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Abstract: We develop a linear metric element derginary four-dimensional spacetime which,
when held stationary under worldline variationsades to the gravitational equations of geodesic
motion extended to include the Lorentz force lawe see that in the presence of an
electromagnetic vector potential' Aall that is needed to obtain this result is tddw the well-
known gauge theory prescription of replacing th@ekic momentum Hpwith a canonical
momentumz*=p"+eA* in the mass / momentum relationshig=mp’, and then to apply
variational calculus to obtain the motion of chadgearticles in this potential. We also show how
by this same prescription, Maxwell's classical smifree field equations become embedded
within the second Bianchi identity of Riemanniaargetry.
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1. Introduction

In 89 of his landmark 1916 paper [1], Albert Eestfirst derived the geodesic equation
of motion d*x* / ds’ :—F“aﬂ( dx /ds)( d% / ds) for a particle in a gravitational field based bp t

variation Ozdjfds of the linear metric elemends” = g, dx dx between any two spacetime

eventsA and B at which the worldlines of different observers mee that their clocks and
measuring rods and scales can be coordinated atitketA and then compared at the conclusion
B. Notably absent from [1], however, was a simgapdesic development of the Lorentz force

law d*x'/ ds=( € m P{,( d‘i(/ds). Subsequent papers by Kaluza [2] and Klein [@]slicceed

in explaining the Lorentz force as a type of geade®tion and even gave a geometric explanation
for the electric charge itself, but only at thetcotadding a fifth dimension to spacetime and
curling that dimension into a cylinder. To dateeatury later, there still does not appear to have
been any fully-successful attempt to obtain theebtz force from a geodesic variation confined
exclusively to the four dimensions of ordinary sgiawe. In this letter, we show how this is done.

2. Basis and derivation

As the basis for obtaining the Lorentz force frargeodesic variation in four dimensions,
we begin with the equatiom’ = p [ that describes the relativistic relationship betweany

massm and its “kinetic” energy-momentunp” = mu’ = n( dx/ d}. We then promote this

kinetic momentum to a “canonical” momentunt via the prescriptionp” - 7 = p/ + eX
taught by the local gauge (really, phase) theog&imann Weyl developed over 1918 to 1929 in
[4], [5], [6], and so obtaim® = p, - nf=7 °. It will be appreciated that this prescription

is the momentum space equivalentdgf=9/0x"* - D, =d, +ieA, which is the gauge-covariant

derivative specified in a configuration space fonieth the metric tensor of the tangent flat
Minkowski space isdiag(nw):(+1,— 1- 1 ) Consequently, deconstructing into a linear

equation using the Dirac matricé%y“,y”} =n*" in flat spacetime, one can employ = 77,777

to obtain Dirac’s equation(iy“Dﬂ—m)l/J:O for an electron wavefunctiony in an
electromagnetic potential, , which equation Dirac first derived in [7] fori@é electron in a form

equivalent to(iy“aﬂ —m)l// =0, i.e., without yet usin@, - D, =0, +ieA,.

So to obtain the Lorentz force from a geodesicatanm in spacetime, we backtrack from
m’ =777’ to a linear metric element:

ds’ = g, d¥' dx - dé= g g* g'= g( dx ds/e)m*K ‘ox (d¢ ¢ )

=g, d¢dX+2(e m Adk ds( k& Jh g “A’Ads

which uses a canonical gauge prescription for paeeatime coordinates themselves, namely:
1
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dx* » dy” =dx'+ d{ é m A (2.2)

This is just another variation gf* — 77 = p“+eA andd, - D, =0, +ieA,. Indeed, it is easily
seen that if one multipliesls’ =(dx + df ¢ f A( @ ds/e )m’p in (2.1) through by
' / d€, the result is identical to the canonicaf =7z7,7°. Now, all we need do is apply a

variation0=5jfds to the linear element (2.1) and the Lorentz foratirally emerges as a geodesic
equation of motion right alongside of the gravdatl! equation of motion.

Proceeding with this derivation which largely giia that in the online [8], we first use
(2.1) to construct the number

dx* d¥x e dx e\
1=\/g,uv__+ 2_rnAT_dS+(_rJ g,quA y (23)

ds ds

which we then use to write the variation as:

0=0[ ds=3| di/ gjv%% € /5_+( FJ g, A A. (2.4)

Applying d to the integrand and using (2.3) to clear the d@nator, this yields:

Ozdj'fds:%jf dsf[ g ddxS dd%S +2 & e\—ds+( 3 g, A Aj. (2.5)

Dropping the %2 and using the product rule, whikuasing that there is no variation in the charge-
to-mass ratio — i.e., thaf(e/ n) =0 — over the path from to B, we now distributed using the

product rule to obtain:

dx* dx X dX dX @ % dx e A’
o —+ —+ — +2—% —+2—

o:J'fds Iw4s ds ™ ds ds ™ ds ds & f% ds.(2.6)
+(e/m)y*(5g, A A+ g,0 A A+ g A5 A

One can use the chain rule in the small variadon 0 limit to show thatdg,, =9,9,,0X and
OA, =0,A,0X . So the bottom line equalx’ (e/ m)z(aagw A K+ g0, A A+ g, maA”).
Likewise, we may recondense, (gwA”AV) =d,9, KA +g,0,AA+g, Ad, A via the
product rule. Therefore, the entire integral om Iblottom line contains a total derivative given by:



Jay R. Yablon

2
Ifdx”(%j aa (gWA"A”)ds Ox7 ( j aaxi(g A(’A)‘izo. (2.7)

This equals zero, because the two worldlines iatgrat the boundary evemdsandB but have a
slight variational difference betweeh and B otherwise, so thatx’ (A)=Jx (B)=0 while

ox’ #£ 0 elsewhere. Consequently, the bottom line of (2e8ds out, leaving us with:

dx* dxX dd X' dx dX d %
0=| ds —+ —+ g, — + 2—e()' 2— 2.8
-[ [ s ds’ P ds ds ¥ ds ds O r'% i (.8)

From here, again usindg,, =0,9,,0X anddA, =d,A,0X", and alsae-indexing and using

the symmetry ofJ,, to combine the second and third terms above, wairob

—= + 20X “—a A;—+ 2 °p

" 0,
dx* dx X 2, dd X dx d x _ (2.9)
ds ds ds ds ds m d s

O:Ifds[ x70,9,, ——

Next, we integrate by parts. First, we use theodpct rule to replace
0., (dox / dg( dk/ dp=( d df5 % ,g( B P “k /d s, § “dx )k and likewise
A,ddX [ ds=( d d}s( L ‘3()—( dA i 7. But the terms containing the total derivativé vanish

for the same reasons that the terms in (2.7) vedishs a result of the boundary conditions
ox’ (A)=0x (B)=0. As aresult, (2.9) now becomes:

0= dg o%'d,g PP VI P P ea /g_—zsi_@'_pff (2.10)
A % ds ds d d m ds

Applying the d/ ds derivative contained in the second term above {fieds:

dx* dx o X dg,, d @A,
0=| ds| ox“0 -20%'Q, ——— 20 X ——+ 2x° —a ——25&(—— 2.11

I [ % 4s ds ST ds ds G ds ( )
for the first time revealing the acceleratiddx’ / ds” in the second term above.

Next, we use the chain ruledg, /ds=0, g,( d%/ dt and dA,/ds=9, A( d%/ d to
rewrite the third and fifth terms aboveus obtaining:

0, dx* dxX & X dX d%
. 0x°9,9,, o —dS—ZJX”gW 32 -20%0, 9 —ds d
0=[ ds . (2.12)
A dx

+20X° —a A ™ 20X J—a AU—

3
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In the bottom line above, we may rename indexeso in the last term, to find that we
may rewrte  Ox°9,A, (dxX'/ d9-5 %0, A( dk/ ds=ox” E( dxd): using the
electromagnetic field strength tensgy, =d,A —d,A,, whichhas now appeared as a result of the
variation. So the above now simplifies to:

B dx* dxX o X dg dx e dX
0= ds| ox“0 ——-20X'g, —5— 20 X0 ——+ X" —F, ——|.(2.13
IA [ 9w 4s ds ST <% gs ds m™ dj( )

Now we rename indexes so that e terms all contain the inde& , that is, so all of
these terms aréx“ . We then factor this out and interchange thé &insl second terms, obtaining:

(2.14)

By OO G d e d
a2 a9 Tgs g Y e g T Tm 0 Tas )

B
O:IA dsdx“[—Zgw—ﬂ? g

For material worldlines,ds#0. Likewise, while ox’(A)=Jx"(B)=0 at the boundaries,

between these boundaries where the variation océufs# 0. Thus, multiplying through by %2,
for (2.14) to be true the integrand must be zend,s0 we have:

2
X 1 o dk o o dk dk, e dx (2.15)

02700 "3 5% % T35 g %O e e T ¢

Now we move the acceleration term to the leftit $pé term withd, g,,=30,9,,+30,9,
into two halves, rename some indexes while usimgsymmetry ofg,,, and finally multiply
through byg® and then raise indexes. This all yields:

d® _1 g

X dx = e dk
g =
as© 2

_Cpp X
ds ds m 7 & (2.16)

(0,9,,-0,9,-9,9,)

But of course, we recognize that the Christoffehbgls -7  =1g* (aagw -0,0,, —0, gaﬂ).
As aconsequence, the above reduces to:

2 Y
dxﬂ:_rﬁ d dx e, dX

ds W ds ds m 7 df

(2.17)

In the presence of gravitational and electromagnigids, this contains both the equations of
gravitational motion and the Lorentz force law,abéd via the geodesic variation of the canonical
invariant metric length element (2.1). In the afegeof gravitation, i.e., fog,, =7, over the

spacetime region being considered tlﬁlﬁ§v =0, this reduces to the Lorentz force law.
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As a result, we have proved that by using Weyl'socecal prescription in form of
dx* - dy# =dx + d{ ¢ r)1 A from (2.2) to define the linear metric element by

ds” = g, dy“ dv” as shown in (2.1), the Lorentz force law of eledymamics may indeed be

obtained from a geodesic variation confined exellgi to the four dimensions of ordinary
spacetime geometry.

3. Einstein’s Equation and Maxwell’'s Equations

Because the metric lengthls” = g, dy“ dy" of (2.1) under a variatiomzdjfds

simultaneously provides a geodesic description ofion in a gravitational field and in an
electromagnetic field, and because the prescriptigh—. dy* = dx'+ d{ ¢ m A is no more

than a variant of Weyl's gauge prescriptiops — 77 = p* +eA in momentum space and
d, - D,=0,+ieA, in configuration space and leads directly as wellDirac’s equation
(iy“Dﬂ —m)l,l/ =0 for an interacting fermion, this may fairly be aeded as a classical metric-

level unification of electrodynamics with gravitati using four spacetime dimensions only. But
the equations of motion in a field are only ha# thatter. We also need to know the equations for
the fields themselves in relation to their sourcéhus we now ask, can the field equation
-«T,, =R, -3 g, R which specifies the gravitational field, be shotenrelate in some direct

fashion to Maxwell’s field equations for electrioch(the absence of) magnetic sources?

Because the Lorentz force (2.17) is obtained ligtidg or contracting the differential
coordinate elements vidx” - dy* = d¥'+ d{ ¢ m A without in any way altering the metric

tensorg,, as is done, for example, in Kaluza-Klein theonye anight incorrectly conclude that

the electromagnetic interaction does not affectasfi@e curvature as represented by the Riemann
tensorR’,,, with the field dynamics specified byxT, =R, -3 g, R. However, one must

keep in mind that the Reimann tensor may be defureedR ,, V, = [a;v ,a;y] V; as a measure of

the extent to which the gravitationally-covariaetigativeso. V, =0 V, - re .2V, operating on a
vector V, do not commute. Likewise, the field strength teng,, may be defined via
ieF,V, =[ D,,D, |V, as a measure of the extent to which the gaugerieowaderivatives
DV, = (6y + ieA) V,; do not commute when operating on this same véttorindeed, this latter
definition results inF,, =Dy, A, =9, A, +ie[ A, A | for anon-abeliangauge theory defined
such that[ A,A,|#0, which simplifies to F,, =d,A, for an abelian theory such as

electrodynamics in whichA,, A, |=0.

Therefore, let us now apply Weyl's canonical prgg@n to the gravitationally-covariant
derivatives by employing:
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0N, =0,V ="\, ~ D, =(0,+ieA) Y=T",, V., (3.1

for vectorsV, a.k.a. first-rank tensors, and likewise extendedsécond and higher-rank tensors.
This is the same prescription that in the fodgi — dy* = dx' + d{ ¢ m Aof (2.2) yielded the

Lorentz force law in (2.17). If we then use thegivatives (3.1) to define a gauge-enhanced

canonical Riemann tensai’,,, as:

0%,V =[ D,, D, |V, (3.2)

it can be expected as a consequencefV, =[ D,, D, |V, that the electrodynamic fields,,

and potentialg\, will appear in this Riemann tensor. Further, bses,, =D, A, encompasses

both abelian and non-abelian field strengthepe would expect that the gravitational field
equations usingl,, =0, and 0 =0, can be related not only to abelian electrodynamics
but also to non-abelian such as weak and strongramtions So let us expressly calculate this

enhanced canonicﬂ”ﬂw using (3.2) and see what results.

We first calculate:

D;u (D:ﬂvﬂ) = (av + ieA;)((aﬂ + ieAﬁ) \é _raﬂﬂ \4)

. _ (3.3)
L ((ar +|eA)Vﬂ -T Tﬂ\é)_r vB ((aﬂ + 'eﬁ) V-T" y)
as well as the like expression interchangpmg- v, then subtract the latter from the former and
reduce using index renaming and the symmetrieeeobbjects in the resulting equations. Many
terms cancel, but with the vectdy still attached as the operand on the right, wlatains is:

Daﬁ/tvvﬂ E[D;v’ D;/t]vﬁ = D;v ( D;#Vﬂ)— D;ﬂ( Dv\é?)

= (0,7 40,1 + T 5%, =7 5T, —ied” ;F,, )V,

B w

(3.4)

including anon-abelianfield strength:
F, =T%F°, =0,A +ig A, A]=Td, R, +i¢ P, T| A A= B, A- e T A 235

which becomes abelian in the evéw&, A,] =0. When we explicitly display the group structure
constantsf ®° for the non-abelian Hermitian generatdr$ via if T a:[T °T °] , we see that

Fe, =0,A%, —ef®™ A} A°is real and sdeF,, =ieT*F*,, in (3.4) is acomplexHermitian field
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owing to theT?. With V, removed and some index renaming and lowered tar@ot form, the
canonical Riemann tensor in (3.4) is then seerio b

Daﬁ,uv = ngTﬁ,uv = _gmavrrﬁ,u + gara,urrﬁv gﬂrgﬁvrrqu - gﬂrﬂﬁ#rfw iegﬁ I/:zv
= Raﬁ,uv - ieg:rﬁ Ezv

(3.6)

As expressed byl ., =R, —ieg,F,, the terms containing Christoffels are no
different from the usual iR ,, . But the new term-ieg,,F, resulting from the same gauge
prescriptiond, - D, =0, +ieA, that likewise brought the Lorentz force law info(7) changes
in relation to the ordinarR, ;. First, while for the last two indexes
due to the presence of the

several aspects df ,,
Uopw =~Uop, @aswithR , , for the first two indexesl! , , #-0,,,
symmetricg,, nextto the antisymmetri€ , in the termg_,F,, . Thus,U ,,, isnon-symmetric
in a,B. Second, noting tha,, =T*F®  is Hermitian, the termeg,,F, provides an similar

SO that overall, this enhancéd is acomplexobject. Third, as a

afuv
has the usual symmetries Bf,,, , while

complexaspect tol
consequence of both these mattersreaépart of U, ,
the newcomplexpart has the mixed symmetry gf;F,, .

It is readily seen from (3.6) after some re-indgxihat the canonical Ricci tensor:
0, =0,,=-0,"",+0," +r°,r<,-r’re,+ieF, =R, +ieF,, (3.7)

conciselyl , =R, +ieF , is likewise non-symmetric, with the usual, reed\gtational terms
being symmetric and the new, complex electrodynderim being antisymmetric igr,v . Finally,

becauseF“_ =0, the canonical Ricci scalar is the usual:
D = gﬂVDpv = _gmaarﬂm + gmarracm + gmrﬂcmraﬂa - gﬂrﬂmrﬂﬂa = F (38)

with no residual terms from electrodynamics, tkati = R.

If we now constructd. [l then because (3.6) informs us that

apuv +a;yD +a;vDaﬂaﬂ'
Uapw = Rigw — €9, F,, , all of the Christoffel terms will zero out asesult of the second Bianchi
identity 0. ,R ;,, +0.,R,, +0, Rg,, =0, simply due to the inherent structure of the Rieman

geometry itself. All that will remain are termsntaining the field strength, so that:

apvo

+0,0,,, =-i€0, (0., F, +0,,F, +9,F,)

0y U vo

0,04, +0 U

=—ieg,, (0,[ A A]*0,[ A Al+0,[ A 4])

afvo

(3.9)
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Specifically: We see here that the Hermitian pathe construc® U0 ., +0. 0, +0,0 4.,
contains the term9 ,F  +0 F, +0,F, which specify magnetic charges. Because exterior
calculus teaches that the differential foras = ddA=0, this set of terms must be equal to zero

for anyabelian gauge theory witt{ﬁ,, A] =0. And because this set of terms must be zero if
[ﬁ,, A] =0, this means that for an abelian interaction theoo#&al Riemann tensor obeys the
identity 0.,00 ., +9.,0,5, +0,0
magnetic charge equation.

w0 = 0 @s a consequence dF = ddA=0 which is Maxwell's

Next, given the identity (3.9), we may double-cant two pairs of indexes in the
customary manner to ascertain that this canoni@hBnn tensor also obeys an identity:

0, (Day —3 gWD) = _%ie(a;g FY+0"F°,+0,, Faﬂ)

3.10
- sie(0, [ K ]+0*[ K, AT+, [ K. 4]) 0 o

that has the exact same form as the uﬁ;ﬂR“” -39 R) =0 used to ensure local energy
conservation in the Einstein equation \dgT* :6W(R"”—% g” Q:O, and which in this
instance is zero becauge” = -F" is antisymmetric. Additionally, from (3.7) we dezk that:

0, ,0%=0 R"+ied F" =0, R"+ieJ, (3.11)
where J” =0, F* is recognized to be the electric charge sourceentir

So, combining (3.10) and (3.11) aht=R from (3.8) andaw(R“” -1 9" R) =0 we are
able to deduce that:

0=0,, (0" -1g”0)=0,, (R -1 g" R+ ieJ =0+ ieJ, (3.12)
with the net consequence that:
=9, ,F"=0,(0"-1g"0)=0. (3.13)

Here, we see thal , (D”V —%g”VD) contains the electric current. But because (3sl@jual to
zero this means that this electric current thatde zero. Taken together, (3.13) and (3.9) ae th

seen to be Maxwell's source-free equations:
iel’ =a,,F* =a,, (0" -1 g“0)=0
—ieg,,; (0, F, +0,,F, +0,F,)=0,0,4, +0.,0,, +0,0

N % o vo v ou 0 — apuv M apvo v 0/30;1:

. (3.14)
0

8
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And naturally, it will be recognized thafl”” —1g*’[lis the canonical gauge extension of
R* -1 g R which is the “marble” heart of the Einstein eqoatiand which in the form
-k, T :6;#(R“” -19” I%:O secures the local conservation of energy.

In sum, we find that if we use the canonical gaegeensiono., — D, =0 , +ieA, to

construct a canonical Riemann tensor via the difini0,,V, =[D,,D, |V, of (3.2),

Maxwell's source-free field equations indeed beca@ndedded in the second Bianchi identity.
The magnetic equation appears in the fifth ranktithe and the electric charge equation in its
vector contraction. We shall not at this momenxianaine the next logical question as to a
geometric understanding of non-vanishing electrireesJ” # 0. Certainly, we expect that using
the canonical extensiod, - D, =0, +ieA, for the derivatives in (3.9) through (3.14) maspl

a role in exploring this question.
4. Conclusion

It has been shown how the Lorentz force law mayplitained from a geodesic variation
confined exclusively to the four dimensions of oty spacetime geometry as a consequence, at
bottom, of simply applying Weyl's gauge prescriptid, -~ D, =0, +ieA, to dilate or contract
the spacetime coordinate elementsdy - dy* = dx'+ d{ ¢ m A. It has also been shown
how this same prescription embeds Maxwell's sodiree- equations into an imaginary,

antisymmetric aspect that is added to the graweiali field equations. Studying sources in
Maxwell theory will likely require continuing to gty 0., - D, =0 ,+ieA, to the second

Bianchi identity and its contracted variant thdates to the local conservation of the energy tenso

As a consequence of what has been shown herey iivelbe possible to unify gravitation
not only with electrodynamics — but becausg first obtained in (3.4) encompasses a non-abelian
field strengthF®,  =0,A%, - efabc[ A Ajl] — with the remaining weak and strong interactions

as well, all consistently with quantum mechanicsduse the canonical gauge prescriptions
p* » = p'+el andd, -~ D, =0, +ieA, and nowdx" - dx* = dx'+ df ¢ H Aremain

at the root of the entire development. The maiastjans that would remain following such a
unification, would be as to the specific non-abelgauge groups that operate physically at any
given energy ranging up to the Planck mass, and thewsymmetry of those groups becomes
broken at lower energies down to the phenomenadbgic group
SU@B). x SU2), x UQ), - SU3).x U1),, and the fermions on which these groups act. The

author has previously published on these questant even shown how the three generations of
quarks and leptons originate, and why their leftadlprojections engage in CKM mixing, at [9].
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