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Abstract: We develop a linear element ds in ordmour-dimensional spacetime which, when
held stationary under worldline variations, leadsthe gravitational equations of geodesic motion
extended to include the Lorentz force law. Welsstan the presence of an electromagnetic vector
potential A, all that is needed to obtain this result is tdlder the well-known gauge theory
prescription of replacing the kinetic momentutmith a canonical momentusmi=p++eA* in the
mass / momentum relationshig=m,p°, and then to apply variational calculus to obtaire
motion of charged particles in this potential. \&kso show how by this same prescription,
Maxwell’'s classical source-free field equations dree embedded within the second Bianchi
identity of Riemannian geometry.

PACS: 04.20.Fy; 03.50.De; 04.20.Cv; 11.15.-q
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1. Introduction

In 89 of his landmark 1916 paper [1], Albert Eestfirst derived the geodesic equation
of motion d*x* / ds’ :—F“aﬂ( dx /ds)( d% / ds) for a particle in a gravitational field based bp t

variation Ozdjfds of the linear metric elemends” = g, dx dx between any two spacetime

eventsA and B at which the worldlines of different observers mese that their clocks and
measuring rods and scales can be coordinated atitketA and then compared at the conclusion
B. Notably absent from [1], however, was a simgapdesic development of the Lorentz force

law d*x'/ ds=( € m P{,( d‘i(/ds). Subsequent papers by Kaluza [2] and Klein [@]slicceed

in explaining the Lorentz force as a type of geade®tion and even gave a geometric explanation
for the electric charge itself, but only at thetcotadding a fifth dimension to spacetime and
curling that dimension into a cylinder. To dateeatury later, there still does not appear to have
been any fully-successful attempt to obtain theebtz force from a geodesic variation confined
exclusively to the four dimensions of ordinary sgiawe. In this letter, we show how this is done.

2. Basis and derivation

As the basis for obtaining the Lorentz force frargeodesic variation in four dimensions,
we begin with the equatiom’ = p [ that describes the relativistic relationship betweany

massm and its “kinetic” energy-momentunp” = mu’ = n( dx/ d}. We then promote this

kinetic momentum to a “canonical” momentunt via the prescriptionp” - 7 = p/ + eX
taught by the local gauge (really, phase) theog&imann Weyl developed over 1918 to 1929 in
[4], [5], [6], and so obtaim® = p, - nf=7 °. It will be appreciated that this prescription

is the momentum space equivalentgf=9/0x"* - D, =d, +ieA, which is the gauge-covariant

derivative specified in a configuration space fonieth the metric tensor of the tangent flat
Minkowski space isdiag(nw):(+1,— 1- 1 ) Consequently, deconstructing into a linear

equation using the Dirac matricé%y“,y”} =n*" in flat spacetime, one can employ = 77,777

to obtain Dirac’s equation(iy“Dﬂ—m)l/J:O for an electron wavefunctiony in an
electromagnetic potential, , which equation Dirac first derived in [7] fori@é electron in a form

equivalent to(iy“aﬂ —m)l// =0, i.e., without yet usin@, - D, =0, +ieA,.

So to obtain the Lorentz force from a geodesicatanm in spacetime, we backtrack from
m’ =777’ to a linear metric element:

ds’ = g, d¥' dx - dé= g g* g'= g( dx ds/e)m*K ‘ox (d¢ ¢ )

=g, d¢dX+2(e m Adk ds( k& Jh g “A’Ads

which uses a canonical gauge prescription for paeeatime coordinates themselves, namely:
1
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dx* » dy” =dx'+ d{ é m A (2.2)

This is just another variation gf* — 77 = p“+eA andd, - D, =0, +ieA,. Indeed, it is easily
seen that if one multipliesls’ =(dx + df ¢ f A( @ ds/e )m’p in (2.1) through by
nt / ds, the result is identical to the canonicaf = 7z,777. Now, all we need do is apply a

variation0=5jfds to the linear element (2.1) and the Lorentz foratirally emerges as a geodesic
equation of motion right alongside of the gravdatl! equation of motion.

Proceeding with this derivation which largely giia that in the online [8], we first use
(2.1) to construct the number

dx* d¥x e dx e\
1=\/g,uv__+ 2_rnAT_dS+(_rJ g,quA y (23)

ds ds

which we then use to write the variation as:

0=0[ ds=3| di/ gjv%% € /5_+( FJ g, A A. (2.4)

Applying d to the integrand and using (2.3) to clear the d@nator, this yields:

Ozdj'fds:%jf dsf[ g ddxS dd%S +2 & e\—ds+( 3 g, A Aj. (2.5)

Dropping the %2 and using the product rule, whikuasing that there is no variation in the charge-
to-mass ratio — i.e., thaf(e/ n) =0 — over the path from to B, we now distributed using the

product rule to obtain:

dx* dx X dX dX @ % dx e A’
o —+ —+ — +2—% —+2—

o:J'fds Iw4s ds ™ ds ds ™ ds ds & f% ds.(2.6)
+(e/m)y*(5g, A A+ g,0 A A+ g A5 A

One can use the chain rule in the small variadon 0 limit to show thatdg,, =9,9,,0X and
OA, =0,A,0X . So the bottom line equalx’ (e/ m)z(aagw A K+ g0, A A+ g, maA”).
Likewise, we may recondense, (gwA”AV) =d,9, KA +g,0,AA+g, Ad, A via the
product rule. Therefore, the entire integral om Iblettom line contains a total derivative given by:
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2
Ifdx”(%j aa (gWA"A”)ds Ox7 ( j aaxi(g A(’A)‘izo. (2.7)

This equals zero, because the two worldlines iatgrat the boundary evemdsandB but have a
slight variational difference betweeh and B otherwise, so thatx’ (A)=Jx (B)=0 while

ox’ #£ 0 elsewhere. Consequently, the bottom line of (2e8ds out, leaving us with:

dx* dxX dd X' dx dX d %
0=| ds —+ —+ g, — + 2—e()' 2— 2.8
-[ [ s ds’ P ds ds ¥ ds ds O r'% i (.8)

From here, again usindg,, =0,9,,0X anddA, =d,A,0X", and alsae-indexing and using

the symmetry ofJ,, to combine the second and third terms above, wairob

_ B @ dx* dx do X dx @ a x
O—IAdS[ 0,9, —— i ds+29‘“’—ds_ds+25 —6 A;—d;- 2—”,]%\ 5 SJ (2.9)

Next, we integrate by parts. First, we use theodpct rule to replace
0., (dox / dg( dk/ dp=( d df5 % ,g( B P “k /d s, § “dx )k and likewise
(dA /1 d9o X =(d d};( ) ‘3()— Adl % . Butthe terms containing the total derivatives wanish

for the same reasons that the terms in (2.7) vedishs a result of the boundary conditions
ox’ (A)=0x (B)=0. As aresult, (2.9) now becomes:

0= dg o%'d,g PP VI P P ea /g_—zsi_@'_pff (2.10)
A % ds ds d d m ds

Applying the d/ ds derivative contained in the second term above {fieds:

dx* d¥ o X dg,, d% alA,
0=| ds| ox“0 -20X' g, — - 20 X —=—+ 20X° —6 —_— 25?—— 2.11
I [ % 4s ds ST ds ds G ds ( )

for the first time revealing the acceleratiddx’ / ds” in the second term above.

Next, we use the chain ruledg, /ds=0, g,( d%/ dt and dA,/ds=9, A( d%/ d to
rewrite the third and fifth terms aboveus obtaining:

a dx* dX o X df dx
5 oX a”g”VEE_ZJXyg”VF_ZJXUa”g‘“’_ds,_d
0=[ ds . (2.12)
A dx’

+20X° —a A ™ 20X J—a AU—

3
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In the bottom line above, we may rename indexeso in the last term, to find that we
may rewrte  Ox°9,A, (dxX'/ d9-5 %0, A( dk/ ds=ox” E( dxd): using the
electromagnetic field strength tensgy, =d,A —d,A,, whichhas now appeared as a result of the
variation. So the above now simplifies to:

B dx* dxX o X dg dx e dX
0= ds| ox“0 ——-20X'g, —5— 20 X0 ——+ X" —F, ——|.(2.13
IA [ 9w 4s ds ST <% gs ds m™ dj( )

Now we rename indexes so that e terms all contain the inde& , that is, so all of
these terms aréx“ . We then factor this out and interchange thé &insl second terms, obtaining:

(2.14)

By OO G d e d
a2 a9 Tgs g Y e g T Tm 0 Tas )

B
O:IA dsdx“[—Zgw—ﬂ? g

For material worldlines,ds#0. Likewise, while ox’(A)=Jx"(B)=0 at the boundaries,

between these boundaries where the variation océufs# 0. Thus, multiplying through by %2,
for (2.14) to be true the integrand must be zend,s0 we have:

2
X 1 o dk o o dk dk, e dx (2.15)

02700 "3 5% % T35 g %O e e T ¢

Now we move the acceleration term to the leftit $pé term withd, g,,=30,9,,+30,9,
into two halves, rename some indexes while usimgsymmetry ofg,,, and finally multiply
through byg® and then raise indexes. This all yields:

d® _1 g

X dx = e dk
g =
as© 2

_Cpp X
ds ds m 7 & (2.16)

(0,9,,-0,9,-9,9,)

But of course, we recognize that the Christoffehbgls -7  =1g* (aagw -0,0,, —0, gaﬂ).
As aconsequence, the above reduces to:

2 Y
dxﬂ:_rﬁ d dx e, dX

ds W ds ds m 7 df

(2.17)

In the presence of gravitational and electromagnigids, this contains both the equations of
gravitational motion and the Lorentz force law,abéd via the geodesic variation of the canonical
invariant metric length element (2.1). In the afegeof gravitation, i.e., fog,, =7, over the

spacetime region being considered tlﬁlﬁ§v =0, this reduces to the Lorentz force law.
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As a result, we have proved that by using Weyl'socecal prescription in form of
dx* - dy# =dx + d{ ¢ r)1 A from (2.2) to define the linear metric element by

ds” = g, dy“ dv” as shown in (2.1), the Lorentz force law of eledymamics may indeed be

obtained from a geodesic variation confined exellgi to the four dimensions of ordinary
spacetime geometry.

3. Einstein’s Equation and Maxwell’'s Equations

Because the metric lengthls” = g, dy“ dy" of (2.1) under a variatiomzdjfds

simultaneously provides a geodesic description ofion in a gravitational field and in an
electromagnetic field, and because the prescriptigh—. dy* = dx'+ d{ ¢ m A is no more

than a variant of Weyl's gauge prescriptiops — 77 = p* +eA in momentum space and
d, - D,=0,+ieA, in configuration space and leads directly as wellDirac’s equation
(iy“Dﬂ —m)l,l/ =0 for an interacting fermion, this may fairly be aeded as a classical metric-

level unification of electrodynamics with gravitati using four spacetime dimensions only. But
the equations of motion in a field are only ha# thatter. We also need to know the equations for
the fields themselves in relation to their sourcéhus we now ask, can the field equation
-«T,, =R, -3 g, Rwhich specifies the gravitational field, be shawrrontain in some fashion,

Maxwell’s field equations for electric and (the abse of) magnetic sources?

Because the Lorentz force (2.17) is obtained ligtidg or contracting the differential
coordinate elements vidx” - dy* = dx'+ d{ ¢ m A without in any way altering the metric

tensorg,, as is done, for example, in Kaluza-Klein theonye anight incorrectly conclude that

the electromagnetic interaction does not affectasfi@e curvature as represented by the Riemann
tensorR’,,, with the field dynamics specified byxT, =R, -3 g, R. However, one must

keep in mind that the Reimann tensor may be defureedR ,, V, = [a;v ,a;y] V; as a measure of

the extent to which the gravitationally-covariaetigativeso. V, =0 V, - re .2V, operating on a

vector V, do not commute. Likewise, the field strength teng,, may be defined via
ieF,V, =[ D,,D, |V, as a measure of the extent to which the gaugerieowaderivatives
DV, = (6y + ieA) V,; do not commute when operating on this same véttorindeed, this latter
definition results inF,, =D, A, =3, A, +i¢[ A, A for anon-abeliangauge theory where

[ A.A,]#0, which simplifies toF,, =3, A, for an abelian theory such a electrodynamics in
which [ A, A, |=0.

Therefore, if we apply Weyl's canonical prescriptito the gravitationally-covariant
derivatives by employing:
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0N, =0V, —T,V, » D,V,=(0,+ied) 4 -, Y, (3.1)

which is the same prescription that in the fodwt — dy* = dx' + d{ ¢ m A of (2.2) yielded

the Lorentz force law in (2.17), and if we then tisese derivatives (3.19 canonicallydefinethe
Riemann tensor as:

R Ve =[ D, 0, ]V, (3:2)

Buv

it can be expected as a consequencefV, =[ D,, D, |V, that the electrodynamic fields,,
and potentialgy, will appear in the Riemann tensor and thereforetha field equation
-«T, =R, -3 9, R Further, becausg,, =D,A, encompasses bod#belian and non-abelian

field strengthsthe gravitational field equations usifg,, = R, and R= K, can be made not

only to govern abelian electrodynamidsut also non-abelian such as weak and strong

interactions So let us expressly calcula® ;, using (3.2) and see what results,

We first calculate:

D;u (D?ﬂvﬂ) = (av + ieA;)((aﬂ + ieAA) \é B raﬂﬂ \4)

(3.3)
. (0, +ieA )V, —T,\, ) =175 ((9, + ied) V=T, ¥)

as well as the like expression interchangmg- v, then subtract the latter from the former and
reduce using index renaming and the symmetrieq@fobjects in the resulting equations, as
needed. Many terms cancel, and with the ve¥ostill attached on the right, what remains is:

WWWEF%DJ%=m(%%%D(QV)

a a T a T a (34)
=(=0,T7 5 +0,I%; +T7,, 17, =T %, +ied" F, )V,

This indeed contains a non-abelian field strenggh=0,, A, + ie[ A, Aﬂ that becomes abelian
in the event[Av, A)J 0. With the group structure constant&™ of if T © = [T T } for the
non-abelian generatof&® explicitly displayed,F?,, =9, A%, —ef®[ A%, A, | is a fully real
object. Thus, with some index renaming and lowéoecbvariant form, the Riemann tensor is:

Raﬂ,uv ﬁ,uv - gravrrﬂp + g{ra,urrﬂv + grrgﬂvrrqu - grrgﬂ,urrav - 'eﬁb E/ (35)

The terms containing Christoffels are no differénaim the usual. But the new term
-ieg,,; F,, resulting from the same gauge prescriptign— D, =0, +ieA, that likewise brought
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the Lorentz force law into (2.17) changes sevespeats ofR ;. First, while for the last two
indexesR,;, =—R;, as usual, for the first two indexd$, , #-R;, , due to the presence of
the symmetricg,, next to the antisymmetri€,, in g,,F,. Thus,R,, isnon-symmetridn
a, 3. Second, noting that?® , is in fact real when thé **° are accounted for, the teriey,, F,
provides anmaginaryaspect toR ., , so that overallR, ,,, is now acomplexobject. Third, as a

consequence of both these matters,réa part of R ,,, has the usual symmetries, while the
imaginarypart has the mixed symmetry gf;F,, .

It is readily seen from (3.5) after some re-indgxihat the Ricci tensor:
R,=KR,,=-0,",+0,[", +[°, ", -r°,rq,+ieF, (3.6)

is likewise non-symmetric, with the usual, reahggational terms being symmetric and the new,
imaginary electrodynamic term being antisymmetrig/iv . Finally, becausd-“_ =0, the Ricci
scalar is the usual:

R=g"R,=-d"0,M",+ §o,r,+ gre, ri, - gre,ro, (3.7)
with no residual terms from electrodynamics.

Using (3.5) in the second Bianchi identity wittagitationally-covariant derivatives only
(the usuald.,, not D, ), the Christoffel terms will zero out as usuaba®sult of the Riemannian

geometry, and all that will remain is the fieldestgth in the form:

9,R,

o' B

v +a;l1 RaﬂVU +a;v F\yﬂﬂﬂ =" iﬁ”ﬂ (a;a I;:Iv +a;ﬂ % +a;v Eﬂ) =0 (3.8)

It will be seen that this imaginary part of thigmdity is synonymous with Maxwell's equation for
vanishing magnetic charges.

Using (3.6) and (3.7), we may also form the cosmariant field equation:

KT =R" -2 "R
:_gaﬂgrvaaraﬂv+ gap gn/avralm_i_ g‘fll g’vrﬂﬂaraﬂv_ gﬂ gl/rﬂwraﬂa+ ieE’ (39)
+3979"0,M%, 39" g 0, 3 o d'T7,. g +3 § ¢TI,

This means that the energy tensor also becomesmpler object, with a real aspect that remains
symmetric and is gravitational and an imaginary @sp that is antisymmetric and is

electrodynamic. Of course, the Bianchi identity (3.8) contracclsatg(R‘" -2 9" R) =0 which

implies thatd., T =0 is locally conserved and which is why the fieldiation connects-xT”
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to R” -5 g” R. So when we takd.,T” =0, we know that all the Christoffel terms will zero
out, and what will remain is:

k0, T” =ied ,F" = ieJ =0 (3.10)

Consequently, we see that the imaginary part ofdbal conservation law for the energy tensor
also contains Maxwell's equation for vanishing éliecsources,J” =0.

Overall, we find that if we use the canonical gaegeensiond,, - D, =0, +ieA, to

Buv Va
free field equations indeed become embedded innaginary, antisymmetric aspect of the
gravitational field equation while the real aspectthe gravitational field equation remains
symmetric. We shall not at this moment, examire ribxt logical question as to a geometric
understanding of non-vanishing electric sourdész0. Certainly, we expect that using the
canonical extensiod., - D, =0, +ieA, for the derivatives in (3.8) and (3.10) may plaspk

in exploring this question.

obtain the Riemann tensor via the definitigfi;,, V, E[ D,, DJJ V; of (3.2), Maxwell's source-

4. Conclusion

It has been shown how the Lorentz force law maylita@ined from a geodesic variation
confined exclusively to the four dimensions of aatly spacetime geometry as a consequence, at
bottom, of simply applying Weyl's gauge prescriptid, - D, =0, +ieA, to the dilate or

contract the spacetime coordinate elementshdy—. dy* = dx'+ d{ ¢ m A. It has also been

shown how this same prescription embeds Maxwelligrae-free equations into an imaginary,
antisymmetric aspect that is added to the grasmati field equations. Studying sources in
Maxwell theory will likely require continuing to aty 0., - D, =0 ,+ieA to the second

Bianchi identity and its contracted variant thdates to the local conservation of the energy tenso

As a consequence of what has been shown herey ivelbbe possible to unify gravitation
not only with electrodynamics — but becauds® in (3.9) encompasses a non-abelian field strength

F2,=0,A%, —efab°[ A Aﬂ — with the remaining weak and strong interactiaaswell, all

consistently with quantum mechanics because theomeal gauge prescriptions
p“ » = p'+el andd, -~ D, =0, +ieA, and nowdx" - dx* = dx'+ d{ ¢ M Aremain

at the root of the entire development. The maiastjans that would remain following such a
unification, would be as to the specific non-abelgg@auge groups that operate physically at any
given energy ranging up to the Planck mass, and thewsymmetry of those groups becomes
broken at lower energies down to the phenomendbgic group
SU@B). x SU(2), x UQ), - SU3).x UQ1),, and the fermions on which these groups act. The
author has previously published on these questam$even shown how the three generations of
quarks and leptons originate, and why their leftadlprojections engage in CKM mixing, at [9].
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