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Abstract. A special statistical model illustrates how an object moving in one dimension, 
embedded in a tubular structure, can progress anisotropically towards a single direction and 
produce work. The anisotropic motion of the object is fueled by the thermal fluctuations 
originating from an ordinary thermal bath, whose coupling with the object depends in a 
carefully adjusted way on the position of the object itself. A limiting case of this scenario can 
be solved exactly in a very simple way. From a global physical point of view, it is justified to 
say that the object and its environment become ever more correlated as time increases ; 
surprisingly, however, the infinite topology of the system makes it theoretically possible for 
the object to continue its anisotropic progression at an unabated speed during an infinite time.  

 
 
1. Introduction 
 
As Bernard Derrida has recently pointed out [1], physicists have recently become actively preoccupied with 
the study of several features of Szilard’s engine [2–5], which Leó Szilárd first conceived as a theoretical 
concept in 1929, but which has now become a concrete reality [6–12]. In 2014, I focused nearly exclusively 
on the quantum mechanical behavior of a certain modification of Szilard’s model [13], showing how such a 
modification could circumvent the need for any costly “memory erasure”. The resulting picture was arguably 
rather deprived of intuitive features. In the present article, I undertake to discuss a closely related model by 
starting from a purely classical level (§2). The role of its most fundamental physical ingredients can be 
understood in a transparent way (§3). The link of the present model with two earlier schemes I considered 
respectively in 2005 and 2014 is briefly discussed in a last section. 
 
 
 2. A simple model 
 
Let us consider in the present section a simple discrete statistical model, constituted by a grid of tubular 
shape ; the grid is considered to be ideally infinite along the xx’ axis. All the knots of the grid are located at 
the orthogonal intersection of a straight line oriented along the xx’ axis and a circular loop parallel to the yz 
plane. The grid’s knots can be occupied by a unique object named A or by one among a countable number of 
objects B1, B2,…Bi. Each grid’s knot is either empty or occupied by at most one object. We further suppose 
that each loop contains at least one knot left unoccupied by all Bi objects. Let us also suppose that A can move 
along the xx’ direction only, from one grid-intersection to the next, whereas all Bi objects can move within a 
single loop only, from one grid-intersection to the next. The only authorized motion of A and Bi consists in 
jumping from their temporary position on the grid to a nearest empty location at discrete times t4n+1 , t4n+2 , 
t4n+3 , t4n+4 with n 0. This condition of emptiness implies that the motions of A and Bi are correlated. 
Let us now describe in more detail the rules according to which our system, whose initial state is randomly 
chosen (cf. Fig. 1), must evolve. 
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 Figure 1. Initial configuration of the system at time t0=0. The configuration of Bi objects has 
been randomly chosen. Object A has been represented by a square (). Objects Bi correspond 
to empty circles (O). For the sake of graphical convenience, the three dimensional tubular 
structure of the grid has been projected on a 2-dimensional plane ; it must therefore be 
understood that each pair of “vertically” aligned (along y) upper and lower knots are directly 
connected ; as a consequence, the upper B object whose position in Fig. 1 can be indexed by 
(x = 1 ; y = 2) is represented in Fig. 2 at position (x = 1 ; y = -3).   

– At time t4n+1, all objects Bi, except those belonging to the same column as A, are simultaneously translated 
in the same direction within their loop by one grid unit-length. In the representation used in Fig. 2, this 
corresponds to a one-step move towards y. All objects belonging to the same loop as A remain immobile (cf. 
Fig. 2) : 

 Figure 2. Configuration of the system at time t=t1. All Bi objects have been shifted by one 
grid unit, except for the only one located along the same vertical as A. 

 
– At time t4n+2, object A is allowed to move by one unit length, either towards the left or the right, provided 
that the corresponding location(s) is(are) empty. Supposing for instance that only the left (resp. right) location 
is available for A’s move, we expect that the two possible final locations of A will be occupied with pre-
defined probabilities pleft and pmiddle (respectively : pmiddle and pright), with pleft+pmiddle=1 (respectively : 
pmiddle+pright=1). One possible resulting configuration is represented in Fig. 3 : 

 Figure 3. Configuration of the system at time t=t2. Object A has been shifted towards the left 
by one lattice unit. According to our rules, A could have either stayed in place with probability 
pmiddle, or shifted towards the left with probability pleft. Only the second alternative has been 
represented here.  
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– At time t4n+3, all objects Bi located at A’s left side are uniformly translated by one unit of length inside their 
own loop, the direction of the shift being the same as at time t4n+1 (which corresponds to a move towards y in 
Fig. 4), whereas all other Bi (located either within A’s loop or at A’s right side) remain immobile : 

 Figure 4. Configuration of the system at time t=t3. All objects Bi located at A’s left side have 
been shifted upwards by one lattice unit. 
 

– At time t4n+4, A is allowed to move according to exactly the same rules as at time t4n+2 (cf. Fig. 5) : 

 
Figure 5. Configuration of the system at time t=t4. Object A has been shifted towards x by 
one lattice unit. According to our rules, A could either have moved towards the left, remained 
at the same place or moved towards the right by one lattice unit. Only the third possibility has 
been represented here. 
 

In order to allow A to jump from one site to another, the Hamiltonian of our model needs to contain 
appropriate nearest-neighbor transfer terms, whose magnitude “t” can be supposed to be uniform over the 
whole grid. We shall suppose that the magnitude of “t” is negligible in comparison with the quantity kBT 
determined by the uniform temperature of our entire system, which explains why, for the sake of 
simplification, “t” will be neglected within all the forthcoming equations of this article. 

 
In most cases, the resulting long-term motion of A can be expected to exhibit some rather complex behavior, 
with chaotic characteristics. However, at least one limiting case can be analyzed easily without any computer 
simulation : it corresponds to the situation wherein the average density (B) of Bi objects is identical for each 
loop, and where it becomes so close to 1 that nearly all grid locations are occupied by one Bi (even as we 
continue to require that each loop contains at least one knot unoccupied by any Bi item).  
During the interval t4n+1t t4n+4, two rotations of Bi rings have occurred on A’s left side (respectively at t= 
t4n+1 and t= t4n+3). Therefore, the probability that A may have moved towards the left during this interval 
corresponds, in first order of (1-(B)) (i.e., neglecting the probability that A may have drifted twice during this 
time interval), to : 


ܲA's drift towards the left ≈  2(1-ρ(B))pleft   (1) 

 
During the same time interval t4n+1t t4n+4, a single rotation of Bi rings has occurred on A’s right side (at t= 
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t4n+1). Therefore, the probability that A may have moved towards the right during the same interval 
corresponds, in first order of (1-(B)), to : 
 


ܲA's drift towards the right  ≈  (1-ρ(B))pright   (2) 

 
 
Eqs. (1) and (2) immediately lead to the conclusion that A’s anisotropic average displacement towards the 
left during the interval t4n+1t t4n+4 is, in first order, equal to : 


≈  (A)ݐ݂݅ݎܦ  (1-ρ(B))(2pleft - pright)   (3) 

 
Under the most common physical circumstances, supposing that A’s motion can be described for instance in 
terms of Brownian motion, we can expect that pleft=pright=1/2. A more useful scenario corresponds to the case when A’s displacement towards the left costs a non-zero 
amount of work W per grid unit-length. For the sake of simplicity, let us continue to suppose that (B) is so 
close to 1 that A is practically never surrounded by two empty locations at the same time, and that A’s drift 
is influenced by Brownian collisions with a large thermalizer whose uniform and constant temperature is T. 
We obtain : 
 

≈ left݌  ݁-δW kBT⁄
(1 + ݁-δW kBT⁄ )൘     

 (4a) 

≈ right݌  ݁+δW kBT⁄
൫1 + ݁+δW kBT⁄ ൯൘     (4b) 

 
Eq. (3) thus becomes : 
 

(A)ݐ݂݅ݎܦ ≈  (1-ρ(B)) ቈ 2݁ -δW kBT⁄
(1 + ݁ -δW kBT⁄ )൘  - ݁+δW kBT⁄

൫1 + ݁+δW kBT⁄ ൯ ൘ ቉  (5) 
 
Provided that W remains small enough, A continues to drift, on average, towards the left. The amount of 
thermal energy (random collisions) converted to “useful” energy (derived from A’s anisotropic motion) can 
increase linearly with time. If the grid possesses infinite dimensions, energy conversion can thus reach 
arbitrarily high levels. 
 
 
 3. Salient features of the model 
 
Imposing that A and Bi should move in discrete steps upon a grid, jumping from one intersection to a 
neighboring one, provides us with an idealized representation which, admittedly, does not look very physical. 
A fully realistic picture can be easily constructed, however, without altering its statistical properties, for 
instance by supposing that the tubular shape within which the grid is enclosed possesses a non-zero thickness, 
so that our tube can be divided into boxes of identical dimensions (Fig. 6) among which A may evolve in the 
same way as a single molecule would do. The rules enunciated above (§2) for the motion of A and Bi can be 
replaced respectively by rules for A’s motion and by rules for the motion of the boxes themselves in the 
following way : at times t4n+1 and t4n+3, suitable rings of boxes are shifted by one unit-length (towards y in 
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the planar representation of Figs. 1–6) ; at times t4n+2 and t4n+4, the separations between the box containing A 
and its two nearest neighbor boxes (left and right) are slightly opened ; shortly before t4n+3 and t4n+5, these 
separations are fully reinstated. 
 

 Figure 6. Insertion of our system within an array of boxes, whose separating walls can 
supposedly be controlled at will by an operator (or by object A itself, depending on what kind 
of specific model one wishes to consider). The configuration of A and Bi objects is identical 
to the initial configuration represented in Fig. 1.  

 
Within a classical picture, shifting entire rings of boxes at t4n+1 and t4n+3 does not cost any energy ; opening 
or closing dividing walls at t4n+2 and t4n+4 does not cost any energy either. Within a quantum picture, the 
situation becomes slightly different : since boxes simply move from one position to a neighboring position 
of identical potential energy, shifting boxes at t4n+1 and t4n+3 can remain energetically costless provided that 
a clock may guarantee us that the duration needed for shifting boxes remains under control. We shall discuss 
in more detail the issue raised by the need of a clock in paragraph (iii) below. Within a quantum picture, 
opening or closing dividing walls at t4n+2 and t4n+4, as well as shortly before t4n+3 and t4n+5, is more delicate, 
since such an opening/closing operation can be expected to involve some energy expenditure. However, this 
expenditure becomes negligible if we ensure that the opening made within the walls is sufficiently small. In 
that case, the energy cost of opening or closing dividing walls can become marginally small in comparison 
with kBT. 
Yet another complication arises, at least in principle, within a quantum picture : object A may partially occupy 
different boxes simultaneously, with a different occupation probability for each box. Fortunately, this kind 
of delocalization effect cannot affect A’s energy in any significant way if the opening made within the walls 
is sufficiently small ; what is more, sooner or later, some decoherence process can be expected to localize A 
somewhere in the lattice, which will lead us to recover a classical picture, even if we do not really need to 
care about such a simplification. 
 
Under more general terms, let me further emphasize that no part of the present article implies the use of any 
unconventional physical concept ; even less the use of any mathematically sophisticated tool. Standard 
thermodynamic notions, which can be found in any textbook, fully suffice to describe what happens in my 
model. In order to keep my article as short as possible, and to avoid the fastidious discussion of concrete 
details that would not raise any fundamental issue, I shall merely focus on four key features of the above 
model : 
 
  
(i)  My model supposes that a suitable machine can be used to displace all the boxes containing Bi objects 

(or, alternatively, to displace Bi objects themselves, if one comes back to the first modality considered 
above) according to some predetermined fashion, without necessarily increasing its own entropy. This 
feature constitutes an intrinsic part of Szilard’s own original idea [2] concerning what has later become 
commonly designed as “Szilard’s engine”. One should clearly recognize the fact that the very existence 
of such a mobile engine implies that our global system cannot be considered as perfectly thermal, in 
other words, that it has not reached a state of optimal relaxation. However, this does not forbid us to 
consider that the temperature of our large thermalizer is well defined, and that equations [4] and [5] are 
correct. Moreover, the fact that our machine remains, stricto sensu, out of perfect thermal equilibrium 
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bears no influence on the functioning described in §2, since nothing forbids us to consider a machine 
whose internal relaxation towards greater thermodynamic equilibrium can require a time duration as 
large as we wish, i.e. much larger than the time during which one intends to make use of this machine. 
The time needed for the machine to become out of order can be expected to depend on the stability of 
the internal connections of its constituents as well as on the intensity of its thermal coupling with its 
environment. As far as the stability of its internal connections is concerned, nothing prevents us from 
considering a priori that it can be practically infinite. For instance, one may suppose that some parts of 
the machine consist of solid glass, which constitutes a good example of an out-of-equilibrium, yet very 
stable material. As far as the coupling of our machine with any kind of destructive environment is 
concerned, one should note that the operations of the machine described above do not require the 
existence of any environment of this kind. Neither Bi objects nor the boxes surrounding them enjoy any 
degree of freedom, except in connection with the machine that displaces them from one position to 
another. In our scheme, only A directly enters in contact with a thermalizer (at times t4n+2 and t4n+4). Since no material object can be expected to be fully stable in this world, one can admittedly assume that 
our machine will finally become out of order one day in the future. However, if such a machine is both 
sufficiently stable and sufficiently isolated from any kind of destructive environment – which raises no 
conceptual difficulty – it can a priori enable us to store more energy during its lifetime than the quantity 
needed to build another identical machine. 

 
(ii)  It appears obvious that the most original step of the procedure described in §2 above occurs at t=t4n+3 : only the Bi objects located on the left side of A are supposed to be manipulated at t=t4n+3. Such a 

procedure immediately raises the following question : doesn’t one need to be informed of A’s location 
in order to displace those Bi which are located on the left side of A only ? If this knowledge were really 
necessary, handling the corresponding information erasure would become thermodynamically so costly 
that the efficiency of our energy-conversion scheme would be entirely ruined (even if the information 
needed at t=t4n+3 consisted of a few bits only). It is therefore absolutely crucial for us to show that any 
“knowledge” of A’s location by an external machine is not necessary, independently of A’s precise 
characteristics. Indeed : 
– If A’s size is macroscopic enough, A can contain an internal machine whose task consists in displacing 
surrounding boxes. Such a machine will not need to update any knowledge about its location in order 
to distinguish between its left and its right1. Therefore, no information-erasure difficulty can exist in 
this case. 
– If A is too small to contain an internal machine (for instance, if A consists of a single molecule or a 
single atom, as in Szilard’s 1929 article), shifting Bi objects or their surrounding boxes must be 
performed by an external procedure ; this can be accomplished at t=t4n+3 with a Hamiltonian of the 
following form : 

 
ܪ = W. ෍|i ring, located at the left of j, shifted by one box unit lengthۧ.

i,j
  |i ring located at the left of jۦ

 |Aj ۧ. |Ajۦ + ܿ. ܿ.  (6) 
 

In the above Hamiltonian, rings of boxes are indexed by i , and A’s locations are indexed by j ; one 
naturally supposes that all the i rings are systematically shifted in the same fashion (either always 
clockwise, or always anticlockwise). W simply serves as a numerical factor. This Hamiltonian is 
strongly reminiscent of another Hamiltonian proposed in 2014 [13], enabling an operator to monitor a 
modified version of Szilard’s engine in a perfectly mechanical way, without needing to erase any 
information in a costly way at all. 
 

(iii)  Another feature of the model presented in §2 should at least be mentioned : the need for a clock to 
                                                 
1  This situation is strongly reminiscent of the one I described in 2005 [14,15], where a compass (playing a role 

analogous to a macroscopic version of the object named A in the present article) was supposed to be equipped with 
all the machinery required to modify its own moment of inertia, thereby enabling it to explore different rotation states. 
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monitor the series of successive instants t4n+1, t4n+2, t4n+3, t4n+4 etc, as well as to ensure that the machine 
serving to displace Bi objects (or their boxes) displaces them efficiently during a well calculated amount 
of time. Information about current-time, like any other kind of information, should a priori be 
considered thermodynamically costly to erase. As it happens, however, in the present case, we do not 
even need to examine whether a clever procedure may help us to avoid the cost of erasing information 
about time. Let us rather simply suppose that we find ourselves experimentally in the worst situation ; 
in other words, let us suppose that the implementation of our model requires us to handle information 
concerning time at a cost reaching as much as several kBT for each time interval. Instead of studying a 
single object A, we might then choose to deal simultaneously with several Ai objects located within 
different similar experimental set-ups. Only one clock would be necessary for dealing simultaneously 
with all those set-ups. The work produced by the drift of all Ai should increase in a roughly linear fashion 
with the number of Ai objects. A sufficiently high number of Ai objects would therefore enable us to 
store more energy that needed for monitoring a single clock. 

 
(iv)  A last feature of the model presented above may deserve a short clarification : one may legitimately ask 

whether the condition imposed on the density of Bi objects (which has been assumed to be quite close 
to 1) is a crucial feature of our model. The answer to this question is negative. The only advantage of 
our assumption concerning the density of Bi objects is that it leads to an equation for A’s drift which 
can be calculated exactly (Eq. 5) in a straightforward manner. From an experimentalist point of view, 
however, the requirement that the density of Bi objects should be close to 1 can be expected to appear 
quite inconvenient. A much more easily implementable model could be developed with small “rings” 
(still perpendicular to the xx’ axis), each of them containing only two knots. For the sake of brevity, we 
shall not describe such an option any further. 

 
  
 4. Comparison with two other previously proposed models 
 
The model presented above (§2) presents some very strong links with a modified version of Szilard’s single-
particle engine which I formulated in 2014 [13]. Fundamentally speaking, it appears even justified to consider 
it as kind of two-dimensional (more precisely, “tubular”) “illustration” of my 2014 model. The present 
version nevertheless presents several original features : 
 
(i) Although, from the point of view of quantum physics, the simplicity of my 2014 model could hardly be 

surpassed, my new model provides the distinctive advantage to appear simpler and self-contained from 
the point of view of classical physics (even simply “statistics”), which may possibly prove helpful one 
day for the development of concrete experimental set-ups. What is more, the validity of my new model 
is quite independent from any broader perspective and can be evaluated, primarily, for its own sake. 

 
(ii) The first thermodynamically puzzling model I published dates from 2005 [14] ; a later brief discussion 

of this model briefly can be found in [15]2. In 2014, I conjectured that “it is rather likely that a hidden 
                                                 
2  I wish to mention that my 2010 article contains a technical error – fortunately deprived of any significant 

thermodynamical consequence – in its part A.4, where I have stated that “the condition that initial eigenstate 
populations should decrease as a function of energy eigenvalues is never exactly fulfilled at the macroscopic level, 
even when macroscopic equilibrium is attained. This is due to the fact that whenever the spatial length required to 
distinguish between two different eigenstates exceeds the thermal coherence length of the system, thermalization of 
such different eigenstates cannot impose their respective occupations to be energetically ordered”. I wish to apologize 
for this erroneous statement, which I wrote awkwardly in an attempt to discuss the consequences of A.E. 
Allahverdyan and Th. M. Nieuwenhuizen’s 2002 challenging study [18], which proves the validity of the second law 
of thermodynamics under several conditions. Their demonstration demands as a prerequisite, in particular, that the 
initial eigenstate populations of a canonical ensemble should decrease monotonously as a function of energy 
eigenvalues. Whenever decoherence effects occur in a system, eigenstate components are likely to be “measured” 
(quantum mechanically speaking) by the system’s environment at any time, which shows that A.E. Allahverdyan and 
Th. M. Nieuwenhuizen’s constraint cannot be expected to be universally implementable in practice. However, the 
precise characteristics of the initial eigenstate populations of a given system have nothing to do with the main reason 
explaining why A. E. Allahverdyan and Th. M. Nieuwenhuizen’s proof does not apply to any of the three models I 
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continuity may be found between both of my [2005 and 2014] models”. My present model goes a long 
way into showing how this conjecture must indeed have been correct. The crucial step t4n+3, described 
in §2 above, serves to increase the degrees of freedom available on A’s left side only ; it can be paralleled 
with the procedure serving to temporally decrease the moment of inertia of the “compass” of my 2005 
model, thereby increasing the number of its thermally accessible rotational degrees of freedom ; it can 
also be closely paralleled with the functioning of the Hamiltonian H described in my 2014 model. 
Eventually, although the technical details of energy storage shared by both my 2014 and my present 
model do not seem to reproduce closely those of my 2005 model, all of these three models possess a 
most essential ingredient : an isothermal procedure analogous to the one followed at step t4n+3 above 
(§2), according to which some fluctuating process may be adjusted as a function of the variable location 
of a given object (described respectively by the “compass” of my 2005 model, the “single molecule” of 
my 2014 model, and “object A” in my present model). 
 

(iii) Already in 2005, I wondered why I needed to mimic a quasi-cyclic evolution of events in order to 
produce work in a sustainable way, even as my model did not require the use of two different sources 
of heat characterized by different temperatures, as standard Carnot cycles do. The quasi-cyclic features 
of my 2014 model are also quite prominent. Why couldn’t my earlier models operate in a more 
“continuous”, less “cyclic” fashion ? In fact, it now appears that the quasi-cyclic functioning of my 
former models was essentially fortuitous. My present model provides a rather convenient way to 
illustrate the fact that the removal of the quasi-cyclic features of my previous models is indeed possible. 

 
 
 5. Conclusion 
 
The idea according to which a finite being endowed with extremely sharp faculties might serve to illustrate 
the statistical nature of the second principle of thermodynamics was originally enunciated by Maxwell in his 
1871 treatise entitled Theory of Heat3. Three years later, such a hypothetical being was nicknamed by William 
Thomson an “intelligent demon”. A humoristic mythology has continued to develop about this term (even in 
cartoons [17]) ever since. Perhaps such folklore would not have enjoyed the same degree of popularity if 
Thomson had used the more antiquated spelling dæmon, which would have suggested more clearly that 
                                                 

have proposed in 2005, 2014 and at present. A. E. Allahverdyan and Th. M. Nieuwenhuizen’s proof is based on the 
calculation of the energy variation of a system W=tr{H0[(t)-(0)]}, which, as they demonstrate, verifies W0. In 
all my models, adopting the most direct way to define a quantity similar to Allahverdyan and Nieuwenhuizen’s W 
leads to the perfectly satisfying equality W=0 ! In other words, Allahverdyan and Nieuwenhuizen’s mathematical 
theorem is not violated in the least by any of my models. But this does not imply that these models are unable to 
transform heat into work : in order to provide a universal demonstration of the second law, it does not suffice to 
compute the energy variation of what Allahverdyan and Nieuwenhuizen define as their “system”. For instance, my 
2005 model consists of one “compass” C with two different isothermal baths (which I may note here Th1 and Th2). As it happens, Th1 thermalizes the ensemble {C + Th2}, whereas Th2 thermalizes the ensemble {C + Th1}. As I have 
shown in 2005, the entire process results in some energy loss in Th2 (whereas the average energy variation of C 
remains zero in the end, as Allahverdyan and Nieuwenhuizen’s demonstration require). In my 2014 and my present 
model, the average energy of what Allahverdyan and Nieuwenhuizen’s article would induce us to define as a “system” 
also remains constant. Energy conversion is therefore not to be searched for within such a “system”, but within its 
thermalizer(s), whose history does not develop in a cyclic way at all. The non-cyclical evolution of the thermalizer 
forbids one to apply Allahverdyan and Nieuwenhuizen’s theorem to it in a meaningful way. 

3  Maxwell later stated more clearly that the 2nd Law of Thermodynamics is based on a kind of “statistical certainty” in 
an undated letter to Tait (Cf. Ref. [16]). In this letter, Maxwell wrote : 
Concerning Demons. 
1. Who gave them this name ? Thomson. 
2. What were they by nature ? Very small BUT lively beings incapable of doing work but able to open and shut valves 
which move without friction or inertia. 
3. What was their chief end? To show that the 2nd Law of Thermodynamics has only a statistical certainty. 
4. Is the production of an inequality of temperature their only occupation? No, for less intelligent demons can produce 
a difference in pressure as well as temperature by merely allowing all particles going in one direction while stopping 
all those going the other way. This reduces the demon to a valve. As such value him. Call him no more a demon but 
a valve like that of the hydraulic ram, suppose. 
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nothing malignant was implied about such a hypothetical being. In any case, Thomson’s reaction to 
Maxwell’s treatise can be a posteriori credited with the merit of having encouraged more physicists to ponder 
on the potentially interesting connections existing between entropy and information (even “intelligence”). 
The title of Szilard’s 1929 article On the decrease of entropy in a system by the intervention of intelligent 
beings appears quite emblematic in this respect. Along the years, scientists like Claude Shannon, Rolf 
Landauer, Charles H. Bennett and many others have helped to clarify a large number of related issues. 
Ultimately, their answer to the question of whether any concrete “intelligent being” could decrease the 
entropy of a system in any useful way has been clearly negative. My own answer to the same question is just 
as negative as theirs. However, as it happens, what an “intelligent being” cannot do, a “perfectly ignorant 
being” can achieve. Such a mindless being can perpetuate its own oriented course of motion without ever 
needing to bother about erasing the information which it has never even started to record in the first place. 
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