
Accepted for publication in the Journal of Computational Electronics, December 23, 2015. 

Response to “Comment on ‘Zero and negative energy dissipation at 
information-theoretic erasure’” 
 

Laszlo Bela Kish, Claes-Göran Granqvist, Sunil P. Khatri, Ferdinand Peper 
 
Abstract We prove that statistical information 
theoretic quantities, such as information entropy, 
cannot generally be interrelated with the lower limit 
of energy dissipation during information erasure. We 
also point out that, in deterministic and error-free 
computers, the information entropy of memories does 
not change during erasure because its value is always 
zero. On the other hand, for information-theoretic 
erasure—i.e., “thermalization” / randomization of the 
memory—the originally zero information entropy 
(with deterministic data in the memory) changes after 
erasure to its maximum value, 1 bit / memory bit, 
while the energy dissipation is still positive, even at 
parameters for which the thermodynamic entropy 
within the memory cell does not change. Information 
entropy does not convert to thermodynamic entropy 
and to the related energy dissipation; they are 
quantities of different physical nature. Possible 
specific observations (if any) indicating convertibility 
are at most fortuitous and due to the disregard of 
additional processes that are present. 
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1 Introduction 

In a recent paper [1,2], we introduced “Information-
Theoretic Erasure” with various device concepts and 
applied these schemes to show that Landauer’s 
Principle or erasure dissipation is invalid. In the 
expanded version [1], we briefly addressed paper [3]. 
Concerning this issue (paper [3]) a critical Comment 
[4] was recently written.  

In this Response, after first defining some essential 
terms and briefly summarizing the relevant results in 
our earlier article [1], we address the points where we 
agree with Comment [4] as well as the issues where 
we disagree with [3,4]. 

 

2 Information-Theoretic Erasure and Landauer’s 
Principle 

2.1 Types of erasure of data in memories 

(a) Secure erasure by resetting the bits to zero. This 
is the type of erasure assumed in the original version 
of Landauer’s Principle [3]; see Equation 2 below. 
This type of erasure is used only for security 
applications in computers because it is extremely 
slow and very energy-guzzling.  

(b) "Erasure" by writing-over [5]. Here the memory 
bits are not reset; instead the blocks of the memory to 
be erased are designated as “free” and otherwise left 
alone, to be written over by new data that needs to be 
written. The number of address bits and the 
"erasure"-related dissipation scales as  log2 N , where 

N is the size of the whole memory. This type of 
"erasure" is used in computers; it is the fastest and 
requires minimal energy dissipation. The logarithmic 
scaling is in direct contradiction with Landauer's 
principle, see below. 

(c) Information-theoretic erasure (ITE) [1,2]. This 
erasure is a randomization/thermalization process 
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with minimum energy dissipation, which can be as 
low as zero when erasure is done in a passive way; 
see the double-well example below. For ITE, bit 
errors are generated by thermal noise, which results 
in 50% chance for the values 0 and 1 after erasure 
and no information about the original memory 
content. On the other hand, it is well-known that 
Shannon’s information entropy   SI  now attains its 

absolute maximum and is given, for the case of N 
bits, by  

  
SI = pj ,m ln 1
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so that the information entropy during ITE can only 
increase or remain constant. Here 

  
p j ,m  stands for the 

probability of the j-th bit being in the m-bit value. To 
check that this erasure principle is both physical and 
physically realizable, we introduced and analyzed 
two device concepts with regard to ITE: one with 
double-potential wells and another with capacitors 
[1,2]. We found that, when the working conditions of 
such a capacitor-based memory involved less than 
kBT/2 stored energy (and an equivalent negative 
thermal entropy   Sth ) for holding the originally stored 

information, ITE (which is thermalization) entailed 
that the system of capacitors absorbed heat from the 
environment thus yielding negative energy 
dissipation. However, we emphasize that the energy 
dissipation of the shown ITE schemes is always 
positive when the control of the switches [6,7] 
arranging the erasure is also accounted for.  

2.2 Landauer’s Principle 

The “classical” version of Landauer’s Principle 
(quoted also in [3]) asserts that 

  
ΔQth = TΔSth ≥ −kBT ln 2( )ΔSI  ,           (2) 

where   ΔQth  and   ΔSth  are produced heat and 

thermodynamic entropy, and   ΔSI  is the change of 

  SI  during erasure. Equation 2 states that the change 

of information entropy can be “converted” into the 
lower limit of energy dissipation during the erasure 
of a memory. It should be emphasized that the 
greater-than-or-equal-to sign—rather than a greater-
than sign—is very important because the equality 

must represent a physical possibility, at least at the 
conceptual level. One of the most straight-forward 
and relevant objections [5–7] to Equation 2 is that, in 
the case of equality, the memory cell’s error 
probability is 50% even in the short-time limit, i.e., 
the memory does not function and it is practically 
useless for the case of even larger energy dissipation; 
the limit of equality is unphysical in Equation 2. 

ITE and Equation 1 are in direct contradiction with 
Landauer’s Principle (Equation 2) because, even in 
the absence of any available negative thermal entropy

  Sth , the minimum energy dissipation would be 

allowed to be negative during erasure, which 
obviously is not correct. This impossibility is 
illustrated by the example of passive ITE for double-
well-potential based memories below [1,2]. A single 
memory cell is shown in Figure 1.  

 

 
Fig. 1 Passive information-theoretic erasure in a zero-
energy-dissipation fashion by passively waiting during 
times that are much longer than the thermalization time 
constant at ambient temperature [1,2].  

 

For the sake of simplicity, suppose that originally all 
bits are in the 1 state with 

  
p j ,1 = 1  and

  
p j ,0 = 0 , 

which means   SI = 0 . Now, let us wait for a time 

  
tw >> τ 0 exp E / kBT( )  until the double-wells are 

“thermalized” and 
  
p j ,1 = pj ,0 = 0.5 , implying   SI = N  

(bits) so that the information entropy of the memory 
has increased to   ΔSI = N  without any energy 

dissipation or energy investments or control. 
Landauer’s principle (Equation 2) does not specify 
any restriction on the duration of erasure, and hence 
it applies here and yields that 

  

ΔQth = TΔSth ≥ −kBT ln 2( )ΔSI =

                            = −NkBT ln 2( ) >> 0 ,
        (3) 
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which is incorrect because the energy dissipation 
during this erasure is always exactly zero.  

The examples above indicate how important is to 
check any proposed general mathematical principle 
in physics with thought-experiments and physical 
conceptual models embracing all of the essential 
details. Mathematics is infinitely richer than physics, 
and ultimately the Laws of Physics will select those 
few mathematical principles, models and solutions 
which are physical, that is, realistic. It is obvious 
from the considerations above that Landauer’s 
mathematical principle (Equation 2) is unphysical. 

It should be noted that Landauer’s Theorem has been 
criticized and refuted in many independent works and 
with different arguments [5–14]—including in well-
known debates such as those involving Porod et al. 
[8–10]—and recently by Norton [11,12] in extensive 
studies.  

In the next sections, we reflect on some of the most 
important comments in [4] and identify the major 
points where we agree and disagree with them and/or 
with his related work [3], and similar approaches by 
others, where information change is claimed to 
contribute to energy dissipation during erasure. 

3 Points where we agree with [4] 

In [3] the Landauer Principle (Equation 2) was 
expanded and generalized in an original way by 
introducing other types of entropy contributions in 
addition to the information entropy during erasure. 
They can contribute to the energy dissipation with 
zero, positive or negative values. Moreover [3] used a 
quantum system to store and erase classical 
information and, instead of Shannon entropy, used 
another statistical information measure. We agree 
with the Comments [4] concerning two points: 

(a) Stimulated by the referee’s comments on our 
work [2], we introduced the ice-cube-memory model 
[1], which proved that the early version (Equation 2) 
of Landauer’s Principle is invalid. Bit value 1 was 
ice-phase, and bit value 0 was water-phase. Instead of 
ITE, we simply supposed a reset-to-zero operation by 
allowing the environment to melt the ice, which 
emerges as negative energy dissipation. While this 
simple trick proved the old Landauer Principle 
incorrect, we unfortunately misread paper [3] 
wherein the additional entropies in the model could 

account for the negative thermodynamic entropy and 
the related energy flow represented by the ice. Thus 
while we proved the usual (i.e. former) interpretation 
of the Landauer Principle (2) invalid, our model was 
fully in accordance with the extended principle [3]. 

(b) The other point of accord is the fact that, in a 
footnote in [3] the possibility of erasing memories by 
heating them and allowing them to thermalize is 
mentioned. This is a special case of ITE, which we 
regrettably failed to acknowledge. In our papers 
[1,2], we introduce the generalized ITE concept, 
without heating, and introduced active and passive 
ITE schemes with related device concepts. However, 
[3] was first to mention erasure by thermal 
randomization. 

4 Points where we disagree with [3,4] 

(a) Sections 2.1(b) and 2.2 above delineated two 
major erasure scenarios where we disagree with [3] 
and we believe that both versions of Landauer’s 
Theorems—i.e., Equation 2 and the expanded version 
[3]—do not work. In these simple classical physical 
systems, there is no other entropy source of 
compensation to account to restore Landauer 
principle in the fashion [3] is doing. The fact that [3] 
is using a quantum system does not make these 
consideration irrelevant because [3] works with 
classical information.  

(b) One of the reasons for the dichotomous opinions 
is our assertion that statistical information measures 
are insufficient to describe dissipation in memories 
during erasure. A simple example is given below for 
erasure by resetting the bits to zero. 

The erasure of a classical physical memory cannot in 
all cases depend on whether we know the data in the 
memory or not. Suppose first we know the data bits. 
This means that the Shannon information entropy or 
any other information measure is zero even if the 
memory is full of data because the probabilities of the 
bit being 0 or 1 bit in each memory cell are either 0 
or 1, and this leads to zero information entropy (e.g. 
Equation 1). However, even after erasure, the system 
would be in a known deterministic state with all bits 
having now zero value, still leading to zero 
information entropy. Thus there was no information 
entropy loss, because there was no information to 
begin with. This fact highlights that statistical 
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information measures are irrelevant. 

(c) When we do not know the data in the memory, 
perhaps the deepest reason for not using information 
entropy to describe memory dissipation is Alfred 
Renyi’s arguments about deterministic systems such 
as error-free computers [15]. The information entropy 
of deterministically generated data is less than or 
equal to the information entropy of the given 
algorithm and its initialization parameters. For 
example, let us suppose we generate π  with a simple 
deterministic algorithm and record its bits into a 
memory. All elements of the algorithm generating π  
are known and deterministic, therefore the 
information entropy of the algorithm is zero! Even 
when we enter more and more bits of π  into the 
memory and the data size N and corresponding 
erasure dissipation approaches infinity, the 
information entropy of this infinitely large random 
data sequence will be   log2 N , the address required to 

identify the last digit. While the erasure dissipation 
scales with N, the information before erasure scales 
logarithmically. No physical mechanism exists to 
compensate for this non-existent, logarithmically 
scaling dissipation. Reductio ad absurdum. 

 

5 Conclusions 

Our main conclusion is that statistical information 
measures are irrelevant for treating the energy 
dissipation during memory erasure. This is an 
implication relevant for not only [3] but also for all 
the other papers in the literature that are assuming the 
validity of Landauer's principle. 

Note, this fact does not prove that the Neumann 
entropy used in [3] is unable to treat the energy 
dissipation but it indicates that statistical information 
measures are irrelevant for the erasure dissipation. 
We showed contra-examples proving that no general 
principle interrelating information and energy 
dissipation can physically be justified. 

We reiterate that it is unavoidable to test heuristic 
mathematical principles in physics by creating a 
concrete device or system concept for which the 
principle can be challenged, because a virtually 
infinite number of different mathematically valid 
models and principles can be created that are actually 

unphysical. Throughout our criticism of the Landauer 
Theorem and related issues, we followed this way of 
checking. 

It is important to note that the mentioned conceptual 
scheme must reflect on all the essential aspect of the 
physical model. For example a “massless trapdoor”, a 
“frictionless system” or a “thermal-noise-free 
device”, that are assumptions which explicitly or 
implicitly are present in many high-profile scientific 
articles of today, are false assumptions, as are 
ignoring the energy requirement of control steps in a 
memory, Maxwell demon or Szilard engine [5,6]. 
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