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Accelerating Clocks Run Faster and Slower 
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Einstein’s relativity contends that time, as measured by clocks, slows with increasing speed, becoming especially 

noticeable as the speed of light is approached.  Discussions of this usually focus on constant speeds, albeit near the speed 

of light, and phenomena such as muon decay (near light speed), or even the Hafele-Keating experiment (at much slower 

speeds), are cited as ‘proof.’  Dissident scientists often contend that time remains invariant, although clocks may appear 

to run slower at increasing speeds.  At least one such scientist contends that accelerated clocks can run both slower and 

faster, an interesting departure that I decided to examine via some examples.  To the extent that my examples are correct, 

I too would agree with this conjecture, namely that, while time remains invariant, clocks can run faster and slower when 

accelerated (but not at constant velocity). 

 

1. Introduction 
 

While perusing Don E. Sprague’s website on “Complex 

Relativity” (http://complexrelativity.com), I read the following 

discussion:1 

 

Clocks lose time but also gain time.  The Hafele and 

Keating experiment has atomic clocks going around 

the world showing less time in one direction but time 

gain in the other direction. We know that Einstein 

predicts that time slows with movement and 

eventually time is varied to a singularity where time 

end[s] which is an impossibility.  Since Einstein 

predicts that time slows, the Hafele and Keating 

experiment refutes Einstein.  The clocks in the Hafele 

and Keating experiment show both a time loss and a 

time gain. According to Einstein, they just have time 

loss. Thus, the time gain portion goes against 

Einstein.  However; the clock gain and loss is 

accurately predicted using CM [Classical 

Mechanics] and ChR [Classical hierarchy Relativity] 

with relative c. That is because ChR specifies that 

acceleration of a clock will result in a clock change 

in reading or clock error.  Any examination of the 

Hafele-Keating experiment must consider the total 

acceleration of the clocks as they relate to the known 

universe.  

 

Consider an atomic clock experiment with the clock 

moved up a foot and down a foot resulting in a clock 

reading variation or error.  This acceleration of the 

clock caused a loss of synchronization in the clock as 

predicted in ChR.  The combination of the Hafele and 

Keating and the atomic clock one foot elevation 

experiments are confirmation that Maxwell/Einstein 

constant c relativity is wrong.  It is proof that ChR 

with relative c is correct.   

 

The combination of the Hafele and Keating 

experiment and the atomic clock 1 foot acceleration 

could loosely be considered to be the ChR equivalent 

of the Eddington observation about Einstein’s 

relativity where he interpreted a gravitational lens 

bending light as confirmation that the time changed. 

In the case of the accelerating clocks, there isn’t any 

way to interpret the clock gain as conf[i]rmation of 

Einstein that predicts just time loss. There can only 

                                                
1 The author acknowledges correspondence with Don E. 

Sprague regarding his theory and my development of the 

three examples. 

be clock error with accelerated clocks as specified in 

ChR.  

 

It isn’t a matter of if Einstein is wrong while CM and 

ChR with constant space and constant progression of 

time and relative speed of light is correct in a 

hierarchy of frame relativity. It is just a question of 

when and how the physics world will acknowledge 

the truth I have shown. 

 

Others have disputed the contention that the Hafele-

Keating results support Einstein’s relativity (e.g., Spencer and 

Shama, “Analysis of the Hafele-Keating Experiment,” Third 

Natural Philosophy Alliance Conference, Flagstaff, Arizona, 

June 1996; Kelly, “Hafele & Keating Tests: Did They Prove 

Anything?”  [http://www.anti-relativity.com/hafelekeating 

debunk.htm]).  Never being one to accept Einstein’s conjecture 

that time slows due to movement at constant velocity, I 

nevertheless never considered the possibility of clocks (not 

time) showing variation under accelerated movement.  The 

above discussion prompted me to consider this possibility by 

postulating three examples of acceleration: (1) change in speed, 

but not direction; (2) change in direction but not speed; and (3) 

change in both speed and direction.  As my ‘clock,’ I postulate 

a gun shooting a projectile into a target, with the time between 

ejection from the gun and striking of the target becoming the 

unit of time measurement. 

 

2. Case 1.  Acceleration due to Change in Speed but 

not Direction 
 

In Figure 1, a boxcar of length two (arbitrary units) has a 

pair of guns (grey) mounted to fire in opposite directions at its 

midpoint (shown here as ‘upper’ and ‘lower’).  At time 0, when 

the boxcar is stationary, both guns fire projectiles at equal 

speeds of u0 = 1/sec (s).  At an infinitesimal time later (0+), the 

boxcar, and therefore the two fixed guns, is accelerated to the 

right at a0+ = 1/s2 (white arrows).  Since both projectiles have 

already left their guns, neither ‘feels’ this acceleration, so each 

continues on its path at the original, constant speed.  After 1 s, 

the boxcar has traveled x = (1/s2)(1 s)2/2 = 0.5 to the right, now 

also the positions of the two guns (now with speeds of v1 = 

[1/s2][1 s] = 1/s to the right).  Relative to their starting points in 

the boxcar, the projectiles have now reached the following 

positions: lower at +0.5, upper at –1.5 (having passed through 

the left wall of the car). 
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When stationary, an observer measures the ‘standard’ unit 

of time on the boxcar as that for a projectile to reach a wall, the 

same for each gun-projectile system.  However, now the 

accelerated observer, assuming equal-speed projectiles, would 

conclude a clock calibrated to the upper gun runs faster than 

one calibrated to the lower gun because its projectile reaches a 

wall sooner – and that the upper clock runs faster than 

‘standard’ time while the lower one runs slower.  Direction 

matters. 

 
FIGURE 1.  Case 1 – Boxcar Accelerating in Speed Only, 

not Direction 
 

3. Case 2.  Acceleration due to Change in Direction 

but not Speed 
 

For the next two cases, it is convenient to examine circular 

motion, as that inherently involves directional acceleration and, 

if rotational speed is changed, acceleration in speed as well.  

First, we consider the case of acceleration due only to 

directional change, as shown in Figures 2 and 3.  In Figure 2, a 

carousel (torus) rotates at a constant speed of 2π radians/s, such 

that the tangential speeds vt of the inner and outer rims are 2/s 

and 6/s, respectively, given the radii shown (in arbitrary length 

units).  A grey gun fixed to the inner rim, with its end rotating 

at vt = 2/s, shoots a projectile from Point 0 at radial speed vr = 

(100/π)/s such that it travels at speed v = ([2/s]2 + 

[{100/π}/s]2)0.5 = 31.89/s at angle α = arctan (2/[100/π]) = 

0.06275 radian (3.595o).  It follows Path 0-B to hit the outer 

rim at Point B after traveling a length of {2cos(π-α) + ([2cos(π-

α)]2 + 32)0.5}/2π = 0.6370, using the law of cosines.  The 

elapsed time is (0.6370)/(31.89/s) = 0.01997 s.  Point A, on the 

outer rim, immediately above the gun, rotates to Point A’ = 

(0.01997 s)(2π radians/s) = 0.1255 radian (7.191o) from the 

original Point A.  Point B corresponds to rotation by arccos 

{(π2/6) (10/π2 - 0.63702)} = 0.04185 radian (2.398o). 

Define a new time unit, the ‘zek’ (z), as the time for the 

projectile to hit the outer rim.  When stationary, one z = (3/π - 

1/π)/([100/π]/s) = 0.02 s. When rotating as shown, one z = 

0.01997 s, i.e., ‘time’ appears to have sped up by (0.02 – 

0.01997)/0.02 = 0.001313 (~0.13%).  But really time has not 

varied; only the directional acceleration has caused an apparent 

speeding up by ~0.13%.  If we use the projectile hitting the 

outer rim as a clock and standardize it when the carousel is 

stationary (one z), we conclude that, when accelerated, the 

clock runs faster (1 + 0.001313 = 1.001313 z by the standard 

clock). 

 
FIGURE 2.  Case 2 – Carousel Rotating at Constant 

Speed with Gun Mounted on Inner Rim – Directional 

Acceleration Only 

 
FIGURE 3.  Case 2 – Carousel Rotating at Constant 

Speed with Gun Mounted on Outer Rim – Directional 

Acceleration Only 
 

Figure 3 is the same as Figure 2, but now with the gun 

mounted on the outer rim.  With its end rotating at vt = 6/s, it 

shoots a projectile from Point 0 at radial speed vr = (100/π)/s 

such that it travels at speed v = ([6/s]2 + [{100/π}/s]2)0.5 = 

31.93/s at angle α = arctan (6/[100/π]) = 0.1863 radian (10.67o).  

It follows Path 0-B to hit the inner rim at Point B after traveling 

a length of {6 cos α - ([6 cos α]2 - 32)0.5}/2π = 0.6738, again 

using the law of cosines.  The elapsed time is 

(0.6738)/(31.93/s) = 0.02111 s.  Point A, on the inner rim, 

immediately below the gun, rotates to Point A’ = (0.02111 
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s)(2π radians/s) = 0.1326 radian (7.598o) from original Point A.  

Point B corresponds to rotation by arccos {(π2/6) ([10/π2 -

0.67382)} = 0.4029 radian (23.08o). 

Now define the zek (z) as the time for the projectile to hit 

the inner rim.  When stationary, one z again = 0.02 s. When 

rotating as shown, one z = 0.02111 s, i.e., ‘time’ appears to 

have slowed by (0.02111 – 0.02)/0.2 = 0.05523 (~5.5%), an 

opposite effect.  But really time has not varied; only the 

directional acceleration has caused an apparent slowing by 

~5.5%. If we again use the projectile hitting the inner rim as a 

clock and standardize it when the carousel is stationary (one z), 

we conclude that, when accelerated, the clock runs slower (1 - 

0.05523 = 0.94477 z by the standard clock).  As with Case 1, 

direction matters.  

 

4. Case 3.  Acceleration due to Change in Both 

Speed and Direction 
 

For the final two cases, we continue with our rotating 

carousel, but now with the addition of acceleration in rotational 

speed.  In Figure 4, the carousel rotates as before, with the grey 

gun mounted on the inner rim shooting a projectile as before.  

However, now at an infinitesimal time later (0+), the carousel 

is accelerated at 2π radians/s2, such that the tangential 

accelerations at of the inner and outer rims are 2/s2 and 6/s2, 

respectively (grey arrows). The projectile does NOT 

experience this acceleration and, as before (Figure 2), reaches 

the outer rim in 0.01997 s. Because the carousel now speeds 

up, it will rotate by [4π radians/s + (2π radians/s2)(0.01997 

s)](0.01997 s)/2 = 0.1268 radian (7.262o), such that the 

projectile strikes the outer rim at Point B’, with a perceived 

trajectory 0-B’ now of length [(10 – 6 cos[0.1268])/π2]0.5 = 

0.6404. 

 
FIGURE 4.  Case 3 – Carousel Rotating at Increasing 

Speed with Gun Mounted on Inner Rim – Both Speed and 

Directional Acceleration 

 

When the carousel was not speeding up, the trajectory 0-

B length was 0.6370 and required 0.01997 s (1.001313 z) to 

reach the outer rim. Now the length (trajectory 0-B’) is longer 

(0.6404) and requires 0.6404/([100/π]/s) = 0.02012 s, or 

([1.001313 z][0.02012 s]/[0.01997 s]) = 1.008644 z, to reach 

the outer rim.  That is, more time has elapsed, which means the 

additionally accelerated clock (speed plus direction) now runs 

faster by (1.0086443 – 1.001313)/(1.001313) = 0.007321 

(~0.73%). 

 
FIGURE 5.  Case 3 – Carousel Rotating at Increasing 

Speed with Gun Mounted on Outer Rim – Both Speed and 

Directional Acceleration 

 

Figure 5 is the same as Figure 4, but now with the grey 

gun mounted on the outer rim with its end rotating at vt = 6/s.  

Again, at an infinitesimal time later (0+), the carousel is 

accelerated at 2π radians/s2, such that the tangential 

accelerations at of the inner and outer rims are 2/s2 and 6/s2, 

respectively (grey arrows).  The projectile does NOT 

experience this acceleration and, as in Figure 3, again reaches 

the inner rim in 0.02111 s. Because the carousel now speeds 

up, it will rotate by [4π radians/s + (2π radians/s2)(0.02111 

s)](0.02111 s)/2 = 0.1340 radian (7.677o), such that the 

projectile strikes the inner rim at Point B’, with a perceived 

trajectory 0-B’ now of length [(10 – 6 cos[0.1340])/π2]0.5 = 

0.6409. 

When the carousel was not speeding up, the trajectory 0-

B length was 0.6738 and required 0.02111 s (0.94477 z) to 

reach the inner rim (remember the zek has different durations 

based on direction). Now the length (trajectory 0-B’) is shorter 

(0.6409) and requires 0.6409/([100/π]/s) = 0.02013 s, or 

([0.94477 z][0.02013 s]/[0.02111 s]) = 0.90132 z, to reach the 

inner rim.  That is, less time has elapsed, which means the 

additionally accelerated clock (speed plus direction) now runs 

slower by (0.94477 – 0.90132)/(0.94477) = 0.04599 (~4.6%).  

Again, as with Cases 1 and 2, direction matters. 
 
5. Conclusion 
 

Can accelerating clocks run both faster and slower?  

Sprague believes so and provides his arguments on his website.  

I endeavored to examine this possibility using three cases 

considering both speed and directional changes as part of 

acceleration.  As a result, I come to the same conclusion.  This 

does not imply any belief in the variation of time itself, whether 

under constant or accelerating velocities, but merely a physical 
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effect on an accelerating ‘clock.’  It also does not imply any 

belief that a clock moving at a constant velocity, even near the 

speed of light, will show any variation.  The key is acceleration.  

And direction matters.
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