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Abstract

Population Monte Carlo (PMC) sampling methods are powerful tools for ap-

proximating distributions of static unknowns given a set of observations. These

methods are iterative in nature: at each step they generate samples from a pro-

posal distribution and assign them weights according to the importance sam-

pling principle. Critical issues in applying PMC methods are the choice of the

generating functions for the samples and the avoidance of the sample degener-

acy. In this paper, we propose three new schemes that considerably improve the

performance of the original PMC formulation by allowing for better exploration

of the space of unknowns and by selecting more adequately the surviving sam-

ples. A theoretical analysis is performed, proving the superiority of the novel

schemes in terms of variance of the associated estimators and preservation of

the sample diversity. Furthermore, we show that they outperform other state

of the art algorithms (both in terms of mean square error and robustness w.r.t.

initialization) through extensive numerical simulations.
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1. Introduction

Bayesian signal processing, which has become very popular over the last

years in statistical signal processing, requires computing distributions of un-

knowns conditioned on observations (and moments of them). Unfortunately,

these distributions are often impossible to obtain analytically in many real-

world challenging problems. An alternative is then to resort to Monte Carlo

(MC) methods, which approximate the target distributions with random mea-

sures composed of samples and associated weights [25].

A well-known class of MC methods are those based on the adaptive im-

portance sampling (AIS) mechanism, such as Population Monte Carlo (PMC)

algorithms [19, 7], which have been used in missing data, tracking, and biolog-

ical applications, among others [8, 5, 4, 2, 3]. In these methods, a population

of probability density functions (pdfs) is adapted for approximating a target

distribution through an iterative importance sampling procedure. AIS is often

preferred to other MC schemes, such as Markov Chain Monte Carlo (MCMC),

since they present several advantages. On the one hand, all the generated sam-

ples are employed in the estimation (e.g., no “burn-in” period must be checked).

On the other hand, the corresponding adaptive schemes are more flexible, since

they present less theoretical issues than adaptive MCMC algorithms.

The most characteristic feature in PMC [7] is arguably the use of resampling

procedures for adapting the proposal pdfs (see for instance [21] for a review of

resampling methods in particle filtering). The resampling step is a fast, often

dimensionality-free, and easy way of adapting the proposal pdfs by using infor-

mation about the target. However, resampling schemes present some important

drawbacks, such as the sample impoverishment. At the resampling step, the

proposal pdfs with poor performance (i.e., with low associated weights) are

likely to be removed, thus yielding a reduction of diversity. Since the publica-
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tion of the standard PMC [7], several variants have been considered, partly in

an attempt to mitigate this issue. In the D-kernel algorithm [11, 12], the PMC

kernel is a mixture of different kernels and the weights of the mixture are iter-

atively adapted in an implicit expectation-maximization (EM) algorithm. This

procedure is refined through a double Rao-Blackwelization in [18]. The mix-

ture population Monte Carlo algorithm (M-PMC) proposed in [6] also adapts a

mixture of proposal pdfs (weights and parameters of the kernels). The M-PMC

belongs to the family of AIS methods, since it iteratively draws the samples

from the mixture that is updated at every iteration without an explicit resam-

pling step. Since drawing from the mixture can be interpreted as an implicit

multinomial resampling, this method retains some similarities with the stan-

dard PMC scheme. A nonlinear transformation of the importance weights in

the PMC framework has also been proposed in [20]. Other sophisticated AIS

schemes, such as the AMIS [9] and the APIS [23] algorithms, have been recently

proposed in the literature.

In this paper, we study three novel PMC schemes that improve the per-

formance of standard PMC approach by allowing a better exploration of the

space of unknowns and by reducing the variance of the estimators. These al-

ternatives can be applied within more sophisticated AIS approaches, as well.

For this reason, we mainly compare them with the standard PMC [7], since the

novel schemes could be automatically combined with the more sophisticated

AIS techniques.

First of all, we introduce an alternative form of the importance weights,

using a mixture of the proposal pdfs in the denominator of the weight ratio.

We provide an exhaustive theoretical analysis, proving the unbiasedness and

consistency of the resulting estimator, and showing the reduction in the vari-

ance of the estimator w.r.t. the estimator obtained using the standard weights.

We also prove that the use of this mixture decreases the averaged mismatch

between the numerator (target) and the function in the denominator of the IS

weight in terms of L2 distance. Moreover, we test this alternative scheme in

different numerical simulations, including an illustrative toy example in Section
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5.1, showing its practical benefit.

In the second proposed scheme, we generate several samples from every

proposal pdf (not only one, as in PMC) and then we resample them jointly

(all the samples at once, keeping fixed the total number of proposal pdfs). In

the third proposed scheme, we consider again the generation of several samples

from every proposal pdf, but the resampling is performed separately on the set

of samples coming from each proposal, therefore guaranteeing that there will be

exactly one representative from each of the individual mixings in the random

measure.

We show, through extensive computer simulations in several different scenar-

ios, that the three newly proposed variants provide a substantial improvement

compared to the standard PMC. On the one hand, they yield unbiased estima-

tors with a reduced variance, as also proved theoretically. On the other hand,

they outperform the standard PMC in terms of preservation of sample diversity

and robustness w.r.t initialization and parameter choice.

2. Problem Statement

Let us consider the variable of interest, x ∈ RDx , and let y ∈ RDy be

the observed data. In a Bayesian framework, the posterior probability density

function (pdf), here referred as target, contains all the information about the

parameters of interest and is defined as

π̃(x|y) =
`(y|x)g(x)
Z(y)

∝ π(x) = `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the

model evidence or partition function (useful in model selection).1 The goal is

to compute some moment of x, i.e., an integral measure w.r.t. the target pdf,

I =
1
Z

∫
f(x)π(x)dx, (2)

1From now on, we remove the dependence on y in order to simplify the notation.
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where f(·) can be any square integrable function of x w.r.t. π(x), and Z =∫
π(x)dx.

In many practical applications, both the integral (2) and Z cannot be ob-

tained in closed form and must be approximated. Importance sampling meth-

ods allow for the approximation of both quantities by a set of properly weighted

samples.

3. Population Monte Carlo (PMC)

3.1. Description of the original PMC algorithm

The PMC method [7] is a well-known iterative adaptive importance sampling

technique. At each iteration it generates a set of N samples {x(t)
i }Ni=1, where t

denotes the iteration number and i denotes the sample index. In order to obtain

the samples, the original PMC algorithm makes use of a collection of proposal

densities {q(t)i (x)}Ni=1, with each sample being drawn from a different proposal,

x(t)
i ∼ q

(t)
i (x) for i = 1, . . . , N . Then, they are assigned an importance weight,

computed as w(t)
i = π(x

(t)
i )

q
(t)
i (x

(t)
i )

, i.e., the weight of a particular sample represents

the ratio between the evaluation, at the sample value, of the target distribution

and the evaluation at the sample value of the proposal used to generate it.

The method proceeds iteratively (up to the maximum iteration step considered,

T ), building a global importance sampling estimator using different proposals at

every iteration. The new proposals are obtained by updating the set of proposals

in the previous iteration.

There are two key issues in the application of PMC methods: the adaptation

of the proposals from iteration to iteration and the way resampling is applied.

The latter is critical to avoid the degeneracy of the random measure, i.e., to avoid

a few particles having extremely large weights and the rest negligible ones [25,

22]. Through the resampling procedure one selects the most promising streams

of samples from the first iteration up to the current one. Several resampling

procedures have been proposed in the literature [13, 10]. In the standard PMC

[7], multinomial resampling is the method of choice, and consists of sampling N
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Table 1: Standard PMC algorithm [7].

1. [Initialization]: Select the parameters defining the N proposals:

• The adaptive parameters P(1) = {µ(1)
1 , ...,µ

(1)
N }.

• The set of static parameters, {Ci}Ni=1.

E.g., if the proposals were Gaussian distributions one could select the adapting pa-

rameters in P(1) as the means of the proposals (that would be updated through the

iterations) and the static parameters {Ci}Ni=1 as their covariances [7].

2. [For t = 1 to T ]:

(a) Draw one sample from each proposal pdf,

x
(t)
i ∼ q(t)i (x|µ(t)

i ,Ci), i = 1, . . . , N. (3)

(b) Compute the importance weights,

w
(t)
i =

π(x
(t)
i )

q
(t)
i (x

(t)
i |µ

(t)
i ,Ci)

, i = 1, . . . , N, (4)

and normalize them,

w̄
(t)
i =

w
(t)
iPN

j=1 w
(t)
j

, i = 1, . . . , N. (5)

(c) Perform multinomial resampling by drawing N independent parameters µ
(t+1)
i

from the discrete probability random measure,

π̂N
t (x) =

NX
i=1

w̄
(t)
i δ(x− x

(t)
i ). (6)

The new set of adaptive parameters defining the next population of proposals

becomes

P(t+1) = {µ(t+1)
1 , ...,µ

(t+1)
N }. (7)

3. [Output, t = T ]: Return the pairs {x(t)
i , ρ̄

(t)
i }, with ρ̄

(t)
i given by Eq. (8), for

i = 1, . . . , N and t = 1, . . . , T .

times from the discrete probability mass defined by the normalized weights. As

a result of this procedure, the new set of parameters used to adapt the proposals

for the generation of samples in the next iteration is selected. In summary, the

standard PMC technique consists of the steps shown in Table 1.
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3.2. Estimators and consistency

All the generated samples can be used to build a global approximation of

the target. This can be done by first normalizing all the weights from all the

iterations,

ρ̄
(t)
i =

w
(t)
i∑t

τ=1

∑N
j=1 w

(τ)
j

, t = 1, . . . , T, i = 1, . . . , N, (8)

and then providing the pairs {x(t)
i , ρ̄

(t)
i } for i = 1, . . . , N and t = 1, . . . , T . This

procedure to compute the weights is equivalent to applying a static importance

sampling technique that considers NT different proposal pdfs and all the corre-

sponding samples. If the normalizing constant Z is known, the integral in Eq.

(2) is approximated by the unbiased estimator

Ît =
1
tN

1
Z

t∑
τ=1

N∑
j=1

w
(τ)
j f(x(τ)

j ). (9)

When the normalizing constant is unknown, the unbiased estimate of Z is sub-

stituted in Eq. (9), yielding the self-normalized estimator

Ĩt =
t∑

τ=1

N∑
j=1

ρ̄
(τ)
j f(x(τ)

j ) =
1
tN

1
Ẑt

t∑
τ=1

N∑
j=1

w
(τ)
j f(x(τ)

j ), (10)

where

Ẑt =
1
tN

t∑
τ=1

N∑
j=1

w
(τ)
j , (11)

is the unbiased estimate of the normalizing constant.

4. Improved PMC schemes

In the following, we introduce several alternative strategies that decrease the

variance of the estimators by exploiting the mixture perspective, and improve

the diversity of the population w.r.t. to the standard PMC. More specifically,

we study three different PMC schemes: one related to the strategy for calcu-

lating the weights and the other two based on modifying the way in which the

resampling step is performed. Although we concentrate on the standard PMC,

we remark that these alternative schemes can be directly applied or combined

in other more sophisticated PMC algorithms.
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4.1. Scheme 1:Deterministic mixture PMC (DM-PMC)

The underlying idea of PMC is to perform a good adaptation of the param-

eters µ
(t)
i . The location parameters are obtained at each iteration by sampling

from π̂Nt−1 in Eq. (6) (i.e., via resampling), which is a random measure that

approximates the target distribution, i.e., µ
(t)
i ∼ π̂Nt−1. Note that the approx-

imation π̂Nt−1 improves when N grows, namely, we have that µ
(t)
i ∼ π(x) for

N →∞ [22]. Therefore, the equally-weighted mixture of the set of proposals at

the t-th iteration, given by

ψ(t)(x) =
1
N

N∑
i=1

q
(t)
i (x|µ(t)

i ,Ci), (12)

can be seen as a kernel density approximation of the target pdf, where the pro-

posals, {q(t)i (x|µ(t)
i ,Ci)}Ni=1, play the role of the kernels [26, Chapter 6]. Follow-

ing kernel density estimation arguments, the resampling procedures naturally

leads to a concentration of the proposals around the modes of the target.

Therefore, since the performance of an importance sampling method relies

on the discrepancy between the numerator (the target) and the denominator

(usually, the proposal pdf), a reasonable choice for calculating the importance

weights is

w
(t)
i =

π(x(t)
i )

ψ(t)(x(t)
i )

=
π(x(t)

i )
1
N

∑N
j=1 q

(t)
j (x(t)

i |µ
(t)
j ,Cj)

, (13)

where, as opposed to Eq. (4), the complete mixture of proposals ψ(x) is ac-

counted for in the denominator. The first justification for using these determin-

istic mixture (DM) weights is merely mathematical, since the estimator Ît of Eq.

(9) with these weights is also unbiased (see the proof in A.2). The main advan-

tage of this new scheme is that it yields more efficient estimators, i.e. with less

variance, combining the deterministic mixture sampling (as in standard PMC)

with the weight calculation that accounts for the whole mixture. Namely, the

estimator Ît in Eq. (9), computed using the DM approach, has less variance

than the estimator obtained by the standard PMC, as proved in A.3 for any

target and set of proposal pdfs. The intuition behind the variance reduction
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is clear in a multi-modal scenario, where different proposals have been success-

fully adapted covering the different modes, and therefore, the whole mixture

of proposals has less mismatch w.r.t. the target than each proposal separately.

Indeed, it can be easily proved that the mismatch of the whole mixture w.r.t to

the target is always less than the average mismatch of each proposal. Namely,

regarding the integrated squared distances, we need to prove that∫
(π̃(x)− ψ(x))2 dx ≤ 1

N

N∑
i=1

∫
(π̃(x)− qi(x))2 dx. (14)

After some algebraic manipulations, Eq. 14 becomes

∫ (
1
N

N∑
i=1

qi(x)

)2

dx ≤
∫

1
N

N∑
i=1

q2i (x)dx. (15)

Finally, since the integrands of both integrals are non-negative, it is enough to

prove that (
1
N

N∑
i=1

qi(x)

)2

≤ 1
N

N∑
i=1

q2i (x), (16)

which is equivalent to Eq. (42) for ai = qi(x), and is proved in Appendix A.3.

Another benefit of the DM-PMC scheme is the improvement in the ex-

ploratory behavior of the algorithm. Namely, since the weights in DM-PMC

take into account all the proposals (i.e., the complete mixture) for their calcula-

tion, they temper the overrepresentation of high probability areas of the target.

As a consequence, the effective sample size in DM-PMC is, in average, larger

than in standard PMC, which implies that the diversity loss associated to the

resampling step is reduced by using with the DM weights. See [15] for a more

detailed discussion about effective sample size in static multiple importance

sampling schemes.

In this DM-PMC scheme, the performance is improved at the expense of

a slight increase in the computational cost (in terms of proposal evaluations)

in the calculation of the weights. However, all the proposed schemes keep the

same number of evaluations of the target as in the standard PMC. Hence, if the

target evaluation is much more costly than the evaluation of the proposal pdfs
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(as it often happens in practical applications), the increase in computational

cost will be negligible in practice.

In the sequel, we adopt the weights of Eq. (13) for the other two proposed

PMC schemes due to their theoretical and practical advantages discussed above.

4.2. Scheme 2: Multiple samples per mixand with global resampling (GR-PMC)

We propose to draw K samples per individual proposal or mixand, instead

of only one as done in the standard PMC algorithm. Namely,

x(t)
i,k ∼ qi(x|µ

(t)
i ,Ci) (17)

for i = 1, . . . , N and k = 1, . . . ,K. Then, we compute the corresponding DM

weights as in (13),

w
(t)
i,k =

π(x(t)
i,k)

1
N

∑N
j=1 q

(t)
j (x(t)

i,k|µ
(t)
j ,Cj)

. (18)

Therefore, at each iteration we have a set of KN generated samples, i.e., X (t) =

{x(t)
1,1, ...,x

(t)
1,K , ...,x

(t)
N,1, ...,x

(t)
N,K}. Resampling is performed in the same way as

in standard PMC, although now the objective is to downsample, from KN

samples to N samples, according to the normalized weights,

w̄
(t)
i,k =

w
(t)
i,k∑N

j=1

∑K
`=1 w

(t)
j,`

. (19)

We refer to this type of resampling as global resampling, since all the samples,

regardless of the proposal used to generate them, are resampled together. After

resampling, a new set of adapted parameters for the next iteration, P(t+1) =

{µ(t+1)
1 , ...,µ

(t+1)
N }, is obtained.

The standard PMC algorithm suffers from diversity impoverishment, as dis-

cussed previously. In multimodal scenarios, proposals that are exploring areas

with negligible probability masses are very likely to be removed before they find

unexplored relevant areas. By drawing K samples per proposal, the algorithm

increases the local exploration of the proposals, thus increasing their chances of

uncovering local relevant features of the target π̃(x).
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q
(t)
1 (x) =) x

(t)
1,1, . . .

...

q
(t)
i (x) =) x

(t)
i,1, . . .

...

q
(t)
N (x) =) x

(t)
N,1, . . .

x
(t)
i,k, . . .

x
(t)
1,k, . . .

x
(t)
N,k, . . .x

(t)
N,K

x
(t)
i,K

x
(t)
1,K

Global Resampling

Local Resampling

Figure 1: Sketch of the global and local resampling schemes considering N

proposal pdfs at the t-th iteration, q(t)i for i = 1, . . . , N and t = 1, . . . , T , and

K samples per proposal.

Unfortunately, one of the main issues of increasing K is the impoverishment

of the global exploration: since the resampling is performed over the KN sam-

ples, most of the surviving samples are likely to come from a reduced set of

proposals (even a single one in the worst case) when K is too large. Thus, there

is a trade-off between local and global exploration. This suggests the existence

of an optimal value of samples per proposal and iteration, K∗, which will de-

pend on the target and cannot be found analytically. This issue can be partially

addressed through the use of local resampling, as shown in the following sec-

tion. Note that using K > 1 does not entail an increase in the computational

cost w.r.t. the standard PMC or DM-PMC (where K = 1) if the number of

evaluations of the target is fixed to L = KNT . Indeed, since the number of

resampling stages is reduced to T = L/(KN), the computational cost decreases,

although at the expense of performing less adaptation steps than for K = 1.

4.3. Scheme 3: Multiple samples per mixand with local resampling (LR-PMC)

Consider again K samples generated from each proposal pdf. Unlike the

previous method, here resampling is performed independently for each proposal.

Namely, at the t-th iteration, K samples are drawn from each of the N proposal

pdfs, and N parallel resampling procedures are independently performed within
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each subset of K samples (see Fig. 1 for a visual comparison of both resampling

schemes). More precisely, the adaptive parameter for the next iteration of the

i-th proposal, µ
(t+1)
i for i = 1, . . . , N , is resampled from the set

X (t)
i = {x(t)

i,1, ...,x
(t)
i,K}, (20)

using the multinomial probability mass function with probabilities

w̄
(t)
i,k =

w
(t)
i,k∑N

`=1 w
(t)
i,`

, k = 1, . . . ,K. (21)

In this variant, we consider again the use of the weights given by Eq. (18). This

scheme guarantees that no loss of diversity occurs in the population of proposals,

since each proposal at the current iteration leads to another proposal in the next

iteration. Finally, let us remark that a mixed global-local resampling strategy

(e.g., performing local resampling on clusters of proposals) could also be devised

in order to obtain the advantages of both global and local resampling.

5. Numerical results

5.1. Estimation of the normalizing constant

Let us consider, as a target pdf, a bimodal mixture of Gaussians π(x) =
1
2N (x; ν1, c21) + 1

2N (x; ν2, c22) with ν1 = −3 and ν2 = 3, and c21 = 1 and c22 =

1. The proposal pdfs are also Gaussians: q1(x) = N (x;µ1, σ1) and q2(x) =

N (x;µ2, σ2). At this point, we consider two scenarios:

• Scenario 1: In this case, µ1 = ν1, µ2 = ν2, σ2
1 = c21, and σ2

2 = c22. Then,

both proposal pdfs can be seen as a whole mixture that exactly replicates

the target, i.e., π(x) = 1
2q1(x) + 1

2q2(x). This is the desired situation

pursued by an adaptive importance sampling algorithm: each proposal

is centered at a different mode of the target, and their scale parameters

perfectly match the scales of the modes. Fig. 2(a) shows the target pdf

in solid black line, and both proposal pdfs in blue and red dashed lines,

respectively. Note that the proposals are scaled (each one integrates up

12



to 1/2 so we can see the perfect matching between the target and the

mixture of proposal densities).

• Scenario 2: In this case, µ1 = −2.5, µ2 = 2.5, σ2
1 = 1.2, and σ2

2 = 1.2.

Therefore, there is a mismatch between the target and the two proposals.

Fig. 3(a) shows the target pdf in solid black line, and both proposal pdfs

in blue and red dashed lines, respectively.

The goal is estimating the normalizing constant using the estimator Ẑ of Eq.

(11) with N = 2 samples, one from each proposal, and t = 1. We use the

standard PMC weights of Eq. (4) (estimator ẐIS) and the DM-PMC weights

of Eq. (13) (estimator ẐDM ). In order to characterize the two estimators, we

run 2 · 105 simulations for each method. Note that the true value is Z = 1.

Figure 2(b) shows a boxplot of the distribution of the estimator Ẑ, obtained

with both methods for Scenario 1. The blue lower and upper edges of the box

correspond to the 25th and 75th percentiles, respectively, while the red line

represents the median. The vertical black dashed whiskers extend to the mini-

mum and maximum obtained values. Since the maxima cannot be appreciated

in the figure, they are displayed in Table 2, altogether with the variance of

the estimators. Note that even in this extremely simple and idealized scenario

(perfect adaptation), the estimator obtained using the standard IS weights (i.e.,

the estimator used in standard PMC) has a poor performance. In most of the

realizations, ẐIS ≈ 0.5 because each proposal (which integrates up to one) is

adapted to one of the two modes (which contain roughly half of the probability
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Estimator ẐIS ẐDM Estimator ẐIS ẐDM

(Sc. 1)
Max. 35864 1

(Sc. 2)
Max. 77238 1.59

V ar(Ẑ) 7891 0 V ar(Ẑ) 6874 0.01

Table 2: (Ex. of Section. 5.1) Maximum value of the estimator Ẑ in 2 · 105

runs for each MIS scheme, in two different scenarios.

mass).2 Since E[ẐIS ] = Z = 1, in a few runs the value the ẐIS is extremely high

as shown in Table 2. These huge values occur when a sample drawn from the

tail of the proposal falls close to the other mode of the target (where actually

the other proposal is placed). On the other hand, note that the DM estimator

has a perfect performance (i.e., ẐDM = 1 always, thus implying zero variance).

Hence, this simple example shows that a substantial variance reduction can be

attained by using the mixture at the denominator.

Figure 3(b) shows an equivalent boxplot for Scenario 2. In this case, the

mismatch between proposals and target pdfs worsens both schemes. Note that

the estimator ẐDM now does not perfectly approximates Z, but still largely

outperform the estimator ẐIS . In particular, the median is still around the true

value, and its variance is smaller.

2In this setup, each proposal approximately covers a different half of the target probability

mass, since each one coincides with a different mode of the target. However, in standard

PMC, the weight of each sample only accounts for its own proposal, and therefore there is

not an exchange of information among the two proposals. Note that, if both proposals were

covering the same mode (and therefore missing the other one), the weights would also be

w = 0.5 in most of the runs; the lack of information exchange between the two samples,

makes it impossible to know whether the target mass reported by the weight of each sample

is the same and should be accounted “once”, or whether it is from another area and it should

be accounted “twice”.
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Figure 2: (Ex. of Section 5.1) Estimation of the normalizing constant (true

value Z = 1) in Scenario 1 (perfect matching). (a) Target pdf (black solid line)

and proposal pdfs (red and blue dashed lines). (b) Boxplot showing the 25th

and 75th percentiles of the estimators ẐIS and ẐDM . The maximum value of

ẐIS is 35864.
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Figure 3: (Ex. of Section. 5.1) Estimation of the normalizing constant (true

value Z = 1) in Scenario 2 (proposal-target mismatch). (a) Target pdf (black

solid line) and proposal pdfs (red and blue dashed lines). (b) Boxplot showing

the distribution of the estimators ẐIS and ẐDM . The maximum value of ẐIS

is 77238.
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5.2. Bi-dimensional example

We first consider a bivariate multimodal target pdf, consisting of a mixture

of five Gaussians, i.e.,

π(x) =
1
5

5∑
i=1

N (x; νi,Σi), x ∈ R2, (22)

where N (x; µ,C) denotes a normalized Gaussian pdf with mean vector µ and

covariance matrix C, ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 =

[−9, 7]>, ν5 = [14,−14]>, Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],

Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5], and Σ5 = [2, −0.1;−0.1, 2]. In

this example, we can analytically compute different moments of the target in

(22), and therefore we can easily validate the performance of the different tech-

niques. In particular, we consider the computation of the mean of the target,

E[x] = [1.6, 1.4]>, and the normalizing constant, Z = 1, for x ∼ 1
Zπ(x). We

use as figure of merit the Mean Squared Error (MSE) in the estimation of E[x]

(averaged over both components) and Z.

For simplicity, we assume Gaussian proposal densities for all of the methods

compared, and deliberately choose a “bad” initialization of the means in order

to test the robustness and the adaptation capabilities. Specifically, the initial

adaptive parameters of the individual proposals are selected uniformly within

the [−4, 4] × [−4, 4] square, i.e., µ
(1)
i ∼ U([−4, 4] × [−4, 4]) for i = 1, . . . , N .

This initialization is considered “bad”, since none of the modes of the target

falls within the initialization square. We test all the alternatives using the same

isotropic covariance matrices for all the Gaussian proposals, Ci = σ2I2 with

σ ∈ {1, 2, 5, 10, 20, 70}. All the results have been averaged over 500 independent

experiments, where the computational cost of the different techniques (in terms

of the total number of evaluations of the target distribution) is fixed to L =

KNT .3 We compare the following schemes:

3Note that L = KNT also corresponds to the total number of samples generated in all the

schemes.
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L = NKT = 2 · 105

N Algorithm σ= 1 σ= 2 σ= 5 σ= 10 σ= 20 σ= 70

5

Standard PMC [7]

92.8031 38.7137 12.6476 0.3832 0.0470 37.4372

100 75.1709 76.9161 14.2442 0.2475 0.0280 0.1803

5 · 104 68.2938 37.4358 7.0110 0.2474 0.0329 0.1713

100

DM-PMC (K = 1) 72.4840 52.5093 5.3388 0.0362 0.0286 0.2126

GR-PMC (K = 2) 69.4076 53.1546 3.0884 0.0225 0.0278 0.1721

LR-PMC (K = 2) 2.6843 0.0076 0.0103 0.0178 0.1023 32.8828

GR-PMC (K = 5) 67.0397 41.7514 0.1075 0.0132 0.0225 0.1471

LR-PMC (K = 5) 8.0366 1.3940 0.0084 0.0158 0.0267 2.0035

GR-PMC (K = 20) 61.5793 34.7170 0.4250 0.0122 0.0244 0.1425

LR-PMC (K = 20) 9.5132 4.5452 0.0111 0.0130 0.0233 0.2158

GR-PMC (K = 100) 64.9364 31.4322 0.0802 0.0147 0.0258 0.1801

LR-PMC (K = 100) 9.6051 3.7193 0.0221 0.0150 0.0265 0.1960

GR-PMC (K = 500) 58.4859 22.2482 0.0769 0.0135 0.0238 0.1639

LR-PMC (K = 500) 15.1310 5.2872 0.0631 0.0103 0.0203 0.3262

100 M-PMC [6] 67.8610 76.3504 17.1312 0.0538 0.0291 0.1908

Table 3: (Ex. of Section 5.2) MSE in the estimation of E[x], for several

values of σ and K, keeping the total number of evaluations of the target fixed

to L = KNT = 2 · 105 in all algorithms. The best results for each value of σ

are highlighted in bold-face.
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• Standard PMC [7]: Standard PMC algorithm described in Table 1 with

N = 100 proposals and T = 2000 iterations. The total number of samples

drawn is L = NT = 2 · 105.

• M-PMC [6]: M-PMC algorithm proposed in [6] with D = 100 proposals,

N = 100 samples per iteration, and T = 2000 iterations. The total number

of samples drawn is L = NT = 2 · 105.

• K-PMC: Standard PMC scheme using N = 100 proposals, but drawing

K > 1 samples per proposal at each iteration and performing global re-

sampling (GR). In order to keep the total number of samples constant,

the number of iterations of the algorithm is now T = 2 · 105/(KN).

• DM-PMC: Standard PMC using the weights of Eq. (13), N = 100

proposals, T = 2000 iterations, and drawing K = 1 samples per proposal.

• GR-PMC: PMC scheme with multiple samples per mixand (K), weights

computed as Eq. (18), and global resampling (GR). We use N = 100 pro-

posals and T = L/(KN) iterations with L = 2 · 105 (as in the three pre-

vious schemes). In particular, we test the values K ∈ {2, 5, 20, 100, 500},
and thus T ∈ {1000, 400, 100, 20, 4}.

• LR-PMC: PMC scheme with multiple samples per mixand (K) and lo-

cal resampling (LR). All the parameters are selected as in the GR-PMC

scheme.

Table 3 shows the MSE in the estimation of E[x] (averaged over both com-

ponents) for x ∼ 1
Zπ(x). We can see that all the proposed schemes outperform

the standard PMC for any value of σ. In general, the local resampling (LR)

works better than the global resampling (GR). Moreover, we note that the opti-

mum value of K depends on the value of σ, the scale parameter of the proposals:

for small values of σ (e.g., σ = 1 or σ = 2) small values of K lead to better

performance, whereas a larger value of K (and thus less iterations T ) can be

used for larger values of σ (e.g., σ = 10 or σ = 20). In addition, the proposed
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Figure 4: (Ex. of Section 5.2) Graphical representation of the indexes of the

proposals used to generate the population for the next iteration with different

schemes (6 iterations; N = 100, σ = 5). For each pair of iterations, lines link

each surviving proposal (“father” proposal) with the next generation. In red,

proposals surviving from the 1st to the 6th iteration.

methods also outperform the M-PMC algorithm in this scenario. Note that

M-PMC is an adaptive importance sampling algorithm that does not perform

the resampling step.

The large MSE values in Table 3 for some schemes and sets of parameters

are due to the fact that they fail at discovering all the modes of the target

pdf. In order to clarify this issue, Fig. 7 shows the evolution of the population

of proposals for the first 4 iterations of the standard PMC (K = 1), K-PMC

(with K = 10), and DM-PMC with global resampling (also for K = 1 and

K = 10). Standard PMC tends to concentrate the whole population on one or

two modes, very loosely covering the remaining ones and completely missing the

mode in the bottom right corner. This issue is partly solved by using K = 10

(after 4 iterations the proposals are evenly distributed around 3 out of the 5

modes) or DM-PMC with K = 1 (after 4 iterations the proposals are uniformly

distributed among 4 out of the 5 modes). Combining both approaches (DM-

19



0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

Iterations (t)

Su
rv

iv
al

 R
at

e

 

 
Standard PMC
DM−PMC (K=1)
K−PMC (K=10)
GR−PMC (K=10)

(a)

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

Iterations (t)

Su
rv

iv
al

 R
at

e

 

 
Standard PMC
DM−PMC (K=1)
K−PMC (K=10)
GR−PMC (K=10)

(b)

Figure 5: (Ex. of Section 5.2) Survival rate (after resampling) of the proposals

vs. the distance in iterations among the proposals averaged over 500 runs (σ =

5). (a) N = 100 for all methods. (b) Different values of N , fixing NK = 1000

and thus N ∈ {100, 1000}.

Algorithm N = 100 N = 1000

σ= 1 σ= 5 σ= 20 σ= 1 σ= 5 σ= 20

Standard PMC [7] 12.9178 6.5719 1.3601 8.6151 2.5508 0.4162

GR-PMC (K = 2) 14.1444 4.3571 0.5151 13.0727 0.0131 0.0842

LR-PMC (K = 2) 8.8212 14.5688 85.4180 3.3308 0.9261 44.1579

GR-PMC (K = 10) 12.956 0.8466 0.2469 3.6181 0.0197 0.1370

LR-PMC (K = 10) 8.5573 0.2307 2.2471 5.1043 0.0064 1.8587

GR-PMC (K = 20) 10.2277 0.9898 0.2655 3.1363 0.0195 0.2437

LR-PMC (K = 20) 6.0419 0.2238 0.7999 9.5565 0.0556 0.4444

GR-PMC (K = 100) 8.1532 0.2112 0.1521 7.6362 0.7139 0.1702

LR-PMC (K = 100) 6.9326 0.4560 0.2996 2.7386 0.1462 0.1745

M-PMC [6] 10.7753 9.0617 0.3460 8.3404 0.1246 0.0753

Table 4: (Ex. of Section 5.3) MSE in the estimation of E[x], for σ ∈ {1, 5, 20}
and K ∈ {2, 10, 20, 100}, keeping the total number of evaluations of the target

fixed to L = 2 · 105. The dimension space of the target is Dx = 10. The best

results for each value of σ are highlighted in bold-face.
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PMC and K = 10) an approximately uniform distribution of the proposals

around all the modes of the target is attained.

Finally, in Figs. 4 and 5 we explore a well-known problem of PMC: the

survival of proposals as the algorithm evolves. On the one hand, Fig. 4 shows

which proposals have been used to generate the starting population for the next

iteration. After 6 iterations, all of the N = 100 proposals in the population

have arisen from only 2 of the proposals in the initial population. This sit-

uation hardly improves by using the DM-PMC: now 4 initial proposals have

generated all the N = 100 proposals in the 6-th iteration. However, by drawing

multiple samples per mixand (K = 10) the situation improves dramatically both

when using the standard IS weights (9 proposals survive until the 6-th iteration)

and especially when using the DM-PMC (19 surviving proposals). On the other

hand, Fig. 5 shows the evolution in the survival rate of proposals w.r.t. the

distance in iterations (or generations). In standard PMC, after very few itera-

tions, most of the ancestors do not survive. This rate falls down as t increases

in all cases, but the DM weights and especially the use of multiple samples per

mixand help in slowing down this decrease. Therefore, we can conclude that

the newly proposed schemes can be very useful in preserving the diversity in

the population of proposals.

5.3. High-dimensional example

We consider a target corresponding to a mixture of isotropic Gaussians

π(x) =
1
3

3∑
k=1

N (x; νk,Σk), (23)

where x ∈ R10, νk = [νk,1, . . . , νk,10]>, and Σk = ξ2kI10 for k ∈ {1, 2, 3}, with I10

being the 10× 10 identity matrix. We set ν1,j = −5, ν2,j = 6, and ν3,j = 3 for

all j ∈ {1, . . . , 10}. Moreover, we set ξk = 8 for all k ∈ {1, 2, 3}. The expected

value of the target π(x) is E[Xj ] = 4
3 for j = 1, . . . , 10, and the normalizing

constant is Z = 1.

We use Gaussian proposal densities for all the compared methods. The ini-

tial means (adaptive parameters of the proposals) are selected randomly and
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independently in all techniques as µ(1)
i ∼ U([−6×6]10) for i = 1, . . . , N . We use

the same isotropic covariance matrices for all the methods and proposal pdfs,

Ci = σ2I10, and we consider σ ∈ {1, 5, 20}. For every experiment, we run 200

independent simulations and compute the MSE in the estimation of E[x] (aver-

aging the MSE of each component). We consider the same techniques as in the

bi-dimensional example, testing N ∈ {100, 1000} and different values of samples

per iteration, K ∈ {2, 10, 20, 100}. We have tested different sets of parameters,

always keeping the total number of samples fixed to L = KNT = 2 · 105. Ta-

ble 4 shows that the proposed PMC schemes outperform the standard PMC in

most of the cases. Indeed, a decrease of more than one order of magnitude in

the MSE can often be attained by using DM-PMC with an appropriate value of

K instead of the standard PMC. Finally, note that, although M-PMC behaves

well for most of the parameters tested, overall the proposed methods yield the

best performance in terms of MSE and robustness w.r.t. parameter choice.

In order to study the performance of the proposed schemes as the dimension

of the state space increases, we change the dimension of the state space in (23).

Namely, the target density is still a mixture of three isotropic Gaussians with

the same structure for the mean vectors and covariance matrices as before, but

now the dimension of x is Dx ∈ [1, 50]. We have tested all the methods with

σ = 5 and N = 100. Fig. 6 shows the evolution of the MSE in the estimation of

the normalizing constant as a function of Dx. As expected, the performance of

all the methods degrades as the dimension of the problem, Dx, becomes larger.

Nonetheless, the performance of the proposed methods decays much more slowly

than that of the standard PMC, thus allowing them to still provide a reasonably

low MSE in higher dimensions. Note that, since the true normalizing constant

of the target is Z = 1, when the methods behave poorly in high dimensions and

the proposals do not discover the modes, the estimation is Ẑ ≈ 0, and therefore

the MSE tends to 1, which is the worst-case situation.
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Figure 6: (Ex. of Section 5.3) MSE of the normalizing constant Z, using

N = 100 proposals and a scale parameter σ = 5, as the dimension of the state

space Dx increases.

5.4. Autoregressive filter with non-Gaussian noise

We consider the use of an autoregressive (AR) model contaminated by a non-

Gaussian noise. This kind of filters is often used for modeling some financial time

series, where the noise is assumed to follow the so-called generalized hyperbolic

distribution [14]. Namely, we consider the following observation model,

ym = x1ym−1 + x2ym−2 + x3ym−3 + x4ym−4 + um, (24)

where m = 1, . . . ,M is a time index, and um is a heavy-tailed driving noise:

um ∼ p(u) ∝ eβ(u−µ)
Bλ− 1

2

(
α
√
δ2 + (u− µ)2

)
(√

δ2 + (u− µ)2
) 1

2−λ
,

where Bλ denotes the modified Bessel function [1]. The vector of unknowns,

x∗ = [x∗1, x
∗
2, x
∗
3, x
∗
4]>, contains the coefficients of the AR model.

Given a set of observations y = [y1, . . . , yM ]>, the inference problem consists

of obtaining statistical information about x∗, by studying the corresponding

posterior distribution π̃(x|y). More specifically, we have synthetically generated

M = 200 observations, y = [y1, . . . , yM ]>, setting x∗ = [0.5, 0.1, − 0.8, 0.1]>,
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λ = 0.5, α = 2, β = 1, µ = −1, and δ = 1.4 Assuming improper uniform priors

over the unknown coefficients, the objective is computing the expected value x̂ =∫
R4 xπ̃(x|y)dx. We note that using M = 200 observations, the posterior pdf is

quite sharp and concentrated around the true value, x∗ = [0.5, 0.1, −0.8, 0.1]>.

All the methods use Gaussian proposals, with the initial adaptive parameters

of the individual proposals selected uniformly within the [−6, 6]4 square, i.e.,

µ
(1)
i ∼ U([−6, 6] × [−6, 6] × [−6, 6] × [−6, 6]), and the covariance matrices for

all the Gaussians selected as Ci = σ2I4, with σ = 5 for i = 1, . . . , N . As in

the previous examples, we have tested different combinations of parameters,

keeping the total number of evaluations of the target fixed to L = NKT =

2 · 105. We have evaluated different values of N ∈ {100, 1000, 5000} and K ∈
{5, 10, 50, 100}. We ran 500 independent simulations and computed the MSE in

the estimation of x̂ w.r.t. the true value x∗.

The results obtained by the different methods, in terms of MSE averaged over

all the components of x, are shown in Table 5. Note that some combinations

of K and N would yield a number of iterations T < 1, since we set T =

L/(NK) = 2·105/(NK). Therefore, those simulations cannot be performed and

are indicated in the Table with the symbol ∗. Note that, for any choice of N ,

the alternative schemes proposed in the paper largely outperform the standard

PMC. Furthermore, the advantage of using K > 1 can again be clearly seen for

the three values of N tested. More specifically, the smallest the value of N the

largest the value of K that should be used to attain the best results. Note also

that M-PMC behaves particularly well in this scenario for high values of N , but

its performance is very poor for N = 100 (unlike GR-PMC and LR-PMC, which

can still provide a good performance for the right value of K).

4For the generation of i.i.d. samples of the generalized hyperbolic noise, we applied a fast

and efficient MCMC technique (the FUSS algorithm [24]), drawing samples from univariate

distributions. After a few iterations, the resulting samples were virtually independent.
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Algorithm N= 100 N= 1000 N= 5000

Standard PMC [7] 13615.9497 69.9915 0.5553

GR-PMC (K = 5) 1597.5728 1.9171 0.0791

LR-PMC (K = 5) 31.0446 0.3571 0.2013

GR-PMC (K = 10) 520.6153 0.3037 0.0715

LR-PMC (K = 10) 14.9870 0.2897 0.2125

GR-PMC (K = 50) 16.9080 0.0553 *

LR-PMC (K = 50) 2.3072 0.1661 *

GR-PMC (K = 100) 2.2322 0.0969 *

LR-PMC (K = 100) 0.7727 0.1674 *

M-PMC [6] 182.10 0.0635 0.0464

Table 5: (Ex. of Section 5.4) MSE of E[x] for different values of K and N ,

keeping the total number of evaluations of the target fixed to L = KNT = 2·105.

The symbol ∗ indicates combinations where the number of iterations T < 1, and

therefore they cannot be performed.

6. Conclusions

The population Monte Carlo (PMC) method is a well-known and widely used

scheme for performing statistical inference in many signal processing problems.

Three improved PMC algorithms are proposed in this paper. All of them are

based on the deterministic mixture (DM) approach, which provides estimators

with a reduced variance (as proved in this paper) and increases the exploratory

behavior of the resulting algorithms. Additionally, two of the methods draw

multiple samples per mixand (both with local and global resampling strategies)

to prevent the loss of diversity in the population of proposals. The proposed

approaches are shown to substantially outperform the standard PMC on three

numerical examples. The proposed improvements can be applied to other exist-

ing PMC implementations and other importance sampling techniques, to achieve

similar benefits.
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A. Standard vs. deterministic mixture importance sampling

In this appendix we review the IS estimators, analyzing the properties (un-

biasedness and variance) of the estimator with the DM weights. For the sake of

clarity, we remove the temporal indexes.

A.1. Importance sampling estimators

Let us consider the estimator of Eq. (9) when we have a set of N proposal

pdfs, {qi(x)}Ni=1. We draw exactly Ki = 1 sample from each proposal, i.e.,

xi ∼ qi(x) for i = 1, . . . , N . 5 If the normalizing constant Z is known, the IS

estimator is then

Î =
1
NZ

N∑
i=1

wif(xi). (25)

The difference between the standard and deterministic mixture (DM) IS esti-

mators lies in the computation of the unnormalized weights. On the one hand,

we recall the standard IS weights are given by

wi =
π(xi)
qi(xi)

, (26)

where π(xi) is the target evaluated at the i-th sample (drawn from the i-th

proposal). Substituting (26) into (25), we obtain the standard IS estimator,

ÎIS =
1
NZ

N∑
i=1

f(xi)π(xi)
qi(xi)

. (27)

On the other hand, the weights in the DM approach are given by

wi =
π(xi)∑N
j=1 qj(xi)

. (28)

Substituting (28) into (25) we obtain the DM estimator

ÎDM =
1
NZ

N∑
i=1

f(xi)π(xi)
1
N

∑N
j=1 qj(xi)

. (29)

5From now on, we use Ki = 1, with i = 1, ..., N , for the sake of clarity, but the analysis

can be straightforwardly extended to any Ki.
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A.2. Unbiasedness of the DM-IS estimator

It is well known that ÎIS in Eq. (27) is an unbiased estimator of the integral

I define in Eq. (2) [25, 22]. In this section, we prove that the DM-IS estimator

in Eq. (29) is also unbiased. Since xi ∼ qi(x), we have

E[ÎDM ] =
1
NZ

N∑
i=1

Eqi

[
f(xi)π(xi)

1
N

∑N
j=1 qj(xi)

]
(30)

=
1
NZ

N∑
i=1

∫
f(xi)π(xi)

1
N

∑N
j=1 qj(xi)

qi(xi)dxi (31)

=
1
Z

∫
f(x)π(x)

1
N

∑N
j=1 qj(x)

[
1
N

N∑
i=1

qi(x)

]
dx (32)

=
1
Z

∫
f(x)π(x)dx = I. (33)

A.3. Variance of the DM-IS estimator

In this section, we prove that the DM-IS estimator in Eq. (29) always has

a lower or equal variance than the standard IS estimator of Eq. (27). We

also consider the standard mixture (SM) estimator ÎSM , where N samples are

independently drawn from the mixture of proposals, i.e., zi ∼ 1
N

∑N
j=1 qj(x),

and

ÎSM =
1
NZ

N∑
i=1

f(zi)π(zi)
1
N

∑N
j=1 qj(zi)

. (34)

Note that obtaining an IS estimator with finite variance essentially amounts to

having a proposal with heavier tails than the target. See [25, 16] for sufficient

conditions that guarantee this finite variance.

Theorem 1. For any target distribution π(x), any square integrable function

f(x), and any set of proposal densities {qi(x)}Ni=1 such that the variance of the

corresponding estimators is finite, the variance of the DM estimator is always

lower or equal than the variance of the corresponding standard IS and mixture

(SM) estimators, i.e.,

Var(ÎDM ) ≤ Var(ÎSM ) ≤ Var(ÎIS). (35)
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Proof: The proof is given by Proposition 2 and Proposition 3.

Proposition 2.

Var(ÎSM ) ≤ Var(ÎIS). (36)

Proof: The variance of the IS estimator is given by

Var(ÎIS) =
N∑
i=1

1
N2Z2

∫
f2(x)π2(x)

qi(x)
dx− I2

N
, (37)

where I = 1
Z

∫
f(x)π(x)dx is the true value of the integral that we want to

estimate [15]. The variance of the SM estimator is given by

Var(ÎSM ) =
1
N2

N∑
i=1

(
1
Z2

∫
f2(x)π2(x)

ψ(x)
dx− I2

)
=

1
NZ2

∫
f2(x)π2(x)

ψ(x)
dx− I2

N
, (38)

where ψ(x) = 1
N

∑N
j=1 qj(x). Substracting (38) and (37), we get

Var(ÎSM )−Var(ÎIS) =
1

N2Z2

∫ (
N

1
N

∑N
j=1 qj(x)

−
N∑
i=1

1
qi(x)

)
f2(x)π2(x)dx.

Hence, since f2(x)π2(x) ≥ 0 ∀x, in order to prove the theorem it is sufficient to

show that
1

1
N

∑N
j=1 qj(x)

≤ 1
N

N∑
i=1

1
qi(x)

. (39)

Now, let us note that the left hand side of (39) is the inverse of the arithmetic

mean of q1(x), . . . , qN (x),

AN =
1
N

N∑
j=1

qj(x),

whereas the right hand side of (39) is the inverse of the harmonic mean of

q1(x), . . . , qN (x),
1
HN

=
1
N

N∑
i=1

1
qi(x)

.
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Therefore, the inequality in (39) is equivalent to stating that 1
AN
≤ 1

HN
, or

equivalently AN ≥ HN , which is the well-known arithmetic mean–harmonic

mean inequality for positive real numbers [17, 1]. �

Proposition 3.

Var(ÎDM ) ≤ Var(ÎSM ). (40)

Proof: The variance of ÎDM is computed

V ar(ÎDM ) =
1

N2Z2

N∑
i=1

(
Eqi(x)

[
f2(x)π2(x)
ψ2(x)

]
− E2

qi(x)

[
f(x)π(x)
ψ(x)

])

=
1

N2Z2

N∑
i=1

(∫
f2(x)π2(x)
ψ2(x)

qi(x)dx
)
− 1
N2Z2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

=
1

NZ2

(∫
f2(x)π2(x)
ψ2(x)

[
1
N

N∑
i=1

qi(x)

]
dx

)
− 1
N2Z2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

=
1

NZ2

∫
f2(x)π2(x)

ψ(x)
dx− 1

N2Z2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

(41)

Analyzing Eqs. (38) and (41), we see that proving Var(ÎDM ) ≤ Var(ÎSM ) is

equivalent to proving that

1
Z2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

≥ NI2

1
Z2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

≥ N

(
1
Z

∫
f(x)π(x)
ψ(x)

ψ(x)dx
)2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

≥ N

(∫
f(x)π(x)
ψ(x)

(
1
N

N∑
i=1

qi(x)

)
dx

)2

N∑
i=1

(∫
f(x)π(x)
ψ(x)

qi(x)dx
)2

≥ 1
N

(
N∑
i=1

∫
f(x)π(x)
ψ(x)

qi(x)dx

)2

N

N∑
i=1

a2
i ≥

(
N∑
i=1

ai

)2

(42)

with ai =
∫ f(x)π(x)

ψ(x) qi(x)dx. The inequality in Eq. (42) holds since it corre-
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sponds to the definition of the Cauchy-Schwarz inequality [17],(
N∑
i=1

a2
i

)(
N∑
i=1

b2i

)
≥
(

N∑
i=1

aibi

)2

, (43)

with bi = 1 for i = 1, ..., N . �
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GR−PMC (K=10), iteration 1
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Figure 7: (Ex1-Section 5.2) Evolution of the samples before (red crosses)

and after resampling (black circles) for different schemes using N = 100 and

σ = 5. The contour lines of the target density are also depicted. (a) Standard

PMC. (b) DM-PMC (K=1). (c) K-PMC (K=10) with global resampling. (d)

GR-PMC (K=10).
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