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ABSTRACT
We design a sequential Monte Carlo scheme for the joint purpose of Bayesian inference and model selection, with application
to urban mobility context where different modalities of transport and measurement devices can be employed. In this case, we
have the joint problem of online tracking and detection of the current modality. For this purpose, we use interacting parallel
particle filters each one addressing a different model. They cooperate for providing a global estimator of the variable of interest
and, at the same time, an approximation of the posterior density of the models given the data. The interaction occurs by
a parsimonious distribution of the computational effort, adapting on-line the number of particles of each filter according to
the posterior probability of the corresponding model. The resulting scheme is simple and flexible. We have tested the novel
technique in different numerical experiments with artificial and real data, which confirm the robustness of the proposed scheme.

Keywords: Sequential model selection; Modality detection; tracking; marginal likelihood estimation; parallel particle fil-
ters; distributed inference; adaptive complexity.

1. INTRODUCTION

Monte Carlo (MC) algorithms are very popular numerical techniques for the approximation of optimal a posteriori estimators
[16, 11, 29], given an analytically intractable posterior probability density function (pdf). More specifically, Particle filters
(PFs) have been extensively applied for sequential Bayesian inference [29] in machine learning [28, 31, 32], signal processing
[4, 18] and statistics [13, 23]. In this work, we consider the problem of tracking a variable of interest within a state-space
model, where the dynamic and observation equations are unknown [22]. A finite set of candidate models are considered, and
the true model may be included (or not) within this set. Thus, the goal is both sequential tracking and online model selection.
This is exactly required in a urban mobility context where different modalities of transport can be employed (for instance bus,
train, cycling etc.). The main contributions of this work, range of applicability, and related works are discussed below.

Contributions and organization of the paper. In this work, we present a simple approach involving parallel particle fil-
ters (PFs), called model averaging parallel particle filters (MAPF), based on the Bayesian model averaging (BMA) principle
[19]. The proposed PF solution performs the inference by running as many filters as candidate models, i.e., each PF is tailored
to a different states-space model (Section 4). The parallel PFs in MAPF cooperate for providing a global approximation of the
posterior distribution of the variable of interest given the data and, at the the same time, also provide particle approximations
of the posterior distributions of the models given the data. The interaction among the filters occurs by a dynamic allocation of
the computational effort, i.e., distributing a portion of the total number of particles to each filter, proportionally to the posterior
pdf of the corresponding model. Namely, the parallel filters in MAPF exchange information adapting on-line the number of
particles employed in each filter. However, the total number of particles remains fixed, chosen in advance by the user. Hence,
the novel scheme is able to distributes the computational effort on-line, rewarding the filters addressing the most probable
models given the data.

An exhaustive theoretical derivation of MAPF is provided in Sections 2-3. In Section 2, we introduce the general Bayesian
formulation for tackling our problem. The posterior distribution which we study is doubly intractable, in the sense that it cannot
be evaluated analytically and the computation of the related moments is analytically intractable. Then, the importance sampling
(IS) technique for approximating the corresponding optimal Bayesian estimators is described in Section 3. The sequential IS
approach is presented in Section 3.1. The use of parallel particle filters appears natural following the theoretical derivation



of MAPF. We have focused special attention in describing wthe sequential approximation of the marginal likelihood (a.k.a.,
Bayesian evidence), in Sections 3.1, 3.2 and further material is also given in different appendices. Different possible formu-
lations are derived and discussed in detail, thus providing a concise review which could be of value to interested practitioners
and researchers. Interesting special cases of MAPF are discussed in Section 4.1. For instance, when all the candidate models
share the likelihood function, MAPF can be seen as a unique PF with adaptive prior density. Moreover, when all the candidate
models are equal and coincide with the true model, then MAPF can be interpreted as a distributed PF scheme where the filters
compete for obtaining more particles (according to the performance at each specific run). The application of MAPF in the case
of time-varying models is described in Section 5.

We test MAPF in different experimental scenarios and apply the proposed scheme in real data problem: a urban mobility
context for detecting different modes of activity. For instance, one possible goal in urban mobility is to detect if a traveller is
walking or riding a bus (or switching between these two modalities). The numerical results, with both synthetic and real data,
show the efficiency and flexibility of the proposed algorithms (Section 6).

Range of applicability. The range of applicability of MAPF is clearly wider, not restricted only to the urban mobility
case. Application of sequential model selection problem are very common in different fields where a stream of data is observed
[8, 12, 21, 22]. For instance, in financial analysis where price fluctuations act differently under different regimes, as the
ongoing instability in times of crisis [30]. They have also been used for fraud detection [20], explicitly modeling the switch to
a regime of fraudulent activity, from ordinary activity. In the medical domain, patients may need to be modeled for possible
complications [36]. In marine tracking [37], vessels must be suitable monitored depending on the different conditions of the
environment. Another general application, where MAPF can be also applied, is the change detection and system identification
problem [3]. Furthermore, MAPF can be used for optimizing the tuning of one or several parameters (problem specifically
tackled in [2, 33]), selecting them within of a set of possible candidates (e.g., see Section 6.2).

Related works. The problem addressed in this work is strictly related the switching model [9, 34, 25, 6] and the multiple
model approaches [1, 5, 8]. The first main difference is that, in general, this kind of methods requires the definition and tuning
of a transition probability matrix among the models. MAPF is a more simple scheme since the transition matrix is not required
so that the design effort (in terms of construction and tuning) can be focused completely on a proper of the dynamic and
likelihood functions.1 Another main difference is that MAPF does not allow exchange of particles among the filters (with the
exception of the refreshing steps; see Section 5), whereas in the switching model approach this exchange is always allowed, in
general. This difference yields that MAPF provides more accurate estimates (taking also advantage of the parallelization), since
each filter employs its own particles without hybrid mixes which can jeopardize the tracking. Moreover, MAPF automatically
adapts the number of particles of each PF keeping fixed the overall computational cost. PF schemes with adaptive number of
particles has been proposed in literature [17, 15], but in the context of a unique filter. Moreover unlike in these works, in MAPF,
the overall computational cost is kept constant, chosen in advance by the user. Other related and well-known approaches for
the joint purpose of sequential tracking and parameter estimation are given in [2, 33]. In [12], the Kolmogorov-Smirnov test
is applied for testing a dynamic equation in a state-space model. Finally, it is important to mention that specific particle filters
addressing models with unknown statistics have been also designed [13, 27, 26].

2. INFERENCE AND MODEL SELECTION IN STATE-SPACE MODELS

Let us denote the unknown state xt ∈ X with X ∈ Rdx (continuous space) or X ∈ Ndx (discrete space), t ∈ N, and the
current observed data as yt ∈ Y ∈ Rdy . We assume that the hidden sequence x1:T = [x1, . . . ,xT ] is generated with a
transition pdf g(xt|xt−1). At the t-th iteration, we observe yt with probability f(yt|xt), so that after T iterations we have
y1:T = [y1, . . . ,yT ]. The previous two pdfs, gt and ft, jointly compose the true model indicated as T , which we consider
unknown. Namely, setting g1(x1|x0) = g1(x1), we have

T :
{
gt(xt|xt−1)
ft(yt|xt) , t = 1, . . . , T. (1)

For the sake of simplicity, we consider the model T fixed over the time t, however the case of time-varying model Tt is also
tackled in Section 5.

We are interested in inferring the hidden states x1:T given all the observed measurements y1:T . Both, x1:T and y1:T , are
generated according to the model T in Eq. (1). Since T is unknown, we consider K different possible models, denoted asMk,

1We remark that, in MAPF, every model can differ from the other ones for both dynamic and measurement equations.



with k ∈ {1, . . . ,K}, formed by a transition pdf and a likelihood function, i.e., setting qk,1(x1|x0) = qk,1(x1),

Mk :
{
qk,t(xt|xt−1)
`k,t(yt|xt) , t = 1, . . . , T. (2)

We denote the set of all considered models asF = {M1, . . . ,MK} The true model T could be contained inF , i.e., T ∈ F , but
in general we have T /∈ F . However, even in the case T /∈ F , we apply the Bayesian model averaging (BMA) approach [19]
which provides a coherent mechanism for taking in account the model uncertainty, improving the overall filtering performance.

We assume a prior probability mass function (pmf), p(Mk), k = 1, . . . ,K < ∞ over the different models. Thus, the goal
is to make inference about the sequence x1:T and theK different possible models, given the set of received measurements y1:T .
Therefore, we study the following posterior density

p(x1:T |y1:T ) =
K∑

k=1

p(x1:T ,Mk|y1:T ), (3)

=
K∑

k=1

p(x1:T |y1:T ,Mk)p(Mk|y1:T ), (4)

=
1

p(y1:T )

K∑

k=1

p(x1:T |y1:T ,Mk)p(y1:T |Mk)p(Mk), (5)

where p(y1:T ) =
∑K
j p(y1:T |Mj)p(Mj). In general, the study of the posterior pdf above is (doubly) analytically intractable

because:

• We cannot evaluate p(x1:T |y1:T ) in Eq. (5) completely, since we cannot evaluate

p(Mk|y1:T ) =
Zk,T p(Mk)

∑K
j=1 Zj,T p(Mj)

, (6)

owing to, in general, we are not able to compute

Zk,T = p(y1:T |Mk) =
∫

XT
p(x1:T ,y1:T |Mk)dx1:T , (7)

for all k = 1, . . . ,K. However, given an index k ∈ {1, . . . ,K} and y1:T , we are able to evaluate2

p(x1:T ,y1:T |Mk) = p(x1:T |Mk)p(y1:T |x1:T ,Mk),

=

[
qk,1(x1)

T∏

t=2

qk,t(xt|xt−1)

][
T∏

t=1

`k,t(yt|xt)
]
, (8)

so that we can also evaluate

p(x1:T |y1:T ,Mk) =
p(x1:T ,y1:T |Mk)

Zk,T
∝ p(x1:T ,y1:T |Mk), (9)

up to a normalizing constant.

• Moreover, often we cannot compute analytically integrals involving the function p(x1:T |y1:T ). For instance, one can be
interested the computation of the Minimum Mean Square Error (MMSE) estimator of the sequence of hidden states x1:T ,

I1:t = E[x1:t] =
∫

XT
x1:T p(x1:T |y1:T )dx1:T . (10)

More generally, the computation of moments of p(x1:T |y1:T ) are not analytically intractable, and its approximation is
computationally demanding.

We employ Monte Carlo schemes for approximating both p(x1:T |y1:T ,Mk) and p(Mk|y1:T ), for k = 1, . . . ,K. As a conse-
quence, we also approximate the complete posterior pdf p(x1:T |y1:T ) in Eq. (5).

2For the sake of simplicity, in the following mathematical elaborations, we consider both densities qk,t and `k,t be normalized w.r.t. x and y respectively,
i.e.,

R
X qk,t(x|z)dx = 1 and

R
Y `k,t(y|z)dy = 1. As a consequence, the joint pdf p(x1:T ,y1:T |Mk) in Eq. (8) is also normalized.



3. MONTE CARLO APPROXIMATION VIA IMPORTANCE SAMPLING

For solving the issues described in the previous section, we consider the use of Monte Carlo techniques. First of all, fixing
an index k ∈ {1, . . . ,K}, we describe a batch importance sampling (IS) approach where we consider to draw M possible
sequences

x(m)
k,1:T = [x(m)

k,1 ,x
(m)
k,2 , . . . ,x

(m)
k,T ] ∼ ϕk(x1:T ),

from a proposal pdf ϕk : X T → R, with m = 1, . . . ,M . Namely, in the batch approach, we consider samples directly in the
whole space X T . In the next section, we introduce the corresponding sequential scheme (working sequentially in the subspaces
X ). The batch IS technique is described as follows. For each index k ∈ {1, . . . ,K}, draw M samples x(1)

k,1:T , . . . ,x
(M)
k,1:T from

a proposal pdf ϕk(x1:T ), where ϕk : X T → R, and assign to each sample the following importance weights

w
(m)
k,T =

p(x(m)
k,1:T ,y1:T |Mk)

ϕk(x(m)
k,1:T )

, m = 1, . . . ,M, k = 1, . . . ,K. (11)

Note that the total number of samples are N = KM . We can approximate

Zk,T = p(y1:T |Mk) =
∫

XT
p(xk,1:T ,y1:T |Mk)dxk,1:T ,

using basic IS arguments [29, 23] as3

Ẑk,T =
1
M

M∑

m=1

w
(m)
k,T ≈ p(y1:T |Mk). (12)

We can also write p(y1:T ) ≈∑K
k=1 Ẑk,T p(Mk). Furthermore, since , we can approximate the measure of p(x1:T |y1:T ,Mk) =

p(xk,1:T ,y1:T |Mk)
Zk,T

by the following particle approximation

p̂(x1:T |y1:T ,Mk) =
M∑

m=1

w̄
(m)
k,T δ(x1:T − x(m)

k,1:T ), (13)

where

w̄
(m)
k,T =

w
(m)
k,T∑M

j=1 w
(j)
k,T

=
w

(m)
k,T

MẐk,T
, (14)

is the normalized weight of the m-th sample of the k-th model, normalized considering all the samples associated to the k-th
model. Thus, given Eq. (5), we also obtain an approximation of p(x1:T |y1:T ),

p̂(x1:T |y1:T ) =
1

p̂(y1:T )

K∑

k=1

p̂(x1:T |y1:T ,Mk)p̂(y1:T |Mk)p(Mk)

=
1

∑K
j=1 Ẑj,T p(Mj)

K∑

k=1

[(
1

MẐk,T

M∑

m=1

w
(m)
k,T δ(x1:T − x(m)

k,1:T )

)
Ẑk,T p(Mk)

]

=
K∑

k=1

M∑

m=1

(
w

(m)
k,T p(Mk)

∑K
j=1

∑M
i=1 w

(i)
j,T p(Mj)

)
δ(x1:T − x(m)

k,1:T ).

The last expression can summarized as

p̂(x1:T |y1:T ) =
K∑

k=1

M∑

m=1

γ̄
(m)
k,T δ(x1:T − x(m)

k,1:T ), (15)

3We consider that ϕk(x1:T ) is normalized.



where we have denoted

γ̄
(m)
k,T =

w
(m)
k,T p(Mk)

∑K
j=1

∑M
i=1 w

(i)
j,T p(Mj)

, (16)

=
1
M

w
(m)
k,T p(Mk)

∑K
j=1 Ẑj,T p(Mj)

, (17)

It is particular interesting from a theoretical point of view that the weight γ̄(m)
k,T can be decomposed4 as

γ̄
(m)
k,T =

w
(m)
k,T∑M

j=1 w
(j)
k,T

Ẑk,T p(Mk)
∑K
j=1 Ẑj,T p(Mj)

.

= w̄
(m)
k,T ρ̄k,T , (18)

where w̄(m)
k,T is given in Eq. (14), and ρ̄k,T is an estimator of the posterior of the k-th model p(Mk|y1:T ) in Eq. (6),

ρ̄k,T =
Ẑk,T p(Mk)

∑K
j=1 Ẑj,T p(Mj)

≈ p(Mk|y1:T ). (19)

It is important to remark that the use of K parallel IS schemes seems to appear naturally from the factorization γ̄
(m)
k,T =

w̄
(m)
k,T ρ̄k,T . Indeed, we can also rewrite the approximation in Eq. (15) as the convex combination

p̂(x1:T |y1:T ) =
K∑

k=1

ρ̄k,T p̂(x1:T |y1:T ,Mk), (20)

where ρ̄k,T is the normalized weight of the k-th model. Finally, for instance, the computation of the MMSE estimator x̂1:T in
Eq. (10) is approximated as

I1:T ≈ Î1:T =
K∑

k=1

M∑

m=1

γ̄
(m)
k,T x(m)

k,1:T , (21)

or with the equivalent two-stage formula
{

Ĩk,1:T =
∑M
m=1 w̄

(m)
k,T x(m)

k,1:T ,

Î1:T =
∑K
k=1 ρ̄k,T Ĩk,1:T ,

(22)

where Ĩk,1:T represents the approximated MMSE estimator considering only the k-th model. The IS procedure above can easily
reformulated within a sequential framework, as described in the next section.

3.1. Sequential Importance Sampling (SIS)

The IS method can be alternatively perfomed in a sequential manner, i.e., providing an approximation of the posterior pdf at
each iteration t using the previous approximation ant the iteration t − 1. Let us consider an index k ∈ {1, . . . ,K}. Observing
the following recursive relationship between the posterior pdfs at t− 1 and t [11], respectively,

p(x1:t|y1:t,Mk) =
`k,t(yt|xt)qk,t(xt|xt−1)

p(yt|y1:t−1,Mk)
p(x1:t−1|y1:t−1,Mk), (23)

(see Appendix A for further deitails), we can build the empirical approximation p̂(x1:t|y1:t,Mk) as

p̂(x1:t|y1:t,Mk) =
1

MẐk,t

M∑

i=1

w
(i)
k,tδ(x1:t − x(i)

k,1:t), (24)

4Note also that
PK
k=1

PM
m=1 γ̄

(m)
k,T = 1.



given the previous p̂(x1:t−1|y1:t−1,Mk). Recall that, we also obtain an estimator of p(y1:t|Mk), as Ẑk,t = 1
M

∑M
m=1 w

(m)
k,t .

Let us consider a proposal density ϕk : X T → R factorizes as

ϕk(xk,1:T ) = φk,1(xk,1)φk,2(xk,2|xk,1) · · ·φk,T (xk,T |xk,1:T−1), (25)

with φk,t : X → R for t = 1, . . . , T . Given Eq. (23), we can infer a recursive relationship between two importance weights at
consecutive iterations [11],

w
(m)
k,t = w

(m)
k,t−1

`k,t(yt|x(m)
k,t )qk,t(x

(m)
k,t |x

(m)
k,t−1)

φk,t(x
(m)
k,t |x

(m)
k,1:t−1)

,

= w
(m)
k,t−1λ

(m)
k,t =

t∏

τ=1

λ
(m)
k,τ (26)

where

λ
(m)
k,t =

`k,t(yt|x(m)
k,t )qk,t(x

(m)
k,t |x

(m)
k,t−1)

φk,t(x
(m)
k,t |x

(m)
k,1:t−1)

,

and x(m)
k,t ∼ φk,t(x

(m)
k,t |x

(m)
k,1:t−1), and m = 1, . . . ,M . Therefore, given the recursive expression of w(m)

k,t , we can rewrite the

estimator Ẑk,t as

Ẑk,t =
1
M

M∑

m=1

w
(m)
k,t =

1
M

M∑

m=1

[
t∏

τ=1

λ
(m)
k,τ

]
. (27)

However, the estimator of p(y1:t|Mk) above has not a unique formulation. Indeed, it is possible to obtain an approximation of
the denominator in Eq. (23) (see Appendix B),

p̂(yt|y1:t−1,Mk) =
M∑

i=1

w̄
(i)
k,t−1λ

(i)
k,t,

where w̄(i)
k,t−1 =

w
(i)
k,t−1PN

n=1 w
(n)
k,t−1

are the normalized weights at t − 1-th iteration. As a consequence, since p(y1:t|Mk) =
∏t
τ=1 p(yτ |y1:τ−1,Mk), we have a second possible formulation of the estimator of p(y1:t|Mk),

Z̃k,t =
t∏

τ=1



M∑

j=1

w̄
(j)
k,τ−1λ

(j)
k,τ


 , (28)

=
t∏

τ=1

[ ∑M
j=1 w

(j)
k,τ∑M

j=1 w
(j)
k,τ−1

]
. (29)

In Appendix B, we show a complete derivation of the estimator Z̃k,t and that Z̃k,t ≡ Ẑk,t, as one could easily realize from
Eq. (29).

Remark 1. Observe that, in SIS, there are two possible equivalent formulation of the estimator of p(y1:t|Mk), i.e., Ẑk,t in
Eqs. (27) Z̃k,t in Eq. (28), and they are the equivalent, Z̃k,t ≡ Ẑk,t (see App. B).

In any case, since p̂(y1:t) =
∑M
j=1 Zj,tp(Mj), the model weight ρ̄k,t = bp(y1:t,Mk)bp(y1:t)

employed in Eqs (19)-(20) can be
expressed as

ρ̄k,t =
Ẑk,tp(Mk)

∑M
j=1 Ẑj,tp(Mj)

≈ p(Mk|y1:t). (30)

The weights ρ̄k,t above are then used for computing the global estimator at the t-th iteration, similarly in Eq. (22).



3.2. Sequential Importance Resampling (SIR)

In several algorithms, such as the sequential Monte Carlo (SMC) methods, resampling steps are performed within SIS schemes
for avoiding the degeneracy of the weights [11, 13]. Let us denote as

x̄(j)
k,1:t ∈ {x

(1)
k,1:t, . . . ,x

(M)
k,1:t}

a resampled particle at the iteration t (resampled according to the normalized weights w̄(j)
k,t−1, j = 1, . . . ,M , at the t-th

iteration). The unnormalized importance weights of the resampled particles, denoted as α(j)
k,t, j = 1, . . . ,M , are set to the same

value [11, 13]5, i.e,
α

(1)
k,t = α

(2)
k,t = . . . = α

(M)
k,t .

A proper value6 for the (unnormalized) importance weight α(j)
1:t−1 associated with the j-th resampled particle is

α
(j)
k,t = Ẑk,t =

1
N

N∑

i=1

w
(i)
k,t, ∀j = 1, . . . ,M. (31)

One reason why this seems a suitable choice, for instance, is that defining the following weights

ξ
(m)
k,t =




w

(m)
k,t , without resampling at t-th iteration,

α
(m)
k,t , with resampling at t-th iteration.

(32)

then, in any case,
1
N

N∑

n=1

ξ
(j)
k,t = Ẑk,t,

as expected. In general, the resampling steps are not applied at each iterations, but only when some statistical criterion is
satisfied [7, 11, 13] (e.g., see Section 4). The recursive expression of the weights for SIR becomes

ξ
(m)
k,t = ξ

(m)
k,t−1λ

(m)
k,t , where ξ

(m)
k,t−1 =

{
ξ
(m)
k,t−1, without res. at (t− 1)-th iter.,

Ẑk,t−1, with res. at (t− 1)-th iter.
(33)

Remark 2. With the recursive definition of the weights ξ(m)
k,t ’s in Eq. (33), the two possible estimators of the marginal likelihood

p(y1:t|Mk) are the same within SIR, as well. The estimators are

Ẑk,t =
1
M

M∑

m=1

ξ
(m)
k,t−1λ

(m)
k,t , Z̃k,t =

t∏

τ=1



M∑

j=1

ξ̄
(j)
k,τ−1λ

(j)
k,τ


 (34)

where ξ̄(j)k,t−1 =
ξ
(j)
k,t−1PM

m=1 ξ
(m)
k,t−1

. They are equivalent and valid estimators for the reasons shown in App. B. Furthermore, if the

resampling is applied at each iteration, observe that they become

Z̃k,t =
t∏

τ=1


 1
M

M∑

j=1

λ
(j)
k,τ


 , (35)

and

Ẑk,t = Ẑk,t−1

[
1
M

M∑

m=1

λ
(m)
k,t

]
=

t∏

τ=1


 1
M

M∑

j=1

λ
(j)
k,τ


 . (36)

Note that, w.r.t. the estimator in Eq. (27) (for SIS, i.e., without resampling), the operations of product and sum are inverted.

So far, in this section, we have considered a specific value of the index k ∈ {1, . . . ,K}. However, for our purpose, we
need of all the model weights ρ̄k,t, for all values k = 1, . . . ,K. Thus, a practical implementation employing K parallel particle
filters appears natural. In the next section, we describe the proposed scheme in details.

5This is a proper choice, but it is not unique; see “Concept of weighted sample” in [23, Chapter 2] or [29, Section 14.2].
6It is suitable in the sense of weighted sample described in [23, Chapter 2].



Table 1: Main notation for MAPF.
K Number of parallel PFs.
T Total number of iterations of each PF.
N Total a number of particles distributed among the PFs.
Mk,t Number of particles of the k-th PF at the iteration t.eZk,t, bZk,t estimator of p(y1:t|Mk) (two formulations).

w
(m)
k,t Importance weight assigned to the sample x

(m)
k,t .

w̄
(m)
k,t

Weight assigned to the sample x
(m)
k,t ,

normalized w.r.t. the Mk,t weights of k-th filter.
ρ̄k,t Approximation of p(Mk|y1:t).
γ̄
(m)
k,t Global normalized weight (γ̄(m)

k,t = w̄
(m)
k,t ρ̄k,t).

I1:t = E[x1:t] MMSE estimator of the hidden state x1:t.eI1:t Partial approximation of I1:t of the k-th PF.bI1:t Global approximation of It.

4. MODEL AVERAGING PARTICLE FILTERS

The factorization of the global normalized weights γ̄(m)
k,t = w̄

(m)
k,t ρ̄k,t suggests the use of K parallel IS schemes. Indeed, each

IS scheme can compute independently w̄(m)
k,t and Ẑk,t, and then they merge all the information for calculating ρ̄k,t (see Figure

1). Therefore, we consider K parallel particle filters [11, 7, 10] using the transition model as proposal pdf7

φk,t(xk,t|xk,1:t−1) = qk,t(xk,t|xk,t−1),

each one tailored to a different states-space modelMk, for k = 1, . . . ,K. The K parallel PFs cooperate for providing a unique
global approximation of the complete posterior, as described in the previous sections. As a consequence, an approximation
ρ̄k,T of the model posterior densities p(Mk|y1:T ) is also provided.

Table 2 provides an exhaustive description of the Model Averaging Particle Filters (MAPF). Table 1 summarizes the main
notation used in MAPF. The computational effort is distributed adaptively among the parallel PFs, proportionally to the (ap-
proximated) posterior pdf of the modelMk given the current set of data y1:t, i.e., ρ̄k,t ≈ p(Mk|y1:t). More specifically, when
a resampling step is performed, the number of particles of each filter is adapted on-line, taking into account an approximation of
the probability p(Mk|y1:t). However, the overall computational cost remains invariant (pre-established by the user in advance)
since total number of particles denote as N does not vary, i.e.,

M1,t +M2,t + . . .+MK,t = N, for t = 1, . . . , T. (37)

Since Mk,t+1 = bρ̄k,tc, when a resampling step is applied, (or Mk,t+1 = Mk,t, without) in general we have N ′ = N −∑K
j=1Mj,t+1 ≥ 0. When N ′ > 0, the remaining N ′ particles can be assigned to the filters in different ways: for instance, with

probability ρ̄k,t, i.e., set Mk,t+1 = Mk,t+1 + N ′ so that
∑K
j=1Mj,t+1 = N . Alternatively, the use of a minimum number of

particles for each filter can be considered (avoiding, in this way, the stop of some filter with no particles assigned8). The MMSE
estimator x̂t in Eq. (10) can be approximated using the Eq. (21) or (22), i.e.,

Ît =
K∑

k=1

ρ̄k,tĨk,t where Ĩk,t =
Mk,t∑

ik=1

w̄
(ik)
k,t x(ik)

k,t , (38)

where Ĩk,t is provided by each filter independently, as shown in Figure 1. We have denoted as x̄(ik)
k,1:t ∈ {x

(1)
k,1:t, . . . ,x

(Mk,t)
k,1:t } the

samples after a resampling step. A resampling step is applied at each iteration that the Effective Sample Size (ESS) is smaller
than a threshold value (εN where |ε| ≤ 1). We adapt a well-known approximation of ESS [11, 18, 7] for our problem, so finally
the used condition is

ÊSS =
1

∑K
k=1

∑Mk,t

m=1

(
γ̄

(m)
k,t

)2 ≤ εN, (39)

where γ̄(m)
k,t = w̄

(m)
k,t ρ̄k,t. Namely, when ÊSS ≤ εN , a resampling step is performed.

7More sophisticated PF techniques could be also employed, each one addressing a different model.
8Observe that for the algorithm in Table 2, it is necessary that Mk,t ≥ 2, ∀k, t. In the equivalent MAPF formulation given in Appendix C, this constrain is

not required.
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k=1

Mk,t+1 = bN⇢̄k,tc
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number of particles of the k-th filter

if [ESS  ✏N
t( t + 1

MK,tM2,tM1,t

Fig. 1: Graphical overview of the MAPF scheme in Table 2 for approximating the MMSE estimator bIt and the posterior of each model given
the observed data. Note that ÊSS in Eq. (39) takes into account the (normalized) weights γ̄(ik)

k,t = w̄
(ik)
k,t ρ̄k,t, for all ik and k.

Table 2: Model Averaging Particle Filters (MAPF).

1. Initialization: Set Mk,1 = N
K
≥ 2, ξ(ik)

k,0 = 1, and choose the initial states x̄
(ik)
k,0 , for all ik = 1, . . . ,Mk,1 and k = 1, . . . ,K.

2. For t = 1, . . . , T :

(a) Propagation: Draw x
(ik)
k,t ∼ qk,t(x|x̄

(ik)
k,t−1), for ik = 1, . . . ,Mk,t and k = 1, . . . ,K.

(b) Particle Weighting: Compute the weights and normalized them,

w
(ik)
k,t = ξ

(ik)
k,t−1`k,t(yt|x

(ik)
k,t ), and w̄

(ik)
k,t =

w
(ik)
k,tPMk,t

j=1 w
(j)
k,t

, (40)

for ik = 1, ...,Mk,t, k = 1, . . . ,K and ξ(ik)
k,t−1 is defined in Eq. (33).

(c) Model Weighting: Compute, for k = 1, . . . ,K,

bZk,t =
1

Mk,τ

Mk,τX
ik=1

w
(ik)
k,t , and ρ̄k,t =

bZk,tp(Mk)PK
j=1

bZj,tp(Mj)
. (41)

Alternatively, the estimator bZk,t in Eq. (34) can be used.

(d) Adaptation and Resampling: For each filter, k = 1, . . . ,K:
- If the condition (39) is fulfilled,

i. Set Mk,t+1 = bNρ̄k,tc, and distribute the remaining N ′ = N −
PK
j=1Mj,t+1 particles among the K filters according to some

pre-established criterion (see Section 4).

ii. Draw Mk,t+1 samples, x̄
(1)
k,1:t, . . . , x̄

(Mk,t+1)

k,1:t , from

bp(x1:t|y1:t,Mk) =

Mk,tX
ik=1

w̄
(ik)
k,t δ(x1:t − x

(ik)
k,1:t).

- Otherwise, set Mk,t+1 = Mk,t and x̄
(ik)
k,1:t = x

(ik)
k,1:t, for all ik .

(e) Output: Return {x(ik)
k,1:t, w

(ik)
k,t , ρ̄k,t}, ik = 1, . . . ,Mk,t and k = 1, . . . ,K.

Figure 2 depicts another graphical representation of the MAPF algorithm in Table 2 with K = 2 filters, when a resampling
step is employed. The filters interact through the adaptation of numbers of particles of each filter, Mk,t (and also providing
jointly the global MMSE estimator). However, Figure 2 shows that the resampling steps are performed independently by each
filter (in the figure K = 2), i.e., no particles are exchanged among the filters. Further considerations about MAPF are provided



in Appendix C.

Resampling

Resampling

{x(i1)
1,t , w

(i1)
1,t }M1,t

i1=1

{x(i2)
2,t , w

(i2)
2,t }M2,t

i2=1

M1,t+1

M2,t+1
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n
x̄(i1)

1,t

oM1,t+1

i1=1

n
x̄(i2)

2,t

oM2,t+1

i2=1

Fig. 2: Another graphical representation of the MAPF scheme, with K = 2 parallel particle filters. A fusion center returns, bIt, ρ̄k,t, and the
numbers of particles Mk,t+1, k = 1, 2, of the next iterations. Then, the resampling steps are performed separately.

Remark 3. The step 2d of MAPF in Table 2 can be interpreted as a double resampling: a first resampling considering the
model weights, ρ̄k,t, adapting the number of particles and the second one considering the normalized weights, w̄(m)

k,t , within
a filter. However, in this scheme the exchange of particles among the filters is not allowed. In Section 5 another resampling
procedure is considered, using directly the weights γ̄(m)

k,t =w̄(m)
k,t ρ̄k,t, where the exchange of particles is possible.

The remark above is strictly connected to the considerations in Appendix C.

4.1. Interesting special cases

It is interesting to remark that if the likelihood function is common to all the filters, i.e., `k,t(yt|xt) = `t(yt|xt) for all k, then
MAPF can be seen as a PF with adaptive prior pdf. Thus, the complete likelihood is

p(y1:t|x1:t) =
t∏

τ=1

`τ (yτ |xτ ), (42)

and the complete prior pdf of k-th model, is9

p(x1:t|Mk) = qk,1(x1)
t∏

τ=2

qk,τ (xτ |xτ−1). (43)

Namely, in this setup, the model selection problem becomes as the problem of a suitable choice of a prior pdf for our model. This
specific case is particularly interesting from a practical point of view, as we discuss below. Since in this case p(x1:t|y1:t,Mk) =
p(y1:t|x1:t)p(x1:t|Mk) the complete posterior p(x1:t|y1:t) in Eq. (4) can be rewritten as

p(x1:t|y1:t) = p(y1:t|x1:t)

[
K∑

k=1

ζk p(x1:t|Mk)

]
, (44)

where we have denoted ζk = p(Mk|y1:T ). Namely, noting that
∑K
k=1 ζk = 1, we can interpret this framework as using a

unique model with the dynamic-prior pdf defined by the following mixture, p(x1:t) =
∑K
k=1 ζk p(x1:t|Mk). Thus, in this

case, MAPF can be interpreted as a unique filter with adaptive prior pdf where, ρ̄k,t ≈ ζk. Furthermore, if all the models are
the same equal to the true one T , i.e.,

M1 =M2 = . . . =MK = T ,
then MAPF described a distributed PF scheme [7, 10, 13] which K parallel PFs cooperate for providing a global estimator,

Î1:t =
K∑

k=1

ρ̄k,tĨk,1:t. (45)

The computational effort is distributed in order to foster the filters which are providing the best performance, in the specific run.
9Note that, in a Bayesian setting, the dynamic models play the role of prior pdf.



5. MAPF FOR TIME-VARYING MODELS

The MAPF scheme can be easily modified for applying it in a switching model setting, where at some unknown iterations
t∗1 ≤ t∗2 ≤ t∗3 . . . the true model T generating x’s and y’s changes, i.e., we have T1 → T2 → T3 . . . etc. For example, a traveller
may switch from walking to riding the bus, and both the dynamics and observations will vary accordingly. The change detection
problem [3] can be also considered as an interesting particular case. For instance, see the numerical example in Section 6.1.

The simplest way for handling this scenario is to consider a window of TV ≥ 1 iterations for computing the values Ẑk,t,
for k = 1, . . . , ,K. In this case we modify the computation of Ẑk,t: the simplest possibility is to refresh all the Ẑk,t’s each TV
iterations considering only the incremental weights (as forcing ξk,t−1 = Ẑk,t−1 = 1)10, i.e.,

Ẑk,t∗ =
1

Mk,t∗

Mk,t∗∑

m=1

λ
(m)
k,t∗ , t∗ = rTV , r ∈ N. (46)

On the one hand, with a small TV , the algorithm is able to detect quickly the change in the model T , although the approximation
of the posteriors of the model given the data become more unstable (since the posterior takes into account a smaller number
of observations). On the other hand, with a bigger TV , the algorithm is more stable but the detection of model updates is
slower.In this scenario, each TV iterations, the numbers of particles Mk,t’s should be refreshed, setting Mk,t = N

K for all k.
Moreover, in order to recover lost filters, a joint resampling should be performed, considering the weights γ̄(ik)

k,t = w̄
(ik)
k,t ρ̄k,t,

ik = 1, . . . ,Mk,t and k = 1, . . . ,K. This allows the exchange of particles among the different filters. Namely, one could draw
N particles from the global approximation at the t-th iteration in Eq. (15),

p̂(x1:t|y1:t) =
K∑

k=1

Mk,t∑

ik=1

γ̄
(ik)
k,t δ(x1:t − x(ik)

k,1:t), (47)

where γ̄(ik)
k,t are in Eqs. (16)-(18). Figure 3 summarizes the suggested approach for handling the selection of time-varying

models. The application of this refreshing strategy could be useful also in the standard model selection setting, without changes
in the true model: it avoids numerical problems and can increase the robustness of the MAPF technique.

1 2 3
Refresh
bZk,t

Set
Mk,t =

N

K

Resample
according to

�̄
(ik)
k,t

Each TV iterations

Fig. 3: Refreshing strategy for time-varying model settings.

Finally, let us consider for simplicity the sub-case of common likelihood function. The improvement in the performance
provided by MAPF with respect to a standard filter can be considerable in tracking applications. This is owing to, for instance,
riding a bus hugely constraints both the dynamic and observation model. Indeed, simply knowing the bus routes beforehand,
the movement can be restricted by a whole dimension, since the trajectory of the bus is fixed. The mathematical descriptions
of different modalities of mobility can be calibrated in advance from publicly available data. In the numerical simulations in
Section 6.3, for example, we use shows the real-time position of buses in the city of Helsinki (http://live.mattersoft.
fi/hsl/).

6. NUMERICAL SIMULATIONS

6.1. Online model selection for time series

As first example, we consider an inference problem given two possible systems of stochastic equations for modeling a time
series (xt ∈ R, t ∈ N). The goal is to estimate sequentially the hidden sequence x1:T and also recognize on-line which the

10Alternatively a sliding window of iterations can be considered, i.e., bZk,t ≡ eZk,t =
Qt
τ=t−TV +1

hPMk,τ
j=1 ξ̄

(j)
k,τ−1λ

(j)
k,τ

i
.



model generates the received measurements, y1:T , between

M1 :

{
x1,t = ax1,t

1+bx2
1,t

+ v1,t,

yt = x1,t + u1,t,
(48)

M2 :
{
x2,t = x2,t−1 + v2,t,
yt = exp {−c x2,t}+ u2,t,

(49)

with, a = −10, b = 3, c = 0.2 and t = 1, . . . , T = 500. The variables vk,t ∼ N (0, 1) and uk,t ∼ N (0, 1
2 ), k = 1, 2 represent

Gaussian perturbations.
We set that the first 250 observations are generated fromM1 and the remaining fromM2. Namely, for t ≤ 250 the true

model is Tt≤250 ≡ M1 whereas, for t > 250, we have Tt>250 ≡ M2. That is, we have a change in the model at the iteration
t∗ = 250.

We apply MAPF with N = 105 total number of particles, ε = 0.1 and refreshing window TV = 125 (clearly, K = 2).
Given the previous assumptions, we have averaged the results over 104 independent simulations, where the hidden states and
the data are generated at each run, according to the model Tt. Figure 4(a) shows the true and the estimated sequence of states in
one specific run. Figure 4(b) depicts the evolution of the number of particles of each filters, Mk,t, k = 1, 2, as function of the
the iterations t, in one particular run. Note that, the algorithm is able to detect quickly the true model and assigns adequately
all the computational effort to the filter addressing the true model, at the corresponding iteration t. Figure 4(b) also illustrates
that MAPF recovers quickly after a refreshing step, each TV = 125 iterations. We have also computed the Mean Square Error
(MSE) in the estimation of x1:T , and then averaged it over the 104 independent runs. We compare the MSE obtained by MAPF
with different unique particle filters withN = 105 particles: one PF considers the true model (best case), a second PF considers
alwaysM1, the third PF always deals withM2 and the last one addresses always the wrong model, i.e.,M2 for t ≤ 250 and
M1 for t > 250. The results are shown in Table 3. MAPF provides an MSE virtually identical to the MSE of the best case,
obtained using a unique PF addressing always the true model.

PF MAPF PF -M1 PF -M2
PF

true model wrong model
6.64 6.91 95.09 106.21 115.44

Table 3: MSE of MAPF in estimation of x1:T , compared with the MSE of different unique PFs using the same number of particlesN = 105.
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Fig. 4: (a) True (solid line) and estimated (dashed) sequence of states x1:T in one specific run, obtained by MAPF. (b) Evolution of the
numbers of particles M1,t, M2,t as function of the iterations t, in one specific run. A refreshing step is applied at each TV = 125 iterations.



6.2. Parameter selection

Consider the system of equations defining different models, with xk,t ∈ R,

Mk :
{
xk,t = ak|xk,t−1|+ vk,t
yt = bk log(x2

k,t) + uk,t
, t = 1, . . . , T. (50)

where vk,t ∼ N (0, σ2
1,k) and uk,t ∼ N (0, σ2

2,k). We consider that true model T coincides with MK with parameters
aK = bK = 1, and σ1,k = σ2,k = 1. Thus, at each run, all the data y1:T are generated according to T . We consider 3 different
scenarios:

• General setup (S1): in this case, each model Mk has both different dynamic equations and different likelihood func-
tions. Specifically We consider a grid of parameters,

ak =
k

K
, k = 1, . . . ,K. (51)

Note that aK = 1. The first K − 1 values of σ1,k are chosen randomly at each run, more precisely, σi,k ∼ U([0.1, 10]) for
i = 1, 2 and k = 1, . . . ,K − 1. Moreover, we have another grid for bk,

bk =
1
3

+
10(k − 1)

K
, k = 1, . . . ,K − 1, (52)

and bK = 1.
• Common likelihood function (S2): the parameters ak are selected are in Eq. (51), and again σ1,k ∼ U([0.1, 10]), whereas
in this case, we set bk = 1, σ2,k = 1 for all k = 1, . . . ,K. Namely, the models share the same likelihood function.
• Common dynamic model (S3): in this case, ak = 1 and σ1,k = 1 for all k = 1, . . . ,K, whereas the bk’s are set as in Eq.
(52) (with bK = 1) and σ2,k ∼ U([0.1, 10]).

We apply MAPF performing 500 independent runs for every scenario, S1, S2 and S3. In each experiment, new hidden
sequences and observed data are generated from the true model T ≡ MK . In all cases, we set T = 500, the number of
particles are N = 105, and the resampling parameter is ε = 0.1. We also test different values of TV ∈ {20, 40, 100, T + 1}
(the case TV = T + 1 corresponds to “no-refreshing” setup) and number of considered models K ∈ {5, 20, 50, 100}. Table
4 provides the percentage of the perfect match between the estimated model obtained by the maximum a posteriori (MAP)
estimator and the true model. This percentage is averaged over the T iterations, at each run. The results show that MAPF is
able to detect the true model in different scenarios, even with highly frequent refreshing steps. Figures 5 show the variable
number of particles (in one specific run) of K = 50 filters as function of different iterations t in different experimental setup.
These figures confirm that MAPF is able to recover quickly the true model after several refreshing steps. Finally, considering
K = 5, the numerical simulations also show that MAPF obtains an Mean Square Error (MSE) approximately 10 times smaller
than a unique filter with N = 105 particles employed for targeting a wrong model, without taking into account “catastrophic”
runs when the filter is completely lost.

6.3. Real Data: Urban Mobility

In this section, we conduct a study on real-world data involving smartphone-based tracking. The knowledge of the current
position is useful for many applications, in particular to offer real-time location-based services such as advising the traveller
when it is time to change bus, or suggesting any other kind of services.

Location is obtained by the devices GPS. However, this causes a relatively strong drain on the battery, so infrequent use
of the GPS receiver is strongly desired. Furthermore, GPS reception does not work in some parts of the transport system,
for example in the metro system (when it is underground) and on the train (due to unfavorable reception conditions caused
by the metal cabin and overhead electrical lines). Hence, in this case, other kind of sensors should incorporated to the sensor
network. A volunteer group of researchers collected GPS measurements recorded continuously during two weeks by using
Android smartphones running the CONTEXTLOGGER application11. To obtain a relatively accurate ground truth, we obtained
readings every 10 seconds. In correspondence with our recorded data, we considered the time step as 10 seconds (so that the
refreshing time TV must take into account this consideration). We assume a linear observation model yt = xt + rt where xt

11See http://contextlogger.org/.



Table 4: Percentage (averaged over the T iterations and 500 independent runs) of the perfect match between the estimated
model and the true model, in different settings (S1, S2 and S3) and number of models K.

(a) Without refreshing

K 5 20 50 100
S1 98.55 98.60 98.60 98.59
S2 98.48 97.53 97.49 97.26
S3 98.50 98.57 98.51 98.58

(b) With refreshing TV = 20

K 5 20 50 100
S1 62.54 91.12 91.80 91.68
S2 62.06 79.04 81.99 81.26
S3 64.54 91.04 91.90 92.40

(c) With refreshing TV = 40

K 5 20 50 100
S1 71.81 94.78 95.00 95.50
S2 82.65 89.37 89.65 90.36
S3 82.78 94.78 95.42 95.36

(d) With refreshing TV = 100

K 5 20 50 100
S1 78.47 97.98 98.08 98.02
S2 92.46 95.83 95.68 96.15
S3 94.46 97.76 98.06 97.93
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(d) S3, K = 50, TV = 150

Fig. 5: Number of particles Mk,t (with K = 50 filters and N = 105) as function of the iterations t, in one specific run. The number
of particles of the filter corresponding to the true model is depicted with a dashed line. Figures (a) and (b) correspond to the setup S1 and
TV = 50, 150, respectively; Figures (c) and (d) correspond to the setup S2 and S3 with TV = 150, in both cases.

is the current position and rt is a Gaussian noise with a standard deviation error of ±10.62 meters, as recorded in the true data
(accuracy is recorded on each datum). Geographical coordinates of interactions (crossings) and bus stops can be obtained from
OPENSTREETMAPS,12 and, in the case of Helsinki which we have considered, from the urban planner.13. As an example, we
plot all stops in the Helsinki region in Fig. 6. There are several possibilities for modeling the different possible modes in urban
mobility problem. Here, we provide some very simple and efficient possibilities, which can be easily implemented within a
commercial application:

12See http://www.openstreetmap.org
13See http://hsl.fi



(a) (b) (c)

Fig. 6: (a) All bus stops in Helsinki region (left). (b) All intersections crossed during a 10-day period by one participant. (c) A
small section of trajectories labeled under different transportation modes. Blue is car, red is bus, and green is cycling.

Dynamic Model for Train-Bus. Let us define the subset S ⊆ R2, which is a piecewise linear approximation the route
of the corresponding train or bus. An example is shown in Figure 7(a). We consider the following equation,

xt = xt−1 + ht(S), (53)

where, xt ∈ R2, and ht(S) is random Gaussian perturbation depending on the subset S ⊆ R2. In this case, xt ∼
N (xt−1,Σt(S)), where the covariance matrix depends on S: the slope of the eigenvector associated to the greatest eigenvalue
λ1 is the same of the current linear piece of S (see Figure 7(a)). Moreover, denoting as λ2 the second eigenvalue, we design
the covariance matrix Σt(S) in order to have λ1 >> λ2, i.e., the generated particles are highly correlated in the direction of
the route. Clearly, the different trains, trams or buses are discriminated by the different routes, i.e, the set S . Furthermore,
the covariance matrix Σt(S) can also contain other kind of information about, for instance, the velocity: indeed, it is possible
to choose properly the values of the two eigenvalues λ1, λ2. One possibility to improve the particle generation is to apply
the rejection sampling principle [24, 29] for discarded the samples outside the route S (in this case, the noise is a truncated
Gaussian pdf, restricted within S). The values λ1, λ2 are tuned using a Least Squares pre-processing according to the data,
depending go the specific vehicle (train, tram, bus) and route.

Dynamic Model for Car, Cycling and Walk. In this case, we consider a simple model of type

xt =





xt−1 + b1vt, with prob. 1
3 ,

xt−1 + b2vt, with prob. 1
3 ,

xt−1 + b3vt, with prob. 1
3 ,

(54)

where vt ∼ N (0, I) and b1 > b2 > b3 = 0.05 are scalar parameters representing fast, moderate, and slow movements,
respectively. The parameter b3 = 0.05 corresponds to waiting in a bus stop or waiting for a traffic light switch. In our
experiments, in a city environment, we have set b1 = 3.1, b2 = 1.6, for motorized vehicles, whereas b1 = 2, b2 = 0.8 for
cycling and b1 = 1, b2 = 0.3 for modeling walkers. However, we note that the results are not strongly conditionated on these
choices.

Our experience suggest of using 50 ≤ TV ≤ 200 seconds. With this range of values 50 ≤ TV ≤ 200, we obtain a
percentage greater of 82% in the estimation of the true modality, in the experiments considering the collected data. Figure 7(b)
shows the results of a specific test taking into account 4 different modalities. Furthermore, we obtain an averaged MSE of 3.14
meters in the tracking estimation, considering all the different modalities. Considering only buses and trains, we obtain an MSE
of 1.17 meters.

7. CONCLUSIONS

We have designed an interacting parallel sequential Monte Carlo scheme for inference in state space models and on-line model
selection. The parallel particle filters collaborate for providing a global efficient estimate of the hidden states and an approxi-
mation of the probability of the models given the received measurements. The exchange of information among the filters takes
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Fig. 7: (a) Example of generation of particles (shown as circles) using the dynamic model of type in Eq. (53). (b) Detection
of transition between Bus 55, Walk and Train (MAP estimation) at the Helsinki central railway station, considering 4 possible
modalities with real data (T ≈ 1900 sec and TV = 150 sec).

place through the adaptation of the numbers of particles of each filter. A exhaustive theoretical derivation has been provided.
The proposed technique has been applied successfully in different experimental scenarios, including a real data experiment for
the mode detection in a urban mobility problem.
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A. RECURSIVE FORMULAS FOR SEQUENTIAL INFERENCE

For simplifying the notation, in this section, we consider working only with a unique model M1, so that p(x1:t,y1:t) =
p(x1:t,y1:t,M1) = p(x1:t,y1:t|M1). Given the assumptions which we have consider for our model, i.e., p(xt|x1:t−1) =
p(xt|xt−1) and p(yt|x1:t,y1:t−1) = p(yt|xt), we can write easily the following recursive formula for the joint pdf p(x1:t,y1:t)
[11, 13],

p(x1:t,y1:t) = `t(yt|xt)qt(xt|xt−1) p(x1:t−1,y1:t−1). (55)

Given our assumptions, note that we can always evaluate the joint pdf p(x1:t,y1:t). However, we are interested in a similar
recursive expression which involves the posterior p(x1:t|y1:t). Thus, starting be the definition and replacing the expression
above, we obtain

p(x1:t|y1:t) =
p(x1:t,y1:t)
p(y1:t)

(56)

=
`t(yt|xt)qt(xt|xt−1)

p(y1:t)
p(x1:t−1,y1:t−1). (57)

Replacing p(x1:t−1,y1:t−1) = p(x1:t−1|y1:t−1)p(y1:t−1), we have

p(x1:t|y1:t) = `t(yt|xt)qt(xt|xt−1)
p(y1:t−1)
p(y1:t)

p(x1:t−1|y1:t−1), (58)

and since we can write p(y1:t) = p(yt|y1:t−1)p(y1:t−1), finally we obtain

p(x1:t|y1:t) = [`t(yt|xt)qt(xt|xt−1)]
p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
p(x1:t−1|y1:t−1),

=
`t(yt|xt)qt(xt|xt−1)

p(yt|y1:t−1)
p(x1:t−1|y1:t−1). (59)

The last expression involves the posterior at the t-th iteration, p(x1:t|y1:t), as function of the posterior at the t− 1-th iteration,
p(x1:t−1|y1:t−1).

B. DERIVATION OF THE ESTIMATOR Z̃T

For simplicity, we again assume working only with a unique modelM1, so thatK = 1 and p(x1:t,y1:t) = p(x1:t,y1:t,M1) =
p(x1:t,y1:t|M1). Within the SIS framework, there are two possible formulations of the estimator of Z, i.e., Ẑ in Eq. (27) and
Z̃ given in Eq. (28). The alternative formulation Z̃ in Eq. (28) can be derived as follows [13]. Recall that

Zt = p(y1:t) =
∫

X1:t

p(x1:t,y1:t)dx1:t

≈ Ẑt =
1
M

M∑

m=1

w
(m)
t , (60)



and consider the following integral
∫

X1:t

`t(yt|xt)qt(xt|xt−1)p(x1:t−1|y1:t−1)dx1:t =

=
1

p(y1:t−1)

∫

X1:t

`t(yt|xt)qt(xt|xt−1)p(x1:t−1,y1:t−1)dx1:t,

=
1

p(y1:t−1)

∫

X1:t

p(x1:t,y1:t)dx1:t,

=
p(y1:t)
p(y1:t−1)

=
Zt
Zt−1

= p(yt|y1:t−1). (61)

where in the last expression we have used Zt = p(y1:t) and p(y1:t) = p(yt|y1:t−1)p(y1:t−1). Summarizing, we have obtained
∫

X1:t

`t(yt|xt)qt(xt|xt−1)p(x1:t−1|y1:t−1)dx1:t =
Zt
Zt−1

. (62)

Now we replace above p(x1:t−1|y1:t−1) the particle approximation p̂(x1:t−1|y1:t−1) =
∑M
m=1 w̄

(m)
t−1δ(x1:t−1−x(m)

1:t−1), so we
can write

∫

X1:t

`t(yt|xt)qt(xt|xt−1)p̂(x1:t−1|y1:t−1)dx1:t =
M∑

m=1

w̄
(m)
t−1

∫

Xt
`t(yt|xt)qt(xt|x(m)

t−1)dxt,

≈ Zt
Zt−1

. (63)

Moreover, approximating the M integrals
∫
Xt `t(yt|xt)qt(xt|x

(m)
t−1)dxt via Monte Carlo using only one sample, x(m)

t ∼
φt(x

(m)
t |x(m)

1:t−1), for each one,
∫

X1:t

`t(yt|xt)qt(xt|xt−1)p̂(x1:t−1|y1:t−1)dx1:t =
M∑

m=1

w̄
(m)
t−1

∫

Xt
`t(yt|xt)qt(xt|x(m)

t−1)dxt,

≈
M∑

m=1

w̄
(m)
t−1

`t(yt|x(m)
t )qt(x

(m)
t |x(m)

t−1)

φt(x
(m)
t |x(m)

1:t−1)
,

=
M∑

m=1

w̄
(m)
t−1λ

(m)
t ≈ Zt

Zt−1
. (64)

Alternative derivation. Note that we can also deduce the past expression as following
M∑

m=1

w̄
(m)
t−1λ

(m)
t =

1
∑M
m=1 w

(m)
t−1

M∑

m=1

w
(m)
t−1λ

(m)
t ,

=
1

∑M
m=1 w

(m)
t−1

M∑

m=1

w
(m)
t ,

=
1
M

∑M
m=1 w

(m)
t

1
M

∑M
m=1 w

(m)
t−1

=
Ẑt

Ẑt−1

≈ Zt
Zt−1

. (65)

Equivalence with Ẑt. Setting Ẑ0 = 1, we can obtain that

Z̃t =
t∏

τ=1

[
M∑

m=1

w̄
(m)
τ−1λ

(m)
τ

]

=
T∏

τ=1

Ẑτ

Ẑτ−1

= Ẑ1
Ẑ2

Ẑ1

· · · Ẑt−1

Ẑt−2

Ẑt

Ẑt−1

= Ẑt ≈ Z, (66)

namely, the estimator in Eq. (28) is exactly equivalent the estimator (27).



B.1. Application of resampling

Consider again to approximate the integral in Eq. (63) via importance sampling. In this case, we assume to draw independent
samples x(1)

t ,. . ., x(M)
t from the a different proposal pdf ϕ(x1:t), defined as

ϕ(x1:t) = φt(xt|x1:t−1)p̂(x1:t−1|y1:t−1),

=
M∑

m=1

w̄
(m)
t−1φt(xt|x

(m)
1:t−1).

Note that, this is equivalent to apply a resampling at the (t− 1)-th iteration. Thus, we can write

∫

X1:t

`t(yt|xt)qt(xt|xt−1)p̂(x1:t−1|y1:t−1)dx1:t ≈
1
M

M∑

m=1

`t(yt|x(m)
t )qt(x

(m)
t |x(m)

t−1)

φt(x
(m)
t |x(m)

1:t−1)

=
1
M

M∑

m=1

λ
(m)
t ≈ Zt

Zt−1
. (67)

where x(m)
t ∼ φt(xt|x1:t−1)p̂(x1:t−1|y1:t−1), with m = 1, . . . ,M . Recalling the definition of ξ(m)

t ,

ξ
(m)
t =

{
w

(m)
t , without resampling at the t-th iteration,

Ẑt, after resampling at the t-th iteration,
(68)

we can ensure that

Ẑt =
M∑

m=1

ξ
(m)
t λ

(m)
t ,

is still a valid estimator of Z. When no resampling is performed, ξ(m)
t−1 = w

(m)
t−1 , we come back to the standard IS estimator of

Z. When the resampling is applied, we have ξ(m)
t−1 = Ẑt−1, then Ẑt =

bZt−1
M

∑M
m=1 λ

(m)
t . Since Ẑt

Zt−1
= 1

M

∑M
m=1 λ

(m)
t , we

obtain

Ẑt = Ẑt−1

[
1
M

M∑

m=1

λ
(m)
t

]
= Ẑt−1

Ẑt
Zt−1

≈ Z.

Finally, note that Ẑt and Z̃t =
∏T
t=1

[∑M
m=1 ξ̄

(m)
t−1λ

(m)
t

]
are two equivalent formulations of the same estimator. It can be shown

exactly as described above for the SIS framework, replacing w(m)
t with ξ(m)

t .

C. FURTHER CONSIDERATIONS ABOUT MAPF

The validity of the MAPF scheme relies on each filter performs separately a proper SIR estimation of the hidden states using
the normalized weights w̄(ik)

k,t . Each filter also provides a consistent estimator Ẑk,t of the marginal likelihood. Then, this
information is properly merged following the approximation of p̂(x|y) given in Eq. (15) or (20). The variable numbers of
particles does not provide any theoretical issues, since we obtain always valid IS estimators (clearly, it affects the efficiency of
these estimators) [14]. An important related observation is remarked below.

Remark 4. Consider that, at the t-th iteration, the condition in Eq. (39) is satisfied. Namely, (a) the numbers of particles are
updated and (b) the resampling applied. Considering jointly (a) and (b), we can be interpreted that in MAPF we are drawing
samples from the mixture in Eq. (20),

p̂(x1:t|y1:t) =
K∑

k=1

ρ̄k,t p̂(x1:t|y1:t,Mk),

using the so-called deterministic mixture (DM) procedure [35, 14]. The DM is performed through the adaptation of the number
of particles.

That is, the adaptation of number of particles can be seen as a way of selecting (i.e., using) more times one model than
other. The previous remark suggests an alternative equivalent resampling scheme:



1. Set ik = 0, for all k = 1, . . . ,K.

2. For n = 1, . . . , N :

(a) Select a model k with probability ρ̄k,t, k = 1, . . . ,K.

(b) Set ik = ik + 1 resample x̄(ik)
k,t = x(j)

k,t ∈ {x
(1)
k,t , . . . ,x

(Mk,t)
k,t } with probability w̄(j)

k,t , j = 1, . . . ,Mk,t.

3. Set Mk,t+1 = ik, for all k = 1, . . . ,K, so that
∑K
k=1Mk,t+1 = N .

Clearly, with the procedure above, some model could be completely discarded, with no particles assigned.


