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Abstract

In this work we present two finite-difference schemes for solving this equation with one initial
and boundary conditions. We study stability and consistency of these methods. Two methods
are explicit and they approximates the solutions of the wave equation with consistency of order
O
{

(∆t)2, (∆x)2
}

, for examining the accuracy of the results , we compare the results with the
solution obtained by the methods of separation of variable, also a numerical example for each
methods is presented and compared with each other. Finally, the graphs of the error have been
plotted to show the methods work with high accuracy.
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1 Introduction

Wave equation is an extremely important evolution model and it is widely used by physicists
and engineers in describing the propagation of water waves, sound waves, electromagnetic waves,
seismic waves, gravity waves and oscillatory waves, etc (see [1]). To gain an insight to the physical
back ground about the damped wave equation we refer to [2]. Where it is stated that when the
neural fields are formulated to predict wave equation. Damped wave equation first occurred in the
mathematical description of the telegraph, it is generally known as the equation of telegraphy. The
telegrapher’s equation (or just telegraph equation) is a linear differential equation which describes
the voltage and current on an electrical transmission line with distance and time. In fact the
telegraph equation is more suitable than ordinary diffusion equation in modeling reaction–diffusion
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for such branches of sciences. In the present research various numerical schemes will be developed
and compared for solving this equation [3],[4],[5],[6],[7],[8].

We consider the following equation,

∂2u

∂t2
+ 2h

∂u

∂t
= c2

∂2u

∂x2
, (1)

with the initial and boundary conditions,

u(x, 0) = f(x), u(0, t) = u(l, t) = 0, (2)

ut(x, 0) = g(x), (3)

where h is a small positive constant. The term 2h∂u∂t , presents a damping force proportional to the
element’s velocity ut.

2 The finite–difference schemes

The main idea behind the finite-difference methods for obtaining the solution of a given partial
differential equation is to approximate the derivatives appearing in the equation by a set of values
of the function at a selected number of points. The most usual way to generate these approximations
is through of use of Taylor series. The solution domain of the problem is covered by a mesh of
grid-lines

xi = i∆x i = 0, 1, ...,m, (4)

tn = n∆t n = 0, 1, ..., N. (5)

parallel to the space and time coordinate axes, respectively. Approximations uni to u(i∆x, n∆t)
are calculated at the point of intersection of these lines, namely,(i∆x, n∆t) which is referred to as
the (i, n) grid-point. The constant spatial and temporal grid-spacing are ∆x = 1

M and ∆t = T
N ,

respectively.

3 Two three-level explicit methods

3.1 The first method

Consider the following approximations of the derivatives for solving the equation 1,

36

http://www.ijmes.com/


International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 3 (Year 2014) ISSN : 2277-6982

http://www.ijmes.com/

∂2u

∂t2
|ni =

un+1
i − 2uni + un−1

i

∆t2
− (∆t)2

12

∂4u

∂t4
|ni +O(∆t4), (6)

∂u

∂t
|ni =

un+1
i − un−1

i

2∆t
− ∂3u

∂t3
|ni +O(∆t4), (7)

∂2u

∂x2
|ni =

uni+1 − 2uni + uni−1

∆x2
− (∆x)2

12

∂4u

∂x4
|ni +O(∆t4), (8)

for i = 1, ...,M − 1, and n = 1, ..., N − 1,
where

S =
c2∆t2

∆x2
(9)

By replacing these terms in equation 1 we obtain,

un+1
i −2un

i +un−1
i

∆t2 − (∆t)2

12
(∂4u)
∂t4 |

n
i +O(∆t4)

+2h(
un+1
i −un−1

i

2∆t − (∆t)2

6
(∂3u)
∂t3 |

n
i +O(∆t4)

−c2(
un
i+1−2un

i +un
i−1

∆x2 − ∂4u
∂x4 |ni +O(∆t4) = 0

(10)

by omitting all terms of O{(∆t)2, (∆x)2} we have,

un+1
i =

1

1 + h∆t
[2(1− s)uni − (1− h∆t)un−1

i + s(uni+1 + uni−1)] (11)

Clearly, the total of the truncation errors in using the 11 instead of 1 is,

E{uni } = [− (∆t)2

12

∂4u

∂t4
|ni −

h(∆t)2

3

∂3u

∂t3
|ni + c2

(∆x)2

12

∂4u

∆x4
|ni +O{(∆x4), (∆t4)}], (12)

This may be written

E{u} = O{(∆t2), (∆x2)} (13)

In this method the initial condition is g(x) = 0. In equation 11, when n = 0 we need u−1
i , which

is calculated as follows,

ut(x, 0) = g(x) = 0⇒ ∂u0
i

∂t
= 0⇒ u1

i − u
−1
i

∆t
= 0⇒ u1

i = u−1
i , (14)

37

http://www.ijmes.com/


International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 3 (Year 2014) ISSN : 2277-6982

http://www.ijmes.com/

Then from equation 11 we have,

u1
i =

1

2
[2(1− s)u0

i + s(u0
i+1 + u0

i−1)], (15)

As en example we let k = 3, 0 ≤ j ≤ k + 1 then

un0 = u(0, t) = 0, (16)

unk+1 = un4 = u(π, t) (17)

u1 =

 u1
1

u1
2

u1
3

 = 1
2

 2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)

 u0
1

u0
2

u0
3



+ s
2

 u0
0

0
u0

4


(18)

And the solution for time steps uk+1; k ≥ 1 is,

uk+1 = Auk + b− euk−1, (19)

where

uk =

 uk1
uk2
uk3

 , A = 1
1+h∆t

 2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)

 ,

b = s
1+h∆t

 uk0
0
ukk

+ 1−h∆t
1+h∆t ,

(20)

In the follow the computational molecule of this formula is shown in Fig. 1. In the following
the procedure using this formula will be referred to as the (1,3,1) method. This means that the
molecule involves one grid point at the (n+ 1) time level and 3 at the (n) and 1 at the (n− 1) time
level.

3.1.1 Stability by Von Neumann’s method

The Von Neumann method is the most commonly used method of stability analysis for linear finite
difference formula with constant coefficients [9]. A solution of the error equation is now sought in
the variables separable form
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Figure 1: The computational molecule for the (1, 3, 1) scheme.

ξnj = |G|neiβj (21)

in which

β = mπ∆x, (22)

Where the time dependence of this Fourier component of the error at x = i∆x , and t = n∆t , is
contained in the coefficient (Gn) which is the nth power of the complex number G. By replacing ξ
instead of u in equation 11 we obtain,

ξn+1
j =

1

1 + h∆t
[2(1− s)ξnj − (1− h∆t)ξn−1

j + s(ξnj+1 + ξnj−1)], (23)

Substituting 21 in the above error equation gives:

|G|n+1eiβj = 1
1+h∆t [2(1− s)|G|neiβj − (1− h∆t)|G|n−1eiβj

+s(|G|n+1eiβ(j+1) + |G|n+1eiβj)],

(24)

By division by |G|n+1eiβj , we obtain ,

(1 + h∆t)G2 − (2− 2s+ 2s cosβ)G+ (1 + h∆t)) = 0, (25)

For all tree-level methods the Von Neumann amplification factor G may have one of two values
which are the roots of a quadratic equation of the form

A(G)2 +BG+D = 0, (26)

39

http://www.ijmes.com/


International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 3 (Year 2014) ISSN : 2277-6982

http://www.ijmes.com/

In which the coefficients A,B,D are functions of β, s, and may be complex numbers. For coefficients
of quadratic equation 26 the Von Neumann stability is established by using the following criteria,
(a) If |A| > |D| then the given finite difference formula is stable if and only if

|A|2 − |B|2 ≥ |BA−DB|,

(b) If |A| = |D| and |BA−DB| = 0 then the given finite difference formula is stable if and only if

2|A| ≥ |B|,

(c) If |A| < |D| then the finite difference formula is unstable.
Consider 25, which may be written in the form 26 with

A = 1 + h∆t, B = −(2− 2s+ 2s cosβ) = −(2− 4s sin2 β

2
), D = 1− h∆t

since

|A| = 1− h∆t >| 1− h∆t |=| D |, (27)

It follows from (a), that the equation 1 is stable if and only if

(1 + h∆t)2 − (1− h∆t)2 ≥ | − (2− 4s sin2 β
2 )(1− (1 + h∆t))

−(1− h∆t)(2− 4s sin2 β
2 )|,

(28)

By simplifying this relation we can easily show that

|2s(sin2 β

2
)| ≤ 1, (29)

So the range of stability for this procedure is 0 ≤ s ≤ 1.

3.1.2 Consistency

A finite-difference formula is said to be consistent with a partial differential equation if, in the limit
as the grid spacing tend to zero, the finitedifference formula is identical to the partial differential
equation at each point in the solution domain. To researching the consistency of equation 1 by first
method, consider equation 11 written in the form

L∆{unj } = (1 + h∆t)un+1
j − 2(1− s)unj + (1− h∆t)un−1

j − s(unj+1 + unj+1) = 0, (30)

Replacing uni in 32 by the exact solution ûni of equation 1 and after rearranging, we have,

L∆{ûni } = (ûn+1
i + ûn−1

i − 2ûni ) + h∆t(ûn+1
i − ûn−1

i ) + s(2ûni − 2ûni+1 − 2ûni−1), (31)
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which may be no longer equal to zero. Since ûni is continuously differential, the terms of 31 may be
replaced by their Taylor expansions about the point (i∆x, n∆t).
This gives,

L∆{ûni } = (∆t)2{(∂
2u
∂t2 |

n
i + 2 (∆t)2

4!
∂4u
∂t4 |

n
i + ...) + 2h(∂u∂t |

n
i + ∆t

3!
∂3u
∂t3 |

n
i + ...)

−c2(∂
2u
∂x2 |ni + 2 (∆t)2

4!
∂4u
∂x4 |ni + ...)} = 0,

(32)

or

L∆{ûni } = (∆t)2{∂
2u
∂t2 |

n
i + 2∂u∂t |

n
i − c2 ∂

2u
∂x2 |ni

+(2 (∆t)2

4!
∂4u
∂t4 |

n
i + 2h∆t

3!
∂3u
∂t3 |

n
i − 2c2 (∆t)2

4!
∂4u
∂x4 |ni + ...)},

(33)

where

E(û) = 2
(∆t)2

4!

∂4u

∂t4
|ni + 2h

∆t

3!

∂3u

∂t3
|ni − 2c2

(∆x)2

4!

∂4u

∂x4
|ni + ..., (34)

is the truncation error of the first and second- order accurate in time and space respectively. As
previously, seen when the grid spacing get smaller and smaller with the first method, the truncation
error gets smaller and smaller at a fixed point (x∗, t∗) in the solution domain. In the limit as ∆x→ 0
,∆t → 0 the finite-difference formula 32 is equivalent to the partial differential equation 1, so the
first method is consistent.

3.2 The second method

Consider the following approximations of the derivatives for solving the equation 1

∂2u

∂t2
|ni =

un+1
i − 2uni + un−1

i

∆t2
− (∆t)2

12

∂4u

∂t4
|ni +O(∆t4), (35)

∂u

∂t
|ni =

un+1
i − uni

∆t
− ∆t

2

∂2u

∂t2
|ni +O(∆t2), (36)

∂2u

∂x2
|ni =

uni+1 − 2uni + uni−1

∆x2
− (∆t)2

12

∂4u

∂x4
|ni +O(∆x4), (37)

for i = 1, ...,M − 1, and n = 0...1, where
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S =
c2∆t2

∆x2
, (38)

By replacing these terms in equation 1 we obtain,

(
un+1
i −2un

i +un−1
i

∆t2 − (∆t)2

12
(∂4u)
∂t4 )|ni +O(∆t4)

+2h(
un+1
i −un−1

i

∆t − ∆t
2
∂2u
∂t2 )|ni +O(∆t2)

−c2(
un
i+1−2un

i +un
i−1

∆x2 − (∆t)2

12
∂4u
∂x4 |ni +O(∆x2)) = 0,

(39)

by omitting all terms of O{(∆t)2, (∆x)2} we have,

un+1
i = [(2(1− s) + 2h∆t)uni + s(uni+1 + uni−1)− un−1

i ] (40)

Clearly, the total of the truncation errors in using the 40 instead of 1 is,

E{uni } = [− (∆t)2

12

∂4u

∂t4
+ h∆t

∂2u

∂t2
|ni + c2

(∆x)2

12

∂4u

∆x4
|ni +O{(∆x)4, (∆t)4}], (41)

This may be written

E(u) = O{(∆t)2, (∆x)2} (42)

In equation 40, when n = 0 we need u−1
i , which is calculated as follows,

ui(x, 0) = g(x) = 0⇒ ∂u0
i

∂t
= 0⇒ u1

i − u
−1
i

∆t
= 0⇒ u1

i = u−1
i , (43)

Then from equation 40 we have,

u1
i =

1

1 + h∆t
[((1− s) + h∆t)u0

i +
s

2(u0
i+1 + u0

i−1)
], (44)

As an example wa let then k = 3, 0 ≤ j ≤ k + 1; then

un0 = u(0, t) = 0, (45)

unk+1 = un4 = u(π, t) (46)
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u1 =

 u1
1

u1
2

u1
3

 = 1
1+h∆t

 2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)

 u0
1

u0
2

u0
3



+ s
2

 u0
0

0
u0

4

 ,
(47)

and for time n ≥ 1, un+1 are given by,

un+1 = Aun + b− eun−1, (48)

where

un =

 un1
un2
un3

 , A = 1
1+2h∆t

 2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)

 ,

b = s
1+2h∆t

 u0
0

0
u0

0

 , e = 1
1+2h∆t ,

(49)

We see that similar to the first method, this method has (1, 3, 1) molecule scheme too.

3.2.1 Stability by Von Neumann’s method

In the equation 40 we set ξnj = |G|neiβj for uni , then we have the following equation:

(1 + 2h∆t)G2 − (2 + 2h∆t− 2s+ 2s cosβ)G+ 1 = 0, (50)

consider

A = 1 + 2h∆t, B = −(2 + 2h∆t− 2s+ 2s cosβ), D = 1, (51)

then by apply the condition for stability; i.e.,

|A| > |D| ⇒ |A|2 − |D|2 ≥ |BA−DB|,

and replacing the values of A, B, D in this relation we will have,

(1 + 2h∆t)2 − (1)2 ≥| (−2− 2h∆t+ 2s− 2s) cosβ)(1 + 2h∆t)

+(2 + 2h∆t+ 2s− 2s cosβ) |,
(52)
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by simplifying this relation we can easily show that

| −1− h∆t+ 2s sin2 β

2
) |≤ 1 + h∆t, (53)

So the range of stability for second method is,

0 ≤ s ≤ 1 (54)

3.2.2 Consistency

Consider Equation 40 and replacing uni by the exact solution ûni of equation 1 and rearranging,
yields

L∆{ûni } = (∆t)2{∂
2û
∂t2 |

n
i + 2h∂û∂t |

n
i − c2 ∂

2û
∂x2 |ni +

(2 (∆t)2

4!
∂4u
∂t4 |

n
i + h∆t∂

2û
∂t2 |

n
i − 2c2 (∆t)2

4!
∂4û
∂x4 |ni + ...)} = 0,

(55)

where

E(û) = 2
(∆t)2

4!

∂4u

∂t4
|ni + 2h∆t

∂2û

∂t2
|ni − 2c2

(∆x)2

4!

∂4û

∂x4
|ni + ..., (56)

is the truncation error of the first and second- order accurate in time and space respectively.

4 Numerical tests

In this section we apply the numerical schemes to solve the following example. The accuracy of
our proposed numerical methods is measured by computing the difference between the analytic and
the numerical solutions at some mesh point. The analytic solution of the equation 1 by initial and
boundary conditions 2 and 3 and also L = π, c2 = 1, which obtained by method of separation of
variables obtained in [3], [10] is given by

u(x, t) =
∑

sin(nx)e−htban cos(
√
n2 − h2t) + bn sin(

√
n2 − h2t)c, (57)

where

an = 2
π

∫ π
0
f(x) sin(nx)dx,

bn = 1√
n2−h2

(han + 2
π

∫ π
0
g(x) sin(nx)dx),

(58)
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Example 4.1:

∂2u

∂t2
+ 2h

∂u

∂t
= C2 ∂

2u

∂x2
, 0 < x < π, 0 < t ≤ 1, (59)

with the initial and boundary conditions,

u(x, 0) = f(x) =

{
2
πx 0 ≤ x ≤ π/2
−2
π (x− π) π/2 ≤ x ≤ π , u(0, t) = u(π, t) = 0, (60)

ut(x, 0) = g(x) = 0, (61)

with

c = 1, h = 0.5

By (57) the exact solution for this example is,

u(x, t) =
∑

sin(nx)e−
t
2 [an cos(

√
n2 − 1

4
t) + bn sin(

√
n2 − 1

4
t) (62)

where

an =
8

n2π2
sin(n

π

2
), bn =

an√
n2 − 1/4

, for n = 1, 2, ... (63)

The numerical results for this example are presented in table 1, for ∆t = 0.0317 , and ∆x = π/99.
We can see that the error of the solutions produced by the methods when ∆t,∆x replaced by ∆t

3 ,
∆x
3

and ∆t
5 ,

∆x
5 respectively reduce.

Where,
Error = maxn,i|ûni − uni |,

and ûni is exact solution and uni is numerical.

In figure2, we plot the graph of the solutions at time t = 0.982700000000000 for h = 0.5 by the
two methods with ∆x = π

99 ,∆t = 0.0317 , and the analytical formula 57. This figure shows that for
each method, two plots are coincident together. It means that, two solutions (exact solution and
numerical solution) are very close to each other. Now we compare the errors of two new methods
by changing the value of h. In figure 3 by drawing the plot of error for these two methods with
h = 0.0001, 0.5, 0.99 at t = 0.982700000000000 and ∆t = 0.0317,∆x = π/99. The results indicates,
that when, h is close to zero, errors in first method and second method are small but when h is
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Figure 2: raphs of approximate and exact solutions of the partial differential equation (1) with two
methods at ∆t = 0.0317,∆x = π/99, h = 0.5

Figure 3: Plots of error in first method and second method at time t = 0.982700000000000 with
∆t = 0.0317,∆x = π/99, h = 0.0001, 0.5, 0.99

46

http://www.ijmes.com/


International Journal of Mathematical Engineering and Science (IJMES)
Volume 3 Issue 3 (Year 2014) ISSN : 2277-6982

http://www.ijmes.com/

Table 1: Comparison the error of first method and second method in some grid points. First and
second-order accurate (h = 0.5)

∆t ∆x Error

0.0317 π/99 1.1802e-04
Method 1 0.0317/3 π/(3× 99) 4.5694e-05

0.0317/5 π/(5× 99) 6.1146e-05
0.0317 π/99 0.0033

Method 2 0.0317/3 π/(3× 99) 0.0012
0.0317/5 π/(5× 99) 7.6885e-04

Figure 4: Comparison of exact solutions with the numerical solutions of the partial differential
equation(1) with h = 0.0001 at ∆t = 0.0317,∆x = π/99

near to one, the first method is better than the second method.

And finally in figure (4), we draw the graphs of numerical and exact solutions of these new
methods with h = 0.0001 and h = 0.99, at ∆x = π

99 , ∆t = 0.0317. In figure 4(b), we have
e1 = 2.3277e− 0.4 (error of first method) and e2 = 0.00414 (error of second method) but in figure
4(a), we have e1 = 2.012e− 0.5 and e2 = 1.92e− 0.5 , so we can see that when h is close to one the
first method works better than the second one .
In this example by using the definition of matrix A from 20 and 49, we have cond(A)= 74.4566(in

the first method) and cond(A)= 418.5632 (in the second method), where cond(A) = ‖A‖‖A−1‖ .

5 Conclusions

Wave equation is one of the most important equations in engineering science. In this work, we
studied two explicit finite-difference schemes to approximate the solution of this equation. In
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section 3, the method of separation of variables was used to obtain the analytic solution of the
wave equation for comparison with the numerical solutions obtained by finite difference method. In
section 4, we presented two explicit finitedifference methods which have (1, 3, 1) molecule schemes.
Also we found that those methods are consistent of order O{(∆t)2, (∆x)2} and stable. In section 5,
we illustrated these two new methods. By an example, the errors of methods compared with each
other in table 1. The results show that, the first method is better than the second method. Also in
figure (2), we can see that numerical solutions of new methods are very close to the exact solution.
Paying attention to the truncation errors that are achieved in the(36) and(58), it is evident that

the coefficient of (∆t) in the truncation error of the first method is 2
6h

∂3u
∂t3 |

n
i , and in the truncation

error of the second method is h∂
2û
∂t2 |

n
i , so the error of the first method is lower than the second

method. Finally, we compose the absolute error of these two methods with h = 0.0001, 0.5 and 0.99
in figure (3). It is obvious that when h is closed to zero the error of two methods are small but
when h is close to 1, the error in the first method is smaller than else. Considering all above results,
we get to the conclusion that for solving the wave equation, although two new methods work with
high accuracy, but the first method is better than the second method for this equation.
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