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Abstract 

 

A special statistical model illustrates how an object can move anisotropically in two dimensions by taking 

advantage of some controlled modifications of its environment, under the condition that the rate of such 

modifications depends on the position of the object under study. 

 

 

 

Introduction 

 

In 2014, I wrote an article [1] that focused nearly exclusively on the quantum mechanical 

behavior of a certain modification of Szilard’s 1929 model[2], showing how such a 

modification could circumvent the need for any costly “memory erasure”. The resulting 

picture was arguably rather deprived of intuitive features. In the present article, I 

undertake to discuss a closely related model by starting at a purely classical level (section 

A). The role of its most fundamental physical ingredients can be understood in a 

transparent way (section B). The link of the present model with two earlier models I 

considered respectively in 2005 and 2014 is discussed in section C. 
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A. A simple model 

 

Let us consider in the present section a simple discrete statistical model, constituted by a 

two-dimensional grid upon which a single object A and a countable number of different objects 

B1, B2,…Bn…can move from one grid-intersection to the next. Let us further suppose that objet A 

can only move along the xx’ direction, whereas all objects Bi can only move along the yy’ 

direction. The only authorized motion of all A and Bi consists in jumping from their current 

position on the grid to a nearest empty location at discrete times ti. This condition of emptiness 

ensures that the motions of A and of each Bi are correlated. 

Let us now describe in more detail the rules according to which our system, whose initial state is 

randomly chosen (cf. Fig. 1), must evolve. These rules apply for a discrete series of discrete times 

ti , with i 0 :  

-  at time t4i+1, all objects Bi, except those belonging to the same column as A, are 

simultaneously translated by one grid unit-length towards y. All objects belonging to 

the same column as A remain immobile (cf. Fig. 2). 

-  at time t4i+2, object A is allowed to move by one unit length, either towards the left or 

the right, provided the corresponding location(s) is(are) empty. Supposing for 

instance that only the left (resp. right) location is available for A’s move, we expect 

that the two possible final locations of A will be occupied with pre-defined 

probabilities pleft and pmiddle (respectively pmiddle and pright), with pleft+pmiddle=1 (resp. : 

pmiddle+pright=1). One possible resulting configuration is represented in Fig. 3. 

-  at time t4i+3, all objects Bi located on the left side of A are uniformly translated by one 

unit of length towards y (cf. Fig. 4), whereas all other Bi remain immobile. 

-  at time t4i+4, A is allowed to move according to exactly the same rules as at time t4i+2. 

(cf. Fig. 5) 
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In most cases, the resulting long-term motion of A can be expected to exhibit some rather 

complex behavior, including some chaotic characteristics. However, at least one limiting case can 

be analyzed easily without any computer simulation : it corresponds to the situation wherein the 

average density (B) of Bi objects becomes so close to 1 that nearly all grid locations are occupied 

by one Bi. In that case, the probability that A may be simultaneously surrounded by two empty 

locations along the xx’ axis becomes negligible, so that its anisotropic average displacement 

(towards the left) during the interval t4i+1t t4i+4 simply becomes approximately equal to : 



Drift(A) (1-(B) )(2pleft - pright)      (1) 

 

Under the most common physical circumstances, supposing that A’s motion can be described 

for instance in terms of Brownian motion, pleft=pright=1/2. 

A more useful scenario corresponds to the case when A’s displacement towards the left costs 

an amount of work W per lattice unit-length. For the sake of simplicity, let us continue to 

suppose that (B) is so close to 1 that A is practically never surrounded by two empty locations at 

the same time, and that A’s drift is influenced by Brownian collisions with a thermalizer whose 

uniform and constant temperature is T. We obtain : 

 

pleft  e-W/k
B
T/(1+e-W/k

B
T)      (2a) 

pright  e+W/k
B
T/(1+e+W/k

B
T)     (2b) 

 

Eq. (1) thus becomes : 

 

Drift(A) (1-(B) )( 2e-W/k
B
T/(1+e-W/k

B
T) - e+W/k

B
T/(1+e+W/k

B
T) )  (3) 

 

Provided W remains small enough, A continues to drift, on average, towards the left. The 
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amount of thermal energy (random collisions) converted to “useful” energy (derived from A’s 

anisotropic motion) increases linearly with time. If the grid possesses infinite dimensions, energy 

conversion can reach arbitrarily high levels. 

 

 

 

B. Salient features of the model 

 

Imposing that A and Bi should move in discrete steps upon a grid, jumping from one 

intersection to a neighboring one, provides us with an idealized representation which, admittedly, 

does not look very physical. A fully realistic picture can be easily constructed, however, without 

altering its statistical properties, for instance by dividing the xy plane into square boxes of 

identical dimensions (Fig. 6) within which A and Bi may evolve in the same way as a single 

molecules would do. The rules enunciated above (§A) for the motion of A and Bi can be 

physically implemented in the following way : at times t4i+1 and t4i+3, suitable columns of boxes 

are shifted by one unit-length towards y ; at times t4i+2 and t4i+4, the separations between the box 

containing A and its two nearest neighbor boxes (left and right) are removed ; shortly before t4i+3 

and t4i+5, these separations are reinstated. 

  

Within a classical picture, shifting entire columns of boxes boxes at t4i+1 and t4i+3 does not cost 

any energy ; suppressing or reinstating dividing walls at t4i+2 and t4i+4 does not cost any energy 

either. Within a quantum picture, the situation becomes slightly different : whereas shifting boxes 

at t4i+1 and t4i+3 remains energetically costless, suppressing or reinstating dividing walls at t4i+2 

and t4i+4 involves some energy. Fortunately, this difference between the classical and quantum 

picture disappears when one works with a sufficiently high temperature : in that case, the energy 

cost of removing or reinstating dividing walls becomes marginally small in comparison with kBT. 

Yet another complication arises, at least in principle, within a quantum picture : object A may 
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partially occupy different boxes simultaneously, with a different occupation probability for each 

box. Fortunately, this kind of delocalization effect does not raise any energy issue ; what is more, 

sooner or later, some decoherence process can be expected to localize A somewhere in the lattice, 

which leads us to recover a classical picture, even if we do not really need such a simplification to 

occur. 

 

Under more general terms, let me further emphasize that no part of the present article implies 

the use of any unconventional physical concept ; even less the use of any new mathematical 

equation. Standard thermodynamic notions, which can be found explained in any textbook, fully 

suffice to describe what happens in my model. In order to keep my article as short as possible, 

and to avoid the fastidious discussion of many concrete details that would not be of any 

fundamental importance, let me focus on two key features of the above model only, starting with 

the most crucial one : 

(i) First of all, it appears obvious that the most original step of the procedure described in §A 

above occurs at t=t4i+3 : only the Bi located on the left side of A are supposed to be 

manipulated at t=t4i+3. Such a procedure immediately raises the following question : 

doesn’t one need to be informed of A’s location in order to displace those Bi located on 

the left side of A only ? If this really had to be the case, handling the corresponding 

information would become thermodynamically so costly that our entire 

energy-conversion scheme would be ruined (even if the information needed at t=t4i+3 

consisted of a few bits only). It is therefore absolutely crucial for us to show that any 

“knowledge” of A’s location by an external machine is not necessary, which can be done 

independently of A’s precise characteristics : 

- If A is macroscopic object (in that case, our discussion only corresponds to a “thought 

experiment” of weak experimental relevance), it can be equipped with a machine whose 

task consists in displacing surrounding boxes ; obviously, this machine does not need to 
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know where it is located in order to distinguish between its left and its right1, so that no 

information-cost problem exists in this case. 

- If A is a microscopic object (such as a single molecule, as in Szilard’s 1929 article), 

shifting surrounding boxes must be controlled by an external operator ; this can be 

accomplished at t=t4i+3 with a Hamiltonian of the following form : 

 

H = W. i,j Ii column located at the left of j shifted towards y>.< i column located at the left of jI  

     IAj>.<AjI + c.c.       (4)  

 

In the above Hamiltonian, columns of boxes are indexed by i , and A’s locations are 

indexed by j ; W simply serves as a numerical factor. This Hamiltonian is strongly 

reminiscent of another Hamiltonian proposed in 2014[1], enabling an operator to monitor a 

modified version of Szilard’s engine in a perfectly mechanical way, without having the 

need to erase any information in a costly way at all. Using a slightly modified version of 

Eq. 4 (with a Hamiltonian acting on particles Bi instead of acting on the boxes containing 

them) could also enable us to avoid the awkward task of having to shift entire columns of 

boxes (whose idealized size is supposed to be infinite in our model described in §A 

above), still without any extra thermodynamic cost ; in that case, one should be careful to 

avoid the possibility that A’s trajectory towards the left may be obstructed forever by the 

same Bi objects ; this could be avoided, for instance, by adding a small source of thermal 

noise allowing Bi’s position to fluctuate, or otherwise a small source of thermal 

fluctuation allowing Bi objects to be created/destroyed at a certain rate. In any case, let us 

stress that this kind of technical issue does not affect the most fundamental principles 

upon which our model is based. 

                                                   
1  This situation is strongly reminiscent of the one I described in 2005[3,4], where a compass (playing a role analogous 

to a macroscopic version of the object named A in the present article) was supposed to be equipped with all the 
machinery required to modify its own moment of inertia, thereby enabling it to explore different rotation states. 
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(ii)  Another feature of the model presented in §A should also be at least mentioned : the need 

for a clock ordering times t4i+1, t4i+2, t4i+3, t4i+4 etc. Information about current-time, like 

any other kind of information, should a priori be considered thermodynamically costly to 

erase. As it happens, however, in the present case, we do not even need to examine 

whether a clever procedure may help us to avoid the cost of erasing information about 

time. Let us rather simply suppose that we find ourselves experimentally in the worst 

situation ; in other words, let us suppose that the implementation of our model requires us 

to handle information concerning time at a cost reaching as much as a few kBT for each 

time interval. Instead of studying a single object A, we might then choose to deal 

simultaneously with several Ai objects. Only one clock would be necessary for dealing 

simultaneously with all those Ai objects. The kinetic energy derived from the drift of all 

Ai should increase in a roughly linear fashion with the number of Ai objects, thereby 

safely exceeding the energy needed for monitoring a single clock. 

 

 

 

C. Comparison with two other previously proposed models 

 

The model presented above (§A) presents some very strong links with the modified version of 

Szilard’s single-particle engine
[1]

 which I discussed in 2014. Fundamentally speaking, it appears 

even justified to consider it as kind of 2-dimensional “illustration” of my 2014 model. This 

2-dimensional version represents more than a mere redundancy, however, as the three following 

arguments can show : 

(i) Although, from the point of view of quantum physics, the simplicity of my 2014 model 

could hardly be surpassed, my new model appears simpler, more intuitive and even 

self-contained from the point of view of classical physics (even simply “statistics”), 
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which may possibly prove helpful one day for the development of concrete experimental 

set-ups. 

(ii) In 2014, I conjectured that “it is rather likely that a hidden continuity may be found 

between both of my [2005 and 2014] models”. My present model goes a long way into 

showing how this conjecture must indeed have been correct. The crucial step t4i+3, 

described in §A above, serves to increase the degrees of freedom available on object A’s 

left side only ; it can be paralleled with the procedure serving to temporally decrease the 

moment of inertia of the “compass” of my 2005 model, thereby increasing the number of 

its thermally accessible rotational degrees of freedom ; it can also be closely paralleled 

with the functioning of the Hamiltonian H described in my 2014 model. Eventually, 

although the technical details of kinetic energy acquisition, shared by both my 2014 and 

my present model, do not seem to reproduce closely those of my 2005 model, all of these 

three models possess a most essential ingredient : an isothermal procedure analogous to 

the one followed at step t4i+3 above (§A), according to which some fluctuating process 

(describable in terms of spin precession, single molecule dynamics or distribution of 

Szilard boxes) may be adjusted as a function of the variable location of a given object 

(described respectively by the “compass” of my 2005 model, the “single molecule” of my 

2014 model, and by “object A” of my present model) 

(iii) Already in 2005, I wondered why I needed to mimic a quasi “cyclic” evolution of events 

in order to break the second law, even as my model did not require the use of two 

different sources of heat characterized by different temperatures, as standard Carnot 

cycles do. The “quasi-cyclic” features of my 2014 model are also quite prominent. Why 

couldn’t my earlier models operate in a more “continuous”, less “cyclic” fashion ? In fact, 

it now clearly appears that the quasi “cyclic” appearance of my former models was purely 

accidental. My present model provides a rather convenient way to illustrate the fact that 

the removal of the quasi “cyclic” features of my previous models is indeed possible. 
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Conclusion 

 

The idea that a finite being endowed with extremely sharp faculties might serve to illustrate 

the statistical nature of the second principle of thermodynamics was originally enunciated by 

Maxwell in his 1871 treatise, Theory of Heat2. Three years later, such a hypothetical being was 

nicknamed by William Thomson an “intelligent demon”. A humoristic mythology has continued 

to develop around this term in the literature (even in cartoons
[6]

) ever since. Perhaps such folklore 

would not have enjoyed the same degree of popularity if Thomson had used the more antiquated 

spelling dæmon. In any case, Thomson’s reaction to Maxwell’s treatise can be a posteriori 

credited with the merit of having encouraged more physicists to ponder on the potentially 

interesting connections existing between entropy and information (even “intelligence”). The title 

of Szilard’s 1929 article On the decrease of entropy in a system by the intervention of intelligent 

beings appears quite emblematic in this respect. Along the years, scientists like Claude Shannon, 

Rolf Landauer, Charles H. Bennett and many others have helped to clarify a large number of 

related issues. Ultimately, their answer to the question of whether any concrete “intelligent being” 

could decrease the entropy of a system in any useful way has become more and more clearly 

negative. My own answer to the same question is just as negative as theirs. However, as it 

happens, what an “intelligent being” cannot do, a “perfectly stupid being” can achieve ! Such a 

“mindless” being can perpetuate its own oriented course of motion without ever needing to bother 

about erasing the information which it has never even started to record in the first place. 

 

                                                   
2  The statement according to which the 2nd Law of Thermodynamics is based on a kind of “statistical certainty” has 

been precisely formulated by Maxwell in an undated letter to Tait (Cf. Ref. [5]). In this letter, Maxwell indicates : 
Concerning Demons. 
1. Who gave them this name ? Thomson. 
2. What were they by nature ? Very small BUT lively beings incapable of doing work but able to open and shut 

valves which move without friction or inertia. 
3. What was their chief end? To show that the 2nd Law of Thermodynamics has only a statistical certainty. 
4. Is the production of an inequality of temperature their only occupation? No, for less intelligent demons can 

produce a difference in pressure as well as temperature by merely allowing all particles going in one direction 
while stopping all those going the other way. This reduces the demon to a valve. As such value him. Call him no 
more a demon but a valve like that of the hydraulic ram, suppose. 
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Figures 
 

 
Figure 1 
Initial configuration of the system at time t0=0. This configuration has been randomly chosen. Object A has 
been represented by a square (). Objects Bi correspond to empty circles (O).  
 

 
Figure 2 
Configuration of the system at time t=t1. All objects Bi have been shifted upwards, except for the only one 
located along the same vertical as A. 
 

 
Figure 3 
Configuration of the system at time t=t2. Object A has been shifted towards the left by one lattice unit. 
According to our rules, A could have either stayed in place with probability pmiddle, or shifted towards the 
left with probability pleft. Only the second possibility has been represented here. 
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Figure 4 
Configuration of the system at time t=t3. All objects Bi located on the left side of A have been shifted 
upwards by one lattice unit. 
 
 

 
Figure 5 
Configuration of the system at time t=t4. Object A has been shifted towards x by one lattice unit. According 
to our rules, A could either have moved towards the left, remained in place or moved towards the right by 
one lattice unit. Only the third possibility has been represented here. 
 
 
 
 

 
Figure 6 
Insertion of our system (the configuration is identical to the initial configuration represented in Fig. 1) 
within an array of boxes, whose separating walls may supposedly be controlled at will by the operator (or 
by object A, depending on what kind of specific model one wishes to consider). 
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