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Abstract
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The formula, G = 3farctan(x(x))dm , G being the Cata-
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lan’s constant, have been popularized by James McLaughlin in Septem-
ber 2007[1].
We present here an elementary proof of it.

1 Introduction

From the following formulae [2],
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In what follows, our aim is to prove:
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*Thanks go to http://www.les-mathematiques.net for help and inspiration and to
the author of Bigints BTEX package, Merciadri Luca


http://www.les-mathematiques.net

2 Preamble: Some results.

The proof relies on the following identity.
Let u, v be two real numbers such that « < 0, v >0 and v+ v > 0.
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Let w :=
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Proof. It’s straightforward to prove that is well
(w — uz)(w — vx)
defined and negative when conditions on u, v,z are satisfied.

To prove it’s greater than or equal to —1 notice that:

wz? + (w — uzr)(w — vz) = 2uvr? — (u? + v?)x + w?

The use of arctangent addition formula terminates the proof. O
Two lemmas are required to achieve the proof.

Lemma 2.1. Let f be a continuous and differentiable function that is de-
fined for all real numbers, and f(0) = 0.
Ifd>0and, d>c>0 orc<0 then:
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Proof. Use change of variable in the integral in the right-hand side:
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3 Proof of the main result

y:

and recall that:

Hereafter, N is an integer greater than or equal to 2.

Assume u = 1 — VN, v = 1 + /N therefore, u < 0, v >0, u+v=2>0
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and w =
v

For all = € [0,1], according to :
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Assume a = 1 — /N, ¢ = 1+ VN, d = N + 1, therefore, d > ¢ > 0
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Using lemma and change of variable y = —x one obtains:
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Using lemma
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Since — > 1, the following identity holds for all real numbers in |0, 1]:
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Using integration by parts, one gets:
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The following equality holds:
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thus, one obtains:
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The following equality holds:
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thus, applying lemma to the integral in the right-hand side one obtains:
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The formula follows by taking N = 3.

Remark. An alternative way to prove[3.1] is to consider N as a real number
parameter strictly greater than 1.
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