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Abstract: We develop a linear metric element ds in ordinary four-dimensional spacetime which, 
when held stationary under worldline variations, leads to the gravitational equations of geodesic 
motion extended to include the Lorentz force law.  We see that in the presence of an 
electromagnetic vector potential Aµ, all that is needed to obtain this result is to follow the well-
known gauge theory prescription of replacing the kinetic momentum pµ with a canonical 
momentum πµ=pµ+eAµ in the mass / momentum relationship m2=pσpσ, and then to apply 
variational calculus to obtain the motion of charged particles in this potential.  We also show how 
by this same prescription, Maxwell’s classical source-free field equations become embedded 
within the second Bianchi identity of Riemannian geometry. 
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1.  Introduction 
 
 In §9 of his landmark 1916 paper [1], Albert Einstein first derived the geodesic equation 

of motion ( )( )2 2/ / /ds dd sx ds dx dxµ µ α β
αβ= −Γ  for a particle in a gravitational field based on the 

variation 0
B

A
dsδ= ∫  of the linear metric element 2ds g dx dxµ ν

µν=  between any two spacetime 

events A and B at which the worldlines of different observers meet so that their clocks and 
measuring rods and scales can be coordinated at the outset A and then compared at the conclusion 
B.  Notably absent from [1], however, was a similar geodesic development of the Lorentz force 

law ( ) ( )2 2 // /d x ds e m F dx dsα
µ µ α= .  Subsequent papers by Kaluza [2] and Klein [3] did succeed 

in explaining the Lorentz force as a type of geodesic motion and even gave a geometric explanation 
for the electric charge itself, but only at the cost of adding a fifth dimension to spacetime and 
curling that dimension into a cylinder.  To date, a century later, there still does not appear to have 
been any fully-successful attempt to obtain the Lorentz force from a geodesic variation confined 
exclusively to the four dimensions of ordinary spacetime.  In this letter, we show how this is done. 
 
2.  Basis and derivation 
 
 As the basis for obtaining the Lorentz force from a geodesic variation in four dimensions, 
we begin with the equation 2m p pσ

σ=  that describes the relativistic relationship between any 

mass m and its “kinetic” energy-momentum ( )/p mu m dx dsµ µ µ= = .  We then promote this 

kinetic momentum to a “canonical” momentum µπ  via the prescription p p eAµ µ µ µπ→ = +  
taught by the local gauge (really, phase) theory of Hermann Weyl developed over 1918 to 1929 in  
[4], [5], [6], and so obtain 2 2m p p mσ σ

σ σπ π= → = .  It will be appreciated that this prescription 

is the momentum space equivalent of / x D ieAµ
µ µ µ µ∂ = ∂ ∂ → = ∂ +  which is the gauge-covariant 

derivative specified in a configuration space for which the metric tensor of the tangent flat 
Minkowski space is ( ) ( )diag 1, 1, 1, 1µνη = + − − − .  Consequently, deconstructing into a linear 

equation using the Dirac matrices { }1
2 ,µ ν µνγ γ η=  in flat spacetime, one can employ 2m σ

σπ π=  

to obtain Dirac’s equation ( ) 0i D mµ
µγ ψ− =  for an electron wavefunction ψ  in an 

electromagnetic potential Aµ , which equation Dirac first derived in [7] for a free electron in a form 

equivalent to ( ) 0i mµ
µγ ψ∂ − = , i.e., without yet using D ieAµ µ µ µ∂ → = ∂ + . 

 
So to obtain the Lorentz force from a geodesic variation in spacetime, we backtrack from 

2m σ
σπ π=  to a linear metric element: 

 

( )( ) ( )( )
( ) ( )

2 2

2 2

/ /

2 / /

ds g dx dx ds g d d g dx ds e m A dx ds e m A

g dx dx e m A dx ds e m g A A ds

µ ν µ ν µ µ ν ν
µν µν µν

µ ν σ µ ν
µν σ µν

χ χ= → = = + +

= + +
, (2.1) 

 
which uses a canonical gauge prescription for the spacetime coordinates themselves, namely: 
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( )/dx d dx ds e m Aµ µ µ µχ→ = + . (2.2) 

 
This is just another variation of p p eAµ µ µ µπ→ = +  and D ieAµ µ µ µ∂ → = ∂ + .  Indeed, it is easily 

seen that if one multiplies ( )( ) ( )( )2 / /ds dx ds e m A dx ds e m Aσ σ
σ σ= + +  in (2.1) through by 

2 2/m ds , the result is identical to the canonical 2m σ
σπ π= .  Now, all we need do is apply a 

variation 0
B

A
dsδ= ∫  to the linear element (2.1) and the Lorentz force naturally emerges as a geodesic 

equation of motion right alongside of the gravitational equation of motion. 
 
 Proceeding with this derivation which largely parallels that in the online [8], we first use 
(2.1) to construct the number 
 

2

1 2
dx dx e dx e

g A g A A
ds ds m ds m

µ ν σ
µ ν

µν σ µν
 = + +  
 

, (2.3) 

 
which we then use to write the variation as: 
 

2

0 2
B B

A A

dx dx e dx e
ds ds g A g A A

ds ds m ds m

µ ν σ
µ ν

µν σ µνδ δ  = = + +  
 

∫ ∫ . (2.4) 

 
 Applying δ  to the integrand and using (2.3) to clear the denominator, this yields: 
 

2
1

0 2
2

B B

A A

dx dx e dx e
ds ds g A g A A

ds ds m ds m

µ ν σ
µ ν

µν σ µνδ δ
  = = + +     

∫ ∫ . (2.5) 

 
Dropping the ½ and using the product rule, while assuming that there is no variation in the charge-
to-mass ratio – i.e., that ( )/ 0e mδ =  – over the path from A to B, we now distribute δ  using the 

product rule to obtain: 
 

( ) ( )2

2 2
0

/

B

A

dx dx d x dx dx d x e dx e d x
g g g A A

ds ds ds ds ds ds m ds m dsds

e m g A A g A A g A A

µ ν µ ν µ ν σ σ

µν µν µν σ σ

µ ν µ ν µ ν
µν µν µν

δ δ δδ δ

δ δ δ

 
+ + + + 

=  
 + + + 

∫ .(2.6) 

 
One can use the chain rule in the small variation δ → ∂  limit to show that g g xα

µν α µνδ δ∂=  and 

AA xα
σ α σδ δ∂= . So the bottom line equals ( ) ( )2

/e m A A g A A g Ax g Aµ ν µ ν µ ν
µν µν

α
α µν α αδ + +∂ ∂ ∂ .  

Likewise, we may recondense ( )A A Ag A g A A Ag g Aµ ν µ
α µν α µν α

ν µ ν µ ν
µν ν αµ= + +∂ ∂ ∂ ∂  via the 

product rule.  Therefore, the entire integral on the bottom line contains a total derivative given by: 
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( ) ( )
2 2

0
BB

A A

e e
A A ds A A

m

s
x x g

x xm
g µ ν µ να α

µν µνα αδ δ   =∂ ∂
∂

=   
 ∂  

∫ . (2.7) 

 
This equals zero, because the two worldlines intersect at the boundary events A and B but have a 
slight variational difference between A and B otherwise, so that ( ) ( ) 0x A x Bσ σδ δ= =  while 

0xσδ ≠  elsewhere.  Consequently, the bottom line of (2.6) zeros out, leaving us with: 
 

0 2 2
B

A

dx dx d x dx dx d x e dx e d x
ds g g g A A

ds ds ds ds ds ds m ds m ds

µ ν µ ν µ ν σ σ

µν µν µν σ σ
δ δ δδ δ 

= + + + + 
 

∫ . (2.8) 

 
 From here, again using g g xα

µν α µνδ δ∂=  and AA xα
σ α σδ δ∂= , and also re-indexing and using 

the symmetry of gµν  to combine the second and third terms above, we obtain: 

 

0 2 2 2
B

A

dx dx d x dx e dx e d x
ds g A A

ds ds ds ds m ds m s
x

d
g xα α

α µ

µ ν µ ν σ σ

σν σν αµδ δδ δ 
= + + + 

 
∂ ∂∫ . (2.9) 

 
 Next, we integrate by parts.  First, we use the product rule to replace 

( )( ) ( ) ( )( ) ( ) ( )( )/ / / / / /g d x ds dx ds d ds x g dx ds x d ds g dx dsµ ν µ ν µ ν
µν µν µνδ δ δ= −  and likewise 

( ) ( ) ( )/ / /A d x ds d ds A x dA ds xσ σ σ
σ σ σδ δ δ= − .  But the terms containing the total derivatives will vanish 

for the same reasons that the terms in (2.7) vanished as a result of the boundary conditions 

( ) ( ) 0x A x Bσ σδ δ= = .  As a result, (2.9) now becomes: 

 

0 2 2 2
B

A

dAdx dx d dx e dx e
ds x g A x

ds ds ds ds
x g

m m ds
x

ds
α α

α µν α

µ ν ν σ
µ σ σ

µ σνδ δδ δ
  

= − + − 


∂
  

∂∫ . (2.10) 

 
Applying the /d ds derivative contained in the second term above then yields: 
 

2

2
0 2 2 2 2

B

A

dg dAdx dx d x dx e dx e
ds x g x A x

ds ds ds ds ds m ds m ds
x g x

µ ν ν ν σ
µνµ µ σ σ

µ
α α

µ σνα ν αδ δ δδ δ 
= − − + − 

 
∂ ∂∫ ,(2.11) 

 
for the first time revealing the acceleration 2 2/d x dsν  in the second term above. 
 

 Next, we use the chain rules ( )/ /dg ds g dx dsα
µν α µν= ∂  and ( )/ /dA ds A dx dsα

σ α σ= ∂  to 

rewrite the third and fifth terms above, thus obtaining: 
 

2

2
2 2

0

2 2

B

A

dx dx d x dx dx
x g x g

ds ds ds ds dsds
e dx e dx

A x

x g

A
m d m d

x
s s

α
α µν

α

µ ν ν α ν
µ µ

µν α µν

σ α
σ

αα σσ δδ

δ δδ 
− − ∂ 

 =
 + − ∂ 
 

∂

∂
∫ . (2.12) 
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In the bottom line above, we may rename indexes α σ↔  in the last term, to find that we 

may rewrite ( ) ( ) ( )/ / /A dx ds x A dx ds F dx sx dxσ σ α σ
α σ ασ

α α
α σ δδ δ− =∂ ∂  using the 

electromagnetic field strength tensor F A Aα σασ σ α∂= −∂ , which has now appeared as a result of the 

variation.  So the above now simplifies to: 
 

2

2
0 2 2 2

B

A

dx dx d x dx dx e dx
ds x g xx g g F

ds ds ds ds ds m d
x

s

µ ν ν α ν σ
µ µ

µν α µν α
α α

α µν σδ δδδ 
= − − ∂ 

 
∂ +∫ .(2.13) 

 
 Now we rename indexes so that the xδ  terms all contain the index α , that is, so all of 
these terms are xαδ .  We then factor this out and interchange the first and second terms, obtaining: 
 

2

2
0 2 2 2

B

A

d x dx dx dx dx e dx
ds g g F

ds ds ds d
x

s ds
g

m ds

ν µ ν µ ν σ

α
α

α µν µ α σν ν αδ  
= − − ∂ + + 

 
∂∫ . (2.14) 

 
For material worldlines, 0ds≠ .  Likewise, while ( ) ( ) 0x A x Bσ σδ δ= =  at the boundaries, 

between these boundaries where the variation occurs, 0xσδ ≠ .  Thus, multiplying through by ½, 
for (2.14) to be true the integrand must be zero, and so we have: 
 

2

2

1
0

2

d x dx dx dx dx e dx
g g F

ds ds ds ds ds m ds
g

ν µ ν µ ν σ

αν µ α σµ ν αα ν= +− +∂ −∂ . (2.15) 

  
 Now we move the acceleration term to the left, split the term with 1 1

2 2g g gµ αν µ αν µ αν∂ = ∂ + ∂  

into two halves, rename some indexes while using the symmetry of gαν , and finally multiply 

through by gβα  and then raise indexes.  This all yields: 
 

( )
2

2

1

2

d x dx dx e dx
g g g F

ds ds ds m d
g

s

β µ ν σ
βα β

µ ναµ ν αα µ σν −∂ −∂ += ∂ . (2.16) 

 
But of course, we recognize that the Christoffel symbols ( )1

2 g g ggβ
µν α µ

βα
µ να ν αµν−Γ = − ∂∂ − ∂ .  

As a consequence, the above reduces to: 
 

2

2

d x dx dx e dx
F

ds ds ds m ds

β µ

µν

σ
β

ν
β

σ= −Γ + . (2.17) 

  
In the presence of gravitational and electromagnetic fields, this contains both the equations of 
gravitational motion and the Lorentz force law, obtained via the geodesic variation of the canonical 
invariant metric length element (2.1).  In the absence of gravitation, i.e., for gµν µνη=  over the 

spacetime region being considered thus 0β
µνΓ = , this reduces to the Lorentz force law.   
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As a result, we have proved that by using Weyl’s canonical prescription in form of 
( )/dx d dx ds e m Aµ µ µ µχ→ = +  from (2.2) to define the linear metric element by 

2ds g d dµ ν
µν χ χ=  as shown in (2.1), the Lorentz force law of electrodynamics may indeed be 

obtained from a geodesic variation confined exclusively to the four dimensions of ordinary 
spacetime geometry. 
 
3.  Einstein’s Equation and Maxwell’s Equations 
 

 Because the metric length 2ds g d dµ ν
µν χ χ=  of (2.1) under a variation 0

B

A
dsδ= ∫  

simultaneously provides a geodesic description of motion in a gravitational field and in an 
electromagnetic field, and because the prescription ( )/dx d dx ds e m Aµ µ µ µχ→ = +  is no more 

than a variant of Weyl’s gauge prescriptions p p eAµ µ µ µπ→ = +  in momentum space and 

D ieAµ µ µ µ∂ → = ∂ +  in configuration space and leads directly as well to Dirac’s equation 

( ) 0i D mµ
µγ ψ− =  for an interacting fermion, this may fairly be regarded as a classical metric-

level unification of electrodynamics with gravitation, using four spacetime dimensions only.  But 
the equations of motion in a field are only half the matter.  We also need to know the equations for 
the fields themselves in relation to their sources.  Thus we now ask, can the field equation 

1
2T R g Rµν µν µνκ− = −  which specifies the gravitational field, be shown to relate in some direct 

fashion to Maxwell’s field equations for electric and (the absence of) magnetic sources? 
 
 Because the Lorentz force (2.17) is obtained by dilating or contracting the differential 
coordinate elements via ( )/dx d dx ds e m Aµ µ µ µχ→ = +  without in any way altering the metric 

tensor gµν  as is done, for example, in Kaluza-Klein theory, one might incorrectly conclude that 

the electromagnetic interaction does not affect spacetime curvature as represented by the Riemann 
tensor Rα

βµν  with the field dynamics specified by 1
2T R g Rµν µν µνκ− = − .   However, one must 

keep in mind that the Reimann tensor may be defined via ; ;,R V Vα
βµν α ν µ β ≡ ∂ ∂   as a measure of 

the extent to which the gravitationally-covariant derivatives ; V V Vα
µ β µ β µβ α∂ = ∂ − Γ  operating on a 

vector Vβ  do not commute.  Likewise, the field strength tensor Fνµ  may be defined via 

,ieF V D D Vνµ β ν µ β ≡    as a measure of the extent to which the gauge-covariant derivatives 

( )D V ieA Vµ β µ β= ∂ +  do not commute when operating on this same vector Vβ .  Indeed, this latter 

definition results in [ ] [ ] ,F D A A ie A Aνµ ν µ ν µ ν µ = = ∂ +    for a non-abelian gauge theory defined 

such that , 0A Aν µ  ≠  , which simplifies to [ ]F Aνµ ν µ= ∂  for an abelian theory such as 

electrodynamics in which , 0A Aν µ  =  . 

 
Therefore, let us now apply Weyl’s canonical prescription to the gravitationally-covariant 

derivatives by employing: 
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( ); ;V V V D V ieA V Vα α
µ β µ β µβ α µ β µ µ β µβ α∂ = ∂ − Γ → = ∂ + − Γ , (3.1) 

 
for vectors Vβ  a.k.a. first-rank tensors, and likewise extended for second and higher-rank tensors.  

This is the same prescription that in the form ( )/dx d dx ds e m Aµ µ µ µχ→ = +  of (2.2) yielded the 

Lorentz force law in (2.17).  If we then use these derivatives (3.1) to define a gauge-enhanced 
canonical Riemann tensor α βµνℜ  as: 

 

; ;,V D D Vα
βµν α ν µ β ℜ ≡   , (3.2) 

 
it can be expected as a consequence of ,ieF V D D Vνµ β ν µ β ≡    that the electrodynamic fields Fνµ  

and potentialsAµ  will appear in this Riemann tensor.  Further, because [ ]F D Aνµ ν µ=  encompasses 

both abelian and non-abelian field strengths, one would expect that the gravitational field 
equations using α

βµ βµαℜ = ℜ  and σ
σℜ = ℜ  can be related not only to abelian electrodynamics, 

but also to non-abelian such as weak and strong interactions.  So let us expressly calculate this 
enhanced canonical α βµνℜ  using (3.2) and see what results. 

 
We first calculate: 

 

( ) ( ) ( )( )
( )( ) ( )( )

;; D V ieA ieA V V

ieA V V ieA V V

Dν ν

τ τ
µν

α
µ β ν µ µ β µβ α

α α
τ τ β τβ α µ µβ µ αν τ τ

= + ∂ + − Γ

∂ + − Γ ∂ + − Γ

∂

− Γ − Γ
 (3.3) 

 
as well as the like expression interchanging µ ν↔ , then subtract the latter from the former and 
reduce using index renaming and the symmetries of the objects in the resulting equations.  Many 
terms cancel, but with the vector Vα  still attached as the operand on the right, what remains is: 

  

( ) ( )
( )

; ;; ;; ;,V D D V D V D V

ie F V

D Dα
βµν α ν µ β µ β ν β

α α α α α

ν µ

τ τ
ν µµβ ν νβ µβ µ ν ν αβτ τ β µδ∂

 ℜ ≡ = − 

= − Γ + Γ Γ − Γ −∂ + Γ Γ
, (3.4) 

 
including a non-abelian field strength: 
 

[ ] [ ] [ ], ,a a a a b c b c a a abc a b cF T F A ie A A T A ie T T A A T A ef T A Aµν µν µ ν µ ν µ ν µ ν µ ν µ ν  = = ∂ + = ∂ + = ∂ −    ,(3.5) 

 

which becomes abelian in the event , 0A Aµ ν  =  .  When we explicitly display the group structure 

constants abcf  for the non-abelian Hermitian generators aT  via ,abc a b cif T T T =   , we see that 

[ ]
a a abc b cF A ef A Aνµ ν µ ν µ= ∂ − is real and so a aieF ieT Fµν µν=  in (3.4) is a complex Hermitian field 
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owing to the aT .  With Vα  removed and some index renaming and lowered to covariant form, the 

canonical Riemann tensor in (3.4) is then seen to be: 
 

g g g g g ieg F

R ieg F

σ σ
ν µ β

τ τ τ τ τ
αβµν ατ βµν ατ βµ ατ βν ατ σµ ατ σνν αβ µν

αβµν

β

αβ µν

µ∂ ∂ + Γ Γℜ = ℜ = − Γ + Γ Γ − Γ −

= −
 (3.6) 

 
 As expressed by R ieg Fαβµν αβµν αβ µνℜ = − , the terms containing Christoffels are no 

different from the usual in Rαβµν .  But the new term ieg Fαβ µν−  resulting from the same gauge 

prescription D ieAµ µ µ µ∂ → = ∂ +  that likewise brought the Lorentz force law into (2.17) changes 

several aspects of αβµνℜ  in relation to the ordinary Rαβµν .  First, while for the last two indexes 

αβµν αβνµℜ = −ℜ  as with Rαβµν , for the first two indexes αβµν βαµνℜ ≠ −ℜ  due to the presence of the 

symmetric gαβ  next to the antisymmetric Fµν  in the term g Fαβ µν .  Thus, αβµνℜ  is non-symmetric 

in ,α β .  Second, noting that a aF T Fµν µν=  is Hermitian, the term ieg Fαβ µν  provides an similar 

complex aspect to αβµνℜ , so that overall, this enhanced αβµνℜ  is a complex object.  Third, as a 

consequence of both these matters, the real part of αβµνℜ  has the usual symmetries of Rαβµν , while 

the new complex part has the mixed symmetry of g Fαβ µν . 

 
 It is readily seen from (3.6) after some re-indexing that the canonical Ricci tensor: 
 

ieF R ieFα α α α α
µν µνα µν µα σν σα µν µν

σ σ
α ν µ να µν µℜ = ℜ = − Γ + Γ Γ − Γ + = +∂ ∂ + Γ Γ , (3.7) 

 
concisely R ieFµν µν µνℜ = + , is likewise non-symmetric, with the usual, real gravitational terms 

being symmetric and the new, complex electrodynamic term being antisymmetric in ,µ ν .  Finally, 

because 0Fσ
σ = , the canonical Ricci scalar is the usual: 

 
g g g g g Rµν στ α στ α στ α στ α

µν στ σα βσ
β β

α τ σα σ βτ αℜ = ℜ = − Γ + Γ Γ − Γ Γ∂ ∂ Γ =+  (3.8) 

 
with no residual terms from electrodynamics, that is, Rℜ = . 
 
 If we now construct ; ; ;σ αβµν µ αβνσ ν αβσµ∂ ℜ + ∂ ℜ + ∂ ℜ , then because (3.6) informs us that  

R ieg Fαβµν αβµν αβ µνℜ = − , all of the Christoffel terms will zero out as a result of the second Bianchi 

identity ; ; ; 0R R Rσ αβµν µ αβνσ ν αβσµ∂ + ∂ + ∂ = , simply due to the inherent structure of the Riemannian 

geometry itself.  All that will remain are terms containing the field strength, so that: 
 

( )
[ ]( )

; ; ; ; ; ;

; ; ;, , ,

ieg F F F

ieg A A A A A A

σ αβµν µ αβνσ ν αβσµ αβ σ µν µ νσ ν σµ

αβ σ µ ν µ ν σ ν σ µ

∂ ℜ + ∂ ℜ + ∂ ℜ = − ∂ + ∂ + ∂

   = − ∂ + ∂ + ∂   

 (3.9) 
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Specifically: We see here that the Hermitian part of the construct ; ; ;σ αβµν µ αβνσ ν αβσµ∂ ℜ + ∂ ℜ + ∂ ℜ  

contains the terms ; ; ;F F Fσ µν µ νσ ν σµ∂ + ∂ + ∂  which specify magnetic charges.  Because exterior 

calculus teaches that the differential forms 0dF ddA= = , this set of terms must be equal to zero 

for any abelian gauge theory with , 0A Aµ ν  =  .  And because this set of terms must be zero if 

, 0A Aµ ν  =  , this means that for an abelian interaction the canonical Riemann tensor obeys the 

identity ; ; ; 0σ αβµν µ αβνσ ν αβσµ∂ ℜ + ∂ ℜ + ∂ ℜ =  as a consequence of 0dF ddA= =  which is Maxwell’s 

magnetic charge equation. 
 
 Next, given the identity (3.9), we may double-contract two pairs of indexes in the 
customary manner to ascertain that this canonical Riemann tensor also obeys an identity: 
 

( ) ( )
( )

;1 1
; ; ;2 2

;1
; ;2 , , , 0

g ie F F F

ie A A A A A A

σµ µσ µσ µ σ σµ
σ σ σ σ

µ σ µ σ σ µ
σ σ σ

∂ ℜ − ℜ = − ∂ + ∂ + ∂

     = − ∂ + ∂ + ∂ =     

 (3.10) 

 

that has the exact same form as the usual ( )1
; 2 0R g Rµν µν
µ∂ − =  used to ensure local energy 

conservation in the Einstein equation via ( )1
; ; 2 0T R g Rµν µν µν
µ µ∂ = ∂ − = , and which in this 

instance is zero because F Fµν νµ= −  is antisymmetric.  Additionally, from (3.7) we deduce that: 
 

; ; ; ;R ie F R ieJµν µν µν µν ν
µ µ µ µ∂ ℜ = ∂ + ∂ = ∂ + , (3.11) 

 
where ;J Fν µν

µ= ∂  is recognized to be the electric charge source current. 

 

 So, combining (3.10) and (3.11) and Rℜ =  from (3.8) and ( )1
; 2 0R g Rµν µν
µ∂ − =  we are 

able to deduce that: 
 

( ) ( )1 1
; ;2 20 0g R g R ieJ ieJµν µν µν µν ν ν
µ µ= ∂ ℜ − ℜ = ∂ − + = + , (3.12) 

 
with the net consequence that: 
 

( )1
; ; 2 0J F gν µν µν µν
µ µ= ∂ = ∂ ℜ − ℜ = . (3.13) 

 
Here, we see that ( )1

; 2 gµν µν
µ∂ ℜ − ℜ  contains the electric current.  But because (3.10) is equal to 

zero this means that this electric current that is also zero.  Taken together, (3.13) and (3.9) are then 
seen to be Maxwell’s source-free equations: 
 

( )
( )

1
; ; 2

; ; ; ; ; ;

0                                          

0

ieJ F g

ieg F F F

ν µν µν µν
µ µ

αβ σ µν µ νσ ν σµ σ αβµν µ αβνσ ν αβσµ

 = ∂ = ∂ ℜ − ℜ =


− ∂ + ∂ + ∂ = ∂ ℜ + ∂ ℜ + ∂ ℜ =

. (3.14) 
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And naturally, it will be recognized that 1

2 gµν µνℜ − ℜ is the canonical gauge extension of 
1
2R g Rµν µν−  which is the “marble” heart of the Einstein equation and which in the form 

( )1
; ; 2 0T R g Rµν µν µν
µ µκ− ∂ = ∂ − =  secures the local conservation of energy. 

 
In sum, we find that if we use the canonical gauge extension ; ; ;D ieAµ µ µ µ∂ → = ∂ +  to 

construct a canonical Riemann tensor via the definition ; ;,V D D Vα
βµν α ν µ β ℜ ≡    of (3.2), 

Maxwell’s source-free field equations indeed become embedded in the second Bianchi identity.  
The magnetic equation appears in the fifth rank identity and the electric charge equation in its 
vector contraction.  We shall not at this moment, examine the next logical question as to a 
geometric understanding of non-vanishing electric sources 0Jν ≠ .  Certainly, we expect that using 
the canonical extension ; ; ;D ieAµ µ µ µ∂ → = ∂ +  for the derivatives in (3.9) through (3.14) may play 

a role in exploring this question. 
 
4.  Conclusion 
 

It has been shown how the Lorentz force law may be obtained from a geodesic variation 
confined exclusively to the four dimensions of ordinary spacetime geometry as a consequence, at 
bottom, of simply applying Weyl’s gauge prescription D ieAµ µ µ µ∂ → = ∂ +  to dilate or contract 

the spacetime coordinate elements by ( )/dx d dx ds e m Aµ µ µ µχ→ = + .  It has also been shown 

how this same prescription embeds Maxwell’s source-free equations into an imaginary, 
antisymmetric aspect that is added to the gravitational field equations.  Studying sources in 
Maxwell theory will likely require continuing to apply ; ; ; ;D ieAµ µ µ µ∂ → = ∂ +   to the second 

Bianchi identity and its contracted variant that relates to the local conservation of the energy tensor. 
 
As a consequence of what has been shown here, it may well be possible to unify gravitation 

not only with electrodynamics – but because Fστ  first obtained in (3.4) encompasses a non-abelian 

field strength [ ] ,a a abc b cF A ef A Aνµ ν µ ν µ = ∂ −    – with the remaining weak and strong interactions 

as well, all consistently with quantum mechanics because the canonical gauge prescriptions 
p p eAµ µ µ µπ→ = +  and D ieAµ µ µ µ∂ → = ∂ +  and now ( )/dx d dx ds e m Aµ µ µ µχ→ = +  remain 

at the root of the entire development.  The main questions that would remain following such a 
unification, would be as to the specific non-abelian gauge groups that operate physically at any 
given energy ranging up to the Planck mass, and how the symmetry of those groups becomes 
broken at lower energies down to the phenomenological group 

(3) (2) (1) (3) (1)C W Y C emSU SU U SU U× × → ×  and the fermions on which these groups act.  The 

author has previously published on these questions, and even shown how the three generations of 
quarks and leptons originate, and why their left-chiral projections engage in CKM mixing, at [9]. 
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