λP is injective, and as the compositions P ⇒ C
x−→ Xi0

pi0−→ X are equal, there is a
morphism s : i0 → i such that the compositions P ⇒ C

x−→ Xi0
Xs−→ Xi are equal. The

exactness of P ⇒ C
a−→ A implies the existence of a morphism g : A→ Xi such that

Xs ◦ x = g ◦ a. (142)
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Proof of Claim 353. It suffices to show that the above morphism g satisfies f = pi ◦ g.
Consider the diagram

P C A

Xi0 Xi X

Xi0 X.

x

a

g
f

Xs pi

pi0

We have

f ◦ a = pi0 ◦ x by (138) p. 218
= pi ◦Xs ◦ x
= pi ◦ g ◦ a by (142) p. 220.

As a is an epimorphism, this forces f = pi ◦ g, and the proof of Claim 353 is
complete.

As already indicated, Claim 353 implies Proposition 350 p. 216.

12.2.5 Definition of two infinite regular cardinals

(See (9.3.4) p. 226 of the book.) Let C be a category satisfying Conditions (9.3.1) in
Section 12.2.1 p. 214 above. Let π0 be an infinite regular cardinal such that

card
(
G(G)

)
< π0, card

(
G⊔G(G)(G)

)
< π0.

Now choose a cardinal π1 ≥ π0 such that we have card
(
X(G)

)
< π1 for all set A

with card(A) < π0 and all quotient X of G⊔A. (Since the set of quotients of G⊔A
is small by Proposition 5.2.9 p. 121 of the book, such a cardinal π1 exists.) In the
sequel of Section 12.2 we assume

Condition 354. Conditions (i)–(v) of Section 12.2.1 p. 214 of the book hold; π0 and
π1 are as above; and π is the successor of 2π1 .

The cardinals π and π0 satisfy

(a) π and π0 are infinite regular cardinals,
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(b) G is in Cπ0 ,

(c) π′π0 < π for any π′ < π,

(d) if X is a quotient of G⊔A with card(A) < π0, then card
(
X(G)

)
< π,

(e) if A is a set with card(A) < π0, then card
(
G⊔A(G)

)
< π.

Condition (a) holds because π0 is infinite regular by assumption, and π is infinite
regular by Statement (iv) p. 217 of the book. Condition (b) holds by Proposition 350
p. 216. Condition (c) is proved as follows: if π′ < π, then π′ ≤ 2π1 and

π′π0 ≤ (2π1)π0 = 2π0π1 = 2π1 < π.

Conditions (d) and (e) are clear.

12.2.6 Lemma 9.3.3 p. 226

We state Lemma 9.3.3 for the reader’s convenience:

Lemma 355 (Lemma 9.3.3 p. 226). If Condition 354 holds, if A is a set of cardinal
< π, and if X is a quotient of G⊔A, then card(X(G)) < π.

The beginning of the proof of Lemma 9.3.3 in the book uses implicitly the following
two lemmas, which we prove for the sake of completeness.

Lemma 356. If α is a cardinal, then the cardinal of the set of those cardinals β such
that β < α does not exceed α.

Lemma 357. If π0, π and A are as above, and if I := {B ⊂ A | card(B) < π0}, then
we have card(I) < π.

Proof of Lemma 356. Recall that a subset S of an ordered set X is a segment if

X ∋ x < s ∈ S =⇒ x ∈ S.

In particular X<x (obvious notation) is a segment of X for any x in X. We take for
granted the following well-known facts:

• every set can be well-ordered,
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• if T is a set of two non-isomorphic well-ordered sets, then there is a unique triple
(W1,W2, S) such that T = {W1,W2} and S is a proper segment of W2 isomorphic to
W1,

• if W is a well-ordered set, then the assignment w 7→ W<w is an isomorphism of
well-ordered sets from W onto the set of proper segments of W .

Let A be a well-ordered set of cardinal α, and, for each cardinal β with β < α, let
B be a well-ordered set of cardinal β. Then B is isomorphic to A<a for a unique a in
A, and the map β 7→ a is injective.

Proof of Lemma 357. Putting α := card(A) we have

card(I) =
∑
π′<π0

(
α

π′

)
≤
∑
π′<π0

απ0 < π,

the last inequality following from Lemma 356, (c) and (a).

12.2.7 Theorem 9.3.4 p. 227

Theorem 358 (Theorem 9.3.4 p. 227). Assume Condition 354 p. 221 holds and let
X be an object of C. Then we have

X ∈ Cπ ⇔ card(X(G)) < π.

Proof of Theorem 358.

⇒: We prove this implication as in the book. For the reader’s convenience we
reproduce the argument: Set I := {A ⊂ X(G) | card(A) < π}. By Example 9.2.4
p. 218 of the book, I is π-filtrant. We get the morphisms

G⊔A → G⊔X(G) → X

for A in I, and
colim
A∈I

G⊔A
∼−→ G⊔X(G) → X.

Then we see that G⊔X(G) → X is an epimorphism by Proposition 5.2.3 (iv) p. 118 of
the book, that G⊔A → X is an epimorphism for some A in I by Lemma 348 p. 215,
and that card(X(G)) < π by Lemma 355 p. 222.

⇐: In view of Proposition 350 p. 216, it suffices to prove
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card
(
G⊔X(G)(G)

)
< π. (143)

To verify this inequality, we argue as in the proof of Lemma 9.3.3 p. 226 of the
book (stated on p. 222 above as Lemma 355). (Conditions (b), (c) and (e) referred
to below are stated in Section 12.2.5 p. 221.)

Let I be the ordered set of all subsets of X(G) of cardinal < π0. Then I is
π0-filtrant by Example 9.2.4 p. 218 of the book, and we have

G⊔X(G) ≃ colim
B∈I

G⊔B.

As G is π0-accessible by (b), we get

G⊔X(G)(G) ≃ colim
B∈I

G⊔B(G).

By Lemma 357 p. 222 we have card(I) < π. Since card(G⊔B(G)) < π for all B in I
by (e), this implies (143).

12.2.8 Brief comments

∗ P. 227, Corollary 9.3.5. In the proof of (i) we use Propositions 5.2.3 (iv) p. 118 and
5.2.9 p. 121 of the book. As already pointed out, in the proof of (iv), C should be Cπ.

∗ P. 228, Corollary 9.3.6. As already pointed out, lim
−→

in the statement should be σπ.
As for the proof, Conditions (i), (ii) and (iii) of Proposition 9.2.19 p. 223 of the book
follow respectively from (9.3.1) (i) (see (i) at the beginning of Section 12.2 p. 213),
(9.3.4) (b) (see (b) right after Condition 354 p. 221), and Corollary 9.3.5 (i) p. 227 of
the book.

∗ P. 228, Corollary 9.3.7. As {card(X(G)) |X ∈ S} is a small set of cardinals, we
may assume in Condition 354 p. 221 that we have π > card(X(G)) for all X in S,
and apply Theorem 358 p. 223.

∗ P. 228, Corollary 9.3.8. The proof uses implicitly Proposition 5.2.3 (iv) p. 118 of
the book and Example 9.2.4 p. 218 of the book.

12.3 Quasi-Terminal Object Theorem

Recall the following result:
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Theorem 359 (Zorn’s Lemma). If X is an ordered set such that each well-ordered
subset of X has an upper bound, then X has a maximal element.

The purpose of this section is to prove a common generalization of Theorem 359
above and of Theorem 9.4.2 p. 229 of the book, stated below as Theorem 361. We
start with a reminder:

Definition 360 (Definition 9.4.1 p. 228, quasi-terminal object). An object X of a
category C is quasi-terminal if any morphism u : X → Y admits a left inverse.

Theorem 361 (Theorem 9.4.2 p. 229). Any essentially small nonempty category
admitting small filtrant inductive limits has a quasi-terminal object.

Here is a weakening of the notion of inductive limit:

Definition 362 (small well-ordered upper bounds). Let I be a nonempty well-ordered
small set and α : I → C a functor. An upper bound for α is a morphism of functors
a : α → ∆X (see Notation 52 p. 46). If C has the property that any such functor
admits some upper bound, we say that C admits small well-ordered upper bounds.

Definition 363 (special well-ordered small set). Let C be a category. A nonempty
well-ordered small set I is C-special if it has no largest element and if, for any functor
α : I → C, there is some upper bound (ai : α(i) → X)i∈I and some element i0 in I
such that ai0 is an epimorphism.

Our goal is to prove:

Theorem 364 (Quasi-Terminal Object Theorem). If C is a nonempty essentially
small category (Definition 5 p. 10) C admitting small well-ordered upper bounds and
a C-special well-ordered set, then C has a quasi-terminal object.

Theorem 364 clearly implies Zorn’s Lemma (Theorem 359). Lemma 370 below
will show that Theorem 361 follows also from Theorem 364. Theorem 361 will be
used in the book to prove Theorem 9.5.5 p. 233.

The proof of Theorem 364 is essentially the same as the proof of Theorem 361
given in the book. For the reader’s convenience, we spell out the details.

Lemma 365. If C is a nonempty small category (Definition 5 p. 10) admitting
small well-ordered upper bounds, then there is an X in C such that, for all morphism
X → Y , there is a morphism Y → X.
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Proof. Let F be the set of well-ordered subcategories of C. For I and J in F we
decree that I ≤ J if and only if I is an initial segment of J . This order is clearly
inductive. Let S be a maximal element of F . As S is small, it admits an upper
bound (aS : S → X)S∈S .

We shall prove that X satisfies the conditions in the statement. Let u : X → Y
be a morphism in C.

(i) The object Y is in S. Otherwise, we can form the well-ordered subcategory S̃
of C by appending the element Y to S and making it the largest element of S̃, the
morphism S → Y being u ◦ aS. We have S̃ ∈ F and S < S̃, contradicting the
maximality of S.

(ii) As Y is in S, there is a morphism Y → X, namely aY .

Definition 366 (Property (P )). We say that a morphism a : A → B in a given
category has Property (P ) if for any morphism b : B → C there is a morphism
c : C → B satisfying c ◦ b ◦ a = a.

Lemma 367 (Sublemma 9.4.4 p. 229). If C is a small (Definition 5 p. 10) nonempty
category admitting small well-ordered upper bounds, and if X is an object of C, then
there is a morphism f : X → Y having Property (P ).

Proof. The category CX is again nonempty, small (Definition 5 p. 10), and admits
small well-ordered upper bounds, so that Lemma 365 applies to it. Let f : X → Y be
to CX whatX is to C in Lemma 365. Then it is easy to see that f has Property (P ).

We recall the notion of construction by transfinite induction.

Theorem 368 (Construction by Transfinite Induction). Let U be a universe, let
F : U → U be a map, and let I be a well-ordered U-set. Then there is a unique pair
(S, f) such that S is a U-set, f : I → S is a surjection, and we have

f(i) = F (f(j)j<i)

for all i in I, where f(j)j<i is viewed as a family of elements of {f(j) | j ∈ I, j < i}
indexed by {j ∈ I | j < i}.

Proof. Uniqueness: Assume that (S, f) and (T, g) have the indicated properties. It
suffices to prove f(i) = g(i) for all i in I. Suppose this is false, and let i be the least
element of I such that f(i) ̸= g(i). We have

f(i) = F (f(j)j<i) = F (g(j)j<i) = g(i),
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a contradiction.

Existence: Recall that a subset J of I is called a segment if I ∋ i < j ∈ J implies
i ∈ J . Let Z be the set of all triples (J, SJ , fJ), where J is a segment of I, where
f : J → SJ is a surjection, and where we have fJ(j) = F (fJ(k)k<j) for all j in J .
Decree that

Z ∋ (J, SJ , fJ) ≤ (K,SK , fK) ∈ Z

if and only if J is a segment of K. By the uniqueness part, (Z,≤) is inductive. Let
(J, SJ , fJ) be a maximal element of Z. It suffices to assume that J is a proper segment
of I and to derive a contradiction. Let k be the minimum of I \ J , put

K := J ∪ {k}, fK(j) := fJ(j) ∀ j ∈ J,

fK(k) := F (fK(j)j<k), SK := SJ ∪ {fK(k)}.

Then (K,SK , fK) contradicts the maximality if (J, SJ , fJ).

Proof of the Quasi-Terminal Object Theorem (Theorem 364 p. 225). Let C be as in
the statement. We assume (as we may) that C is small (Definition 5 p. 10). Let us
choose a C-special well-ordered set I, and let us define an inductive system (Xi)i∈I by
transfinite induction as follows: For the least element 0 of I we choose an arbitrary
object X0 of C. Let i > 0 and assume that Xj and ujk : Xk → Xj have been
constructed for k ≤ j < i.

(a) If i = j+1 for some j, take uij : Xj → Xi with Property (P ), and put uik := uij◦ujk
for any k ≤ j.

(b) If i = sup {j | j < i}, let (aj : Xj → Xi)j<i be some upper bound for (Xj)j<i and
put uij := aj.

(Recall that, by Definition 366 p. 226, the condition “uij : Xj → Xi has Prop-
erty (P )” means that for any morphism b : Xi → C there is a morphism c : C → Xi

satisfying c ◦ b ◦ uij = uij. Recall also that such a uij exists by Lemma 367 p. 226.)

Then (Xi)i∈I is indeed an inductive system in C. As I is C-special, there is an upper
bound (bi : Xi → X)i∈I for (Xi)i∈I , and there is an i0 in I such that bi0 : Xi0 → X is
an epimorphism.

We claim that X is quasi-terminal. Let u : X → Y be a morphism. It suffices to
prove the claim below:
Claim 369. There is a morphism v : Y → X such that v ◦ u = idX .
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Consider the morphisms

Xi0 Xi0+1 Y.
ui0+1,i0

u◦bi0+1

As ui0+1,i0 has Property (P ), there is a morphism w : Y → Xi0+1 satisfying

w ◦ u ◦ bi0+1 ◦ ui0+1,i0 = ui0+1,i0 . (144)

Put
v := bi0+1 ◦ w : Y → X. (145)

It suffices to show that v satisfies the equality v ◦ u = idX in Claim 369 p. 227. We
have

v ◦ u ◦ bi0 = bi0+1 ◦ w ◦ u ◦ bi0 by (145)
= bi0+1 ◦ w ◦ u ◦ bi0+1 ◦ ui0+1,i0

= bi0+1 ◦ ui0+1,i0 by (144)
= bi0
= idX ◦bi0 .

As bi0 is an epimorphism, this implies v ◦ u = idX , proving Claim 369 p. 227, and
thus the Quasi-Terminal Object Theorem (Theorem 364 p. 225).

Here is a diagrammatic illustration of the above computation:

Xi0 X Y X

Xi0 Xi0+1 X Y Xi0+1 X

Xi0 Xi0+1 X

Xi0 X.

bi0 u v

ui0+1,i0 bi0+1
u w bi0+1

ui0+1,i0 bi0+1

bi0

For the reader’s convenience we state and prove Sublemma 9.4.5 p. 229 of the
book.
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Lemma 370 (Sublemma 9.4.5 p. 229). If C is a small (Definition 5 p. 10) nonempty
category admitting small filtrant inductive limits, if π is an infinite regular cardinal
such that card(Mor(C)) < π, if I is a π-filtrant small category, and if (Xi)i∈I is an
inductive system in C indexed by I, then there is an i0 in I such that the coprojection
Xi0 → colimiXi is an epimorphism.

Proof. Set X := colimiXi and let ai : Xi → X be the coprojection. For any Y in C
let

bYi : HomC(Y,Xi)→ colim
j

HomC(Y,Xj)

be the coprojection, let F (Y ) be the image of the natural map

colim
j

HomC(Y,Xj)→ HomC(Y,X),

and define φY by the commutative diagram

colimj HomC(Y,Xj) F (Y ) HomC(Y,X)

HomC(Y,Xi).

φY

bYi φYi :=ai◦

Claim: There is an i0 in I such that φYi0 := ai0◦ : HomC(Y,Xi0) → F (Y ) is
surjective for all Y in C.

As card(HomC(Y,X)) < π, we have F (Y ) ∈ Setπ by Corollary 9.2.12 p. 221 of
the book. By Lemma 9.3.1 p. 224 of the book (stated above as Lemma 348 p. 215),
there is an iY in I such that

aiY ◦ : HomC(Y,XiY )→ F (Y )

is surjective. As card({iY |Y ∈ Ob(C)}) < π and I is π-filtrant, there is an i0 in I
such that, for any Y in C, there is a morphism iY → i0. This implies the claim.

Let i be in I. In particular, ai = φXii (idXi) is in F (Xi). As

φXii0 := ai0◦ : HomC(Xi, Xi0)→ F (Xi)

is surjective by the claim, there is a morphism hi : Xi → Xi0 such that ai0 ◦ hi = ai.
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Let us show that ai0 : Xi0 → X is an epimorphism. Let f1, f2 : X ⇒ Y be a pair
of parallel arrows such that f1 ◦ ai0 = f2 ◦ ai0 . Then, for any i in I, we have

f1 ◦ ai = f1 ◦ ai0 ◦ hi = f2 ◦ ai0 ◦ hi = f2 ◦ ai.

This implies f1 = f2.

We give again a diagrammatic illustration of the above computation:

Xi X Y

Xi Xi0 X Y

Xi Xi0 X Y

Xi X Y.

ai f1

hi ai0 f1

hi ai0 f2

ai f2

12.4 Lemma 9.5.3 p. 231

We give more details about the proof, but first let us recall the setting:

Let C be a U-category (Definition 4 p. 10), let C0 be a subcategory of C, and
assume

(9.5.2) (i) C0 admits small filtrant inductive limits and C0 → C commutes with them.

(9.5.2) (ii) Any diagram of solid arrows

X Y

X ′ Y ′,

f

u

g

u′

(146)

with u in Mor(C0) and f in Mor(C), can be completed to a commutative diagram
with dashed arrows u′ in Mor(C0) and g in Mor(C).
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Lemma 371 (Lemma 9.5.3 p. 231). If X ′ is in C0, if I is a small set, and if

(ui : Xi → Yi)i∈I , (fi : Xi → X ′)i∈I

are families of morphisms in C0 and C respectively, then there is an object Y ′ of C0, a
morphism u′ : X ′ → Y ′ in C0, and a family (gi : Yi → Y ′)i∈I of morphisms in C such
that gi ◦ ui = u′ ◦ fi for all i:

Xi Yi

X ′ Y ′.

fi

ui

gi

u′

Proof. We assume, as we may, that I is nonempty, well-ordered, and admits a
maximum m. Let 0 be the least element of I. We shall complete the following Task
(Ti) by transfinite induction on i ∈ I (see Theorem 368 p. 226):

[Beginning of the description of Task (Ti).] Construct, for each j ≤ i in I, a
commutative diagram

Xj Yj

X ′ Y ′<j Y ′j ,

uj

fj hj

vj wj

with vj, wj in Mor(C0), and construct, for each (i, j, k) in I3 with i ≥ j > k, a
commutative diagram

X ′ Y ′<j Y ′j

X ′ Y ′<k Y ′k ,

vj wj

vk wk

pjk

with pjk in Mor(C0), in such a way that we have

pij ◦ wj ◦ pjk = pik ∀ i > j > k, (147)

w0 = idY ′
0
. (148)
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Here is a diagrammatic illustration of (147):

Y ′<i Y ′<i

Y ′<j Y ′j

Y ′k .

wj

pij

pjk

pik

[End of the description of Task (Ti).]

[Beginning of the accomplishment of Task (Ti) for all i.] To handle Task (T0), we
define Y ′0 , v0 and h0 by (9.5.2) (ii):

X0 Y0

X ′ Y ′0 ,

f0

u0

h0

v0

and we define Y ′<0 and w0 by the commutative diagram

X0 Y0

X ′ Y ′<0 Y ′0

X ′ Y ′0 Y ′0 .

u0

f0 h0

v0 w0

v0 id

Let i in I satisfy i > 0, and let us tackle Task (Ti).

We assume (as we may) that Task (Tj) has already been achieved for j < i, i.e.
that the Y ′<j, Y ′j , hj, vj, wj have already been constructed for j < i, that the pjk have
already been constructed for k < j < i, and that all these morphisms satisfy the
required conditions.

It suffices to define Y ′<i, Y ′i , hi, vi, wi, and pij for j < i, in such a way that the
required conditions are still satisfied.
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For k < j < i we define ujk : Y ′k → Y ′j by

ujk := wj ◦ pjk. (149)

By (147) we have ujk ◦ ukℓ = ujℓ for all ℓ < k < j < i. In particular,

(Y ′j )j<i is an inductive system in C0. (150)

We denote its limit (which exists in C0 thanks to (9.5.2) (i)) by Y ′<i, and we write pij
for the coprojection Y ′j → Y ′<i. We also set

vi := pi0 ◦ v0, (151)

and we define
Y ′<i

wi−→ Y ′i
hi←− Yi

by (9.5.2) (ii):
Xi Yi

Y ′<i Y ′i ,

vi◦fi

ui

hi

wi

so that we have
hi ◦ ui = wi ◦ vi ◦ fi. (152)

We must check
pik ◦ wk ◦ vk = vi ∀ k < i, (153)

pij ◦ wj ◦ pjk = pik ∀ k < j < i. (154)

To prove (153), first note that we have

vk = pk0 ◦ w0 ◦ v0

by induction hypothesis, w0 = idY ′
0

by (148), and thus

vk = pk0 ◦ v0. (155)

We get

pik ◦ wk ◦ vk = pik ◦ wk ◦ pk0 ◦ v0 by (155)
= pi0 ◦ v0 by (147)
= vi by (151).
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This proves (153). We have

pij ◦ wj ◦ pjk = pij ◦ ujk by (149)
= pik by (150).

This proves (154).

Task (Ti) has been performed for the specific i we have been considering, and thus
Task (Ti) has been completed for all i in I. [End of the accomplishment of Task (Ti)
for all i.]

In particular Task (Tm), where, remember, m is the maximum of I, has also been
achieved. Putting Y ′ := Y ′m and

gi := umi ◦ hi ∀ i < m, (156)

gm := hm, (157)

u′ := wm ◦ vm, (158)

we get

gi ◦ ui = umi ◦ hi ◦ ui by (156)
= umi ◦ wi ◦ vi ◦ fi by (152)
= wm ◦ pmi ◦ wi ◦ vi ◦ fi by (149)
= wm ◦ vm ◦ fi by (153)
= u′ ◦ fi by (158)

for i < m, and

gm ◦ um = hm ◦ um by (157)
= wm ◦ vm ◦ fm by (152)
= u′ ◦ fm by (158).

12.5 Theorems 9.5.4 and 9.5.5 pp 232-234

The purpose of this section is to give a combined statement of Theorems 9.5.4 and
9.5.5.
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Remark 372. In Definition 9.5.1 (i) p. 231 we read “Let F ⊂ Mor(C) be a family of
morphisms in C”. To be completely clear we mentally replace the above quote with
“Let F be a full subcategory of Mor(C)”.

Let C be a U -category (Definition 4 p. 10), let C0 be a subcategory of C, let F be
an essentially small full subcategory of Mor(C0) (see Remark 374 below), let π be an
infinite cardinal such that X is in Cπ for any X → Z in F , and assume

(9.5.2) (i) C0 admits small filtrant inductive limits and C0 → C commutes with them;

(9.5.2) (ii) any diagram of solid arrows

X Y

X ′ Y ′,

f

u

g

u′

with u in Mor(C0) and f in Mor(C), can be completed as indicated to a commutative
diagram with dashed arrows u′ in Mor(C0) and g in Mor(C);

(9.5.6) for any X in C0, the category (C0)X is essentially small;

(9.5.7) any cartesian square

X ′ Y ′

X Y

u

f ′

v

f

in C with f, f ′ in Mor(C0) decomposes into a commutative diagram

X ′ Y ′

X Z Y

u

f ′

v

g h

such that the square (X ′, Y ′, Z,X) is cocartesian, g and h are in Mor(C0), and
f = h ◦ g;

(9.5.8) if a morphism f : X → Y in C0 is such that any cartesian square of solid
arrows

U V

X Y

u

s

v
ξ

f
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can be completed as indicated to a commutative diagram in C with the dashed arrow
ξ, then f is an isomorphism.

Theorem 373. If the above conditions hold, then, for any X in C0, there is a
Mor(C0)-injective object Y of C, and morphism f : X → Y in C0. If (9.5.2) holds,
but (9.5.6), (9.5.7) and (9.5.8) do not necessarily hold, then there is an F-injective
object Y of C, and a morphism f : X → Y in C0.

Remark 374. In the book F is supposed to be small, but the proof clearly works if F
is only essentially small. (See Remark 372 p. 235 above and §377 below.)

12.6 Brief comments

§ 375. P. 235, Theorem 9.6.1. In view of the comments made before Corollary 347
p. 214, Theorem 9.6.1 could be stated as follows:

Theorem 376 (Theorem 9.6.1 p. 235). Let C be a Grothendieck category. Then, for
any small subset E of Ob(C), there exists an infinite cardinal π such that

(i) Ob(Cπ) contains E,

(ii) Cπ is a fully abelian subcategory of C,

(iii) Cπ is essentially small,

(iv) Cπ contains a generator of C,

(v) Cπ is closed by subobjects and quotients in C,

(vi) for any epimorphism f : X ↠ Y in C with Y in Cπ, there exists Z in Cπ and a
monomorphism g : Z ↣ X such that f ◦ g : Z → Y is an epimorphism,

(vii) Cπ is closed by countable direct sums.

§ 377. P. 236, proof of Theorem 9.6.2.

Line 3: One could change “Let F ⊂ Mor(C0) be the set of monomorphisms N ↪→ G.
This is a small set by Corollary 8.3.26” to “Let F be the full subcategory of Mor(C0)
whose objects are the monomorphisms N ↣ G. Then F is essentially small by
Corollary 8.3.26” (see Remark 372 p. 235). In view of Remark 374, we can still apply
Theorem 9.5.4.

Line 6: Condition (9.5.2) (i) (see Section 12.5 p. 234 above) follows from
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Lemma 378. Let C be a category. Assume that small filtrant inductive limits exist
in C and are exact. Let α : I → C be a functor such that I is small and filtrant, and
α(s) : α(i) → α(j) is a monomorphism for all morphism s : i → j in I. Then the
coprojection pi : α(i)→ colimα is a monomorphism.

Proof. By Corollary 3.2.3 p. 79 of the book, I i is filtrant and the forgetful functor
φ : I i → I is cofinal. Define the morphism of functors

θ ∈ HomFct(Ii,C)(∆α(i), α ◦ φ)

(see Notation 52 p. 46) by

θ(s:i→j) :=
(
α(s) : α(i)→ α(j)

)
.

As θ is a monomorphism, Proposition 165 p. 106 implies that colim θ is also a
monomorphism. Then the conclusion follows from the commutativity of the diagram

colim∆α(i) colimα ◦ φ

α(i) colimα.

∼

colim θ

∼

pi

§ 379. Pp 237-239. For the reader’s convenience we first reproduce (with minor
changes) two corollaries with their proof.

Corollary 380 (Corollary 9.6.5 p. 237). If C is a small (Definition 5 p. 10) abelian
category, then Ind(C) admits an injective cogenerator.

Proof. Apply Theorem 8.6.5 (vi) p. 194 and Theorem 9.6.3 p. 236 of the book.

Corollary 381 (Corollary 9.6.6 p. 237). Let C be a Grothendieck category. Denote
by I the full additive subcategory of C consisting of injective objects, and by ι : I → C
the inclusion functor. Then there exist a (not necessarily additive) functor Ψ : C → I
and a morphism of functors idC → ι ◦Ψ such that X → Ψ(X) is a monomorphism
for any X in C.

Proof. The category C admits an injective cogenerator K by Theorem 9.6.3 p. 236 of
the book, and admits small products by Proposition 8.3.27 (i) p. 186 of the book.
Consider the (non additive) functor

Ψ : C → I, X 7→ KHomC(X,K).
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The identity of

HomSet(HomC(X,K),HomC(X,K)) ≃ HomC(X,K
HomC(X,K))

defines a morphism X → ι(Ψ(X)) = KHomC(X,K), and this morphism is a monomor-
phism by Proposition 5.2.3 (iv) p. 118 of the book.

The first sentence of the proof of Lemma 9.6.8 p. 238 of the book follows from
Proposition 5.2.3 (iv) p. 118 of the book.

The third sentence of the proof of Lemma 9.6.9 p. 238 of the book follows from
Proposition 5.2.3 (i) p. 118 of the book (the assumption that C admits small coproducts
is not used in the proof of Proposition 5.2.3 (i)).

In the proof of Theorem 9.6.10 p. 238 of the book, the exactness of C → Pro(C)
follows from Theorem 8.6.5 (ii) p. 194 of the book (see also §223 p. 139).

13 About Chapter 10

13.1 Definition of a triangulated category

The purpose of this Section is to spell out the observation made by J. P. May that,
in the definition of a triangulated category, Axiom TR4 of the book (p. 243) follows
from the other axioms. See Section 1 of The axioms for triangulated categories by J.
P. May:

http://www.math.uchicago.edu/∼may/MISC/Triangulate.pdf

Various related links are given in the document http://goo.gl/df2Xw.

To make things as clear as possible, we remove TR4 from the definition of a
triangulated category and prove that any triangulated category satisfies TR4:

Definition 382 (triangulated category). A triangulated category is an additive
category (D, T ) with translation endowed with a set of triangles satisfying Axioms
TR0, TR1, TR2, TR3 and TR5 on p. 243 of the book.

Let (D, T ) be a triangulated category. In the book the theorem below is stated as
Exercise 10.6 p. 266 and is used at the top of p. 251 within the proof of Theorem
10.2.3 p. 249.
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Theorem 383. Let

X0 X1 X2 TX0

Y 0 Y 1 Y 2 TY 0

Z0 Z1 Z2 TZ0

TX0 TX1 TX2 T 2X0

u

f

v w

Tf

g Tg

h −Th

Tu Tv −Tw

be a diagram of solid arrows in D. Assume that the first two rows and columns are
distinguished triangles, and the top left square commutes2. Then the dotted arrows
may be completed in order that the bottom right square anti-commutes, the eight other
squares commute, and all rows and columns are distinguished triangles.

Corollary 384. Any category which is triangulated in the sense of Definition 382
satisfies TR4.

Recall Axiom TR5: If the diagram

U V W ′ TU

V W U ′ TV

U W V ′ TU

commutes, and if the rows are distinguished triangles, then there is a distinguished
2I think the assumption that the top left square commutes is implicit in the book.

239 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



triangle W ′ → V ′ → U ′ → TW ′ such that the diagram

U V W ′ TU

U W V ′ TU

V W U ′ TV

W ′ V ′ U ′ TW ′

commutes.

Proof of Theorem 383. From

X0 X1 X2 TX0

X1 Y 1 Z1 TX1

X0 Y 1 W TX0,

where the last row is obtained by TR2, we get by TR5

X0 X1 X2 TX0

X0 Y 1 W TX0

X1 Y 1 Z1 TX1

X2 W Z1 TX2.

a

w

b

d

a b c

(159)
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From

X0 Y 0 Z0 TX0

Y 0 Y 1 Y 2 TY 0

X0 Y 1 W TX0,

we get by TR5
X0 Y 0 Z0 TX0

X0 Y 1 W TX0

Y 0 Y 1 Y 2 TY 0

Z0 W Y 2 TZ0.

e

h

d

e

(160)

From

Z0 W Y 2 TZ0

W Z1 TX2 TW

Z0 Z1 Z2 TZ0,

e

b c −Ta

ℓ

where the second row is obtained from X2 a−→ W
b−→ Z1 c−→ TX2 in (159) by TR3 and

TR0, and
the last row is obtained by TR2, (161)
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we get by TR5
Z0 W Y 2 TZ0

Z0 Z1 Z2 TZ0

W Z1 TX2 TW

Y 2 Z2 TX2 TY 2,

b j

k

ℓ

Te

b c −Ta

j k −T i

(162)

where
X2 i−→ Y 2 j−→ Z2 k−→ TX2 is a distinguished triangle. (163)

We want to prove that the bottom right square of

X0 X1 X2 TX0

Y 0 Y 1 Y 2 TY 0

Z0 Z1 Z2 TZ0

TX0 TX1 TX2 T 2X0

u

f

v

i

w

Tf

g j Tg

h k

ℓ

−Th

Tu Tv −Tw

(164)

anti-commutes, that the eight other squares commute, and that all rows and columns
are distinguished triangles.

We list the nine squares of each of the diagrams (159), (160), (162), (164) as
follows:

1 2 3
4 5 6
7 8 9

and we denote the j-th square of Diagram (i) by (i)j.

The commutativity of (159)2 and (160)5 implies that of (164)2.

The commutativity of (159)3 and (160)6 implies that of (164)3.

The commutativity of (160)7 and (162)1 implies that of (164)4.
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The commutativity of (160)8 and (162)2 implies that of (164)5.

The commutativity of (160)9 and (162)3 implies that of (164)6.

The commutativity of (160)3 and (159)6 implies that of (164)7.

The commutativity of (159)9 and (162)8 implies that of (164)8.

To prove the anti-commutativity of the bottom right square of (164), note

Th ◦ ℓ = Td ◦ Te ◦ ℓ by (160)
= −Td ◦ Ta ◦ k by (162)
= −Tw ◦ k by (159).

The third row and column are distinguished triangles by (161) and (163) respec-
tively. It is easy to check that the other rows and columns are distinguished triangles
too.

13.2 Brief comments

§ 385. Definition 10.1.9 (i) p. 244. It is written:

“A triangulated functor of triangulated categories F : (D, T ) → (D′, T ′) is a
functor of additive categories with translation sending distinguished triangles to
distinguished triangles. If moreover F is an equivalence of categories, F is called an
equivalence of triangulated categories.”

This terminology is justified by the fact that, in the above setting, any quasi-
inverse to F is triangulated. This point is implicit in the proof of Proposition 10.3.3
p. 253 of the book. Here are more details:

Lemma 386. If (D, T ) is an additive category with translation, if ∆ and ∆′ are
two sets of triangles in (D, T ) such that (D, T,∆) and (D, T,∆′) are triangulated
categories, and if ∆ ⊂ ∆′, then ∆ = ∆′.

Proof. Left to the reader.

Lemma 387. If (D, T,∆) and (D′, T ′,∆′) are two triangulated categories, if F :
D → D′ and G : D′ → D are two quasi-inverse equivalences, and if F is triangulated,
then so is G.
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Proof. It is easy to see that the functor G is additive and commutes with the
translations (up to isomorphism). Let G∆′ be the set of those triangles in D which
are isomorphic to the image under G of some d.t. in D′. It is straightforward to
check that (D, T,G∆′) is triangulated, that ∆ ⊂ G∆′, and that Lemma 386 implies
G∆′ = ∆, that is, G is triangulated.

§ 388. P. 248, Lemma 10.2.1. The proof shows also the following: IfD is a triangulated
category and N is a full saturated triangulated subcategory of D, then a triangle in
N is a d.t. in D if and only if it is a d.t. in N .

§ 389. P. 249, Theorem 10.2.3 (v). After “Then F factors uniquely through Q” one
could add “and the induced functor D/N → D′ is triangulated”.

§ 390. P. 250, proof of Theorem 10.2.3 (iii). In view of Corollary 384 p. 239, it is not
necessary to prove TR4.

§ 391. P. 253, Definition 10.3.1. The definition is stated as follows:

We say that a triangulated functor F : D → D′ is right (resp. left) localizable with
respect to (N ,N ′) if Q′ ◦ F : D → D′/N ′ is universally right (resp. left) localizable
with respect to the multiplicative system NQ (see Definition 7.3.1). Recall that it
means that, for any X ∈ D,

“colim”
(X→Y )∈NQX

Q′F (Y ),

respectively
“lim”

(Y→X)∈NQX
Q′F (Y ),

is representable in D′/N ′. If there is no risk of confusion, we simply say that F is
right (resp. left) localizable or that RF exists.

It is implicitly assumed that the underlying universe U has been chosen so that D
is U -small (Definition 5 p. 10). The second sentence in the above quote is justified by
Theorem 95 p. 68 (the “Universal Kan Extension Theorem”).

§ 392. P. 254. The fact that the morphism RN
′
N F in the commutative diagram is

triangulated follows from Lemma 387 p. 243.

§ 393. P. 254, Display (10.3.1). Write sX : X → YX for the morphism in NQ with
YX in I which exists by assumption. Then Display (10.3.1) can be written as

RN
′

N F (Q(X)) := Q′(F (YX)).

Moreover, the structural morphism Q′ ◦ F → RF ◦ Q is given by Q′(F (X))
F (sX)−−−→

Q′(F (YX)) = RF (Q(X)). (See §254(e).)
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§ 394. P. 254, Proposition 10.3.5 (ii). Write R for RN ′
N , R

N ′′
N and RN

′′

N ′ ; write sX :
X → YX for the morphism in NQ with YX in I which exists by assumption; write
tX′ : X ′ → Y ′X′ for the morphism in N ′Q′ with YX in I which exists by assumption;
and define RF,RF ′ and R(F ′ ◦F ) is in §393 above. We may suppose that tX′ = idX′

whenever X ′ is already in I ′. Then we have

R(F ′ ◦ F )(Q(X)) = Q′′(F ′(F (YX))),

RF ′(RF (Q(X))) = RF ′(Q′(F (YX))) = Q′′(F ′(Y ′F (YX))) = Q′′(F ′(F (YX))).

(It is crucial that the above displays are chains of equalities, as opposed to chains of
isomorphisms.)

§ 395. Proof of Theorem 10.4.1 p. 257. The fact that “the canonical functor TX1 ×
TX2 → TXi (i=1,2) is cofinal” follows from Lemma 215 p. 135.

We rewrite the first display on page 257 of the book as

(φ†F )(X1 ⊕X2) = colim
Y ∈TX1

⊕TX2

F (Y )
∼←−
(a)

colim
(Y1,Y2)∈TX1

×TX2

F (Y1 ⊕ Y2)

≃
(b)

colim
(Y1,Y2)∈TX1

×TX2

F (Y1)⊕ F (Y2)

≃
(c)

(
colim

(Y1,Y2)∈TX1
×TX2

F (Y1)

)
⊕
(

colim
(Y1,Y2)∈TX1

×TX2

F (Y2)

)
∼−→
(d)

(
colim
Y1∈TX1

F (Y1)

)
⊕
(
colim
Y2∈TX2

F (Y2)

)
= (φ†F )(X1)⊕ (φ†F )(X2).

Isomorphism (a) follows from the cofinality of ξ, Isomorphism (b) follows from the
additivity of F , Isomorphism (c) is straightforward, Isomorphism (d) follows from
the cofinality of TX1 × TX2 → TXi for i = 1, 2.

For i = 1, 2 let
f : colim

φ(Y )→X1⊕X2

F (Y )→ colim
φ(Yi)→Xi

F (Yi)

be the morphism defined by the above display.

For i = 1, 2 define

g : colim
φ(Y )→X1⊕X2

F (Y )→ colim
φ(Yi)→Xi

F (Yi)

as follows: If
p[φ(Y )→ X1 ⊕X2] : F (Y )→ colim

φ(Y )→X1⊕X2

F (Y )
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is the coprojection corresponding to φ(Y )→ X1 ⊕X2, and

p[φ(Y )→ X1 ⊕X2] : F (Y )→ colim
φ(Y )→X1⊕X2

F (Y )

is the coprojection corresponding to φ(Yi)→ Xi, then g is defined by the commutative
diagrams

colim
φ(Y )→X1⊕X2

F (Y ) colim
φ(Yi)→Xi

F (Yi)

F (Y ) F (Y ).

g

p[φ(Y )→X1⊕X2] q[φ(Y )→X1⊕X2→Xi]

We must show f = g. It suffices to check that the diagrams

colim
φ(Y )→X1⊕X2

F (Y ) colim
φ(Yi)→Xi

F (Yi)

F (Y ) F (Y ).

f

p[φ(Y )→X1⊕X2] q[φ(Y )→X1⊕X2→Xi]

commute. This verification is left to the reader.

The fact that TX is cofinally small follows from Proposition 3.4.5 (iii) p. 89 of the
book.

13.3 Brown’s Representability Theorem

§ 396. P. 260, Remark 10.5.4, phrase “it is easy to see that (iii) implies (ii)”. For the
reader’s convenience we spell out the argument.

Let us define S as in Remark 10.5.4. We have a family (Xi → Yi) of morphisms
in D and a morphism C → ⊕Xi in D with C in F , we assume that the obvious
maps HomD(C,Xi)→ HomD(C, Yi) vanish, and we must show that the composition
C → ⊕Xi → ⊕Yi vanishes. By hypothesis there is a morphism C → ⊕Ci with Ci in
S such that the composition C → ⊕Ci → ⊕Xi coincides with the above morphism
C → ⊕Xi, so that it suffices to prove that the composition ⊕Ci → ⊕Xi → ⊕Yi
vanishes, or even to prove that the composition Ci0 → ⊕Xi → ⊕Yi vanishes for all i0
in I. But this follows from (ii) and the definition of F .

§ 397. P. 260, Remark 10.5.4. We also spell out the proof of the implication
(ii)′ ⇒(iii).
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Let f : C → ⊕Xi be given. We must find a family of morphisms (ui : Ci → Xi)
in D with Ci in S and a morphism g : C → ⊕Ci such that

f = (C
g−→ ⊕Ci → ⊕Xi).

Set
Ci :=

⊕
C∈F

⊕
C→Xi

C,

let pi[C,C → Xi] : C → Ci be the coprojections and let ui be the unique morphism
Ci → Xi such that ui ◦ pi[C,C → Xi] = (C → Xi) for all C and all C → Xi. Then
(ii)′ implies that the obvious map

HomD(C,⊕Ci)→ HomD(C,⊕Xi)

is surjective, and it suffices to let g be a pre-image of f .

§ 398. P. 261, proof of Lemma 10.5.6. Let us adhere to the notation of Lemma 10.5.6
and its proof.

(a) Let F be in S∧,prod, set
VF :=

⊕
C∈S0

⊕
C→F

C,

where C → F runs over HomS∧,prod(C,F ), write p[C,C → F ] : C → X for the
coprojections and let eF : VF → F be the unique morphism from VF to F in S∧,prod
which satisfies eF ◦ p[C,C → F ] = (C → F ) for all C → F in HomS∧,prod(C,F ).

We claim that eF : VF → F is an epimorphism.

To prove the claim it suffices to let C be in S0 and to verify that eF (C) : VF (C)→
F (C) is surjective. But this is clear because we have eF (C)(p[C,C → F ]) = (C → F ).

(b) Define φ̃ : D → S∧,prod by φ̃(X)(C) := HomD(C,X) and let X be in D. Then we
have a canonical bijection HomS∧,prod(C, φ̃(X)) ≃ HomD(C,X). Abusing the notation
we identify these two sets. Let eX : Vφ̃(X) → X be the unique morphism from Vφ̃(X) to
X in D which satisfies eX ◦ p[C,C → X] = (C → X) for all C → X in HomD(C,X).
Then we have

φ̃(eX) = eφ̃(X). (165)

(c) Let H be in D∧,prod and let H0 ∈ S∧,prod be the restriction of H to S. Then
eH0 ∈ H0(VH0) = H(VH0) ≃ HomD∧,prod(φ̃(VH0), H), that is, eH0 can be viewed as a
morphism eH : VH0 → H in D∧,prod.
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§ 399. P. 262, proof of Lemma 10.5.7 (i). Here is the implicit commutative diagram:

F (⊕iXi)
∏

iH(φXi, F )

H(φ⊕i Xi, F ) H(⊕i φXi, F )

F (Xi) H(φXi, F ),

∼

∼

∼

where we have written H for HomS∧,prod to save space.

§ 400. P. 261, Lemma 10.5.7 (ii). The proof shows that the direct sum in S∧,add of a
small family of objects of S∧,prod belongs to S∧,prod.

More precisely, if ι : S∧,prod → S∧,add is the natural functor, then the proof of
Lemma 10.5.7 (ii) in the book shows, in the notation used there, that ⊕i ιFi is
isomorphic to ιCoker(φ(⊕iXi)→ φ(⊕iYi)).

In view of Lemma 10.5.5 p. 260 of the book, this implies that the limit of a small
inductive system in S∧,prod exists in S∧,add and lies in S∧,prod. Moreover, §315 p. 191
entails that small filtrant inductive limits exist and are exact in S∧,add and S∧,prod.
The exactness of small filtrant inductive limits in S∧,prod will be used in §403 p. 249.

Right after the proof of Lemma 10.5.7 it is written: “Note that, for a small family
(Fi)i of objects in S∧,prod and X ∈ S, the map ⊕i(Fi(X))→ (⊕iFi)(X) may be not
bijective”. I think this is not true, that is, I think that the map⊕i(Fi(X))→ (⊕iFi)(X)
is always bijective. (If I’m wrong on this, then the present part of this text is incorrect.)

Let us insist on the main point:

Small filtrant colimits exist in S∧,prod and are exact.

§ 401. P. 263, proof of Lemma 10.5.8 (ii).

• In the notation of §398(b) p. 247 we set Yi := Vφ̃(Xi) and (Yi → Xi) := eXi and we
get φ̃(eXi) = eφ̃(Xi) by (165) p. 247.

• The fact that ⊕iWi → ⊕iYi → ⊕iXi → T (⊕iWi) is a d.t. follows from Proposition
10.1.19 p. 247 of the book.
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• Last sentence.

Variant 1: Consider the commutative diagram

⊕i φ(Zi) ⊕i φ(Yi) ⊕i φ̃(Xi) 0

⊕i φ(Zi) ⊕i φ(Yi) φ̃(⊕iXi) 0,

whose rows are complexes. We already know that the bottom row is exact. The
exactness of the top row follows (as in the proof of Lemma 10.5.7 (ii) p. 261 of the
book) from the isomorphisms

Coker(⊕i φ(Zi)→ ⊕i φ(Yi)) ≃ ⊕i Coker(φ(Zi)→ φ(Yi)) ≃ ⊕i φ̃(Xi).

Variant 2: Apply the Five Lemma to the commutative diagram

⊕iφ(Zi) ⊕iφ(Yi) ⊕iφ̃(Xi) 0

φ(⊕iZi) φ(⊕iYi) φ̃(⊕iXi) 0.

∼ ∼

§ 402. P. 263, proof of Lemma 10.5.9.

By §398(c) p. 247) the morphism X0 → H0 in S∧,prod extends to a morphism
X0 → H in D∧,prod.

Vanishing of Zn → Xn → H: Let 0 → F → Xn → H be exact in D∧,add, in the
notation of §398(a) p. 247 set Zn := VF and

(Zn Xn) := (Zn F Xn).
eF

The vanishing of Zn → Xn → H is then clear.

Before the sentence “Since Zn and Xn belong to K, Xn+1 also belongs to K”, one
could add “We may, and do, assume that K is saturated”.

Recall the Yoneda isomorphisms

HomS∧,prod(φ(X), H0) ≃ H(X) ≃ HomD∧(X,H)

for X in S.

Note that Convention 264 p. 166 can be applied.

§ 403. P. 264, proof of Lemma 10.5.11. As observed in §400 p. 248, small filtrant
inductive limits exist and are exact in S∧,prod.
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13.4 Exercise 10.3 p. 265

It suffices to prove:

If L : D → D′ is a triangulated functor of triangulated categories and R : D′ → D is
right adjoint to L, then R is triangulated.

The following argument is taken from Tag 0A8D in the Stacks Project:

http://stacks.math.columbia.edu/tag/0A8D

Proof. Let X be an object of D and X ′ an object of D′. Since L is triangulated we
have isomorphisms functorial in X and X ′

HomD(X,R(T (X
′)) ≃ HomD′(L(X), T (X ′))

≃ HomD′(T−1(L(X)), X ′)

≃ HomD′(T−1(L(X)), X ′)

≃ HomD(T
−1(X), R(X ′))

≃ HomD(X,T (R(X
′))).

By Yoneda’s lemma we obtain an isomorphism T (R(X ′)) ≃ T (R(X ′)) functorial in
X ′. Let

X ′ → Y ′ → Z ′ → T (X ′)

be a distinguished triangle in D′. Choose a distinguished triangle

R(X ′)→ R(Y ′)→ Z → T (R(X ′))

in D. Then
L(R(X ′))→ L(R(Y ′))→ L(Z)→ T (L(R(X ′)))

is a distinguished triangle in D′. By TR4 we can choose a morphism of distinguished
triangles

L(R(X ′)) //

��

L(R(Y ′)) //

��

L(Z) //

��

T (L(R(X ′)))

��
X ′ // Y ′ // Z ′ // X ′[1]
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Since R is right adjoint to L the morphism L(Z) → Z ′ determines a morphism
Z → R(Z ′) such that the diagram

R(X ′) //

id
��

R(Y ′) //

id
��

Z //

��

T (R(X ′))

id
��

R(X ′) // R(Y ′) // R(Z ′) // T (R(X ′))

commutes. Applying the cohomological functor HomD(W, ) for an object W of D,
we get a commutative diagram of abelian groups of the form

· · · U0 U1 U2 U3 · · ·

· · · V0 V1 V2 V3 · · ·

The top row is an exact complex for obvious reasons, whereas the bottom row is
an exact complex because of the isomorphism HomD(W,R( )) ≃ HomD′(L(W ), ).
We deduce from the 5 lemma that HomD(W,Z)→ HomD(W,R(Z

′)) is bijective, and
using the Yoneda lemma once more we conclude that Z → R(Z ′) is an isomorphism.
Hence we conclude that R(X ′) → R(Y ′) → R(Z ′) → T (R(X ′)) is a distinguished
triangle, which is what we wanted to show.

13.5 Exercise 10.11 p. 266

Recall the statement:

(i) Let N be a null system in a triangulated category D, let Q : D → D/N be the
localization functor, and let f : X → Y be a morphism in D satisfying Q(f) = 0.
Then f factors through some object of N .

(ii) The following conditions on X in D are equivalent:

(a) Q(X) ≃ 0, (b) X ⊕ Y ∈ N for some Y ∈ D, (c) X ⊕ TX ∈ N .

Proof.

(i) The definition of D/N and the assumption Q(f) = 0 imply the existence of a
morphism s : Y → Z in NQ such that s ◦ f = 0 (see (7.1.5) p. 155 of the book), and
thus, in view of the definition of NQ (see (10.2.1) p. 249 of the book), the existence
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of a d.t. W → Y → Z → TW with W in N , and the conclusion follows from the
fact that HomD(X, ) is cohomological (see Proposition 10.1.13 p. 245 of the book).

(ii)

(a)⇒(b): As Q(idX) = 0, the first part of the exercise implies that idX factors as
X

f−→ Z
g−→ X with Z in N . By TR2 there is a d.t.

X
f−→ Z

h−→ Y
k−→ TX.

Since g ◦ f = idX , the morphism f is a monomorphism, and so is Tf . As Tf ◦ k = 0
by Proposition 10.1.11 p. 245 of the book, this implies k = 0. Hence we have a
morphism of d.t.

X Z Y TX

X X ⊕ Y Y TX

f

(g,h)

h 0

(the bottom is a d.t. by Corollary 10.1.20 (ii) p. 248 of the book) and Proposition
10.1.15 p. 246 of the book implies that (g, h) is an isomorphism.

(b)⇒(c): Let ∆1, . . . ,∆5 be the triangles

X 0 TX TX

Y Y 0 TY

X ⊕ Y Y TX TX ⊕ TY

0 X X 0

X ⊕ Y X ⊕ Y X ⊕ TX TX ⊕ TY,

id

id

id

with ∆3 := ∆1 ⊕∆2 and ∆5 := ∆3 ⊕∆4. It is easy to see that ∆1,∆2 and ∆4 are
distinguished. Then ∆3 and ∆5 are distinguished by Proposition 10.1.19 p. 247 of
the book, and, as X ⊕ Y is in N , Condition N’3 of Lemma 10.2.1 (b) p. 249 of the
book implies that X ⊕ TX is in N .

(c)⇒(a): Follows from Theorem 10.2.3 (iv) p. 249 of the book.

252 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



14 About Chapter 11

14.1 Brief comments

§ 404. P. 270. Recall that (A, T ) is an additive category with translation. Let

(dX,i : Xi → TXi)i∈I (166)

be an inductive system in Ad. Assume that X := colimiXi exists in A. Then the
natural morphism colimi dX,i : X → TX is an inductive limit of (166) in Ad. There
are analogous statements with “projective” instead of “inductive” and Ac instead of
Ad.

§ 405. P. 270, Definition 11.1.3. Here is a “picture” of the mapping cone of f : X → Y :

TX T 2X

⊕ ⊕

Y TY.

−T (dX)

T (f)

dY

§ 406. P. 271, Remark 11.1.5. We have:

dMc(T (f)) =

 dT 2X 0

T 2(f) dTY

 , dT (Mc(f)) =

 dT 2X 0

−T 2(f) dTY

 ,

and

T (Mc(f)) = T 2X ⊕ TY

−1 0
0 1


−−−−−−−→ T 2X ⊕ TY = Mc(T (f))

is a differential isomorphism.

14.2 Theorem 11.2.6 p 273

Here is a minor comment about the verification of Axiom TR5 in the proof of Theorem
11.2.6. We stated Axiom TR5 right after Corollary 384 p. 239 above. For the reader’s
convenience we restate it.
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If the diagram

U V W ′ TU

V W U ′ TV

U W V ′ TU

commutes, and if the rows are distinguished triangles, then there is a distinguished
triangle W ′ → V ′ → U ′ → TW ′ such that the diagram below commutes:

U V W ′ TU

U W V ′ TU

V W U ′ TV

W ′ V ′ U ′ TW ′.

Going back to the proof of TR5 on p. 275, we consider the commutative diagram

X Y TX ⊕ Y TX

Y Z TY ⊕ Z TY

X Z TX ⊕ Z TX.

f α(f) β(f)

g α(g) β(g)

g◦f α(g◦f) β(g◦f)
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The goal of the proof is then to construct a commutative diagram

X Y TX ⊕ Y TX

X Z TX ⊕ Z TX

Y Z TY ⊕ Z TY

TX ⊕ Y TX ⊕ Z TY ⊕ Z T 2X ⊕ TY.

f α(f)

g

β(f)

u

g◦f

f

α(g◦f) β(g◦f)

v T (f)

g

α(f)

α(g)

α(g◦f)

β(g)

T (α(f))

u v w

14.3 Brief comments

§ 407. P. 280, Example 11.3.5 (i). It is written “Let f : X → Y be a morphism in C.
We identify f with a morphism in C(C). Then Mc(f) is the complex

· · · → 0→ X
f−→ Y → 0→ · · ·

where Y stands in degree 0.”

I would have said something slightly different, namely:

Let U• (resp. V •) be the complex having X (resp. Y ) in degree 0 and 0 in the
other degrees, let g : U• → V • the morphism whose zeroth component is f , and let
W • be the complex Mc(g). Then we have W • = U1+• ⊕ V •, that is, W • has X in
degree −1, Y in degree 0, and 0 elsewhere, and the differentials of W • are all equal to
0. The shifted object W 1+• has X in degree −2, Y in degree −1, and 0 elsewhere, and
the differentials of W 1+• are all equal to 0. The −1 component of dW • : W • → W 1+•

is f .

∗ P. 282, Definition 11.3.12: see §15 p. 18.

§ 408. P. 286, Notation 11.5.1. Here is a minor variant: Define the functor FI :
C2(C)→ C(C(C)) by the formulas

(FI(X)n)m := Xn,m, dmFI(X)n := d
′′n,m
X , (dnFI(X))

m := d
′n,m
X .
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§ 409. P. 289, beginning of Section 11.6. The key formula in the definition of
C(F ) : C(C)× C(C ′)→ C(C ′′) is

d
′′n,m
F (X,Y ) := (−1)m F (Xn, dmY ).

§ 410. P. 290, Example 11.6.2 (i) (see §16 p. 19). Writing F (U, V ) for HomC(U, V ),
the differential dF (X,Y ) is given, in the notation right before Proposition 11.5.5 p. 287
of the book, by the diagram

F (X−m, Y n−1)

F (X1−m, Y n) F (X−m, Y n).

F (X−m,dn−1
Y )

(−1)m+nF (d−mX ,Y n)

Here is another way of writing the same formula:

(dm+n−1
F (X,Y )((fi,j)))n,−m = dn−1Y ◦ fn−1,−m + (−1)m+nfn,1−m ◦ d−mX .

§ 411. P. 290, Example 11.6.2 (i). (As already stated, there is a typo; see §16 p. 19.)
Let C, C ′ and C ′′ be additive categories with translation. If F : C × C ′ → C ′′ is a
bifunctor of additive categories with translation and if C ′′ admits countable direct
sums, then, as explained in the book, F induces a bifunctor of additive categories
with translation

F⊕ : C(C)× C(C ′)→ C(C ′′).

If C ′′ admits countable products instead of direct sums, then F induces a bifunctor of
additive categories with translation

Fπ : C(C)× C(C ′)→ C(C ′′).

The precise formulas are given in the book. If F : C × C ′ op → C ′′ is a bifunctor of
additive categories with translation and if C ′′ admits countable products, then F
induces again a bifunctor of additive categories with translation

Fπ : C(C)× C(C ′)op → C(C ′′).

The formulas defining Fπ in this setting are almost the same as in the previous setting,
and we give them without further comments:

Fπ(Y,X)n,m = F (Y n, X−m),

256 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



d′n,m = F (dnY , X
−m),

d′′n,m = (−1)m+1F (Y n, d−m−1X ),

θY,X : Fπ(TY,X)→ TFπ(Y,X),

θ′Y,X : Fπ(Y, T
−1X)→ TFπ(Y,X),

θi+jY,X : Fπ(TY,X)i+j → (TFπ(Y,X))i+j,

θi,jY,X : Fπ((TY )i, X−j) = F (Y i+1, X−j)→ Fπ(Y,X)i+j+1 = (TFπ(Y,X))i+j,

θ′
i+j
Y,X : Fπ(Y, T

−1X)i+j → (TFπ(Y,X))i+j,

θ′
i,j
Y,X : Fπ(Y

i, (T−1X)−j) = F (Y i, X−j−1)→ Fπ(Y,X)i+j+1 = (TFπ(Y,X))i+j,

the morphism θ′i,jY,X being (−1)i times the canonical embedding.

§ 412. P. 296, Exercise 11.12, partial solution. Let f : X → Y be a morphism in
C(C), where C is an additive category. One of the sub-exercises asks for a proof of
the existence of a distinguished triangle

Mc(σ>af)→ Mc(f)→ Mc(σ≤af)→ Mc(σ>af)[1]

in K(C), which is equivalent to the existence of a distinguished triangle

Mc(σ≤af)[−1]→ Mc(σ>af)→ Mc(f)→ Mc(σ≤af) (167)

in K(C). We claim that there is a morphism g : Mc(σ≤af)[−1]→ Mc(σ>af) in C(C)
and an isomorphism Mc(g) ≃ Mc(f) in C(C). Clearly, the claim implies the existence
of a distinguished triangle (167). We shall define the morphism g and leave the
verification of the claim to the reader.

We define g : Mc(σ≤af)[−1]→ Mc(σ>af) as follows:

Firstly we define ga : Mc(σ≤af)[−1]a → Mc(σ>af)a as follows: We identify
Mc(σ≤af)[−1]a to Xa ⊕ Y a−1 and Mc(σ>af)a to Xa+1, and decree that ga : Xa ⊕
Y a−1 → Xa+1 is the obvious morphism induced by daX .

Secondly we define ga+1 : Mc(σ≤af)[−1]a+1 → Mc(σ>af)a+1 as follows: We
identify Mc(σ≤af)[−1]a+1 to Y a and Mc(σ>af)a to Xa+2 ⊕ Y a+1, and decree that
ga+1 : Y

a → Xa+2 ⊕ Y a+1 is the obvious morphism induced by daY .

Thirdly we set gn := 0 for n ̸= a, a+ 1.

We leave it to the reader to check g is indeed a morphism of complexes, and that
we have Mc(g) ≃ Mc(f) in C(C).
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15 About Chapter 12

15.1 Avoiding the Snake Lemma p. 297

This is about Sections 12.1 and 12.2 of the book. I think the Snake Lemma can be
avoided as follows:

Let A be an abelian category.

Lemma 413. If

X1 X2 X3 0

0 Y1 Y2 Y3

u1

f

u2

g

u3

f ′ g′

is a commutative diagram in A with exact rows, then the sequence

Keru1 → Keru2 → Keru3
0−→ Cokeru1 → Cokeru2 → Cokeru3

is exact at Keru2 and Cokeru2. If in addition u3 is a monomorphism or u1 is an
epimorphism, then the whole sequence is exact.

The proof of the above lemma is slightly easier than that of the Snake Lemma. Of
course one can argue that the Snake Lemma has an intrinsic interest, and, as it can
be proved with only a modest additional effort, it is worth proving it. The limited
purpose of this section is to describe an alternative, not to claim that this alternative
is better.

Proof. The exactness at Keru2 and Cokeru2 is straightforward. Assume u1 is an
epimorphism (the case when u3 is a monomorphism being ). It suffices to show that
the morphism g0 defined by the commutative square

Keru2 Keru3

X2 X3,

a2

g0

a3

g
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where a2 and a3 are the natural morphisms, is an epimorphism. Let b3 : Z3 → Keru3
be a morphism. It suffices to complete the commutative square

Z2 Z3

Keru2 Keru3.

b2

b

b3

g0

Completing successively the commutative squares

W2 Keru3

X2 X3

c2

c

a3

g

and
V2 Z3

W2 Keru3,

d2

c′

b3

c

we get the commutative diagram

V2 Z3

W2 Keru3

X1 X2 X3

Y1 Y2 Y3.

c′

d2 b3

d c2

c

a3

f

u1 u2

g

u3

f ′ g′

We complete the commutative square

Z2 V2

W2

X1 Y1,

h

e

d2

d

u1
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and define b : Z2 → Z3 by
b := c′e.

(In this proof we write xy for x ◦ y.)

It remains to define b2 : Z2 → Keru2 and to prove b3b = g0b2.

To define b2 it suffices to define a morphism b′2 : Z2 → X2 such that u2b′2 = 0.
This will give us a morphism b2 satisfying a2b2 = b′2.

We set b′2 := c2d2e− fh. We have

u2c2d2e = f ′dd2e = f ′u1h = u2fh,

and thus u2b′2 = 0. We also have

a3b3b = a3b3c
′e = gc2d2e = gc2d2e− gfh = gb′2 = ga2b2 = a3g0b2,

and thus b3b = g0b2 since a3 is a monomorphism.

Let (A, T ) be an abelian category with translation.

Lemma 414 (see Theorem 12.2.4 p. 301). If 0 → X
f−→ Y

g−→ Z → 0 is an exact
sequence in Ac, then the sequence H(X)→ H(Y )→ H(Z) is exact. If, in addition,
H(T nX) ≃ 0 (respectively H(T nZ) ≃ 0) for all n, then T nY → T nZ (respectively
T nX → T nY ) is a qis for all n.

Proof. Taking into account Display (12.2.1) p. 300 of the book, apply Lemma 413 to
the commutative diagram

CokerT−1dX CokerT−1dY CokerT−1dZ 0

0 KerTdX KerTdY KerTdZ .

dX

f

dY

g

dZ

f g

Proposition 415 (Corollary 12.2.5 p. 301). The functor

H : Kc(A)→ A

is cohomological.
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Proof. Let X → Y → Z → TX be a d.t. in Kc(A). It is isomorphic to

V
α(u)−−→ Mc(u)

β(u)−−→ TU → TV

for some morphism u : U → V . Since the sequence

0→ V → Mc(u)→ TU → 0

in Ac is exact, it follows from Lemma 414 that the sequence

H(V )→ H(Mc(u))→ H(TU)

is exact.

Proposition 416 (Corollary 12.2.6 p. 302). To each short an exact sequence 0→
X

f−→ Y
g−→ Z → 0 in Ac is attached in a natural way a d.t. X f−→ Y

g−→ Z → TX in
Kc(A). More precisely, let 0 → X

f−→ Y
g−→ Z → 0 be an exact sequence in Ac and

define φ : Mc(f)→ Z by φ := (0, g). Then φ is a morphism in Ac, this morphism
is a qis, and it satisfies φ ◦ α(f) = g. In particular, there are natural morphisms
H(T nZ)→ H(T n+1X) such that the sequence

· · · → H(X)→ H(Y )→ H(Z)→ H(TX)→ · · ·

is exact.

Proof. The commutative diagram in Ac with exact rows

0 X X 0 0

0 X Y Z 0

idX

idX

f

f g

yields the exact sequence

0→ Mc(idX)→ Mc(f)
φ−→ Mc(0→ Z)→ 0

in Ac. As H(Mc(idX)) ≃ 0, a homotopy Mc(idX)→ T−1Mc(idX) being given by the
matrix (

0 idX
0 0

)
,

the morphism φ is a qis by Lemma 414.
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15.2 Brief comments

§ 417. Pp. 300-301, the cohomology functor. In the paragraph just before Lemma
12.2.2 p. 300 it is written:

“We have obtained an additive functor: H : Ac → A”,

and in the paragraph just before Definition 12.2.3 p. 301 it is written:

“Hence the functor H defines a functor (denoted by the same symbol) H : Kc(A)→ A”.

In fact we have additive functors

H : (Ac, T )→ (A, T ) and H : (Kc(A), T )→ (A, T ).

In Corollary 12.2.5 p. 301 the display H : Kc(A)→ A can also be replaced with
H : (Kc(A), T )→ (A, T ), and the display

· · · → H(X)→ H(Y )→ H(Z)→ H(TX)→ · · ·

can be written

· · · → H(X)→ H(Y )→ H(Z)→ TH(X)→ · · ·

§ 418. P. 303, Display (12.3.3). The morphisms τ≤nX → τ̃≤nX → X induce
isomorphisms in the degree ≤ n cohomology. The morphisms X → τ̃≥nX → τ≥nX
induce isomorphisms in the degree ≥ n cohomology.

§ 419. P. 313, beginning of Section 12.5. Defining HI : C
2(C) → C2(C) by HI :=

F−1I ◦H ◦ FI , we get

HI(X)n,m = Hn(X•,m, d
′•,m
X ), d′HI(X) = 0, d

′′n,m
HI(X) = Hn(X•,m, d

′′•,m
X ).

The functor Hn
I : C2(C)→ C(C) is defined by Hn

I := Hn ◦ FI .

§ 420. P. 314, proof of Lemma 12.5.2. Define Y ∈ C(C(C)) by

Y := Im dqFI(X)[−q − 1]

(see §408 p. 255), that is:

(Y n)m =

{
Im d

′q,m
X if n = q + 1

0 if n ̸= q + 1,
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dY = 0 and dmY q+1 is induced by d
′′q+1,m
X . Then we have the exact sequence

0→ τ≤qFI(X)→ τ̃≤qFI(X)→ Mc(idY )→ 0 (168)

in C(C(C)). Define Z ∈ C(C) by Zm := (Y q+1)m and dmZ := dmY q+1 . Applying tot ◦F−1I

to (168) we get the exact sequence

0→ tot τ≤qI FI(X)→ tot τ̃ ≤qI FI(X)→ Mc(idZ)→ 0

in C2(C). As observed at the end of the proof of Proposition 416 p. 261, the complex
Mc(idZ) is exact.

§ 421. P. 315, Corollary 12.5.5 (ii).

Statement. If the columns X•,j of X are are exact for all j ̸= p, then tot(X) is qis to
X•,p[−p].

Proof. Apply Theorem 12.5.4 to the morphisms σ≤pII σ
≥p
II X ← σ≥pII X → X.

16 About Chapter 13

16.1 Brief comments

§ 422. Beginning of Section 13.1 p. 319. Recall that NQ is defined in (10.2.1) p. 249
of the book. Then §417 p. 262 implies that, in the context of the beginning of Section
13.1, we have f ∈ NQ⇔ f is a qis.

§ 423. P. 319, Display (13.1.1). This display reads: H : Kc(A)→ A. As observed in
§417 p. 262 we have in fact H : (Kc(A), T )→ (A, T ). (See also §422.)

§ 424. P. 319. Sentence “One shall be aware that the category Dc(A) may be a big
category” after Definition 13.1.1. See §427 p. 264 and §458 p. 273 below.

§ 425. P. 320, Display (13.1.2). It might be worth stating explicitly the equality

Nub(C)Q = Qis (169)

(see §422 p. 263).
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§ 426. P. 320, Parts (i) and (ii) of Proposition 13.1.5. Part (i): the argument showing
that the cohomology functor H : K(C)→ C(C) factors through Q : K(C)→ D(C) is
implicit in §417, §422 and (169). Part (ii): the statement that, in the notation of the
proposition, f is an isomorphism if H(f) is, also follows from the argument implicit
in §417, §422 and (169). To be slightly more explicit, one considers the long exact
sequence

· · · → H(X)→ H(Y )→ H(Z)→ H(TX)→ · · ·

attached to a d.t. X → Y → Z → TX in D(C). The fact that H commutes with T
implies H(Z) ≃ 0, Remark 13.1.4 (i) implies Z ≃ 0, and Exercise 10.1 p. 265 implies
that f is an isomorphism.

§ 427. P. 322, Notation 13.1.9, sentence “Remark that the set ExtkC(X, Y ) is not
necessarily U -small”. See §424 p. 263 above and §458 p. 273 below.

16.2 Lemma 13.2.1 p. 325

§ 428. P. 325. Lemma 13.2.1 will be used to prove Proposition 13.2.2 p. 326,
Proposition 13.2.6 p. 327, Theorem 13.2.8 p. 329, Proposition 13.3.5 p. 330 and
Lemma 14.4.1 p. 358 of the book.

§ 429. P. 325. Just before the last display it is written “There is a monomorphism
Zp ↣ W p.” This results from the following fact, whose proof is left to the reader:

Let
Z Y X

W V U

be a commutative diagram in C. If ZXUW is cocartesian, then so is Y XUV .

We apply this to the commutative diagram

Coker dp−1X Ker dp+1
X Xp+1

Coker dp−1Y Zp W p

and we use Lemma 290 (b) (ii) p. 177.
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§ 430. P. 325, exactness of

0→ Hp(X)→ Coker dp−1X → Ker dp+1
X → Hp+1(X)→ 0 :

• Exactness at Hp(X): apply the Five Lemma (Theorem 297 p. 179) to

Xp−1 Ker dpX Hp(X) 0

Xp−1 Xp Coker dp−1X 0.

dp−1
X

dp−1
X

• Exactness at Coker dp−1X : It suffices to complete the commutative diagram

W Z

Hp(X) Coker dp−1X Ker dp+1.

i

h

g
0

a b

Consider the commutative diagrams

Xp−1 Ker dpX Hp(X)

Xp−1 Xp Coker dp−1X

Ker dp+1
X

dp−1
X

e

c

a

dp−1
X

dpX

f

b

and
W Z

Xp Coker dp−1X .

j

h

g

f

The equalities dpXj = bfj = bgh = 0 yield commutative diagram

W

Ker dpX Xp.

k
j

e
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(In this Section we write uv for u ◦ v.) Setting i := ck we get ai = ack = fek = fj =
gh.

• Exactness at Ker dp+1
X : It suffices to complete the commutative diagram

W Z

Coker dp−1X Ker dp+1 Hp+1(X).

f

e

c
0

a b

Forming the commutative diagram

W Z

Xp Ker dp+1 Hp+1(X)

g

e

c
0

dpX b

and setting f := hg, where h : Xp → Coker dp−1X is the natural morphism, yields
af = ahg = dpXg = ce.

• Exactness at Hp+1(X): Obvious.

§ 431. P. 325, exactness of

0→ Hp(X)→ Coker dp−1Y → Zp → Hp+1(X)→ 0 :

• Exactness at Hp(X): As mentioned in the book, the exactness at Hp(X) holds by
assumption.

• Exactness at Coker dp−1Y : This is an immediate consequence of Lemma 295 (b)
p. 179.

• Exactness at Hp+1(X): The morphism Zp → Hp+1(X) is an epimorphism because
the composition Ker dp+1

X → Zp → Hp+1(X) is an epimorphism.

§ 432. P. 325, claim that Zp ∈ J . We have

Ker(Zp → Hp+1(X)) ≃ Coker(Hp(X)→ Coker dp−1Y ).

§ 433. P. 325, morphism fp+1 : Xp+1 → Y p+1. This morphism is defined as the
composition Xp+1 → W p → Y p+1.

§ 434. P. 325, morphism dpY : Y p → Y p+1. This morphism is defined as the
composition Y p → Coker dp−1Y → Zp → Y p+1.
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§ 435. P. 326, first display. Consider the commutative diagram

Ker ba

Ker a

Y p−1 Y p Coker dp−1Y Hp(X)

Zp

Y p+1.

dp−1
Y

dpY

a

c

0

b

The precise claim is that the morphism c is an isomorphism. The key point is the
fact that b is a monomorphism.

§ 436. P. 326, second display. The morphism Hp+1(X) → Hp+1(Y≤p+1) in the
commutative diagram

Coker dp−1X Ker dp+1
X Hp+1(X) 0

Coker dp−1Y Zp Hp+1(X) 0

Coker dp−1Y Y p+1 Hp+1(Y≤p+1) 0

is a monomorphism by the Five Lemma (Theorem 297 p. 179).

§ 437. P. 326. The first isomorphism in the third display follows from the fact that
dpY : Y p → Y p+1 factors as Y p ↠ Coker dp−1Y → Zp ↣ Y p+1, by definition of dpY .

16.3 Brief comments

§ 438. P. 326, proof of Proposition 13.2.2 (ii). See §418 p. 262.

267 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



§ 439. P. 328, proof of Proposition 13.2.6, Step (a). We write fg for f ◦ g.

• Hn−1(X)
∼−→ Hn−1(Z). It suffices to show

Ker dn−1X

∼−→ Ker fndn−1X .

Let
a : Ker fndn−1X ↣ Xn−1, b : Ker dnX ↣ Xn, c : Xn−1 → Ker dnX

be the natural morphisms. It suffices to show that the composition

Ker fndn−1X Xn−1 Xna dn−1
X

vanishes. By assumption the composition

Ker dnX Xn Y nb fn

is a monomorphism. Consider the commutative diagram

Ker fndn−1X

Xn−1 Xn

Ker dnX Y n.

a

c

dn−1
X

fn
b

The equalities fnbca = fndn−1X a = 0 imply ca = 0 and thus 0 = bca = dn−1X a.

• Hn(X) ↣ Hn(Z). Let

V W

Xn−1 Ker dnX

Xn−1 Ker dnY

c

b

a

(dn−1
X )′

(fn)′

(fndn−1
X )′

be a diagram, where (g)′ denotes the morphism induced by g. The bottom square
commutes, and it suffices to show that the commutativity of the big rectangle implies
that if the top square, which is clear.
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• Hn(X) ↠ Hn(Z). Even if this is unsatisfactory, let us use the Freyd-Mitchell
Theorem (Theorem 9.6.10. p. 238 of the book). In other words we may assume that
our abelian category C is Mod(R) for some ring R. We omit the ◦ symbol and most
of the parenthesis. Let yn ∈ Ker dnY . It suffices to show that there is an xn in Ker dnX
and an xn−1 in Xn−1 such that yn = fnxn + fndn−1X xn−1. By assumption there is an
xn in Ker dnX and a yn−1 in Y n−1 such that yn = fnxn + dn−1Y yn−1. We can replace
yn with yn − dn−1Y yn−1 and take xn−1 := 0.

§ 440. P. 327, Lemma 13.2.4. As noticed C+(IC) should be C+(IC). Using Definition
14.1.4 (i) p. 348 of the book, one can say that any X in C+(IC) is homotopically
injective.

§ 441. P. 327, Proposition 13.2.46. As noticed N should be N(C). Here is a corollary:

If C has enough injectives and J = IC (and (13.1.2) holds), then K(J ) ∼−→ D(C).

Proof. It suffices to show that any exact X in K(J ) is homotopic to zero, that is,
it suffices to show that Ker dnX is injective for all n. But this follows from the exact
sequence

Xn−d → Xn−d+1 → · · · → Xn−1 → Ker dnX → 0.

§ 442. P. 328, proof of Proposition 13.2.6, Step (b), Isomorphism Coker di−2M ≃
X i ⊕Xi−1 Coker di−2Y . Let

a : Y i−1 → Coker di−2Y , b : X i ⊕ Y i−1 → Coker di−2M ,

c : X i ⊕ Coker di−2Y → X i ⊕Xi−1 Coker di−2Y

be the canonical morphisms. One checks that there is a unique morphism

f : Coker di−2M → X i ⊕Xi−1 Coker di−2Y

such that f ◦ b = c ◦ (id⊕a), and a unique morphism

g : X i ⊕Xi−1 Coker di−2Y → Coker di−2M

such that g ◦ c ◦ (id⊕a) = b, and that f and g are mutual inverses.

§ 443. P. 328, proof of Proposition 13.2.6, Step (b), Isomorphism

Ker diM ≃ Ker di+1
X ×Y i+1 Y i.

Let
a : Ker di+1

X → X i+1, b : Ker diM → X i+1 × Y i,
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c : Ker di+1
X ×Y i+1 Y i → Ker di+1

X × Y i

be the canonical morphisms. One checks that there is a unique morphism

f : Ker diM → Ker di+1
X ×Y i+1 Y i

such that (id×a) ◦ c ◦ f = b, and a unique morphism

g : Ker di+1
X ×Y i+1 Y i → Ker diM

such that b ◦ g = (id×a) ◦ c, and that f and g are mutual inverses.

§ 444. P. 328, proof of Proposition 13.2.6, Step (c), proof of H i(X)
∼−→ H i(Z) for

i = a+ 1, a, a− 1.

• i = a+ 1: the isomorphism Im daZ ≃ Im daX is induced by X → Z,

• i = a: the isomorphism Ker daZ ≃ Ker daY is induced by Z → Y ,

• i = a− 1: the isomorphism Ker da−1Z ≃ Ker da−1Y is induced by X → Z.

§ 445. P. 330. Right after Definition 13.3.1 it is written:

By the definition, the functor F admits a right derived functor on K∗(C) [by the
way I think the authors meant D∗(C)] if

“colim”
(X→X′)∈Qis,X∈K∗(C)

Q′ ◦K(F )(X ′)

exists in D∗(C ′) for all X ∈ K∗(C). In such a case, this object is isomorphic to
R∗F (X).

It is implicitly assumed that the underlying universe U has been chosen so that C
is U -small (Definition 5 p. 10). This is justified by Theorem 95 p. 68 (the “Universal
Kan Extension Theorem”).

§ 446. P. 330, phrase “R∗F is a triangulated functor from D∗(C) to D∗(C ′) if it exists”
just before Notation 13.3.2. Here is a proof:

Consider the (non-commutative) diagram

K(C) K(C ′)

D(C) D(C ′).

Q

K(F )

Q′

RF
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We have
RF (X) ≃ colim

Y→X
K(F )(Y ),

where Y → X runs over the morphisms from Y to X in D(C). Using this expression
for RF (X) it is easy to see that RF commutes with finite products. By Proposition
8.2.15 p. 173 of the book, this implies that RF is additive.

As RF commutes with finite products, it commutes with mapping cones, and is
thus triangulated.

(We have implicitly used the fact that K(C) and D(C) have the same set of objects,
that Q acts on this set as the identity, and that the same holds for C ′.)

§ 447. P. 330, Corollary 13.3.3. More generally: Let X be in D+(C). Then RF (X)
exists if and only if R+F (X) exists.

§ 448. P. 330. It is observed in the book just before the statement of Proposition
13.3.5:

A full additive subcategory J of C is F -injective if and only if

(A) For all X in K+(C) there is a qis X → Y with Y in K+(J ),

(B) F (Y ) is exact whenever Y is an exact complex in K+(J ).

Part “(a) ⇒ (b) (2)” of the proof of Proposition 13.3.5 p. 331 shows that (A)
above implies that J is cogenerating in C.

§ 449. P. 331, Part “(a) ⇒ (b) (2)” of the proof of Proposition 13.3.5. We have

Im(F (X)→ F (X ′′))
∼−→ Im(F (X)→ F (Z0))

∼−→ Ker(F (Z0)→ F (Z1))
∼←− F (X ′′),

the first isomorphism following from the fact that F (X ′′) → F (Z0) is a monomor-
phism.

§ 450. P. 331, Remark 13.3.6 (i). See §448 p. 271. (I think that, in view of the
context, the implicit assumptions are that F is an additive functor and that there is
an F -injective subcategory J of C.)

§ 451. P. 331, Remark 13.3.6 (iii). Lemma 13.2.1 p. 325 of the book is also used.
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§ 452. P. 332. One can derive Corollary 13.3.8 from Theorem 13.8.7 as follows. Let
J be a full additive cogenerating subcategory of C, and consider the condition

(C) If 0 → X ′ → X → X ′′ → 0 is exact in C, and if X ′, X ∈ J , then X ′′ ∈ J and
0→ F (X ′)→ F (X)→ F (X ′′)→ 0 is exact.

We assume that (C) holds, and we must show that J is F -injective. Let Y ′ ↣ X
be a monomorphism in C with Y ′ in J , let X ↣ Y be a monomorphism in C with Y
in J , and let 0→ Y ′ → Y → Y ′′ → 0 be an exact sequence in C. Then (C) implies
that Y ′′ is in J and that 0→ F (X ′)→ F (X)→ F (X ′′)→ 0 is exact. Now Theorem
13.8.7 entails that J is F -injective.

§ 453. P. 332, first two sentences of the proof of Lemma 13.3.10. We get the
commutative diagram of complexes

0 Y ′ X X ′′ 0

0 Y ′ Z X ′′ 0

0 Y ′ Y Y ′′ 0.

The square (Z,X ′′, Y, Y ′′) is cartesian, and the top and bottom rows are exact. The
middle row is exact by Lemma 294 p. 178, and X → Z is an isomorphism by the
Five Lemma.

§ 454. P. 334, Lemma 13.3.12. We add the assumption that J is cogenerating. (See
also §484 p. 283 below. The notion of cogenerating full subcategory is defined on
p. 184 of the book, and the notion of F -injective full subcategory is defined on pages
253 and 330 of the book.)

§ 455. P. 334, proof of Lemma 13.3.12. The existence of an exact sequence RjF (X)
→ RjF (X ′′) → Rj+1F (X ′) attached to a given exact sequence 0 → X ′ → X →
X ′′ → 0 in C follows from Proposition 416 p. 261.

Unsolved Problem 456. P. 334, phrase “even if F is right derivable, there may not
exist an F -injective subcategory”. I failed to prove this.

§ 457. P. 335, Display (13.3.4). The existence of πC follows from Proposition 6.3.1
p. 139 of the book.
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§ 458. P. 337, Theorem 13.4.1. (See §17 p. 20.) Here is a corollary. Consider the
following “pathological conditions” on an abelian U -category C:

(a) there is an n in Z and there are X and Y in C such that Extn(X, Y ) is not
equipotent to any U -set,

(b) D∗(C) is not equivalent to a U -category,

(c) R∗HomC does not exist.

Then (a) ⇒ (b) ⇒ (c). (See §424 p. 263 and §427 p. 264 above.)

Here is an abelian U-category C satisfying (a). Let U be a universe, let k be a
field belonging to U , let V be a k-vector space whose dimension is larger than the
cardinal of U , let A be the tensor algebra of V , let C be the category of A-modules
belonging to U , and denote again by k the field k regarded as an A-module on which
the vectors of V act by zero. Then we have Ext1C(k, k) ≃ V ∗ /∈ U .

§ 459. P. 337, Theorem 13.4.1. (See §17 p. 20.) The natural morphism

colim
(X′→X),(Y→Y ′)∈Qis

HomK(C)(X
′, Y ′)→ HomD(C)(X, Y )

an isomorphism by Remark 7.1.18 (ii) p. 156 of the book. See also Theorem 10.2.3 (i)
p. 249.

§ 460. P. 337. (See §17 p. 20.) In view of §261 p. 163 above and Theorem 13.4.1
p. 337 of the book, the functors

Hom•C : K(C)×K(C)op → K(Mod(Z))

and

HomK(C) : K(C)×K(C)op → Mod(Z)

give rise to the commutative diagram

R0H•C(X, )(Y ) R0H•C(X, Y ) R0H•C( , Y )(X)

RHK(C)(X, )(Y ) RHK(C)(X, Y ) RHK(C)( , Y )(X)

HD(C)(X, Y ),

(170)
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where we have written H for Hom to save space, and where the horizontal arrows are
the natural maps and the other arrows are the natural bijections, and where

R(HomK(C)(X, ))(Y ), RHomK(C)(X, Y ), R(HomK(C)( , Y ))(X)

are defined by Notation 10.3.8 p. 255 of the book. Then (170) commutes, and all its
arrows are bijective. This implies

RHom•C(X, Y ) ≃ R(Hom•C(X, ))(Y ) ≃ R(Hom•C( , Y ))(X).

16.4 Exercise 13.15 p. 342

Here is a partial solution. Let C be an abelian category, let X and Y be in C, let E
be the set of short exact sequences

0→ Y → Z → X → 0,

and let ∼ be the following equivalence relation on E: the exact sequences

0→ Y → Z → X → 0

and
0→ Y → W → X → 0

are equivalent if and only if there is a commutative diagram

0 Y Z X 0

0 Y W X 0.

(This is easily seen to be indeed an equivalence relation.) To the element

0→ Y → Z → X → 0

of E we attach the morphism in

HomD(C)(X, Y [1]) = Ext1C(X, Y )
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suggested by the diagram
X

Y Z

Y,

where each row is a complex (viewed as an object of D(C)), with the convention that
only the possibly nonzero terms are indicated (the top morphism being a qis).

We claim:

(a) this process induces a map from E/∼ to Ext1C(X, Y ),

(b) this map (a) is bijective.

Claim (a) is left to the reader. To prove (b) we construct the inverse map. To this
end, we start with a complex W •, a qis f : W • → X, and a morphism g : W • → Y [1]
representing our given element of Ext1C(X, Y ). The natural morphism τ≤0W • → W •

being a qis, we can replace W • with τ≤0W •, or, in other words, we may, and will,
assume W n ≃ 0 for n > 0. We have the commutative diagram

W−2 W−1 W 0 X 0

Y
0

d−2
W

g

d−1
W f

whose top row is an exact complex. It gives rise to the commutative diagram

0 Ker f W 0 X 0

0 Y Z X 0,

g′

f

where the top row is an exact complex, where g′ is induced by g and where the square
(Ker f,W 0, Y, Z) is cocartesian. Then Lemma 294 p. 178 implies that the bottom row
is an exact complex. It is easy to see that this process defines a map from Ext1C(X, Y )
to E/∼, and that this map is inverse to the map constructed before. q.e.d.

275 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



17 About Chapter 14

17.1 Brief comments

§ 461. P. 348, paragraph before Lemma 14.1.2. Define u :M(X)→ T−1M(X) by

u =

(
0 idT−1X

0 0

)
: X ⊕ T−1X → T−1X ⊕ T−2X.

Then u is a homotopy between 0 and idM(X). In particular any morphism M(X)→
M(Y ) is a qis.

§ 462. P. 348, proof of Lemma 14.1.5. We define a map

HomDc(A)(X, I) := colim
(X′→X)∈Qis

HomKc(A)(X
′, I)→ HomKc(A)(X, I) (171)

by inverting the bijection HomKc(A)(X, I)→ HomKc(A)(X
′, I) described in the proof

given in the book. It is easy to see that (171) is the inverse of the natural map
HomKc(A)(X, I)→ HomDc(A)(X, I).

§ 463. P. 348, Lemma 14.1.5. The following corollary to Lemma 14.1.5 is almost
obvious, but its importance might warrant an explicit statement and an explicit proof.

Corollary 464. Let (A, T ) be an abelian category with translation such that for all
X in Ac there is a qis X → I with I in Kc,hi(A), let D be a triangulated category and
F : Kc(A)→ D a triangulated functor. Then RF : Dc(A)→ D exists and satisfies
RF (X) ≃ F (I) in the above notation.

Proof. This follows from Lemma 14.1.5 and Proposition 7.3.2 p. 160 of the book.

§ 465. P. 349, Display (14.1.2), definition of QM. To be consistent with Remark 372
p. 235 we define QM as the full subcategory of Mor(Ac) whose objects are the
morphisms which are qis and monomorphisms.

§ 466. P. 349, proof of Proposition 14.1.6, Step (i) (b), claim “M(v) belongs to QM”:
see §461 p. 276.
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17.2 Proposition 14.1.6 p. 349

Here are some additional details about Step (ii) of the proof of Proposition 14.1.6.

The fact that Z is qis to 0 follows from Proposition 416 p. 261.

We refer the reader to the book for a precise description of the setting. The
following facts can be easily verified:

We have morphisms

f : X → Y, φ : X → I, ψ : Y → I, h : T−1Y → I

in A which satisfy
φ = ψ ◦ f, (172)

h = T−1dI ◦ T−1ψ − ψ ◦ T−1dY , (173)

h = T−1dI ◦ T−1ψ + ψ ◦ dT−1Y , (174)

f and φ are in fact morphisms in Ac. (175)

It is straightforward to check that h is also a morphism in Ac. To prove h ◦T−1f = 0,
we note:

h ◦ T−1f = T−1dI ◦ T−1ψ ◦ T−1f + ψ ◦ dT−1Y ◦ T−1f by (174)
= T−1dI ◦ T−1φ+ ψ ◦ dT−1Y ◦ T−1f by (172)
= T−1dI ◦ T−1φ+ ψ ◦ f ◦ dT−1X by (175)
= T−1dI ◦ T−1φ+ φ ◦ dT−1X by (172)
= 0 by (175).

We also have morphisms

g : Y → Z, h̃ : T−1Z → I, ξ : Z → I ψ̃ : Y → I

in A with
g is in fact a morphism in Ac, (176)

h = h̃ ◦ T−1g, (177)

h̃ = T−1dI ◦ T−1ξ − ξ ◦ T−1dZ , (178)

ψ̃ = ψ − ξ ◦ g. (179)
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To prove that ψ̃ is a morphism in Ac, we note:

dI ◦ ψ̃ − T ψ̃ ◦ dY = dI ◦ ψ − dI ◦ ξ ◦ g − Tψ ◦ dY + Tξ ◦ Tg ◦ dY by (179)
= (dI ◦ ψ − Tψ ◦ dY )− (dI ◦ ξ ◦ g − Tξ ◦ Tg ◦ dY )
= Th− (dI ◦ ξ ◦ g − Tξ ◦ Tg ◦ dY ) by (173)
= Th− (dI ◦ ξ ◦ g − Tξ ◦ dZ ◦ g) by (176)

= Th− T h̃ ◦ g by (178)
= 0 by (177).

17.3 Brief comments

§ 467. P. 350, last paragraph. In view of the comments made about Corollary 347
p. 214 and Theorem 376 p. 236, one could replace “there exists an essentially small
full subcategory S of Ac such that . . . ” with “there exists an infinite cardinal π such
that (Ac)π is essentially small and satisfies . . . ”, and replace S with (Ac)π in (14.1.4)
p. 351 of the book.

§ 468. As pointed out to me by Olaf Schnürer, one should also assume in (14.1.4)
that the category S is closed under translation. It is used in the proof of Lemma
14.1.9 p. 351.

§ 469. P. 351, proof of (14.1.4) (iii). Given

Y

X ′ X

with Y in S we get
Z Y

X ′ X
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by Lemma 290 (a) (ii) p. 177, and then

Y ′

Z Y

X ′ X

with Y ′ in S and Y ′ ↣ Z ↠ Y an epimorphism by Theorem 376 (vi) p. 236

§ 470. P. 351, definition of F ′ and F . To be consistent with Remark 372 p. 235
we define F ′ and F as follows: F ′ is the full subcategory of QM whose objects are
are the objects u : X → Y of QM such that X and Y are in S, and F is the full
subcategory of F ′ obtained collecting a representative of each isomorphism class of
objects of F ′.

§ 471. P. 352, proof of Lemma 14.1.10. I think

Ker(H(Vn−1)→ H(X))→ Ker(H(Vn)→ H(X))

should be
Ker(H(Vn−1)→ H(X))→ H(Vn).

By taking the colimit over n we see that

Ker(H(V ′)→ H(X))→ H(V ′)

vanishes, which means that H(V ′)→ H(X) is indeed a monomorphism.

§ 472. P. 352, Corollary 14.1.12. Part (i) implies:

Let U0 ⊂ U be universes, let (A, T ) be a Grothendieck U -category with translation,
and let A0 ⊂ A be a fully abelian subcategory with translation. Assume that A0

is a Grothendieck U0-category. Then the natural functor Dc(A0) → Dc(A) is fully
faithful.

Part (iii). I would change

“the functor Q : Kc(A)→ Dc(A) admits a right adjoint Rq : Dc(A)→ Kc(A), Q◦Rq ≃
idDc(A), and Rq is the composition of ι : Kc,hi(A) → Kc(A) and a quasi-inverse of
Q ◦ ι”
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to

“the functor Rq : Dc(A)→ Kc(A) defined by Rq := ι ◦ (Q ◦ ι)−1, where ι : Kc,hi(A)→
Kc(A) is the natural functor and (Q ◦ ι)−1 is a quasi-inverse of Q ◦ ι, is a right
localization of the identity functor Kc(A)→ Kc(A) and satisfies Q ◦Rq ≃ idDc(A)”.

This follows from Proposition 7.3.2 p. 160 of the book, together with its proof.

§ 473. P. 355, Theorem 14.3.1:

(i) follows from Lemma 14.1.5 p. 348 of the book,

(ii) follows from Corollary 14.1.8 p. 350 of the book,

(iii) follows from Corollary 14.1.12 (i) p. 352 of the book,

(iv) follows from Corollary 14.1.12 (ii) p. 352 of the book,

(v) follows (with the change suggested in §472 p. 279) from Corollary 14.1.12 (iii)
p. 352 of the book,

(vi) follows from Corollary 14.1.12 (vi) p. 352 of the book,

(vii) follows from Theorem 14.2.1 p. 353 of the book,

(viii) follows from Corollary 14.2.2 p. 353 of the book,

(ix) follows from Corollary 14.2.3 p. 353 of the book.

§ 474. Corollary 14.3.2 p. 356. Let us add one sentence to the statement:

Corollary 475. Let k be a commutative ring and let C be a Grothendieck k-abelian
category. Then (Khi(C),K(C)op) is HomC-injective, and the functor HomC admits a
right derived functor

RHomC : D(C)×D(C)op → D(k).

If X and Y are in K(C), then for any qis Y → I with I in Khi(C) (such exist) we
have

RHomC(X, Y )
∼−→ HomK(C)(X, I)

∼−→ HomD(C)(X, I).

Moreover, H0(RHomC(X, Y )) ≃ HomD(C)(X, Y ) for X, Y in D(C).

§ 476. P. 358. Lemma 14.4.1 will be used to prove Theorems 14.4.3 and 14.4.5 p. 359
of the book.

§ 477. P. 358, proof of Lemma 14.4.1.
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• We have a commutative diagram

Qn Pn τ≤nX

Pn+1 τ≤n+1X X

in K(C).

• We have the following chain of isomorphisms in D(C):

Qn
∼−→ Mc(Pn ⊕ Pn+1 → τ≤n+1X)[−1] ∼−→ Mc(Pn+1 → Pn ⊕ Pn+1)

∼−→ Mc(0→ Pn)⊕Mc(Pn+1 → Pn+1)
∼−→ Pn ⊕ 0

∼−→ Pn.

• Here is a rewriting of the last four lines:

Hence, φi and φi+1 are monomorphisms by Exercise 8.37. Note that id−sh in
Exercise 8.37 corresponds to φi and X0 → X1 → · · · corresponds to H i(X)

id−→
H i(X)

id−→ · · · . It is straightforward to check that the obvious diagram with exact
rows

0 H i(Q) H i(P ) H i(R) 0

0
⊕
n≥i

H i(Qn)
⊕
n≥i

H i(Pn)

0
⊕
n≥i

H i(X)
⊕
n≥i

H i(X) H i(X) 0

φi

∼

∼

∼

∼

id−sh

commutes. This implies that H i(R)→ H i(X) is an isomorphism.

§ 478. P. 359, proof of Lemma 14.4.2. The fact that the full subcategory Khp(C)
of K(C) consisting of homotopically projective objects contains K−(P) follows from
Lemma 13.2.4 p. 327 of the book.

§ 479. P. 359. In the setting of Theorem 14.4.3, the functor RHomC exists.

§ 480. P. 359, Theorem 14.4.5.

We add the assumption that RHomC exists.
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Theorem 14.3.1 (vi) p. 355 implies that RF exists. This fact is implicit in the
statement and the proof of Theorem 14.4.5.

Let us denote by (b1) the statement “the left derived functor LG : D(C)→ D(C ′)
exists”, and by (b2) the statement “(LG,RF ) is a pair of adjoint functors”.

The proof proves successively (a), (b1), (c), (b2). More precisely:

• The second sentence of Step (v) of the proof is “Hence P̃ is K(G)-projective and
LG exists”. Thus, (a) and (b1) have been proved at this point.

• The penultimate sentence of the proof is “Hence we obtain (c)”.

• The last sentence of the proof is “By taking the cohomologies, we obtain (b)”, but
what is really meant is “By taking the cohomologies, we obtain (b2)”.

§ 481. P. 360, Step (ii) of the proof of Theorem 14.4.5: the fact that QisX ∩K−(P)
is co-cofinal to QisX follows from Proposition 3.2.4 p. 79 of the book.

§ 482. P. 360, Theorem 14.4.5 (c). Here is the implicit underlying lemma:

Lemma 483. In the setting described by the diagram

A E−→ B
F−→
−→
G

C,

where E is an equivalence, the map

HomFct(B,C)(F,G)→ HomFct(A,C)(F ◦ E,G ◦ E), θ 7→ θ ⋆ E

(see Definition 35 p. 32) is bijective.

(Note that the above lemma is a particular case of Lemma 7.1.3 p. 150 of the
book.)

The statement of Theorem 14.4.5 (c) is

We have an isomorphism in D(k), functorial with respect to X ∈ D(C) and Y ∈ D(C ′):

RHomC(X,RF (Y )) ≃ RHomC′(LG(X), Y ),

and the above lemma enables us to assume that X is in P̃ and Y in Khi(C ′).
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§ 484. P. 361, Corollary 14.4.6. We add the assumption that P is generating. (See
also §454 p. 272 above. The notion of generating full subcategory is defined on p. 184
of the book, and the notion of F -projective full subcategory is defined on pages 253
and 330 of the book.)

§ 485. P. 361, proof of Corollary 14.4.6. The last display can be written

colimHn(LG(α)) = colimHn(G(p•))
∼−→ Hn(G(colim p•)) = Hn(LG(colimα)).

§ 486. P. 361, Theorem 14.4.8. We add the assumption that RHomC1 and RHomC2
exist.

§ 487. P. 362, Line 8: as already indicated K(G)-projective should be G-projective
(see Definition 13.4.2 p. 338 of the book).

§ 488. P. 364, proof of Theorem 14.4.8. I don’t understand Step (f). Here is another
argument. We must prove that there is a functorial isomorphism

RHomC3(LG(X1, X2), X3) ≃ RHomC1(X1, RF (X2, X3))

for X1 ∈ K(C1), X2 ∈ K(C2), X3 ∈ K(C3). We can assume that X1 ∈ P̃1, X2 ∈
P̃2, X3 ∈ Khi(C3) (see §482 p. 282). We have

RHomC3(LG(X1, X2), X3) ≃ Hom•C3(K(G)(X1, X2), X3)

≃ Hom•C1(X1,K(F1)(X2, X3)) ≃ RHomC1(X1, RF (X2, X3)).

18 About Chapter 16

18.1 Sieves and local epimorphisms

This section is about the beginning of Section 16.1 p. 389 of the book. Let C be a
category whose hom-sets are disjoint, let M be the set of morphisms in C, and for
each U in C let MU ⊂ M be the set of morphisms whose target is U . A subset S
of MU is a sieve over U if it is a right ideal of M , in the sense that S contains all
morphism of the form s ◦ f with s in S. If S is a sieve over U and f : V → U is a
morphism, we put

S ×U V := {W → V | (W → V → U) ∈ S}. (180)
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One easily checks that this is a sieve over V .

To a sieve S over U we attach the subobject AS of U in C∧ by the formula

AS(V ) := S ∩ HomC(V, U).

Conversely, to an object A→ U of (C∧)U we attach the sieve SA→U over U by putting

SA→U := {V → A→ U}.

In particular we get a natural bijection between the sieves over U and the subobjects
of U in C∧, and this bijection is compatible with (180) p. 283. We may sometimes
tacitly identify these two sets, so that, given a sieve S over U , the datum of a
morphism (V → U) ∈ S is equivalent to that of a morphism V → S in C∧. (We say
that A ∈ C∧ is a subobject of B ∈ C∧ if A(U) ⊂ B(U) for all U .)

Let ΣU be the set of sieves over U . Let (J(U))U∈C be a subfamily of the family
(ΣU)U∈C and consider the following conditions:

Condition 489.

GT1: for all U in C we have: MU ∈ J(U),

GT2: for all U in C we have: J(U) ∋ S ⊂ S ′ ∈ ΣU =⇒ S ′ ∈ J(U),

GT3: for all U in C we have: S ∈ J(U), (V → U) ∈M =⇒ S ×U V ∈ J(V ),

GT4: for all U in C we have:

S ∈ J(U), S ′ ∈ ΣU , S
′ ×U V ∈ J(V ) ∀ (V → U) ∈ S =⇒ S ′ ∈ J(U).

The membres of J(U) are called covering sieves of U .

Proposition 490. Axiom GT2 follows from GT4.

Proof. In the notation of GT2, if (V → U) be in S, then we have S ′×UV = S×UV .

Consider the following conditions on a set E of morphisms in C∧:

LE1: idU is in E for all U in C,

LE2: if the composition of two elements of E exists, it belongs to E ,
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LE3: if the composition v ◦ u of two morphisms of C∧ exists and is in E , then v is in
E ,

LE4: a morphism A→ B in C∧ is in E if and only if, for any morphism U → B in
C∧ with U in C, the projection A×B U → U is in E .

As proved in the book,

E contains all epimorphisms. (181)

For the reader’s convenience we paste the proof of (181) (see p. 391 in the book):

Assume that u : A→ B is an epimorphism in C∧. If w : U → B is a morphism
with U in C, there exists v : U → A such that w = u ◦ v by Proposition 161 p. 105,
and Exercise 3.4 (i) p. 90 of the book, stated above as Proposition 165 p. 106. Hence,
idU : U → U factors as U → A×B U → U . Therefore A×B U → U is in E by LE1
and LE3, and this implies that A→ B is in E by LE4. q.e.d.

The elements of E are called local epimorphisms.

Let J = (J(U))U∈C be a subfamily of the family (ΣU )U∈C satisfying GT1-GT4, let
U be a universe such that C is U -small (Definition 5 p. 10), and let

E = E(J,U) (182)

be the set of those morphisms A→ B in C∧ such that, for any morphism U → B in
C∧ with U in C, the sieve SA×BU→U is in J(U).

Lemma 491. A morphism A→ U in C∧ with U in C is in E if and only if SA→U is
in J(U).

Proof. Observe first that, in the setting

A→ U ← V

(obvious notation), we have

SA×UV→V = SA→U ×U V. (183)

Let A→ U be a morphism in C∧ with U in C. Consider the conditions (with obvious
notation)

(A→ U) ∈ E , (184)
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SA×UV→V ∈ J(V ) ∀ V → U, (185)

SA→U ×U V ∈ J(V )V ∀ V → U, (186)

SA→U ∈ J(U). (187)

We have (184) ⇔ (185) by definition of E , and (185) ⇔ (186) by Lemma 491, (186)
⇒ (187) by GT1 and GT4, and (187) ⇒ (186) by GT3.

Let us check that E satisfies LE1-LE4:

LE1 follows immediately from GT1.

LE2: Let A→ B → C be a diagram in C∧, and assume that the two arrows are in E .
Consider the diagram of solid arrows with cartesian squares

F V

D E U

A B C

in C∧ (with U in C). We have that SE→U is in J(U) (because B → C is in E) and we
must prove that SD→U is in J(U). Let V → U be in SE→U , and let us complete the
diagram with cartesian squares as indicated. By GT4 it suffices to check that SF→V
is in J(V ). But this follows from the assumption that A→ B is in E (together with
a transitivity property of cartesian squares which has already been tacitly used).

LE3 follows immediately from GT2.

LE4 follows immediately from Lemma 491.

Conversely, given an object U of C and a set E of morphisms in C∧ satisfying
LE1-LE4, put

J(U) := {S ∈ ΣU | (AS → U) ∈ E}.

Recall that we have attached to a sieve S over U the subobject AS of U in C∧ defined
by

AS(V ) := S ∩ HomC(V, U).

Let us check that JE := (J(U))U∈C satisfies GT1-GT4.

GT1 follows from LE1 and the equality (AMU
→ U) = idU .
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GT2 follows from GT4 (Proposition 490 p. 284).

To prove GT3, note that if S is a sieve over U and V → U is a morphism in C,
then we have the equality

(AS′×UV → V ) = (AS′ ×U V → V ), (188)

in (C∧)V . In view of LE4, this implies GT3.

The lemma below will helps us verify GT4.

Lemma 492. For any sieve S over U we have

SAS→U = S.

For any morphism A→ U (obvious notation) there is a canonical isomorphism

ASA→U ≃ Im(A→ U).

Proof. The proof of the second sentence is straightforward and left to the reader. To
prove the first sentence let s : V → U be a morphism in C and S a sieve over U . It
suffices to show that s is in S if and only if s factors through the natural morphism
i : AS → U .

By the Yoneda Lemma (Lemma 36 p. 33), there is a bijection

S ∩ HomC(V, U)
φ−→ HomC∧(V,AS)

such that φ(s)W = s◦ for all W in C.

Assume that s is in S and let us show that there is a morphism v : V → AS
satisfying i ◦ v = s. It suffices to prove i ◦ φ(s) = s and to put v := φ(s). We have
for all W in C

(i ◦ φ(s))W = iW ◦ φ(s)W = iW ◦ (s◦) = s◦ = sW .

Conversely, assuming that v is in HomC∧(V,AS), it suffices to prove that i ◦ v is
in S. We have

i ◦ v = (i ◦ v) ◦ idV = (i ◦ v)V (idV ) = iV (vV (idV )) = vV (idV ) ∈ AS(V ) ⊂ S.
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Lemma 493. Condition GT4 holds.

Proof. Let us assume

S ∈ J(U), S ′ ∈ ΣU , S
′ ×U V ∈ J(V ) ∀ (V → U) ∈ S. (189)

It suffices to check S ′ ∈ J(U), or, equivalently,

(AS′ → U) ∈ E . (190)

Form the cartesian square

B AS

AS′ U.

As AS → U is in E by assumption, it suffices, by LE2 and LE3, to check

(B → AS) ∈ E . (191)

Let V → AS be a morphism in C∧ with V in C, and let

C V

B AS

be a cartesian square. By LE4 it is enough to verify

(C → V ) ∈ E . (192)

The morphism V → U being in S by the first sentence of Lemma 492, the sieve
S ′×U V is in J(V ) by (189), and AS′×UV → V is in E by definition of J(V ). We have

E ∋ (AS′×UV → V ) = (AS′ ×U V → V ) ≃ (C → V ).

Indeed, the equality holds by (188) p. 287, and the isomorphism holds because the
rectangle

C V

B AS

AS′ U

is cartesian. This proves successively (192), (191), (190) and the lemma.
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We have proved that (J(U))U∈C satisfies GT1-GT4.

It is now easy, thanks to Lemma 492 p. 287, to prove

Theorem 494. If C is a U-small category (Definition 5 p. 10), if J is a subfamily
of (ΣU)U∈C satisfying GT1-GT4, and if E is a set of morphisms in C∧U satisfying
LE1-LE4, then the equalities E = E(J,U) and J = JE are equivalent.

Corollary 495. Let U ⊂ U ′ be universes, let C be a U-small category, let J be a
subfamily of (ΣU )U∈C satisfying GT1-GT4 (see Conditions 489 p. 284), let u : A→ B
be a morphism in C∧U , and let u′ : A′ → B′ be the corresponding morphism in C∧U ′.
Then u is in E(J,U) (see (182) p. 285) if and only if u′ is in E(J,U ′).

18.2 Brief comments

§ 496. P. 390, Display (16.1.1). Note that AS is not a subobject of U in C∧ in the
sense of Definition 1.2.18 (i) p. 18 of the book. See §27 p. 27.

§ 497. P. 390, Axioms LE1-LE4. The set of local epimorphisms attached to the
natural Grothendieck topology associated with a small topological space X can be
described as follows.

Let f : A→ B be a morphism in C∧, where C is the category of open subsets of
X. For each pair (U, b) with U in C and b in B(U) let Σ(U, b) be the set of those V in
CU such that there is an a in A(V ) satisfying fV (a) = bV , where bV is the restriction
of b to V . Then f is a local epimorphism if and only if

U =
⋃

V ∈Σ(U,b)

V

for all (U, b) as above.

Moreover, a morphism u : A→ U in (OpX)
∧ with U in OpX is a local epimorphism

if and only if for all x in U there is a V in OpX such that x ∈ V and A(V ) ̸= ∅.

§ 498. For any universe U , any U -small category (Definition 5 p. 10) C and any sub-
family J of (ΣU )U∈C satisfying GT1-GT4 (see Conditions 489 p. 284), letM(J,U) and
I(J,U) denote respectively the set of local monomorphisms and local isomorphisms
attached to E(J,U) (see (182) p. 285). Corollary 495 p. 289 implies:

Let U ⊂ U ′ be universes, let C be a U-small category, let J be a subfamily of
(ΣU )U∈C satisfying GT1-GT4, let u : A→ B be a morphism in C∧U , and let u′ : A′ → B′
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be the corresponding morphism in C∧U ′ . Then u is in M(J,U) (resp. in I(J,U)) if
and only if u′ is inM(J,U ′) (resp. in I(J,U ′)).

§ 499. P. 395, proof of Lemma 16.2.3 (iii), sentence:

“Notice first that a morphism U → A×B A is nothing but a diagram U ⇒ A→ B
such that the two compositions coincide, and then any diagram S → U ⇒ A such
that the two compositions coincide factorizes as S → A ×

A×BA
U → U .”

Let us prove the factorization statement, even if it is straightforward. Consider
the commutative diagram with cartesian squares

S

D U

A C A

A B.

z

y

x

w2

w1

We have
w1x = idA = w2x (193)

and
w1yz = w2yz (194)

by assumption (we omit the composition symbol ◦), and it suffices to show xw1yz = yz,
that is

wixw1yz = wiyz (i = 1, 2). (195)

But (195) follows immediately from (193) and (194).

§ 500. P. 395, Lemma 16.2.3 (iii). Consider the conditions

(b) for any diagram C ⇒ A → B such that C is in C and the two compositions
coincide, there exists a local epimorphism D → C such that the two compositions
D → C ⇒ A coincide,

(c) for any diagram C ⇒ A → B such that C is in C∧ and the two compositions
coincide, there exists a local epimorphism D → C such that the two compositions
D → C ⇒ A coincide,
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(d) for any diagram C ⇒ A → B such that C is in C and the two compositions
coincide, there exists a local isomorphism D → C such that the two compositions
D → C ⇒ A coincide,

(e) for any diagram C ⇒ A → B such that C is in C∧ and the two compositions
coincide, there exists a local isomorphism D → C such that the two compositions
D → C ⇒ A coincide.

Recall that (a) is the condition that A→ B is a local monomorphism. Lemma
16.2.3 p. 395 of the book implies

Conditions (a), (b), (c), (d), (e) are equivalent. (196)

Indeed, Part (iii) of the lemma says that (a), (b) and (c) are equivalent. Clearly
(e) implies (c) and (d), and (d) implies (b). It suffices to check that (c) implies (e).
Let C ⇒ A→ B be as in the assumption (c), let D → C be the local epimorphism
furnished by (c), and let I be its image. The two compositions I → C ⇒ A coincide
because D → I is an epimorphism, and I → C is a local isomorphism by Part (ii) of
the lemma. q.e.d.

§ 501. P. 395, Lemma 16.2.4 (i). The statement says that local monomorphisms are
stable by base change. The last sentence of Step (a) in the proof follows from the
fact that local epimorphisms are stable by base change (Proposition 16.1.11 (i) p. 394
of the book).

§ 502. P. 396, Step (a) in the proof of Lemma 16.2.4 (i). Starting with the cartesian
square

D C

A B,

we form the cartesian squares

E A F D G C

A B D C E B,
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we define a morphism F → E as suggested by the commutative diagram

F D

D C A

A B

and we check that there is an obvious morphism F → G suggested by the commutative
diagram

F

G C

E B.

We claim that F → G is an isomorphism.

To prove this, we can assume that the above commutative diagrams take place in
Set. We leave it to the reader to verify that the formula

((a1, a2), c) 7→ ((a1, c), (a2, c))

defines a (unique) map G→ F , and that this map is inverse to F → G.

§ 503. P. 396, proof of Lemma 16.2.4 (ii). The fact that h is a local epimorphism
follows from Proposition 16.1.11 (i) p. 394 of the book.

§ 504. P. 397, Notation 16.2.5 (ii). The fact that

such a w is necessarily a local isomorphism (197)

follows from Lemma 16.2.4 (vii) p. 396.

§ 505. P. 398, proof of Lemma 16.2.7: see §86 p. 64.

§ 506. Right after Display (16.3.1) p. 399 of the book, in view of the natural
isomorphism

Aa(U) ≃ Hom(C∧)LI(Q(U), Q(A)),
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the map Aa(U ′)→ Aa(U) induced by a morphism U → U ′ can also be described by
the diagram

Q(U)→ Q(U ′)→ Q(A).

Similarly, the map A(U) → Aa(U) at the top of p. 400 of the book can also be
described by the diagram

A(U) ≃ HomC∧(U,A)→ Hom(C∧)LI(Q(U), Q(A)) ≃ Aa(U).

Then Lemma 16.3.1 can be stated as follows.

If
U

s←− B
u−→ A

is a diagram in C∧ with U in C and s a local isomorphism, and if

v = Q(u) ◦Q(s)−1 ∈ Aa(U) ≃ Hom(C∧)LI(Q(U), Q(A)),

then
v ◦ s = ε(A) ◦ u. (198)

Indeed, (198) is equivalent to v ◦Q(s) = Q(u).

§ 507. P. 400, Step (ii) in the proof of Lemma 16.3.2 (additional details):

We want to prove that A→ Aa is a local monomorphism. In view of (196) p. 291
it suffices to check that Condition (b) of §500 p. 290 holds.

Recall that the functor

α : (LIU)op → Set, (B
s−→ U) 7→ HomC∧(B,A)

satisfies colimα ≃ Aa(U) (see (16.3.1) p. 399 of the book). Let i(s) : α(s)→ Aa(U) be
the coprojection, and let f1, f2 : U ⇒ A be two morphisms such that the compositions
U ⇒ A→ Aa coincide. By definition of the natural morphism A→ Aa, we have

i(idU)(f1) = i(idU)(f2).

By the fact that LIU is cofiltrant, and by Proposition 3.1.3 p. 73 of the book, there
is a morphism

φ : (B
s−→ U)→ (U

idU−−→ U)

in LIU such that α(φ)(f1) = α(φ)(f2). This means that the compositions B → U ⇒
A coincide. q.e.d.

§ 508. P. 401, Step (i) of the proof of Proposition 16.3.3. See (196) p. 291 and (197)
p. 292. (As already mentioned, B′′ → B should be B′′ → B′.)
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19 About Chapter 17

19.1 Brief comments

§ 509. P. 405, Chapter 17. It seems to me it would be more convenient to denote
by f t the functor from (CY )op to (CX)op (and not the functor from CY to CX) which
defines f . To avoid confusion, we shall adopt here the following convention:

If f : X → Y is a morphism of presites, then we keep the notation f t for the
functor from CY to CX , and we designate by f τ the functor from (CY )op to (CX)op:

f t : CY → CX , f τ : (CY )op → (CX)op. (199)

In other words, we set
f τ := (f t)op

We keep the same definition of left exactness (based on f t) of f : X → Y as in the
book.

The motivation for introducing the functor f τ can be described as follows: The
diagram

J I

C,

φ

representing the general setting of Section 2.3 p. 50 of the book, is now replaced by
the commutative diagram

(CY )op (CX)op

A.

fτ

(See also §510 p. 294 and §512 p. 295.)

§ 510. P. 406. Recall that, in the first line of the second display, (CY )∧ should be CY
(twice). In notation (199), Formula (64) p. 91 gives, for B in C∧Y and U in CX ,

(f t)̂(B)(U) ≃ colim
(V→B)∈(CY )B

Hom(CX)(U, f
t(V )) ≃ colim

(U→f t(V ))∈(CY )U
B(V ). (200)

For the sake of emphasis, we state:
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Proposition 511. The functor (f t)̂ commutes with small inductive limits (Proposi-
tion 2.7.1 p. 62 of the book, Remark 117 p. 90 above). Moreover, if f is left exact,
then (f t)̂ is exact (Corollary 3.3.19 p. 87 of the book).

If f : X → Y is a continuous map of small topological spaces, if B is in (OpY )
∧

and U in OpX , then (200) gives

(f t)̂(B)(U) ≃ colim
f−1(V )⊃U

B(V ). (201)

§ 512. P. 407. Let f : X → Y be a morphism of presites and let A be a category
admitting small inductive and projective limits. In the notation of (199) p. 294, we
set

f∗ := (f τ )∗ , f † := (f τ )† , f ‡ := (f τ )‡ ,

yielding
f †, f ‡ : PSh(XA)→ PSh(Y,A).

Then (17.1.3) and (17.1.4) follow respectively from (2.3.6) and (2.3.7) p. 52 of the
book. For the sake of completeness, let us rewrite (17.1.3) and (17.1.4) (in the
notation of (199)):

f †(G)(U) = colim
(fτ (V )→U)∈((CY )op)U

G(V ), (202)

with G in PSh(Y,A), U in CX , f τ (V )→ U being a morphism in (CX)op (corresponding
to a morphism U → f t(V ) in CX),

f ‡(G)(U) = lim
(U→fτ (V ))∈((CY )op)U

G(V ), (203)

with G in PSh(Y,A), U in CX , U → f τ (V ) being a morphism in (CX)op (corresponding
to a morphism f t(V )→ U in CX).

§ 513. P. 408, comment preceding Convention 17.1.6. Let us recall the comment:

We extend presheaves over X to presheaves over X̂ using the functor h‡X associated
with the Yoneda embedding htX = hCX . Hence, for F in PSh(X,A) and A in C∧X , we
have

(h‡X F )(A) = lim
(U→A)∈(CX)A

F (U).

By Corollary 2.7.4 p. 63 of the book, the functor

h‡X : PSh(X,A)→ PSh(X̂,A)
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induces an equivalence of categories between PSh(X,A) and the full subcategory of
PSh(X̂,A) whose objects are the A-valued presheaves over X̂ which commute with
small projective limits.

One can add that a quasi-inverse is given by

hX∗ : PSh(X̂,A)→ PSh(X,A).

§ 514. P. 408, Convention 17.1.6. Recall the convention: If F is an A-valued presheaf
over X and A is a presheaf of sets over X, then we put

F (A) := (h‡X F )(A) = lim
(U→A)∈(CX)A

F (U). (204)

(Note that the same comment is made at the beginning of Section 17.3 p. 414.) This
convention of extending each presheaf F over X to a presheaf, still denoted by F ,
over X̂ which commutes with small projective limits implies that we have, for A,B
in C∧,

B(A) ≃ HomC∧X (A,B).

In the notation of §119 p. 90, Convention 17.1.6 can be described as follows:

If X is a site, if C is the corresponding category, if h : C → C∧ is the Yoneda
embedding, if F is an A valued sheaf over X, and if A is an object of C∧, then
Convention 17.1.6 consists in putting

F (A) := (hop)‡(F )(A).

§ 515. P. 409, Proposition 17.1.9 follows immediately from (58) p. 85, (60) p. 86 and
(61) p. 88.

§ 516. P. 410, Display (17.1.15): As already indicated in §18, Display (17.1.15) p. 410
should read

HomPSh(X,A)(F,G) ≃ lim
U∈CX

HomPSh(X,A)(F,G)(U).

§ 517. P. 412, proof of Lemma 17.2.2 (ii), (b)⇒(a), Step (1): (f t)̂ is right exact by
Proposition 161 p. 105 and Proposition 511 p. 295.

§ 518. P. 412, proof of Lemma 17.2.2 (ii), (b)⇒(a), Step (3). See §19 p. 21. This is
essentially a copy and paste of the book.

Claim: if a local isomorphism u : A→ B in C∧Y is either a monomorphism or an
epimorphism, then (f t)̂(u) is a local isomorphism in C∧X .
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Proof of the claim: Let V → B be a morphism in C∧Y with V in CY . Then
uV : A×B V → V is either a monomorphism or an epimorphism by Proposition 160
p. 105 and Proposition 165 p. 106. Let us show that (f t)̂(uV ) is a local isomorphism.

If uV is a monomorphism, (f t)̂(uV ) is a local isomorphism by assumption.

If uV is an epimorphism, then uV has a section s : V → A×B V . Since uV is a
local isomorphism by Lemma 16.2.4 (i) p. 395 of the book, s is a local isomorphism.
Since

(f t)̂(uV ) ◦ (f t)̂(s) ≃ idf t(V )

is a local monomorphism, and (f t)̂(s) is a local epimorphism by Step (2), Lemma
16.2.4 (vi) p. 396 of the book implies that (f t)̂(uV ) is a local monomorphism. Since
(f t)̂(uV ) is an epimorphism by Step (2), we see that (f t)̂(uV ) is a local isomorphism.
This proves the claim.

Taking the inductive limit with respect to V ∈ (CY )B, we conclude by Proposition
16.3.4 p. 401 of the book that (f t)̂(u) is a local isomorphism.

§ 519. P. 413, Definition 17.2.4 (ii): see Remark 118 p. 90.

§ 520. P. 413. Lemma 17.2.5 (ii) and Exercise 2.12 (ii) p. 66 of the book imply: If
f : X → Y is weakly left exact, then (f t)̂ : C∧Y → C∧X commutes with projective
limits indexed by small connected categories (Definition 5 p. 10).

§ 521. P. 413, Lemma 17.2.5 (ii). Here is a corollary:

Let f : X → Y be a weekly left exact morphism of sites such that (f t)̂(u) is a
local epimorphism if and only if u is a local epimorphism. Then (f t)̂(u) is a local
monomorphism if and only if u is a local monomorphism, and (f t)̂(u) is a local
isomorphism if and only if u is a local isomorphism.

§ 522. P. 413, Example 17.2.7 (i). Recall that f : X → Y is a continuous map of
small topological spaces. As explained in the book, to see that f is a morphism of
sites, it suffices to check that, if u : B → V is a local epimorphism in (OpY )

∧ with
V in OpY , then (f t)̂(B)→ f−1(V ) is a local epimorphism in (OpX)

∧. This follows
immediately from §497 p. 289 and (201) p. 295.

§ 523. P. 414, Definition 17.2.8 (minor variant):

Definition 524 (Definition 17.2.8 p. 414, Grothendieck topology). Let X be a small
presite. We assume, as we may, that the hom-sets of CX are disjoint. A Grothendieck
topology on X is a set T of morphisms of CX which satisfies Axioms LE1-LE4 p. 390.
Let T ′ and T be Grothendieck topologies. We say that T is stronger than T ′, or that
T ′ is weaker than T , if T ′ ⊂ T .
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Let (Ti) be a family of Grothendieck topologies. We observe that
⋂
Ti is a

Grothendieck topology, and we denote by
∨
Ti the intersection of all Grothendieck

topologies containing
⋃
Ti.

19.2 Definition of a sheaf (page 414)

Here is Definition 17.3.1(ii) of the book:

Definition 525. A presheaf F ∈ PSh(X,A) is a sheaf if for any local isomorphism
A → U such that U ∈ CX and A ∈ (CX)∧, the morphism F (U) → F (A) is an
isomorphism.

(Here A is a category admitting small projective limits.)

To simplify we assume A = Set.

In SGA4.II.2.1 Verdier defines a sheaf of sets by

Definition 526. A presheaf of sets F ∈ PSh(X) is a sheaf if for any local isomorphism
A→ U in CX such that A→ U is a monomorphism and U is in CX , the morphism
F (U)→ F (A) is an isomorphism.

See http://www.normalesup.org/∼forgogozo/SGA4/02/02.pdf

A “KS-sheaf” is obviously a “Verdier sheaf”. By implication “(i) =⇒ (ii bis)” in
Proposition 5.3 of Verdier’s SGA4.II Exposé linked to above, the converse is also true.

In https://mathoverflow.net/a/283271/461 Dylan Wilson proved this fact using
only the beginning of Verdier’s Exposé, up to Proposition 4.2. In the next section
(Section 19.3 p. 300) we prove these results. In the sequel of this section we describe
Dylan Wilson’s argument. Our purpose was that this text, together with Categories
and Sheaves, offer a self-contained proof of the equivalence of the two definitions.

Proposition 527. A “Verdier sheaf” is a “KS-sheaf”.

Proof. For the duration of the proof, Sh(X) will denote the category of “Verdier -
sheaves”. By Theorem 3.4 in SGA4.II (Theorem 531 p. 306), the inclusion Sh(X) ⊂
PSh(X) admits an exact left adjoint a. We will also use tacitly the fact that Sh(X)
admits finite limits and colimits (Theorem 4.1 in SGA4.II, Theorem 534 p. 307).
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Claim 1: If A→ U , with U in CX , is a monomorphism and a local isomorphism in
PSh(X), then aA→ aU is an isomorphism in Sh(X).

Proof of Claim 1: Let F be in Sh(X). We must show that the map

HomSh(X)(aU, F )→ HomSh(X)(aA,F )

is bijective, that is, that the map

HomPSh(X)(U, F )→ HomPSh(X)(A,F )

is bijective, which is clear.

Claim 2: If A → B is a monomorphism and a local isomorphism in PSh(X), then
aA→ aB is an isomorphism in Sh(X).

Proof of Claim 2: Let f : A→ B be a monomorphism and a local isomorphism in
PSh(X). By Proposition 4.2 in SGA4.II (Proposition 536 p. 307) and (the dual of)
Proposition 165 p. 106 above, it suffices to show that af is an epimorphism in Sh(X).
Let x, y : B ⇒ F be two morphisms in PSh(X) with F in Sh(X) and x ≠ y. It
suffices to prove x ◦ f ̸= y ◦ f . As we have

colim
U→B

U
∼−→ B

(the colimit being taken in PSh(X)) by (44) p. 81, there is a morphism u : U → B in
PSh(X) such that x ◦ u ̸= y ◦ u. Consider the commutative diagram

AU U

A B F

fU

u

f

x

y

in PSh(X), where the square is cartesian. As fU is a monomorphism by Exercise 2.22
p. 68 of the book, and a local isomorphism by Lemma 16.2.4 (i) p. 395 of the book,
we have x ◦ u ◦ fU ̸= y ◦ u ◦ fU by Claim 1. This implies x ◦ f ̸= y ◦ f , as desired.

Claim 3: a maps local epimorphisms to epimorphisms.

Proof of Claim 3: Let A→ B be a local epimorphism in PSh(X). Then we see that

Im(A→ B)→ B
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is a local epimorphism and a monomorphism (Lemma 16.2.3 (ii) p. 395 of the book),
that

a Im(A→ B)→ aB

is an isomorphism by Claim 2, that

Im(aA→ aB)→ aB

is an isomorphism by exactness of a, and that aA → aB is an epimorphism by
Proposition 5.1.2 (iv) p. 114 of the book. This proves Claim 3.

Claim 4: a maps local isomorphisms to isomorphisms.

Proof of Claim 4: Claim 4 follows from Claim 3 and the exactness of a.

Let us show that a “Verdier sheaf” is a “KS-sheaf”. Let F be a “Verdier sheaf”
and let A→ U be a local isomorphism in PSh(X) such that U is in CX . It suffices to
prove that the map FU → FA is bijective, that is, that the map

HomPSh(X)(U, F )→ HomPSh(X)(A,F )

is bijective, that is, that the map

HomSh(X)(aU, F )→ HomSh(X)(aA,F )

is bijective. But this follows from Claim 4.

19.3 Proof of some results of SGA4II

In this section we prove the results contained in the beginning of Verdier’s Exposé

http://www.normalesup.org/∼forgogozo/SGA4/02/02.pdf

up to Proposition 4.2, results used in Section 19.2 p. 298 above.

Let C be a site and U a universe such that C ∈ U , and write C∧ for C∧U .

Lemma 528 (1.1.1). Let S and S ′ be covering sieves of some object U of C. Then
the intersection S ∩ S ′ is again a covering sieve of U . In particular, the ordered set
J(U) is cofiltrant.
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Proof. Let V → S ′ be a morphism in C∧. It suffices to show that S×U V is a covering
sieve of V . There is a commutative diagram

S ×U V V V

S ∩ S ′ S ′ U

where the two small squares are cartesian. This implies that S ×U V is a covering
sieve of V , as desired.

19.3.1 Sheaf associated to a presheaf

Recall that C is a site and U a universe such that C ∈ U , and that we write C∧ for C∧U .
The set J(U) of covering sieves of U , ordered by inclusion, is cofiltrant by Lemma 528.

For all U -presheaf F , the “canonical” colimit

colim
S∈J(U)

HomC∧(S, F )

is a member U . (By “canonical” colimit we mean the set given by Proposition 2.4.1
p. 54 of Categories and Sheaves.) Let g : V → U be a morphism in C. The base
change functor g∗ : J(U)→ J(V ) defines a map

LF (g) : LF (U)→ LF (V ),

making U 7→ LF (U) is a presheaf over C.

The morphism idU : U → U being a member of J(U), we have, for all object U of
C, a map

ℓ(F )(U) : F (U)→ LF (U),

defining a morphism of functors

ℓ(F ) : F → LF.

It is clear moreover that F 7→ LF is a functor in F , and that the morphisms ℓ(F )
define a morphism

ℓ : id→ L.

Finally let S ↪→ U be a covering sieve of U , and let

ZS : HomC∧(S, F )→ HomC∧(U,LF )
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be the coprojection. For all morphism V
g−→ U in C, the definition of the functor LF

shows that the diagram

(∗)

HomC∧(S, F )
ZS //

��

HomC∧(U,LF )

��
HomC∧(S ×U V, F ) ZS×UV

// HomC∧(V, LF )

commutes. (The vertical arrows are the obvious ones.)

Lemma 529 (Lemme 3.1).

1. For all covering sieve iS : S ↪→ U and all a : S → F , the diagram

(∗∗)

F
ℓ(F )

// LF

S

a

OO

� �

iS

// U

ZS(a)

OO

commutes.

2. For all morphism b : U → LF , there is a covering sieve S of U and a morphism
a : S → F such that ZS(a) = b.

3. Let U be an object of C and a, b : V ⇒ F two morphisms such that ℓ(F ) ◦ a =
ℓ(F ) ◦ b. Then the kernel of the couple (a, b) is a covering sieve of U .

4. Let S and S ′ be two covering sieves of U , and let a : S → F and a′ : S ′ → F be
two morphisms. Then we have ZS(a) = ZS′(a′) if and only if a and a′ coincide
on a covering sieve S ′′ ↪→ S ×U S ′.

Proof. The only nontrivial assertion is Assertion 1. We must check that

ZS(a) ◦ iS = ℓ(F ) ◦ a.

It suffices to show that the compositions of these morphisms with a morphism
g : V → S (V object of C) are equal. Consider the morphism f := iS ◦ g and the
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fiber product S ×U V :

F
ℓ(F )

// LF

S

a

OO

� �
iS // U

ZS(a)

OO

S ×U V

g′

OO

� �

i′
// V.

g

ii

f

OO

As the inclusion i′ is admits a section, we have S ×U V = V and i′ is the identity of
V , so that we get the commutative diagram

F
ℓ(F )

// LF

S

a

OO

� �

iS

// U

ZS(a)

OO

V

g′

OO

V

g

ii

f

OO

with g′ = g. We have

ℓ(F ) ◦ a ◦ g = ZV (a ◦ g′) = ZS(a) ◦ iS ◦ g,

the equalities following respectively from the by definition of the ℓ(F ) and the
commutativity of the diagram (*).

Proposition 530 (Proposition 3.2).

1. The functor L is left exact.

2. For all presheaf F , LF is a separated presheaf.

3. The presheaf F is separated if and only if the morphism ℓ(F ) : F → LF is a
monomorphism. The presheaf LF is then a sheaf.

4. The following properties are equivalent:
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(a) ℓ(F ) : F → LF is an isomorphism.
(b) F is a sheaf.

Proof. Part 1 . It suffices to show (Proposition 161 p. 105) that for all object U of
C, the functor F 7→ LF (U) commutes with finite limits. But, by definition of the
limit, for S ∈ J(U), the functor F 7→ HomC∧(S, F ) commutes with limits, and the
colimit colimJ(U) commutes with finite limits because J(U) is a cofiltrant ordered set
(Proposition 125 p. 94).

Part 2 . Let U be an object of C and f , g : U ⇒ LF two morphisms which coincide on
a covering sieve S ↪→ U of U . By Part 2 of Lemma 529 p. 302, there is a covering sieve
S ′ ↪→ U , which we can assume to be contained in S, and there are two morphisms
a, b : S ′ ⇒ F such that ZS′(a) = f and ZS′(b) = g. By Part 1 of Lemma 529 p. 302
we then have ℓ(F )◦a = ℓ(F )◦ b. Thus (Part 4 of Lemma 529 p. 302) a and b coincide
on a covering sieve S ′′ ↪→ S ′. Letting w be the restriction of a to S ′′ yields

f = ZS′(a) = ZS′′(w) = ZS′(b) = g,

and thus f = g. Hence the presheaf LF is separated.

Part 3 . Assume that F is separated and let us show that ℓ(F ) is a monomorphism.
Let U be an object of C and let a, b : U ⇒ F satisfy ℓ(F ) ◦ a = ℓ(F ) ◦ b, that is
ZU(a) = ZU(b). It suffices to prove a = b. By Part 4 of Lemma 529 p. 302 a and b
coincide in some covering sieve of U . Since F is separated, this implies a = b.

If ℓ(F ) is a monomorphism, the presheaf F , being a sub-presheaf of a separated
presheaf, is separated.

To show that LF is then a sheaf, let i : S ↪→ U be a covering sieve of an object U
of C, and a : S → LF a morphism. It suffices to show that a factors through U :

LF

S U.

a

i

b (205)

We may, and will, view F as a subobject of LF . Form the cartesian square

F LF

S1 S.

ℓ(F )

a′

j

a
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Claim 1: For all morphism V → LF , where V be an object of C, the sieve F ×LF V
is a covering sieve of V .

Proof of Claim 1: By Part 1 of Lemma 529 p. 302 there is a commutative diagram

F LF

S2 V

S3

ℓ(F )

where the small square is cartesian and S3 is a covering sieve of V . We conclude that
S2 is also a covering sieve of V . This proves Claim 1.

Claim 2: S1 is a covering sieve of U .

Proof of Claim 2: Let W be an object of C and W → S a morphism. There is a
commutative diagram

F LF

S1 S U

S4 W

ℓ(F )

a′

j

a

i

where the squares (S1, S,W, S4) and (S1, U,W, S4) are cartesian. It suffices to check
that S4 is a covering sieve of W . As (F,LF, S, S1) is cartesian too, so is (F,LF,W, S4),
and S4 is a covering sieve of W by Claim 1. This proves Claim 2.

By Claim 2, we may define b in (205) by b := ZS1(a
′). We must show b ◦ i = a.

Let again W be an object of C and W → S a morphism, and let

F LF

S1 S U

S4 W

ℓ(F )

a′

j

a

i

b

c′

k

c
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be the commutative diagram obtained in the obvious way from the previous. Proving
b ◦ i = a reduces to proving b ◦ i ◦ c = a ◦ c, which, LF being separated, reduces in
turn to proving b ◦ i ◦ c ◦ k = a ◦ c ◦ k, that is b ◦ i ◦ j ◦ c′ = a ◦ j ◦ c′. But we have

b ◦ i ◦ j = ZS1(a
′) ◦ i ◦ j = ℓ(F ) ◦ a′ = a ◦ j

by Part 1 of Lemma 529 p. 302.

Part 4 . Clear.

Theorem 531 (Théorème 3.4). Let C ∈ U be a site. The inclusion functor i :
C∼ ↪→ C∧ of the sheaves into the presheaves admits a left exact left adjoint functor a
(Propositon 164 p. 106):

C∼ � �
i

// C∧ .
aoo

The functor i ◦ a is canonically isomorphic to the functor L ◦ L. For all presheaf F
the adjonction morphism F → i ◦ a(F ) is obtained, via the previous isomorphism,
from the morphism ℓ(LF ) ◦ ℓ(F ) : F → (L ◦ L)(F ).

Definition 532 (Définition 3.5). The sheaf aF is called the sheaf associated to the
presheaf F .

Theorem 531 results immediately from Proposition 530 p. 303.

Proposition 533 (Proposition 3.6). Let C ∈ U be a site and V ⊃ U a universe. Write
C∧U and C∧U (resp. C∧V and C∧V ) for the categories of U-presheaves and of U-sheaves
(resp. of V-presheaves and of V-sheaves) and aU : C∧U → C∧U (resp. aV : C∧V → C∧V ) for
the corresponding “associated sheaves” functors. The diagram

C∧U
aU //

_�

��

C∼U_�

��
C∧V

aV // C∼V ,

where the vertical functors are the canonical inclusions, commutes up to canonical
isomorphism.

Proof. This follows from the construction of the functors aU and aV (Theorem 531).
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19.3.2 Exactness properties of the category of sheaves

The exactness properties of the category of sheaves follow from the exactness properties
of the category of presheaves via Theorem 531. The present section spells out this
philosophy by giving some of the most useful standard statements.

Theorem 534 (Théorème 4.1). Let C ∈ U be a site, C∼ the category of sheaves,
a : C∧ → C∼ the associated sheaf functor, i : C∼ → C∧ the inclusion functor.

1. The functor a commutes with colimits and is exact.

2. The U-colimits in C∼ are representable. For all category I ∈ U and for all
functor E : I → C∼, the canonical morphism

colim
I

E → a
(
colim

I
i ◦ E

)
is an isomorphism.

3. The U-limits in C∼ are representable. For all object U of C, the functor C∼ → U-
Set, F 7→ F (U) commutes with limits, i.e. the inclusion functor i : C∼ → C∼
commutes with limits.

Proof. These properties follow essentially from Theorem 531 and from Corollary 67
p. 56.

So, in the category of sheaves, the products indexed by a member of U , the fibered
products, the coproducts indexed by a member of U , the fibered coproducts, the
kernels, the cokernels, the images, and the coimages are representable.

Corollary 535 (Corollaire 4.1.1). Let C ∈ U be a site and F a sheaf of U-sets over
C. The canonical morphism

“colim”
(U→F )∈CF

a(U)→ F

is an isomorphism.

Proof. Results from (44) p. 81 and from the fact that a commutes with colimits.

Proposition 536 (Proposition 4.2). A morphism in C∼, which is both an epimorphism
and a monomorphism, is an isomorphism.
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Proof. Let f : G → H be a morphism in C∼ which is an epimorphism and a
monomorphism. First note that the morphism f is a presheaf monomorphism (Part 1
of Theorem 534 and Proposition 165 p. 106). Form the cocartesian square

G
f //

f

��

H

i2

��
H

i1 // K.

in the category of presheaves. As f is a presheaf monomorphism, the above square
is cartesian (Lemma 290 (b) p. 177). Applying the “associated sheaf” functor, we
hence get a cartesian and cocartesian square in the category of sheaves (Part 1 of
Theorem 534):

G
f //

f

��

H

a(i2)

��
H

a(i1) // a(K).

As f is a sheaf epimorphism, a(i1) is an isomorphism, and as the above square is
cartesian, f is an isomorphism.

19.4 Brief comments

§ 537. P. 415, Isomorphism (17.3.1). Recall briefly the setting. We have

F ∈ PSh(X,A), M ∈ A, U ∈ CX ,

and we claim
HomPSh(X,A)(M,F )(U) ≃ HomA(M,F (U)). (206)

Here and in the sequel, we denote again by M the constant presheaves over X and U
attached to the object M of A. Note that, by §513 p. 295, this isomorphism can be
written

HomA(M,F ) ≃ HomA(M,F ( )).

To prove (206), observe that we have

HomPSh(X,A)(M,F )(U) ≃ HomPSh(U,A)(jU→X∗M, jU→X∗ F )
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≃ HomPSh(U,A)(M, jU→X∗ F ),

the two isomorphisms following respectively from the definition of HomPSh(X,A) given
in (17.1.14) p. 410 of the book, and from the definition of the functor jU→X∗, so that
we must show

HomPSh(U,A)(M, jU→X∗ F ) ≃ HomA(M,F (U)).

We define maps

HomPSh(U,A)(M, jU→X∗ F ) HomA(M,F (U))
φ

ψ

as follows: If p : M → jU→X∗ F is a morphism in PSh(U,A), given by morphisms
p(V → U) :M → F (V ) in A, then we put φ(p) := p(U

idU−−→ U); if a :M → F (U) is
a morphism in A, then we put ψ(a)(V c−→ U) := F (c) ◦ a; and we check that φ and ψ
are mutually inverse bijections.

§ 538. P. 418, proof of Lemma 17.4.2 (minor variant): Consider the natural morphisms

colimα
f−→ colimα ◦ µop

u ◦ λopu
g−→ colimα ◦ µop

u
h−→ colimα.

We must show that g ◦ f is an isomorphism. The equality h ◦ g ◦ f = idcolimα is easily
checked. Being a right adjoint, µop

u is left exact, hence cofinal by Lemma 3.3.10 p. 84
of the book, and h is an isomorphism. q.e.d.

§ 539. P. 419, proof of Proposition 17.4.4:

First sentence of the proof: see §86 p. 64.

Step (i), Line 4: The fact that Kop is filtrant results from Lemma 16.2.7 p. 398 and
Proposition 3.2.1 (iii) p. 78 of the book.

The key ingredient to prove that Kop is cofinally small is Lemma 16.2.8 p. 398
which says that Kop is a product of cofinally small categories. To prove that Kop is
cofinally small one must prove that a certain product

∏
Pi of connected categories

is connected, but, as a product of connected categories is not connected in general,
some caution is needed. Going through the proof of Lemma 16.2.8, we see that each
Pi is filtrant. This implies that

∏
Pi is filtrant, and thus that it is connected.

Step (i), additional details about the chain of isomorphisms at the bottom of p. 419
of the book: The chain reads∏

i

F b(Ai)
(a)
≃
∏
i

colim
(Bi→Ai)∈LIAi

F (Bi)
(b)
≃ colim

(Bi→Ai)i∈I∈K

∏
i

F (Bi)
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(c)
≃ colim

(Bi→Ai)i∈I∈K
F

(
“
⊔
i

”Bi

)
(d)
≃ colim

(B→A)∈LIA
F (B)

(e)
≃ F b(A),

and the isomorphisms can be justified as follows:

(a) definition of F b,

(b) A satisfies IPC,

(c) F commutes with small projective limits,

(d) an inductive limit of local isomorphisms is a local isomorphism by Proposition
16.3.4 p. 401 of the book,

(e) definition of F b.

§ 540. P. 419, proof of Proposition 17.4.4, Step (ii). More details: The morphism
εb(F

b)(A) : F b(A)→ F bb(A) is obtained as the composition

F b(A)
f−→ colim

(B→A)∈LIA
F b(A)

g−→ colim
(B→A)∈LIA

F b(B).

Moreover, f is an isomorphism by Lemma 2.1.12 p. 41 of the book, and g is an
isomorphism by Lemma 17.4.2 p. 418 of the book.

19.5 Proposition 17.4.4 p. 420

We draw a few diagrams with the hope of helping the reader visualize the argument
in Step (ii) of the proof of Proposition 17.4.4.

An object of the category

M
[
J → K ←M [I → K ← K]

]
can be represented by a diagram

B′ B′ ×B A A′ C ′ ×C A C ′

B A A A C,

β

(u′,α) (v′,α)

α γ

and it is clear that this category is equivalent to Eop.
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Recall that D := B “⊔”A C, let E be one of the objects A,B,C, or D, and consider
the “obvious” functors

E LIE

C∧X

pE

qE
jE

(pE is defined in the book, jE is the forgetful functor, and qE is the composition). We
also define rE : LIE → E by mapping the object E ′′ → E of LIE to the object

B ×E E ′′ A×E E ′′ C ×E E ′′

B A C

of E . One checks that (pE, rE) is a pair of adjoint functors. In particular pE is
cocofinal. We have

F b(D)
(a)
≃ colim

y∈LID
F (jD(y))

(b)
≃ colim

x∈E
F (qD(x))

(c)
≃ colim

x∈E
F

qB(x)“⊔
qA(x)

”qC(x)

 (d)
≃ colim

x∈E
(F (qB(x))×F (qA(x)) F (qC(x)))

(e)
≃
(
colim
x∈E

F (qB(x))

)
×colimx∈E F (qA(x))

(
colim
x∈E

F (qC(x))

)
(f)
≃
(
colim
y∈LIB

F (jB(y))

)
×colimy∈LIA F (jA(y))

(
colim
y∈LIC

F (jC(y))

)
(g)
≃ F b(B)×F b(A) F b(C).

Indeed, the isomorphisms can be justified as follows:

(a) definition of F b,

(b) cocofinality of pD,

(c) definition of pE,

(d) left exactness of F ,

(e) exactness of filtrant inductive limits in A,

(f) cocofinality of pD,

(g) definition of F b.
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19.6 Brief comments

§ 541. P. 421, first display:

F a(U) ≃ colim
(U→A)∈LIU

F (A).

Lemma 16.2.8 p. 398 of the book and its proof, show that F a does not depend on the
universe such that C is a small category (Definition 5 p. 10) and A satisfies (17.4.1)
p. 417 of the book.

§ 542. P. 421, proof of Lemma 17.4.6 (i): The category LIU is cofiltrant by Lemma
16.2.7 p. 398 of the book, small filtrant inductive limits are exact in A by Display
(17.4.1) p. 417 of the book, exact functors preserve monomorphisms by Proposition 165
p. 106.

§ 543. P. 422. The first sentence of the proof of Theorem 17.4.7 (iv) follows from
Corollary 162 p. 105. One could add:

If A is abelian, then PSh(X,A) and Sh(X,A) are abelian, and ι : Sh(X,A) →
PSh(X,A) and ( )a : PSh(X,A)→ Sh(X,A) are additive

§ 544. P. 423, end of the proof of Theorem 17.4.9 (iv): the functor ( )a is exact by
Theorem 17.4.7 (iv) p. 421 of the book.

§ 545. P. 424, proof of Theorem 17.5.2 (i). With the convention that a diagram of
the form

C1

C2

L R

means: “(L,R) is a pair of adjoint functors”, the proof of Theorem 17.5.2 (i) in the
book can be visualized by the diagram

PSh(Y,A)

PSh(X,A)

Sh(X,A).

f† f∗

( )a ι

312 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



§ 546. P. 424, proof of Theorem 17.5.2 (iv). As already mentioned, there is a typo:
“The functor f † is left exact” should be “The functor f † is exact”.

§ 547. P. 424, Definition 17.6.1. By Lemma 17.1.8 p. 409 of the book, a morphism

C B

A

in C∧A is a local epimorphism if and only if C → B is a local epimorphism in C∧X .

§ 548. P. 424, sentence following Definition 17.6.1: “It is easily checked that we
obtain a Grothendieck topology on CA”. The verification of LE1, LE2 and LE3 is
straightforward. Axiom LE4 follows from Parts (iii) and (ii) of Lemma 17.2.5 p. 413
of the book.

§ 549. P. 424, Definition 17.6.1. Here is an observation which follows from §521
p. 297 and Lemma 17.2.5 (iii) p. 413 of the book:

In the setting of Definition 17.6.1, let B → A be a morphism in C∧X , let u : C → B
be a morphism in C∧X , and let v : (C → A)→ (B → A) be the corresponding morphism
in C∧A. Then u is a local epimorphism if and only if v is a local epimorphism, u is
a local monomorphism if and only if v is a local monomorphism, and u is a local
isomorphism if and only if v is a local isomorphism.

§ 550. P. 425, proof of Proposition 17.6.3:

Step (i): jA→X is weakly left exact by Lemma 17.2.5 (iii) p. 413 of the book, and
( · )a is exact by Theorem 17.4.7 (iv) p. 421 of the book.

Step (ii): “f factors as X
jA→X−−−→ A

g−→ Y ”: see Definition 17.2.4 (ii) p. 413 of
the book and Remark 118 p. 90. The isomorphism f−1 ≃ j−1A→X ◦g−1 follows from
Proposition 17.5.3 p. 424 of the book.

§ 551. P. 425, Display (17.6.1): Putting j := jA→X , we have the adjunctions

Sh(A,A)

Sh(X,A).

j−1 j‡j∗
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For the functor j∗ : Sh(X,A) → Sh(A,A), see Proposition 17.5.1 p. 423 of the
book.

For the functor j−1 : Sh(A,A)→ Sh(X,A), see last display of p. 423 of the book.

For the functor j‡ : Sh(A,A) → Sh(X,A), see Proposition 17.6.2 p. 425 of the
book.

§ 552. P. 426, proof of Proposition 17.6.7 (i). The isomorphism

(f t)̂(V ×B) ≃ f t(V )× (f t)̂(B) (207)

follows from Proposition 511 p. 295, and we have

j‡B→Y
(
fB∗(G)(V )

)
≃ fB∗(G)(V ×B → B) by (17.1.12) p. 409

≃ G
(
(f t)̂(V ×B)→ (f t)̂(B)

)
by (17.1.6) p. 408

≃ G
(
f t(V )× A→ A

)
by (207),

as well as

f∗
(
j‡A→X(G)(V )

)
≃ j‡A→X(G)(f

t(V ))

≃ G
(
f t(V )× A→ A

)
by (17.1.12) p. 409.

§ 553. P. 427, proof of Proposition 17.6.8, Step (i). The isomorphism

j‡A→X(jA→X∗(G)(U)) ≃ jA→X∗(G)(U × A→ A)

follows from (17.1.12) p. 409 of the book. The fact that p : A × U → U is a local
isomorphism follows from the fact that the obvious square

A× U U

A ptX

is cartesian and the bottom arrow is a local isomorphism by assumption.
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§ 554. P. 427, proof of Proposition 17.6.8, Step (ii). Let v : V → A be a morphism
in C∧X . Here is a proof of the fact that

V V × A

A

(idV ,v)

(208)

is a local isomorphism in C∧A.

As V ×A→ V is a local isomorphism in C∧X by §553, and V → V ×A→ V is the
identity of V , Lemma 16.2.4 (vii) p. 396 of the book implies that V → V × A is a
local isomorphism in C∧X , and thus, by §549 p. 313, that (208) is a local isomorphism
in C∧A.

§ 555. P. 428, just after Definition 17.6.10: (( )A,ΓA( )) is a pair of adjoint functors:
this follows from Theorem 17.5.2 (i) p. 424 of the book.

§ 556. P. 429, top. By §88 p. 65 and Corollary 163 p. 106, the functor Γ(A; )
commutes with small projective limits.

§ 557. P. 430, first sentence of the proof of Proposition 17.7.1 (i). Let us make a
general observation.

Let X be a site. In this §, for any A in C∧X , we denote the corresponding site by
A′ instead of A. We also identify C∧A′ to (C∧X)A (see Lemma 17.1.8 p. 409 of the book).
In particular, we get ptA′ ≃ (A

idA−−→ A) ∈ C∧A′ .

Let A→ B be a local isomorphism in C∧X , and let us write ω for “the” terminal
object ptB′ ≃ (B

idB−−→ B) of C∧B′ . We claim that

(A→ B)→ ω (209)

is a local isomorphism in C∧B′ .

Proof: (209) is a local epimorphism by §547 p. 313. It remains to check that

(A→ B)→ (A→ B)×ω (A→ B) ≃ (A×B A→ B) (210)

is a local epimorphism. But this follows again from §547 p. 313. □
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Consider the morphism of presites B′ → A′ induced by A→ B and note that the
square

X A′

X B′.

jA→X

jB→X

commutes.

§ 558. P. 430, proof of Proposition 17.7.3. The third isomorphism follows, as indicated,
from Proposition 17.6.7 (ii) p. 426 of the book. The fifth isomorphism follows from
(17.6.2) (ii) p. 426 of the book.

§ 559. P. 431, Exercise 17.5 (i). Put PX := PSh(X,A), SX := Sh(X,A), and
define PY and SY similarly. Let

SY

PY

PX

SX

ιYaY

f† f∗

aX ιX

be the obvious diagram of adjoint functors. We must show

aX ◦ f † ◦ ιY ◦ aY ≃ aX ◦ f †.

Let F be in SX and G be in PY . We have (omitting most of the parenthesis)

HomSX(aXf
†ιY aYG,F ) ≃ HomPX(f

†ιY aYG, ιXF ) ≃ HomPY (ιY aYG, f∗ιXF )

(a)
≃ HomPY (ιY aYG, ιY aY f∗ιXF ) ≃ HomSY (aY ιY aYG, aY f∗ιXF )

(b)
≃ HomSY (aYG, aY f∗ιXF ) ≃ HomPY (G, ιY aY f∗ιXF )

(c)
≃ HomPY (G, f∗ιXF )

≃ HomPX(f
†G, ιXF ) ≃ HomSX(aXf

†G,F )

where (a) and (c) follow from the fact that the presheaf f∗ιXF is actually a sheaf
(Proposition 17.5.1 p. 423 of the book), (b) follows from the isomorphism

aY ◦ ιY ◦ aY ≃ aY ,
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which holds by Lemma 17.4.6 (ii) p. 421 of the book, and the other isomorphisms
hold by adjunction.

§ 560. P. 431, Exercise 17.5 (ii). By §549 p. 313 we have, for U in CX and U → A in
CA, an isomorphism

LIU→A ≃ LIU .

Exercise 17.5 (ii) follows immediately.

20 About Chapter 18

20.1 Brief comments

§ 561. P. 437, Theorem 18.1.6 (v). If X is a site, if R a ring, if F and G are complexes
of R-modules, then the complex of abelian groups RHomR(F,G) (see Corollary 14.3.2
p. 356 of the book) does not depend on the universe chosen to define it (the universe
in question being subject to the obvious conditions). This follows from §472 p. 279
and §541 p. 312.

§ 562. P. 436, Lemma 18.1.4. Note that PSh(R) is abelian, that Mod(R) is an
additive subcategory of PSh(R), and that the functors

Mod(R) PSh(R)
(·)a

are additive.

§ 563. P. 437, proof of Theorem 18.1.6 (v). We prove

HomR(RU , F ) ≃ F (U).

As
HomR(RU , F ) ≃ HomR(j

−1
U→X∗(R|U), F ) ≃ HomR|U(R|U, F |U),

we only need to verify
HomR|U(R|U, F |U) ≃ F (U).

We shall define maps

HomR|U(R|U, F |U) F (U)
φ

ψ
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and leave it to the reader to check that they are mutually inverse.

Definition of φ: Let θ be in HomR|U (R|U, F |U). In particular, for each morphism
f : V → U in CX we have a map θ(f) : R(V )→ F (V ), and we put φ(θ) := θ(idU )(1).

Definition of ψ: Let x be in F (U). For each morphism f : V → U in CX we define
ψ(x)(f) : R(V )→ F (V ) by ψ(x)(f)(λ) := λF (f)(x).

§ 564. P. 438, end of Section 18.1: ΓA is left exact by §555 p. 315. Moreover, Γ(A; )
commutes with small projective limits by §556 p. 315, and is thus left exact by
Proposition 161 p. 105.

§ 565. P. 438, bottom: One can add that we have HomR(R, F ) ≃ F for all F in
PSh(R).

§ 566. P. 439, after Definition 18.2.2: One can add that we have

R
psh

⊗R F ≃ F

for F in PSh(R) and
R⊗R F ≃ F

for F in Mod(Rop), as well as
F

psh

⊗R R ≃ F

for F in PSh(Rop) and
F ⊗R R ≃ F

for F in Mod(Rop).

§ 567. P. 441. The proof of Proposition 18.2.5 uses Display (17.1.11) p. 409 of the
book and §559 p. 316.

§ 568. P. 441. In the notation of Remark 18.2.6 we have

HomR3(3M2 ⊗R2 2M1, 3M4) ≃ HomR2(2M1,HomR3(3M2, 3M4)),

HomR3(3M2 ⊗R2 2M1, 3M4) ≃ HomR2(2M1,HomR3(3M2, 3M4)),

HomRop
3
(1M2 ⊗R2 2M3, 4M3) ≃ HomRop

2
(1M2,HomRop

3
(2M3, 4M3)),

HomRop
3
(1M2 ⊗R2 2M3, 4M3) ≃ HomRop

2
(1M2,HomRop

3
(2M3, 4M3)).

More generally, if R,S, T are OX-algebras, if F is a (T ⊗OX Rop)-module, if G is an
(R⊗OX S)-module, and if H is an (S ⊗OX T )-module, then we have

HomS⊗OX T (F ⊗R G,H) ≃ HomR⊗OXS(G,HomT (F,H)),

HomS⊗OX T (F ⊗R G,H) ≃ HomR⊗OXS(G,HomT (F,H)). (211)
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§ 569. P. 442, proof of Proposition 18.2.7. Here are additional details.

Proof of (18.2.12): We must show

FA ≃ RA ⊗R F ≃ kXA ⊗kX F. (212)

We have

FA
(a)
≃ j−1A→X(F |A)

(b)
≃ j−1A→X(R|A ⊗R|A F |A)

(c)
≃ (j−1A→X(R|A))⊗R F

(d)
≃ RA ⊗R F.

Indeed, (a) and (d) hold by Definition 17.6.10 (i) and Display (17.6.5) p. 428 of
the book, (b) follows from §566, (c) follows from (18.2.6) p. 441 of the book. The
isomorphism FA ≃ kXA⊗kX F is a particular case of the isomorphism FA ≃ RA⊗R F
just proved.

Proof of (18.2.13): We must show

ΓA(F ) ≃ HomR(RA, F ) ≃ HomkX (kXA, F ). (213)

We have
HomR(RA, F )

(a)
≃ HomR(R⊗kX kXA, F )

(b)
≃ HomkX (kXA,HomR(R, F ))

(c)
≃ HomkX (kXA, F ),

where (a) follows from (212), (b) follows from Display (18.2.4) p. 439 of the book
(which is a particular case of (211)), and (c) follows from §565. Let us record the
isomorphism

HomR(RA, F ) ≃ HomkX (kXA, F ). (214)

We also have for G in Mod(R)

HomR(G,HomkX (kXA, F ))
(a)
≃ HomR(G⊗kX kXA, F )

(b)
≃ HomR(j

−1
A→X jA→X∗G,F )

(c)
≃ HomR(G, j

‡
A→X jA→X∗ F )

(d)
≃ HomR(G,ΓA(F )),

where (a) follows from (211) with

(kX ; kX ,R, kX ; kXA, G, F )

instead of
(OX ;R,S, T ;F,G,H),

(b) follows from (212), Definition 17.6.10 (i) and Display (17.6.5) p. 428 of the book,
(c) follows by adjunction, and (d) by Definition 17.6.10 (ii) p. 428 of the book.
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20.2 Lemma 18.5.3 p. 447

We give additional details about the proof of Lemma 18.5.3 of the book (stated below
as Lemma 573 p. 323) with the hope of helping the reader. We start with a technical
lemma.

Lemma 570. Let R be a ring, let A be a right R-module, let B be a left R-module,
let n be a positive integer, and let

(ai)
n
i=1, (bi)

n
i=1

be two families of elements belonging respectively to A and B. Then Conditions (i)
and (ii) below are equivalent:

(i) We have
∑n

i=1 ai ⊗ bi = 0 in A⊗R B.

(ii) There are positive integers ℓ and m with ℓ ≥ n, and there are three families

(ai)
ℓ
i=n+1, (λij)1≤i≤ℓ,1≤j≤m, (b′j)

m
j=1

of elements belonging respectively to A, R and B, such that, if we set bi = 0 for
n < i ≤ ℓ, we have:

m∑
j=1

λij b
′
j = bi (∀ 1 ≤ i ≤ ℓ), (215)

ℓ∑
i=1

ai λij = 0 (∀ 1 ≤ j ≤ m). (216)

Proof. Implication (ii)⇒(i) is clear. To prove Implication (i)⇒(ii), we assume (i), and
we choose a set I containing {1, . . . , ℓ}, where ℓ is an integer ≥ n to be determined
later, such that there is a family (ai)i∈I which completes the family (ai)1≤i≤n and
generates A. We write C for the kernel of the epimorphism

f : R⊕I ↠ A, (µi) 7→
∑
i∈I

ai µi.

In particular we have exact sequences

C
g−→ R⊕I

f−→ A→ 0, C ⊗R B
g′−→ B⊕I

f ′−→ A⊗R B → 0,
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with
g′
(
(µi)⊗ b)

)
= (µi b), f ′((b′′i )) =

∑
i∈I

ai ⊗ b′′i .

Put bi := 0 for i in I \ {1, . . . , ℓ}. The family (bi)i∈I is in Ker f ′, and thus in Im g′.
The condition (bi) ∈ Im g′ means that there is a positive integer m, a family

(λij)i∈I,1≤j≤m

of elements of R such that
(λij)i ∈ C ⊂ R⊕I

for 1 ≤ j ≤ m, and a family (b′j)1≤j≤m of elements of B, such that

(bi)i = g′

(
m∑
j=1

(λij)i ⊗ b′j

)
=

(
m∑
j=1

λij b
′
j

)
i

.

As (λij)i is in R⊕I for all j, the set of those i in I for which there is a j such that
λij ≠ 0 is finite, and we can arrange the notation so that this set is contained in
{1, . . . , ℓ} with ℓ ≥ n, and we get (215). As (λij)i is in C for all j, we also have
(216).

Here is another technical lemma:

Lemma 571. Let R be a ring, let φ : A′ → A be a morphism of right R-modules, let
B be a left R-module, and let s be an element of Ker(A′ ⊗R B → A ⊗R B). Then
there exist

• a commutative diagram

F ′ F ′

F ′′ F

A′ A A

f

0
ψ

g h

φ

of right R-modules such that F, F ′ and F ′′ are free of finite rank,
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• elements t ∈ F ′ ⊗R B, u ∈ F ′′ ⊗R B such that the commutative diagram

F ′ ⊗R B ∋ t

u ∈ F ′′ ⊗R B F ⊗R B

s ∈ A′ ⊗R B A⊗R B

f1

ψ1

g1 h1

φ1

satisfies g1(u) = s and ψ1(u) = f1(t).

Proof. Write

s =
n∑
i=1

a′i ⊗ bi

with a′i in A′ and bi in B, and put ai := φ(a′i) ∈ A, so that we have

n∑
i=1

ai ⊗ bi = 0.

By Lemma 570 p. 320 there are positive integers ℓ,m with ℓ ≥ n, and there are three
families

(ai)
ℓ
i=n+1, (λij)1≤i≤ℓ,1≤j≤m, (b′j)

m
j=1

of elements belonging respectively to A, R and B, such that, if we set bi = 0 for
n < i ≤ ℓ, we get (215) and (216) p. 320. We have a commutative diagram of right
R-modules

Rm

Rn Rℓ

A′ A

f

ψ

g h

φ

(217)

with

f(x)i =
m∑
j=1

λij xj, g(x) =
n∑
i=1

a′i xi, h(x) =
ℓ∑
i=1

ai xi.

In particular, (216) p. 320 implies h ◦ f = 0.

322 ks25a, 2025/02/15, 08:32:49 -05’00’, 1739626353



Lemma 572. If F and F ′ are two R-modules of finite rank, then the natural map

HomR(F, F
′)→ HomΓ(X,R)(Γ(X,F ),Γ(X,F

′))

is bijective. (Recall that Γ(X,F ) is defined just before Proposition 17.6.14 p. 429 of
the book.)

Proof. It suffices to prove the statement when F = F ′ = R, which is easy.

Let us turn to the proof of Lemma 18.5.3 p. 447. [As already pointed out,
there are two typos in the proof: in (18.5.3) M ′|U and M |U should be M ′(U) and
M(U), and, after the second display on p. 448, s1 ∈ ((Rop)⊕m ⊗R P )(U) should be
s1 ∈ ((Rop)⊕n ⊗R P )(U).]

For the reader’s convenience we state (in a slightly different form) Lemma 18.5.3
(see Notation 17.6.13 p. 428 of the book):

Lemma 573 (Lemma 18.5.3 p. 447). Let P be an R-module. Assume that for all
U in CX , all free right R-module F ′, F ′′ of finite rank, and all R|U -linear morphism
u : F ′|U → F ′′|U , the sequence

0→ Ker(u)⊗R|U P |U → F ′|U ⊗R|U P |U → F ′′|U ⊗R|U P |U

is exact. Then P is a flat R-module.

(Recall that the notation ?|U is defined in Notation 17.6.13 (ii) p. 428 of the book.)

Proof. Consider a monomorphism M ′ ↣M of right R-modules. It suffices to prove
that the sheaf

K := Ker(M ′ ⊗R P →M ⊗R P )

of kX-modules over X vanishes. Let K0 be the presheaf of kX-modules over X defined
by

K0(U) := Ker
(
M ′(U)⊗R(U) P (U)→M(U)⊗R(U) P (U)

)
,

let U be an object of CX , let s be an element of K0(U), and let s be the image of s
in K(U). We shall prove s = 0. By §562 p. 317 above, Definition 18.2.2 p. 439 and
Theorem 17.4.7 (iv) p. 421 of the book, K is the sheaf associated to K0. Hence, as U
and s are arbitrary, Equality s = 0 will imply that the natural morphism K0 → K
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vanishes. By (17.4.12) p. 421 of the book, this vanishing will entail K ≃ 0, and thus,
the lemma. Let us record this observation:

Equality s = 0 implies the lemma. (218)

By Lemma 571 p. 321 there exist

• a commutative diagram

F ′(U) F ′(U)

F ′′(U) F (U)

M ′(U) M(U) M(U)

f

0
ψ

g h

φ

of right R(U)-modules such that F, F ′ and F ′′ are free right R-modules of finite rank,

• elements t ∈ F ′(U)⊗R(U) P (U), u ∈ F ′′(U)⊗R(U) P (U) such that the commutative
diagram

F ′(U)⊗R(U) P (U) ∋ t

u ∈ F ′′(U)⊗R(U) P (U) F (U)⊗R(U) P (U)

s ∈M ′(U)⊗R(U) P (U) M(U)⊗R(U) P (U)

f1

ψ1

g1 h1

φ1

(219)

satisfies g1(u) = s and ψ1(u) = f1(t).

By Lemma 572 p. 323, the commutative diagram (217) also induces the commu-
tative diagram

∆ :=



N F ′|U

F ′′|U F |U

M ′|U M |U ,

k2 f2

ψ2

g2 h2

φ2
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the top square being cartesian. Then φ2 is a monomorphism by Proposition 17.6.6
p. 425 and Notation 17.6.13 p. 428 of the book (recall that M ′ →M is a monomor-
phism by assumption). This implies g2 ◦ k2 = 0. Hence ∆ is a commutative diagram
of complexes. The condition that the top square is cartesian is equivalent to the
exactness of

Σ :=
(
0→ N → F ′|U ⊕ F ′′|U → F |U

)
.

The sequence Σ⊗R|U P |U being exact thanks to the assumption in Lemma 573 p. 323,
we see that the commutative diagram of complexes ∆⊗R|U P |U has a cartesian top
square, and that, by left exactness of Γ(U ;−) (see §564 p. 318), the commutative
diagram of complexes Γ(U ; ∆⊗R|U P |U), that is (see Notation 17.6.13 p. 428 of the
book),

(N ⊗R|U P |U)(U) (F ′ ⊗R P )(U) ∋ t

u ∈ (F ′′ ⊗R P )(U) (F ⊗R P )(U)

s ∈ (M ′ ⊗R P ) (U) (M ⊗R P ) (U)

k1 f1

ψ1

g3 h3

φ1

(see (219)) has also a cartesian top square, and satisfies g3(u) = s and

ψ1(u) = f1(t). (220)

We have used the isomorphisms

Γ
(
U ;M |U ⊗R|U P |U

)
≃ Γ

(
U ; (M ⊗R P ) |U

)
≃ (M ⊗R P ) (U), (221)

and similarly with M ′ instead of M . Indeed, the first isomorphism in (221) is a
particular case of (18.2.5) p. 441 of the book, and the second isomorphism in (221)
results from the last two displays on p. 428 of the book. In other words, we have

(N ⊗R|U P |U)(U) ≃ (F ′ ⊗R P )(U)×(F⊗RP )(U) (F
′′ ⊗R P )(U). (222)

Note that (220) implies

x := (t, u) ∈ (F ′ ⊗R P )(U)×(F⊗RP )(U) (F
′′ ⊗R P )(U).

If y is the element of (N ⊗R|U P |U )(U) corresponding to x under Isomorphism (222),
then we get k1(y) = u, and thus s = g3(u) = g3(k1(y)) = 0. By (218), this completes
the proof.
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20.3 Brief comments

§ 574. P. 452, Part (i) (a) of the proof of Lemma 18.6.7. As already mentioned,
OU and OV stand presumably for OX |U and OY |V (and it would be better, in the
penultimate display of the page, to write OV instead of OY |V ), and, a few lines
before the penultimate display of the page, f−1W : O⊕nU

u−→ O⊕mU should be (I think)
f−1W : O⊕nW → O

⊕m
W .

Also, one may refer to (199) p. 294 and §512 p. 295 to describe the morphism
of sites fW : W → V . More precisely, we define, in the notation (199), the functor
(fW )τ : ((CY )V )op → ((CX)W )op by

(fW )τ (V ′ → V ) :=
(
f τ (V ′)→ f τ (V )→ W

)
.

Finally, let us rewrite explicitly one of the key equalities (see §512 p. 295):

f †(O⊕nmY )(W ) = colim
(fτ (V )→W )∈((CY )op)W

O⊕nmY (V ),

where f τ (V )→ W is a morphism in (CX)op (corresponding to a morphism W → f t(V )
in CX).
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