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We consider the possibility that electromagnetism is caused by the exchange of unphysical L=0 photons 

between fundamental particles with properties that resemble quantum black holes. This force is infinite if 

the known far-field cross section is assumed. However, the divergence is generated at low energy where 

the photon wavelengths are large and the far-field limit fails. An estimate of the near-field correction 

removes the infinity and leads to an estimate of the inverse fine structure constant of 1~139. A 

speculative scaling of a term controlling the near-field correction by 1/(1+) gives the result 1 

=137.038. A suggested speculative link to the higher-order QED corrections to the anomalous magnetic 

moment of the electron gives 1=137.036 and a calculated elementary charge q=1.6021771019 C. 

These calculations suggest elementary particles are quantum black holes.  
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One of the greatest mysteries of physics is the value of the 

fine structure constant [1]. Despite many attempts, there is 

still no accepted theory to explain its value. In the present 

letter we consider the possibility that electromagnetism and 

its strength are generated by the semi-classical exchange of 

unphysical photons between quantum black holes. It is 

known that L=0 photons cannot be emitted to infinity by a 

single Schwarzschild black hole. However, we consider the 

possibility that low energy L=0 photons can be exchanged 

between two quantum black holes via quantum means. If the 

far-field L=0 photon black-hole interaction cross section is 

assumed, then their exchange leads to an infinite radiation 

pressure. This unphysical result is generated in the limit as 

the photon energy, , goes to zero where the wavelength, , 

becomes larger than the distance between the two quantum 

black holes, d, where the far-field limit is not valid. A 

simple estimate of the near-field correction removes the 

divergence, and causes the exchange to be dominated by 

photons with ~2d. This force is independent of the 

masses of both black holes and is near that between two 

charged leptons. 

One of the simplest methods for estimating the emission 

rate of massless particles from an object at temperature T is 

to use transition-state theory [2] and we write the decay 

width for emission from a spherical object as 
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where the TL() are the angular momentum and energy 

dependent transmission coefficients. In the limit of a large 

classical object, the maximum orbital angular momentum 

that can be taken away by a massless particle is Lmaxħ=r/c, 

where r is the radius. Substituting in TL()=1 for LLmax in 

                                                 
 

the limit of a large object, assuming two states of helicity 

(polarization), and making the semi-classical replacement of 

exp(/T) with 1/(exp(/T) 1) for the emission of real 

photons gives the result 
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The corresponding emission power is 
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where a and A are the classical absorption cross section and 

the surface area of the black body, and SB=2/(60ħ3c2) is 

the Stefan-Boltzmann constant. In the limit of low gravity, 

Eq. (3) gives the power of Hawking radiation from a large 

black hole with radius rS and temperature Tbh=ħc/(4rs) [3-

5]. 

The emission and absorption of photons by a single 

Schwarzschild black hole are controlled by the energy 

dependent absorption cross sections [6,7] 
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where M is the black-hole mass and  is the angular 

frequency. The conversion between the M used by 

Crispino et al. and the photon energy is M=/(8Tbh). The 

L=0 photon emission from black holes is, in part, known to 

be unphysical because its forced inclusion into the 

absorption cross section would cause the emission power to 

be infinite. However, for a single quantum black hole with a 

fixed mass, this unphysical emission would be completely 

suppressed by energy conservation. We temporarily ignore 

this important fact and use transition-state theory to write 

the semi-classical emission of unphysical L=0 photon power 

emitted to infinity from an infinitely small black hole (A) 

with infinite temperature as 
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The violation of conservation of energy by the emission 

from a single quantum black hole can be rectified by the 

absorption of the photon by a neighboring quantum black 

hole on a time scale less than ~ħ/(2) given by the time-

energy uncertainty principle. The photon energies involved 

in the exchange are therefore 
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For widely spaced quantum black holes with d>>rS of either 

of the black holes, the constraints on the exchanging photon 

energies imposed by the time-energy uncertainty principle 

rule out all but the unphysical L=0 exchanges. Assuming 

that Eq. (6) defines an effective exchange temperature, we 

speculate that the photon power being exchanged from 

quantum black hole A to quantum black hole B can be given 

as 
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Despite the fact that for emission to infinity TL=0()=1, we 

leave it in Eq. (7) because, as discussed later, the 

transmission coefficients need to be modified for the case of 

exchange between objects when the  become comparable 

to, or larger than d. Given Eq. (7), in the limit of a pair of 

widely spaced small quantum black holes, the force 

generated by the two-way exchange of unphysical photons 

between them is not dependent on the size and/or 

temperature of either black hole and is given by 
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Substituting L=0() = (ħc/)2TL=0() [see Eq. (4)] into Eq. 

(8) gives 
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If this exchange force is assumed to be the origin of 

electromagnetism, then the fine structure constant can be 

expressed as 
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Using the standard value of TL=0()=1 gives an infinite fine 

structure constant. However, the origin of the divergence is 

the lowest energy photons where >d and the transmission 

coefficients need to be modified to lower values to correct 

for near-field effects. 

The L=0 absorption cross section is (ħc/)2 in the far-

field limit where the photons approach from infinity as 

plane waves. This means that, in a semi-classical sense, two 

black holes exchanging photons with <<d, do so as though 

they are classical spherical objects with a radius r=ħc/ . 

This is the expected relevant length scale for near-field 

effects. This translates to a relevant energy scale of *= 

ħc/d. The two semi-classical interaction spheres will start to 

overlap as the photon energy drops through  = 2*. 

Therefore, from simple overlap arguments one might expect 

the near-field corrections to be small but starting to grow 

rapidly as  decreases through 2*. For  < * both black 

holes are inside the semi-classical interaction sphere of the 

other, and near-field corrections should be large with a 

significant reduction in the effective interaction cross 

section, relative to the far-field value, by more than a factor 

of two. 

Without detailed theoretical calculations, intuitive guesses 

of the functional form of the near-field corrections should be 

viewed with skepticism. Nonetheless, we make an intuitive 

guess here. We assume that around each quantum black hole 

there is a distribution of photon interaction sites and that the 

effective density of these sites can be represented by a 

function (r/). This is to ensure that the interaction cross 

section scales with 2. For photon exchanges between a pair 

of black holes with d>> there is no overlap of the 

interaction sites from different black holes, and thus no 

near-field corrections. However, when the  are comparable 

to or larger than d, the interaction sites from the different 

black holes overlap. We assume this overlap controls the 

increase of the near-field corrections with decreasing  as 

the  grow larger than d. Guided by the functional form of 

the harmonic oscillator wave function and an intuitive 

feeling that the interaction cross section should be flat at the 

lowest  (at least before the addition of QED corrections) 

we assume 
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We further speculate that only emission sites along the line 

joining the two black holes control the near-field corrections 

and write the change in the L=0 effective interaction radius 

as 
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where the n and f subscripts are for near and far field. The 

corresponding near-field modified transmission coefficient 

is 
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The corresponding effective interaction cross sections are 

displayed in Fig. 1. 

Substituting Eq. (13) into Eq. (10), and switching the 

energy into units of Tex gives 
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The corresponding calculated value is 1=138.9099, with a 

relative difference from the known value of ~2. We 

speculate that QED effects will slightly decrease the near-

field corrections from the expectations of simple 

geometrical considerations. To lowest order, the absorption 



LA-UR-15-29630 

 3 

process can be represented by a Feynman diagram with a 

single vertex. The next higher order diagrams contain three 

vertices and add a fuzziness to the absorption location. 

However, this fuzziness does not affect the far-field cross 

section of (ħc/)2, but perhaps can affect the near-field 

correction. To apply a simplistic estimate of a QED-based 

near-field correction to Eq. (14) that will not change the 

limiting values of TL=0(0)=0 and TL=0()=1, and 

without changing the length scale embedded in the 

argument of the erf function, we suggest a change in the 

power of 4 in Eq. (14) to 4/(1+). This change gives a 

calculated value of 1=137.0378, which differs by ~1 part 

in 105 from the known value of 137.035999 [8-11]. The 

elementary charge corresponding to the calculated value of 

1=137.0378 is q=(ħc4o)1/2=1.60217×1019 C. This 

good match to experiment is possibly fortuitous, but 

demonstrates that corrections to Eq. (14) of the order of  

can lead to apparent excellent matches to experimental data. 

The photon exchange power spectrum for the 1 =137.0378 

calculation discussed above is displayed in Fig. 2. The 

calculated spectrum of the exchanging photons is close to 

Planckian, with a temperature of ~2*/7. The photons 

responsible for the exchange force have a mean energy of 

~* and reduced wavelength of ~d. 
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Fig. 1. Effective interaction cross sections obtained using the near-

field corrected transmission coefficients represented by Eq. (13) 

(solid curve). The dashed curve displays the far-field result. 
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Fig. 2. Power spectrum for the exchanging photons involved in the 

1=137.0378 calculation discussed in the text (solid curve). The 

dashed curve displays a Planckian fit to the calculated power 

spectrum with a temperature 2*/7. 

 

The speculative QED correction of order  feels like the 

well-known QED correction to the magnetic moment of the 

electron [12-13]. Based on the complexity of the higher-

order corrections to the magnetic moment of an electron 

[14-19], the higher-order corrections for the exchange 

scenario presented here will not follow a simple pattern, and 

obtaining them directly via calculation would be a 

monumental task. 

The Feynman diagrams for the higher-order corrections 

that generate the fuzziness in the interaction locations 

(discussed above) look like the diagrams for the anomalous 

magnetic moment of the electron, but with an extra photon 

line that connects to the other exchange partner a distance d 

away. It is therefore plausible that the QED corrections 

needed for the exchange scenario presented here are related 

to the QED calculation of the anomalous magnetic moment 

of the electron. The electron-only QED calculation of 

(g2)/2 can be written as [19] 
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The first three A1
(2n) are known precisely and are A1

(2)=0.5, 

A1
(4)= 0.328478965579…, and A1

(6)=1.1812456587…  The 

(g2)/2 can be loosely thought of as a ratio of two length 

scales. These are related to the relative path lengths in 

space-time where the electron location is fuzzy due to a 

surrounding cloud of virtual photons and electron-positron 

pairs, and the corresponding length scale for when the 

electron is naked.  The exchange problem is related to 

effective interaction surface areas, and thus has a change in 

symmetry relative to that associated with the anomalous 

electron magnetic moment. Perhaps, for the exchange 

problem, we need a ratio of a QED corrected fuzzy effective 

surface area to the corresponding sharp surface area. 

Inspired by this suggestion we speculate that the A1
(2n) in Eq. 

(15) are related to dimensionless length scales. For our near-

field correction problem, we convert these length scales into 

effective surface areas of spheres and express the fine 

structure constant as 
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with the near-field correction term 
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Eq. (17) leads to a calculated inverse fine structure constant 

of 1=137.035891, which differs by 1 in the 7th significant 

digit from the known value. The corresponding calculated 

fundamental unit of charge is q=1.602177×1019 C. The n=4 

and 5 terms [19] only influence the 10th and beyond 

significant digits. The good match to experiment obtained 

here is possibly fortuitous, but demonstrates that plausible 

high-order QED corrections to Eq. (14) can lead to an 

improved match to the experimental data.  
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Using the speculative assumption of Eq. (7), a semi-

classical estimate of the repulsive force generated by the 

exchange of unphysical photons between a pair of widely 

spaced quantum black holes can be obtained. If only the far-

field estimate of the photon black-hole interaction cross 

section (and corresponding transmission coefficients) is 

used, then the calculated exchange force is infinite. Simple 

estimates of the near-field corrections obtained by intuitive 

overlap arguments remove the divergence, lead to an 

exchange force that is inversely proportional to the square of 

the separation distance, that is independent of the properties 

of the black holes (mass, size and temperature), and give an 

estimate of 1~139. The insensitivity to several black-hole 

properties suggests that the objects do not necessarily have 

to be black holes. However, the objects are required to have 

a propensity to emit L=0 photons via Eq. (5) that is 

completely suppressed due to energy conservation for 

emission to infinity, while the exchange of low-energy 

photons between like objects is allowed via the time-energy 

uncertainty principle. The nature of the photon exchange 

calculated here has a QED feel, with the photons involved 

being unphysical (perhaps we could label them virtual) and 

with the dominant exchange photons having ~2d. In a 

semi-classical sense this means the energy, path, and 

direction of an individual exchange is not definable. It 

would thus not be surprising in a more detailed quantum 

mechanical calculation that the details of the semi-classical 

exchange suggested here are lost, and the only surviving 

property is a single photon-particle coupling constant. 

Although the semi-classical arguments proposed here can 

only generate a repulsive force between like objects, an 

attractive force between oppositely charged objects can be 

generated by assuming the opposite charge is associated 

with a hole in a Fermi-sea of negative energy objects. 

Magnetism is not discussed here but falls out via standard 

Lorentz transformations between inertial frames. Possible 

reasons for the fractional charges of quarks are not 

discussed. Only a static configuration of a pair of objects is 

considered here. It would be interesting to consider the 

possibility of the generation of “real” photons in an 

extension of the presented scenario to a dynamical case. 

Invoking the speculative QED modification represented 

by Eq. (17) gives the value 1=137.035891. The 

corresponding effective charge for quantum black holes is 

q=1.6021773×1019 C, which differs from the known 

elementary charge e=1.60217662×1019 C [11] by 7 in the 

8th significant digit. The list of assumptions needed to obtain 

this result are: an effective exchange temperature of 

Tex=ħc/(2d); near-field corrections controlled by a harmonic 

oscillator wave function with a length scale of /2; and 

QED corrections to the near-field correction that are 

analogous to the QED calculation of the electron’s (g2)/2 

but with the A1
(2n) terms replaced by 4(A1

(2n))2. As 

discussed previously, the match to experiment may be 

fortuitous, and quantum field theory calculations are needed 

to confirm or negate the speculations presented here. In 

particular, the nature of near-field corrections and the 

possibility of second- and higher-order QED corrections 

should be studied.  

If the presented speculations are confirmed by quantum 

field theory calculations (not semi-classical arguments) the 

implications are too numerous to be discussed here. 

However, an important one is that the strength of 

electromagnetism would be controlled by simple 

geometrical factors and QED corrections, and  would be a 

mathematical constant like  and e, and not a physical one 

(at least in flat spacetime). This would have significant 

consequences for ideas related to possible time 

dependencies of , the anthropic principle, string theories, 

and multiverse scenarios. 
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