Chapter 11

ASYMPTOTICS OF UNIVARIATE EXTREMES

Introduction

This chapter can be divided into two different parts: the first (laws of large numbers) which
expresses, in a formal way, the intuitive ideas relative to the behaviour of sample maxima and
minima and the way they converge to some values (finite or infinite) and the second (asymptotic
distributions of extremes) dealing with the behaviour of extremes in large samples, which is, in
fact, the basis for the development of the whole book. Although the first part is of almost entirely
theoretical importance only, as its practical application is essentially nil, it helps to pave the way for
the following developments. Practically speaking hardly anyone will use the laws of large
numbers, but many of the practical applications in which extremes have to be taken into account,

such as the design of dams, the study of fatigue fractures, etc, are based on the asymptotic
distributions of extremes.

General introduction to the laws of large numbers

We say that a sequence of random variables (X, k = 1,2,...} verifies a law of large
numbers if there exists a sequence of functions (@]} (possibly one function @), a sequence of
constants {ck}, and a finite constant ¢ such that ¢x (Xk, ck) B, ¢ as k— o; ¢ can

evidently be taken as zero.

The interpretation of this definition is easy : it means that for large k, @y (Xk,ck) isclose
in probability to ¢, i.e. , given € (>0) and 80 <d<1) we know that for k>N (e , ) we
have

Prob {c+€ < @y Xk,cx)Sc+€}21-9,



thus obtaining an approximate evaluation of the values of Xy for large k. How good the
approximation is depends on how large k must be, for small € and §; sometimes the

approximation is bad even for very large k, in real-life conditions. Be that as it may, it gives a
deterministic approximation that may be useful for rough calculations.

Such a large framework, depending also on the choice of {@}, has not aroused interest in
itself and, until now, studies have specialized in two forms of @i: the additive and the
multiplicative laws of large numbers, denoted ALLN and MLLN respectively.

The sequence {Xy] satisfies the ALLN if there exist {ck} such that Xy - ck B, 0.

Evidently the ck are not uniquely defined because if (e} — 0 also Xix—(ckx + €k) B) 0.

If h(x)=o+Bx(B=0) isalinear transformation then h(Xy) - (a + B ay) B, D i&;
X = h(Xk) also satisfies the ALLN if with coefficients 3 x = ot + [ a .

The sequence {Xk} satisfies the MLLN if there exist {ck # 0} such that Xix/cx B 1. It
is evident, also, that ck is not uniquely defined, as X/ (ck / Mk) f, 1 if Nk(>0) —= 1.

Evidently (B Xk} (B # 0) satisfies the MLLN with (B cy}.

Putting aside the case where {ck} oscillates permanently in sign, we can suppose that we
have cg ultimately (i.e., forall k > ko) positive or negative. If cx is ultimately positive we
candefine Cx=1 if cx<0 and Sx=ck if cx>0 whichissuchthat Xx/Sx 5 >1;

also if ci is ultimately negative we candefine cy=-1 if cx>0,Cx=ck if cxk <0
which is such that X/ ¢ f, 1; we can take it that we always have ¢k >0 or cx<0. But

if Xg/ck _I_), 1 and cx <0 then (— Xy) (-ck) _p., 1, and so we can — with a change of sign

for Xk if needed —always take ckx >0; an alternative was always to take cx>0 and have
Xk /ck _P, -1 or Xyg/ck f, 1. Note that the choice between cx >0 and cx <0 is easy. If

MLLN is valid with cx >0 we have, Fg(x) denoting Prob {Xk <x} , Fx(0) = Prob {Xk <0}
< Prob {(Xx <ck(1-€)} = Prob {Xx/ck-1<-€} £Prob {IXxk/cxk—-1l>€e} >0 and
Fx(0) - 0O; in reverse, if the MLLN is valid with ¢y <0 we have Fg(0) = Prob Xk <0} 2
Prob(Xk <ck(1-€)} 2Prob {IXx/cxk-ll<e} = 1. Fx(0) >0 and Fg(0) » 1 are the
indicators for the choice of the sign of ck . Fx(0) - 0 means that {Xg >0} has a probability
close to 1 when k is large and so Xk can, then, be considered practically positive; dually, if
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Fk(0) > 1, Xk, for large k, is practically negative. This frame is sufficient for the study of

maxima, minima being dealt with by decreasing transformations.
Let us obtain some simple consequences :

Dif Xx 20 @.e., F(0)=0) verifies the MLLN, with coefficients ck >0, then log
Xk verifies the ALLN with coefficients log ck ; more generally if {Xy} verifies the
MLLN with c¢cx>0 then log max (cx, Xk) verifies the ALLN with logck as
coefficients; conversely, if Xy verifies the ALLN with coefficients ¢k then
exp Xk (>0) verifies the MLLN with coefficients exp cx( >0);

2)if {Xk} verifies the ALLN, with cx> 0, then {Xy} verifies the MLLN with the
same coefficients ck : it ts a simple consequence of Xk —cx =cx Xk /ck-1) E, 0

if limcg >0; alsoif cx <0 and limcg <0 the same happens, (— Xk) and (— Ck)
are in the previous conditions and so (-Xg /—cx) = 1.

Let us now obtain the necessary and sufficient conditions to have ALLN for {Xk} with
coefficients {ck} and the MLLN for { X} with coefficients {cy > 0}.

The condition Xy —cy _I_), 0 is equivalent to Prob{IXx -ckl<e}) > 1, Ve >0,

ie,Fx(ck+e€)—Fx((ck—€)) =1 andso Fx(ck+€)—1 and Fx ((ck—€)") = 0; as

Fr((ck +€)) < Fx(ck—€)< Fx ((ck—€’)") =2 0 for €’ <e we get that Xk—ck_?_, 0

implies Fx (ck+€) =1 and Fg (ck—€) — 0; the converse is immediate and so ALLN is
valid iff Fyx (ck+€) =1 and Fy(ck—-€) — 0,V € > (. By the same technique we see that
the MLLN is valid (with cx>0) iff Fx((1+e)ck)—>1 and Fy (1 -€)ck) -0, Ve >0.

The laws of large numbers (LLLN) for extremes

It is intuitive, at least in the i.i.d. case, that the maxima and minima of a sequence of samples

should converge to the right—end point w (i.e., F(x)<1if x<w,F(Xx)=1 if x2w) andto
the left-end point w (i.e., F(x) =0 if x < w,F(x)>0 if x>w).



k
Let us suppose W <+ o . Then Prob {Imax {X;} -wl<e}=1-FKk((w—-€)") by the
1

definition of w, which also implies FK (W-€)~) = 0 and so max {X;) B, w . Suppose,
k

now, that w =+ co; then Prob { max {X;} > M} =1 - Fk (M) - 1. In both cases we have
1

k k
shown that max {X;]) E, w . In the same way we can show that min {X;)} E, w (finite or
1 1

infinite). These results are independent of the knowledge of the distribution function F(x),
whether it is continuous, discrete or a mixture of both. They were shown in the proper (i.e., with
zero probability at the points + oo if we are dealing with the complete real line) and non—
degenerate (i.e., a random variable not taking some finite value with probability 1) cases; they can
be extended to these situations but there seems little point in doing so.

But, with some knowledge of F(x), we can seek some deterministic sequences, essentially

for w =—o and w =+ oo, that in some way ‘measure’ the type of increase (for maxima) and

of decrease (for minima) of i.i.d. samples.

Although we could try to use a convenient sequence of increasing or decreasing functions,
we will only consider the situations leading to an ALLN or MLLN. As stated, we stress that we
are dealing only with an i.i.d. situation with distribution function F(x), the increasing sample being
denoted by {Xk,k =1,2,...}.

k
We say that {Xk} verifies the ALLN for maxima, or that max {X;} verifies the ALLN, if
1

k
there exist constants ci (not uniquely defined, as said before) such that max {X;} — cx _1'; 0.
1

From the above we see that if w <+ o we can take cx = w. Let us consider the case W = + oo,
We have ALLN iff Fk(cy +€) =1 and Fk (cx—€) — 0: this will be shown to be equivalent,

‘when W =+ o0, to = Py — 0 if x>0.From Fk(cx+e)—> lor klogF(ck+€)—0

I - F(y)
as __l::glu — 1 when u->1 weget k(1 -F(ck+€))—> 0 and FKk (cx~€) > 0 is

equivalent to k(1 — F(cx — €)) — +oo. Note that we can always take ci as non—decreasing,
substituting cx by max (cy, ..., c) : it is evident that if FK (cx +€) — 1 also Fk(max (cy, ... ,
ck) + €) — 1. We need to prove, now, that Fk(max (cy, ..., cx) - €) — O also : as Fk(cg —€)
-0, for k>N(@) (8>0, fixed) we have FK(ck—e) < 8. Takethen k> N(8) and we have
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K N(@) k
Fk(max (c1, ... , ck) — € ) =max ( F¥(cj—€)) = max (max FK(ci—¢€), max  FK(cj—e)).
1 ] i=N@)+1

. N(©®)
But Fk(ci—e)<Fi(ci—e)< & if i>N(8) andas N(J) if fixed max Fk(ci—€) >0
i=1
N(3)
and so for k>N’(@) we have max F¥(cj—€)<d.
1=1

Consequently for k > max (N(3), N’(8)) we have F¥(max (c1,..,ck)—€) < & and
Fk(max (cq, ... , ck) — € ) = 0- We can thus suppose ck Sﬂck“ and ck — + oo. Situations like
guaranteeing that for k > N(8) some event or property happens will be described “as for large k”
— its formalization is made as previously.

Then for y large we can obtain k such that cx <y < cks1 andsowe get 1-F(ck+1) 2
1-F(y+m) and 1-F(ck+1-1) € 1-F(y-mn) so that

1-Fy+n) _ 1-F(ck+n)
1-F(y-n) 1-F(cks1—-M)
1 -F(y+m)

we see that =0 asy — oo,
1 -F(y - m)

and as k(1 = F(cx+€)) > 0 and k(1 -F(ck—€)) — o0

Let us now prove the converse, also introducing one way of calculating the {ck}. Let us
define cx such that F(c;) <1-1/k <F(cyx) and so cx = o= ; {ck} is non—decreasing. From the

. - 1 -F(y +
condition 11 _FI(:)E;)X) — 0 as y — oo or under the form b+n) —0as y—o oo

1 -F(y-m)

1-F
(used above) we see that for € >1n >0 we have k(1 —F(cx+€)) < 1= l(:?ék-;e) — 0 and

1 — F(ck —
so k(1 —F(cx+€)) — 0; also k(1 — F(ck—€)) = Ck=€) _, 4 e Thus we have

1-F(c))

shown that when W =+ oo the ALLN is valid iff —: -_Flg{;) X} _,0 as y—» oo and that one

system of coefficients {ck} is given by F(c;) <1 - 1/k <F(ck).

As a summary we have seen that :

The ALLN for i.i.d. maxima is valid either when W < + o or w= + o iff



I - F(y + x) .
1= F(y) —0 if y >+ e forany x>0.

k
It is now easy to obtain the MLLN. If 0< w <+ oo itis obvious that max X;/ w .1.3., L.
1
k P _
Consider then the case w =+ o0, Then max X;/cx -5 1,(ck >0), as w =+ oo, is
1
k

equivalent to max X:'/ck — + o where X* =max (0,X) and so equivalent to the ALLN for
1

X + i
max {log X'} —logexk = 0.
1

Denoting by F*(x) =Prob{log X{ < x},ie, F¥(x)=0 if x<0, F¥(x) =F (%) if x20

k _ F+
the conditions for the ALLN and for obtaining the {ckx} for max {log X'i"] are 3 " FF(E(;')&
| iy

— 0 as y - o and F¥(log c:) <1-1/k £F*(log ck) or, returning to F(.), and substituting eY

1 — F(y . x)

and eX by y and x(>1), T F(y) —0 as y— oo and F(cE)Sl—]kaF(ck).

As a summary we have seen that :

The MLLN for i.i.d. maxima is valid either when 0 < w < + oo or when w =+ oo

i IIH-FI(*‘);Q)” =0 if y—>+o forany x>1.

The conditions on F(x) can be written as conditions on S(x).

For minima we can obtain the ALLN and MLLN from the previous results using the fact that
k k

min {X;} =— max (- X;}, or directly.
1 1

Thenif w >—oo the ALLN is valid and also if w >0 the MLLN is valid. Consider now
the case for w =—oo; the ALLN is valid iff F»__, 0 as y & —o with x> 0; one system

F(y+x)
of coefficients is {cx} (non—increasing) given by F(c;) < 1/k £F(ck); the MLLN has no meaning



if we continue touse ¢k >0 if weacceptitas cx <0 thenitis valid iff Wf(y%x_) — 0 as

y = —oo, x> 1; 0ne systemof {cg) (ckx <O0)is given by F(c;) < 1/k < F(cy).

The statements for the ALLN and MLLN for i.i.d. minima are the conversion of the ones for
i.i.d. maxima with the substitution of w by w and I — F(x) by F(-Xx).

The initial study connected with LLN is the one by Dodd (1923), using different
terminology; the modemn aspect appears, with unnecessary restrictions, in de Finneti (1932) and

Gnedenko (1943); the essential aspects are contained in Galambos (1978) and Tiago de Oliveira
ed. (1984).

Some examples concerning the LLN for extremes

Let us now give some examples that can clarify for maxima the border between the non—

validity of the LLN, the validity of ALLN (and consequently of the MLLN if w > 0) and the
validity of MLLN.

1. Consider, as the first example, the uniform distribution in {a,b]. As w =b the ALLN
for maxima is valid but the MLLN is valid only if b > 0 ; for minima as w =a the ALLN is valid
and the MLLN is valid with cx=a if a #0, if we accept the possibility of ckx <0.

We will now consider cases where w =+oco(and w =- o).

2. Take as the second example the standard exponential distribution E(x) =0 if x <0,

Ex)=1-¢eXif x20 (Ww=0, w =+ o0 ). As lgf%’(;')") =eX#0 the ALLN is not

valid but the MLLN is valid because }__EE%")X) =e¢(x-1)y 50 when y > +o with

x > 1 (with cx =log k); for minima the ALLN is trivially validas w =0 but the MLLN is not.

X
3. Consider now the standard normal distribution with N(x) = leTi I 22 gt

(W =—oo, W =+ o0), which is symmetrical and so we need to deal only with maxima.

We have



+ oo

J 1 e-t2/2 4y

1- N(y+x) y+ X V2nm c_(y+x)2f2
- N(y) = ~ 0 -0
- y +ioa 1 e—y ,2
I Ny e-12/2 dt
y 2 x

and the ALLN is valid; also MLLN is valid because

+ oo
1 2
—— e-1“/2 qq
1- N(y . x) y.J-x V2 6—3232/2
- N(y) =~ ~x—5-—0
—_ y 400 , e-Y2/2
y V2=

because x > 1; for ci = N*l(l — 1/k) we can use the easily obtained approximation € =2 log k
using k(1-N(Cx+€)) > 0,k(1 =N (Ck-€)) > +o and I"'Hopital’s rule.

4. The geometric or Pascal distribution F(x)=0 if x<0,F(x)=1-e9 for x>0
(with [x] denoting the integer part of x) is a discrete distribution with jumps at the
integers x =0,1,2,..., w =0, w =+ oo (sometimes written as Prob {X =m} = (1 - p) p™-1,

with 0 =—log p).

1 —F(y +x) efly+x]

Then = which for x =1 takes the constant value e—® and so the
1 - F(Y) C_GIYI
. : - -0y . x]
ALLN is not valid but——FQ-%) _ ¢ <eO{-Dy-1} 50 as y— o andso
I - F(y) e-0ly]

the MLLN 1s valid.

Let us consider three examples connected with the asymptotic distributions of extremes, to
be dealt with in the next sections: the Gumbel distribution and the Fréchet distribution for maxima,

and the Weibull distribution for minima. They seem to be, in applications, the most important
ones.

5. For the reduced Gumbel distribution we have A(x) = exp(—e%), W =—o00, W =+ o0,
1 - A(y + x) _
1-A(y)

valid; but the MLLN is valid because ——20X)
1-A(y)

Then for maxima as e X et Y(X*1) 5 eXx and the ALLN is not

— 0 wheny — 4+ and x > 1. The
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coefficients are cx =-log log kk—l or Ck= logk; this result could be expected because, for

A
large X, A(x) and E(x) behave similarly. For minima we have _AY) — 0 as y— —oo,
Ay + x)
x >0 and so ALLN is valid, a set of coefficients being cx = — log log k; accepting cx <0 the
A . .
MLLN is also true as ;\-—(A,)—S —0 as y—-oo if x> 1:the coefficients cx (<0) may be
: y. X

the same.

6. Consider now the reduced Fréchet distribution for maxima ®g(x) =0 if x <0,
1 - Dy(y + x)

Do(x) =exp (—x%), ¢ >0, if x >0 The ALLN is not valid as = lasy — +eo
1 - Du(y)
1-® .
(x > 1), noris the MLLN as oy - X) — x™® as y — + o0 (x > 1). For minima we
1 - Dg(y)
Lon} . .
have Do) —0 for y—0 andsothe ALLN is valid, a system of coefficients being
Dy + x)

" ;

ck = (log k)~1/%; here the MLLN has direct meanin g and is valid because we have —u(}-,)— -0
Do(y . x)

as y — 0%, x> 1, the coefficients being the same.

7. For the reduced Weibull distribution for minima Weg(x) =0 if x <0, Wg(x) =1 -
1 — Woly + x)
1 — We(y)

and so only if >1 the ALLN is valid with coefficients cx = (log k)!//®; the MLLN is

. 1 -W : . .
valid as oly) —0 as y—e with x> 1, the coefficients being the same. For
1 - Wgu(y . x)

Waly)
Waly + x)

exp(—x®) if x20, a>0, we have

= exp {y*—(y+x)%} =0 iff oa>1,

minima we get — 0 (x>0), and so the ALLN is valid with coefficients

ck=(- log(l—l/k))” @ or more simply ci = k-1/@; the MLLN is not valid as _Waly) — x—a
Waly . x) |

as y = 0% (x > 1). Notice that W](x) = E(x), the standard exponential distribution, and so the

results could be expected. |

Note that the non—validity of the MLLN in the last two cases is associated with the attraction

conditions for the Fréchet and Weibull distribution of extremes, as will be seen in one of the next
sections.



Although we have analysed — as an exercise — the ALLN and MLLN in each case, part of

the conclusions could be reached if we used the relations between the LLN given in a previous
section.

8. Consider now, finally, asa countér-example, the distribution function F(x) =0 if
x<e F(x)=1-1/logx if x2e;ithas w=¢ and w =+ oo,
For maxima as 11_—FI(:)EY+) %) — 1 when y — + o (x >0) the ALLN is not valid as well

as the MLLN because ]1 __Frf{ y.)x) — 1 when y — +o0 (x> 1). Forminima as w =e¢ the

ALLN is mivially valid as well as the MLLLN.

The asymptotic distributions of extremes — some examples

The results that are contained in this and the following sections constitute the initial core of
Statistical Extremes Theory and are the basis for many applications. So we will proceed at a
slower pace, with considerable independence from what was said about the LLLN.

As has been said many times, the distribution of maxima and minima in a i.i.d. univariate
sample (Xj,..., Xk) is given by

k k
Prob{max {X;} < x} = FK(x) and Probfmin {X;} <x} =1-(1 - F(x))k;
1 1

for survival functions (which satisfy F(x) + S(x) =1) we have

k k
Prob{max {X;} > x} = 1 — (1 — Sx))* and Probfmin {X;} > x} = Sk (x).
1 1

From these formulae we see that F(x) and S(x) play symmetrical roles for maxima and
minima.

In the case where F(x) or S(x) are known, we could proceed to a classical probabilistic
and statistical analysis or, if F(x) or S(x) are known to be continuous, symmetrical, etc., in some
cases we could have recourse to non—parametric methods. But, in many cases we do not even
know if the observations come from some known parametric family of distributions and, in



general, we are not under the i.i.d. hypothesis. So we have to resort, in practical applications, to
asymptotic results of the type: if for some ({Fy(x)} attraction coefficients {Ak, O > 0} exist
such that Fi(Ag + Ok x) 1‘; L(x), with L(x) continuous (and so uniform convergence), as

y-A

»

Fr(Ak + 8k x) is close to L(x) we will take L ( ) as an approximation to Fi(y), (A, 3’)

not being necessarily (A , 8y) to allow for a better fit in statistical analysis. It must be said, at this
preliminary stage, that the i.i.d conditions are not essential and can be weakened — as a rule the
margins of the sequence {Xji,...,Xk,...} should not be very different and the correlation/
association between X; and Xjmust wane out as the distance between i and j increases; two
examples will shed some light on this question.

k k
As the relation min{X;} = — max{-X;} is true we can deal only with maxima or with
1 1

minima and translate the results if necessary; we will deal, almost always, with maxima.

Thus, our purpose now is to obtain limiting (proper and non—degenerate) distributions of
FK(Ax + 8y x). When the asymptotic or limiting distributions were degenerate — Laws of Large

Numbers — the three previous examples (5., 6. and 7.) correspond to the three possible limiting
distributions and the last one to a case where there does not exist a limiting distribution, as we shall

see later. Let us say, as will be shown in the next section, that if L (x) 1is a possible limiting

distribution for maxima then L(x)=1-L(-x) isa possible limiting distribution for minima; but
that the same distribution can’t have the corresponding distributions L and L , as seen in some

examples below; also it can happen thatone of L or L does not exist but the other one exists

or, even, that both do not exist. Let us finally recall that (Ag, dx) are not uniquely defined: by

Khintchine’s convergence of types theorem, (Ax, 8x) and (X; , 5;, such that (l; -A)/0 — A
and 5;/8;( 3 B(-o<A <+, 0<B<+x) as k = oo, lead to limiting distributions of the
same type, respectively L(x) and L(A + Bx) (and conversely), the sets [(11:E s 8;)] being thus

equivalent for limiting purposes; in many cases we have A =0 and B = 1, the total equivalence.
For Khintchine’s convergence of types theorem see the Annex IT to Part I.



A calculation facility is convenient: as for maxima FK (A + 8 x) f, L (x) is equivalent to
klogF(kk+8kx)——)]0gf, (x), as F(Ax + Ok x) —»1 if 0<L (x) <1, and %g_ll — 1 as
u — 1, the convergence relation FK (g + 8xx) ¥ L (x) is equivalent to k(1 — F (Ag + 8k x))

——logL (x); also 1-(1-FQy +8&x))* ¥ L (x) is equivalent, as F (Ax + 8k x)) = 0, to
k F(Akx + 8k x) = —log (1 — L (x)) in the region 0 <L (x) < 1. Those equivalent convergence

relations (which are not uniform)  k(1- F(Ay + §¢ x)) > —log i(x) and kFQg+ 8 x) o
—log (1-L (x)) are very convenient for calculations; corresponding relations can be written for

survival functions.

The three reduced limiting distributions for maxima (L(x)) are W¥qg(x) =exp{—(-x)®} if
x <0 with o >0, Wu(x) =1 if x 20 (Weibull distribution), A(x) = exp(—eX) (Gumbel
distribution) and ®o(x) =0if x <0, Wo(x) = exp {—x"2} if x 2 0 with o > 0) (Fréchet
distribution); the corresponding distributions for minima L (x)) are Wg(x) = 1 — ¥u(—x),
1 - A(=x) =1—exp {-eX} and 1 - ®y(—x), with the same denominations. Notice that the
following stability equations will be shown: Lk(x) = Loy + Bk x) and S k(x) =S (ox + Bk x)
for convenient (ay , Bk). Note that (k41 + 8k41) are, in both cases, also attraction coefficients by
Khintchine’s convergence of types theorem; this is left as exercise.

We will now give some examples that lead to some of the distributions above : note that each

of L (x) or of L (x) is a limiting distribution for itself, as will be seen in some examples. All

these examples will have a full justification in the next sections.

1. Take F(x) = A(x). Then FK(Ay + 8 x) = Ak(Ay + 8 x) = A(Ax + 8k x — log k) = A(x)
when Ax=logk and & =1 andso L(x)= A(x); A(x) is thus stable for maxima. Recall, once

more, that equivalent coefficients could be used; in general, we will try the simplcr and more
manageable ones.

Suppose we are now dealing with minima of Gumbel distribution, we should have
k A(Ax + & x) = —log (1 - L (x)) and it is easy to see that if Ax=—loglogk, 8= 1/logk

then 1 — (1 — F(Ax + 8k x))k - 1 — A(- x) . What is important is the behaviour of the right tail for
maxima and the left tail for minima, and they can be very different which is not the case: note that
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for x >0 the ratio of the right tail to the left one is (1 — A(x))/A(=x) = 1 as x = + oo; only

when this ratio is 1 the distribution would be the pair L (x)and L(x)=1- L (x); if the limit of

the ratio is ¢(0 < ¢ < +o0) then L and L would be connected in the same way apart from a

power transformation.

2. Consider the exponential distribution:  F(x) = E(x) = W1(x) where E(x)= 0 if x
<O0,Ex)=1-e> if x20. As Fk Qg +8kx) ¥ L(x) is equivalent to k(1 — F (Agx + Ok x))

—-log L (x), we must have ke M 8 x — _ logi (x) when Ag + 8k x > 0; a solution is
Ak=logk, &=1 and L(x)= A(x).

As far as minima are concerned, we should have k(1 — e-A, =9, x) — — log(1 — L (x))

for Ax + 0k x > 0: taking A =0, 8k = 1/k we get L (x) = E(x) = Wi(x) and the exponential
distribution is stable for minima.

3. Take now the Pareto distribution: F(x)=0 if x<1,Fx)=1-x"% if x> 1, with
a > 0. To have Fk Ay + 8k x) > L (x), we must have k(1 = F(Ag + 3k x)) = k(Ag + Ok x)~ ¢ —
~log L(x) when Ak +8k x > 1: a solution is Ag=0, 8 =k!® and the limiting distribution is
L{x)= Do(x).

1
(A + 8k x)™
if we take Ax=1, 8 = 1/ok we get L (x) =E(x) = Wi(x), the exponential distribution, which

For minima we must have k(1 —

)= —log (1 - L (x)) when A + 8k x>1;

is a Weibull form for minima and not a Fréchet one.

4. When we consider the uniform distribution in[0,1], F(x) =0if x<0,F(x)=x if 0
<x<1 and F(x)=1 if x21, theconditionis k(1-Ax—8xx) = —log (1-L (x)) when
0<Ak+dx<1;taking Ak =1 and 8= 1/k weget L (x)=¥j(x)=e* if x<0, Yix)=1
if x>0, i.e., the Weibull distribution for maxima.

For minima we should have k(Ax + 8k x) = —log (1 - L (x)) when 0 <Ag +dxx < 1

which is obtained with Ax =0, 8k = 1/k and L (x) = Wi(x), the Weibull distribution for

minima. Here situations are in correspondence because the uniform distribution is symmetrical
about the mid—point 1/2.
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We could study more cases of classical distributions but it does not seem necessary except
for the normal, the logistic being a simple exercise. As seen, (A , 8y) were given with a hint about
the way we could have arrived at them; the standard techniques will be explained in the next
section.

5. Consider now the standard normal distribution function N(x). It can be shown very
easily, using the attraction conditions to be given later, that the possible limits of Nk (A + Ok x)
cannot be either Wy(x) or ®y(x), Weibull and Fréchet distributions. We should thus have,
if the limit exists, Nk (Ax +8xx) = A(x) or k(1 - N(Ak + Ok X)) = eX, where as known
N(Ak + 3k x) »1 and thus Ag + 8k x — + oo,

N’(x)

X

A very well known result is that 1 — N(x) ~ when x — + e and thus the

previous condition is equivalent to
logk +log N” (A + 8k x) —log (A + 3k x) +x > 0 as k — o
or

logk—logﬁf—%(kk+8kx)2——10g(lk+8kx)+x =o(1);

2 1
(gk 1+ Sk]f) 1 s JoB(hk + 8k x)
og (A + Ok x)2
2log (A + 8k x) —log 2 —log logk — 0 and so log (A + 8k x) = %(log2+log log k) + o(1).

dividing by log k, we also see that ~» 0 and thus

Substituting above log (Ax + 8y x) we get

(lg+6kx)2=2{logk+x—-% log 4 — %log log k} +o(1) =

xu—%]og 4n—1§loglogk 1
=210gk)(“+ log k +0(10gk)]’
L log 47 - Llog log k
x -7 log 4n — 5log log 1

lk+8kx=\’210gk(l+ 210gk +0(10gk))

and thus we can take

log 4n + log log k log 4m + log log k
A= V2logk (1 - = V2logk - ——
=g | 4Togk )= V2loe 2 V2 log K
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and 8——*-1—*
k= 2 Tlog k

The computation is easy, although tedious. But the verification is simple using V2logk =t
— 4+ oo,

6. Let us study the last distribution function considered in the previous section : F(x) =0

if x<e,F(x)=1- lolg K

if x=>e.

By the attraction conditions to be given later, it is immediately excluded that, for some
O, 8k ), FX (Ak + 8k x) would converge to ¥q(x) or ®qg(x); the exclusion of Wg(x) asa

possible limit comes from the fact w = + co; the other exclusion is almost as easy.

Let us show, directly, that FK (Ax + 8k x) cannot converge (weakly) to A(x) or,
equivalently, that k(1 — F (Ax + Ok x)) does not converge to — log A(x) =e X, If it did converge
we would have F (A + 8k x) = 1 and so it is sufficient to study the function in the right tail: we

k log (Ak + Ok x)_)

should thus have —5 e X (Ag+0xx>1) or
log (Ak + 8k x) k

eXx .

1
Oi M — 1 andso Ay = +o and Agx >0 ultimately.

For x=0 we have

log(l;+8kx) _ log Ax + log (k1+8kl?tk.x)_)tx or

% log (1 +8x/ Ak .x) = e X —1.Leta (>0) be one of the possible limits of 8 / Ak : using the

Then we would have

subsequence of {k} suchthat Ox/Ax—a if a<+e we get -512 log (1 +8k/Ak .X) > 0%

log (1 + 8k Ak .x) log (Ox /Ak . x)

log (8x /Ak . x) . ”
eX —1 isimpossible. Thusif F(x)=0 if x<e, F(x)=1-1/logx if x2e, it does
not exist (Ag,dk) such that TFK(Ag +8xx) has a proper and nondegenerate limiting
distribution. For minima we should have kF (Ax + 8k x) = —log (1 - L (x)) orequivalently

eX — 1; suppose now a =+ and x> (: then

1 1
k(1 — ) = —log (1 - L(x)) and so - 1 or Ay +0kx > e.
log (Ag + Ok x) = - ) log (Ax + Ok x) k™ ok
_ A 1 _ _klog (1 +x/k) _
Letustake Ax=e and & =e/k: weget k(1-qoo-cmeiy) = T log (1 + x/k) >~

~log (1-L (x)).



This shows that we have L (x) = 1 -~ Wj(x) = E(x) , which is the exponential distribution,

an Weibull distribution for minima with o = 1.

7. Let us now consider, finally, an example that shows how misleading some intuitive
approximations can be. Consider the geometric or Pascal distribution F(x) =0 if x <0, F(x) =
1-e8xI if x > 0. We could expect that F(x) would behave practically like the exponential
distribution to which it is very similar, say a discretized version. As w =+ s> we can exclude the
Weibull distribution as a limit; by other conditions below we can exclude the Fréchet distribution
as a limit. We still have the Gumbel distribution as a possible limit which we could expect to be the
one as happens with exponentiat distribution.

The condition k(1 — F (Ax + 8k x)) = e* is equivalent, to k e Ak +8x] — e—x or
B[Ak + 8k x] — log k — x. If this happens we will show that 6 8 = 1, defining uniquely &k,
which is impossible by Khintchine’s theorem. In fact, for x =0 we also get [Ax] —log k — 0
and so Ak — + o=, as could be expected. By subtraction we get O([Ax + Ok x] - [Ak])} = x ;
denoting by r(at) = a—[a] the fractional part of a, the previous relation can be written 00k x -

(r(Ax + 3k x) — r(Ak))} = x and with x > 0 (to simplify) we get 0 & r(Ax + ik X) ~ 1 (Ak)

- 1. As !r(a)~r([3)l<:1,for_ k fixed, €(>0) fixedand k> N(e) we have l—E—l <

X S
o 0 < 1+ € +% and letting x — oo, we obtain finally 8k = 1/8, a unique result that is
impossible so rejecting the Gumbel limit. But let us go further in the analysis. Accepting 8y = 1/0
we should have then r(Ag + x/8) —r(Ax) > 0 as k — o, V x. Suppose we fix x such that
0<@=x/6<1:wehave r(Ax) =1 (0<T<1)and r(Ak+ @) =1+ @ when T +¢@ <1 and
T+ @—1when 1<t +¢(<2) and so r(hx + @) —r(Ax) has as possible limits ¢ and ¢ -1,

showing, once more, that a Pascal distribution cannot have, for maxima, a Gumbel distribution as
a limit.

8. Also a Poisson distribution does not have a limiting distribution for maxima.

9. [Inprinciple all lattice distributions, i.e., discrete distributions with successive jumps at
cqual steps, can be dealt with by the use of a theorem of Gnedenko (1943) and in a simpler way.
We have used those elementary proofs to clarify the issue from the start.

Let us now give two simple examples showing that i.i.d. conditions can be weakened.
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Take a random i.i.d. sequence {Xj, i = 1,2, ...} where each random variable has the
k

distribution function F(x) and that max (X;} has a limiting distribution L (x) (as said before L
1 - -

can only be W , A, @ apart from location-dispersion parameters), i.e., there exist attraction

coefficients (Ak , 8k > 0) such that Fk(Ax + x x) f, L (x). Now define the new dependent

sequence [Xl‘ =max (Xj, Xij+1), 1= 1,2, ...}. We have

% k * k+1 *
F, (x)= Prob fmax (X} < x} = Prob { max {X;} € x} = Fk+1(x) and thus J\.k=lk +1
1 1

* -
Bk = 8k +1 is a system of attraction coefficients for the new (dependent) sequence leading to the

same limiting distribution L (x). We could also use the coefficients (A , 8k), by Khintchine’s
theorem as said before.

k

* .
As concrete examples for fmax Xi }, consider the cases where F(x) is one of the three
1

limiting distributions:
1. if F(x)=Wg we have the stability relation & (x) =¥ (k10 x), ¥ (ke x) =

¥, (x); sowe can take Ax =0 and &y =k-1/® and thus we can use 7&: =Ax=0 and 51 =

Sy = k1o

2. if F(x) = A(x) we have the stability equation Ak= A(x —logk) or Ak (log k + x) =
A(x); so we can take Ax = log k, 8k = 1 and thus we can use l: = Ak = log k and 5: =d=1;

3. if F(x)=®y(x) we have the stability equation d)‘; (x) = d)l; (k-2 x) and so

<I)I";(k”’0L X) = (D:;(x); so we can take Ax = 0, & = k!/%; and thus we can also use JL: =Ax =0,



.. ] * *
Let us note that this is a special case of 1-dependence as Xi = max (Xj, Xj4+1) and )_(i =
max (Xj41, Xj+1) are dependent but X; = max (Xj, Xj+1) and X; = max (X;, Xj+1) are

independent if 1j —il > 1; all the cases of m—dependence (X; and Xj independent if li—jl > m)
lead to the same situation.

Let us now consider the weakening of the identical distributions condition. Consider a
sequence {X;} of i.i.d. random variables with distribution function F(x) and such that

k
Prob {(max(X;} = Ak)/8k < x} = FK(Ay + 8 x) > L(x) when k — oo .
1

Define the new independent, but not identically distributed, sequence [X:] by the equation
* .
X =X+ (-1

* k " k
Let Fy (x) = Prob ((max(X;) <x). We have for the distribution of max{X }
1 1

for k=2p, F, (x)= Prob(X; - 1<xX3-1<x,...,Xop.1 -1 Sx} X

X Prob{Xz +1<x, .., Xyp +<x} =FP(x + 1) FP(x -1);

r

for k =2 p+1 Faper 0= PP+ 1) FP(x - 1).

Do we have coefficients (X; . 51) such that F; (l; + 8; X) converges to a limiting

distribution function, possibly to L (x) ? This is a special case of a problem (periodic
disturbances, dealt with in the last section) where we alternately add or subtract 1, and can be
studied directly. We leave it to the reader.

For simplicity of the example — but where all the ingredients are present — we will study
only the cases where F(x) = L (x), i.e., where F(x) is W (x), A (x) or @ (x) and we intend to

obtain i(x) as a limit.
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Consider the case where F(x) = W (x) . As is known, Ax = 0 and 3 = k1/9, i.e., the
stability equation takes the form ‘P:; (x) = P (k1/2 x). We will compute, separately, (l;p , Szp)

and O’;pﬂ : sz_ﬂ) such that F: ().: + 8: x) = ¥a(x) = exp {(- min(x,0))%). Let us note

— % — %k k

- * -
that w2p=1, w 2p+1=—1 and so the right-end p«::nntcufnllaxXi is 1 for k>1.For k=2p

if we take R; =1 and 5: = (2p)~1/@ and if for k =2p+1 we take the same expressions, we
x _x * * * ~1/a

get F A + 8, x) > ¥q(x). In general we have A, =1, Sk = [k/2] . Another proof of

the result can be given by showing that F;p(x) and F; p+l(x) are both equivalent for maxima to

WE (x); see the next chapter. This is left as an exercise as well as for the immediate examples.

When F(x) = A(x) we have Ax =log k and &k = 1 as seen. The relation F: (?&: + 8; X) .

-1
e+e *
5 +logk, & =1.

— A (x) gives a solution ).: = log

For Fréchet distribution , F(x) = @ (x) we have A =0 and 8, = kl/%and also A, =0and

8 =kl

In all cases, the coefficients can be the same owing to the special (limiting) form of F(x)

(= L(x).

The asymptotic distributions of extremes

After these examples — where, for instance, logistic distribution, Cauchy distribution and
other ‘textbook’ distribution have not been dealt with here for reasons to be seen shortly — we

will proceed to obtain the limiting distributions of maxima from i.i.d. samples L (x) which, as
was said before, are W (x), A (x) and Dy (x).

We say that a random sequence {X;} of i.i.d. random variables with distribution function

F(x) is attracted for maxima to L(x) if there exist coefficients (A _ 3x > 0) — already called



attraction coefficients (for maxima) and not uniquely defined — such that Fx(\ + 8 x) ¥ L (x).

As the limiting distributions are continuous the convergence is uniform, as is well known. We will
say also that F(x) is in the domain of attraction of L(x) which will be denoted by Fe D (L).
Correspondingly we will say that F(x) is stable for maxima (or max—stable) if FX(x) = F(oy +
Bk x) for convenient oy and Bk > 0. Evidently W (x), A(x) and @y (x) are max-stable with
ax=0,Px =kVe, op =-logk, Bx=1 and ay =0, Bx = k-1/@ It is immediate that if F(x)
is max~stable, F(x) is a limiting distribution or is attracted to F(x): in fact if we take Ax = — o4/Py
and Ok = 1/Bx we obtain Fk(Ay + 8y x) = F(x) and the convergence is verified. The crux of the
proof is to show, in reverse, that the limiting distributions are max—stable, to solve the

corresponding functional equation, and to obtain one (or more) systems of attraction coefficients.

The conversion of these definitions for minima is immediate and can be done in terms of
either F(x) or of the survival function S(x).

We will continue, out of habit, to use F(x), the conversion to S(x) being the reproduction
of the previous definitions, but with the introduction of some additional notation which would not
be used in the sequel; but this is an interesting exercise because it stresses the duality.

We say that F(x) is attracted for minima to L(x) or is in the domain of a attraction of L (x

denoted by Fe D (L) (the symbol D does not

LR LR FEs L S BIvy

=
5
i

—

the pair of dual symbols L and L) 1f there exist attraction coefficients (for minima) {(Ax, 8y),
Ok > 0} not uniquely defined, such that 1 — (1 — F(Ax + 8 x))K lv_, L (x); as said, and to be
shown, the limiting L (x) are 1 -Wqg(-x),1 -A(-x) and 1 - ®Dg(~x). The stability relation

is either (1 — F (x))X =1 —F (og + Bx x) or, using survival functions, SK(x) = S(o + Bk x).
We say that F (or S) is stable for minima (or min—-stable) if the last relation hold. There is no
difference in the definitions, arising from F(x) + S(x) = 1. An exercise is to compute the
expressions of (otk, Bx) for min—stability. It is also evident that min—stable distribution (or

survival functions) are also limiting ones. The result comes from the solution obtained for maxima.
Let us, then, study maxima. We will show that:
The limiting distributions of maxima are max—stable.

In fact, suppose that there exist {(Ak, 3k), 8k > 0} such that Fk Ay + 8¢ x) ¥ L (x). Then

we have FK L + 3k x) f, L (x) also, and thus FKk Ay + Ok X) = L /M (x). Let
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a;n, B;“ >0 be a limit of a subsequence of (Amkx— Ax)/Ox — a:n, Smk /0 — B;n, as k — oo

through the subsequence; then by Khintchine’s theorem we have FK Ak + Omk X) =

L (a:n+ B;ﬂ x) = L Vm(x) or putting x* = a;n+ ﬁ:n x we get the stability equation

o

Lm) = L (c—t— %)= T (ot + B )
Bm Bm

and the result is independent of the subsequence. Notice that (o , Pm) can be definsd by om =
—1im Amk — Ak )/Omk and PBm=1im Ok /Omk when k — + oo,

Thus we now have to solve the stability functional equation. The first step is to .>xtend for
any positive real t the stability equation, i.e., that there exist {(c(t), B(®)), B(t) >0} such that

L ¥x)= L (o(t) + B(t) x).

When k — + o we have FIKU (A +8 kg x) ¥ L (x) and as [kt]/k — t also, we have

[F*A\ kg + 8 (kg )1 = L (x);
geac k- 4+ 00 [ at ne define axft) and R(1) ac
lbv ¥ ¥ )] 3N F 1 @ A%l WAL LAWALALAWS ““,) AL ERA l—'\l} L. )

a(t) =—lim Ak -2k ) /Oxg and  PB(t) =lim S/d [y :

we get, as desired, Lt (x) = L (ou(t) + B(1) x), which shows the continuity of L (x).



To solve this functional equation we must know that the functional equation u(ts) = u(t) u(s)
(t, s >0) has the solution u(t) =0 or u(®)=tP® .

Then the relation
Ls(x) = L(ast) + B(st) x) = (L300)t = Lads) + B(s) x))
=L (o(t) + B(t) (au(s) + B(s) x))
which exchanging s and t is equal to L(o(s) + B(s) (o(t) + B(t) x)). This leads to the equation
ast) = ou(t) + afs) B(t) = a(s) + a(t) B(s)

B(st) = B(s) B() .
The second equation can have the solution B(t) =0 or P(t) = tP. But B(t) =0 leads to ﬁl(x)
=L (a(t)) and should be disregarded.

We have, then, as B(t) = tP the relations o(t) (1 —sP) = ags) (1 - tP).

(*) — This is true for u(t) continuous, monotonic or measurable: we will prove it for the continuous case. If

u(®) = 0 the theorem is proved. Suppose that there exists t,( > 0) such that u(t,) #0 and, thus, u(l) = 1.
Then for u(l(')") =u(t,) u(l:)"'I) we get u(l:‘) = u(t(,)rIrl and as u(l:'fn) = “('t: hl)m = u(t‘,)m"rl we see that for every

rational r > 0 we have u(l;) = u(ty,) ' But the positive rationals are dense in the positive reals and as u(t) is

continuous, we get u() = u(t,) °. Putting =t weget ut)=u(t,) ° "°8 %o and putting u(t,) /108 to - ¢P

we get u(t) = P as could be expected.
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And here, we can have twocases: p=0 or p#0.

If p=0 we get o(st) = a(s) + o) and so eV satisfies the equation for u(t); then o(t)
=—0 logt and the functional equation reads as Lix) = i(— 6log t + x) whose solution is

f,(y) = exp{—exp— {y/0 - log (- log L(0))}} which is a Gumbel distribution when 6 > 0. For
0 <0 the solution is not a distribution function.
Suppose now that p#0. Then we have (as tP #1 for t# 1) we have (for t,s# 1)

T(S; _ T(tz;l = ¢ and so we have the equation LYx) =L (c (1 - ) +tP x).
_S —

Consider that p > 0. Fort - 0 weget 1= L(c) butforno xo<c is L(xg) =1 because

otherwise we would have 1{xo) = 1 = L Y(x0) = L(c + tP(xy —)) which for tP = L_xo-—- CC >0

(implying y < 0) would lead to L(xo)= L(y)=1 forany y; this shows that ¢ is the right-end

point. Let us put x —c = @ (£0). We get LYct+p) = L (c+tP @) . Put L (c+9) = eN® where
h(¢) is continuous and non-increasing from + oo to 0 in [- o0, 0]. We get, for ¢ <O,

th(g) = h (tP @) or h(¢) = h(-1) (- ®)VP  and thus
Lx)=1 for x2c
L) = L+ (x—c) =ehx-0)= e-h(-1)ex)1P

which is a Weibull distribution with location parameter ¢(X < ¢ with probability 1) , dispersion
parameter h(-1)P, and shape parameter 1/p .

If we are dealing with the case p <0, when we take t = + oo we get 0= L(c)and so ¢ is

the left-end pointof L (x).

Put also x — ¢ =@ (=0) : the equation reads as L (ct@) = L (c+tP @). Now put L (c+o) =
e-N@ . The equation gives t h(¢) = h(t? @) and analogously h(¢) =h(1) @1/P and thus

Lx)=0 if x<c
L(x) = L(c +(x - ¢)) = e-h(x-0) = e-h()x-)P

which is a Fréchet distribution with left—end point c, dispersion parameter h(1)~?, and shape
coefficient 1/p. We have thus proved that the classes of max-stable and limiting distributions for
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maxima coincide; the changes of the location—dispersion parameters are integrated in the type (or
equivalence) changes.

Note that, by the proof given above connected with the stability equation, we have shown
that Fk(Ak + 8k x) ¥ L (x), k ( >0) integer, and F* (A + 8, x) ¥ L (x), t (>0) real, are

equivalent and this will be used sometimes later.

Notice that the L are continuous and, consequently, the convergence is uniform.

For minima, let F*(x) = Prob{— X <x} =Prob {X2-x} = S (=x) in the continuity set
of S.

k k
We have Prob{ @min {X;} —Ax)/ 8k <x} = Prob{min {X;} <Ak +dkx)=
1 1

k K

= Prob{ max {- Xj} > - (Ax + 8k x)} =1~ Prob{max {-Xj} <~ A +8k x)} =
1 1

=1 -F*( k-8 x) andif F*k(- Ay +8cy) = L(y) we get

k
Prob(@min{X;} — A )/8k <x} = 1 —L(-x) as L(y) is continuous.
1

~

L is thus associated with the limiting distribution, if it exists, of F*(x) and not of F(x).
The set of limiting distribution functions for minima is the one already described.

Another proof could be obtained using the survival functions, which is left as an exercise.

We have then proved the Extremal Limit Theorem:

The reduced asymprotic distributions of maxima L (x), when they exist, are ¥o(x), A(x)
and ‘Wofx) and the reduced asymprotic distribution of minima L (x), when they exist are

I -¥o-x),1 -A(-x) and 1 - Y{—x).

Notice that the right-tail behaviour of F*(x) defining the maxima of {- Xj} corresponds to
the left—tail behaviour of F(x) correspondin g to the minima.
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Consider a distribution function (proper and non—degenerate) and a sequence of real
numbers {ug} such that k(1 — F(uk)) > 1t or k(1 -F(ux))=1t+o0 (1) =1 (1 +o(1)); the ug
are, evidently, a function of T and a functional of F.

k
It is immediate that, if {X;} are i.i.d. with distribution function F, then = Prob{max{Xj}
1

T(1+0(1)) k

<uy) =Fk(up) = (1 - ) — et as koo theinverse s also valid as seen by taking

logarithms; the case T =+ o« is dealt with analogously. The connection between the changing
(non—decreasing in general) levels for overpassing and the previous results corresponds for
instance to taking ug (T, x) =Ax +3kx and T =eX etc.. Note that ug does not necessarily
exist: for F(x)=0 if x<0, F(x)=x/2 if 0<x<1land F(x)=1 for x> 1 (a jumpof 1/2 at

x = 1) we see that for T = 1 we can take neither ux 2 1, because we would get k(1 —F(uy)) = 0,
' 2 +o(l) .
—x

Alsoif F(x)=1-e1x] for x>0, F(x)=0 for x <0, itis easy to see that for no {ux} we can
obtain k(1 - F(uy)) = 7, as log k — fuk] is oscillating. But for F(x) =0 if x <e, 1- 1/logx
if x2e, weget ug(t)=ekT .

nor 0<ug<1, because for k(1 —ug/2) = 1 we should have taken ug=2-

The classical theory already developed used ug =Ax + 8 x with T depending on x, giving
the desired results when 7= (- x)® (x<0),T =e* or T =x%(x >0). In some cases we can
transform uk(T) into an equivalent linear function of x (x and 7 related as above), but other cases

exist, like the last example in the previous paragraph, where such a transformation for a linear
function cannot be made.

Finally let us speak of a general form that integrates in one expression the three limiting
distributions of maxima, called von Mises-Jenkinson formula

G(z18) =exp{-(1+9 z);”e] , 0 real, i.e.,

G(z10)=exp{—(1+02z)-1/6}), 0 real,

where 140220 with the natural truncation when 1 +0z<0:if >0, forz<—1/0 we have
G(z18)=0 and if 8 <0 forz>-1/0 we have G(zl6) = 1.

If 8<0 we have immediately G(~(1 +x)/818) =¥_g(x) where o =-1/0>0; if
0>0 wehave G(—(1 —x)/018) = ®_19(x) where a=1/0>0 and finally we have G (zI0*) =
G (zI0) = 1(2).



The graphics of the densities of G’(zl0), for maxima, are given in Fig.IL.1. They will
be given for each form in the chapters V, VI and VII (for minima)

Fig. I.1 — Graphs of the densities G’(z!0)

The graphs of the densities for minima G’(~zI8) are the miror images of the previous ones.

It should be noted that when 6 — 0 the graphs of G’(z18) converge to G’(zl0) = A’(z) ;
this corresponds to the fact that for large o = 1/8 Fréchet and Weibull distributions are very close
to the Gumbel distribution.

This integrated formula will be useful for the statistical choice of models in chapter VIIL.

The basic texts are Fisher and Tippet (1928), Fréchet (1927), de Finetti (1932), Gumbel

(1935), von Mises (1936) and Gnedenko (1943); exposés can be found in Galambos (1978) and
de Hann (1976).

k k
It is of interest to consider the joint behaviour of (min{X;}, max{X;}). Its joint
1 1
distribution function is

k k k
Prob{min {X;j} <x, max (X;} <y) = Probmin {X;} < min (x, y),
1 1 1

k
max (Xi) <y} = FK(y) - (F(y) ~ F(min (x, y))¥.

Supposing that

k ki 3 ? ? ~
Prob{min {(Xj} < A +8 x}=1-(1-FA +38 x)YX—> L (x)
1 k k k k

and
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k R
Prob{max {X;} <Ax+ Ok y} =Fk(Ax + O ¥)) = L(y)
1

we get

k .,k
Prob(min {X;} < lk+5k x, max {X;} <Ax+0k y} =
1 1

= FK(hy + 8k y) — {F(h + 8 y) - F (min(l; + 8, X, Ak + Ok Y)IK.

The first summand converges to L (y). Let us thus study the second one which can be

written as

F (min (x; + 8;( x, Ak + 8k ¥))

FK (A + 8k y) {1- }k
F(Ag + Sk y)
As the first factor converges to L(y), denote by ¢ (x, y) the limit of the second factor. We

have, if ¢ (x , y) exists,
k k

Prob{min {X;} S?L;+8; x, min {X;} <Ac+ Oy} — L(y)
1 1

F (min (1; + S‘k X, Ak + 0k ¥))

But ¢ (x,y)=1lim(1- )k
¢ F(Ax + 3k y)

k F(min (?L;c + 8;: X, Ak + 0k Y))

=exp {- lim - )
F(Ax + 0k y)

As said before F(Ax + 8k y) = 1 for y in the support of HL(y); on the other hand we know
that for x and y in the supports of L(x) and L(y), l; + 8; x = w and Ay + dky—=w

and for large k we have ?L;( + 6; x <Ag + Ok y and, thus, we get



@ (x, y) = exp(- limk F(x; +8 X)) =exp(~[-log(1 - Le)I =1~ L ()

and so

k k

Prob{ min{X;) sx]’(+5; x, max {Xi} <A +8k vy} = Lx) L(y).
1 1 -~

Consequently the reduced extremes are asymptotically independent (in the sense defined in

the proof). For more details on asymptotic independence of sample extremes see Geffroy
(1958/59).

From asymptotic independence, it is evident that the distributions of the reduced range,
centre, and absolute maximum depend only on the prevailing reduced extremes. If they are of the
corresponding asymptotic form their distributions are, for large samples, those of Y — X,
% (Y +X) and max(- X, Y).

Similarly it was proved by Rosengard (1962, 1966), Tiago de Oliveira (1961), and
Rossberg (1963), (1965), that the sample extremes and mean, under very general conditions, are
asymptotically independent.

The asymptotic distributions of the m—th extremes

The asymptotic theory of m-th extremes was, essentially, initiated in a paper by Gumbel
(1935).

Consider a sequence of i.i.d. random variables (X;} with distribution function F(x) and
suppose that

k
Prob{ max (X —Ax)/ 8k <x} =FK (Ax + 8 x) = L (x).
1

Let us see what happens to the m-th order maximum Xk = X in the notation of
m

-m+1

chapter I.

We have Fnk(x) = Prob(X _ <x) = Prob {at least k-m+1 of the X;<x} =
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Kk m-1

Y & FI-Fok = ¥ () i) (1 -Fe)

k-m+1 1=0

and so
5 m-1 )
Fmk Ok + 8 x) > L) =lim 3, (X)) Fr=i (i + 8 %) (1~ FOu + 8k X))
i=o
- % (= log L : -
=L Y TR as i+ 8 o Lw) and
i=0 '

() (1 - FQy + 8 x))i= () (1 = F + 8 x))i

_ KOk =i DA =Fu+ 83X ka8 iy

1!

and as seen before k(1 — F(Ax + 0k x)) = — log L(x) ask — + oo, Evidently Lix)= L.

Analogously we can obtain the distribution of the m-th minimum: suppose that
1- (1 = F(u + 8, x))k = —log L (x) or equivalently that k F(Ay + 8 x )) = —log (1 -L (x)).

Then

m-1
F, () = Prob(X <x) =1-Prob(X >x)=1- j;o ('JF) Fi (x) (1-F(x))k-i

and consequently
m-1

F:n’k(lk +H)=1-Y (l;) Fi Oy + 8y x) (1 —F Qe + 8 x))k .

j=0
But (1-FAg+8 x)kJ 51— L(x) and

(k F (Mg + 8k X))
it

k(k=1) ... (k —i+ 1)
i |

() Fi Ok + 8 x) = )

F (Ak + 8 x) ~




- log (1 - L (x))
i

— ( and we get

L) =1-(1-Lpn(x) Y,

m-1 - log (1 - L(x)) )
> T
j=o0

Using the survival function S (x)=1- L(x) we get

m-1 — log §x)
Sm0 =800 Y, (—57— 7,

j=o0

dual of the expression for Ly (x); evidently S (x) = S(x).

To compute Ly, (x) and Sy (x) from the three possible expression of L (x) and S; (x)

is a simple exercise.

In what has been said we have always supposed that we were dealing with the m—th
maximum or m—th minimum, with m fixed. We can even allow m to be a function m(k) such
that m(k)/k — 0 as k — + o and obtain similar results: see Smirnov (1952) as the first step,

and Mejzler (1984) for the general overview.

We will not develop this points further because it does not seem to be particularly interesting.

Let us now recall that maxima in between themselves and minima in between themselves are
associated; but, as shown the maximum and the minimum of a sample are asymptotically

independent; a mj—th maximum and a mp-minimum are also asymptotically independent by a
simple extension of the proof.

An overview of some extensions

Here we will sketch, briefly, without proof, results extending the three limiting distributions
under conditions which are not i.i.d., for which we have given already some examples.

If the identically distributed condition is relaxed, but independence is maintained, the initial
papers of Juncosa (1948) and Mejzler (1949), detailed in Mejzler (1984), have shown that under
general reasonable conditions, the three limiting distributions are still valid. But this is not
completely general: as a counter-example, take any distribution function F(x) and consider the
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sequence of independent random variables {X;} with distribution functions Fi(x) = (F(x))z'i. It
is immediate that

k
Prob{max(Xi. ... , Xp) <x} = T Fix) = (Fx))1-2* = F(x)
1

as k — oo, with a system of attraction coefficients Ay =0, 8k = 1. Thus any distribution function
can be the limiting distribution function of max (Xj, ... , Xk) and so some moderate condition
about the set of {F;(.)] must be introduced to maintain the classical limiting distribution of
maxima (and minimé, obviously). See the above-mentioned papers for more details, and in the
case where Fj(x) = F(x + 0;) with ;= 8j,p (periodic disturbances of period P), see Tiago de
Oliveira (1976).

Also if the independence condition is lifted, but i.d. margins are maintained, the asymptotic
distribution of maxima may be different from the three given forms. As a counter example take the

sequence Yo, Y1, ..., Yi, ... i.i.d. with a standard normal distribution function and define

X;i=Vp Yo+ V1-p Yi (=12 .),p>0.

The X; are ‘multinormal with standard margins and (constant) correlation coefficient p (> 0).
Then

k k
maxXiz\/EYcﬁ\/]*p max Y
1 1

k

and, as by the ALLN we have max X — V2 log k B, 0, we see that
1

k —
maxXi—\/l—p V2 logk
1

\p

-Y, B o
and so
k
Prob fmax X; <\ 1 — p vZiogk + Vp x} = N(X).
1

This example suggests that the correlation in dependent sequences must be waning out at a
reasonable rate to obtain the classical limiting forms for maxima.



The case where we deal with a random (dependent) sequence with the same marginal
distributions (F(.)) — i.e., stationarity of order 1 — and where the sequence of maxima is
attracted by the same distribution as the i.i.d. sequence with the same distributions F(.), has been
initially considered by Watson (1954) and Newell (1964) for the case of m—dependence, i.e.,
(Xi ,X;) independent if li ~ jl > m, and later by others — this point will be developed in part IV;
see references therein.

The application to Meteorology and Oceanography of m—dependence is obvious as after a
few days (2 or 3) there is practical independence for the observations.

For a relaxing of both i. and i.d. conditions, but having yet one of the limiting distributions,
see Tiago de Oliveira (1978).
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