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Abstract

I propose first a simple model for quantum black holes based on a harmonic oscillator
describing the black hole horizon covered by Planck length sized squares carrying soft
hair. Secondly, I discuss a more involved statistical model with the partition function
sum taken over black hole stretched horizon constituents which are black holes them-
selves. Attempting a unified quantum structure for spacetime, black holes and matter,
I apply the statistical model picture also to matter particles using a composite model
for quarks and leptons.
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1 Introduction

Thermodynamical properties, like entropy and temperature, of black holes have been
established about four decades ago [1, 2]. More recently thermodynamics has been
considered as the major agent behind general relativity by Padmanabhan [3, 4]. Ther-
mogravity suggests that the role of the metric tensor is secondary thus providing the
basis for models of the type considered in this note. Thermodynamical concepts have
been applied to local Rindler frames [5, 6] leading to observer dependent phenomena.
In [7] Mäkelä has applied the acceleration frame considerations to a statistical model of
stretched horizon black holes by calculating the partition function of the system.

I describe first a warm-up model for the structure of quantum black holes. The black
hole horizon is a spherical membrane covered with l2Pl size squares each of which can
be in k states. The membrane dynamics is represented by a two dimensional harmonic
oscillator.

Secondly, I redefine the partition function as a sum over black hole stretched horizon
constituents following [7]. This model has a first order phase transition and it gives as
predictions Hawking radiation and Bekenstein-Hawking entropy formula. The author
of [7] regards the stretched horizon black holes as atoms of spacetime. I propose here a
unified statistical picture for spacetime, black holes and matter in terms of the stretched
horizon model and a composite model for quarks and leptons [8].

This note is organized as follows. After the Introduction a simple oscillator model for
black holes is outlined in section 2. In section 3 I present the main points of the stretched
horizon black hole model. Consistent quantization of spacetime and matter is discussed
in section 4 in connection with a model for composite quarks and leptons. Finally in
section 5 I give a brief discussion of results and conclusions. An appendix is provided
for main results of the stretched horizon model phase transition. The presentation is
very concise throughout.

2 Membrane Model of Horizon

As the first scenario for quantum black holes I assume the standard picture of a hole as
a spherical horizon covered with squares of size ' l2Pl. The minimal horizon radius is of
the order of lPl. All physics takes place on the surface of the sphere, and tentatively,
none inside. Suppose there are n squares on the horizon and each square can be in k
soft hair states [9]. Then the total number of states is kn. This gives for entropy S of
the sphere the well known result

S = kB log kn = kB n ln k ∝ A

l2Pl

(2.1)

where kB is the Boltzmann constant and A is the area of the horizon.
The vibrations of an oscillator can be calculated in normal way with certain fre-

quency restrictions due to the grid. The geometry is a two dimensional sphere

H =
−~2

2m
∇2 +

1

2
mω2~x2 (2.2)

The energy eigenvalues for a square are given En = ~ω(n+ 1) where n = 0, 1, 2, ... .
The partition function Q is (to be used in section 3)

Z = Σngnexp(En/kT ) (2.3)

where gn (= k in (2.1)) is the degeneracy of the n’th state and En its energy and T the
temperature.
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3 Model of Stretched Horizon

I consider a micro black hole dressed by a (virtual reality [10]) stretched horizon, which
is a membrane hovering about a Planck length outside the event horizon and which is
both physical and hot. A treatment of the stretched horizon has been done by Mäkelä
in [7] which paper I cite below. He assumes that the stretched horizon consists of finite
number of discrete constituents. Candidate constituents may be something geometrical,
like a Planck scale string or area, but not volume, scalar fields or, very likely, graviton
configurations. In [7] the area model is chosen, each constituent contributing to the
stretched horizon an area of a non-negative integer times a constant

A = b l2Pl (n1 + n2 + ...+ nN ) (3.1)

where N is the number of constituents, the ni define constituent area quantum states
and b is a number of the order unity that can be determined later. Equation (3.1)
is not, however, a typical quantum form because its zero point area is zero. For the
constituents themselves one assumes simply black holes of size lPl. Therefore in this
model each stationary quantum state of a black hole is determined by the quantum
numbers n1, n2, ..., nN of its stretched horizon. As in section 2, no physics is tentatively
associated inside the horizon.

For the partition function we need the energy levels of the system. The energy of
a black hole from the point of view of an observer on its stretched horizon is called
Brown-York energy [11]

E =
ac2

8πG
A (3.2)

where a is the constant proper acceleration of an observer on the stretched horizon and
A is the area of the horizon. For our system in consideration this becomes from (3.1)

En = nb
~a
8πc

(3.3)

where n = n1 +n2 + ...+nN . The number of microscopic states associated with energy
En is the number of ways of writing a given positive integer n as a sum of exactly N
positive integers, whith N ≤ n. This is given by the binomial coefficient

ΩN (n) =

(
n− 1
N − 1

)
(3.4)

It gives the degeneracy function g(En) for the partition function 2.3 which is calculated
into a simple form [7]

Z(β) = F (β)(1− F (β)N+1) (3.5)

where

F (β) =
1

2βTC − 2
(3.6)

and the temperature

TC =
b ~ a

4(ln 2)πkBc
(3.7)

is called the critical temperature of the hole. For the purposese of the next section it is
sufficient that that partition function is convergent.

How do we interprete the stretched horizon model? I assume it applies both to black
holes and atoms of spacetime. The next question is are matter particles pointlike in
this spacetime or do particles have some kind of substructure? In a unified model both
spacetime and matter particles have the same type of substructure as we see in the next
section.
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4 Unified Model of Spacetime and Matter

Statistical methods of section 3 for spacetime offer a possibility to study the matter
sector from a novel point of view to build a consistent, unified statistical picture of both
spacetime and matter. This goal would imply some internal structure at scale of the
order of lPl for particles. Such a model has been proposed in [8] (though there never
was experimental support for it).

The basic idea in [8] is that the quarks and lepton are made of maxons with charge
0 or 1

3 and ’color’ (i, j, k) as permutation index as follows

uk = εijkm
+
i m

+
j m

0

d̄k = m+
km

0m0

e− = εijkm
−
i m
−
j m
−
k

ν = εijkm
0
im

0
jm

0
k

(4.1)

The construction (4.1) on maxon level is matter-antimatter symmetric and ’color’ sin-
glet, which is desirable for early cosmology.

The maxons in this note are black holes with stretched horizons. Their energy scale
is at the Planck scale (and (4.1) would be superheavy particles). To get the standard
model particles the large mass difference has to be explained. It is accomplished from
(3.1) by setting N = 1, n1 = 0, which leads by (3.2) to zero mass remnant of the hole.
This maxon, without stretched horizon, may interact with the Higgs field and gain
mass from it. I assume that the quarks and leptons are bound states of maxons with
the Higgs, or other scalar, mediating the binding. The question of existence of free
single maxons is postponed to another study. It may be a new particle or it can also
be assumed that some kind of confinement is operating.

The gauge bosons and the Higgs would be elementary (but their composite nature
is not ruled out). The three generations would be due to a gravitational mechanism
of the stretched horizon or a new symmetry. Missing at the moment are calculational
methods for the bound states. Numerical methods can usually be developed at some
level of accuracy.

5 Discussion and Conclusions

If a non-inertial observer perceives a horizon, he will attribute to it the Davies-Unruh
temperature, see (3.7)

T =
~
kBc

a

2π
(5.1)

where a is the acceleration of the observer. This result makes the notion of temperature
and all of thermodynamics observer dependent phenomena. This problem was taken
into account in the local Rindler frame considerations in the earlier sections.

It has turned out that horizons have profound importance in gravity both on ther-
modynamical and statistical levels. There are interesting questions of heat as inertial
effect in a quantum equivalence principle and static observer’s virtual reality in [10].

In the UV black holes cannot be probed deeper than lPl. With increasing energy the
hole begins to grow approaching the classical regime. This model is therefore consistent
with the concept of self-completeness [12].

The regime of real quantum gravity is limited to the vicinity of mini black holes and
very early universe. Otherwise classical theory is accurate.
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A model of decay and radiation of black holes has been proposed in [13, 14]. The
lightest black hole state En=0, the remnant or gravon, is expected to decay into standard
model particles. Otherwise black holes radiate by the Hawking mechanism and by a
classical no-hair theorem based mechanism producing non-thermal particles, dominantly
light leptons.

There are at present a number competing theoretical schemes for quantum gravity
like string theory, loop quantum gravity, causal dynamical triangulation, and others.
The model of section 3 goes deep into the structure of the physical universe and can be
considered a promising candidate. In that scenario the horizon properties of black holes
and local Rindler frames are the origin of gravity, and general relativity is its IR limit.
In this note, these ideas have been applied to the matter sector using a preon model in
section 4.

The results of this simple model can be considered encouraging for the development
of a more realistic model. A more involved model for the stretched horizon should
include gravitons and is expected to produce a smoother transition for the system in
getting down from Planck scale to standard model particle mass scale. Finally, this
note should be considered a program definition for future work with a number of model
results as guidelines.

Appendix

A The Phase Transition

I give below a brief sketch of the stretched horizon model first order phase transition
though not directly needed for the main section 4 of the present note. All properties of
the model are carefully derived in [7].

The average energy at temperature T = 1/β can be calculated from the partition
function (3.5)

E(β) = − ∂

∂β
lnZ(β) (A.1)

of the black hole which yields

E(β) =

[
2βTC

2βTC − 2
− (N + 1)2βTC

(2βTC − 1)N+2 − 2βTC + 1

]
TC ln 2 (A.2)

The average energy per constituent is for large N

Ē(β) = Ē1(β) + Ē2(β) (A.3)

where

Ē1(β) =
1

N

2βTC

2βTC − 2
TC ln 2

Ē2(β) = − 2βTC

(2βTC − 1)N+2 − 2βTC + 1
TC ln 2

(A.4)

where (N + 1)/N ≈ 1 has been used.
At T = TC the average energy per a constituent of the stretched horizon is, in SI

units,

Ē = kBTC ln 2 (A.5)
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and its rate of change
dĒ

dT
|T=TC

=
1

6
kB(ln 2)2N +O(1) (A.6)

where O(1) denotes the terms which are of the order N0, or less. At large N the hole
undergoes a phase transition at T = TC . When T < TC , Ē is about zero. When
T = TC , the function Ē(T ) becomes practically vertical jumping by the latent heat
L̄ = 2kBTC ln 2. Ē(T ) depends on T approximately linearly when T � TC .

TC may be written in terms of the Schwarzschild mass M and the radial coordinate
r of an observer on the stretched horizon as

TC =
b

8π ln 2

(
1− 2M

r

)−1/2
M

r2
(A.7)

An observer just outside of the event horizon, where r ≈ 2M , measures a temperature

TC =
α

32π ln 2

(
1− 2M

r

)−1/2
1

M
(A.8)

for the black hole. Due to the non-zero temperature of the hole, thermal Hawking
radiation comes out of it, and the Tolman relation [15] implies that an observer at
asymptotic infinity measures a temperature for the radiation

T∞ =
α

32π ln 2

1

M
(A.9)

With some more effort one can obtain the Bekenstein-Hawking entropy law for the
Schwarzschild black hole

S(A) =
1

4

kBc
3

~G
A (A.10)

When T = TC , the energy of the hole from the point of view of an observer on its
stretched horizon is exactly

E = (N + 2)kBTC ln 2 (A.11)

It is interesting that, up to an unimportant numerical factor 2 ln 2, this expression for
energy is the same as the one used as a starting point in the scenario for an entropic
theory of gravity [16].
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