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Abstract

In the framework of the Joos-Weinberg 2(2S + 1)– theory for massless par-

ticles, the dynamical invariants have been derived from the Lagrangian density

which is considered to be a 4– vector. A la Majorana interpretation of the 6–

component “spinors‘”, the field operators of S = 1 particles, as the left– and

right–circularly polarized radiation, leads us to the conserved quantities which

are analogous to those obtained by Lipkin and Sudbery. The scalar Lagrangian

of the Joos-Weinberg theory is shown to be equivalent to the Lagrangian of a

free massless field, introduced by Hayashi. As a consequence of a new “gauge”

invariance this skew-symmetric field describes physical particles with the longi-

tudinal components only. The interaction of the spinor field with the Weinberg’s

2(2S + 1)- component massless field is considered. New interpretation of the

Weinberg field function is proposed.
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In the beginning of the sixties Joos [1], Weinberg [2] and Weaver, Hammer, and

Good [3] developed free particle theories for arbitrary spins S = 0, 1
2
, 1, 3

2
· · · on using

the Wigner’s ideas [4] of construction of the quantum field theory. Following this

description, the spin-one case [5]-[7] as well as the spin-3
2

case [8] have been presented.

The formulas for the Hamiltonian for any spin have also been obtained [9, 10]1 The

field functions in this approach form the basis of the (S, 0) ⊕ (0, S) representation of

the Lorentz group. They are presented by the 2(2S + 1)– component “spinor”:

Ψ =

χσ

φσ

 , (1)

The transformation rules


χσ(~p) = exp

(
+θ~̂p ~̂J

)
χσ (0) ,

φσ (~p) = exp
(
−θ~̂p ~̂J

)
φσ (0)

(2)

(with θ is the boost parameter, tanhθ = |~p|
E

, ~̂p = ~p
|~p| ,

~̂J is the angular momentum

operator) represent the generalizations of the well–known Lorentz boosts for the Dirac

particle. It was noted in Ref. [2b, p. 888] that the equation for this “spinor”:

(γµνpµpν +m2)Ψ = 0 (3)

can be transformed to the equations for left– and right–circularly polarized radiation

when the massless S = 1 field being considered. The γµν matrices are covariantly

defined 6⊗ 6- matrices [14], µ, ν = 1 . . . 4.

Thus, we come to the Maxwell’s free-space equations (Eqs. (4.21) and (4.22) of

1I would also like to mention the following earlier articles concerning with this formalism [11]-[13].
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Ref. [2b]):


~∇× [ ~E − i ~H] + i(∂/∂t)[ ~E − i ~H] = 0,

~∇× [ ~E + i ~H]− i(∂/∂t)[ ~E + i ~H] = 0,
(4)

in vacuum provided that we consider (1) as the “bivector” 2 which can be decomposed

as, e.g. [16]:

χ = ~E + i ~H,

φ = − ~E + i ~H
(5)

( ~E and ~H are the 3-vectors). In fact, this is the formulation which is similar to [17]-

[19]3.

Attempts at describing the quantized electromagnetic field in the terms of electric

and magnetic field vectors ~E, ~H (but not potential) as independent variables, or, equiv-

alently, antisymmetric strength tensors, have been undertaken previously [21]-[23]. For

example, in Ref. [23] the 4–vector Lagrangian density:

Lα =∗ F µν∂νFµα − F µν∂ν
∗Fµα − 2 ∗Fαµj

µ (6)

(Fµν is the electromagnetic field tensor, ∗Fµν = εµνρσF
ρσ is its dual, jµ is the electro-

magnetic current 4–vector) has been used to determine the new conserved quantities

analogous to those deduced from the Lipkin tensor [24]. The remarkable feature of

this formulation is that the energy-momentum conservation is associated not with the

translational invariance but with the invariance under duality rotations.

In the present article the similar properties are shown for the Lagrangian density of

2See also [15, p.149] for discussion about interpretations of components of the field transforming
on the (S, 0)⊕ (0, S) representation of the Lorentz group.

3See [20] for discussion about connection of 2(2S + 1)– component multispinor Ψ = (Ψα1...α2S
), of

the massless Bargmann-Wigner equations with the antisymmetric field tensor Fµ1ν1...µSνS
.
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the Joos-Weinberg theory. Following [23], the Lagrangian is chosen to be the 4–vector4:

Lα = −iΨ̄γαβ∂βΨ + i(∂βΨ̄)γαβΨ. (7)

On using the variational principle of the stationary action the above Lagrangian

leads to the Euler–Lagrange equations:

 γαβ∂βΨ = 0,

(∂βΨ̄)γαβ = 0,
(8)

which are, in fact, the Eqs.(4, 4′) of Ref. [17]. When α = 4 Eqs.(8) are rewritten to

Eqs. (4), whereas when α = i = 1, 2, 3 we come to:

 εikl
∂El

∂t
+ ∂kHi − ∂iHk + (∂jHj)δik = 0,

εikl
∂Hl

∂t
+ ∂iEk − ∂kEi − (∂jEj)δik = 0,

. (9)

The symmetric and antisymmetric parts give us the usual four Maxwell’s equations.

Let us mark the coincidence of these equations with Eqs. on p.L34 of Ref. [23] as well

as with the system of equations (17) in Ref. [26, p.76]:


∂Ĥ
∂t

+ ~∇∧ ~E − (~∇ ~E)δik = 0,

∂Ê
∂t
− ~∇∧ ~H + (~∇ ~H)δik = 0.

(10)

Here hats above E and H designate volutors.

The use of the proposed Lagrangian (7) simplifies the calculations. It gives us the

opportunity to obtain dynamical invariants:

1)The energy-momentum tensor has the following form:

T µνα = Lαδµν + iΨ̄γαν∂µΨ− i(∂µΨ̄)γανΨ. (11)

4See [25] for the details of the vector Lagrangian description.
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2)The angular momentum tensor is

Mν,µβ
α = xµT

νβ
α − xβT

νµ
α +

+ iΨ̄γανA
Ψ
µβΨ− iΨ̄AΨ̄

µβγανΨ (12)

(with AΨ
µβ and AΨ̄

µβ are the generators of the Lorentz transformations).

And, finally,

3)the current tensor is equal to

Jµα = −2Ψ̄γαµΨ . (13)

It is obtained as the consequence of gradient transformations:

 Ψ = eiθΨ,

Ψ̄ = Ψ̄e−iθ
, (14)

where Ψ̄ = Ψ+γ44. It corresponds to the duality rotations:

Fµν → Fµνcosθ + ∗ Fµνsinθ,

∗Fµν → −Fµνsinθ + ∗ Fµνcosθ,
(15)

implemented by Sudbery [23].

Considering the Weinberg “spinor” in accordance with Eq. (5) and restricting

oneself by the first term of Lagrangian (7) 5, we get the following conserved quantities:

T
4}4

{i = ( ~E~∇) ~H − ( ~H ~∇) ~E + ~E(∇ ~H)− ~H(~∇ ~E), (16)

T
4}4

{4 = ~E[~∇× ~H]− ~H[~∇× ~E], (17)

T
j}4

{i = ~∇∨
[
~E × ~H

]
, (18)

5It is possible because in terms of ~E and ~H the both of Eqs. (8), obtained from the first and second
terms of (7), lead to the same motion equations.
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T
4]4

[i = −i[( ~E~∇) ~E + ( ~H ~∇) ~H + ~E(~∇ ~E) + ~H(~∇ ~H)], (19)

T̃i =
1

2
εijkT

k]4
[j =

[
( ~E~∇) ~H − ( ~H ~∇) ~E + ~H(~∇ ~E)− ~E(~∇ ~H)

]
. (20)

The value of AΨ
µβ is shown in [5] to be AΨ

µβ = −1
6
γ5,µβ and, correspondingly, AΨ̄

µβ =

1
6
γ5,µβ, (the S = 1 case). As opposed to [23] we obtained

S4,ij
4 = 0, (21)

but

S4,4i
4 = −4

[
~E × ~H

]
i
. (22)

At last, we have the same expressions for Jµα as in Ref. [23]:

J44 = −2( ~E2 + ~H2), (23)

J4i = 4iεijkEjHk, (24)

Jij = 2[( ~E2 + ~H2)δij − EiEj −HiHj], (25)

which are the components of energy-momentum tensor in the common-used formulation

of QED. Thus, the gauge transformations of the first kind lead to the energy-momentum

conservation and the “charge” is identified with the energy density of the field.

The scalar Lagrangian of the Joos-Weinberg’s 2(2S + 1)– theory was presented

in [11, 13] :

LJW = ∂µΨ̄γµν∂νΨ +m2Ψ̄Ψ. (26)

Let us note, implying the interpretation of the Weinberg’s 6-“spinor” as in (5), we

can rewrite the Lagrangian (26) in the following form:

LJW = (∂µFνα)(∂µFνα)− 2(∂µFµα)(∂νFνα) + 2(∂µFνα)(∂νFαµ) . (27)
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It leads to the Euler-Lagrange equation:

Fαβ − 2(∂βFαµ,µ − ∂αFβµ,µ) = 0, (28)

where = ∂ν∂ν . The Lagrangian (27) is found out here to be equivalent to the

Lagrangian of the free massless skew-symmetric field given in [27, 28] 6:

LH =
1

8
FkFk, (29)

with Fk = iεkjmnFjm,n. It can be rewritten

LH =
1

4
(∂µFνα)(∂µFνα)−

1

2
(∂µFνα)(∂νFαµ) =

= −1

4
LJW − 1

2
(∂µFαµ)(∂νFαν), (30)

which confirms the above statement, taking into account the possibility of the Fermi

method mutatis mutandis as in Ref. [28]. The second term in (27) can be excluded by

means of the generalized Lorentz condition (which is formally similar to the well-known

Maxwell equations within normalizations of the field functions)7.

In turn the Lagrangian (29) is invariant under new “gauge” transformations:

Fµν → Fµν + A[µν] = Fµν + ∂νΛµ − ∂µΛν (31)

The cited paper [28] proves that the Lagrangian describes massless particles having

the longitudinal physical components only. The transversal components are removed

by means of the “gauge” transformation (31). If we implement this “gauge” transfor-

6See also description of closed strings on the base of this Lagrangian in [29, 30].
7Let us mention some analogy with the potential formulation of QED. In some sense the Lagrangian

(27) corresponds to the choice of “gauge-fixing” parameter ξ = −1, LH of Ref. [28, formula (5)]
corresponds to the “Landau gauge” (ξ = 0), and LH (formula (9) of cited paper) is in the “Feynman
gauge”(ξ = 1) for the antisymmetric tensor fields.
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mations to the “bivector” 8:

F → F + e4 ∧ A[4k]ek +
i

2
A[jk]ej ∧ ek = F +

1

2
A[µν]eµ ∧ eν (32)

we can obtain the same result. It is surprising in the point of view of the Weinberg

theorem about connection between the helicity λ and the Lorentz group representation

(A,B), namely, B − A = λ.

Now we turn to the interaction of the S = 1 partcile in the Joos-Weinberg formalism.

In Ref. [2a, p.B1323] and Ref. [31, p.361] the following invariant (the interaction

Hamiltonian) for interaction of 3-“bispinors” (e.g.. two particles of the spin S = 1/2

and one particle of the spin S = 1) has been constructed:

HΨψψ = g
∑

µ1 µ2 µ3

S1 S2 S3

µ1 µ2 µ3

 Φµ1

(S1)φ
µ2

(S2)φ
µ3

(S3)±

S1 S2 S3

µ̇1 µ̇2 µ̇3

 Ξµ̇1

(S1)χ
µ̇2

(S2)χ
µ̇3

(S3), (33)

where

S1 S2 S3

µ1 µ2 µ3

 are the Wigner 3j- symbols.

Assuming the interpretation of the Weinberg’s spinor as the sum of vector and

pseudovector9, 10:

χk = Ck + iAk,

φk = Ck − iAk .
(34)

In the case of the massless helicity-1 particles (photons) we get the following invariant

8See Ref. [26, p.244] for discussion of Clifford algebra in the Minkowski space.
9In Ref. [32, 33] the importance of the pseudovector potential Ck in QED has been discussed. In

the Singleton papers [34] as well.
10As shown in my previous papers the interpretation Ψ(S=1) according to [2b, p.B888] leads to the

contradiction with the theorem about connection between the (A,B) representation of the Lorentz
group and the helicity of a particle with the field function which transforms according to this repre-
sentation (B −A = λ). Moreover, the Weinberg’s massless equations [2b, formulas (4.21) and (4.22)]
admit the acausal (E 6= ±p) solutions.
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for interaction of two spinor particles with the generalized electromagnetic field (the

spinor representation is used) :

HΨψψ = g
∑

k µ2 µ3


 1 1

2
1
2

k µ2 µ3

φµ2

( 1
2
)
φµ3

( 1
2
)
+

 1 1
2

1
2

k µ̇2 µ̇3

χµ̇2

( 1
2
)
χµ̇3

( 1
2
)

Ck+
+ i

 1 1
2

1
2

k µ2 µ3

φµ2

( 1
2
)
φµ3

( 1
2
)
−

 1 1
2

1
2

k µ̇2 µ̇3

χµ̇2

( 1
2
)
χµ̇3

( 1
2
)

Ak
 . (35)

In (33) we choose the sign ” + ”. The question of the Lorentz transformation rules of

the pseudovector is related to the transformation rules of 3-rank antisymmetric tensor.

Taken into account the relation between the Pauli σ– matrices and the Clebsh-Gordon

coefficients (formula on the p. 65 in [35])

σµαβ = −
√

3C
1
2
α

1µ 1
2
β

(36)

one can rewrite the previous expression (35) as follows:

HΨψ̄ψ =
g√
6

{
−ψ̄αkγ5ψCk + iψ̄αkψAk

}
. (37)

In fact, the coupling constant g is equal to ie
√

6, e is electric charge in QED, k = 1, 2, 3.

The matrix γ5 has been chosen in the diagonal form:

γ5 =

−1 0

0 1

 , (38)

β = α4 =

 0 1

1 0

 , (39)

and

~α =

~σ 0

0 −~σ

 . (40)

One can see that this interaction Hamiltonian leads to the following equations from
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the Hamiltonian (37):

ih̄
∂ψ

∂t
= c~α · (~p− e ~A− ieγ5

~C)ψ +mc2βψ, (41)

which is equivalent to the following system (c = h̄ = 1) for 2-spinors:


[
(~σ~p)− e(~σ ~A) + ie(~σ ~C)

]
ξ +mη = Eξ,[

−(~σ~p) + e(~σ ~A) + ie(~σ ~C)
]
η +mξ = Eη.

(42)

Therefore,

(E2 −m2)ξ =
{
~p 2 − e

[
(~σ~p)(~σ ~A) + (~σ ~A)(~σ~p)

]
+

+ ie
[
(~σ~p)(~σ ~C)− (~σ ~C)(~σ~p)

]
+ e2 ~A 2 + e2 ~C 2 + 2ieE(~σ ~C)

}
ξ , (43)

and

(E2 −m2)η =
{
~p 2 − e

[
(~σ~p)(~σ ~A) + (~σ ~A)(~σ~p)

]
−

− ie
[
(~σ~p)(~σ ~C)− (~σ ~C)(~σ~p)

]
+ e2 ~A 2 + e2 ~C 2 + 2ieE(~σ ~C)

}
η . (44)

We would like to mention that Ak, the vector potential, is the compensating field

for the gauge transformation of the second kind, and Ck , the pseudovector potential,

is the compensating field for the chirality gauge transformation11. Since we may assign

Ek = rot Ck we can see that ~E = ~0, and ~H = ~0 in the particular case [39]. However,

the spectrum is influenced by the term ~C.

We can implement the new 4⊗4- matrix field corresponding to the electromagnetic

field:

Φk =

Ak − iCk 0

0 Ak + iCk

 (45)

11See, e.g., Ref. [36] for discussion of the chirality (γ5) symmetry of massless fields and neutrino
theory of photons. As for the generalized gauge transformations, one can find them in [37, 38].
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which is described by the Lagrangian:

L = Ψ̄(S=1)γµνpµpνΨ
(S=1) = iΦ̄j

{
−iεijkp4pi ⊗ γ5 + (~p 2δjk − pjpk)⊗ I

}
Φk. (46)

The corresponding dynamical invariants are found from the energy-momentum tensor,

which is written as following:

T44 = iΦ̄j(~p
2δjk − pjpk)Φk,

T l4 = iεijkΦ̄jpipl ⊗ γ5 Φk,

T 4l = iεljkΦ̄jp4p4 ⊗ γ5 Φk − 2iΦ̄kplp4Φk + iΦ̄kpkp4Φl + iΦ̄lp4pkΦk,

T lm = Lδlm + iεmjkΦ̄jplp4 ⊗ γ5 Φk − 2iΦ̄kplpmΦk + iΦ̄mplpkΦk + iΦ̄kpkplΦm.(47)
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