CHAPTER 2
MODELING OF SELF-HEATING IN IC INTERCONNECTS AND
INVESTIGATION ON THE IMPACT ON INTERMODULATION
DISTORTION

2.1 CONCEPT OF SELF-HEATING
As the frequency of operation increases, especially in the RF and microwave range (MHz
- GHz), current that flows through resistive elements in ICs causes collision of charge carriers,

resulting in an increase in the temperature of the IC.

The physics of self-heating can be given as follows: when a current at RF frequencies
passes through a resistive element, collision of charge carriers occurs that causes a change in the
temperature of resistive element. This is independent of ambient temperature and hence,
appropriately called “self” heating. This heating then causes a change in resistivity, which then
affects the time constants of the model, and hence causes undesired frequency components to

appear in the output.

This is an undesired effect because of appearance of undesired frequency components,
and self heating effects become more prominent as the devices are scaled down, especially

towards 90nm and smaller technologies.

The problem of self heating can be accounted for, by coupling thermal and electrical

domains and then developing a comprehensive model.

2.2 INTERCONNECTS AND TRANSMISSION LINE MODELS

In today’s VLSI circuits, in order to minimize chip size, we often go for multilayered

interconnects, a typical example of which is shown below.
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Figure 4 Multilayered interconnect

As seen above, there are various metal layers one above the other, separated with

insulators in between. These interconnects can be modeled using standard transmission line

models.

The transmission line models used most commonly to represent interconnects are:

1. The coplanar model (within a metal layer)

2. The microstrip model (between two metal layers of different heights).

The model parameters used in this work are as given below:
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MODEL PARAMETERS

MICROSTRIP: » COPLANAR:
SUBSTRATE : SiO2 » SUBSTRATE : SiO2

» CONDUCTOR: Al CONDUCTOR: Al
CONDUCTOR WIDTH: 6um ¢ CONDUCTOR WIDTH: 6um

CONDUCTOR THICKNESS: 0.1um SLOT SPACING: 5um
SUBSTRATE HEIGHT: 100um CONDUCTOR THICKNESS: 0.1um
LINE LENGTH: 1mm SUBSTRATE HEIGHT: 100um

Figure 5 Model parameters

2.3 EQUIVALENT CIRCUITS OF TRANSMISSION LINE MODELS

Both coplanar and microstrip models can be modeled using passive RLC (resistor — inductor
— capacitor) elements. The values of R,L and C can be found out from the device dimensions
using certain relations. These are lossy line models, including the resistive losses. As will be seen

later, it is in the resistor that self heating plays a vital role.
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Figure 6 Equivalent circuit

2.4 TWO TONE TEST AND INTERMODULATION DISTORTION
Usually, to test for nonlinear effects in line models, we use certain test signals. One such
signal that is commonly used is the 2-tone signal which is the sum of 2 sinusoids of different

frequencies. This is represented as follows:
X (t)=alcos[flt+u ()] +a2cos (f21)

In our model, we used this 2 tone signal with the frequency of separation ranging from tens of
Megabhertz to tens of Gigahertz. When the 2 tone signal is passed through a nonlinear model a
wide range of frequencies, created by the sum and difference of the fundamental frequencies and

their harmonics are formed.

Hence if the input tones are f1 and f2, we have f1, f2, 2f1, 2f2, f1-f2, f1+f2, 3f1, 3f2, 2f1-f2,
2f1+f2, 2f2-f1 and 2f2+f1, (approximated third order). Out of these, all frequencies except f1, {2,
2f2-f1, and 2f1-f2 are called “out-of-band” products and can be easily filtered out. The in-band
frequencies are f1, f2, 2f1-f2, and 2f2-f1. Out of these f1 and f2 are the desired output
frequencies. The distortion caused by the remaining frequencies (2f1-f2, and 2f2-f1) are called

“intermodulation distortion” (IMD)
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Hence IMD is the most critical form of distortion as these frequencies can neither be filtered
out nor be ignored. As will be seen later, it is the Third Order IMD (IMD3) i.e 2f2-f1 and 2f1-f2

that cause much of the problem with regards to self heating.

2.5 CHARACTERIZATION AND MEASUREMENT OF IMD3
The 2 means of characterizing IMD3 are intercept point (IP3) and intermodulation ratio

(IMR). The means of determining them is as shown.
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Figure 7 Computation of third order intercept point

Here output power is measured as a function of input power, and the intersection of the

extrapolated Pinput and PIMD gives IP3.
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Figure 8 Computation of IMR

Shown below is the most commonly used setup for measuring IMD3.
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Figure 9 Two tone measurement setup

2.6 MULTISIM IMPLEMENTATIONS OF LINEAR AND NONLINEAR
TRANSMISSION LINES

To better understand the effects of IMD due to line nonlinearity, we simulated first a linear
transmission line (microstrip) based on the equivalent circuit in MultiSim and then observed the

Waveforms and Fourier Spectrum. The results are as shown below:
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Figure 11 Output Fourier Spectrum
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Next we repeated the simulations, but this time with a nonlinear transmission line

obtained by replacing the capacitors with the varactors.
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As can be seen the nonlinear transmission line shows a lot of other components other
than the input frequencies, and these components contain both inband and out-of band distortion
components. Thus the intermodulation distortion was effectively understood using the equivalent

circuits.

2.7 ELECTRO-THERMAL THEORY OF SELF-HEATING

Self — heating causes Intermodulation distortion and this is called ET-PIM (electro- thermal
passive intermodulation distortion). This is explained in the paper by Wilkerson et al. and is

outlined briefly here:

THE COLLISION OF CHARGE CARRIERS IN A RESISTIVE ELEMENT CAUSES
CHANGE IN TEMPERATURE AND THIS CHANGE IS PERIODIC, WITH A BASEBAND
RANGE. NOW, WHEN A 2 TONE INPUT SIGNAL IS GIVEN AS INPUT, THE POWER
SPECTRUM CONSISTS OF THE SUM (F1+F2) AND THE DIFFERENCE (F1-F2, ALSO
CALLED ENVELOPE OR BEAT FREQUENCY). IF THE BEAT FREQUENCY HAPPENS
TO FALL IN THIS BASEBAND RANGE, THE THERMAL EFFECTS BECOME
PROMINENT, PERIODICALLY VARYING THE RESISTANCE. IN EFFECT, THIS
CREATES A PASSIVE MIXER PRODUCING INTERMODULATION DISTORTION
THROUGH UPCONVERSION OF THE ENVELOPE FREQUENCIES AT BASEBAND TO
RF FREQUENCIES. THESE FREQUENCIES ARE NOTHING BUT THOSE ARISING IN
IMD3 (THIRD ORDER INTERMODULATION DISTORTION).

This is clearly illustrated in the following diagram:
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Figure 14 Electro Thermal Theory of Self Heating

Mathematically the expressions denoting the process are as follows:
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* WE FIRST START WITH THE THERMO-RESISTANCE EQUATION
GIVEN AS:

pelT) = pay(1 + T + BT* +-.)

e HEAT GENERATED THROUGH SELF HEATING CAN BE GIVEN AS
FOLLOWS:

e NEXTTHE HEAT CONDUCTION EQUATION IS GIVEN BY:

e THUSTHE DIFFERENTIAL EQUATION EXPRESSING THE
NONLINEARITYS: <, (v*r) _aoT

=l T+ 372 + ---
T ot peo(1l + o7 7% + )

USING EVOLUTION AND FRACTIONAL CALCULUS WE GET THE
EQUATION OF TEMPERATURE AS: e

k = (w/2x)Y2.

Figure 15 Expressions of self heating

2.8 COMPACT MODELING OF SELF HEATING

The equations and resulting changes can be given as an equivalent circuit which acts as a

replacement of the resistor in the transmission line models.

Ry 2v o=, R, ——(joC,)"

Figure 16 Equivalent circuit of resistor
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Here, Q Is The Input To The Model And This Is The Power Dissipated Through The Resistor, Ta

Represents Ambient Temperature. The expressions for the Rth and Cth are as follows:

THERMALRESISTANCE IS GIVEN BY
K= (-Rt];("r)_l-

AND THE THERMAL CAPACITANCE CAN BE CALCULATED USING THE

g 95
¢ = (ﬁ)) =T (U—T) =¢,pV. Ciy, = Cu Ry,
P

THERMAL DIFFUSIVITY

Figure 17 Rth and Cth for self heating equivalent circuit

2.9 TRANSMISSION LINE MODELS INCLUDING SELFHEATING EFFECTS
Next, we implement Transmission line models including the effects of self heating. To start with,
we implement Microstrip made of Aluminium SOI as a model including self heating effects, and
set the 2 tones at 600MHz and 700MHz. The results are as follows:

Figure 18 Aluminium microstrip waveforms
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Figure 19 Input Fourier Spectrum

File Edit View Tools

DeEd&R| & = 1R o
¥ AC Analysis | AC Analysis | AC Analysis | AC Analysis | AC Analysis | AC Analysis | AC Andlysis | AC Analysis | Osalloscope SC1 | Osclloscope XSC1 | Fourier Analysis | Fourier Analysis | Fourier Analysis | Fourier Anlysis | Osdlloscope-Xsc1 Fourier Analysis IFuuHEI Xl
thermall
'8 |Harmanic Frequency Magnitude Phase Norm. Mag Norm. Phase 3
(3 1e+008 0.365503 0.134532 1 0
[o]2 2e4008 0.256183 107.243 0.700906 107.109
[11]z 34008 0.39314 54,5909 L07561 54,4564
2]+ 404008 0.542138 154,199 1.75686 154,064
135 Se+008 136231 152,259 572721 152,125
[14]6 6e+008 175789 L1707 480951 -1.3052
1|7 7e+008 132861 33.66% 3.63502 39.529 4
|16 Be+008 0.528531 45,24 254042 45374
7o 364008 0.55682 -18.762 1.52343 -18.8%
1|10 1e4003 0.133735 .17 0.519243 43307
1o 11 1.1e4003 0.261315 -47.081 0.716314 47215
|20]12 1.2e4003 0.208717 44612 0.571039 44747 -
Fourier Analysis
200

E 125
>
Ef
= 500.00m

250.00m

0 250.00M 500.00M 75000M 100G 125G 1.506]
Frequency (Hz)

Figure 20 Output spectrum

SAI VENKATESH AND ATUL KUMAR | 2.9 TRANSMISSION LINE MODELS INCLUDING ekE
SELFHEATING EFFECTS



As we can see in Fourier analysis of output, there is significant amplitude of the desired
components, 600 and 700 MHz (the 2 tones). In addition we have components at 800 and 500
MHz which are the IMD3 frequencies. There are components in other frequencies as well. For
example, 400 and 900 MHz But these are far apart from the desired frequency (600 and 700

MHz) and hence can be easily filtered out using appropriate band pass filters.

Next we repeat the same but with the 2 tones at 300 and 400MHz. The results are as follows:
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Figure 21 Aluminium Microstrip Waveforms
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As we can see in Fourier analysis of output, there is significant amplitude of the desired
components, 300 and 400 MHz (the 2 tones). In addition we have components at 500 and 200
MHz which are the IMD3 frequencies. There are components in other frequencies as well. For
example, 100, 600, 700 MHz But these are far apart from the desired frequency (300 and 400

MHz) and hence can be easily filtered out using appropriate band pass filters.

From the equations regarding self-heating that were described earlier, we could observe
that resistance changes as a function of temperature which in turn varies with time. So we can
conclude that resistance varies with temperature. The plot of resistance (ohm) as a function of
time (us) for a frequency separation of 999MHz is shown below:
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Figure 24 Resistance variations

2.10 VERIFICATION OF THE COMPACT MODEL

The compact model has to be verified and checked for consistency. For this we considered a
similar model was devised by Eduard Rocas et al. Mentioned in their paper titled “third order
intermodulation distortion due to self-heating in gold coplanar waveguides” and they had
simulated the model and also verified the results experimentally. Hence in order to verify our
model, we tried to reproduce the results by simulating a gold coplanar transmission line of

the dimensions specified by them. The model parameters used by them are as follows:

SAI VENKATESH AND ATUL KUMAR | 2.10 VERIFICATION OF THE COMPACT MODEL



MODEL PARAMETERS

® COPLANAR:
e SUBSTRATE : Sapphire
» CONDUCTOR: Gold

CONDUCTOR WIDTH: 30um

SLOT SPACING: 15um
CONDUCTOR THICKNESS: 480nm
SUBSTRATE HEIGHT: 200um
LINE LENGTH: 9.933mm

Figure 25 Model parameters of Gold Coplanar Waveguide

The results are as follows:

Figure 26 Waveforms for 700 and 800 MHz
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As we can see in Fourier analysis of output, there is significant amplitude of the desired
components, 700 and 800 MHz (the 2 tones). In addition we have components at 600 and 900
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Figure 28 Output spectrum
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MHz which are the IMD3 frequencies. There are components in other frequencies as well. For
example, 300, 1000, and 1100 MHz But these are far apart from the desired frequency (700 and
800 MHz) and hence can be easily filtered out using appropriate band pass filters.

Shown below is the frequency separation (MHz) vs. IMD3 (dBm) of the simulated gold
CPW model, shown alongside the corresponding curve obtained by Eduard Rocas et al (denoted
as A-CPW).
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Figure 29 Curves of Edouard
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Figure 30 Curves for our model
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Figure 31 Curves overlaid
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Figure 32 Resistance variations

Thus the above curves assert without doubts the validity and accuracy of the compact model,

thus making it as good as measuring the values in the lab and asserting it.

2.11 COMPACT MODELING OF BEOL INTERCONNECTS

Back-end-of-line (BEOL) denotes the second portion of IC fabrication where the individual
devices (transistors, capacitors, resistors, etc.) get interconnected with wiring on the wafer.
BEOL generally begins when the first layer of metal is deposited on the wafer. It includes
contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package

connections.

The next step is to model the self heating in back end of line (BEOL) interconnects.These are
usually made of tantalum which has a negative temperature coefficient of resistance. Thus beol
can be modeled as microstrip with the same geometry given earlier but with the conductor

replaced by tantalum. The results will now be shown.
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Figure 33 Waveforms of tantalum at 300 and 400 MHz
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Figure 35 Output spectrum

2.12 IMPACT OF SELF HEATING ON INTERMODULATION DISTORTION

As the MultiSim comprehensive model is now validated with the verification of results with
gold coplanar waveguide, the next step is to simulate the self heating effects observed in real
time in back end of line interconnects., where the material is either aluminium or tantalum and

substrate is SiO2 (SOI technology). Such self heating depends on a number of factors as follows:
1. Whether the model is coplanar strip / microstrip
2. Whether the transmission line is linear or nonlinear (varactor induced nonlinearity)
3. Whether the conductor is aluminium / tantalum.

4. Whether self heating is included or not.
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This gives a total of 16 combinations, all of which are simulated with the dimensions
specified earlier, and a graph of IMD3 power (dBm) vs. separation frequency (w2-w1l) is

overlaid and plotted as follows.
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Figure 36 IMD3 vs. frequency separation for 16 cases
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Figure 37 Tabulated values for all 16 cases
To understand the curves better we isolate 3 cases, involving aluminium microstrip and plot
them as follows:
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Figure 38 Simplified curve
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We can infer the following points from these curves:

1. Self heating does have an impact on IMD as the IMD3 values of aluminium
microstrip under varactor induced nonlinearity show a significant increase when self
heating is present.

2. Hence self heating is very important.

3. There is a nonlinear region in the curve at high frequencies (around 10 to 1000 MHz).
But in this region aluminium microstrip show much better performance than their

tantalum counterparts.

2.14 SUMMARY

Thus we conclude by stating that we have obtained an equivalent circuit that explains self-

heating effects and have tested the presence of nonlinearity and IMD using simulation.

The significance of the approach lies in successfully modeling thermal effects in

interconnects in 1Cs using SOI technology with al conductors.

Future work: proposing of circuits and techniques that can be used for compensation of self-

heating effects.
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