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ABSTRACT

The paper reveals a new operating principle for a planar photonic transistor
in which no electronic components or nonlinear optical modules are used for digital

switching.

The author investigates the design constraints associated with the switching
function, the contribution of the "noise" factors as well as the integration of the
switch in a logic processor.

1 . INTRODUCTION

The optical computing field is emerging as a dynamic area of interest and its
foundations lie mainly in the use of either nonlinear optical materials (NLO) or
electrooptic/acoustooptic modulators.

As it is well known the optical bistability associated with NLO relates to the
manipulation of the beam parameters as a result of an appropriate change in the
refractive index of these media.

The external modulation of the beam implies a physical interaction between the
wavefront and the excitation field which assists the switching function.

The present paper explores the design of a pure planar optical switch without
any nonlinear component or modulator. Such a device has several major potential
merits over the "traditional" optical flip-flop:

1) the computation speed is practically limited to the speed of light in the
dielectric waveguide.

2) the switch is immune to electromagnetic/acoustic interference or crosstalk.

3) the switch is practically insensitive to environmental fluctuations in
temperature or pressure.

4) the output signal does not display any saturation - regardless of the time of
use - which makes the switching function fully repeatable.

The operating principle of our novel device is based on the shift of the
Fraunhoffer diffraction pattern due to the superposition of two coherent wavefronts
at the focal plane location. The technique is fully compatible with the
requirements of parallel optical processing.
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By definition, a device is said to be optically bistable if two stable outputs
can be generated for the same value of the input over a certain input range [1].
The transmission characteristic of a bistable device is illustrated in Fig. 1.

For intensities close to 1G a minute change of the input induces a jump of the

output (bifurcation). This switch does not perform as a memory gate since no

hysteresis is present. In addition to the switching function, the device can be
used either as an optical limiter (a further variation beyond I' does not affect
the output) or as an optical discriminator (only below 'G th input is highly
attenuated) [1].

Let us mention that optical computing techniques based on interference fringe

shifting were investigated before in conjunction with NLO [2]. The main
disadvantages associated with these designs relate to the access time of the
photorefractive effect as well as to the need of external control blocks.

FIG. 1

2. DESCRIPTION OF THE SWITCHING FUNCTION

The procedure described below is similar to the classical setup of double slit

interference (Young ' s experiment).

Consider two monochromatic TEN wavefronts emerging from two laser diodes and
having the standard Gaussian intensity profile. The relays "R11' and "R2" project
the beam waists onto a screen provided with two narrow rectangular slits as
illustrated in Fig. 2. The far-field diffraction pattern is imaged at the back
focal plane of a high resolution objective "0". A specially coated target with a
high transmission ratio is placed on this plane and a third relay "R3t' projects the
image of the target at infinity. The light intensity on the output beam axis is
taken as the binary logic variable. When the second incident beam is missing, the
diffraction pattern is given by the Fourier transform of the first wavefront

through a single slit "". In this case the peak value of the amplitude is
detected at the paraxial image location of "Sf' through "0". As soon as the second
beam is activated, the diffraction pattern displays a maximum fringe on the optical
axis of "0" and a transverse modulation in amplitude [3] (Fig. 4).
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It is apparent now that if the target is placed at a zero minima of the two-
slit pattern, the relay "R31' will pick up either a "0" or a "1" signal depending on
how the incident beams are being used.

In the above setup "Si" provides the "reference" beam and is permanently
activated while "2" operates as the input signal.

This configuration is suitable to be integrated in a planar
(Fig. 4) in which:

a) all the optical components are geodesic microlenses.

envelope as shown

b) the screen is replaced by two identical microslits etched onto the dielectric
substrate (field stops). If the width of these stops is comparable with the size
of the beam waist (truncation at l/e of the peak value), there is no cutoff of the
radiant energy over the beam cross section and the laser wavefront diverges as a
result of natural diffraction [4] [5] -
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c) the high transmission target is a spherical protrusion representing a graded
index microlens.

FIG.3

'aspheric proFiLe

To set the frame of the analysis the following assumptions are made:

a) the incident beams are perfectly monochromatic which means infinite coherence
time and zero linewidth:

&t-)O (1)

OPD's involved in the fringe pattern formation are much smaller than the

length:

cS << 'COH (2)

c) the peak intensities are equal for both beams:
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d) all the optical components are diffraction limited and imaging is performed
purely stigmatic according to the laws of Gaussian optics.

e) the width of the slits coincide with the beam waists at the screen location.

fLG1.4.

\

3. DESIGN OF THE PHOTONIC SWITCH

2

2Icos kva

As it is known, one way to balance the spherical aberration of a geodesic lens
for high apertures is to give an aspheric shape to the depression profile [7].
Because the geodesic lenses have radial symmetry they image concentric circles onto
one another and are optically equivalent to generalized Luneburg lenses [11]. As
it is also known, the TEM output exhibits the minimum diffraction loss, the
minimum beam spread and has th°cylindrical Gaussian intensity distribution:
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2 2
1(r) = 1(0) exp (-i--)

= exp (-i--) (4)
w 'rrw w

where the waist is a function of the propagation distance w =w(s) and P stands for
the total power of the beam.

When only the reference beam is operating, the diffraction pattern is is given
by [13]:

F(v) = F(o)w2 exp [_2(vwo)2] (5)

When both slits are operating, the resulting pattern depends on the phase
shift of the wavefronts with respect to the optical axis of the objective "0".
Therefore in this case:

F ' (v) = [exp (- ikva) + exp ( ikva) ] F(v) (6)

or

F'(v) - F(o) w2 exp [2(vw0)2] cos2kva (7)

where "k" is the wavevector, "v" is the angle in the image domain and "a" the
distance from the optical axis of the objective to the slits.

The zero minima fringes correspond to:

cos2kva = 0 + v = (2p+1)A
, p = 0,1,2,... (8)

which yields:

• , . (2p+i)Aa = s sin v s sin
4a

where "s" is the radius of the image circle through the objective and:

5 a'm
s a

represents the lateral magnification of the objective.

Using the Lagrange invariant one can write:

w sin e = w sin e' (11)o FF o FF

where eFF is the halfangle of divergence in the far-field approximation (s>>zR)
[8]:

• A
e = arcsin 12
FF rrw0

and ZR is the Rayleigh range defining the intensity profile along the propagation
axis:

2

ZR5 (13)
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The lateral magnification of the objective can be expressed in terms of
image/object waists:

m = = {[1 - (5)2 (R)2}1/2
5'

(14)

where f represents its focal length given by:

f = 55', (15)5+5

From (12) and (14) one can derive the numerical aperture of the objective in
the image domain and the theoretical resolution limit (Rayleigh criterion):

.61A .61A .6lirp= ,= . I = w 16NA nsine n o

If one takes w , 5, 5' as unknown parameters, for a given magnification then
(13), (14) + (15) srve as a system of (2) equations with (3) variables. A third
equation can be added taking advantage of the fact that the Fourier transform of a
Gaussian function is still a Gaussian function [3J. Under these circumstances the
1/eZ truncation rule applied to (5) yields:

e2 = w2 exp [- 2(v*w)2I ( 17)

or:

(1+lnw )1/2
v*=

0° (18)

where v* stands for the coordinate angle locating the outer edge of the diffracted
wavefront:

tan v* = ; (19)

Once w, 5, s' become completely defined by the above equations, one can
specify the radius of the geodesic objective (r ). The size of it has to accept
the angular aperture given by eFF and therefore:

0

d = 2r w(s) w [1+()2J1/2 (20)0
ZR

4. THE CONTRIBUTION OF THE "NOISE" FACTORS

By "noise" factors we understand herein the perturbative contributions of real
parameters on the switch efficiency. We address briefly below only three of them:
the spectral width of the beams, the errors related to the spherical aberration and
image defocussing.

a) To evaluate the effect of the spectral width of the source one has to start by
computing the spread function for wavetrains of finite length [3]:

1(v) =
J D(r') A* (v!_) exp (ikvr')dr' (21)
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where A*(v —) isthe time coherence factor:

(
Ax (v —) = 1 for

(22)
I
A* (v i—) 1 for &t0

and D(r') represents the autocorrelation function in amplitudes:

D(r') = J A(r)A(r-r')dr' (23)

Because we are dealing with the diffraction through a slit having a Gaussian
transmission profile, D(r') is the common part of the two Gaussian plots displaced
with r' with respect to one another:

(r-r'-w )

D(r') = A(o) exp [-

2

° 2 for fr > w

V ) = A(o) exp (--) for r c [ -w0 ,w0]

0
(24)

2
A(r) = A(o) exp (--) for r [-w,w0}

A(r)1 for rJcw0
. .

Introducing a new variable y , (21) becomes:
wo

0

1(v) =
J A(o) exp [(y_1)2} (1+y2) exp (ik0vyw0) dy +

-2 (25)
2 vw

A(o) exp (- ) (l-Y) exp (ik0vyw0)dy

where:

'U = (1v)1 , 0 = cA' and k0 21TA1 (26)

By processing (25) one may show that I (v) contains the basic spread function
for a perfect monochromatic wavefront (5) plus a perturbative contribution due to
the spectral width.

b) When spherical aberration is not well balanced, the spot energy is being
redistributed amoung the diffraction rings. This makes the contrast softer and
generates losses of radiant energy through the switch. If a certain amount of

marginal spherical aberration is present (LA ), then the blur spot size can be

evaluated with [10]:
m

p...5OLAtanU (27)
m m
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where U is the ray slope in the image domain, or with:
m

p,. .84LAtanU (28)
z m

when the marginal spherical is corrected to zero (LAm=O)•

c) The depth of focus associated with the use of the planar optics can be derived
starting from (20). Allowing a prescribed expansion of the beam radius with
respect to the ast:

q = (29)w
0

and solving for the depth ts, one gets:

2

M ;2 (q21)1/2 (30)

This formula sets the upper limit of the defocussing error.

5. DESCRIPTION OF THE HIGH RESOLUTION TARGET

As shown in Fig. 5 the high resolution target represents a core-cladded
spherical lens. Basically a gradient index core is cladded with an additional
layer having a constant refractive index.

This lens has the property of imaging a point source onto a diffraction
limited spot size [6]. The refractive index is described by the function:

2 2 r2 r4n (r) = n (o) [1 + G (—) + G (—) } for r � r > o2r 4r 0
n(r) = constant 0 0

for R � r > r (31)

where G2 and G4 are the so-called profile coefficients.

Under standard operating conditions a collimated incident beam is focussed
outside the clad. By extension, in our approach the core cladded target images an
intermediate object "F1" onto a spot located on the edge of the clad (F2"). As
mentioned earlier, this becomes the object for the pick-up relay

"R3".

The target can be designed in several alternate ways (combination of mode
index lenses or a generalized Luneburg lens) provided that it achieves diffraction
limited performance and a minimum loss of radiant energy.

6. AN ALTERNATE CONSTRUCTION OF THE SWITCH

Because aspheric geodesic lenses are difficult to fabricate, an alternate
construction of the planar optics is desirable.

The configuration presented in Fig. 6 uses overlay corrected lenses consisting
of a spherical depression surrounded by an area of higher refractive index. This
setup can approach diffraction limited performance for on-axis beanis at 8 � 20 when
the design allows correction of the spherical aberration over 90% of the lens
diameter [9].
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7. INTEGRATION OF THE SWITCH IN A LOGIC PROCESSOR

Using the formula of the beam intensity along the optical axis

1(0) =
2P

71W S
(32)

one can see that the total drop of the intensity through the switch is the sum
between the physical attenuation of the beam (absorption, scattering, vignetting,
reflection) and the change due to divergence at the target location. Let "c"
designate the transmission efficiency per switch. If one considers a discrete
sequence of "N" switches and assumes that "c" enters as a constant parameter per
switch, then the intensity on axis drops following the iteration:

2P
2

71W0
22I =cw I =mwI

2 o 1 ol
264I =EmwI

3 ol

N—i N(N—i) 2(N—1)
1INC m. w0

The incremental variation in intensity becomes:

/ NN
'N

= Ii(l - C w )(Ew)ni iN
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Passing to a differential form (N>>1) (34) yields:

N
LI 1'

= J (E,w,m,N)dN

which defines the analytical damping curve of the beam intensity on axis.

(35)

In order to avoid any confusion in decoding the logical value of a damped

signal, the beam intensity must be regenerated (Fig. 7). The simplest way to

achieve this amplification is to place a photonic switch close to the location

where the signal approaches I . It is apparent that the gap between 'OM and I

provides the internal consisteny of the computing process, since all signals wiY

'OM have a "0" logical value.

FIG.7
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